WorldWideScience

Sample records for high accuracy dynamic

  1. High accuracy satellite drag model (HASDM)

    Science.gov (United States)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  2. Accuracy Assessment for the Three-Dimensional Coordinates by High-Speed Videogrammetric Measurement

    Directory of Open Access Journals (Sweden)

    Xianglei Liu

    2018-01-01

    Full Text Available High-speed CMOS camera is a new kind of transducer to make the videogrammetric measurement for monitoring the displacement of high-speed shaking table structure. The purpose of this paper is to validate the three-dimensional coordinate accuracy of the shaking table structure acquired from the presented high-speed videogrammetric measuring system. In the paper, all of the key intermediate links are discussed, including the high-speed CMOS videogrammetric measurement system, the layout of the control network, the elliptical target detection, and the accuracy validation of final 3D spatial results. Through the accuracy analysis, the submillimeter accuracy can be made for the final the three-dimensional spatial coordinates which certify that the proposed high-speed videogrammetric technique is a better alternative technique which can replace the traditional transducer technique for monitoring the dynamic response for the shaking table structure.

  3. Methods Research about Accuracy Loss Tracing of Dynamic Measurement System Based on WNN

    International Nuclear Information System (INIS)

    Lin, S-W; Fei, Y T; Jiang, M L; Tsai, C-Y; Cheng Hsinyu

    2006-01-01

    The paper presents a method of achieving accuracy loss of the dynamic measurement system according to change of errors on different period of the system. WNN, used to trace the accuracy loss of dynamic measurement system, traces the total precision loss during a certain period to every part of the system, and the accuracy loss of every part can be get, so retaining the accuracy and optimum design of the system is possible. Take tracing the accuracy loss of a simulated system for an example to testify the method

  4. The accuracy of dynamic attitude propagation

    Science.gov (United States)

    Harvie, E.; Chu, D.; Woodard, M.

    1990-01-01

    Propagating attitude by integrating Euler's equation for rigid body motion has long been suggested for the Earth Radiation Budget Satellite (ERBS) but until now has not been implemented. Because of limited Sun visibility, propagation is necessary for yaw determination. With the deterioration of the gyros, dynamic propagation has become more attractive. Angular rates are derived from integrating Euler's equation with a stepsize of 1 second, using torques computed from telemetered control system data. The environmental torque model was quite basic. It included gravity gradient and unshadowed aerodynamic torques. Knowledge of control torques is critical to the accuracy of dynamic modeling. Due to their coarseness and sparsity, control actuator telemetry were smoothed before integration. The dynamic model was incorporated into existing ERBS attitude determination software. Modeled rates were then used for attitude propagation in the standard ERBS fine-attitude algorithm. In spite of the simplicity of the approach, the dynamically propagated attitude matched the attitude propagated with good gyros well for roll and yaw but diverged up to 3 degrees for pitch because of the very low resolution in pitch momentum wheel telemetry. When control anomalies significantly perturb the nominal attitude, the effect of telemetry granularity is reduced and the dynamically propagated attitudes are accurate on all three axes.

  5. Accuracy of High-Resolution Ultrasonography in the Detection of Extensor Tendon Lacerations.

    Science.gov (United States)

    Dezfuli, Bobby; Taljanovic, Mihra S; Melville, David M; Krupinski, Elizabeth A; Sheppard, Joseph E

    2016-02-01

    Lacerations to the extensor mechanism are usually diagnosed clinically. Ultrasound (US) has been a growing diagnostic tool for tendon injuries since the 1990s. To date, there has been no publication establishing the accuracy and reliability of US in the evaluation of extensor mechanism lacerations in the hand. The purpose of this study is to determine the accuracy of US to detect extensor tendon injuries in the hand. Sixteen fingers and 4 thumbs in 4 fresh-frozen and thawed cadaveric hands were used. Sixty-eight 0.5-cm transverse skin lacerations were created. Twenty-seven extensor tendons were sharply transected. The remaining skin lacerations were used as sham dissection controls. One US technologist and one fellowship-trained musculoskeletal radiologist performed real-time dynamic US studies in and out of water bath. A second fellowship trained musculoskeletal radiologist subsequently reviewed the static US images. Dynamic and static US interpretation accuracy was assessed using dissection as "truth." All 27 extensor tendon lacerations and controls were identified correctly with dynamic imaging as either injury models that had a transected extensor tendon or sham controls with intact extensor tendons (sensitivity = 100%, specificity = 100%, positive predictive value = 1.0; all significantly greater than chance). Static imaging had a sensitivity of 85%, specificity of 89%, and accuracy of 88% (all significantly greater than chance). The results of the dynamic real time versus static US imaging were clearly different but did not reach statistical significance. Diagnostic US is a very accurate noninvasive study that can identify extensor mechanism injuries. Clinically suspected cases of acute extensor tendon injury scanned by high-frequency US can aid and/or confirm the diagnosis, with dynamic imaging providing added value compared to static. Ultrasonography, to aid in the diagnosis of extensor mechanism lacerations, can be successfully used in a reliable and

  6. Analysis on Dynamic Transmission Accuracy for RV Reducer

    Directory of Open Access Journals (Sweden)

    Zhang Fengshou

    2017-01-01

    Full Text Available By taking rotate vector (RV reducer as the research object, the factors affecting the transmission accuracy are studied, including the machining errors of the main parts, assembly errors, clearance, micro-displacement, gear mesh stiffness and damping, bearing stiffness. Based on Newton second law, the transmission error mathematical model of RV reducer is set up. Then, the RV reducer transmission error curve is achieved by solving the mathematical model using the Runge-Kutta methods under the combined action of various error factors. Through the analysis of RV reducer transmission test, it can be found that there are similar variation trend and frequency components compared the theoretical research and experimental result. The presented method is useful to the research on dynamic transmission accuracy of RV reducer, and also applies to research the transmission accuracy of other cycloid drive systems.

  7. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  8. Aerodynamic coefficient identification package dynamic data accuracy determinations: Lessons learned

    Science.gov (United States)

    Heck, M. L.; Findlay, J. T.; Compton, H. R.

    1983-01-01

    The errors in the dynamic data output from the Aerodynamic Coefficient Identification Packages (ACIP) flown on Shuttle flights 1, 3, 4, and 5 were determined using the output from the Inertial Measurement Units (IMU). A weighted least-squares batch algorithm was empolyed. Using an averaging technique, signal detection was enhanced; this allowed improved calibration solutions. Global errors as large as 0.04 deg/sec for the ACIP gyros, 30 mg for linear accelerometers, and 0.5 deg/sec squared in the angular accelerometer channels were detected and removed with a combination is bias, scale factor, misalignment, and g-sensitive calibration constants. No attempt was made to minimize local ACIP dynamic data deviations representing sensed high-frequency vibration or instrument noise. Resulting 1sigma calibrated ACIP global accuracies were within 0.003 eg/sec, 1.0 mg, and 0.05 deg/sec squared for the gyros, linear accelerometers, and angular accelerometers, respectively.

  9. Improving the accuracy of dynamic mass calculation

    Directory of Open Access Journals (Sweden)

    Oleksandr F. Dashchenko

    2015-06-01

    Full Text Available With the acceleration of goods transporting, cargo accounting plays an important role in today's global and complex environment. Weight is the most reliable indicator of the materials control. Unlike many other variables that can be measured indirectly, the weight can be measured directly and accurately. Using strain-gauge transducers, weight value can be obtained within a few milliseconds; such values correspond to the momentary load, which acts on the sensor. Determination of the weight of moving transport is only possible by appropriate processing of the sensor signal. The aim of the research is to develop a methodology for weighing freight rolling stock, which increases the accuracy of the measurement of dynamic mass, in particular wagon that moves. Apart from time-series methods, preliminary filtration for improving the accuracy of calculation is used. The results of the simulation are presented.

  10. High Accuracy Acoustic Relative Humidity Measurement inDuct Flow with Air

    Directory of Open Access Journals (Sweden)

    Cees van der Geld

    2010-08-01

    Full Text Available An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  11. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  12. High accuracy FIONA-AFM hybrid imaging

    International Nuclear Information System (INIS)

    Fronczek, D.N.; Quammen, C.; Wang, H.; Kisker, C.; Superfine, R.; Taylor, R.; Erie, D.A.; Tessmer, I.

    2011-01-01

    Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish different proteins from one another. Here, we combine high resolution fluorescence microscopy and AFM (FIONA-AFM) to allow the identification of different proteins in such complexes. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, we are able to align fluorescence and AFM information to ≥8 nm accuracy. This accuracy is sufficient to identify individual fluorescently labeled proteins in most multi-protein complexes. We investigate the limitations of localization precision and accuracy in fluorescence and AFM images separately and their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two orthogonal techniques (FIONA and AFM) opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10 nm) information about the conformational properties of multi-protein complexes and the fluorescence can indicate spatial relationships of the proteins in the complexes. -- Research highlights: → Integration of fluorescent signals in AFM topography with high (<10 nm) accuracy. → Investigation of limitations and quantitative analysis of fluorescence-AFM image registration using quantum dots. → Fluorescence center tracking and display as localization probability distributions in AFM topography (FIONA-AFM). → Application of FIONA-AFM to a biological sample containing damaged DNA and the DNA repair proteins UvrA and UvrB conjugated to quantum dots.

  13. High Accuracy Transistor Compact Model Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hembree, Charles E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mar, Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  14. A high-accuracy optical linear algebra processor for finite element applications

    Science.gov (United States)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  15. Evolution of perturbed dynamical systems: analytical computation with time independent accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Gurzadyan, A.V. [Russian-Armenian (Slavonic) University, Department of Mathematics and Mathematical Modelling, Yerevan (Armenia); Kocharyan, A.A. [Monash University, School of Physics and Astronomy, Clayton (Australia)

    2016-12-15

    An analytical method for investigation of the evolution of dynamical systems with independent on time accuracy is developed for perturbed Hamiltonian systems. The error-free estimation using of computer algebra enables the application of the method to complex multi-dimensional Hamiltonian and dissipative systems. It also opens principal opportunities for the qualitative study of chaotic trajectories. The performance of the method is demonstrated on perturbed two-oscillator systems. It can be applied to various non-linear physical and astrophysical systems, e.g. to long-term planetary dynamics. (orig.)

  16. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  17. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    Science.gov (United States)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  18. Diagnostic accuracy of high-definition CT coronary angiography in high-risk patients

    International Nuclear Information System (INIS)

    Iyengar, S.S.; Morgan-Hughes, G.; Ukoumunne, O.; Clayton, B.; Davies, E.J.; Nikolaou, V.; Hyde, C.J.; Shore, A.C.; Roobottom, C.A.

    2016-01-01

    Aim: To assess the diagnostic accuracy of computed tomography coronary angiography (CTCA) using a combination of high-definition CT (HD-CTCA) and high level of reader experience, with invasive coronary angiography (ICA) as the reference standard, in high-risk patients for the investigation of coronary artery disease (CAD). Materials and methods: Three hundred high-risk patients underwent HD-CTCA and ICA. Independent experts evaluated the images for the presence of significant CAD, defined primarily as the presence of moderate (≥50%) stenosis and secondarily as the presence of severe (≥70%) stenosis in at least one coronary segment, in a blinded fashion. HD-CTCA was compared to ICA as the reference standard. Results: No patients were excluded. Two hundred and six patients (69%) had moderate and 178 (59%) had severe stenosis in at least one vessel at ICA. The sensitivity, specificity, positive predictive value, and negative predictive value were 97.1%, 97.9%, 99% and 93.9% for moderate stenosis, and 98.9%, 93.4%, 95.7% and 98.3%, for severe stenosis, on a per-patient basis. Conclusion: The combination of HD-CTCA and experienced readers applied to a high-risk population, results in high diagnostic accuracy comparable to ICA. Modern generation CT systems in experienced hands might be considered for an expanded role. - Highlights: • Diagnostic accuracy of High-Definition CT Angiography (HD-CTCA) has been assessed. • Invasive Coronary angiography (ICA) is the reference standard. • Diagnostic accuracy of HD-CTCA is comparable to ICA. • Diagnostic accuracy is not affected by coronary calcium or stents. • HD-CTCA provides a non-invasive alternative in high-risk patients.

  19. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Qingzhong Cai

    2016-06-01

    Full Text Available An inertial navigation system (INS has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs using common turntables, has a great application potential in future atomic gyro INSs.

  20. Assessing Genomic Selection Prediction Accuracy in a Dynamic Barley Breeding Population

    Directory of Open Access Journals (Sweden)

    A. H. Sallam

    2015-03-01

    Full Text Available Prediction accuracy of genomic selection (GS has been previously evaluated through simulation and cross-validation; however, validation based on progeny performance in a plant breeding program has not been investigated thoroughly. We evaluated several prediction models in a dynamic barley breeding population comprised of 647 six-row lines using four traits differing in genetic architecture and 1536 single nucleotide polymorphism (SNP markers. The breeding lines were divided into six sets designated as one parent set and five consecutive progeny sets comprised of representative samples of breeding lines over a 5-yr period. We used these data sets to investigate the effect of model and training population composition on prediction accuracy over time. We found little difference in prediction accuracy among the models confirming prior studies that found the simplest model, random regression best linear unbiased prediction (RR-BLUP, to be accurate across a range of situations. In general, we found that using the parent set was sufficient to predict progeny sets with little to no gain in accuracy from generating larger training populations by combining the parent set with subsequent progeny sets. The prediction accuracy ranged from 0.03 to 0.99 across the four traits and five progeny sets. We explored characteristics of the training and validation populations (marker allele frequency, population structure, and linkage disequilibrium, LD as well as characteristics of the trait (genetic architecture and heritability, . Fixation of markers associated with a trait over time was most clearly associated with reduced prediction accuracy for the mycotoxin trait DON. Higher trait in the training population and simpler trait architecture were associated with greater prediction accuracy.

  1. Parameter scans and accuracy estimates of the dynamical aperture of the CERN LHC

    CERN Document Server

    Giovannozzi, Massimo

    2006-01-01

    Techniques to make use of large distributed computing facilities allow for denser parameter scans of the dynamic aperture, i.e., the domain in phase space where bounded single-particle motion prevails. Moreover, one can also increase the number of 'seeds' each of which represents a possible realization of multipolar components around the machine. In this paper the dependence of the dynamic aperture on the step size of the grid of initial conditions and on the number of seeds is studied. Estimates on the accuracy of the dynamic aperture are derived and the definition of an improved protocol for numerical simulations is presented.

  2. High Accuracy Beam Current Monitor System for CEBAF'S Experimental Hall A

    International Nuclear Information System (INIS)

    J. Denard; A. Saha; G. Lavessiere

    2001-01-01

    CEBAF accelerator delivers continuous wave (CW) electron beams to three experimental Halls. In Hall A, all experiments require continuous, non-invasive current measurements and a few experiments require an absolute accuracy of 0.2 % in the current range from 1 to 180 (micro)A. A Parametric Current Transformer (PCT), manufactured by Bergoz, has an accurate and stable sensitivity of 4 (micro)A/V but its offset drifts at the muA level over time preclude its direct use for continuous measurements. Two cavity monitors are calibrated against the PCT with at least 50 (micro)A of beam current. The calibration procedure suppresses the error due to PCT's offset drifts by turning the beam on and off, which is invasive to the experiment. One of the goals of the system is to minimize the calibration time without compromising the measurement's accuracy. The linearity of the cavity monitors is a critical parameter for transferring the accurate calibration done at high currents over the whole dynamic range. The method for measuring accurately the linearity is described

  3. Diagnostic accuracy of metronome-paced tachypnea to detect dynamic hyperinflation.

    Science.gov (United States)

    Lahaije, Anke J M C; Willems, Laura M; van Hees, Hieronymus W H; Dekhuijzen, P N Richard; van Helvoort, Hanneke A C; Heijdra, Yvonne F

    2013-01-01

    This prospective study was carried out to investigate if metronome-paced tachypnea (MPT) can serve as an accurate diagnostic tool to identify patients with chronic obstructive pulmonary disease (COPD) who are susceptible to develop dynamic hyperinflation during exercise. Commonly, this is assessed by measuring change in inspiratory capacity (IC) during cardiopulmonary exercise testing (CPET), which, however, is complex and laborious. Fifty-three patients with COPD (FEV(1) 58 ± 22%pred) and 20 age-matched healthy subjects were characterized by lung function testing and performed CPET (reference standard) and MPT. The repeatability coefficient of IC (10·2%) was used as cut-off to classify subjects as hyperinflators during CPET. Subsequently, dynamic hyperinflation was measured after MPT. With receiver operating characteristic analysis, the optimal cut-off for MPT-induced dynamic hyperinflation was determined and sensitivity and specificity of MPT to identify hyperinflators were evaluated. With 10·2% decrease in IC as cut-off for CPET-induced dynamic hyperinflation, the optimal cut-off for MPT was 11·1% decrease in IC. Using these cut-offs, MPT had a sensitivity of 85% and specificity of 85% to identify the subjects who hyperinflated during CPET. The MPT test shows good overall accuracy to identify subjects who are susceptible to develop dynamic hyperinflation during CPET. Before considering the use of MPT as a screening tool for dynamic hyperinflation in COPD, sensitivity and specificity need further evaluation. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  4. Enhancing the Accuracy of Advanced High Temperature Mechanical Testing through Thermography

    Directory of Open Access Journals (Sweden)

    Jonathan Jones

    2018-03-01

    Full Text Available This paper describes the advantages and enhanced accuracy thermography provides to high temperature mechanical testing. This technique is not only used to monitor, but also to control test specimen temperatures where the infra-red technique enables accurate non-invasive control of rapid thermal cycling for non-metallic materials. Isothermal and dynamic waveforms are employed over a 200–800 °C temperature range to pre-oxidised and coated specimens to assess the capability of the technique. This application shows thermography to be accurate to within ±2 °C of thermocouples, a standardised measurement technique. This work demonstrates the superior visibility of test temperatures previously unobtainable by conventional thermocouples or even more modern pyrometers that thermography can deliver. As a result, the speed and accuracy of thermal profiling, thermal gradient measurements and cold/hot spot identification using the technique has increased significantly to the point where temperature can now be controlled by averaging over a specified area. The increased visibility of specimen temperatures has revealed additional unknown effects such as thermocouple shadowing, preferential crack tip heating within an induction coil, and, fundamental response time of individual measurement techniques which are investigated further.

  5. High accuracy mantle convection simulation through modern numerical methods

    KAUST Repository

    Kronbichler, Martin

    2012-08-21

    Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.

  6. High-order dynamic lattice method for seismic simulation in anisotropic media

    Science.gov (United States)

    Hu, Xiaolin; Jia, Xiaofeng

    2018-03-01

    The discrete particle-based dynamic lattice method (DLM) offers an approach to simulate elastic wave propagation in anisotropic media by calculating the anisotropic micromechanical interactions between these particles based on the directions of the bonds that connect them in the lattice. To build such a lattice, the media are discretized into particles. This discretization inevitably leads to numerical dispersion. The basic lattice unit used in the original DLM only includes interactions between the central particle and its nearest neighbours; therefore, it represents the first-order form of a particle lattice. The first-order lattice suffers from numerical dispersion compared with other numerical methods, such as high-order finite-difference methods, in terms of seismic wave simulation. Due to its unique way of discretizing the media, the particle-based DLM no longer solves elastic wave equations; this means that one cannot build a high-order DLM by simply creating a high-order discrete operator to better approximate a partial derivative operator. To build a high-order DLM, we carry out a thorough dispersion analysis of the method and discover that by adding more neighbouring particles into the lattice unit, the DLM will yield different spatial accuracy. According to the dispersion analysis, the high-order DLM presented here can adapt the requirement of spatial accuracy for seismic wave simulations. For any given spatial accuracy, we can design a corresponding high-order lattice unit to satisfy the accuracy requirement. Numerical tests show that the high-order DLM improves the accuracy of elastic wave simulation in anisotropic media.

  7. High-speed railway bridge dynamic measurement based on GB-InSAR technology

    Science.gov (United States)

    Liu, Miao; Ding, Ke-liang; Liu, Xianglei; Song, Zichao

    2015-12-01

    It is an important task to evaluate the safety during the life of bridges using the corresponding vibration parameters. With the advantages of non-contact and high accuracy, the new remote measurement technology of GB-InSAR is suitable to make dynamic measurement for bridges to acquire the vibration parameters. Three key technologies, including stepped frequency-continuous wave technique, synthetic aperture radar and interferometric measurement technique, are introduced in this paper. The GB-InSAR is applied for a high-speed railway bridge to measure of dynamic characteristics with the train passing which can be used to analyze the safety of the monitored bridge. The test results shown that it is an reliable non-contact technique for GB-InSAR to acquire the dynamic vibration parameter for the high-speed railway bridges.

  8. High-precision numerical integration of equations in dynamics

    Science.gov (United States)

    Alesova, I. M.; Babadzanjanz, L. K.; Pototskaya, I. Yu.; Pupysheva, Yu. Yu.; Saakyan, A. T.

    2018-05-01

    An important requirement for the process of solving differential equations in Dynamics, such as the equations of the motion of celestial bodies and, in particular, the motion of cosmic robotic systems is high accuracy at large time intervals. One of effective tools for obtaining such solutions is the Taylor series method. In this connection, we note that it is very advantageous to reduce the given equations of Dynamics to systems with polynomial (in unknowns) right-hand sides. This allows us to obtain effective algorithms for finding the Taylor coefficients, a priori error estimates at each step of integration, and an optimal choice of the order of the approximation used. In the paper, these questions are discussed and appropriate algorithms are considered.

  9. Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image

    Science.gov (United States)

    Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.

    2018-04-01

    At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.

  10. A generalized polynomial chaos based ensemble Kalman filter with high accuracy

    International Nuclear Information System (INIS)

    Li Jia; Xiu Dongbin

    2009-01-01

    As one of the most adopted sequential data assimilation methods in many areas, especially those involving complex nonlinear dynamics, the ensemble Kalman filter (EnKF) has been under extensive investigation regarding its properties and efficiency. Compared to other variants of the Kalman filter (KF), EnKF is straightforward to implement, as it employs random ensembles to represent solution states. This, however, introduces sampling errors that affect the accuracy of EnKF in a negative manner. Though sampling errors can be easily reduced by using a large number of samples, in practice this is undesirable as each ensemble member is a solution of the system of state equations and can be time consuming to compute for large-scale problems. In this paper we present an efficient EnKF implementation via generalized polynomial chaos (gPC) expansion. The key ingredients of the proposed approach involve (1) solving the system of stochastic state equations via the gPC methodology to gain efficiency; and (2) sampling the gPC approximation of the stochastic solution with an arbitrarily large number of samples, at virtually no additional computational cost, to drastically reduce the sampling errors. The resulting algorithm thus achieves a high accuracy at reduced computational cost, compared to the classical implementations of EnKF. Numerical examples are provided to verify the convergence property and accuracy improvement of the new algorithm. We also prove that for linear systems with Gaussian noise, the first-order gPC Kalman filter method is equivalent to the exact Kalman filter.

  11. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...

  12. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  13. Research on Dynamic Parameters and Position Accuracy of Pneumatics Muscles

    Directory of Open Access Journals (Sweden)

    Edvard Sadovskij

    2012-12-01

    Full Text Available The article deals with pneumatic muscle MAS-20-200N-AA-MC-O, its dynamic properties and positioning accuracy as well as overviews experimental and theoretical works. The paper introduces the diagrams of vibration acceleration, discusses displacement dependence on pressure and load and presents a diagram of speed dependence on operating pressure. Vibroacceleration has been measured employing two accelerometers. Measurements have been carried out in three mutually perpendicular directions: x, y and z. The most important one is direction z, because this way the muscle performs a valuable displacement along the axis of the muscle, since this direction is the movement of the working muscle.Article in Lithuanian

  14. Research on Dynamic Parameters and Position Accuracy of Pneumatics Muscles

    Directory of Open Access Journals (Sweden)

    Edvard Sadovskij

    2013-02-01

    Full Text Available The article deals with pneumatic muscle MAS-20-200N-AA-MC-O, its dynamic properties and positioning accuracy as well as overviews experimental and theoretical works. The paper introduces the diagrams of vibration acceleration, discusses displacement dependence on pressure and load and presents a diagram of speed dependence on operating pressure. Vibroacceleration has been measured employing two accelerometers. Measurements have been carried out in three mutually perpendicular directions: x, y and z. The most important one is direction z, because this way the muscle performs a valuable displacement along the axis of the muscle, since this direction is the movement of the working muscle.Article in Lithuanian

  15. High accuracy wavelength calibration for a scanning visible spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Scotti, Filippo; Bell, Ronald E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2010-10-15

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies {<=}0.2 A. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of {approx}0.25 A has been demonstrated. With the addition of a high resolution (0.075 arc sec) optical encoder on the grating stage, greater precision ({approx}0.005 A) is possible, allowing absolute velocity measurements within {approx}0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  16. Switched-capacitor techniques for high-accuracy filter and ADC design

    NARCIS (Netherlands)

    Quinn, P.J.; Roermund, van A.H.M.

    2007-01-01

    Switched capacitor (SC) techniques are well proven to be excellent candidates for implementing critical analogue functions with high accuracy, surpassing other analogue techniques when embedded in mixed-signal CMOS VLSI. Conventional SC circuits are primarily limited in accuracy by a) capacitor

  17. Algorithm of dynamic regulation of a system of duct, for a high accuracy climatic system

    Science.gov (United States)

    Arbatskiy, A. A.; Afonina, G. N.; Glazov, V. S.

    2017-11-01

    Currently, major part of climatic system, are stationary in projected mode only. At the same time, many modern industrial sites, require constant or periodical changes in technological process. That is 80% of the time, the industrial site is not require ventilation system in projected mode and high precision of climatic parameters must maintain. While that not constantly is in use for climatic systems, which use in parallel for different rooms, we will be have a problem for balance of duct system. For this problem, was created the algorithm for quantity regulation, with minimal changes. Dynamic duct system: Developed of parallel control system of air balance, with high precision of climatic parameters. The Algorithm provide a permanent pressure in main duct, in different a flow of air. Therefore, the ending devises air flow have only one parameter for regulation - flaps open area. Precision of regulation increase and the climatic system provide high precision for temperature and humidity (0,5C for temperature, 5% for relative humidity). Result: The research has been made in CFD-system - PHOENICS. Results for velocity of air in duct, for pressure of air in duct for different operation mode, has been obtained. Equation for air valves positions, with different parameters for climate in room’s, has been obtained. Energy saving potential for dynamic duct system, for different types of a rooms, has been calculated.

  18. Bladder cancer: Evaluation of staging accuracy using dynamic MRI

    International Nuclear Information System (INIS)

    Rajesh, A.; Sokhi, H.K.; Fung, R.; Mulcahy, K.A.; Bankart, M.J.G.

    2011-01-01

    Aim: To assess the accuracy of magnetic resonance imaging (MRI) in staging bladder cancer and to assess whether dynamic gadolinium-enhanced sequences have any added benefit in staging. Materials and methods: Over a 22 month period, the MRI findings of 100 consecutive patients with histologically proven transitional cell carcinoma (TCC) of the bladder were reviewed. The T stage was assessed independently on T2-weighted imaging alone and in combination with gadolinium-enhanced MRI. The final histological diagnosis was considered the reference standard. Statistical analysis was performed to ascertain stage-by-stage accuracy. Accuracy of MRI in differentiating superficial (≤T1) from invasive (≥T2) and in differentiating organ-confined (≤T2) from non-organ-confined (≥T3) disease was assessed. Results: On a stage-by-stage basis, tumours were correctly staged using MRI in 63% of patients (observed agreement = 0.63, weighted kappa = 0.57). The sensitivity and specificity of MRI to differentiate between superficial (≤T1) from invasive (≥T2) disease was 78.2 and 93.3%. The observed agreement for this group was 85% (kappa = 70%; p < 0.0001). The sensitivity and specificity of MRI to differentiate between organ-confined (≤T2) from non-organ confined (≥T3) disease was 90.5 and 60%. The observed agreement for this group was 89% (kappa = 30%; p < 0.01). Gadolinium-enhanced images improved staging in only three patients. Conclusion: In the present study MRI was found to be a moderately accurate tool in assessing the T stage. Agreement on a stage-by-stage basis was good. Agreement for differentiating between non-invasive versus muscle-invasive disease was good and that for organ-confined versus non-organ-confined disease was fair. Routine use of gadolinium-enhanced images is not routinely required.

  19. Bladder cancer: Evaluation of staging accuracy using dynamic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Rajesh, A., E-mail: arajesh27@hotmail.com [Department of Radiology, University Hospitals of Leicester NHS Trust, Leicester General Hospital (United Kingdom); Sokhi, H.K.; Fung, R.; Mulcahy, K.A. [Department of Radiology, University Hospitals of Leicester NHS Trust, Leicester General Hospital (United Kingdom); Bankart, M.J.G. [Department of Health Sciences, University of Leicester, Leicester (United Kingdom)

    2011-12-15

    Aim: To assess the accuracy of magnetic resonance imaging (MRI) in staging bladder cancer and to assess whether dynamic gadolinium-enhanced sequences have any added benefit in staging. Materials and methods: Over a 22 month period, the MRI findings of 100 consecutive patients with histologically proven transitional cell carcinoma (TCC) of the bladder were reviewed. The T stage was assessed independently on T2-weighted imaging alone and in combination with gadolinium-enhanced MRI. The final histological diagnosis was considered the reference standard. Statistical analysis was performed to ascertain stage-by-stage accuracy. Accuracy of MRI in differentiating superficial ({<=}T1) from invasive ({>=}T2) and in differentiating organ-confined ({<=}T2) from non-organ-confined ({>=}T3) disease was assessed. Results: On a stage-by-stage basis, tumours were correctly staged using MRI in 63% of patients (observed agreement = 0.63, weighted kappa = 0.57). The sensitivity and specificity of MRI to differentiate between superficial ({<=}T1) from invasive ({>=}T2) disease was 78.2 and 93.3%. The observed agreement for this group was 85% (kappa = 70%; p < 0.0001). The sensitivity and specificity of MRI to differentiate between organ-confined ({<=}T2) from non-organ confined ({>=}T3) disease was 90.5 and 60%. The observed agreement for this group was 89% (kappa = 30%; p < 0.01). Gadolinium-enhanced images improved staging in only three patients. Conclusion: In the present study MRI was found to be a moderately accurate tool in assessing the T stage. Agreement on a stage-by-stage basis was good. Agreement for differentiating between non-invasive versus muscle-invasive disease was good and that for organ-confined versus non-organ-confined disease was fair. Routine use of gadolinium-enhanced images is not routinely required.

  20. High-accuracy mass spectrometry for fundamental studies.

    Science.gov (United States)

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  1. DEVELOPMENT OF COMPLEXITY, ACCURACY, AND FLUENCY IN HIGH SCHOOL STUDENTS’ WRITTEN FOREIGN LANGUAGE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bouchaib Benzehaf

    2016-11-01

    Full Text Available The present study aims to longitudinally depict the dynamic and interactive development of Complexity, Accuracy, and Fluency (CAF in multilingual learners’ L2 and L3 writing. The data sources include free writing tasks written in L2 French and L3 English by 45 high school participants over a period of four semesters. CAF dimensions are measured using a variation of Hunt’s T-units (1964. Analysis of the quantitative data obtained suggests that CAF measures develop differently for learners’ L2 French and L3 English. They increase more persistently in L3 English, and they display the characteristics of a dynamic, non-linear system characterized by ups and downs particularly in L2 French. In light of the results, we suggest more and denser longitudinal data to explore the nature of interactions between these dimensions in foreign language development, particularly at the individual level.

  2. High-speed AFM for Studying Dynamic Biomolecular Processes

    Science.gov (United States)

    Ando, Toshio

    2008-03-01

    Biological molecules show their vital activities only in aqueous solutions. It had been one of dreams in biological sciences to directly observe biological macromolecules (protein, DNA) at work under a physiological condition because such observation is straightforward to understanding their dynamic behaviors and functional mechanisms. Optical microscopy has no sufficient spatial resolution and electron microscopy is not applicable to in-liquid samples. Atomic force microscopy (AFM) can visualize molecules in liquids at high resolution but its imaging rate was too low to capture dynamic biological processes. This slow imaging rate is because AFM employs mechanical probes (cantilevers) and mechanical scanners to detect the sample height at each pixel. It is quite difficult to quickly move a mechanical device of macroscopic size with sub-nanometer accuracy without producing unwanted vibrations. It is also difficult to maintain the delicate contact between a probe tip and fragile samples. Two key techniques are required to realize high-speed AFM for biological research; fast feedback control to maintain a weak tip-sample interaction force and a technique to suppress mechanical vibrations of the scanner. Various efforts have been carried out in the past decade to materialize high-speed AFM. The current high-speed AFM can capture images on video at 30-60 frames/s for a scan range of 250nm and 100 scan lines, without significantly disturbing week biomolecular interaction. Our recent studies demonstrated that this new microscope can reveal biomolecular processes such as myosin V walking along actin tracks and association/dissociation dynamics of chaperonin GroEL-GroES that occurs in a negatively cooperative manner. The capacity of nanometer-scale visualization of dynamic processes in liquids will innovate on biological research. In addition, it will open a new way to study dynamic chemical/physical processes of various phenomena that occur at the liquid-solid interfaces.

  3. An angle encoder for super-high resolution and super-high accuracy using SelfA

    Science.gov (United States)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  4. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  5. Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks.

    Science.gov (United States)

    Blanche, Paul; Proust-Lima, Cécile; Loubère, Lucie; Berr, Claudine; Dartigues, Jean-François; Jacqmin-Gadda, Hélène

    2015-03-01

    Thanks to the growing interest in personalized medicine, joint modeling of longitudinal marker and time-to-event data has recently started to be used to derive dynamic individual risk predictions. Individual predictions are called dynamic because they are updated when information on the subject's health profile grows with time. We focus in this work on statistical methods for quantifying and comparing dynamic predictive accuracy of this kind of prognostic models, accounting for right censoring and possibly competing events. Dynamic area under the ROC curve (AUC) and Brier Score (BS) are used to quantify predictive accuracy. Nonparametric inverse probability of censoring weighting is used to estimate dynamic curves of AUC and BS as functions of the time at which predictions are made. Asymptotic results are established and both pointwise confidence intervals and simultaneous confidence bands are derived. Tests are also proposed to compare the dynamic prediction accuracy curves of two prognostic models. The finite sample behavior of the inference procedures is assessed via simulations. We apply the proposed methodology to compare various prediction models using repeated measures of two psychometric tests to predict dementia in the elderly, accounting for the competing risk of death. Models are estimated on the French Paquid cohort and predictive accuracies are evaluated and compared on the French Three-City cohort. © 2014, The International Biometric Society.

  6. A design of optical modulation system with pixel-level modulation accuracy

    Science.gov (United States)

    Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu

    2018-01-01

    Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.

  7. Measurement Research of Motorized Spindle Dynamic Stiffness under High Speed Rotating

    Directory of Open Access Journals (Sweden)

    Xiaopeng Wang

    2015-01-01

    Full Text Available High speed motorized spindle has become a key functional unit of high speed machine tools and effectively promotes the development of machine tool technology. The development of higher speed and more power puts forward the stricter requirement for the performance of motorized spindle, especially the dynamic performance which affects the machining accuracy, reliability, and production efficiency. To overcome the problems of ineffective loading and dynamic performance measurement of motorized spindle, a noncontact electromagnetic loading device is developed. The cutting load can be simulated by using electromagnetic force. A new method of measuring force by force sensors is presented, and the steady and transient loading force could be measured exactly. After the high speed machine spindle is tested, the frequency response curves of the spindle relative to machine table are collected at 0~12000 rpm; then the relationships between stiffness and speeds as well as between damping ratio and speeds are obtained. The result shows that not only the static and dynamic stiffness but also the damping ratio declined with the increase of speed.

  8. An angle encoder for super-high resolution and super-high accuracy using SelfA

    International Nuclear Information System (INIS)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-01-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 2 21 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science and Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 2 33 , that is, corresponding to a 0.0015″ signal period

  9. Supporting Dynamic Quantization for High-Dimensional Data Analytics.

    Science.gov (United States)

    Guzun, Gheorghi; Canahuate, Guadalupe

    2017-05-01

    Similarity searches are at the heart of exploratory data analysis tasks. Distance metrics are typically used to characterize the similarity between data objects represented as feature vectors. However, when the dimensionality of the data increases and the number of features is large, traditional distance metrics fail to distinguish between the closest and furthest data points. Localized distance functions have been proposed as an alternative to traditional distance metrics. These functions only consider dimensions close to query to compute the distance/similarity. Furthermore, in order to enable interactive explorations of high-dimensional data, indexing support for ad-hoc queries is needed. In this work we set up to investigate whether bit-sliced indices can be used for exploratory analytics such as similarity searches and data clustering for high-dimensional big-data. We also propose a novel dynamic quantization called Query dependent Equi-Depth (QED) quantization and show its effectiveness on characterizing high-dimensional similarity. When applying QED we observe improvements in kNN classification accuracy over traditional distance functions. Gheorghi Guzun and Guadalupe Canahuate. 2017. Supporting Dynamic Quantization for High-Dimensional Data Analytics. In Proceedings of Ex-ploreDB'17, Chicago, IL, USA, May 14-19, 2017, 6 pages. https://doi.org/http://dx.doi.org/10.1145/3077331.3077336.

  10. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    Science.gov (United States)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and

  11. Comparing the accuracy of ABC and time-driven ABC in complex and dynamic environments: a simulation analysis

    OpenAIRE

    S. HOOZÉE; M. VANHOUCKE; W. BRUGGEMAN; -

    2010-01-01

    This paper compares the accuracy of traditional ABC and time-driven ABC in complex and dynamic environments through simulation analysis. First, when unit times in time-driven ABC are known or can be flawlessly estimated, time-driven ABC coincides with the benchmark system and in this case our results show that the overall accuracy of traditional ABC depends on (1) existing capacity utilization, (2) diversity in the actual mix of productive work, and (3) error in the estimated percentage mix. ...

  12. Towards investigation of evolution of dynamical systems with independence of time accuracy: more classes of systems

    Science.gov (United States)

    Gurzadyan, V. G.; Kocharyan, A. A.

    2015-07-01

    The recently developed method (Paper 1) enabling one to investigate the evolution of dynamical systems with an accuracy not dependent on time is developed further. The classes of dynamical systems which can be studied by that method are much extended, now including systems that are: (1) non-Hamiltonian, conservative; (2) Hamiltonian with time-dependent perturbation; (3) non-conservative (with dissipation). These systems cover various types of N-body gravitating systems of astrophysical and cosmological interest, such as the orbital evolution of planets, minor planets, artificial satellites due to tidal, non-tidal perturbations and thermal thrust, evolving close binary stellar systems, and the dynamics of accretion disks.

  13. Fast and High Accuracy Wire Scanner

    CERN Document Server

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  14. Online Dynamic Balance Technology for High Speed Spindle Based on Gain Parameter Adaption and Scheduling Control

    Directory of Open Access Journals (Sweden)

    Shihai Zhang

    2018-06-01

    Full Text Available Unbalance vibration is one of the main vibration forms of a high speed machine tool spindle. The overlarge unbalance vibration will have some adverse effects on the working life of the spindle system and the surface quality of the work-piece. In order to reduce the unbalance of a high speed spindle system, a pneumatic online dynamic balance device and its control system are presented in the paper. To improve the balance accuracy and adaptation of the balance system, the gain parameter adaption and scheduling control method are proposed first, and then the different balance effects of the influence coefficient method and the gain scheduling control method are compared through many dynamic balance experiments of the high speed spindle. The experimental results indicate that the gain parameters can be changed timely according to the transformation of the speed and kinetic parameters of the spindle system. The balance accuracy can be improved for a high speed spindle with time-varying characteristics, based on the adaptive gain scheduling control method.

  15. High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays

    Directory of Open Access Journals (Sweden)

    Crenshaw Andrew

    2009-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs have emerged as the genetic marker of choice for mapping disease loci and candidate gene association studies, because of their high density and relatively even distribution in the human genomes. There is a need for systems allowing medium multiplexing (ten to hundreds of SNPs with high throughput, which can efficiently and cost-effectively generate genotypes for a very large sample set (thousands of individuals. Methods that are flexible, fast, accurate and cost-effective are urgently needed. This is also important for those who work on high throughput genotyping in non-model systems where off-the-shelf assays are not available and a flexible platform is needed. Results We demonstrate the use of a nanofluidic Integrated Fluidic Circuit (IFC - based genotyping system for medium-throughput multiplexing known as the Dynamic Array, by genotyping 994 individual human DNA samples on 47 different SNP assays, using nanoliter volumes of reagents. Call rates of greater than 99.5% and call accuracies of greater than 99.8% were achieved from our study, which demonstrates that this is a formidable genotyping platform. The experimental set up is very simple, with a time-to-result for each sample of about 3 hours. Conclusion Our results demonstrate that the Dynamic Array is an excellent genotyping system for medium-throughput multiplexing (30-300 SNPs, which is simple to use and combines rapid throughput with excellent call rates, high concordance and low cost. The exceptional call rates and call accuracy obtained may be of particular interest to those working on validation and replication of genome- wide- association (GWA studies.

  16. Dynamics of High-Speed Precision Geared Rotor Systems

    Directory of Open Access Journals (Sweden)

    Lim Teik C.

    2014-07-01

    Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.

  17. Measurement accuracy of weighing and tipping-bucket rainfall intensity gauges under dynamic laboratory testing

    Science.gov (United States)

    Colli, M.; Lanza, L. G.; La Barbera, P.; Chan, P. W.

    2014-07-01

    The contribution of any single uncertainty factor in the resulting performance of infield rain gauge measurements still has to be comprehensively assessed due to the high number of real world error sources involved, such as the intrinsic variability of rainfall intensity (RI), wind effects, wetting losses, the ambient temperature, etc. In recent years the World Meteorological Organization (WMO) addressed these issues by fostering dedicated investigations, which revealed further difficulties in assessing the actual reference rainfall intensity in the field. This work reports on an extensive assessment of the OTT Pluvio2 weighing gauge accuracy when measuring rainfall intensity under laboratory dynamic conditions (time varying reference flow rates). The results obtained from the weighing rain gauge (WG) were also compared with a MTX tipping-bucket rain gauge (TBR) under the same test conditions. Tests were carried out by simulating various artificial precipitation events, with unsteady rainfall intensity, using a suitable dynamic rainfall generator. Real world rainfall data measured by an Ogawa catching-type drop counter at a field test site located within the Hong Kong International Airport (HKIA) were used as a reference for the artificial rain generation system. Results demonstrate that the differences observed between the laboratory and field performance of catching-type gauges are only partially attributable to the weather and operational conditions in the field. The dynamics of real world precipitation events is responsible for a large part of the measurement errors, which can be accurately assessed in the laboratory under controlled environmental conditions. This allows for new testing methodologies and the development of instruments with enhanced performance in the field.

  18. High-accuracy measurements of the normal specular reflectance

    International Nuclear Information System (INIS)

    Voarino, Philippe; Piombini, Herve; Sabary, Frederic; Marteau, Daniel; Dubard, Jimmy; Hameury, Jacques; Filtz, Jean Remy

    2008-01-01

    The French Laser Megajoule (LMJ) is designed and constructed by the French Commissariata l'Energie Atomique (CEA). Its amplifying section needs highly reflective multilayer mirrors for the flash lamps. To monitor and improve the coating process, the reflectors have to be characterized to high accuracy. The described spectrophotometer is designed to measure normal specular reflectance with high repeatability by using a small spot size of 100 μm. Results are compared with ellipsometric measurements. The instrument can also perform spatial characterization to detect coating nonuniformity

  19. A high accuracy land use/cover retrieval system

    Directory of Open Access Journals (Sweden)

    Alaa Hefnawy

    2012-03-01

    Full Text Available The effects of spatial resolution on the accuracy of mapping land use/cover types have received increasing attention as a large number of multi-scale earth observation data become available. Although many methods of semi automated image classification of remotely sensed data have been established for improving the accuracy of land use/cover classification during the past 40 years, most of them were employed in single-resolution image classification, which led to unsatisfactory results. In this paper, we propose a multi-resolution fast adaptive content-based retrieval system of satellite images. Through our proposed system, we apply a Super Resolution technique for the Landsat-TM images to have a high resolution dataset. The human–computer interactive system is based on modified radial basis function for retrieval of satellite database images. We apply the backpropagation supervised artificial neural network classifier for both the multi and single resolution datasets. The results show significant improved land use/cover classification accuracy for the multi-resolution approach compared with those from single-resolution approach.

  20. Motion-blurred star acquisition method of the star tracker under high dynamic conditions.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; You, Zheng; Wei, Minsong

    2013-08-26

    The star tracker is one of the most promising attitude measurement devices used in spacecraft due to its extremely high accuracy. However, high dynamic performance is still one of its constraints. Smearing appears, making it more difficult to distinguish the energy dispersive star point from the noise. An effective star acquisition approach for motion-blurred star image is proposed in this work. The correlation filter and mathematical morphology algorithm is combined to enhance the signal energy and evaluate slowly varying background noise. The star point can be separated from most types of noise in this manner, making extraction and recognition easier. Partial image differentiation is then utilized to obtain the motion parameters from only one image of the star tracker based on the above process. Considering the motion model, the reference window is adopted to perform centroid determination. Star acquisition results of real on-orbit star images and laboratory validation experiments demonstrate that the method described in this work is effective and the dynamic performance of the star tracker could be improved along with more identified stars and guaranteed position accuracy of the star point.

  1. A New Three-Dimensional High-Accuracy Automatic Alignment System For Single-Mode Fibers

    Science.gov (United States)

    Yun-jiang, Rao; Shang-lian, Huang; Ping, Li; Yu-mei, Wen; Jun, Tang

    1990-02-01

    In order to achieve the low-loss splices of single-mode fibers, a new three-dimension high-accuracy automatic alignment system for single -mode fibers has been developed, which includes a new-type three-dimension high-resolution microdisplacement servo stage driven by piezoelectric elements, a new high-accuracy measurement system for the misalignment error of the fiber core-axis, and a special single chip microcomputer processing system. The experimental results show that alignment accuracy of ±0.1 pin with a movable stroke of -±20μm has been obtained. This new system has more advantages than that reported.

  2. Dynamic Patterns in Development of Accuracy and Complexity : A Longitudinal Case Study in the Acquisition of Finnish

    NARCIS (Netherlands)

    Spoelman, Marianne; Verspoor, Marjolijn

    Within a Dynamic System Theory (DST) approach, it is assumed that language is in a constant flux, but that differences in the degree of variability can give insight into the developmental process. This longitudinal case study focuses on intra-individual variability in accuracy rates and complexity

  3. High Accuracy Positioning using Jet Thrusters for Quadcopter

    Directory of Open Access Journals (Sweden)

    Pi ChenHuan

    2018-01-01

    Full Text Available A quadcopter is equipped with four additional jet thrusters on its horizontal plane and vertical to each other in order to improve the maneuverability and positioning accuracy of quadcopter. A dynamic model of the quadcopter with jet thrusters is derived and two controllers are implemented in simulation, one is a dual loop state feedback controller for pose control and another is an auxiliary jet thruster controller for accurate positioning. Step response simulations showed that the jet thruster can control the quadcopter with less overshoot compared to the conventional one. Over 10s loiter simulation with disturbance, the quadcopter with jet thruster decrease 85% of RMS error of horizontal disturbance compared to a conventional quadcopter with only a dual loop state feedback controller. The jet thruster controller shows the possibility for further accurate in the field of quadcopter positioning.

  4. High enthalpy gas dynamics

    CERN Document Server

    Rathakrishnan, Ethirajan

    2014-01-01

    This is an introductory level textbook which explains the elements of high temperature and high-speed gas dynamics. written in a clear and easy to follow style, the author covers all the latest developments in the field including basic thermodynamic principles, compressible flow regimes and waves propagation in one volume covers theoretical modeling of High Enthalpy Flows, with particular focus on problems in internal and external gas-dynamic flows, of interest in the fields of rockets propulsion and hypersonic aerodynamics High enthalpy gas dynamics is a compulsory course for aerospace engine

  5. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    Science.gov (United States)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  6. High accuracy digital aging monitor based on PLL-VCO circuit

    International Nuclear Information System (INIS)

    Zhang Yuejun; Jiang Zhidi; Wang Pengjun; Zhang Xuelong

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm 2 . After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%. (semiconductor integrated circuits)

  7. A proposal for limited criminal liability in high-accuracy endoscopic sinus surgery.

    Science.gov (United States)

    Voultsos, P; Casini, M; Ricci, G; Tambone, V; Midolo, E; Spagnolo, A G

    2017-02-01

    The aim of the present study is to propose legal reform limiting surgeons' criminal liability in high-accuracy and high-risk surgery such as endoscopic sinus surgery (ESS). The study includes a review of the medical literature, focusing on identifying and examining reasons why ESS carries a very high risk of serious complications related to inaccurate surgical manoeuvers and reviewing British and Italian legal theory and case-law on medical negligence, especially with regard to Italian Law 189/2012 (so called "Balduzzi" Law). It was found that serious complications due to inaccurate surgical manoeuvers may occur in ESS regardless of the skill, experience and prudence/diligence of the surgeon. Subjectivity should be essential to medical negligence, especially regarding high-accuracy surgery. Italian Law 189/2012 represents a good basis for the limitation of criminal liability resulting from inaccurate manoeuvres in high-accuracy surgery such as ESS. It is concluded that ESS surgeons should be relieved of criminal liability in cases of simple/ordinary negligence where guidelines have been observed. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.

  8. High current high accuracy IGBT pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 μF capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles

  9. Method of Increasing Identification Accuracy under Experimental Tests of Dynamic Objects

    Directory of Open Access Journals (Sweden)

    Y. N. Pavlov

    2015-01-01

    Full Text Available The work concerns a problem of increasing identification accuracy of linear dynamic systems on the basis of experimental data obtained by applying test signals to the system.The work is aimed at considering a possibility to use the experimentally obtained hodograph counting to determine parameters of this system in a specific context of the linear dynamic system of the second order.An offer was to use a method of harmonious linearization and a described cut method.The type of frequency transfer function of the identified system was assumed as known.It was supposed that when obtaining the frequency characteristics of a real system there are disturbances interfering with experiment as a result of which points of experimentally received hodograph are random displaced.An identification problem solution was searched in a class of the hodograph set by the system model, which had the same type of frequency transfer function, as the type of frequency transfer function of the identified system.The unknown coefficients of frequency transfer function of the system model were searched through minimizing a proximity criterion (measure of the experimentally received hodograph of the system and of the system model hodograph over the entire aggregate of points. One of the authors described this criterion in the earlier publication.The solution to a problem of nonlinear dynamic system identification by the frequency hodograph was reduced to the solution of the system of equations of the rather unknown linear parameters of frequency transfer function of the system model.The program to simulate a process of the pseudo-experimental data, containing random errors, and determine parameters of this system is developed for a dynamic system of the second order.A conducted computing experiment is conducted to estimate an error at which the offered algorithm defines the values of parameters of this system.

  10. Robust image registration for multiple exposure high dynamic range image synthesis

    Science.gov (United States)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  11. High-accuracy determination for optical indicatrix rotation in ferroelectric DTGS

    OpenAIRE

    O.S.Kushnir; O.A.Bevz; O.G.Vlokh

    2000-01-01

    Optical indicatrix rotation in deuterated ferroelectric triglycine sulphate is studied with the high-accuracy null-polarimetric technique. The behaviour of the effect in ferroelectric phase is referred to quadratic spontaneous electrooptics.

  12. Achieving High Accuracy in Calculations of NMR Parameters

    DEFF Research Database (Denmark)

    Faber, Rasmus

    quantum chemical methods have been developed, the calculation of NMR parameters with quantitative accuracy is far from trivial. In this thesis I address some of the issues that makes accurate calculation of NMR parameters so challenging, with the main focus on SSCCs. High accuracy quantum chemical......, but no programs were available to perform such calculations. As part of this thesis the CFOUR program has therefore been extended to allow the calculation of SSCCs using the CC3 method. CC3 calculations of SSCCs have then been performed for several molecules, including some difficult cases. These results show...... vibrations must be included. The calculation of vibrational corrections to NMR parameters has been reviewed as part of this thesis. A study of the basis set convergence of vibrational corrections to nuclear shielding constants has also been performed. The basis set error in vibrational correction...

  13. Dynamic thresholds and a summary ROC curve: Assessing prognostic accuracy of longitudinal markers.

    Science.gov (United States)

    Saha-Chaudhuri, P; Heagerty, P J

    2018-04-19

    Cancer patients, chronic kidney disease patients, and subjects infected with HIV are routinely monitored over time using biomarkers that represent key health status indicators. Furthermore, biomarkers are frequently used to guide initiation of new treatments or to inform changes in intervention strategies. Since key medical decisions can be made on the basis of a longitudinal biomarker, it is important to evaluate the potential accuracy associated with longitudinal monitoring. To characterize the overall accuracy of a time-dependent marker, we introduce a summary ROC curve that displays the overall sensitivity associated with a time-dependent threshold that controls time-varying specificity. The proposed statistical methods are similar to concepts considered in disease screening, yet our methods are novel in choosing a potentially time-dependent threshold to define a positive test, and our methods allow time-specific control of the false-positive rate. The proposed summary ROC curve is a natural averaging of time-dependent incident/dynamic ROC curves and therefore provides a single summary of net error rates that can be achieved in the longitudinal setting. Copyright © 2018 John Wiley & Sons, Ltd.

  14. High-Accuracy Spherical Near-Field Measurements for Satellite Antenna Testing

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2017-01-01

    The spherical near-field antenna measurement technique is unique in combining several distinct advantages and it generally constitutes the most accurate technique for experimental characterization of radiation from antennas. From the outset in 1970, spherical near-field antenna measurements have...... matured into a well-established technique that is widely used for testing antennas for many wireless applications. In particular, for high-accuracy applications, such as remote sensing satellite missions in ESA's Earth Observation Programme with uncertainty requirements at the level of 0.05dB - 0.10d......B, the spherical near-field antenna measurement technique is generally superior. This paper addresses the means to achieving high measurement accuracy; these include the measurement technique per se, its implementation in terms of proper measurement procedures, the use of uncertainty estimates, as well as facility...

  15. High Accuracy Piezoelectric Kinemometer; Cinemometro piezoelectrico de alta exactitud (VUAE)

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Martinez, F. J.; Frutos, J. de; Pastor, C.; Vazquez Rodriguez, M.

    2012-07-01

    We have developed a portable computerized and low consumption, our system is called High Accuracy Piezoelectric Kinemometer measurement, herein VUAE. By the high accuracy obtained by VUAE it make able to use the VUAE to obtain references measurements of system for measuring Speeds in Vehicles. Therefore VUAE could be used how reference equipment to estimate the error of installed kinemometers. The VUAE was created with n (n=2) pairs of ultrasonic transmitter-receiver, herein E-Rult. The transmitters used in the n couples E-Rult generate n ultrasonic barriers and receivers receive the echoes when the vehicle crosses the barriers. Digital processing of the echoes signals let us to obtain acceptable signals. Later, by mean of cross correlation technics is possible make a highly exact estimation of speed of the vehicle. The log of the moments of interception and the distance between each of the n ultrasounds allows for a highly exact estimation of speed of the vehicle. VUAE speed measurements were compared to a speed reference system based on piezoelectric cables. (Author) 11 refs.

  16. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans.

    Science.gov (United States)

    Lohmann, Philipp; Stoffels, Gabriele; Ceccon, Garry; Rapp, Marion; Sabel, Michael; Filss, Christian P; Kamp, Marcel A; Stegmayr, Carina; Neumaier, Bernd; Shah, Nadim J; Langen, Karl-Josef; Galldiks, Norbert

    2017-07-01

    We investigated the potential of textural feature analysis of O-(2-[ 18 F]fluoroethyl)-L-tyrosine ( 18 F-FET) PET to differentiate radiation injury from brain metastasis recurrence. Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic 18 F-FET PET. Tumour-to-brain ratios (TBRs) of 18 F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared. Diagnostic accuracy increased from 81 % for TBR mean alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR max alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR max . Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic 18 F-FET PET scans. • Textural feature analysis provides quantitative information about tumour heterogeneity • Textural features help improve discrimination between brain metastasis recurrence and radiation injury • Textural features might be helpful to further understand tumour heterogeneity • Analysis does not require a more time consuming dynamic PET acquisition.

  17. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device. © 2011 IEEE

  18. Design of Neural Networks for Fast Convergence and Accuracy: Dynamics and Control

    Science.gov (United States)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1997-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  19. Why is a high accuracy needed in dosimetry

    International Nuclear Information System (INIS)

    Lanzl, L.H.

    1976-01-01

    Dose and exposure intercomparisons on a national or international basis have become an important component of quality assurance in the practice of good radiotherapy. A high degree of accuracy of γ and x radiation dosimetry is essential in our international society, where medical information is so readily exchanged and used. The value of accurate dosimetry lies mainly in the avoidance of complications in normal tissue and an optimal degree of tumor control

  20. High Precision Stokes Polarimetry for Scattering Light using Wide Dynamic Range Intensity Detector

    Directory of Open Access Journals (Sweden)

    Shibata Shuhei

    2015-01-01

    Full Text Available This paper proposes a Stokes polarimetry for scattering light from a sample surface. To achieve a high accuracy measurement two approaches of an intensity detector and analysis algorism of a Stokes parameter were proposed. The dynamic range of this detector can achieve up to 1010 by combination of change of neutral-density (ND filters having different density and photon counting units. Stokes parameters can be measured by dual rotating of a retarder and an analyzer. The algorism of dual rotating polarimeter can be calibrated small linear diattenuation and linear retardance error of the retarder. This system can measured Stokes parameters from −20° to 70° of its scattering angle. It is possible to measure Stokes parameters of scattering of dust and scratch of optical device with high precision. This paper shows accuracy of this system, checking the polarization change of scattering angle and influence of beam size.

  1. Study of Dynamic Features of Surface Plasma in High-Power Disk Laser Welding

    International Nuclear Information System (INIS)

    Wang Teng; Gao Xiangdong; Seiji, Katayama; Jin, Xiaoli

    2012-01-01

    High-speed photography was used to obtain the dynamic changes in the surface plasma during a high-power disk laser welding process. A color space clustering algorithm to extract the edge information of the surface plasma region was developed in order to improve the accuracy of image processing. With a comparative analysis of the plasma features, i.e., area and height, and the characteristics of the welded seam, the relationship between the surface plasma and the stability of the laser welding process was characterized, which provides a basic understanding for the real-time monitoring of laser welding.

  2. Innovative Fiber-Optic Gyroscopes (FOGs) for High Accuracy Space Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to develop a compact, highly innovative Inertial Reference/Measurement Unit (IRU/IMU) that pushes the state-of-the-art in high accuracy performance...

  3. A high linearity current mode multiplier/divider with a wide dynamic range

    International Nuclear Information System (INIS)

    Liao Pengfei; Luo Ping; Zhang Bo; Li Zhaoji

    2012-01-01

    A high linearity current mode multiplier/divider (CMM/D) with a wide dynamic range is presented. The proposed CMM/D is based on the voltage—current characteristic of the diode, thus wide dynamic range is achieved. In addition, high linearity is achieved because high accuracy current mirrors are adopted and the output current is insensitive to the temperature and device parameters of the fabrication process. Furthermore, no extra bias current for all input signals is required and thus power saving is realized. With proper selection of establishing the input terminal, the proposed circuit can perform as a multifunction circuit to be operated as a multiplier/divider, without changing its topology. The proposed circuit is implemented in a 0.25 μm BCD process and the chip area is 0.26 × 0.24 mm 2 . The simulation and measurement results show that the maximum static linearity error is ±1.8% and the total harmonic distortion is 0.4% while the input current ranges from 0 to 200 μA. (semiconductor integrated circuits)

  4. Two high accuracy digital integrators for Rogowski current transducers

    Science.gov (United States)

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  5. Electron ray tracing with high accuracy

    International Nuclear Information System (INIS)

    Saito, K.; Okubo, T.; Takamoto, K.; Uno, Y.; Kondo, M.

    1986-01-01

    An electron ray tracing program is developed to investigate the overall geometrical and chromatic aberrations in electron optical systems. The program also computes aberrations due to manufacturing errors in lenses and deflectors. Computation accuracy is improved by (1) calculating electrostatic and magnetic scalar potentials using the finite element method with third-order isoparametric elements, and (2) solving the modified ray equation which the aberrations satisfy. Computation accuracy of 4 nm is achieved for calculating optical properties of the system with an electrostatic lens

  6. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, Eric M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  7. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1996-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  8. A High-Throughput, High-Accuracy System-Level Simulation Framework for System on Chips

    Directory of Open Access Journals (Sweden)

    Guanyi Sun

    2011-01-01

    Full Text Available Today's System-on-Chips (SoCs design is extremely challenging because it involves complicated design tradeoffs and heterogeneous design expertise. To explore the large solution space, system architects have to rely on system-level simulators to identify an optimized SoC architecture. In this paper, we propose a system-level simulation framework, System Performance Simulation Implementation Mechanism, or SPSIM. Based on SystemC TLM2.0, the framework consists of an executable SoC model, a simulation tool chain, and a modeling methodology. Compared with the large body of existing research in this area, this work is aimed at delivering a high simulation throughput and, at the same time, guaranteeing a high accuracy on real industrial applications. Integrating the leading TLM techniques, our simulator can attain a simulation speed that is not slower than that of the hardware execution by a factor of 35 on a set of real-world applications. SPSIM incorporates effective timing models, which can achieve a high accuracy after hardware-based calibration. Experimental results on a set of mobile applications proved that the difference between the simulated and measured results of timing performance is within 10%, which in the past can only be attained by cycle-accurate models.

  9. High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-07-15

    Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are

  10. Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing

    International Nuclear Information System (INIS)

    Yang, Z.; Hong, J.; Zhang, J.; Wang, M. Y.; Zhu, Y.

    2013-01-01

    The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements’ repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings

  11. Accuracy of hiatal hernia detection with esophageal high-resolution manometry

    NARCIS (Netherlands)

    Weijenborg, P. W.; van Hoeij, F. B.; Smout, A. J. P. M.; Bredenoord, A. J.

    2015-01-01

    The diagnosis of a sliding hiatal hernia is classically made with endoscopy or barium esophagogram. Spatial separation of the lower esophageal sphincter (LES) and diaphragm, the hallmark of hiatal hernia, can also be observed on high-resolution manometry (HRM), but the diagnostic accuracy of this

  12. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp; Huy Pham, C.; Riera, Marc; Moberg, Daniel R.; Morales, Miguel A.; Knight, Chris; Götz, Andreas W.; Paesani, Francesco

    2016-11-21

    The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water. Published by AIP Publishing.

  13. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase {sup 18}F-FET PET accuracy without dynamic scans

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Philipp; Stoffels, Gabriele; Stegmayr, Carina; Neumaier, Bernd [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); Ceccon, Garry [University of Cologne, Department of Neurology, Cologne (Germany); Rapp, Marion; Sabel, Michael; Kamp, Marcel A. [Heinrich Heine University Duesseldorf, Department of Neurosurgery, Duesseldorf (Germany); Filss, Christian P. [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); RWTH Aachen University Hospital, Department of Nuclear Medicine, Aachen (Germany); Shah, Nadim J. [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); RWTH Aachen University Hospital, Department of Neurology, Aachen (Germany); Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Department of Neurology, Juelich (Germany); Langen, Karl-Josef [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); RWTH Aachen University Hospital, Department of Nuclear Medicine, Aachen (Germany); Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Department of Neurology, Juelich (Germany); Galldiks, Norbert [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); University of Cologne, Department of Neurology, Cologne (Germany); University of Cologne, Center of Integrated Oncology (CIO), Cologne (Germany)

    2017-07-15

    We investigated the potential of textural feature analysis of O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine ({sup 18}F-FET) PET to differentiate radiation injury from brain metastasis recurrence. Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic {sup 18}F-FET PET. Tumour-to-brain ratios (TBRs) of {sup 18}F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared. Diagnostic accuracy increased from 81 % for TBR{sub mean} alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR{sub max} alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR{sub max}. Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic {sup 18}F-FET PET scans. (orig.)

  14. Dynamic and reduced-dynamic precise orbit determination of satellites in low earth orbits

    International Nuclear Information System (INIS)

    Swatschina, P.

    2009-01-01

    The precise positioning of satellites in Low Earth Orbits (LEO) has become a key technology for advanced space missions. Dedicated satellite missions, such as CHAMP, GRACE and GOCE, that aim to map the Earths gravity field and its variation over time with unprecedented accuracy, initiated the demand for highly precise orbit solutions of LEO satellites. Furthermore, a wide range of additional science opportunities opens up with the capability to generate accurate LEO orbits. For all considered satellite missions, the primary measurement system for navigation is a spaceborne GPS receiver. The goal of this thesis is to establish and implement methods for Precise Orbit Determination (POD) of LEO satellites using GPS. Striving for highest precision using yet efficient orbit generation strategies, the attained orbit solutions are aimed to be competitive with the most advanced solutions of other institutions. Dynamic and reduced-dynamic orbit models provide the basic concepts of this work. These orbit models are subsequently adjusted to the highly accurate GPS measurements. The GPS measurements are introduced at the zero difference level in the ionosphere free linear combination. Appropriate procedures for GPS data screening and editing are established to detect erroneous data and to employ measurements of good quality only. For the dynamic orbit model a sophisticated force model, especially designed for LEO satellites, has been developed. In order to overcome the limitations that are induced by the deficiencies of the purely dynamical model, two different types of empirical parameters are introduced into the force model. These reduced-dynamic orbit models allow for the generation of much longer orbital arcs while preserving the spacecraft dynamics to the most possible extent. The two methods for reduced-dynamic orbit modeling are instantaneous velocity changes (pulses) or piecewise constant accelerations. For both techniques highly efficient modeling algorithms are

  15. The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy?

    Science.gov (United States)

    Blower, Sally; Go, Myong-Hyun

    2011-07-19

    Mathematical models are useful tools for understanding and predicting epidemics. A recent innovative modeling study by Stehle and colleagues addressed the issue of how complex models need to be to ensure accuracy. The authors collected data on face-to-face contacts during a two-day conference. They then constructed a series of dynamic social contact networks, each of which was used to model an epidemic generated by a fast-spreading airborne pathogen. Intriguingly, Stehle and colleagues found that increasing model complexity did not always increase accuracy. Specifically, the most detailed contact network and a simplified version of this network generated very similar results. These results are extremely interesting and require further exploration to determine their generalizability.

  16. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed. copyright 1997 American Institute of Physics

  17. Examining the Accuracy and Justification of Geometric Constructions Made by Pre-Service Teachers with Dynamic Geometry Software and the Awareness They Gained throughout the Process

    Science.gov (United States)

    Bozkurt, Ali

    2018-01-01

    This study examined pre-service teachers' accuracy for geometric constructions with dynamic geometry software, their justification for the accuracy of geometric figures, and their awareness they gained throughout the process. The data come from a sample of 71 elementary grade pre-service teachers activity form completed as a part of geometry…

  18. High-accuracy vibration sensor based on a Fabry-Perot interferometer with active phase-tracking technology.

    Science.gov (United States)

    Xia, Wei; Li, Chuncheng; Hao, Hui; Wang, Yiping; Ni, Xiaoqi; Guo, Dongmei; Wang, Ming

    2018-02-01

    A novel position-sensitive Fabry-Perot interferometer was constructed with direct phase modulation by a built-in electro-optic modulator. Pure sinusoidal phase modulation of the light was produced, and the first harmonic of the interference signal was extracted to dynamically maintain the interferometer phase to the most sensitive point of the interferogram. Therefore, the minute vibration of the object was coded on the variation of the interference signal and could be directly retrieved by the output voltage of a photodetector. The operating principle and the signal processing method for active feedback control of the interference phase have been demonstrated in detail. The developed vibration sensor was calibrated through a high-precision piezo-electric transducer and tested by a nano-positioning stage under a vibration magnitude of 60 nm and a frequency of 300 Hz. The active phase-tracking method of the system provides high immunity against environmental disturbances. Experimental results show that the proposed interferometer can effectively reconstruct tiny vibration waveforms with subnanometer resolution, paving the way for high-accuracy vibration sensing, especially for micro-electro-mechanical systems/nano-electro-mechanical systems and ultrasonic devices.

  19. Testing of dynamic multileaf collimator by dynamic log file

    International Nuclear Information System (INIS)

    Ono, Kaoru; Nakamura, Tetsuji; Yamato, Shinichirou; Miyazawa, Masanori

    2007-01-01

    Intensity-modulated radiation therapy (IMRT) represents one of the most significant technical advances in radiation therapy. In the dynamic multileaf collimator (MLC) method of IMRT delivery, because of the relatively small gaps between opposed leaves and because most regions are shielded by leaves most of the time, the delivered dose is very sensitive to MLC leaf positional accuracy. A variation of ±0.2 mm in the gap width can result in a dose variation of ±3% for each clinical dynamic MLC field. Most often the effects of leaf motion are inferred from dose deviations on film or from variations in ionization measurements. These techniques provide dosimetric information but do not provide detailed information for diagnosing delivery problems. Therefore, a dynamic log file (Dynalog file) was used to verify dynamic MLC leaf positional accuracy. Measuring for narrow gaps using the thickness gauge could detect a log file accuracy of approximately 0.1 mm. The accuracy of dynamic MLC delivery depends on the accuracy with which the velocity of each leaf is controlled. We studied the relationship between leaf positional accuracy and leaf velocity. Leaf velocity of 0.7 cm/sec caused approximately 0.2 mm leaf positional variation. We then analyzed leaf positional accuracy for the clinical dynamic MLC field using Dynalog File Viewer (Varian Medical Systems, Inc., Palo Alto, California (CA)), and developed a new program that can analyze more detailed leaf motions. Using this program, we can obtain more detailed information, and therefore can determine the source of dose uncertainties for the dynamic MLC field. (author)

  20. The effect of pattern overlap on the accuracy of high resolution electron backscatter diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Vivian, E-mail: v.tong13@imperial.ac.uk [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Jiang, Jun [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Britton, T. Ben [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-15

    High resolution, cross-correlation-based, electron backscatter diffraction (EBSD) measures the variation of elastic strains and lattice rotations from a reference state. Regions near grain boundaries are often of interest but overlap of patterns from the two grains could reduce accuracy of the cross-correlation analysis. To explore this concern, patterns from the interior of two grains have been mixed to simulate the interaction volume crossing a grain boundary so that the effect on the accuracy of the cross correlation results can be tested. It was found that the accuracy of HR-EBSD strain measurements performed in a FEG-SEM on zirconium remains good until the incident beam is less than 18 nm from a grain boundary. A simulated microstructure was used to measure how often pattern overlap occurs at any given EBSD step size, and a simple relation was found linking the probability of overlap with step size. - Highlights: • Pattern overlap occurs at grain boundaries and reduces HR-EBSD accuracy. • A test is devised to measure the accuracy of HR-EBSD in the presence of overlap. • High pass filters can sometimes, but not generally, improve HR-EBSD measurements. • Accuracy of HR-EBSD remains high until the reference pattern intensity is <72%. • 9% of points near a grain boundary will have significant error for 200nm step size in Zircaloy-4.

  1. Read-only high accuracy volume holographic optical correlator

    Science.gov (United States)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  2. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    Directory of Open Access Journals (Sweden)

    Zheng You

    2013-04-01

    Full Text Available The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  3. Optical system error analysis and calibration method of high-accuracy star trackers.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; You, Zheng

    2013-04-08

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  4. Remote handling dynamical modelling: assessment on new approach to enhance positioning accuracy with heavy load manipulation

    International Nuclear Information System (INIS)

    Gagarina-Sasia, T.; David, O.; Dubus, G.; Perrot, Y.; Riwain, A.

    2007-01-01

    In vessel maintenance work in Fusion Tokamak will be carried out with help several sets of robotic devices. Heavy loads handling in constrained space is identified by all players of the RH community as a key-issue in the latest Fusion Tokamak facilities. To deal with high-level dexterity tasks, high payload to mass ratio and limited operating space, RH equipment designers can only propose systems whose mechanical flexibility is no longer negligible and need to be taken into account in the control scheme. Traditional approaches where control system only includes a linear model of deformation of the structure leads to poor positioning accuracy. Uncontrolled or under evaluated errors could be damaging for in-vessel components during maintenance operations in the Tokamak facility. To address the control of complex flexible systems, we will investigate the use of specific mechanical software that combines both finite element and kinematical joints analyses, with a strong-coupled formulation, to perform system dynamics simulations. This procedure will be applied on a single axis mock up robotic joint with highly flexible structure. A comparison of experimental results with the traditional linear approach and the specified software model will be carried out. Benefits introduced by this new approach will finally be assessed in view of RH design or specification in the field of RH in Fusion Tokamak scale such as ITER. (orig.)

  5. Innovative Fiber-Optic Gyroscopes (FOGs) for High Accuracy Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future science and exploratory missions will require much lighter, smaller, and longer life rate sensors that can provide high accuracy navigational...

  6. Deep coupling of star tracker and MEMS-gyro data under highly dynamic and long exposure conditions

    Science.gov (United States)

    Sun, Ting; Xing, Fei; You, Zheng; Wang, Xiaochu; Li, Bin

    2014-08-01

    Star trackers and gyroscopes are the two most widely used attitude measurement devices in spacecrafts. The star tracker is supposed to have the highest accuracy in stable conditions among different types of attitude measurement devices. In general, to detect faint stars and reduce the size of the star tracker, a method with long exposure time method is usually used. Thus, under dynamic conditions, smearing of the star image may appear and result in decreased accuracy or even failed extraction of the star spot. This may cause inaccuracies in attitude measurement. Gyros have relatively good dynamic performance and are usually used in combination with star trackers. However, current combination methods focus mainly on the data fusion of the output attitude data levels, which are inadequate for utilizing and processing internal blurred star image information. A method for tracking deep coupling stars and MEMS-gyro data is proposed in this work. The method achieves deep fusion at the star image level. First, dynamic star image processing is performed based on the angular velocity information of the MEMS-gyro. Signal-to-noise ratio (SNR) of the star spot could be improved, and extraction is achieved more effectively. Then, a prediction model for optimal estimation of the star spot position is obtained through the MEMS-gyro, and an extended Kalman filter is introduced. Meanwhile, the MEMS-gyro drift can be estimated and compensated though the proposed method. These enable the star tracker to achieve high star centroid determination accuracy under dynamic conditions. The MEMS-gyro drift can be corrected even when attitude data of the star tracker are unable to be solved and only one navigation star is captured in the field of view. Laboratory experiments were performed to verify the effectiveness of the proposed method and the whole system.

  7. MUSCLE: multiple sequence alignment with high accuracy and high throughput.

    Science.gov (United States)

    Edgar, Robert C

    2004-01-01

    We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.

  8. High Accuracy Evaluation of the Finite Fourier Transform Using Sampled Data

    Science.gov (United States)

    Morelli, Eugene A.

    1997-01-01

    Many system identification and signal processing procedures can be done advantageously in the frequency domain. A required preliminary step for this approach is the transformation of sampled time domain data into the frequency domain. The analytical tool used for this transformation is the finite Fourier transform. Inaccuracy in the transformation can degrade system identification and signal processing results. This work presents a method for evaluating the finite Fourier transform using cubic interpolation of sampled time domain data for high accuracy, and the chirp Zeta-transform for arbitrary frequency resolution. The accuracy of the technique is demonstrated in example cases where the transformation can be evaluated analytically. Arbitrary frequency resolution is shown to be important for capturing details of the data in the frequency domain. The technique is demonstrated using flight test data from a longitudinal maneuver of the F-18 High Alpha Research Vehicle.

  9. Improved accuracy of quantitative parameter estimates in dynamic contrast-enhanced CT study with low temporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Mo, E-mail: Sunmo.Kim@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Haider, Masoom A. [Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Medical Imaging, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Yeung, Ivan W. T. [Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

    2016-01-15

    Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarsely sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the

  10. A method for estimation of accuracy of dose delivery with dynamic slit windows in medical linear accelerators

    International Nuclear Information System (INIS)

    Ravichandran, R.; Binukumar, J.P.; Sivakumar, S.S.; Krishnamurthy, K.; Davis, C.A.

    2008-01-01

    Intensity-modulated radiotherapy (IMRT) clinical dose delivery is based on computer-controlled multileaf movements at different velocities. To test the accuracy of modulation of the beam periodically, quality assurance (QA) methods are necessary. Using a cylindrical phantom, dose delivery was checked at a constant geometry for sweeping fields. Repeated measurements with an in-house designed methodology over a period of 1 year indicate that the method is very sensitive to check the proper functioning of such dose delivery in medical linacs. A cylindrical perspex phantom with facility to accurately position a 0.6- cc (FC 65) ion chamber at constant depth at isocenter, (SA 24 constancy check tool phantom for MU check, Scanditronix Wellhofer) was used. Dosimeter readings were integrated for 4-mm, 10-mm, 20-mm sweeping fields and for 3 angular positions of the gantry periodically. Consistency of standard sweeping field output (10-mm slit width) and the ratios of outputs against other slit widths over a long period were reported. A 10-mm sweeping field output was found reproducible within an accuracy of 0.03% (n = 25) over 1 year. Four-millimeter, 20-mm outputs expressed as ratio with respect to 10- mm sweep output remained within a mean deviation of 0.2% and 0.03% respectively. Outputs at 3 gantry angles remained within 0.5%, showing that the effect of dynamic movements of multileaf collimator (MLC) on the output is minimal for angular positions of gantry. This method of QA is very simple and is recommended in addition to individual patient QA measurements, which reflect the accuracy of dose planning system. In addition to standard output and energy checks of linacs, the above measurements can be complemented so as to check proper functioning of multileaf collimator for dynamic field dose delivery. (author)

  11. High accuracy interface characterization of three phase material systems in three dimensions

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Hansen, Karin Vels; Larsen, Rasmus

    2010-01-01

    Quantification of interface properties such as two phase boundary area and triple phase boundary length is important in the characterization ofmanymaterial microstructures, in particular for solid oxide fuel cell electrodes. Three-dimensional images of these microstructures can be obtained...... by tomography schemes such as focused ion beam serial sectioning or micro-computed tomography. We present a high accuracy method of calculating two phase surface areas and triple phase length of triple phase systems from subvoxel accuracy segmentations of constituent phases. The method performs a three phase...... polygonization of the interface boundaries which results in a non-manifold mesh of connected faces. We show how the triple phase boundaries can be extracted as connected curve loops without branches. The accuracy of the method is analyzed by calculations on geometrical primitives...

  12. The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy?

    Directory of Open Access Journals (Sweden)

    Go Myong-Hyun

    2011-07-01

    Full Text Available Abstract Mathematical models are useful tools for understanding and predicting epidemics. A recent innovative modeling study by Stehle and colleagues addressed the issue of how complex models need to be to ensure accuracy. The authors collected data on face-to-face contacts during a two-day conference. They then constructed a series of dynamic social contact networks, each of which was used to model an epidemic generated by a fast-spreading airborne pathogen. Intriguingly, Stehle and colleagues found that increasing model complexity did not always increase accuracy. Specifically, the most detailed contact network and a simplified version of this network generated very similar results. These results are extremely interesting and require further exploration to determine their generalizability. Please see related article BMC Medicine, 2011, 9:87

  13. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    Directory of Open Access Journals (Sweden)

    Guanwu Zhou

    2014-07-01

    Full Text Available Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system’s performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

  14. High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data

    Science.gov (United States)

    Lee, Seung-Kuk; Ryu, Joo-Hyung

    2017-01-01

    This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.

  15. Ab initio lattice dynamics of metal surfaces

    International Nuclear Information System (INIS)

    Heid, R.; Bohnen, K.-P.

    2003-01-01

    Dynamical properties of atoms on surfaces depend sensitively on their bonding environment and thus provide valuable insight into the local geometry and chemical binding at the boundary of a solid. Density-functional theory provides a unified approach to the calculation of structural and dynamical properties from first principles. Its high accuracy and predictive power for lattice dynamical properties of semiconductor surfaces has been demonstrated in a previous article by Fritsch and Schroeder (Phys. Rep. 309 (1999) 209). In this report, we review the state-of-the-art of these ab initio approaches to surface dynamical properties of metal surfaces. We give a brief introduction to the conceptual framework with focus on recent advances in computational procedures for the ab initio linear-response approach, which have been a prerequisite for an efficient treatment of surface dynamics of noble and transition metals. The discussed applications to clean and adsorbate-covered surfaces demonstrate the high accuracy and reliability of this approach in predicting detailed microscopic properties of the phonon dynamics for a wide range of metallic surfaces

  16. Deep coupling of star tracker and MEMS-gyro data under highly dynamic and long exposure conditions

    International Nuclear Information System (INIS)

    Sun, Ting; Xing, Fei; You, Zheng; Wang, Xiaochu; Li, Bin

    2014-01-01

    Star trackers and gyroscopes are the two most widely used attitude measurement devices in spacecrafts. The star tracker is supposed to have the highest accuracy in stable conditions among different types of attitude measurement devices. In general, to detect faint stars and reduce the size of the star tracker, a method with long exposure time method is usually used. Thus, under dynamic conditions, smearing of the star image may appear and result in decreased accuracy or even failed extraction of the star spot. This may cause inaccuracies in attitude measurement. Gyros have relatively good dynamic performance and are usually used in combination with star trackers. However, current combination methods focus mainly on the data fusion of the output attitude data levels, which are inadequate for utilizing and processing internal blurred star image information. A method for tracking deep coupling stars and MEMS-gyro data is proposed in this work. The method achieves deep fusion at the star image level. First, dynamic star image processing is performed based on the angular velocity information of the MEMS-gyro. Signal-to-noise ratio (SNR) of the star spot could be improved, and extraction is achieved more effectively. Then, a prediction model for optimal estimation of the star spot position is obtained through the MEMS-gyro, and an extended Kalman filter is introduced. Meanwhile, the MEMS-gyro drift can be estimated and compensated though the proposed method. These enable the star tracker to achieve high star centroid determination accuracy under dynamic conditions. The MEMS-gyro drift can be corrected even when attitude data of the star tracker are unable to be solved and only one navigation star is captured in the field of view. Laboratory experiments were performed to verify the effectiveness of the proposed method and the whole system. (paper)

  17. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  18. Dynamics of High-Resolution Networks

    DEFF Research Database (Denmark)

    Sekara, Vedran

    the unprecedented amounts of information collected by mobile phones to gain detailed insight into the dynamics of social systems. This dissertation presents an unparalleled data collection campaign, collecting highly detailed traces for approximately 1000 people over the course of multiple years. The availability...... are we all affected by an ever changing network structure? Answering these questions will enrich our understanding of ourselves, our organizations, and our societies. Yet, mapping the dynamics of social networks has traditionally been an arduous undertaking. Today, however, it is possible to use...... of such dynamic maps allows us to probe the underlying social network and understand how individuals interact and form lasting friendships. More importantly, these highly detailed dynamic maps provide us new perspectives at traditional problems and allow us to quantify and predict human life....

  19. NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis.

    Science.gov (United States)

    Markiewicz, Pawel J; Ehrhardt, Matthias J; Erlandsson, Kjell; Noonan, Philip J; Barnes, Anna; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Ourselin, Sebastien

    2018-01-01

    We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coefficient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data.

  20. The application in detection the position accuracy of the multi-leaf collimator of Varian linear accelerator with dynamic therapy log files

    International Nuclear Information System (INIS)

    Li Changhu; Xu Liming; Teng Jianjian; Ge Wei; Zhang Jun; Ma Guangdong

    2010-01-01

    Objective: To explorer the application in detection the position accuracy of the multileaf collimator of Varian accelerator with dynamic therapy log files. Methods: A pre-designed MLC format files named PMLC for two Varian accelerators, the dynamic treatment log files were recorded 10 times on a different date, and be converted into the MLC format files named DMLC, compared with the original plan PMLC, so we can analysis two files for each leaf position deviation. In addition, we analysis the repeatability of MLC leaves position accuracy between 10 dynalog files of two accelerators. Results: No statistically significant difference between the average position of the 10 times leaf position of the two accelerators,their were 0.29 -0.29 and 0.29 -0.30 (z = -0.77, P=0.442). About 40%, 30%, 20% and 10% of the leaf position deviation was at ≤0.2 mm, 0.3 mm, 0.5 mm and 0.4 mm, respectively. the maximum value was 0.5 mm. More than 86% of the leaf position are completely coincident between 10 dynamic treatment files of two accelerators. The rate of position deviation no more 0. 05 mm was 96. 6% and 97.3%, respectively. And the maximum value was 0.09 mm. Conclusions: Dynamic treatment log file is a splendid tool in testing the actual position of multi-leaf collimator. The multi-leaf collimator of two accelerators be detected are precise and stabilized. (authors)

  1. High-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects.

    Science.gov (United States)

    Zeng, Zhaoli; Qu, Xueming; Tan, Yidong; Tan, Runtao; Zhang, Shulian

    2015-06-29

    A simple and high-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects is presented. The single high-order feedback effect is realized when dual-frequency laser reflects numerous times in a Fabry-Perot cavity and then goes back to the laser resonator along the same route. In this case, two orthogonally polarized feedback fringes with nanoscale resolution are obtained. This self-mixing interferometer has the advantages of higher sensitivity to weak signal than that of conventional interferometer. In addition, two orthogonally polarized fringes are useful for discriminating the moving direction of measured object. The experiment of measuring 2.5nm step is conducted, which shows a great potential in nanometrology.

  2. Automated novel high-accuracy miniaturized positioning system for use in analytical instrumentation

    Science.gov (United States)

    Siomos, Konstadinos; Kaliakatsos, John; Apostolakis, Manolis; Lianakis, John; Duenow, Peter

    1996-01-01

    The development of three-dimensional automotive devices (micro-robots) for applications in analytical instrumentation, clinical chemical diagnostics and advanced laser optics, depends strongly on the ability of such a device: firstly to be positioned with high accuracy, reliability, and automatically, by means of user friendly interface techniques; secondly to be compact; and thirdly to operate under vacuum conditions, free of most of the problems connected with conventional micropositioners using stepping-motor gear techniques. The objective of this paper is to develop and construct a mechanically compact computer-based micropositioning system for coordinated motion in the X-Y-Z directions with: (1) a positioning accuracy of less than 1 micrometer, (the accuracy of the end-position of the system is controlled by a hard/software assembly using a self-constructed optical encoder); (2) a heat-free propulsion mechanism for vacuum operation; and (3) synchronized X-Y motion.

  3. Identification and delineation of areas flood hazard using high accuracy of DEM data

    Science.gov (United States)

    Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.

    2018-05-01

    Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.

  4. Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections

    Science.gov (United States)

    Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt

    2018-03-01

    Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 {M}ȯ –30 {M}ȯ non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).

  5. Dynamism or Disorder at High Pressures?

    Science.gov (United States)

    Angel, R. J.; Bismayer, U.; Marshall, W. G.

    2002-12-01

    Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.

  6. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes

    KAUST Repository

    Pelties, Christian

    2012-02-18

    Accurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into emerging approaches for dynamic source inversion, and to generate realistic physics-based earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER) time integration method was introduced in two dimensions by de la Puente et al. (2009). The ADER-DG method enables high accuracy in space and time and discretization by unstructured meshes. Here we extend this method to three-dimensional dynamic rupture problems. The high geometrical flexibility provided by the usage of tetrahedral elements and the lack of spurious mesh reflections in the ADER-DG method allows the refinement of the mesh close to the fault to model the rupture dynamics adequately while concentrating computational resources only where needed. Moreover, ADER-DG does not generate spurious high-frequency perturbations on the fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-dimensional implementation by comparing results of the SCEC TPV3 test problem with two well-established numerical methods, finite differences, and spectral boundary integral. Furthermore, a convergence study is presented to demonstrate the systematic consistency of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes, we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes curved faults, fault branches, and surface topography. Copyright 2012 by the American Geophysical Union.

  7. The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy?

    OpenAIRE

    Blower, Sally; Go, Myong-Hyun

    2011-01-01

    Abstract Mathematical models are useful tools for understanding and predicting epidemics. A recent innovative modeling study by Stehle and colleagues addressed the issue of how complex models need to be to ensure accuracy. The authors collected data on face-to-face contacts during a two-day conference. They then constructed a series of dynamic social contact networks, each of which was used to model an epidemic generated by a fast-spreading airborne pathogen. Intriguingly, Stehle and colleagu...

  8. High accuracy positioning using carrier-phases with the opensource GPSTK software

    OpenAIRE

    Salazar Hernández, Dagoberto José; Hernández Pajares, Manuel; Juan Zornoza, José Miguel; Sanz Subirana, Jaume

    2008-01-01

    The objective of this work is to show how using a proper GNSS data management strategy, combined with the flexibility provided by the open source "GPS Toolkit" (GPSTk), it is possible to easily develop both simple code-based processing strategies as well as basic high accuracy carrier-phase positioning techniques like Precise Point Positioning (PPP

  9. A New Approach to High-accuracy Road Orthophoto Mapping Based on Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Ming Yang

    2011-12-01

    Full Text Available Existing orthophoto map based on satellite photography and aerial photography is not precise enough for road marking. This paper proposes a new approach to high-accuracy orthophoto mapping. The approach uses inverse perspective transformation to process the image information and generates the orthophoto fragment. The offline interpolation algorithm is used to process the location information. It processes the dead reckoning and the EKF location information, and uses the result to transform the fragments to the global coordinate system. At last it uses wavelet transform to divides the image to two frequency bands and uses weighted median algorithm to deal with them separately. The result of experiment shows that the map produced with this method has high accuracy.

  10. A new ultra-high-accuracy angle generator: current status and future direction

    Science.gov (United States)

    Guertin, Christian F.; Geckeler, Ralf D.

    2017-09-01

    Lack of an extreme high-accuracy angular positioning device available in the United States has left a gap in industrial and scientific efforts conducted there, requiring certain user groups to undertake time-consuming work with overseas laboratories. Specifically, in x-ray mirror metrology the global research community is advancing the state-of-the-art to unprecedented levels. We aim to fill this U.S. gap by developing a versatile high-accuracy angle generator as a part of the national metrology tool set for x-ray mirror metrology and other important industries. Using an established calibration technique to measure the errors of the encoder scale graduations for full-rotation rotary encoders, we implemented an optimized arrangement of sensors positioned to minimize propagation of calibration errors. Our initial feasibility research shows that upon scaling to a full prototype and including additional calibration techniques we can expect to achieve uncertainties at the level of 0.01 arcsec (50 nrad) or better and offer the immense advantage of a highly automatable and customizable product to the commercial market.

  11. Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks

    DEFF Research Database (Denmark)

    Blanche, Paul; Proust-Lima, Cécile; Loubère, Lucie

    2015-01-01

    to quantify predictive accuracy. Nonparametric inverse probability of censoring weighting is used to estimate dynamic curves of AUC and BS as functions of the time at which predictions are made. Asymptotic results are established and both pointwise confidence intervals and simultaneous confidence bands...

  12. Ultra-high accuracy optical testing: creating diffraction-limited short-wavelength optical systems

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman, Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli, Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-01-01

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-(angstrom) and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date

  13. Exploring high dimensional data with Butterfly: a novel classification algorithm based on discrete dynamical systems.

    Science.gov (United States)

    Geraci, Joseph; Dharsee, Moyez; Nuin, Paulo; Haslehurst, Alexandria; Koti, Madhuri; Feilotter, Harriet E; Evans, Ken

    2014-03-01

    We introduce a novel method for visualizing high dimensional data via a discrete dynamical system. This method provides a 2D representation of the relationship between subjects according to a set of variables without geometric projections, transformed axes or principal components. The algorithm exploits a memory-type mechanism inherent in a certain class of discrete dynamical systems collectively referred to as the chaos game that are closely related to iterative function systems. The goal of the algorithm was to create a human readable representation of high dimensional patient data that was capable of detecting unrevealed subclusters of patients from within anticipated classifications. This provides a mechanism to further pursue a more personalized exploration of pathology when used with medical data. For clustering and classification protocols, the dynamical system portion of the algorithm is designed to come after some feature selection filter and before some model evaluation (e.g. clustering accuracy) protocol. In the version given here, a univariate features selection step is performed (in practice more complex feature selection methods are used), a discrete dynamical system is driven by this reduced set of variables (which results in a set of 2D cluster models), these models are evaluated for their accuracy (according to a user-defined binary classification) and finally a visual representation of the top classification models are returned. Thus, in addition to the visualization component, this methodology can be used for both supervised and unsupervised machine learning as the top performing models are returned in the protocol we describe here. Butterfly, the algorithm we introduce and provide working code for, uses a discrete dynamical system to classify high dimensional data and provide a 2D representation of the relationship between subjects. We report results on three datasets (two in the article; one in the appendix) including a public lung cancer

  14. Potential of dynamically harmonized Fourier transform ion cyclotron resonance cell for high-throughput metabolomics fingerprinting: control of data quality.

    Science.gov (United States)

    Habchi, Baninia; Alves, Sandra; Jouan-Rimbaud Bouveresse, Delphine; Appenzeller, Brice; Paris, Alain; Rutledge, Douglas N; Rathahao-Paris, Estelle

    2018-01-01

    Due to the presence of pollutants in the environment and food, the assessment of human exposure is required. This necessitates high-throughput approaches enabling large-scale analysis and, as a consequence, the use of high-performance analytical instruments to obtain highly informative metabolomic profiles. In this study, direct introduction mass spectrometry (DIMS) was performed using a Fourier transform ion cyclotron resonance (FT-ICR) instrument equipped with a dynamically harmonized cell. Data quality was evaluated based on mass resolving power (RP), mass measurement accuracy, and ion intensity drifts from the repeated injections of quality control sample (QC) along the analytical process. The large DIMS data size entails the use of bioinformatic tools for the automatic selection of common ions found in all QC injections and for robustness assessment and correction of eventual technical drifts. RP values greater than 10 6 and mass measurement accuracy of lower than 1 ppm were obtained using broadband mode resulting in the detection of isotopic fine structure. Hence, a very accurate relative isotopic mass defect (RΔm) value was calculated. This reduces significantly the number of elemental composition (EC) candidates and greatly improves compound annotation. A very satisfactory estimate of repeatability of both peak intensity and mass measurement was demonstrated. Although, a non negligible ion intensity drift was observed for negative ion mode data, a normalization procedure was easily applied to correct this phenomenon. This study illustrates the performance and robustness of the dynamically harmonized FT-ICR cell to perform large-scale high-throughput metabolomic analyses in routine conditions. Graphical abstract Analytical performance of FT-ICR instrument equipped with a dynamically harmonized cell.

  15. Dynamic high-resolution ultrasound of the shoulder: How we do it

    Energy Technology Data Exchange (ETDEWEB)

    Corazza, Angelo, E-mail: angelcoraz@libero.it [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Genova, Via Alberti 4, 16132 Genova (Italy); Orlandi, Davide, E-mail: theabo@libero.it [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Genova, Via Alberti 4, 16132 Genova (Italy); Fabbro, Emanuele, E-mail: emanuele.fabbro@gmail.com [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Genova, Via Alberti 4, 16132 Genova (Italy); Ferrero, Giulio, E-mail: giulio.ferrero@gmail.com [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Genova, Via Alberti 4, 16132 Genova (Italy); Messina, Carmelo, E-mail: carmelomessina.md@gmail.com [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Piazza Malan 2, 20097 San Donato Milanese (Italy); Sartoris, Riccardo, E-mail: riccardo.sartoris@hotmail.it [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Genova, Via Alberti 4, 16132 Genova (Italy); Perugin Bernardi, Silvia, E-mail: silvy-86-@hotmail.it [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Genova, Via Alberti 4, 16132 Genova (Italy); Arcidiacono, Alice, E-mail: a.arcidiacono84@gmail.com [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Genova, Via Alberti 4, 16132 Genova (Italy); Silvestri, Enzo, E-mail: silvi.enzo@gmail.com [Dipartimento di Radiologia, Ospedale Evangelico Internazionale, Corso Solferino 29A, 16121 Genova (Italy); and others

    2015-02-15

    Highlights: • This paper shows how to apply US technique to image soft tissues around the shoulder. • Readers will learn to recognize normal US anatomy of tendons of the shoulder. • Readers will learn to apply dynamic maneuvers to improve rotator cuff visibility. - Abstract: Ultrasonography (US) is an established and well-accepted modality that can be used to evaluate articular and peri-articular structures around the shoulder. US has been proven to be useful in a wide range of rotator cuff diseases (tendon tears, tendinosis, and bursitis) as well as non-rotator cuff abnormalities (instability problems, synovial joint diseases, and nerve entrapment syndromes). Diagnostic accuracy of shoulder US when evaluating rotator cuff tears can reach 91–100% for partial and full thickness tears detection, respectively, having been reported to be as accurate as magnetic resonance imaging in experienced hands. US is cheap, readily available, capable to provide high-resolution images, and does not use ionizing radiations. In addition, US is the only imaging modality that allows performing dynamic evaluation of musculoskeletal structures, that may help to further increase diagnostic performance. In this setting, a standardized imaging protocol is essential for an exhaustive and efficient examination, also helping reducing the intrinsic dependence from operators of US. Furthermore, knowledge of pitfalls that can be encountered when examining the shoulder may help to avoid erroneous images interpretation. In this article we use detailed anatomic schemes and high-resolution US images to describe the normal US anatomy of soft tissues, articular, and para-articular structures located in and around the shoulder. Short video clips emphasizing the crucial role of dynamic maneuvers and dynamic real-time US examination of these structures are included as supplementary material.

  16. Dynamic high-resolution ultrasound of the shoulder: How we do it

    International Nuclear Information System (INIS)

    Corazza, Angelo; Orlandi, Davide; Fabbro, Emanuele; Ferrero, Giulio; Messina, Carmelo; Sartoris, Riccardo; Perugin Bernardi, Silvia; Arcidiacono, Alice; Silvestri, Enzo

    2015-01-01

    Highlights: • This paper shows how to apply US technique to image soft tissues around the shoulder. • Readers will learn to recognize normal US anatomy of tendons of the shoulder. • Readers will learn to apply dynamic maneuvers to improve rotator cuff visibility. - Abstract: Ultrasonography (US) is an established and well-accepted modality that can be used to evaluate articular and peri-articular structures around the shoulder. US has been proven to be useful in a wide range of rotator cuff diseases (tendon tears, tendinosis, and bursitis) as well as non-rotator cuff abnormalities (instability problems, synovial joint diseases, and nerve entrapment syndromes). Diagnostic accuracy of shoulder US when evaluating rotator cuff tears can reach 91–100% for partial and full thickness tears detection, respectively, having been reported to be as accurate as magnetic resonance imaging in experienced hands. US is cheap, readily available, capable to provide high-resolution images, and does not use ionizing radiations. In addition, US is the only imaging modality that allows performing dynamic evaluation of musculoskeletal structures, that may help to further increase diagnostic performance. In this setting, a standardized imaging protocol is essential for an exhaustive and efficient examination, also helping reducing the intrinsic dependence from operators of US. Furthermore, knowledge of pitfalls that can be encountered when examining the shoulder may help to avoid erroneous images interpretation. In this article we use detailed anatomic schemes and high-resolution US images to describe the normal US anatomy of soft tissues, articular, and para-articular structures located in and around the shoulder. Short video clips emphasizing the crucial role of dynamic maneuvers and dynamic real-time US examination of these structures are included as supplementary material

  17. Dynamic calibration of piezoelectric transducers for ballistic high-pressure measurement

    Directory of Open Access Journals (Sweden)

    Elkarous Lamine

    2016-01-01

    Full Text Available The development of a dynamic calibration standard for high-amplitude pressure piezoelectric transducers implies the implementation of a system which can provide reference pressure values with known characteristics and uncertainty. The reference pressure must be issued by a sensor, as a part of a measuring chain, with a guaranteed traceability to an international standard. However, this operation has not been completely addressed yet until today and is still calling further investigations. In this paper, we introduce an experimental study carried out in order to contribute to current efforts for the establishment of a reference dynamic calibration method. A suitable practical calibration method based on the calculation of the reference pressure by measurement of the displacement of the piston in contact with an oil-filled cylindrical chamber is presented. This measurement was achieved thanks to a high speed camera and an accelerometer. Both measurements are then compared. In the first way, pressure was generated by impacting the piston with a free falling weight and, in the second way, with strikers of known weights and accelerated to the impact velocities with an air gun. The aim of the experimental setup is to work out a system which may generate known hydraulic pressure pulses with high-accuracy and known uncertainty. Moreover, physical models were also introduced to consolidate the experimental study. The change of striker’s velocities and masses allows tuning the reference pressure pulses with different shapes and, therefore, permits to sweep a wide range of magnitudes and frequencies.

  18. Analysis on the dynamic error for optoelectronic scanning coordinate measurement network

    Science.gov (United States)

    Shi, Shendong; Yang, Linghui; Lin, Jiarui; Guo, Siyang; Ren, Yongjie

    2018-01-01

    Large-scale dynamic three-dimension coordinate measurement technique is eagerly demanded in equipment manufacturing. Noted for advantages of high accuracy, scale expandability and multitask parallel measurement, optoelectronic scanning measurement network has got close attention. It is widely used in large components jointing, spacecraft rendezvous and docking simulation, digital shipbuilding and automated guided vehicle navigation. At present, most research about optoelectronic scanning measurement network is focused on static measurement capacity and research about dynamic accuracy is insufficient. Limited by the measurement principle, the dynamic error is non-negligible and restricts the application. The workshop measurement and positioning system is a representative which can realize dynamic measurement function in theory. In this paper we conduct deep research on dynamic error resources and divide them two parts: phase error and synchronization error. Dynamic error model is constructed. Based on the theory above, simulation about dynamic error is carried out. Dynamic error is quantized and the rule of volatility and periodicity has been found. Dynamic error characteristics are shown in detail. The research result lays foundation for further accuracy improvement.

  19. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time

    Science.gov (United States)

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2015-01-01

    Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their

  20. Optimization of dynamic envelope measurement system for high speed train based on monocular vision

    Science.gov (United States)

    Wu, Bin; Liu, Changjie; Fu, Luhua; Wang, Zhong

    2018-01-01

    The definition of dynamic envelope curve is the maximum limit outline caused by various adverse effects during the running process of the train. It is an important base of making railway boundaries. At present, the measurement work of dynamic envelope curve of high-speed vehicle is mainly achieved by the way of binocular vision. There are some problems of the present measuring system like poor portability, complicated process and high cost. A new measurement system based on the monocular vision measurement theory and the analysis on the test environment is designed and the measurement system parameters, the calibration of camera with wide field of view, the calibration of the laser plane are designed and optimized in this paper. The accuracy has been verified to be up to 2mm by repeated tests and experimental data analysis. The feasibility and the adaptability of the measurement system is validated. There are some advantages of the system like lower cost, a simpler measurement and data processing process, more reliable data. And the system needs no matching algorithm.

  1. High dynamic range image acquisition based on multiplex cameras

    Science.gov (United States)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  2. High-accuracy user identification using EEG biometrics.

    Science.gov (United States)

    Koike-Akino, Toshiaki; Mahajan, Ruhi; Marks, Tim K; Ye Wang; Watanabe, Shinji; Tuzel, Oncel; Orlik, Philip

    2016-08-01

    We analyze brain waves acquired through a consumer-grade EEG device to investigate its capabilities for user identification and authentication. First, we show the statistical significance of the P300 component in event-related potential (ERP) data from 14-channel EEGs across 25 subjects. We then apply a variety of machine learning techniques, comparing the user identification performance of various different combinations of a dimensionality reduction technique followed by a classification algorithm. Experimental results show that an identification accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition, we demonstrate that the user identification accuracy can be significantly improved to more than 96.7% by joint classification of multiple epochs.

  3. Geometric integrators for stochastic rigid body dynamics

    KAUST Repository

    Tretyakov, Mikhail

    2016-01-05

    Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.

  4. Geometric integrators for stochastic rigid body dynamics

    KAUST Repository

    Tretyakov, Mikhail

    2016-01-01

    Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.

  5. Determining gastric cancer resectability by dynamic MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zilai; Zhang, Huan; Du, Lianjun; Ding, Bei; Song, Qi; Ling, Huawei; Huang, Baisong; Chen, Kemin [Jiaotong University, Department of Radiology, Shanghai (China); Yan, Chao [Jiaotong University, Department of Surgery, Shanghai (China)

    2010-03-15

    Multi-detector row CT (MDCT) has been widely used to detect primary lesions and to evaluate TNM staging. In this study we evaluated the accuracy of dynamic MDCT in the preoperative determination of the resectability of gastric cancer. MDCT was used to image 350 cases of gastric cancer diagnosed by biopsy before surgery. MDCT findings regarding TNM staging and resectability were correlated with surgical and pathological findings. The accuracy of MDCT for staging gastric cancer was high, especially for tumour stage T1 (94.3%), lymph node stage N2 (87.3%), and for predicting distant metastases (>96.6%). When resectability was considered to be the outcome, the total accuracy of MDCT was 87.4%, sensitivity was 89.7% and specificity was 76.7%. Results showed high sensitivity for identifying peritoneal seeding (90.0%) and for predicting liver metastasis (80.0%). Dynamic enhanced MDCT is useful for TNM staging of gastric cancers and for predicting tumour respectability preoperatively. (orig.)

  6. Determining gastric cancer resectability by dynamic MDCT

    International Nuclear Information System (INIS)

    Pan, Zilai; Zhang, Huan; Du, Lianjun; Ding, Bei; Song, Qi; Ling, Huawei; Huang, Baisong; Chen, Kemin; Yan, Chao

    2010-01-01

    Multi-detector row CT (MDCT) has been widely used to detect primary lesions and to evaluate TNM staging. In this study we evaluated the accuracy of dynamic MDCT in the preoperative determination of the resectability of gastric cancer. MDCT was used to image 350 cases of gastric cancer diagnosed by biopsy before surgery. MDCT findings regarding TNM staging and resectability were correlated with surgical and pathological findings. The accuracy of MDCT for staging gastric cancer was high, especially for tumour stage T1 (94.3%), lymph node stage N2 (87.3%), and for predicting distant metastases (>96.6%). When resectability was considered to be the outcome, the total accuracy of MDCT was 87.4%, sensitivity was 89.7% and specificity was 76.7%. Results showed high sensitivity for identifying peritoneal seeding (90.0%) and for predicting liver metastasis (80.0%). Dynamic enhanced MDCT is useful for TNM staging of gastric cancers and for predicting tumour respectability preoperatively. (orig.)

  7. High Accuracy Attitude Control System Design for Satellite with Flexible Appendages

    Directory of Open Access Journals (Sweden)

    Wenya Zhou

    2014-01-01

    Full Text Available In order to realize the high accuracy attitude control of satellite with flexible appendages, attitude control system consisting of the controller and structural filter was designed. When the low order vibration frequency of flexible appendages is approximating the bandwidth of attitude control system, the vibration signal will enter the control system through measurement device to bring impact on the accuracy or even the stability. In order to reduce the impact of vibration of appendages on the attitude control system, the structural filter is designed in terms of rejecting the vibration of flexible appendages. Considering the potential problem of in-orbit frequency variation of the flexible appendages, the design method for the adaptive notch filter is proposed based on the in-orbit identification technology. Finally, the simulation results are given to demonstrate the feasibility and effectiveness of the proposed design techniques.

  8. Technics study on high accuracy crush dressing and sharpening of diamond grinding wheel

    Science.gov (United States)

    Jia, Yunhai; Lu, Xuejun; Li, Jiangang; Zhu, Lixin; Song, Yingjie

    2011-05-01

    Mechanical grinding of artificial diamond grinding wheel was traditional wheel dressing process. The rotate speed and infeed depth of tool wheel were main technics parameters. The suitable technics parameters of metals-bonded diamond grinding wheel and resin-bonded diamond grinding wheel high accuracy crush dressing were obtained by a mount of experiment in super-hard material wheel dressing grind machine and by analysis of grinding force. In the same time, the effect of machine sharpening and sprinkle granule sharpening was contrasted. These analyses and lots of experiments had extent instruction significance to artificial diamond grinding wheel accuracy crush dressing.

  9. A highly accurate dynamic contact angle algorithm for drops on inclined surface based on ellipse-fitting.

    Science.gov (United States)

    Xu, Z N; Wang, S Y

    2015-02-01

    To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.

  10. High accuracy subwavelength distance measurements: A variable-angle standing-wave total-internal-reflection optical microscope

    International Nuclear Information System (INIS)

    Haynie, A.; Min, T.-J.; Luan, L.; Mu, W.; Ketterson, J. B.

    2009-01-01

    We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.

  11. Treatment accuracy of hypofractionated spine and other highly conformal IMRT treatments

    International Nuclear Information System (INIS)

    Sutherland, B.; Hanlon, P.; Charles, P.

    2011-01-01

    Full text: Spinal cord metastases pose difficult challenges for radiation treatment due to tight dose constraints and a concave PTY. This project aimed to thoroughly test the treatment accuracy of the Eclipse Treatment Planning System (TPS) for highly modulated IMRT treatments, in particular of the thoracic spine, using an Elekta Synergy Linear Accelerator. The increased understanding obtained through different quality assurance techniques allowed recommendations to be made for treatment site commissioning with improved accuracy at the Princess Alexandra Hospital (PAH). Three thoracic spine IMRT plans at the PAH were used for data collection. Complex phantom models were built using CT data, and fields simulated using Monte Carlo modelling. The simulated dose distributions were compared with the TPS using gamma analysis and DYH comparison. High resolution QA was done for all fields using the MatriXX ion chamber array, MapCHECK2 diode array shifted, and the EPlD to determine a procedure for commissioning new treatment sites. Basic spine simulations found the TPS overestimated absorbed dose to bone, however within spinal cord there was good agreement. High resolution QA found the average gamma pass rate of the fields to be 99.1 % for MatriXX, 96.5% for MapCHECK2 shifted and 97.7% for EPlD. Preliminary results indicate agreement between the TPS and delivered dose distributions higher than previously believed for the investigated IMRT plans. The poor resolution of the MatriXX, and normalisation issues with MapCHECK2 leads to probable recommendation of EPlD for future IMRT commissioning due to the high resolution and minimal setup required.

  12. Design Considerations for Remote High-Speed Pressure Measurements of Dynamic Combustion Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Straub, D.L.; Ferguson, D.H.; Rohrssen, Robert (West Virginia University, Morgantown, WV); Perez, Eduardo (West Virginia University, Morgantown, WV)

    2007-01-01

    As gas turbine combustion systems evolve to achieve ultra-low emission targets, monitoring and controlling dynamic combustion processes becomes increasingly important. These dynamic processes may include flame extinction, combustion-driven instabilities, or other dynamic combustion phenomena. Pressure sensors can be incorporated into the combustor liner design, but this approach is complicated by the harsh operating environment. One practical solution involves locating the sensor in a more remote location, such as outside the pressure casing. The sensor can be connected to the measurement point by small diameter tubing. Although this is a practical approach, the dynamics of the tubing can introduce significant errors into the pressure measurement. This paper addresses measurement errors associated with semi-infinite coil remote sensing setups and proposes an approach to improve the accuracy of these types of measurements.

  13. High accuracy of family history of melanoma in Danish melanoma cases

    DEFF Research Database (Denmark)

    Wadt, Karin A W; Drzewiecki, Krzysztof T; Gerdes, Anne-Marie

    2015-01-01

    The incidence of melanoma in Denmark has immensely increased over the last 10 years making Denmark a high risk country for melanoma. In the last two decades multiple public campaigns have sought to increase the awareness of melanoma. Family history of melanoma is a known major risk factor...... but previous studies have shown that self-reported family history of melanoma is highly inaccurate. These studies are 15 years old and we wanted to examine if a higher awareness of melanoma has increased the accuracy of self-reported family history of melanoma. We examined the family history of 181 melanoma...

  14. Analysis of the dynamic behavior of structures using the high-rate GNSS-PPP method combined with a wavelet-neural model: Numerical simulation and experimental tests

    Science.gov (United States)

    Kaloop, Mosbeh R.; Yigit, Cemal O.; Hu, Jong W.

    2018-03-01

    Recently, the high rate global navigation satellite system-precise point positioning (GNSS-PPP) technique has been used to detect the dynamic behavior of structures. This study aimed to increase the accuracy of the extraction oscillation properties of structural movements based on the high-rate (10 Hz) GNSS-PPP monitoring technique. A developmental model based on the combination of wavelet package transformation (WPT) de-noising and neural network prediction (NN) was proposed to improve the dynamic behavior of structures for GNSS-PPP method. A complicated numerical simulation involving highly noisy data and 13 experimental cases with different loads were utilized to confirm the efficiency of the proposed model design and the monitoring technique in detecting the dynamic behavior of structures. The results revealed that, when combined with the proposed model, GNSS-PPP method can be used to accurately detect the dynamic behavior of engineering structures as an alternative to relative GNSS method.

  15. SU-F-T-255: Accuracy and Precision of Dynamic Tracking Irradiation with VERO-4DRT System

    International Nuclear Information System (INIS)

    Hayashi, N; Takada, Y; Mizuno, T; Nakae, H; Murai, T

    2016-01-01

    Purpose: The VERO-4DRT system is able to provide dynamic tracking irradiation (DTI) for the target with respiratory motion. This technique requires enough commissioning for clinical implementation. The purpose of this study is to make sure the accuracy and precision of DTI using VERO- 4DRT through commissioning from fundamental evaluation to end-to-end test. Method: We evaluated several contents for DTI commissioning: the accuracy of absorption dose at isocenter in DTI, the field size and penumbra of DTI, the accuracy of 4D modeling in DTI. All evaluations were performed by respiratory motion phantom (Quasar phantom). These contents were compared the results between static irradiation and DTI. The shape of radiation field was set to square from 3 cm × 3 cm to 10 cm × 10 cm. The micro 3D chamber and Gafchromic EBT3 film were used for absorbed dose and relative dose distribution measurement, respectively. The sine and irregular shaped waves were used for demonstrative respiratory motion. The visicoil was implanted into the phantom for guidance of respiratory motion. The respiration patterns of frequency and motion amount were set to 10–15 BPM and 1–2 cm, respectively. Results: As the result of absorbed dose of DTI in comparison with static irradiation, the average dose error at isocenter was 0.5% even though various respiratory patterns were set on. As the result of relative dose distribution, the field size (set it on 50% dose line) was not significantly changed in all respiratory patterns. However, the penumbra was larger in greater respiratory motion (up to 4.1 mm). The 4D modeling coincidence between actual and created waves was within 1%. Conclusion: The DTI using VERO-4DRT can provide sufficient accuracy and precision in absorbed dose and distribution. However, the patientspecific quantitative internal margin corresponding respiratory motion should be taken into consideration with image guidance.

  16. SU-F-T-255: Accuracy and Precision of Dynamic Tracking Irradiation with VERO-4DRT System

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, N [Graduate school of Health Sciences, Fujita Health University, Tayoake, Aichi (Japan); Takada, Y; Mizuno, T; Nakae, H [Department of Radiology, Ogaki Tokushukai Hospital, Ogaki, Gifu (Japan); Murai, T [Department of Radiation Oncology, Nagoya City University, Nagoya, Aichi (Japan)

    2016-06-15

    Purpose: The VERO-4DRT system is able to provide dynamic tracking irradiation (DTI) for the target with respiratory motion. This technique requires enough commissioning for clinical implementation. The purpose of this study is to make sure the accuracy and precision of DTI using VERO- 4DRT through commissioning from fundamental evaluation to end-to-end test. Method: We evaluated several contents for DTI commissioning: the accuracy of absorption dose at isocenter in DTI, the field size and penumbra of DTI, the accuracy of 4D modeling in DTI. All evaluations were performed by respiratory motion phantom (Quasar phantom). These contents were compared the results between static irradiation and DTI. The shape of radiation field was set to square from 3 cm × 3 cm to 10 cm × 10 cm. The micro 3D chamber and Gafchromic EBT3 film were used for absorbed dose and relative dose distribution measurement, respectively. The sine and irregular shaped waves were used for demonstrative respiratory motion. The visicoil was implanted into the phantom for guidance of respiratory motion. The respiration patterns of frequency and motion amount were set to 10–15 BPM and 1–2 cm, respectively. Results: As the result of absorbed dose of DTI in comparison with static irradiation, the average dose error at isocenter was 0.5% even though various respiratory patterns were set on. As the result of relative dose distribution, the field size (set it on 50% dose line) was not significantly changed in all respiratory patterns. However, the penumbra was larger in greater respiratory motion (up to 4.1 mm). The 4D modeling coincidence between actual and created waves was within 1%. Conclusion: The DTI using VERO-4DRT can provide sufficient accuracy and precision in absorbed dose and distribution. However, the patientspecific quantitative internal margin corresponding respiratory motion should be taken into consideration with image guidance.

  17. High dynamic range vision sensor for automotive applications

    Science.gov (United States)

    Grenet, Eric; Gyger, Steve; Heim, Pascal; Heitger, Friedrich; Kaess, Francois; Nussbaum, Pascal; Ruedi, Pierre-Francois

    2005-02-01

    A 128 x 128 pixels, 120 dB vision sensor extracting at the pixel level the contrast magnitude and direction of local image features is used to implement a lane tracking system. The contrast representation (relative change of illumination) delivered by the sensor is independent of the illumination level. Together with the high dynamic range of the sensor, it ensures a very stable image feature representation even with high spatial and temporal inhomogeneities of the illumination. Dispatching off chip image feature is done according to the contrast magnitude, prioritizing features with high contrast magnitude. This allows to reduce drastically the amount of data transmitted out of the chip, hence the processing power required for subsequent processing stages. To compensate for the low fill factor (9%) of the sensor, micro-lenses have been deposited which increase the sensitivity by a factor of 5, corresponding to an equivalent of 2000 ASA. An algorithm exploiting the contrast representation output by the vision sensor has been developed to estimate the position of a vehicle relative to the road markings. The algorithm first detects the road markings based on the contrast direction map. Then, it performs quadratic fits on selected kernel of 3 by 3 pixels to achieve sub-pixel accuracy on the estimation of the lane marking positions. The resulting precision on the estimation of the vehicle lateral position is 1 cm. The algorithm performs efficiently under a wide variety of environmental conditions, including night and rainy conditions.

  18. Evaluation of Small Unmanned Aircraft Flight Trajectory Accuracy

    Directory of Open Access Journals (Sweden)

    Ramūnas Kikutis

    2014-12-01

    Full Text Available Today small unmanned aircraft are being more widely adapted for practical tasks. These tasks require high reliability and flight path accuracy. For such aircraft we have to deal with the chalenge how to compensate external factors and how to ensure the accuracy of the flight trajectory according to new regulations and standards. In this paper, new regulations for the flights of small unmanned aircraft in Lithuanian air space are discussed. Main factors, which affect errors of the autonomous flight path tracking, are discussed too. The emphasis is on the wind factor and the flight path of Dubbin’s trajectories. Research was performed with mathematical-dynamic model of UAV and it was compared with theoretical calculations. All calculations and experiments were accomplished for the circular part of Dubbin’s paths when the airplane was trimmed for circular trajectory flight in calm conditions. Further, for such flight the wind influence was analysed.

  19. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Guy Jean-Pierre Schumann

    2016-01-01

    Full Text Available Digital elevation models (DEMs are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  20. Static and Dynamic Accuracy of an Innovative Miniaturized Wearable Platform for Short Range Distance Measurements for Human Movement Applications

    Directory of Open Access Journals (Sweden)

    Stefano Bertuletti

    2017-06-01

    Full Text Available Magneto-inertial measurement units (MIMU are a suitable solution to assess human motor performance both indoors and outdoors. However, relevant quantities such as step width and base of support, which play an important role in gait stability, cannot be directly measured using MIMU alone. To overcome this limitation, we developed a wearable platform specifically designed for human movement analysis applications, which integrates a MIMU and an Infrared Time-of-Flight proximity sensor (IR-ToF, allowing for the estimate of inter-object distance. We proposed a thorough testing protocol for evaluating the IR-ToF sensor performances under experimental conditions resembling those encountered during gait. In particular, we tested the sensor performance for different (i target colors; (ii sensor-target distances (up to 200 mm and (iii sensor-target angles of incidence (AoI (up to 60 ∘ . Both static and dynamic conditions were analyzed. A pendulum, simulating the oscillation of a human leg, was used to generate highly repeatable oscillations with a maximum angular velocity of 6 rad/s. Results showed that the IR-ToF proximity sensor was not sensitive to variations of both distance and target color (except for black. Conversely, a relationship between error magnitude and AoI values was found. For AoI equal to 0 ∘ , the IR-ToF sensor performed equally well both in static and dynamic acquisitions with a distance mean absolute error <1.5 mm. Errors increased up to 3.6 mm (static and 11.9 mm (dynamic for AoI equal to ± 30 ∘ , and up to 7.8 mm (static and 25.6 mm (dynamic for AoI equal to ± 60 ∘ . In addition, the wearable platform was used during a preliminary experiment for the estimation of the inter-foot distance on a single healthy subject while walking. In conclusion, the combination of magneto-inertial unit and IR-ToF technology represents a valuable alternative solution in terms of accuracy, sampling frequency, dimension and power consumption

  1. Simulations of pulsating one-dimensional detonations with true fifth order accuracy

    International Nuclear Information System (INIS)

    Henrick, Andrew K.; Aslam, Tariq D.; Powers, Joseph M.

    2006-01-01

    A novel, highly accurate numerical scheme based on shock-fitting coupled with fifth order spatial and temporal discretizations is applied to a classical unsteady detonation problem to generate solutions with unprecedented accuracy. The one-dimensional reactive Euler equations for a calorically perfect mixture of ideal gases whose reaction is described by single-step irreversible Arrhenius kinetics are solved in a series of calculations in which the activation energy is varied. In contrast with nearly all known simulations of this problem, which converge at a rate no greater than first order as the spatial and temporal grid is refined, the present method is shown to converge at a rate consistent with the fifth order accuracy of the spatial and temporal discretization schemes. This high accuracy enables more precise verification of known results and prediction of heretofore unknown phenomena. To five significant figures, the scheme faithfully recovers the stability boundary, growth rates, and wave-numbers predicted by an independent linear stability theory in the stable and weakly unstable regime. As the activation energy is increased, a series of period-doubling events are predicted, and the system undergoes a transition to chaos. Consistent with general theories of non-linear dynamics, the bifurcation points are seen to converge at a rate for which the Feigenbaum constant is 4.66 ± 0.09, in close agreement with the true value of 4.669201... As activation energy is increased further, domains are identified in which the system undergoes a transition from a chaotic state back to one whose limit cycles are characterized by a small number of non-linear oscillatory modes. This result is consistent with behavior of other non-linear dynamical systems, but not typically considered in detonation dynamics. The period and average detonation velocity are calculated for a variety of asymptotically stable limit cycles. The average velocity for such pulsating detonations is found

  2. High-accuracy drilling with an image guided light weight robot: autonomous versus intuitive feed control.

    Science.gov (United States)

    Tauscher, Sebastian; Fuchs, Alexander; Baier, Fabian; Kahrs, Lüder A; Ortmaier, Tobias

    2017-10-01

    Assistance of robotic systems in the operating room promises higher accuracy and, hence, demanding surgical interventions become realisable (e.g. the direct cochlear access). Additionally, an intuitive user interface is crucial for the use of robots in surgery. Torque sensors in the joints can be employed for intuitive interaction concepts. Regarding the accuracy, they lead to a lower structural stiffness and, thus, to an additional error source. The aim of this contribution is to examine, if an accuracy needed for demanding interventions can be achieved by such a system or not. Feasible accuracy results of the robot-assisted process depend on each work-flow step. This work focuses on the determination of the tool coordinate frame. A method for drill axis definition is implemented and analysed. Furthermore, a concept of admittance feed control is developed. This allows the user to control feeding along the planned path by applying a force to the robots structure. The accuracy is researched by drilling experiments with a PMMA phantom and artificial bone blocks. The described drill axis estimation process results in a high angular repeatability ([Formula: see text]). In the first set of drilling results, an accuracy of [Formula: see text] at entrance and [Formula: see text] at target point excluding imaging was achieved. With admittance feed control an accuracy of [Formula: see text] at target point was realised. In a third set twelve holes were drilled in artificial temporal bone phantoms including imaging. In this set-up an error of [Formula: see text] and [Formula: see text] was achieved. The results of conducted experiments show that accuracy requirements for demanding procedures such as the direct cochlear access can be fulfilled with compliant systems. Furthermore, it was shown that with the presented admittance feed control an accuracy of less then [Formula: see text] is achievable.

  3. Measurement of 3-D Vibrational Motion by Dynamic Photogrammetry Using Least-Square Image Matching for Sub-Pixel Targeting to Improve Accuracy

    Science.gov (United States)

    Lee, Hyoseong; Rhee, Huinam; Oh, Jae Hong; Park, Jin Ho

    2016-01-01

    This paper deals with an improved methodology to measure three-dimensional dynamic displacements of a structure by digital close-range photogrammetry. A series of stereo images of a vibrating structure installed with targets are taken at specified intervals by using two daily-use cameras. A new methodology is proposed to accurately trace the spatial displacement of each target in three-dimensional space. This method combines the correlation and the least-square image matching so that the sub-pixel targeting can be obtained to increase the measurement accuracy. Collinearity and space resection theory are used to determine the interior and exterior orientation parameters. To verify the proposed method, experiments have been performed to measure displacements of a cantilevered beam excited by an electrodynamic shaker, which is vibrating in a complex configuration with mixed bending and torsional motions simultaneously with multiple frequencies. The results by the present method showed good agreement with the measurement by two laser displacement sensors. The proposed methodology only requires inexpensive daily-use cameras, and can remotely detect the dynamic displacement of a structure vibrating in a complex three-dimensional defection shape up to sub-pixel accuracy. It has abundant potential applications to various fields, e.g., remote vibration monitoring of an inaccessible or dangerous facility. PMID:26978366

  4. Accuracy of a wireless localization system for radiotherapy

    International Nuclear Information System (INIS)

    Balter, James M.; Wright, J. Nelson; Newell, Laurence J.; Friemel, Barry; Dimmer, Steven; Cheng, Yuki; Wong, John; Vertatschitsch, Edward; Mate, Timothy P.

    2005-01-01

    Purpose: A system has been developed for patient positioning based on real-time localization of implanted electromagnetic transponders (beacons). This study demonstrated the accuracy of the system before clinical trials. Methods and materials: We describe the overall system. The localization component consists of beacons and a source array. A rigid phantom was constructed to place the beacons at known offsets from a localization array. Tests were performed at distances of 80 and 270 mm from the array and at positions in the array plane of up to 8 cm offset. Tests were performed in air and saline to assess the effect of tissue conductivity and with multiple transponders to evaluate crosstalk. Tracking was tested using a dynamic phantom creating a circular path at varying speeds. Results: Submillimeter accuracy was maintained throughout all experiments. Precision was greater proximal to the source plane (σx = 0.006 mm, σy = 0.01 mm, σz = 0.006 mm), but continued to be submillimeter at the end of the designed tracking range at 270 mm from the array (σx = 0.27 mm, σy = 0.36 mm, σz = 0.48 mm). The introduction of saline and the use of multiple beacons did not affect accuracy. Submillimeter accuracy was maintained using the dynamic phantom at speeds of up to 3 cm/s. Conclusion: This system has demonstrated the accuracy needed for localization and monitoring of position during treatment

  5. High accuracy of family history of melanoma in Danish melanoma cases.

    Science.gov (United States)

    Wadt, Karin A W; Drzewiecki, Krzysztof T; Gerdes, Anne-Marie

    2015-12-01

    The incidence of melanoma in Denmark has immensely increased over the last 10 years making Denmark a high risk country for melanoma. In the last two decades multiple public campaigns have sought to increase the awareness of melanoma. Family history of melanoma is a known major risk factor but previous studies have shown that self-reported family history of melanoma is highly inaccurate. These studies are 15 years old and we wanted to examine if a higher awareness of melanoma has increased the accuracy of self-reported family history of melanoma. We examined the family history of 181 melanoma probands who reported 199 cases of melanoma in relatives, of which 135 cases where in first degree relatives. We confirmed the diagnosis of melanoma in 77% of all relatives, and in 83% of first degree relatives. In 181 probands we validated the negative family history of melanoma in 748 first degree relatives and found only 1 case of melanoma which was not reported in a 3 case melanoma family. Melanoma patients in Denmark report family history of melanoma in first and second degree relatives with a high level of accuracy with a true positive predictive value between 77 and 87%. In 99% of probands reporting a negative family history of melanoma in first degree relatives this information is correct. In clinical practice we recommend that melanoma diagnosis in relatives should be verified if possible, but even unverified reported melanoma cases in relatives should be included in the indication of genetic testing and assessment of melanoma risk in the family.

  6. Fission product model for BWR analysis with improved accuracy in high burnup

    International Nuclear Information System (INIS)

    Ikehara, Tadashi; Yamamoto, Munenari; Ando, Yoshihira

    1998-01-01

    A new fission product (FP) chain model has been studied to be used in a BWR lattice calculation. In attempting to establish the model, two requirements, i.e. the accuracy in predicting burnup reactivity and the easiness in practical application, are simultaneously considered. The resultant FP model consists of 81 explicit FP nuclides and two lumped pseudo nuclides having the absorption cross sections independent of burnup history and fuel composition. For the verification, extensive numerical tests covering over a wide range of operational conditions and fuel compositions have been carried out. The results indicate that the estimated errors in burnup reactivity are within 0.1%Δk for exposures up to 100GWd/t. It is concluded that the present model can offer a high degree of accuracy for FP representation in BWR lattice calculation. (author)

  7. Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations.

    Science.gov (United States)

    Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza

    2018-03-01

    This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

  8. Demonstrating High-Accuracy Orbital Access Using Open-Source Tools

    Science.gov (United States)

    Gilbertson, Christian; Welch, Bryan

    2017-01-01

    Orbit propagation is fundamental to almost every space-based analysis. Currently, many system analysts use commercial software to predict the future positions of orbiting satellites. This is one of many capabilities that can replicated, with great accuracy, without using expensive, proprietary software. NASAs SCaN (Space Communication and Navigation) Center for Engineering, Networks, Integration, and Communications (SCENIC) project plans to provide its analysis capabilities using a combination of internal and open-source software, allowing for a much greater measure of customization and flexibility, while reducing recurring software license costs. MATLAB and the open-source Orbit Determination Toolbox created by Goddard Space Flight Center (GSFC) were utilized to develop tools with the capability to propagate orbits, perform line-of-sight (LOS) availability analyses, and visualize the results. The developed programs are modular and can be applied for mission planning and viability analysis in a variety of Solar System applications. The tools can perform 2 and N-body orbit propagation, find inter-satellite and satellite to ground station LOS access (accounting for intermediate oblate spheroid body blocking, geometric restrictions of the antenna field-of-view (FOV), and relativistic corrections), and create animations of planetary movement, satellite orbits, and LOS accesses. The code is the basis for SCENICs broad analysis capabilities including dynamic link analysis, dilution-of-precision navigation analysis, and orbital availability calculations.

  9. High-order dynamic modeling and parameter identification of structural discontinuities in Timoshenko beams by using reflection coefficients

    Science.gov (United States)

    Fan, Qiang; Huang, Zhenyu; Zhang, Bing; Chen, Dayue

    2013-02-01

    Properties of discontinuities, such as bolt joints and cracks in the waveguide structures, are difficult to evaluate by either analytical or numerical methods due to the complexity and uncertainty of the discontinuities. In this paper, the discontinuity in a Timoshenko beam is modeled with high-order parameters and then these parameters are identified by using reflection coefficients at the discontinuity. The high-order model is composed of several one-order sub-models in series and each sub-model consists of inertia, stiffness and damping components in parallel. The order of the discontinuity model is determined based on the characteristics of the reflection coefficient curve and the accuracy requirement of the dynamic modeling. The model parameters are identified through the least-square fitting iteration method, of which the undetermined model parameters are updated in iteration to fit the dynamic reflection coefficient curve with the wave-based one. By using the spectral super-element method (SSEM), simulation cases, including one-order discontinuities on infinite- and finite-beams and a two-order discontinuity on an infinite beam, were employed to evaluate both the accuracy of the discontinuity model and the effectiveness of the identification method. For practical considerations, effects of measurement noise on the discontinuity parameter identification are investigated by adding different levels of noise to the simulated data. The simulation results were then validated by the corresponding experiments. Both the simulation and experimental results show that (1) the one-order discontinuities can be identified accurately with the maximum errors of 6.8% and 8.7%, respectively; (2) and the high-order discontinuities can be identified with the maximum errors of 15.8% and 16.2%, respectively; and (3) the high-order model can predict the complex discontinuity much more accurately than the one-order discontinuity model.

  10. Factors Determining the Inter-observer Variability and Diagnostic Accuracy of High-resolution Manometry for Esophageal Motility Disorders.

    Science.gov (United States)

    Kim, Ji Hyun; Kim, Sung Eun; Cho, Yu Kyung; Lim, Chul-Hyun; Park, Moo In; Hwang, Jin Won; Jang, Jae-Sik; Oh, Minkyung

    2018-01-30

    Although high-resolution manometry (HRM) has the advantage of visual intuitiveness, its diagnostic validity remains under debate. The aim of this study was to evaluate the diagnostic accuracy of HRM for esophageal motility disorders. Six staff members and 8 trainees were recruited for the study. In total, 40 patients enrolled in manometry studies at 3 institutes were selected. Captured images of 10 representative swallows and a single swallow in analyzing mode in both high-resolution pressure topography (HRPT) and conventional line tracing formats were provided with calculated metrics. Assessments of esophageal motility disorders showed fair agreement for HRPT and moderate agreement for conventional line tracing (κ = 0.40 and 0.58, respectively). With the HRPT format, the k value was higher in category A (esophagogastric junction [EGJ] relaxation abnormality) than in categories B (major body peristalsis abnormalities with intact EGJ relaxation) and C (minor body peristalsis abnormalities or normal body peristalsis with intact EGJ relaxation). The overall exact diagnostic accuracy for the HRPT format was 58.8% and rater's position was an independent factor for exact diagnostic accuracy. The diagnostic accuracy for major disorders was 63.4% with the HRPT format. The frequency of major discrepancies was higher for category B disorders than for category A disorders (38.4% vs 15.4%; P < 0.001). The interpreter's experience significantly affected the exact diagnostic accuracy of HRM for esophageal motility disorders. The diagnostic accuracy for major disorders was higher for achalasia than distal esophageal spasm and jackhammer esophagus.

  11. DIRECT GEOREFERENCING : A NEW STANDARD IN PHOTOGRAMMETRY FOR HIGH ACCURACY MAPPING

    Directory of Open Access Journals (Sweden)

    A. Rizaldy

    2012-07-01

    Full Text Available Direct georeferencing is a new method in photogrammetry, especially in the digital camera era. Theoretically, this method does not require ground control points (GCP and the Aerial Triangulation (AT, to process aerial photography into ground coordinates. Compared with the old method, this method has three main advantages: faster data processing, simple workflow and less expensive project, at the same accuracy. Direct georeferencing using two devices, GPS and IMU. GPS recording the camera coordinates (X, Y, Z, and IMU recording the camera orientation (omega, phi, kappa. Both parameters merged into Exterior Orientation (EO parameter. This parameters required for next steps in the photogrammetric projects, such as stereocompilation, DSM generation, orthorectification and mosaic. Accuracy of this method was tested on topographic map project in Medan, Indonesia. Large-format digital camera Ultracam X from Vexcel is used, while the GPS / IMU is IGI AeroControl. 19 Independent Check Point (ICP were used to determine the accuracy. Horizontal accuracy is 0.356 meters and vertical accuracy is 0.483 meters. Data with this accuracy can be used for 1:2.500 map scale project.

  12. Quantifying the accuracy of the tumor motion and area as a function of acceleration factor for the simulation of the dynamic keyhole magnetic resonance imaging method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Danny; Pollock, Sean; Keall, Paul, E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006 (Australia); Greer, Peter B. [School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, NSW 2298 (Australia); Kim, Taeho [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23219 (United States)

    2016-05-15

    Purpose: The dynamic keyhole is a new MR image reconstruction method for thoracic and abdominal MR imaging. To date, this method has not been investigated with cancer patient magnetic resonance imaging (MRI) data. The goal of this study was to assess the dynamic keyhole method for the task of lung tumor localization using cine-MR images reconstructed in the presence of respiratory motion. Methods: The dynamic keyhole method utilizes a previously acquired a library of peripheral k-space datasets at similar displacement and phase (where phase is simply used to determine whether the breathing is inhale to exhale or exhale to inhale) respiratory bins in conjunction with central k-space datasets (keyhole) acquired. External respiratory signals drive the process of sorting, matching, and combining the two k-space streams for each respiratory bin, thereby achieving faster image acquisition without substantial motion artifacts. This study was the first that investigates the impact of k-space undersampling on lung tumor motion and area assessment across clinically available techniques (zero-filling and conventional keyhole). In this study, the dynamic keyhole, conventional keyhole and zero-filling methods were compared to full k-space dataset acquisition by quantifying (1) the keyhole size required for central k-space datasets for constant image quality across sixty four cine-MRI datasets from nine lung cancer patients, (2) the intensity difference between the original and reconstructed images in a constant keyhole size, and (3) the accuracy of tumor motion and area directly measured by tumor autocontouring. Results: For constant image quality, the dynamic keyhole method, conventional keyhole, and zero-filling methods required 22%, 34%, and 49% of the keyhole size (P < 0.0001), respectively, compared to the full k-space image acquisition method. Compared to the conventional keyhole and zero-filling reconstructed images with the keyhole size utilized in the dynamic keyhole

  13. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Gnad, Florian; de Godoy, Lyris M F; Cox, Jürgen

    2009-01-01

    Protein phosphorylation is a fundamental regulatory mechanism that affects many cell signaling processes. Using high-accuracy MS and stable isotope labeling in cell culture-labeling, we provide a global view of the Saccharomyces cerevisiae phosphoproteome, containing 3620 phosphorylation sites ma...

  14. Analysing spatially extended high-dimensional dynamics by recurrence plots

    Energy Technology Data Exchange (ETDEWEB)

    Marwan, Norbert, E-mail: marwan@pik-potsdam.de [Potsdam Institute for Climate Impact Research, 14412 Potsdam (Germany); Kurths, Jürgen [Potsdam Institute for Climate Impact Research, 14412 Potsdam (Germany); Humboldt Universität zu Berlin, Institut für Physik (Germany); Nizhny Novgorod State University, Department of Control Theory, Nizhny Novgorod (Russian Federation); Foerster, Saskia [GFZ German Research Centre for Geosciences, Section 1.4 Remote Sensing, Telegrafenberg, 14473 Potsdam (Germany)

    2015-05-08

    Recurrence plot based measures of complexity are capable tools for characterizing complex dynamics. In this letter we show the potential of selected recurrence plot measures for the investigation of even high-dimensional dynamics. We apply this method on spatially extended chaos, such as derived from the Lorenz96 model and show that the recurrence plot based measures can qualitatively characterize typical dynamical properties such as chaotic or periodic dynamics. Moreover, we demonstrate its power by analysing satellite image time series of vegetation cover with contrasting dynamics as a spatially extended and potentially high-dimensional example from the real world. - Highlights: • We use recurrence plots for analysing partially extended dynamics. • We investigate the high-dimensional chaos of the Lorenz96 model. • The approach distinguishes different spatio-temporal dynamics. • We use the method for studying vegetation cover time series.

  15. Diagnostic Accuracy of Dynamic Contrast Enhanced Magnetic Resonance Imaging in Characterizing Lung Masses

    Science.gov (United States)

    Inan, Nagihan; Arslan, Arzu; Donmez, Muhammed; Sarisoy, Hasan Tahsin

    2016-01-01

    Background Imaging plays a critical role not only in the detection, but also in the characterization of lung masses as benign or malignant. Objectives To determine the diagnostic accuracy of dynamic magnetic resonance imaging (MRI) in the differential diagnosis of benign and malignant lung masses. Patients and Methods Ninety-four masses were included in this prospective study. Five dynamic series of T1-weighted spoiled gradient echo (FFE) images were obtained, followed by a T1-weighted FFE sequence in the late phase (5th minutes). Contrast enhancement patterns in the early (25th second) and late (5th minute) phase images were evaluated. For the quantitative evaluation, signal intensity (SI)-time curves were obtained and the maximum relative enhancement, wash-in rate, and time-to-peak enhancement of masses in both groups were calculated. Results The early phase contrast enhancement patterns were homogeneous in 78.2% of the benign masses, while heterogeneous in 74.4% of the malignant tumors. On the late phase images, 70.8% of the benign masses showed homogeneous enhancement, while most of the malignant masses showed heterogeneous enhancement (82.4%). During the first pass, the maximum relative enhancement and wash-in rate values of malignant masses were significantly higher than those of the benign masses (P = 0.03 and 0.04, respectively). The cutoff value at 15% yielded a sensitivity of 85.4%, specificity of 61.2%, and positive predictive value of 68.7% for the maximum relative enhancement. Conclusion Contrast enhancement patterns and SI-time curve analysis of MRI are helpful in the differential diagnosis of benign and malignant lung masses. PMID:27703654

  16. High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking

    Science.gov (United States)

    Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.

    2016-12-01

    High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a

  17. High Accuracy Mass Measurement of the Dripline Nuclides $^{12,14}$Be

    CERN Multimedia

    2002-01-01

    State-of-the art, three-body nuclear models that describe halo nuclides require the binding energy of the halo neutron(s) as a critical input parameter. In the case of $^{14}$Be, the uncertainty of this quantity is currently far too large (130 keV), inhibiting efforts at detailed theoretical description. A high accuracy, direct mass deterlnination of $^{14}$Be (as well as $^{12}$Be to obtain the two-neutron separation energy) is therefore required. The measurement can be performed with the MISTRAL spectrometer, which is presently the only possible solution due to required accuracy (10 keV) and short half-life (4.5 ms). Having achieved a 5 keV uncertainty for the mass of $^{11}$Li (8.6 ms), MISTRAL has proved the feasibility of such measurements. Since the current ISOLDE production rate of $^{14}$Be is only about 10/s, the installation of a beam cooler is underway in order to improve MISTRAL transmission. The projected improvement of an order of magnitude (in each transverse direction) will make this measureme...

  18. High-accuracy determination of the neutron flux at n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V. [Sezione di Bari, INFN, Bari (Italy); Guerrero, C.; Andriamonje, S.; Boccone, V.; Brugger, M.; Calviani, M.; Cerutti, F.; Chin, M.; Ferrari, A.; Kadi, Y.; Losito, R.; Versaci, R.; Vlachoudis, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA), Athens (Greece); Tarrio, D.; Duran, I.; Leal-Cidoncha, E.; Paradela, C. [Universidade de Santiago de Compostela, Santiago (Spain); Altstadt, S.; Goebel, K.; Langer, C.; Reifarth, R.; Schmidt, S.; Weigand, M. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (Germany); Andrzejewski, J.; Marganiec, J.; Perkowski, J. [Uniwersytet Lodzki, Lodz (Poland); Audouin, L.; Leong, L.S.; Tassan-Got, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Becares, V.; Cano-Ott, D.; Garcia, A.R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S. [Charles University, Prague (Czech Republic); Belloni, F.; Fraval, K.; Gunsing, F.; Lampoudis, C.; Papaevangelou, T. [Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E.; Chiaveri, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Billowes, J.; Ware, T.; Wright, T. [University of Manchester, Manchester (United Kingdom); Bosnar, D.; Zugec, P. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Calvino, F.; Cortes, G.; Gomez-Hornillos, M.B.; Riego, A. [Universitat Politecnica de Catalunya, Barcelona (Spain); Carrapico, C.; Goncalves, I.F.; Sarmento, R.; Vaz, P. [Universidade Tecnica de Lisboa, Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Lisboa (Portugal); Cortes-Giraldo, M.A.; Praena, J.; Quesada, J.M.; Sabate-Gilarte, M. [Universidad de Sevilla, Sevilla (Spain); Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R. [National Technical University of Athens (NTUA), Athens (Greece); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Dressler, R.; Kivel, N.; Schumann, D.; Steinegger, P. [Paul Scherrer Institut, Villigen PSI (Switzerland); Dzysiuk, N.; Mastinu, P.F. [Laboratori Nazionali di Legnaro, INFN, Rome (Italy); Eleftheriadis, C.; Manousos, A. [Aristotle University of Thessaloniki, Thessaloniki (Greece); Ganesan, S.; Gurusamy, P.; Saxena, A. [Bhabha Atomic Research Centre (BARC), Mumbai (IN); Griesmayer, E.; Jericha, E.; Leeb, H. [Technische Universitaet Wien, Atominstitut, Wien (AT); Hernandez-Prieto, A. [European Organization for Nuclear Research (CERN), Geneva (CH); Universitat Politecnica de Catalunya, Barcelona (ES); Jenkins, D.G.; Vermeulen, M.J. [University of York, Heslington, York (GB); Kaeppeler, F. [Institut fuer Kernphysik, Karlsruhe Institute of Technology, Campus Nord, Karlsruhe (DE); Koehler, P. [Oak Ridge National Laboratory (ORNL), Oak Ridge (US); Lederer, C. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE); University of Vienna, Faculty of Physics, Vienna (AT); Massimi, C.; Mingrone, F.; Vannini, G. [Universita di Bologna (IT); INFN, Sezione di Bologna, Dipartimento di Fisica, Bologna (IT); Mengoni, A.; Ventura, A. [Agenzia nazionale per le nuove tecnologie, l' energia e lo sviluppo economico sostenibile (ENEA), Bologna (IT); Milazzo, P.M. [Sezione di Trieste, INFN, Trieste (IT); Mirea, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Mondalaers, W.; Plompen, A.; Schillebeeckx, P. [Institute for Reference Materials and Measurements, European Commission JRC, Geel (BE); Pavlik, A.; Wallner, A. [University of Vienna, Faculty of Physics, Vienna (AT); Rauscher, T. [University of Basel, Department of Physics and Astronomy, Basel (CH); Roman, F. [European Organization for Nuclear Research (CERN), Geneva (CH); Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Rubbia, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Laboratori Nazionali del Gran Sasso dell' INFN, Assergi (AQ) (IT); Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE)

    2013-12-15

    The neutron flux of the n{sub T}OF facility at CERN was measured, after installation of the new spallation target, with four different systems based on three neutron-converting reactions, which represent accepted cross sections standards in different energy regions. A careful comparison and combination of the different measurements allowed us to reach an unprecedented accuracy on the energy dependence of the neutron flux in the very wide range (thermal to 1 GeV) that characterizes the n{sub T}OF neutron beam. This is a pre-requisite for the high accuracy of cross section measurements at n{sub T}OF. An unexpected anomaly in the neutron-induced fission cross section of {sup 235}U is observed in the energy region between 10 and 30keV, hinting at a possible overestimation of this important cross section, well above currently assigned uncertainties. (orig.)

  19. A direct indication of plasma potential diagnostic with fast time response and high accuracy based on a differential emissive probe

    International Nuclear Information System (INIS)

    Yao, W.E.; Hershkowitz; Intrator, T.

    1985-01-01

    The floating potential of the emissive probe has been used to directly measure the plasma potential. The authors have recently presented another method for directly indicating the plasma potential with a differential emissive probe. In this paper they describe the effects of probe size, plasma density and plasma potential fluctuation on plasma potential measurements and give methods for reducing errors. A control system with fast time response (α 20 μs) and high accuracy (the order of the probe temperature T/sub w//e) for maintaining a differential emissive probe at plasma potential has been developed. It can be operated in pulsed discharge plasma to measure plasma potential dynamic characteristics. A solid state optical coupler is employed to improve circuit performance. This system was tested experimentally by measuring the plasma potential in an argon plasma device an on the Phaedrus tandem mirror

  20. A direct indication of plasma potential diagnostic with fast time response and high accuracy based on a differential emissive probe

    International Nuclear Information System (INIS)

    Yao, W.E.; Hershkowitz, N.; Intrator, T.

    1985-01-01

    The floating potential of the emissive probe has been used to directly measure the plasma potential. The authors have recently presented another method for directly indicating the plasma potential with a differential emissive probe. In this paper they describe the effects of probe size, plasma density and plasma potential fluctuation on plasma potential measurements and give methods for reducing errors. A control system with fast time response (≅ 20 μs) and high accuracy (the order of the probe temperature T/sub w//e) for maintaining a differential emissive probe at plasma potential has been developed. It can be operated in pulsed discharge plasma to measure plasma potential dynamic characteristics. A solid state optical coupler is employed to improve circuit performance. This system was tested experimentally by measuring the plasma potential in an argon plasma device and on the Phaedrus tandem mirror

  1. A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis

    International Nuclear Information System (INIS)

    Wang, Zequn; Wang, Pingfeng

    2015-01-01

    Dynamic reliability measures reliability of an engineered system considering time-variant operation condition and component deterioration. Due to high computational costs, conducting dynamic reliability analysis at an early system design stage remains challenging. This paper presents a confidence-based meta-modeling approach, referred to as double-loop adaptive sampling (DLAS), for efficient sensitivity-free dynamic reliability analysis. The DLAS builds a Gaussian process (GP) model sequentially to approximate extreme system responses over time, so that Monte Carlo simulation (MCS) can be employed directly to estimate dynamic reliability. A generic confidence measure is developed to evaluate the accuracy of dynamic reliability estimation while using the MCS approach based on developed GP models. A double-loop adaptive sampling scheme is developed to efficiently update the GP model in a sequential manner, by considering system input variables and time concurrently in two sampling loops. The model updating process using the developed sampling scheme can be terminated once the user defined confidence target is satisfied. The developed DLAS approach eliminates computationally expensive sensitivity analysis process, thus substantially improves the efficiency of dynamic reliability analysis. Three case studies are used to demonstrate the efficacy of DLAS for dynamic reliability analysis. - Highlights: • Developed a novel adaptive sampling approach for dynamic reliability analysis. • POD Developed a new metric to quantify the accuracy of dynamic reliability estimation. • Developed a new sequential sampling scheme to efficiently update surrogate models. • Three case studies were used to demonstrate the efficacy of the new approach. • Case study results showed substantially enhanced efficiency with high accuracy

  2. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications....

  3. Innovative Technique for High-Accuracy Remote Monitoring of Surface Water

    Science.gov (United States)

    Gisler, A.; Barton-Grimley, R. A.; Thayer, J. P.; Crowley, G.

    2016-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems and agricultural waterways. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for monitoring water resources on fast timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  4. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    Science.gov (United States)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  5. HTTR plant dynamic simulation using a hybrid computer

    International Nuclear Information System (INIS)

    Shimazaki, Junya; Suzuki, Katsuo; Nabeshima, Kunihiko; Watanabe, Koichi; Shinohara, Yoshikuni; Nakagawa, Shigeaki.

    1990-01-01

    A plant dynamic simulation of High-Temperature Engineering Test Reactor has been made using a new-type hybrid computer. This report describes a dynamic simulation model of HTTR, a hybrid simulation method for SIMSTAR and some results obtained from dynamics analysis of HTTR simulation. It concludes that the hybrid plant simulation is useful for on-line simulation on account of its capability of computation at high speed, compared with that of all digital computer simulation. With sufficient accuracy, 40 times faster computation than real time was reached only by changing an analog time scale for HTTR simulation. (author)

  6. High dimensional model representation method for fuzzy structural dynamics

    Science.gov (United States)

    Adhikari, S.; Chowdhury, R.; Friswell, M. I.

    2011-03-01

    Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.

  7. The effect of stimulus intensity on response time and accuracy in dynamic, temporally constrained environments.

    Science.gov (United States)

    Causer, J; McRobert, A P; Williams, A M

    2013-10-01

    The ability to make accurate judgments and execute effective skilled movements under severe temporal constraints are fundamental to elite performance in a number of domains including sport, military combat, law enforcement, and medicine. In two experiments, we examine the effect of stimulus strength on response time and accuracy in a temporally constrained, real-world, decision-making task. Specifically, we examine the effect of low stimulus intensity (black) and high stimulus intensity (sequin) uniform designs, worn by teammates, to determine the effect of stimulus strength on the ability of soccer players to make rapid and accurate responses. In both field- and laboratory-based scenarios, professional soccer players viewed developing patterns of play and were required to make a penetrative pass to an attacking player. Significant differences in response accuracy between uniform designs were reported in laboratory- and field-based experiments. Response accuracy was significantly higher in the sequin compared with the black uniform condition. Response times only differed between uniform designs in the laboratory-based experiment. These findings extend the literature into a real-world environment and have significant implications for the design of clothing wear in a number of domains. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. High-accuracy defect sizing for CRDM penetration adapters using the ultrasonic TOFD technique

    International Nuclear Information System (INIS)

    Atkinson, I.

    1995-01-01

    Ultrasonic time-of-flight diffraction (TOFD) is the preferred technique for critical sizing of throughwall orientated defects in a wide range of components, primarily because it is intrinsically more accurate than amplitude-based techniques. For the same reason, TOFD is the preferred technique for sizing the cracks in control rod drive mechanism (CRDM) penetration adapters, which have been the subject of much recent attention. Once the considerable problem of restricted access for the UT probes has been overcome, this inspection lends itself to very high accuracy defect sizing using TOFD. In qualification trials under industrial conditions, depth sizing to an accuracy of ≤ 0.5 mm has been routinely achieved throughout the full wall thickness (16 mm) of the penetration adapters, using only a single probe pair and without recourse to signal processing. (author)

  9. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures

    Science.gov (United States)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003), 10.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013), 10.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S =1 /2 , we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  10. Comparative dynamics analysis on xonotlite spherical particles synthesized via hydrothermal synthesis

    Science.gov (United States)

    Liu, F.; Chen, S.; Lin, Q.; Wang, X. D.; Cao, J. X.

    2018-01-01

    The xonotlite crystals were synthesized via the hydrothermal synthesis manner from CaO and SiO2 as the raw materials with their Si/Ca molar ratio of 1.0. Comparative dynamics analysis on xonotlite spherical particles synthesized via hydrothermal synthesis process was explored in this paper. The accuracy of the dynamic equation of xonotlite spherical particles was verified by two methods, one was comparing the production rate of the xonotlite products calculated by the dynamic equation with the experimental values, and the other was comparing the apparent activation energies calculated by the dynamic equation with that calculated by the Kondo model. The results indicated that the production rates of the xonotlite spherical particles calculated by the dynamic equation were in good agreement with the experimental values and the apparent activation energy of the xonotlite spherical particles calculated by dynamic equation (84 kJ·mol-1) was close to that calculated by Kondo model (77 kJ·mol-1), verifying the high accuracy of the dynamic equation.

  11. Measurement system with high accuracy for laser beam quality.

    Science.gov (United States)

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  12. Snow cover volumes dynamic monitoring during melting season using high topographic accuracy approach for a Lebanese high plateau witness sinkhole

    Science.gov (United States)

    Abou Chakra, Charbel; Somma, Janine; Elali, Taha; Drapeau, Laurent

    2017-04-01

    Climate change and its negative impact on water resource is well described. For countries like Lebanon, undergoing major population's rise and already decreasing precipitations issues, effective water resources management is crucial. Their continuous and systematic monitoring overs long period of time is therefore an important activity to investigate drought risk scenarios for the Lebanese territory. Snow cover on Lebanese mountains is the most important water resources reserve. Consequently, systematic observation of snow cover dynamic plays a major role in order to support hydrologic research with accurate data on snow cover volumes over the melting season. For the last 20 years few studies have been conducted for Lebanese snow cover. They were focusing on estimating the snow cover surface using remote sensing and terrestrial measurement without obtaining accurate maps for the sampled locations. Indeed, estimations of both snow cover area and volumes are difficult due to snow accumulation very high variability and Lebanese mountains chains slopes topographic heterogeneity. Therefore, the snow cover relief measurement in its three-dimensional aspect and its Digital Elevation Model computation is essential to estimate snow cover volume. Despite the need to cover the all lebanese territory, we favored experimental terrestrial topographic site approaches due to high resolution satellite imagery cost, its limited accessibility and its acquisition restrictions. It is also most challenging to modelise snow cover at national scale. We therefore, selected a representative witness sinkhole located at Ouyoun el Siman to undertake systematic and continuous observations based on topographic approach using a total station. After four years of continuous observations, we acknowledged the relation between snow melt rate, date of total melting and neighboring springs discharges. Consequently, we are able to forecast, early in the season, dates of total snowmelt and springs low

  13. A Dynamic Precision Evaluation Method for the Star Sensor in the Stellar-Inertial Navigation System.

    Science.gov (United States)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang

    2017-06-28

    Integrating the advantages of INS (inertial navigation system) and the star sensor, the stellar-inertial navigation system has been used for a wide variety of applications. The star sensor is a high-precision attitude measurement instrument; therefore, determining how to validate its accuracy is critical in guaranteeing its practical precision. The dynamic precision evaluation of the star sensor is more difficult than a static precision evaluation because of dynamic reference values and other impacts. This paper proposes a dynamic precision verification method of star sensor with the aid of inertial navigation device to realize real-time attitude accuracy measurement. Based on the gold-standard reference generated by the star simulator, the altitude and azimuth angle errors of the star sensor are calculated for evaluation criteria. With the goal of diminishing the impacts of factors such as the sensors' drift and devices, the innovative aspect of this method is to employ static accuracy for comparison. If the dynamic results are as good as the static results, which have accuracy comparable to the single star sensor's precision, the practical precision of the star sensor is sufficiently high to meet the requirements of the system specification. The experiments demonstrate the feasibility and effectiveness of the proposed method.

  14. Dynamic rupture scenarios from Sumatra to Iceland - High-resolution earthquake source physics on natural fault systems

    Science.gov (United States)

    Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie

    2017-04-01

    Capturing the observed complexity of earthquake sources in dynamic rupture simulations may require: non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure. All of these factors have been independently shown to alter dynamic rupture behavior and thus possibly influence the degree of realism attainable via simulated ground motions. In this presentation we will show examples of high-resolution earthquake scenarios, e.g. based on the 2004 Sumatra-Andaman Earthquake, the 1994 Northridge earthquake and a potential rupture of the Husavik-Flatey fault system in Northern Iceland. The simulations combine a multitude of representations of source complexity at the necessary spatio-temporal resolution enabled by excellent scalability on modern HPC systems. Such simulations allow an analysis of the dominant factors impacting earthquake source physics and ground motions given distinct tectonic settings or distinct focuses of seismic hazard assessment. Across all simulations, we find that fault geometry concurrently with the regional background stress state provide a first order influence on source dynamics and the emanated seismic wave field. The dynamic rupture models are performed with SeisSol, a software package based on an ADER-Discontinuous Galerkin scheme for solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. Use of unstructured tetrahedral meshes allows for a realistic representation of the non-planar fault geometry, subsurface structure and bathymetry. The results presented highlight the fact that modern numerical methods are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis.

  15. Measurement and reproduction accuracy of computer-controlled grand pianos

    Science.gov (United States)

    Goebl, Werner; Bresin, Roberto

    2003-10-01

    The recording and reproducing capabilities of a Yamaha Disklavier grand piano and a Bösendorfer SE290 computer-controlled grand piano were tested, with the goal of examining their reliability for performance research. An experimental setup consisting of accelerometers and a calibrated microphone was used to capture key and hammer movements, as well as the acoustic signal. Five selected keys were played by pianists with two types of touch (``staccato'' and ``legato''). Timing and dynamic differences between the original performance, the corresponding MIDI file recorded by the computer-controlled pianos, and its reproduction were analyzed. The two devices performed quite differently with respect to timing and dynamic accuracy. The Disklavier's onset capturing was slightly more precise (+/-10 ms) than its reproduction (-20 to +30 ms); the Bösendorfer performed generally better, but its timing accuracy was slightly less precise for recording (-10 to 3 ms) than for reproduction (+/-2 ms). Both devices exhibited a systematic (linear) error in recording over time. In the dynamic dimension, the Bösendorfer showed higher consistency over the whole dynamic range, while the Disklavier performed well only in a wide middle range. Neither device was able to capture or reproduce different types of touch.

  16. Carcinoma of the uterine cervix. High-resolution turbo spin-echo MR imaging with contrast-enhanced dynamic scanning and T2-weighting

    International Nuclear Information System (INIS)

    Abe, Y.; Yamashita, Y.; Namimoto, T.; Takahashi, M.; Katabuchi, H.; Tanaka, N.; Okamura, H.

    1998-01-01

    Purpose: To compare high-resolution contrast-enhanced (Gd-DTPA) dynamic MR imaging with T2-weighted turbo spin-echo (TSE) imaging in the evaluation of uterine cervical carcinoma. Material and Methods: Thirty-two patients with cervical carcinoma underwent MR imaging on a 1.5 T superconductive unit to have the extension of the disease assessed before treatment. A phased-array coil was used in all patients. In 25 patients, surgical confirmation of the diagnosis was obtained after imaging. Radiation therapy was selected for the remaining 7 patients with advanced carcinoma. Qualitative and quantitative image analyses were also performed. Results: The cervical carcinomas showed maximum contrast in the cervical stroma and myometrium in the early dynamic phase. The tumor/cervical-stroma contrast in the early dynamic phase obtained with the T1-weighted TSE technique (contrast-to-noise ratio 22.6) was significantly higher than that obtained in T2-weighted TSE imaging (contrast-to-noise ratio 4.3). In the evaluation of parametrial invasion, the accuracy of T2-weighted imaging was 71.8% and contrast-enhanced dynamic imaging 81.2%. Conclusion: High-resolution contrast-enhanced (Gd-DTPA) dynamic MR imaging in cervical cancer offers improved tumor/cervical-stroma contrast and provides useful information on parametrial invasion. (orig.)

  17. High-speed photography of dynamic photoelastic experiment with a highly accurate blasting machine

    Science.gov (United States)

    Katsuyama, Kunihisa; Ogata, Yuji; Wada, Yuji; Hashizume, K.

    1995-05-01

    A high accurate blasting machine which could control 1 microsecond(s) was developed. At first, explosion of a bridge wire in an electric detonator was observed and next the detonations of caps were observed with a high speed camera. It is well known that a compressed stress wave reflects at the free face, it propagates to the backward as a tensile stress wave, and cracks grow when the tensile stress becomes the dynamic tensile strength. The behavior of these cracks has been discussed through the observation of the dynamic photoelastic high speed photography and the three dimensional dynamic stress analysis.

  18. An Evaluation of Explicit Receptor Flexibility in Molecular Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics.

    Science.gov (United States)

    Armen, Roger S; Chen, Jianhan; Brooks, Charles L

    2009-10-13

    Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and "noise" that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds.

  19. Technical accuracy of a neuronavigation system measured with a high-precision mechanical micromanipulator.

    Science.gov (United States)

    Kaus, M; Steinmeier, R; Sporer, T; Ganslandt, O; Fahlbusch, R

    1997-12-01

    This study was designed to determine and evaluate the different system-inherent sources of erroneous target localization of a light-emitting diode (LED)-based neuronavigation system (StealthStation, Stealth Technologies, Boulder, CO). The localization accuracy was estimated by applying a high-precision mechanical micromanipulator to move and exactly locate (+/- 0.1 micron) the pointer at multiple positions in the physical three-dimensional space. The localization error was evaluated by calculating the spatial distance between the (known) LED positions and the LED coordinates measured by the neuronavigator. The results are based on a study of approximately 280,000 independent coordinate measurements. The maximum localization error detected was 0.55 +/- 0.29 mm, with the z direction (distance to the camera array) being the most erroneous coordinate. Minimum localization error was found at a distance of 1400 mm from the central camera (optimal measurement position). Additional error due to 1) mechanical vibrations of the camera tripod (+/- 0.15 mm) and the reference frame (+/- 0.08 mm) and 2) extrapolation of the pointer tip position from the LED coordinates of at least +/- 0.12 mm were detected, leading to a total technical error of 0.55 +/- 0.64 mm. Based on this technical accuracy analysis, a set of handling recommendations is proposed, leading to an improved localization accuracy. The localization error could be reduced by 0.3 +/- 0.15 mm by correct camera positioning (1400 mm distance) plus 0.15 mm by vibration-eliminating fixation of the camera. Correct handling of the probe during the operation may improve the accuracy by up to 0.1 mm.

  20. Accuracy and high-speed technique for autoprocessing of Young's fringes

    Science.gov (United States)

    Chen, Wenyi; Tan, Yushan

    1991-12-01

    In this paper, an accurate and high-speed method for auto-processing of Young's fringes is proposed. A group of 1-D sampled intensity values along three or more different directions are taken from Young's fringes, and the fringe spacings of each direction are obtained by 1-D FFT respectively. Two directions that have smaller fringe spacing are selected from all directions. The accurate fringe spacings along these two directions are obtained by using orthogonal coherent phase detection technique (OCPD). The actual spacing and angle of Young's fringes, therefore, can be calculated. In this paper, the principle of OCPD is introduced in detail. The accuracy of the method is evaluated theoretically and experimentally.

  1. Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther

    2015-01-01

    We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia......We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...

  2. High-energy outer radiation belt dynamic modeling

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Nightingale, R.W.; Rinaldi, M.A.

    1989-01-01

    Specification of the average high-energy radiation belt environment in terms of phenomenological montages of satellite measurements has been available for some time. However, for many reasons both scientific and applicational (including concerns for a better understanding of the high-energy radiatino background in space), it is desirable to model the dynamic response of the high-energy radiation belts to sources, to losses, and to geomagnetic activity. Indeed, in the outer electron belt, this is the only mode of modeling that can handle the large intensity fluctuations. Anticipating the dynamic modeling objective of the upcoming Combined Release and Radiation Effects Satellite (CRRES) program, we have undertaken to initiate the study of the various essential elements in constructing a dynamic radiation belt model based on interpretation of satellite data according to simultaneous radial and pitch-angle diffusion theory. In order to prepare for the dynamic radiation belt modeling based on a large data set spanning a relatively large segment of L-values, such as required for CRRES, it is important to study a number of test cases with data of similar characteristics but more restricted in space-time coverage. In this way, models of increasing comprehensiveness can be built up from the experience of elucidating the dynamics of more restrictive data sets. The principal objectives of this paper are to discuss issues concerning dynamic modeling in general and to summarize in particular the good results of an initial attempt at constructing the dynamics of the outer electron radiation belt based on a moderately active data period from Lockheed's SC-3 instrument flown on board the SCATHA (P78-2) spacecraft. Further, we shall discuss the issues brought out and lessons learned in this test case

  3. AN EFFICIENT METHOD FOR DEEP WEB CRAWLER BASED ON ACCURACY -A REVIEW

    OpenAIRE

    Pranali Zade1, Dr.S.W.Mohod2

    2018-01-01

    As deep web grows at a very fast pace, there has been increased interest in techniques that help efficiently locate deep-web interfaces. However, due to the large volume of web resources and the dynamic nature of deep web, achieving wide coverage and high efficiency is a challenging issue. We propose a three-stage framework, for efficient harvesting deep web interfaces. Project experimental results on a set of representative domains show the agility and accuracy of our proposed crawler framew...

  4. Epistemic and aleatory uncertainties in integrated deterministic and probabilistic safety assessment: Tradeoff between accuracy and accident simulations

    International Nuclear Information System (INIS)

    Karanki, D.R.; Rahman, S.; Dang, V.N.; Zerkak, O.

    2017-01-01

    The coupling of plant simulation models and stochastic models representing failure events in Dynamic Event Trees (DET) is a framework used to model the dynamic interactions among physical processes, equipment failures, and operator responses. The integration of physical and stochastic models may additionally enhance the treatment of uncertainties. Probabilistic Safety Assessments as currently implemented propagate the (epistemic) uncertainties in failure probabilities, rates, and frequencies; while the uncertainties in the physical model (parameters) are not propagated. The coupling of deterministic (physical) and probabilistic models in integrated simulations such as DET allows both types of uncertainties to be considered. However, integrated accident simulations with epistemic uncertainties will challenge even today's high performance computing infrastructure, especially for simulations of inherently complex nuclear or chemical plants. Conversely, intentionally limiting computations for practical reasons would compromise accuracy of results. This work investigates how to tradeoff accuracy and computations to quantify risk in light of both uncertainties and accident dynamics. A simple depleting tank problem that can be solved analytically is considered to examine the adequacy of a discrete DET approach. The results show that optimal allocation of computational resources between epistemic and aleatory calculations by means of convergence studies ensures accuracy within a limited budget. - Highlights: • Accident simulations considering uncertainties require intensive computations. • Tradeoff between accuracy and accident simulations is a challenge. • Optimal allocation between epistemic & aleatory computations ensures the tradeoff. • Online convergence gives an early indication of computational requirements. • Uncertainty propagation in DDET is examined on a tank problem solved analytically.

  5. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter.

    Science.gov (United States)

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-10-12

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  6. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter

    Directory of Open Access Journals (Sweden)

    Peilu Liu

    2017-10-01

    Full Text Available In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA. In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  7. THE EFFECT OF MODERATE AND HIGH-INTENSITY FATIGUE ON GROUNDSTROKE ACCURACY IN EXPERT AND NON-EXPERT TENNIS PLAYERS

    Directory of Open Access Journals (Sweden)

    Mark Lyons

    2013-06-01

    Full Text Available Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female and 17 non-expert (13 male, 4 female tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70% and high-intensities (90% set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test. Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA's revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player's achievement goal indicators. Future research is required to explore the effects of fatigue on

  8. Intrafractional tracking accuracy in infrared marker-based hybrid dynamic tumour-tracking irradiation with a gimballed linac

    International Nuclear Information System (INIS)

    Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Yamada, Masahiro; Takahashi, Kunio; Tanabe, Hiroaki; Yano, Shinsuke; Miyabe, Yuki; Ueki, Nami; Kaneko, Shuji; Matsuo, Yukinori; Mizowaki, Takashi; Sawada, Akira; Kokubo, Masaki; Hiraoka, Masahiro

    2014-01-01

    Purpose: To verify the intrafractional tracking accuracy in infrared (IR) marker-based hybrid dynamic tumour tracking irradiation (“IR Tracking”) with the Vero4DRT. Materials and methods: The gimballed X-ray head tracks a moving target by predicting its future position from displacements of IR markers in real-time. Ten lung cancer patients who underwent IR Tracking were enrolled. The 95th percentiles of intrafractional mechanical (iE M 95 ), prediction (iE P 95 ), and overall targeting errors (iE T 95 ) were calculated from orthogonal fluoroscopy images acquired during tracking irradiation and from the synchronously acquired log files. Results: Averaged intrafractional errors were (left–right, cranio-caudal [CC], anterior–posterior [AP]) = (0.1 mm, 0.4 mm, 0.1 mm) for iE M 95 , (1.2 mm, 2.7 mm, 2.1 mm) for iE P 95 , and (1.3 mm, 2.4 mm, 1.4 mm) for iE T 95 . By correcting systematic prediction errors in the previous field, the iE P 95 was reduced significantly, by an average of 0.4 mm in the CC (p < 0.05) and by 0.3 mm in the AP (p < 0.01) directions. Conclusions: Prediction errors were the primary cause of overall targeting errors, whereas mechanical errors were negligible. Furthermore, improvement of the prediction accuracy could be achieved by correcting systematic prediction errors in the previous field

  9. Factors influencing power hand tool fastening accuracy and reaction forces.

    Science.gov (United States)

    Radwin, Robert G; Chourasia, Amrish O; Howery, Robert S; Fronczak, Frank J; Yen, Thomas Y; Subedi, Yashpal; Sesto, Mary E

    2014-06-01

    A laboratory study investigated the relationship between power hand tool and task-related factors affecting threaded fastener torque accuracy and associated handle reaction force. We previously developed a biodynamic model to predict handle reaction forces. We hypothesized that torque accuracy was related to the same factors that affect operator capacity to react against impulsive tool forces, as predicted by the model. The independent variables included tool (pistol grip on a vertical surface, right angle on a horizontal surface), fastener torque rate (hard, soft), horizontal distance (30 cm and 60 cm), and vertical distance (80 cm, 110 cm, and 140 cm). Ten participants (five male and five female) fastened 12 similar bolts for each experimental condition. Average torque error (audited - target torque) was affected by fastener torque rate and operator position. Torque error decreased 33% for soft torque rates, whereas handle forces greatly increased (170%). Torque error also decreased for the far horizontal distance 7% to 14%, when vertical distance was in the middle or high, but handle force decreased slightly 3% to 5%. The evidence suggests that although both tool and task factors affect fastening accuracy, they each influence handle reaction forces differently. We conclude that these differences are attributed to different parameters each factor influences affecting the dynamics of threaded faster tool operation. Fastener torque rate affects the tool dynamics, whereas posture affects the spring-mass-damping biodynamic properties of the human operator. The prediction of handle reaction force using an operator biodynamic model may be useful for codifying complex and unobvious relationships between tool and task factors for minimizing torque error while controlling handle force.

  10. Diagnostic accuracy of C-arm CT during selective transcatheter angiography for hepatocellular carcinoma: comparison with intravenous contrast-enhanced, biphasic, dynamic MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Higashihara, Hiroki; Osuga, Keigo; Onishi, Hiromitsu; Nakamoto, Atsushi; Tsuboyama, Takahiro; Maeda, Noboru; Hori, Masatoshi; Kim, Tonsok; Tomiyama, Noriyuki [Osaka University Graduate School of Medicine, Department of Diagnostic and Interventional Radiology, Suita, Osaka (Japan)

    2012-04-15

    This study was aimed to compare the accuracy, sensitivity, and positive predictive value of C-arm CT (CACT) during selective transcatheter angiography with those of multidetector CT (MDCT) in the detection of hepatocellular carcinoma (HCC). In this prospective study, 30 patients (mean age, 73 years) with unresectable HCC were examined with CACT before chemoembolisation. Images of a combination of CACT during arterial portography (CACTAP) and dual-phase CACT during hepatic arteriography (CACTHA) was obtained and images of intravenous contrast-enhanced, biphasic, dynamic, MDCT was also obtained beforehand. Three blinded observers independently reviewed CACT and MDCT. Diagnostic accuracy was evaluated by the alternative free-response receiver operating characteristic (AFROC) method. Sensitivities and positive predictive values (PPV) were analyzed with the paired t-test. In the mean area under the AFROC curve (Az), there was no significant difference between MDCT and CACT (MDCT, mean Az value, 0.83; CACT, 0.85, respectively) (P = 0.32). There was also no significant difference between the two techniques in sensitivity (MDCT, mean 0.65; CACT, 0.60) and PPV (MDCT, mean 0.98; CACT, 0.97) (P = 0.40, P = 0.68, respectively). The diagnostic accuracy of CACT was equivalent to that of biphasic CT in the diagnosis of HCC. (orig.)

  11. Cause and Cure - Deterioration in Accuracy of CFD Simulations With Use of High-Aspect-Ratio Triangular Tetrahedral Grids

    Science.gov (United States)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar

    2017-01-01

    Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD re-searchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions and also cause numerical instability. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where triangular/tetrahedral elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identities the reason behind the difficulties in use of such high-aspect ratio triangular/tetrahedral elements is presented here. As will be shown, it turns out that the degree of accuracy deterioration of gradient computation involving a triangular element is hinged on the value of its shape factor Gamma def = sq sin Alpha1 + sq sin Alpha2 + sq sin Alpha3, where Alpha1; Alpha2 and Alpha3 are the internal angles of the element. In fact, it is shown that the degree of accuracy deterioration increases monotonically as the value of Gamma decreases monotonically from its maximal value 9/4 (attained by an equilateral triangle only) to a value much less than 1 (associated with a highly obtuse triangle). By taking advantage of the fact that a high-aspect ratio triangle is not necessarily highly obtuse, and in fact it can have a shape factor whose value is close to the maximal value 9/4, a potential solution to avoid accuracy deterioration of gradient computation associated with a high-aspect ratio triangular grid is given. Also a brief discussion on the extension of the current mathematical framework to the

  12. Very high-accuracy calibration of radiation pattern and gain of a near-field probe

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2014-01-01

    In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission of the Europ...

  13. High-Performance First-Principles Molecular Dynamics for Predictive Theory and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gygi, Francois [Univ. of California, Davis, CA (United States). Dept. of Computer Science; Galli, Giulia [Univ. of Chicago, IL (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-12-03

    This project focused on developing high-performance software tools for First-Principles Molecular Dynamics (FPMD) simulations, and applying them in investigations of materials relevant to energy conversion processes. FPMD is an atomistic simulation method that combines a quantum-mechanical description of electronic structure with the statistical description provided by molecular dynamics (MD) simulations. This reliance on fundamental principles allows FPMD simulations to provide a consistent description of structural, dynamical and electronic properties of a material. This is particularly useful in systems for which reliable empirical models are lacking. FPMD simulations are increasingly used as a predictive tool for applications such as batteries, solar energy conversion, light-emitting devices, electro-chemical energy conversion devices and other materials. During the course of the project, several new features were developed and added to the open-source Qbox FPMD code. The code was further optimized for scalable operation of large-scale, Leadership-Class DOE computers. When combined with Many-Body Perturbation Theory (MBPT) calculations, this infrastructure was used to investigate structural and electronic properties of liquid water, ice, aqueous solutions, nanoparticles and solid-liquid interfaces. Computing both ionic trajectories and electronic structure in a consistent manner enabled the simulation of several spectroscopic properties, such as Raman spectra, infrared spectra, and sum-frequency generation spectra. The accuracy of the approximations used allowed for direct comparisons of results with experimental data such as optical spectra, X-ray and neutron diffraction spectra. The software infrastructure developed in this project, as applied to various investigations of solids, liquids and interfaces, demonstrates that FPMD simulations can provide a detailed, atomic-scale picture of structural, vibrational and electronic properties of complex systems

  14. A consensus approach for estimating the predictive accuracy of dynamic models in biology.

    Science.gov (United States)

    Villaverde, Alejandro F; Bongard, Sophia; Mauch, Klaus; Müller, Dirk; Balsa-Canto, Eva; Schmid, Joachim; Banga, Julio R

    2015-04-01

    Mathematical models that predict the complex dynamic behaviour of cellular networks are fundamental in systems biology, and provide an important basis for biomedical and biotechnological applications. However, obtaining reliable predictions from large-scale dynamic models is commonly a challenging task due to lack of identifiability. The present work addresses this challenge by presenting a methodology for obtaining high-confidence predictions from dynamic models using time-series data. First, to preserve the complex behaviour of the network while reducing the number of estimated parameters, model parameters are combined in sets of meta-parameters, which are obtained from correlations between biochemical reaction rates and between concentrations of the chemical species. Next, an ensemble of models with different parameterizations is constructed and calibrated. Finally, the ensemble is used for assessing the reliability of model predictions by defining a measure of convergence of model outputs (consensus) that is used as an indicator of confidence. We report results of computational tests carried out on a metabolic model of Chinese Hamster Ovary (CHO) cells, which are used for recombinant protein production. Using noisy simulated data, we find that the aggregated ensemble predictions are on average more accurate than the predictions of individual ensemble models. Furthermore, ensemble predictions with high consensus are statistically more accurate than ensemble predictions with large variance. The procedure provides quantitative estimates of the confidence in model predictions and enables the analysis of sufficiently complex networks as required for practical applications. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. High Dynamic Range Imaging Using Multiple Exposures

    Science.gov (United States)

    Hou, Xinglin; Luo, Haibo; Zhou, Peipei; Zhou, Wei

    2017-06-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range (LDR) camera. This paper presents an approach for improving the dynamic range of cameras by using multiple exposure images of same scene taken under different exposure times. First, the camera response function (CRF) is recovered by solving a high-order polynomial in which only the ratios of the exposures are used. Then, the HDR radiance image is reconstructed by weighted summation of the each radiance maps. After that, a novel local tone mapping (TM) operator is proposed for the display of the HDR radiance image. By solving the high-order polynomial, the CRF can be recovered quickly and easily. Taken the local image feature and characteristic of histogram statics into consideration, the proposed TM operator could preserve the local details efficiently. Experimental result demonstrates the effectiveness of our method. By comparison, the method outperforms other methods in terms of imaging quality.

  16. Measurement configuration optimization for dynamic metrology using Stokes polarimetry

    Science.gov (United States)

    Liu, Jiamin; Zhang, Chuanwei; Zhong, Zhicheng; Gu, Honggang; Chen, Xiuguo; Jiang, Hao; Liu, Shiyuan

    2018-05-01

    As dynamic loading experiments such as a shock compression test are usually characterized by short duration, unrepeatability and high costs, high temporal resolution and precise accuracy of the measurements is required. Due to high temporal resolution up to a ten-nanosecond-scale, a Stokes polarimeter with six parallel channels has been developed to capture such instantaneous changes in optical properties in this paper. Since the measurement accuracy heavily depends on the configuration of the probing beam incident angle and the polarizer azimuth angle, it is important to select an optimal combination from the numerous options. In this paper, a systematic error propagation-based measurement configuration optimization method corresponding to the Stokes polarimeter was proposed. The maximal Frobenius norm of the combinatorial matrix of the configuration error propagating matrix and the intrinsic error propagating matrix is introduced to assess the measurement accuracy. The optimal configuration for thickness measurement of a SiO2 thin film deposited on a Si substrate has been achieved by minimizing the merit function. Simulation and experimental results show a good agreement between the optimal measurement configuration achieved experimentally using the polarimeter and the theoretical prediction. In particular, the experimental result shows that the relative error in the thickness measurement can be reduced from 6% to 1% by using the optimal polarizer azimuth angle when the incident angle is 45°. Furthermore, the optimal configuration for the dynamic metrology of a nickel foil under quasi-dynamic loading is investigated using the proposed optimization method.

  17. Meditation experience predicts introspective accuracy.

    Directory of Open Access Journals (Sweden)

    Kieran C R Fox

    Full Text Available The accuracy of subjective reports, especially those involving introspection of one's own internal processes, remains unclear, and research has demonstrated large individual differences in introspective accuracy. It has been hypothesized that introspective accuracy may be heightened in persons who engage in meditation practices, due to the highly introspective nature of such practices. We undertook a preliminary exploration of this hypothesis, examining introspective accuracy in a cross-section of meditation practitioners (1-15,000 hrs experience. Introspective accuracy was assessed by comparing subjective reports of tactile sensitivity for each of 20 body regions during a 'body-scanning' meditation with averaged, objective measures of tactile sensitivity (mean size of body representation area in primary somatosensory cortex; two-point discrimination threshold as reported in prior research. Expert meditators showed significantly better introspective accuracy than novices; overall meditation experience also significantly predicted individual introspective accuracy. These results suggest that long-term meditators provide more accurate introspective reports than novices.

  18. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  19. From journal to headline: the accuracy of climate science news in Danish high quality newspapers

    DEFF Research Database (Denmark)

    Vestergård, Gunver Lystbæk

    2011-01-01

    analysis to examine the accuracy of Danish high quality newspapers in quoting scientific publications from 1997 to 2009. Out of 88 articles, 46 contained inaccuracies though the majority was found to be insignificant and random. The study concludes that Danish broadsheet newspapers are ‘moderately...

  20. Accuracy of High-Resolution MRI with Lumen Distention in Rectal Cancer Staging and Circumferential Margin Involvement Prediction

    International Nuclear Information System (INIS)

    Iannicelli, Elsa; Di Renzo, Sara; Ferri, Mario; Pilozzi, Emanuela; Di Girolamo, Marco; Sapori, Alessandra; Ziparo, Vincenzo; David, Vincenzo

    2014-01-01

    To evaluate the accuracy of magnetic resonance imaging (MRI) with lumen distention for rectal cancer staging and circumferential resection margin (CRM) involvement prediction. Seventy-three patients with primary rectal cancer underwent high-resolution MRI with a phased-array coil performed using 60-80 mL room air rectal distention, 1-3 weeks before surgery. MRI results were compared to postoperative histopathological findings. The overall MRI T staging accuracy was calculated. CRM involvement prediction and the N staging, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were assessed for each T stage. The agreement between MRI and histological results was assessed using weighted-kappa statistics. The overall MRI accuracy for T staging was 93.6% (k = 0.85). The accuracy, sensitivity, specificity, PPV and NPV for each T stage were as follows: 91.8%, 86.2%, 95.5%, 92.6% and 91.3% for the group ≤ T2; 90.4%, 94.6%, 86.1%, 87.5% and 94% for T3; 98,6%, 85.7%, 100%, 100% and 98.5% for T4, respectively. The predictive CRM accuracy was 94.5% (k = 0.86); the sensitivity, specificity, PPV and NPV were 89.5%, 96.3%, 89.5%, and 96.3% respectively. The N staging accuracy was 68.49% (k = 0.4). MRI performed with rectal lumen distention has proved to be an effective technique both for rectal cancer staging and involved CRM predicting

  1. Accuracy of High-Resolution MRI with Lumen Distention in Rectal Cancer Staging and Circumferential Margin Involvement Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Iannicelli, Elsa; Di Renzo, Sara [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ferri, Mario [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Pilozzi, Emanuela [Department of Clinical and Molecular Sciences, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Di Girolamo, Marco; Sapori, Alessandra [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ziparo, Vincenzo [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); David, Vincenzo [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy)

    2014-07-01

    To evaluate the accuracy of magnetic resonance imaging (MRI) with lumen distention for rectal cancer staging and circumferential resection margin (CRM) involvement prediction. Seventy-three patients with primary rectal cancer underwent high-resolution MRI with a phased-array coil performed using 60-80 mL room air rectal distention, 1-3 weeks before surgery. MRI results were compared to postoperative histopathological findings. The overall MRI T staging accuracy was calculated. CRM involvement prediction and the N staging, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were assessed for each T stage. The agreement between MRI and histological results was assessed using weighted-kappa statistics. The overall MRI accuracy for T staging was 93.6% (k = 0.85). The accuracy, sensitivity, specificity, PPV and NPV for each T stage were as follows: 91.8%, 86.2%, 95.5%, 92.6% and 91.3% for the group ≤ T2; 90.4%, 94.6%, 86.1%, 87.5% and 94% for T3; 98,6%, 85.7%, 100%, 100% and 98.5% for T4, respectively. The predictive CRM accuracy was 94.5% (k = 0.86); the sensitivity, specificity, PPV and NPV were 89.5%, 96.3%, 89.5%, and 96.3% respectively. The N staging accuracy was 68.49% (k = 0.4). MRI performed with rectal lumen distention has proved to be an effective technique both for rectal cancer staging and involved CRM predicting.

  2. Gene masking - a technique to improve accuracy for cancer classification with high dimensionality in microarray data.

    Science.gov (United States)

    Saini, Harsh; Lal, Sunil Pranit; Naidu, Vimal Vikash; Pickering, Vincel Wince; Singh, Gurmeet; Tsunoda, Tatsuhiko; Sharma, Alok

    2016-12-05

    High dimensional feature space generally degrades classification in several applications. In this paper, we propose a strategy called gene masking, in which non-contributing dimensions are heuristically removed from the data to improve classification accuracy. Gene masking is implemented via a binary encoded genetic algorithm that can be integrated seamlessly with classifiers during the training phase of classification to perform feature selection. It can also be used to discriminate between features that contribute most to the classification, thereby, allowing researchers to isolate features that may have special significance. This technique was applied on publicly available datasets whereby it substantially reduced the number of features used for classification while maintaining high accuracies. The proposed technique can be extremely useful in feature selection as it heuristically removes non-contributing features to improve the performance of classifiers.

  3. High-accuracy critical exponents for O(N) hierarchical 3D sigma models

    International Nuclear Information System (INIS)

    Godina, J. J.; Li, L.; Meurice, Y.; Oktay, M. B.

    2006-01-01

    The critical exponent γ and its subleading exponent Δ in the 3D O(N) Dyson's hierarchical model for N up to 20 are calculated with high accuracy. We calculate the critical temperatures for the measure δ(φ-vector.φ-vector-1). We extract the first coefficients of the 1/N expansion from our numerical data. We show that the leading and subleading exponents agree with Polchinski equation and the equivalent Litim equation, in the local potential approximation, with at least 4 significant digits

  4. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures.

    Science.gov (United States)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)PRBMDO0163-182910.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S=1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  5. Bounds on achievable accuracy in analog optical linear-algebra processors

    Science.gov (United States)

    Batsell, Stephen G.; Walkup, John F.; Krile, Thomas F.

    1990-07-01

    Upper arid lower bounds on the number of bits of accuracy achievable are determined by applying a seconth-ortler statistical model to the linear algebra processor. The use of bounds was found necessary due to the strong signal-dependence of the noise at the output of the optical linear algebra processor (OLAP). 1 1. ACCURACY BOUNDS One of the limiting factors in applying OLAPs to real world problems has been the poor achievable accuracy of these processors. Little previous research has been done on determining noise sources from a systems perspective which would include noise generated in the multiplication ard addition operations spatial variations across arrays and crosstalk. We have previously examined these noise sources and determined a general model for the output noise mean and variance. The model demonstrates a strony signaldependency in the noise at the output of the processor which has been confirmed by our experiments. 1 We define accuracy similar to its definition for an analog signal input to an analog-to-digital (ND) converter. The number of bits of accuracy achievable is related to the log (base 2) of the number of separable levels at the P/D converter output. The number of separable levels is fouri by dividing the dynamic range by m times the standard deviation of the signal a. 2 Here m determines the error rate in the P/D conversion. The dynamic range can be expressed as the

  6. Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China).

    Science.gov (United States)

    Liu, Xiaojun; Ferguson, Richard B; Zheng, Hengbiao; Cao, Qiang; Tian, Yongchao; Cao, Weixing; Zhu, Yan

    2017-03-24

    The successful development of an optimal canopy vegetation index dynamic model for obtaining higher yield can offer a technical approach for real-time and nondestructive diagnosis of rice (Oryza sativa L) growth and nitrogen (N) nutrition status. In this study, multiple rice cultivars and N treatments of experimental plots were carried out to obtain: normalized difference vegetation index (NDVI), leaf area index (LAI), above-ground dry matter (DM), and grain yield (GY) data. The quantitative relationships between NDVI and these growth indices (e.g., LAI, DM and GY) were analyzed, showing positive correlations. Using the normalized modeling method, an appropriate NDVI simulation model of rice was established based on the normalized NDVI (RNDVI) and relative accumulative growing degree days (RAGDD). The NDVI dynamic model for high-yield production in rice can be expressed by a double logistic model: RNDVI = ( 1 + e - 15.2829 × ( R A G D D i - 0.1944 ) ) - 1 - ( 1 + e - 11.6517 × ( R A G D D i - 1.0267 ) ) - 1 (R2 = 0.8577**), which can be used to accurately predict canopy NDVI dynamic changes during the entire growth period. Considering variation among rice cultivars, we constructed two relative NDVI (RNDVI) dynamic models for Japonica and Indica rice types, with R2 reaching 0.8764** and 0.8874**, respectively. Furthermore, independent experimental data were used to validate the RNDVI dynamic models. The results showed that during the entire growth period, the accuracy (k), precision (R2), and standard deviation of RNDVI dynamic models for the Japonica and Indica cultivars were 0.9991, 1.0170; 0.9084**, 0.8030**; and 0.0232, 0.0170, respectively. These results indicated that RNDVI dynamic models could accurately reflect crop growth and predict dynamic changes in high-yield crop populations, providing a rapid approach for monitoring rice growth status.

  7. High-accuracy numerical integration of charged particle motion – with application to ponderomotive force

    International Nuclear Information System (INIS)

    Furukawa, Masaru; Ohkawa, Yushiro; Matsuyama, Akinobu

    2016-01-01

    A high-accuracy numerical integration algorithm for a charged particle motion is developed. The algorithm is based on the Hamiltonian mechanics and the operator decomposition. The algorithm is made to be time-reversal symmetric, and its order of accuracy can be increased to any order by using a recurrence formula. One of the advantages is that it is an explicit method. An effective way to decompose the time evolution operator is examined; the Poisson tensor is decomposed and non-canonical variables are adopted. The algorithm is extended to a time dependent fields' case by introducing the extended phase space. Numerical tests showing the performance of the algorithm are presented. One is the pure cyclotron motion for a long time period, and the other is a charged particle motion in a rapidly oscillating field. (author)

  8. Analysis of Time Reversible Born-Oppenheimer Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Lin Lin

    2013-12-01

    Full Text Available We analyze the time reversible Born-Oppenheimer molecular dynamics (TRBOMD scheme, which preserves the time reversibility of the Born-Oppenheimer molecular dynamics even with non-convergent self-consistent field iteration. In the linear response regime, we derive the stability condition, as well as the accuracy of TRBOMD for computing physical properties, such as the phonon frequency obtained from the molecular dynamics simulation. We connect and compare TRBOMD with Car-Parrinello molecular dynamics in terms of accuracy and stability. We further discuss the accuracy of TRBOMD beyond the linear response regime for non-equilibrium dynamics of nuclei. Our results are demonstrated through numerical experiments using a simplified one-dimensional model for Kohn-Sham density functional theory.

  9. Using function approximation to determine neural network accuracy

    International Nuclear Information System (INIS)

    Wichman, R.F.; Alexander, J.

    2013-01-01

    Many, if not most, control processes demonstrate nonlinear behavior in some portion of their operating range and the ability of neural networks to model non-linear dynamics makes them very appealing for control. Control of high reliability safety systems, and autonomous control in process or robotic applications, however, require accurate and consistent control and neural networks are only approximators of various functions so their degree of approximation becomes important. In this paper, the factors affecting the ability of a feed-forward back-propagation neural network to accurately approximate a non-linear function are explored. Compared to pattern recognition using a neural network for function approximation provides an easy and accurate method for determining the network's accuracy. In contrast to other techniques, we show that errors arising in function approximation or curve fitting are caused by the neural network itself rather than scatter in the data. A method is proposed that provides improvements in the accuracy achieved during training and resulting ability of the network to generalize after training. Binary input vectors provided a more accurate model than with scalar inputs and retraining using a small number of the outlier x,y pairs improved generalization. (author)

  10. Geoid undulation accuracy

    Science.gov (United States)

    Rapp, Richard H.

    1993-01-01

    The determination of the geoid and equipotential surface of the Earth's gravity field, has long been of interest to geodesists and oceanographers. The geoid provides a surface to which the actual ocean surface can be compared with the differences implying information on the circulation patterns of the oceans. For use in oceanographic applications the geoid is ideally needed to a high accuracy and to a high resolution. There are applications that require geoid undulation information to an accuracy of +/- 10 cm with a resolution of 50 km. We are far from this goal today but substantial improvement in geoid determination has been made. In 1979 the cumulative geoid undulation error to spherical harmonic degree 20 was +/- 1.4 m for the GEM10 potential coefficient model. Today the corresponding value has been reduced to +/- 25 cm for GEM-T3 or +/- 11 cm for the OSU91A model. Similar improvements are noted by harmonic degree (wave-length) and in resolution. Potential coefficient models now exist to degree 360 based on a combination of data types. This paper discusses the accuracy changes that have taken place in the past 12 years in the determination of geoid undulations.

  11. An output amplitude configurable wideband automatic gain control with high gain step accuracy

    International Nuclear Information System (INIS)

    He Xiaofeng; Ye Tianchun; Mo Taishan; Ma Chengyan

    2012-01-01

    An output amplitude configurable wideband automatic gain control (AGC) with high gain step accuracy for the GNSS receiver is presented. The amplitude of an AGC is configurable in order to cooperate with baseband chips to achieve interference suppression and be compatible with different full range ADCs. And what's more, the gain-boosting technology is introduced and the circuit is improved to increase the step accuracy. A zero, which is composed by the source feedback resistance and the source capacity, is introduced to compensate for the pole. The AGC is fabricated in a 0.18 μm CMOS process. The AGC shows a 62 dB gain control range by 1 dB each step with a gain error of less than 0.2 dB. The AGC provides 3 dB bandwidth larger than 80 MHz and the overall power consumption is less than 1.8 mA, and the die area is 800 × 300 μm 2 . (semiconductor integrated circuits)

  12. Dynamic modelling and simulation for control of a cylindrical robotic manipulator

    International Nuclear Information System (INIS)

    Iqbal, A.; Athar, S.M.

    1995-03-01

    In this report a dynamic model for the three degrees-of-freedom cylindrical manipulator, INFOMATE has been developed. Although the robot dynamics are highly coupled and non-linear, the developed model is relatively straight forward and compact for control engineering and simulation applications. The model has been simulated using the graphical simulation package SIMULINK. Different aspects of INFOMATE associated with forward dynamics, inverse dynamics and control have been investigated by performing various simulation experiments. These simulation experiments confirm the accuracy and applicability of the dynamic robot model. (author) 18 figs

  13. High accuracy magnetic field mapping of the LEP spectrometer magnet

    CERN Document Server

    Roncarolo, F

    2000-01-01

    The Large Electron Positron accelerator (LEP) is a storage ring which has been operated since 1989 at the European Laboratory for Particle Physics (CERN), located in the Geneva area. It is intended to experimentally verify the Standard Model theory and in particular to detect with high accuracy the mass of the electro-weak force bosons. Electrons and positrons are accelerated inside the LEP ring in opposite directions and forced to collide at four locations, once they reach an energy high enough for the experimental purposes. During head-to-head collisions the leptons loose all their energy and a huge amount of energy is concentrated in a small region. In this condition the energy is quickly converted in other particles which tend to go away from the interaction point. The higher the energy of the leptons before the collisions, the higher the mass of the particles that can escape. At LEP four large experimental detectors are accommodated. All detectors are multi purpose detectors covering a solid angle of alm...

  14. Determination of UAV position using high accuracy navigation platform

    Directory of Open Access Journals (Sweden)

    Ireneusz Kubicki

    2016-07-01

    Full Text Available The choice of navigation system for mini UAV is very important because of its application and exploitation, particularly when the installed on it a synthetic aperture radar requires highly precise information about an object’s position. The presented exemplary solution of such a system draws attention to the possible problems associated with the use of appropriate technology, sensors, and devices or with a complete navigation system. The position and spatial orientation errors of the measurement platform influence on the obtained SAR imaging. Both, turbulences and maneuvers performed during flight cause the changes in the position of the airborne object resulting in deterioration or lack of images from SAR. Consequently, it is necessary to perform operations for reducing or eliminating the impact of the sensors’ errors on the UAV position accuracy. You need to look for compromise solutions between newer better technologies and in the field of software. Keywords: navigation systems, unmanned aerial vehicles, sensors integration

  15. A high accuracy algorithm of displacement measurement for a micro-positioning stage

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2017-05-01

    Full Text Available A high accuracy displacement measurement algorithm for a two degrees of freedom compliant precision micro-positioning stage is proposed based on the computer micro-vision technique. The algorithm consists of an integer-pixel and a subpixel matching procedure. Series of simulations are conducted to verify the proposed method. The results show that the proposed algorithm possesses the advantages of high precision and stability, the resolution can attain to 0.01 pixel theoretically. In addition, the consuming time is reduced about 6.7 times compared with the classical normalized cross correlation algorithm. To validate the practical performance of the proposed algorithm, a laser interferometer measurement system (LIMS is built up. The experimental results demonstrate that the algorithm has better adaptability than that of the LIMS.

  16. Studies on MRI diagnostic accuracy of invasion to body muscular layer and cervix of endometrial cancer

    International Nuclear Information System (INIS)

    Takemoto, Yumi; Fujiyoshi, Keizou; Takemoto, Shuji; Kawano, Kouichirou; Ohta, Shunichirou; Murakami, Fumihiro; Komai, Kan; Ushijima, Kimio; Kamura, Toshiharu

    2008-01-01

    This study was conducted to know usefulness of preoperative MRI to detect invasions of endometrial cancer to uterine body muscular layer and cervix. Subjects were 132 patients (median age of 57 y, pre- and post-menopause, 11.2 and 78.8%, respectively) with the cancer at stage I (66 cases) and >II in authors' facility, who had undergone the preoperative MRI with 1.5T Siemens machine by imaging with T1 and T2 weighted, Gd-enhanced T1 weighted, dynamic study and STIR. Imaging findings were compared with histopathological ones to assess the accuracy of imaging diagnosis. Positive predictive accuracy for muscular invasion was found to be as high as 95.5% and negative one, as low as 29.5%: especially, in pre-menopause group, tendency of underestimation for the invasion was thought notable. In contrast, negative accuracy was found low for cervical invasion and positive one, high: overestimation was possibly occurring. Thus, MRI diagnosis of those invasions should be seriously judged with careful consideration of menopause state. (R.T.)

  17. A laboratory assessment of the measurement accuracy of weighing type rainfall intensity gauges

    Science.gov (United States)

    Colli, M.; Chan, P. W.; Lanza, L. G.; La Barbera, P.

    2012-04-01

    In recent years the WMO Commission for Instruments and Methods of Observation (CIMO) fostered noticeable advancements in the accuracy of precipitation measurement issue by providing recommendations on the standardization of equipment and exposure, instrument calibration and data correction as a consequence of various comparative campaigns involving manufacturers and national meteorological services from the participating countries (Lanza et al., 2005; Vuerich et al., 2009). Extreme events analysis is proven to be highly affected by the on-site RI measurement accuracy (see e.g. Molini et al., 2004) and the time resolution of the available RI series certainly constitutes another key-factor in constructing hyetographs that are representative of real rain events. The OTT Pluvio2 weighing gauge (WG) and the GEONOR T-200 vibrating-wire precipitation gauge demonstrated very good performance under previous constant flow rate calibration efforts (Lanza et al., 2005). Although WGs do provide better performance than more traditional Tipping Bucket Rain gauges (TBR) under continuous and constant reference intensity, dynamic effects seem to affect the accuracy of WG measurements under real world/time varying rainfall conditions (Vuerich et al., 2009). The most relevant is due to the response time of the acquisition system and the derived systematic delay of the instrument in assessing the exact weight of the bin containing cumulated precipitation. This delay assumes a relevant role in case high resolution rain intensity time series are sought from the instrument, as is the case of many hydrologic and meteo-climatic applications. This work reports the laboratory evaluation of Pluvio2 and T-200 rainfall intensity measurements accuracy. Tests are carried out by simulating different artificial precipitation events, namely non-stationary rainfall intensity, using a highly accurate dynamic rainfall generator. Time series measured by an Ogawa drop counter (DC) at a field test site

  18. Accuracy of a Low-Cost Novel Computer-Vision Dynamic Movement Assessment: Potential Limitations and Future Directions

    Science.gov (United States)

    McGroarty, M.; Giblin, S.; Meldrum, D.; Wetterling, F.

    2016-04-01

    The aim of the study was to perform a preliminary validation of a low cost markerless motion capture system (CAPTURE) against an industry gold standard (Vicon). Measurements of knee valgus and flexion during the performance of a countermovement jump (CMJ) between CAPTURE and Vicon were compared. After correction algorithms were applied to the raw CAPTURE data acceptable levels of accuracy and precision were achieved. The knee flexion angle measured for three trials using Capture deviated by -3.8° ± 3° (left) and 1.7° ± 2.8° (right) compared to Vicon. The findings suggest that low-cost markerless motion capture has potential to provide an objective method for assessing lower limb jump and landing mechanics in an applied sports setting. Furthermore, the outcome of the study warrants the need for future research to examine more fully the potential implications of the use of low-cost markerless motion capture in the evaluation of dynamic movement for injury prevention.

  19. Computer modeling of oil spill trajectories with a high accuracy method

    International Nuclear Information System (INIS)

    Garcia-Martinez, Reinaldo; Flores-Tovar, Henry

    1999-01-01

    This paper proposes a high accuracy numerical method to model oil spill trajectories using a particle-tracking algorithm. The Euler method, used to calculate oil trajectories, can give adequate solutions in most open ocean applications. However, this method may not predict accurate particle trajectories in certain highly non-uniform velocity fields near coastal zones or in river problems. Simple numerical experiments show that the Euler method may also introduce artificial numerical dispersion that could lead to overestimation of spill areas. This article proposes a fourth-order Runge-Kutta method with fourth-order velocity interpolation to calculate oil trajectories that minimise these problems. The algorithm is implemented in the OilTrack model to predict oil trajectories following the 'Nissos Amorgos' oil spill accident that occurred in the Gulf of Venezuela in 1997. Despite lack of adequate field information, model results compare well with observations in the impacted area. (Author)

  20. High-performance computational fluid dynamics: a custom-code approach

    International Nuclear Information System (INIS)

    Fannon, James; Náraigh, Lennon Ó; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain

    2016-01-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier–Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing. (paper)

  1. High-performance computational fluid dynamics: a custom-code approach

    Science.gov (United States)

    Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.

    2016-07-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.

  2. An algorithm to correct saturated mass spectrometry ion abundances for enhanced quantitation and mass accuracy in omic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bilbao, Aivett; Gibbons, Bryson C.; Slysz, Gordon W.; Crowell, Kevin L.; Monroe, Matthew E.; Ibrahim, Yehia M.; Smith, Richard D.; Payne, Samuel H.; Baker, Erin S.

    2018-04-01

    The mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can easily cause problems if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flight MS. In this method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases with highly saturated species and dynamic range increased by 1-2 orders of magnitude for peptides in a blood serum sample.

  3. Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems

    International Nuclear Information System (INIS)

    Turati, Pietro; Pedroni, Nicola; Zio, Enrico

    2016-01-01

    The efficient estimation of system reliability characteristics is of paramount importance for many engineering applications. Real world system reliability modeling calls for the capability of treating systems that are: i) dynamic, ii) complex, iii) hybrid and iv) highly reliable. Advanced Monte Carlo (MC) methods offer a way to solve these types of problems, which are feasible according to the potentially high computational costs. In this paper, the REpetitive Simulation Trials After Reaching Thresholds (RESTART) method is employed, extending it to hybrid systems for the first time (to the authors’ knowledge). The estimation accuracy and precision of RESTART highly depend on the choice of the Importance Function (IF) indicating how close the system is to failure: in this respect, proper IFs are here originally proposed to improve the performance of RESTART for the analysis of hybrid systems. The resulting overall simulation approach is applied to estimate the probability of failure of the control system of a liquid hold-up tank and of a pump-valve subsystem subject to degradation induced by fatigue. The results are compared to those obtained by standard MC simulation and by RESTART with classical IFs available in the literature. The comparison shows the improvement in the performance obtained by our approach. - Highlights: • We consider the issue of estimating small failure probabilities in dynamic systems. • We employ the RESTART method to estimate the failure probabilities. • New Importance Functions (IFs) are introduced to increase the method performance. • We adopt two dynamic, hybrid, highly reliable systems as case studies. • A comparison with literature IFs proves the effectiveness of the new IFs.

  4. High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS

    Science.gov (United States)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu

    2017-05-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.

  5. Hemispherical Resonator Gyroscope Accuracy Analysis Under Temperature Influence

    Directory of Open Access Journals (Sweden)

    Boran LI

    2014-06-01

    Full Text Available Frequency splitting of hemispherical resonator gyroscope will change as system operating temperature changes. This phenomenon leads to navigation accuracy of hemispherical resonator gyroscope reduces. By researching on hemispherical resonator gyroscope dynamical model and its frequency characteristic, the frequency splitting formula and the precession angle formula of gyroscope vibrating mode based on hemispherical resonator gyroscope dynamic equation parameters are derived. By comparison, gyroscope precession angle deviation caused by frequency splitting can be obtained. Based on analysis of temperature variation against gyroscope resonator, the design of hemispherical resonator gyroscope feedback controller under temperature variation conditions is researched and the maximum theoretical fluctuation of gyroscope dynamical is determined by using a numerical analysis example.

  6. An Optimized Grey Dynamic Model for Forecasting the Output of High-Tech Industry in China

    Directory of Open Access Journals (Sweden)

    Zheng-Xin Wang

    2014-01-01

    Full Text Available The grey dynamic model by convolution integral with the first-order derivative of the 1-AGO data and n series related, abbreviated as GDMC(1,n, performs well in modelling and forecasting of a grey system. To improve the modelling accuracy of GDMC(1,n, n interpolation coefficients (taken as unknown parameters are introduced into the background values of the n variables. The parameters optimization is formulated as a combinatorial optimization problem and is solved collectively using the particle swarm optimization algorithm. The optimized result has been verified by a case study of the economic output of high-tech industry in China. Comparisons of the obtained modelling results from the optimized GDMC(1,n model with the traditional one demonstrate that the optimal algorithm is a good alternative for parameters optimization of the GDMC(1,n model. The modelling results can assist the government in developing future policies regarding high-tech industry management.

  7. [Method for evaluating the positional accuracy of a six-degrees-of-freedom radiotherapy couch using high definition digital cameras].

    Science.gov (United States)

    Takemura, Akihiro; Ueda, Shinichi; Noto, Kimiya; Kurata, Yuichi; Shoji, Saori

    2011-01-01

    In this study, we proposed and evaluated a positional accuracy assessment method with two high-resolution digital cameras for add-on six-degrees-of-freedom radiotherapy (6D) couches. Two high resolution digital cameras (D5000, Nikon Co.) were used in this accuracy assessment method. These cameras were placed on two orthogonal axes of a linear accelerator (LINAC) coordinate system and focused on the isocenter of the LINAC. Pictures of a needle that was fixed on the 6D couch were taken by the cameras during couch motions of translation and rotation of each axis. The coordinates of the needle in the pictures were obtained using manual measurement, and the coordinate error of the needle was calculated. The accuracy of a HexaPOD evo (Elekta AB, Sweden) was evaluated using this method. All of the mean values of the X, Y, and Z coordinate errors in the translation tests were within ±0.1 mm. However, the standard deviation of the Z coordinate errors in the Z translation test was 0.24 mm, which is higher than the others. In the X rotation test, we found that the X coordinate of the rotational origin of the 6D couch was shifted. We proposed an accuracy assessment method for a 6D couch. The method was able to evaluate the accuracy of the motion of only the 6D couch and revealed the deviation of the origin of the couch rotation. This accuracy assessment method is effective for evaluating add-on 6D couch positioning.

  8. Report on Microgravity Experiments of Dynamic Surface Deformation Effects on Marangoni Instability in High-Prandtl-Number Liquid Bridges

    Science.gov (United States)

    Yano, Taishi; Nishino, Koichi; Matsumoto, Satoshi; Ueno, Ichiro; Komiya, Atsuki; Kamotani, Yasuhiro; Imaishi, Nobuyuki

    2018-04-01

    This paper reports an overview and some important results of microgravity experiments called Dynamic Surf, which have been conducted on board the International Space Station from 2013 to 2016. The present project mainly focuses on the relations between the Marangoni instability in a high-Prandtl-number (Pr= 67 and 112) liquid bridge and the dynamic free surface deformation (DSD) as well as the interfacial heat transfer. The dynamic free surface deformations of large-scale liquid bridges (say, for diameters greater than 10 mm) are measured with good accuracy by an optical imaging technique. It is found that there are two causes of the dynamic free surface deformation in the present study: the first is the time-dependent flow behavior inside the liquid bridge due to the Marangoni instability, and the second is the external disturbance due to the residual acceleration of gravity, i.e., g-jitter. The axial distributions of DSD along the free surface are measured for several conditions. The critical parameters for the onset of oscillatory Marangoni convection are also measured for various aspect ratios (i.e., relative height to the diameter) of the liquid bridge and various thermal boundary conditions. The characteristics of DSD and the onset conditions of instability are discussed in this paper.

  9. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    Directory of Open Access Journals (Sweden)

    Ahmed Elsaadany

    2014-01-01

    Full Text Available Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake and the second is devoted to drift correction (canard based-correction fuze. The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  10. Accuracy improvement capability of advanced projectile based on course correction fuze concept.

    Science.gov (United States)

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  11. High degree-of-freedom dynamic manipulation

    Science.gov (United States)

    Murphy, Michael P.; Stephens, Benjamin; Abe, Yeuhi; Rizzi, Alfred A.

    2012-06-01

    The creation of high degree of freedom dynamic mobile manipulation techniques and behaviors will allow robots to accomplish difficult tasks in the field. We are investigating the use of the body and legs of legged robots to improve the strength, velocity, and workspace of an integrated manipulator to accomplish dynamic manipulation. This is an especially challenging task, as all of the degrees of freedom are active at all times, the dynamic forces generated are high, and the legged system must maintain robust balance throughout the duration of the tasks. To accomplish this goal, we are utilizing trajectory optimization techniques to generate feasible open-loop behaviors for our 28 dof quadruped robot (BigDog) by planning the trajectories in a 13 dimensional space. Covariance Matrix Adaptation techniques are utilized to optimize for several criteria such as payload capability and task completion speed while also obeying constraints such as torque and velocity limits, kinematic limits, and center of pressure location. These open-loop behaviors are then used to generate feed-forward terms, which are subsequently used online to improve tracking and maintain low controller gains. Some initial results on one of our existing balancing quadruped robots with an additional human-arm-like manipulator are demonstrated on robot hardware, including dynamic lifting and throwing of heavy objects 16.5kg cinder blocks, using motions that resemble a human athlete more than typical robotic motions. Increased payload capacity is accomplished through coordinated body motion.

  12. Quantitative accuracy of denoising techniques applied to dynamic 82Rb myocardial blood flow PET/CT scans

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Bouchelouche, Kirsten

    with suspected ischemic heart disease underwent a dynamic 7 minute 82Rb scan under resting and adenosine induced hyperaemic conditions after injection of 1100 MBq of 82Rb on a GE Discovery 690 PET/CT. Dynamic images were filtered using HighlY constrained backPRojection (HYPR) and a Hotelling filter of which...... the latter was evaluated using a range of 4 to 7 included factors and for both 2D and 3D filtering. Data were analyzed using Cardiac VUer and obtained MBF values were compared with those obtained when no denoising of the dynamic data was performed. Results: Both HYPR and Hotelling denoising could...

  13. High accuracy calibration of a dynamic vapor sorption instrument and determination of the equilibrium humidities using single salts

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge; Svensson, Staffan

    2016-01-01

    We present a procedure for accurately calibrating a dynamic vapor sorption (DVS) instrument using single salts. The procedure accounts for and tailors distinct calibration tests according to the fundamental properties of each salt. Especially relevant properties influencing the calibration are th...

  14. Increasing the efficiency and accuracy of time-resolved electronic spectra calculations with on-the-fly ab initio quantum dynamics methods

    Science.gov (United States)

    Vanicek, Jiri

    2014-03-01

    Rigorous quantum-mechanical calculations of coherent ultrafast electronic spectra remain difficult. I will present several approaches developed in our group that increase the efficiency and accuracy of such calculations: First, we justified the feasibility of evaluating time-resolved spectra of large systems by proving that the number of trajectories needed for convergence of the semiclassical dephasing representation/phase averaging is independent of dimensionality. Recently, we further accelerated this approximation with a cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. The accuracy of potential energy surfaces was increased by combining the dephasing representation with accurate on-the-fly ab initio electronic structure calculations, including nonadiabatic and spin-orbit couplings. Finally, the inherent semiclassical approximation was removed in the exact quantum Gaussian dephasing representation, in which semiclassical trajectories are replaced by communicating frozen Gaussian basis functions evolving classically with an average Hamiltonian. Among other examples I will present an on-the-fly ab initio semiclassical dynamics calculation of the dispersed time-resolved stimulated emission spectrum of the 54-dimensional azulene. This research was supported by EPFL and by the Swiss National Science Foundation NCCR MUST (Molecular Ultrafast Science and Technology) and Grant No. 200021124936/1.

  15. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement.

    Science.gov (United States)

    Lin, Hui; Gao, Jian; Mei, Qing; He, Yunbo; Liu, Junxiu; Wang, Xingjin

    2016-04-04

    It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation.

  16. Dynamic high-temperature characterization of an iridium alloy in tension

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jin, Helena [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, E. P. [Ruhr Univ., Bochum (Germany)

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  17. Inference in High-dimensional Dynamic Panel Data Models

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Tang, Haihan

    We establish oracle inequalities for a version of the Lasso in high-dimensional fixed effects dynamic panel data models. The inequalities are valid for the coefficients of the dynamic and exogenous regressors. Separate oracle inequalities are derived for the fixed effects. Next, we show how one can...

  18. Synchrotron accelerator technology for proton beam therapy with high accuracy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo

    2009-01-01

    Proton beam therapy was applied at the beginning to head and neck cancers, but it is now extended to prostate, lung and liver cancers. Thus the need for a pencil beam scanning method is increasing. With this method radiation dose concentration property of the proton beam will be further intensified. Hitachi group has supplied a pencil beam scanning therapy system as the first one for M. D. Anderson Hospital in United States, and it has been operational since May 2008. Hitachi group has been developing proton therapy system to correspond high-accuracy proton therapy to concentrate the dose in the diseased part which is located with various depths, and which sometimes has complicated shape. The author described here on the synchrotron accelerator technology that is an important element for constituting the proton therapy system. (K.Y.)

  19. High concentration agglomerate dynamics at high temperatures.

    Science.gov (United States)

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  20. Running accuracy analysis of a 3-RRR parallel kinematic machine considering the deformations of the links

    Science.gov (United States)

    Wang, Liping; Jiang, Yao; Li, Tiemin

    2014-09-01

    Parallel kinematic machines have drawn considerable attention and have been widely used in some special fields. However, high precision is still one of the challenges when they are used for advanced machine tools. One of the main reasons is that the kinematic chains of parallel kinematic machines are composed of elongated links that can easily suffer deformations, especially at high speeds and under heavy loads. A 3-RRR parallel kinematic machine is taken as a study object for investigating its accuracy with the consideration of the deformations of its links during the motion process. Based on the dynamic model constructed by the Newton-Euler method, all the inertia loads and constraint forces of the links are computed and their deformations are derived. Then the kinematic errors of the machine are derived with the consideration of the deformations of the links. Through further derivation, the accuracy of the machine is given in a simple explicit expression, which will be helpful to increase the calculating speed. The accuracy of this machine when following a selected circle path is simulated. The influences of magnitude of the maximum acceleration and external loads on the running accuracy of the machine are investigated. The results show that the external loads will deteriorate the accuracy of the machine tremendously when their direction coincides with the direction of the worst stiffness of the machine. The proposed method provides a solution for predicting the running accuracy of the parallel kinematic machines and can also be used in their design optimization as well as selection of suitable running parameters.

  1. Dynamic Rupture Benchmarking of the ADER-DG Method

    Science.gov (United States)

    Gabriel, Alice; Pelties, Christian

    2013-04-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  2. PACMAN Project: A New Solution for the High-accuracy Alignment of Accelerator Components

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalán Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon; Modena, Michele; Novotny, Peter; Russenschuck, Stephan; Sanz, Claude; Severino, Giordana; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia

    2016-01-01

    The beam alignment requirements for the next generation of lepton colliders have become increasingly challenging. As an example, the alignment requirements for the three major collider components of the CLIC linear collider are as follows. Before the first beam circulates, the Beam Position Monitors (BPM), Accelerating Structures (AS)and quadrupoles will have to be aligned up to 10 μm w.r.t. a straight line over 200 m long segments, along the 20 km of linacs. PACMAN is a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale. It is an Innovative Doctoral Program, funded by the EU and hosted by CERN, providing high quality training to 10 Early Stage Researchers working towards a PhD thesis. The technical aim of the project is to improve the alignment accuracy of the CLIC components by developing new methods and tools addressing several steps of alignment simultaneously, to gain time and accuracy. The tools and methods developed will be validated on a test bench. This paper pr...

  3. Probabilistic approach to manipulator kinematics and dynamics

    International Nuclear Information System (INIS)

    Rao, S.S.; Bhatti, P.K.

    2001-01-01

    A high performance, high speed robotic arm must be able to manipulate objects with a high degree of accuracy and repeatability. As with any other physical system, there are a number of factors causing uncertainties in the behavior of a robotic manipulator. These factors include manufacturing and assembling tolerances, and errors in the joint actuators and controllers. In order to study the effect of these uncertainties on the robotic end-effector and to obtain a better insight into the manipulator behavior, the manipulator kinematics and dynamics are modeled using a probabilistic approach. Based on the probabilistic model, kinematic and dynamic performance criteria are defined to provide measures of the behavior of the robotic end-effector. Techniques are presented to compute the kinematic and dynamic reliabilities of the manipulator. The effects of tolerances associated with the various manipulator parameters on the reliabilities are studied. Numerical examples are presented to illustrate the procedures

  4. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    Science.gov (United States)

    Frey, Bradley J.; Leviton, Douglas B.

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  5. Dynamic compaction with high energy of sandy hydraulic fills

    Directory of Open Access Journals (Sweden)

    Khelalfa Houssam

    2017-09-01

    Full Text Available A case study about the adoption of the dynamic compaction technique with high energy in a sandy hydraulic fill is presented. The feasibility of this technique to ensure the stability of the caisson workshop and to minimize the risk of liquefaction during manufacture. This Article is interested to establish diagnostic of dynamic compaction test, basing on the results of SPT tests and quality control as well as the details of work of compaction and the properties of filling materials. A theory of soil response to a high-energy impact during dynamic compaction is proposed.

  6. The dynamic programming high-order Dynamic Bayesian Networks learning for identifying effective connectivity in human brain from fMRI.

    Science.gov (United States)

    Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun Kumar

    2017-06-15

    Determination of effective connectivity (EC) among brain regions using fMRI is helpful in understanding the underlying neural mechanisms. Dynamic Bayesian Networks (DBNs) are an appropriate class of probabilistic graphical temporal-models that have been used in past to model EC from fMRI, specifically order-one. High-order DBNs (HO-DBNs) have still not been explored for fMRI data. A fundamental problem faced in the structure-learning of HO-DBN is high computational-burden and low accuracy by the existing heuristic search techniques used for EC detection from fMRI. In this paper, we propose using dynamic programming (DP) principle along with integration of properties of scoring-function in a way to reduce search space for structure-learning of HO-DBNs and finally, for identifying EC from fMRI which has not been done yet to the best of our knowledge. The proposed exact search-&-score learning approach HO-DBN-DP is an extension of the technique which was originally devised for learning a BN's structure from static data (Singh and Moore, 2005). The effectiveness in structure-learning is shown on synthetic fMRI dataset. The algorithm reaches globally-optimal solution in appreciably reduced time-complexity than the static counterpart due to integration of properties. The proof of optimality is provided. The results demonstrate that HO-DBN-DP is comparably more accurate and faster than currently used structure-learning algorithms used for identifying EC from fMRI. The real data EC from HO-DBN-DP shows consistency with previous literature than the classical Granger Causality method. Hence, the DP algorithm can be employed for reliable EC estimates from experimental fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Horizontal Positional Accuracy of Google Earth’s High-Resolution Imagery Archive

    Directory of Open Access Journals (Sweden)

    David Potere

    2008-12-01

    Full Text Available Google Earth now hosts high-resolution imagery that spans twenty percent of the Earth’s landmass and more than a third of the human population. This contemporary highresolution archive represents a significant, rapidly expanding, cost-free and largely unexploited resource for scientific inquiry. To increase the scientific utility of this archive, we address horizontal positional accuracy (georegistration by comparing Google Earth with Landsat GeoCover scenes over a global sample of 436 control points located in 109 cities worldwide. Landsat GeoCover is an orthorectified product with known absolute positional accuracy of less than 50 meters root-mean-squared error (RMSE. Relative to Landsat GeoCover, the 436 Google Earth control points have a positional accuracy of 39.7 meters RMSE (error magnitudes range from 0.4 to 171.6 meters. The control points derived from satellite imagery have an accuracy of 22.8 meters RMSE, which is significantly more accurate than the 48 control-points based on aerial photography (41.3 meters RMSE; t-test p-value < 0.01. The accuracy of control points in more-developed countries is 24.1 meters RMSE, which is significantly more accurate than the control points in developing countries (44.4 meters RMSE; t-test p-value < 0.01. These findings indicate that Google Earth highresolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world’s peri-urban areas.

  8. A new device for liver cancer biomarker detection with high accuracy

    Directory of Open Access Journals (Sweden)

    Shuaipeng Wang

    2015-06-01

    Full Text Available A novel cantilever array-based bio-sensor was batch-fabricated with IC compatible MEMS technology for precise liver cancer bio-marker detection. A micro-cavity was designed in the free end of the cantilever for local antibody-immobilization, thus adsorption of the cancer biomarker is localized in the micro-cavity, and the adsorption-induced k variation can be dramatically reduced with comparison to that caused by adsorption of the whole lever. The cantilever is pizeoelectrically driven into vibration which is pizeoresistively sensed by Wheatstone bridge. These structural features offer several advantages: high sensitivity, high throughput, high mass detection accuracy, and small volume. In addition, an analytical model has been established to eliminate the effect of adsorption-induced lever stiffness change and has been applied to precise mass detection of cancer biomarker AFP, the detected AFP antigen mass (7.6 pg/ml is quite close to the calculated one (5.5 pg/ml, two orders of magnitude better than the value by the fully antibody-immobilized cantilever sensor. These approaches will promote real application of the cantilever sensors in early diagnosis of cancer.

  9. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2013-01-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now

  10. Cadastral Database Positional Accuracy Improvement

    Science.gov (United States)

    Hashim, N. M.; Omar, A. H.; Ramli, S. N. M.; Omar, K. M.; Din, N.

    2017-10-01

    Positional Accuracy Improvement (PAI) is the refining process of the geometry feature in a geospatial dataset to improve its actual position. This actual position relates to the absolute position in specific coordinate system and the relation to the neighborhood features. With the growth of spatial based technology especially Geographical Information System (GIS) and Global Navigation Satellite System (GNSS), the PAI campaign is inevitable especially to the legacy cadastral database. Integration of legacy dataset and higher accuracy dataset like GNSS observation is a potential solution for improving the legacy dataset. However, by merely integrating both datasets will lead to a distortion of the relative geometry. The improved dataset should be further treated to minimize inherent errors and fitting to the new accurate dataset. The main focus of this study is to describe a method of angular based Least Square Adjustment (LSA) for PAI process of legacy dataset. The existing high accuracy dataset known as National Digital Cadastral Database (NDCDB) is then used as bench mark to validate the results. It was found that the propose technique is highly possible for positional accuracy improvement of legacy spatial datasets.

  11. High Fidelity, “Faster than Real-Time” Simulator for Predicting Power System Dynamic Behavior - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Alex [Illinois Inst. of Technology, Chicago, IL (United States)

    2017-07-14

    The “High Fidelity, Faster than Real­Time Simulator for Predicting Power System Dynamic Behavior” was designed and developed by Illinois Institute of Technology with critical contributions from Electrocon International, Argonne National Laboratory, Alstom Grid and McCoy Energy. Also essential to the project were our two utility partners: Commonwealth Edison and AltaLink. The project was a success due to several major breakthroughs in the area of large­scale power system dynamics simulation, including (1) a validated faster than real­ time simulation of both stable and unstable transient dynamics in a large­scale positive sequence transmission grid model, (2) a three­phase unbalanced simulation platform for modeling new grid devices, such as independently controlled single­phase static var compensators (SVCs), (3) the world’s first high fidelity three­phase unbalanced dynamics and protection simulator based on Electrocon’s CAPE program, and (4) a first­of­its­ kind implementation of a single­phase induction motor model with stall capability. The simulator results will aid power grid operators in their true time of need, when there is a significant risk of cascading outages. The simulator will accelerate performance and enhance accuracy of dynamics simulations, enabling operators to maintain reliability and steer clear of blackouts. In the long­term, the simulator will form the backbone of the newly conceived hybrid real­time protection and control architecture that will coordinate local controls, wide­area measurements, wide­area controls and advanced real­time prediction capabilities. The nation’s citizens will benefit in several ways, including (1) less down time from power outages due to the faster­than­real­time simulator’s predictive capability, (2) higher levels of reliability due to the detailed dynamics plus protection simulation capability, and (3) more resiliency due to the three­ phase unbalanced simulator’s ability to

  12. High-accuracy mass determination of unstable nuclei with a Penning trap mass spectrometer

    CERN Multimedia

    2002-01-01

    The mass of a nucleus is its most fundamental property. A systematic study of nuclear masses as a function of neutron and proton number allows the observation of collective and single-particle effects in nuclear structure. Accurate mass data are the most basic test of nuclear models and are essential for their improvement. This is especially important for the astrophysical study of nuclear synthesis. In order to achieve the required high accuracy, the mass of ions captured in a Penning trap is determined via their cyclotron frequency $ \

  13. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra...

  14. Real-time high dynamic range laser scanning microscopy

    Science.gov (United States)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  15. Accuracy optimization of high-speed AFM measurements using Design of Experiments

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, F.; Hansen, Hans Nørgaard

    2010-01-01

    Atomic Force Microscopy (AFM) is being increasingly employed in industrial micro/nano manufacturing applications and integrated into production lines. In order to achieve reliable process and product control at high measuring speed, instrument optimization is needed. Quantitative AFM measurement...... results are influenced by a number of scan settings parameters, defining topography sampling and measurement time: resolution (number of profiles and points per profile), scan range and direction, scanning force and speed. Such parameters are influencing lateral and vertical accuracy and, eventually......, the estimated dimensions of measured features. The definition of scan settings is based on a comprehensive optimization that targets maximization of information from collected data and minimization of measurement uncertainty and scan time. The Design of Experiments (DOE) technique is proposed and applied...

  16. Physiological Motion Axis for the Seat of a Dynamic Office Chair

    Science.gov (United States)

    Kuster, Roman Peter; Bauer, Christoph Markus; Oetiker, Sarah; Kool, Jan

    2016-01-01

    Objective The aim of this study was to determine and verify the optimal location of the motion axis (MA) for the seat of a dynamic office chair. Background A dynamic seat that supports pelvic motion may improve physical well-being and decrease the risk of sitting-associated disorders. However, office work requires an undisturbed view on the work task, which means a stable position of the upper trunk and head. Current dynamic office chairs do not fulfill this need. Consequently, a dynamic seat was adapted to the physiological kinematics of the human spine. Method Three-dimensional motion tracking in free sitting helped determine the physiological MA of the spine in the frontal plane. Three dynamic seats with physiological, lower, and higher MA were compared in stable upper body posture (thorax inclination) and seat support of pelvic motion (dynamic fitting accuracy). Spinal kinematics during sitting and walking were compared. Results The physiological MA was at the level of the 11th thoracic vertebra, causing minimal thorax inclination and high dynamic fitting accuracy. Spinal motion in active sitting and walking was similar. Conclusion The physiological MA of the seat allows considerable lateral flexion of the spine similar to walking with a stable upper body posture and a high seat support of pelvic motion. Application The physiological MA enables lateral flexion of the spine, similar to walking, without affecting stable upper body posture, thus allowing active sitting while focusing on work. PMID:27150530

  17. High speed railway track dynamics models, algorithms and applications

    CERN Document Server

    Lei, Xiaoyan

    2017-01-01

    This book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway & railway engineering.

  18. Performance enhancement of low-cost, high-accuracy, state estimation for vehicle collision prevention system using ANFIS

    Science.gov (United States)

    Saadeddin, Kamal; Abdel-Hafez, Mamoun F.; Jaradat, Mohammad A.; Jarrah, Mohammad Amin

    2013-12-01

    In this paper, a low-cost navigation system that fuses the measurements of the inertial navigation system (INS) and the global positioning system (GPS) receiver is developed. First, the system's dynamics are obtained based on a vehicle's kinematic model. Second, the INS and GPS measurements are fused using an extended Kalman filter (EKF) approach. Subsequently, an artificial intelligence based approach for the fusion of INS/GPS measurements is developed based on an Input-Delayed Adaptive Neuro-Fuzzy Inference System (IDANFIS). Experimental tests are conducted to demonstrate the performance of the two sensor fusion approaches. It is found that the use of the proposed IDANFIS approach achieves a reduction in the integration development time and an improvement in the estimation accuracy of the vehicle's position and velocity compared to the EKF based approach.

  19. Decoding network dynamics in cancer

    DEFF Research Database (Denmark)

    Linding, Rune

    2014-01-01

    Biological systems are composed of highly dynamic and interconnected molecular networks that drive biological decision processes. The goal of network biology is to describe, quantify and predict the information flow and functional behaviour of living systems in a formal language and with an accur......Biological systems are composed of highly dynamic and interconnected molecular networks that drive biological decision processes. The goal of network biology is to describe, quantify and predict the information flow and functional behaviour of living systems in a formal language...... and with an accuracy that parallels our characterisation of other physical systems such as Jumbo-jets. Decades of targeted molecular and biological studies have led to numerous pathway models of developmental and disease related processes. However, so far no global models have been derived from pathways, capable...

  20. The zero-multipole summation method for estimating electrostatic interactions in molecular dynamics: Analysis of the accuracy and application to liquid systems

    Science.gov (United States)

    Fukuda, Ikuo; Kamiya, Narutoshi; Nakamura, Haruki

    2014-05-01

    In the preceding paper [I. Fukuda, J. Chem. Phys. 139, 174107 (2013)], the zero-multipole (ZM) summation method was proposed for efficiently evaluating the electrostatic Coulombic interactions of a classical point charge system. The summation takes a simple pairwise form, but prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large energetic noises and significant artifacts. The purpose of this paper is to judge the ability of the ZM method by investigating the accuracy, parameter dependencies, and stability in applications to liquid systems. To conduct this, first, the energy-functional error was divided into three terms and each term was analyzed by a theoretical error-bound estimation. This estimation gave us a clear basis of the discussions on the numerical investigations. It also gave a new viewpoint between the excess energy error and the damping effect by the damping parameter. Second, with the aid of these analyses, the ZM method was evaluated based on molecular dynamics (MD) simulations of two fundamental liquid systems, a molten sodium-chlorine ion system and a pure water molecule system. In the ion system, the energy accuracy, compared with the Ewald summation, was better for a larger value of multipole moment l currently induced until l ≲ 3 on average. This accuracy improvement with increasing l is due to the enhancement of the excess-energy accuracy. However, this improvement is wholly effective in the total accuracy if the theoretical moment l is smaller than or equal to a system intrinsic moment L. The simulation results thus indicate L ˜ 3 in this system, and we observed less accuracy in l = 4. We demonstrated the origins of parameter dependencies appearing in the crossing behavior and the oscillations of the energy error curves. With raising the moment l we observed, smaller values of the damping parameter provided more accurate results and smoother

  1. Diagnostic accuracy of temporomandibular disorder pain tests: a multicenter study

    NARCIS (Netherlands)

    Visscher, C.M.; Naeije, M.; de Laat, A.; Michelotti, A.; Nilner, M.; Craane, B.; Ekberg, E.; Farella, M.; Lobbezoo, F.

    2009-01-01

    AIMS: To estimate the diagnostic accuracy of the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) clinical examination and of the dynamic/static tests for the recognition of TMD pain. Since the diagnosis of TMD pain is especially complicated in persistent orofacial pain

  2. Social Power Increases Interoceptive Accuracy

    Directory of Open Access Journals (Sweden)

    Mehrad Moeini-Jazani

    2017-08-01

    Full Text Available Building on recent psychological research showing that power increases self-focused attention, we propose that having power increases accuracy in perception of bodily signals, a phenomenon known as interoceptive accuracy. Consistent with our proposition, participants in a high-power experimental condition outperformed those in the control and low-power conditions in the Schandry heartbeat-detection task. We demonstrate that the effect of power on interoceptive accuracy is not explained by participants’ physiological arousal, affective state, or general intention for accuracy. Rather, consistent with our reasoning that experiencing power shifts attentional resources inward, we show that the effect of power on interoceptive accuracy is dependent on individuals’ chronic tendency to focus on their internal sensations. Moreover, we demonstrate that individuals’ chronic sense of power also predicts interoceptive accuracy similar to, and independent of, how their situationally induced feeling of power does. We therefore provide further support on the relation between power and enhanced perception of bodily signals. Our findings offer a novel perspective–a psychophysiological account–on how power might affect judgments and behavior. We highlight and discuss some of these intriguing possibilities for future research.

  3. Accuracy of single photoelectron time spread measurement of fast photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.

    1975-01-01

    The accuracy of time spread measurements of fast photomultipliers was investigated, using single photoelectrons. The effect of the finite light pulse width on the measurement accuracy was determined and discussed. Experimental data were obtained on a special measuring system for light pulse widths ranging from 200 psec to 10 nsec, using fast photomultipliers 8850 and C31024 with optimized operating conditions for minimum transit time spread. A modified exponential function expression and curve-fitting parameters are given, which fit closely the experimentally obtained data over a wide dynamic range of light pulse widths. (U.S.)

  4. Analysis of parameters for technological equipment of parallel kinematics based on rods of variable length for processing accuracy assurance

    Science.gov (United States)

    Koltsov, A. G.; Shamutdinov, A. H.; Blokhin, D. A.; Krivonos, E. V.

    2018-01-01

    A new classification of parallel kinematics mechanisms on symmetry coefficient, being proportional to mechanism stiffness and accuracy of the processing product using the technological equipment under study, is proposed. A new version of the Stewart platform with a high symmetry coefficient is presented for analysis. The workspace of the mechanism under study is described, this space being a complex solid figure. The workspace end points are reached by the center of the mobile platform which moves in parallel related to the base plate. Parameters affecting the processing accuracy, namely the static and dynamic stiffness, natural vibration frequencies are determined. The capability assessment of the mechanism operation under various loads, taking into account resonance phenomena at different points of the workspace, was conducted. The study proved that stiffness and therefore, processing accuracy with the use of the above mentioned mechanisms are comparable with the stiffness and accuracy of medium-sized series-produced machines.

  5. Application of Dynamic Analysis in Semi-Analytical Finite Element Method.

    Science.gov (United States)

    Liu, Pengfei; Xing, Qinyan; Wang, Dawei; Oeser, Markus

    2017-08-30

    Analyses of dynamic responses are significantly important for the design, maintenance and rehabilitation of asphalt pavement. In order to evaluate the dynamic responses of asphalt pavement under moving loads, a specific computational program, SAFEM, was developed based on a semi-analytical finite element method. This method is three-dimensional and only requires a two-dimensional FE discretization by incorporating Fourier series in the third dimension. In this paper, the algorithm to apply the dynamic analysis to SAFEM was introduced in detail. Asphalt pavement models under moving loads were built in the SAFEM and commercial finite element software ABAQUS to verify the accuracy and efficiency of the SAFEM. The verification shows that the computational accuracy of SAFEM is high enough and its computational time is much shorter than ABAQUS. Moreover, experimental verification was carried out and the prediction derived from SAFEM is consistent with the measurement. Therefore, the SAFEM is feasible to reliably predict the dynamic response of asphalt pavement under moving loads, thus proving beneficial to road administration in assessing the pavement's state.

  6. Methodology for GPS Synchronization Evaluation with High Accuracy

    OpenAIRE

    Li Zan; Braun Torsten; Dimitrova Desislava

    2015-01-01

    Clock synchronization in the order of nanoseconds is one of the critical factors for time based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper we are particularly interested in GPS based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Ou...

  7. Methodology for GPS Synchronization Evaluation with High Accuracy

    OpenAIRE

    Li, Zan; Braun, Torsten; Dimitrova, Desislava Cvetanova

    2015-01-01

    Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. O...

  8. High dynamic range coding imaging system

    Science.gov (United States)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  9. High-accuracy measurement and compensation of grating line-density error in a tiled-grating compressor

    Science.gov (United States)

    Zhao, Dan; Wang, Xiao; Mu, Jie; Li, Zhilin; Zuo, Yanlei; Zhou, Song; Zhou, Kainan; Zeng, Xiaoming; Su, Jingqin; Zhu, Qihua

    2017-02-01

    The grating tiling technology is one of the most effective means to increase the aperture of the gratings. The line-density error (LDE) between sub-gratings will degrade the performance of the tiling gratings, high accuracy measurement and compensation of the LDE are of significance to improve the output pulses characteristics of the tiled-grating compressor. In this paper, the influence of LDE on the output pulses of the tiled-grating compressor is quantitatively analyzed by means of numerical simulation, the output beams drift and output pulses broadening resulting from the LDE are presented. Based on the numerical results we propose a compensation method to reduce the degradations of the tiled grating compressor by applying angular tilt error and longitudinal piston error at the same time. Moreover, a monitoring system is setup to measure the LDE between sub-gratings accurately and the dispersion variation due to the LDE is also demonstrated based on spatial-spectral interference. In this way, we can realize high-accuracy measurement and compensation of the LDE, and this would provide an efficient way to guide the adjustment of the tiling gratings.

  10. High throughput static and dynamic small animal imaging using clinical PET/CT: potential preclinical applications

    International Nuclear Information System (INIS)

    Aide, Nicolas; Desmonts, Cedric; Agostini, Denis; Bardet, Stephane; Bouvard, Gerard; Beauregard, Jean-Mathieu; Roselt, Peter; Neels, Oliver; Beyer, Thomas; Kinross, Kathryn; Hicks, Rodney J.

    2010-01-01

    The objective of the study was to evaluate state-of-the-art clinical PET/CT technology in performing static and dynamic imaging of several mice simultaneously. A mouse-sized phantom was imaged mimicking simultaneous imaging of three mice with computation of recovery coefficients (RCs) and spillover ratios (SORs). Fifteen mice harbouring abdominal or subcutaneous tumours were imaged on clinical PET/CT with point spread function (PSF) reconstruction after injection of [18F]fluorodeoxyglucose or [18F]fluorothymidine. Three of these mice were imaged alone and simultaneously at radial positions -5, 0 and 5 cm. The remaining 12 tumour-bearing mice were imaged in groups of 3 to establish the quantitative accuracy of PET data using ex vivo gamma counting as the reference. Finally, a dynamic scan was performed in three mice simultaneously after the injection of 68 Ga-ethylenediaminetetraacetic acid (EDTA). For typical lesion sizes of 7-8 mm phantom experiments indicated RCs of 0.42 and 0.76 for ordered subsets expectation maximization (OSEM) and PSF reconstruction, respectively. For PSF reconstruction, SOR air and SOR water were 5.3 and 7.5%, respectively. A strong correlation (r 2 = 0.97, p 2 = 0.98; slope = 0.89, p 2 = 0.96; slope = 0.62, p 68 Ga-EDTA dynamic acquisition. New generation clinical PET/CT can be used for simultaneous imaging of multiple small animals in experiments requiring high throughput and where a dedicated small animal PET system is not available. (orig.)

  11. Endocardium and Epicardium Segmentation in MR Images Based on Developed Otsu and Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Shengzhou XU

    2014-03-01

    Full Text Available In order to accurately extract the endocardium and epicardium of the left ventricle from cardiac magnetic resonance (MR images, a method based on developed Otsu and dynamic programming has been proposed. First, regions with high gray value are divided into several left ventricle candidate regions by the developed Otsu algorithm, which based on constraining the search range of the ideal segmentation threshold. Then, left ventricular blood pool is selected from the candidate regions and its convex hull is found out as the endocardium. The epicardium is derived by applying dynamic programming method to find a closed path with minimum local cost. The local cost function of the dynamic programming method consists of two factors: boundary gradient and shape features. In order to improve the accuracy of segmentation, a non-maxima gradient suppression technique is adopted to get the boundary gradient. The experimental result of 138 MR images show that the method proposed has high accuracy and robustness.

  12. High-accuracy measurement of ship velocities by DGPS; DGPS ni yoru sensoku keisoku no koseidoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S; Koterayama, W [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-10

    The differential global positioning system (DGPS) can eliminate most of errors in ship velocity measurement by GPS positioning alone. Through two rounds of marine observations by towing an observation robot in summer 1995, the authors attempted high-accuracy measurement of ship velocities by DGPS, and also carried out both positioning by GPS alone and measurement using the bottom track of ADCP (acoustic Doppler current profiler). In this paper, the results obtained by these measurement methods were examined through comparison among them, and the accuracy of the measured ship velocities was considered. In DGPS measurement, both translocation method and interference positioning method were used. ADCP mounted on the observation robot allowed measurement of the velocity of current meter itself by its bottom track in shallow sea areas less than 350m. As the result of these marine observations, it was confirmed that the accuracy equivalent to that of direct measurement by bottom track is possible to be obtained by DGPS. 3 refs., 5 figs., 1 tab.

  13. Accuracy of cell calculation methods used for analysis of high conversion light water reactor lattice

    International Nuclear Information System (INIS)

    Jeong, Chang-Joon; Okumura, Keisuke; Ishiguro, Yukio; Tanaka, Ken-ichi

    1990-01-01

    Validation tests were made for the accuracy of cell calculation methods used in analyses of tight lattices of a mixed-oxide (MOX) fuel core in a high conversion light water reactor (HCLWR). A series of cell calculations was carried out for the lattices referred from an international HCLWR benchmark comparison, with emphasis placed on the resonance calculation methods; the NR, IR approximations, the collision probability method with ultra-fine energy group. Verification was also performed for the geometrical modelling; a hexagonal/cylindrical cell, and the boundary condition; mirror/white reflection. In the calculations, important reactor physics parameters, such as the neutron multiplication factor, the conversion ratio and the void coefficient, were evaluated using the above methods for various HCLWR lattices with different moderator to fuel volume ratios, fuel materials and fissile plutonium enrichments. The calculated results were compared with each other, and the accuracy and applicability of each method were clarified by comparison with continuous energy Monte Carlo calculations. It was verified that the accuracy of the IR approximation became worse when the neutron spectrum became harder. It was also concluded that the cylindrical cell model with the white boundary condition was not so suitable for MOX fuelled lattices, as for UO 2 fuelled lattices. (author)

  14. On the Dynamic RSS Feedbacks of Indoor Fingerprinting Databases for Localization Reliability Improvement.

    Science.gov (United States)

    Wen, Xiaoyang; Tao, Wenyuan; Own, Chung-Ming; Pan, Zhenjiang

    2016-08-15

    Location data is one of the most widely used context data types in context-aware and ubiquitous computing applications. To support locating applications in indoor environments, numerous systems with different deployment costs and positioning accuracies have been developed over the past decade. One useful method, based on received signal strength (RSS), provides a set of signal transmission access points. However, compiling a remeasurement RSS database involves a high cost, which is impractical in dynamically changing environments, particularly in highly crowded areas. In this study, we propose a dynamic estimation resampling method for certain locations chosen from a set of remeasurement fingerprinting databases. Our proposed method adaptively applies different, newly updated and offline fingerprinting points according to the temporal and spatial strength of the location. To achieve accuracy within a simulated area, the proposed method requires approximately 3% of the feedback to attain a double correctness probability comparable to similar methods; in a real environment, our proposed method can obtain excellent 1 m accuracy errors in the positioning system.

  15. On the Dynamic RSS Feedbacks of Indoor Fingerprinting Databases for Localization Reliability Improvement

    Directory of Open Access Journals (Sweden)

    Xiaoyang Wen

    2016-08-01

    Full Text Available Location data is one of the most widely used context data types in context-aware and ubiquitous computing applications. To support locating applications in indoor environments, numerous systems with different deployment costs and positioning accuracies have been developed over the past decade. One useful method, based on received signal strength (RSS, provides a set of signal transmission access points. However, compiling a remeasurement RSS database involves a high cost, which is impractical in dynamically changing environments, particularly in highly crowded areas. In this study, we propose a dynamic estimation resampling method for certain locations chosen from a set of remeasurement fingerprinting databases. Our proposed method adaptively applies different, newly updated and offline fingerprinting points according to the temporal and spatial strength of the location. To achieve accuracy within a simulated area, the proposed method requires approximately 3% of the feedback to attain a double correctness probability comparable to similar methods; in a real environment, our proposed method can obtain excellent 1 m accuracy errors in the positioning system.

  16. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack

    2013-09-18

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  17. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack; Faverge, Mathieu; Ltaief, Hatem; Luszczek, Piotr R.

    2013-01-01

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  18. Anaerobic dynamic membrane bioreactors for high strength wastewater treatment

    NARCIS (Netherlands)

    Ersahin, M.E.; Gimenez Garcia, J.B.; Ozgun, H.; Tao, Y.; Van Lier, J.B.

    2013-01-01

    A laboratory scale external anaerobic dynamic membrane bioreactor (AnDMBR) treating high strength wastewater was operated to assess the effect of gas sparging velocity and organic loading rate on removal efficiency and dynamic membrane (DM) filtration characteristics. An increase in gas sparging

  19. Dynamic Open Inquiry Performances of High-School Biology Students

    Science.gov (United States)

    Zion, Michal; Sadeh, Irit

    2010-01-01

    In examining open inquiry projects among high-school biology students, we found dynamic inquiry performances expressed in two criteria: "changes occurring during inquiry" and "procedural understanding". Characterizing performances in a dynamic open inquiry project can shed light on both the procedural and epistemological…

  20. High-efficient and high-content cytotoxic recording via dynamic and continuous cell-based impedance biosensor technology.

    Science.gov (United States)

    Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping

    2016-10-01

    Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.

  1. Extended-Term Dynamic Simulations with High Penetrations of Photovoltaic Generation.

    Energy Technology Data Exchange (ETDEWEB)

    Concepcion, Ricky James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Donnelly, Matt [Montana Tech., Butte, MT (United States); Sanchez-Gasca, Juan [GE Energy, Schenectady, NY (United States)

    2016-01-01

    The uncontrolled intermittent availability of renewable energy sources makes integration of such devices into today's grid a challenge. Thus, it is imperative that dynamic simulation tools used to analyze power system performance are able to support systems with high amounts of photovoltaic (PV) generation. Additionally, simulation durations expanding beyond minutes into hours must be supported. This report aims to identify the path forward for dynamic simulation tools to accom- modate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for po- tential problems. We present a study of fixed time step, explicit numerical integration schemes that may be more suitable for these goals, based on identified requirements for simulating high PV penetration systems. We also present the alternative of variable time step integration. To help determine the characteristics of systems with high PV generation, we performed small signal sta- bility studies and time domain simulations of two representative systems. Along with feedback from stakeholders and vendors, we identify the current gaps in power system modeling including fast and slow dynamics and propose a new simulation framework to improve our ability to model and simulate longer-term dynamics.

  2. Diagnostic Accuracy of Fall Risk Assessment Tools in People With Diabetic Peripheral Neuropathy

    Science.gov (United States)

    Pohl, Patricia S.; Mahnken, Jonathan D.; Kluding, Patricia M.

    2012-01-01

    Background Diabetic peripheral neuropathy affects nearly half of individuals with diabetes and leads to increased fall risk. Evidence addressing fall risk assessment for these individuals is lacking. Objective The purpose of this study was to identify which of 4 functional mobility fall risk assessment tools best discriminates, in people with diabetic peripheral neuropathy, between recurrent “fallers” and those who are not recurrent fallers. Design A cross-sectional study was conducted. Setting The study was conducted in a medical research university setting. Participants The participants were a convenience sample of 36 individuals between 40 and 65 years of age with diabetic peripheral neuropathy. Measurements Fall history was assessed retrospectively and was the criterion standard. Fall risk was assessed using the Functional Reach Test, the Timed “Up & Go” Test, the Berg Balance Scale, and the Dynamic Gait Index. Sensitivity, specificity, positive and negative likelihood ratios, and overall diagnostic accuracy were calculated for each fall risk assessment tool. Receiver operating characteristic curves were used to estimate modified cutoff scores for each fall risk assessment tool; indexes then were recalculated. Results Ten of the 36 participants were classified as recurrent fallers. When traditional cutoff scores were used, the Dynamic Gait Index and Functional Reach Test demonstrated the highest sensitivity at only 30%; the Dynamic Gait Index also demonstrated the highest overall diagnostic accuracy. When modified cutoff scores were used, all tools demonstrated improved sensitivity (80% or 90%). Overall diagnostic accuracy improved for all tests except the Functional Reach Test; the Timed “Up & Go” Test demonstrated the highest diagnostic accuracy at 88.9%. Limitations The small sample size and retrospective fall history assessment were limitations of the study. Conclusions Modified cutoff scores improved diagnostic accuracy for 3 of 4 fall risk

  3. Cost-effective improvements of a rotating platform by integration of a high-accuracy inclinometer and encoders for attitude evaluation

    International Nuclear Information System (INIS)

    Wen, Chenyang; He, Shengyang; Hu, Peida; Bu, Changgen

    2017-01-01

    Attitude heading reference systems (AHRSs) based on micro-electromechanical system (MEMS) inertial sensors are widely used because of their low cost, light weight, and low power. However, low-cost AHRSs suffer from large inertial sensor errors. Therefore, experimental performance evaluation of MEMS-based AHRSs after system implementation is necessary. High-accuracy turntables can be used to verify the performance of MEMS-based AHRSs indoors, but they are expensive and unsuitable for outdoor tests. This study developed a low-cost two-axis rotating platform for indoor and outdoor attitude determination. A high-accuracy inclinometer and encoders were integrated into the platform to improve the achievable attitude test accuracy. An attitude error compensation method was proposed to calibrate the initial attitude errors caused by the movements and misalignment angles of the platform. The proposed attitude error determination method was examined through rotating experiments, which showed that the standard deviations of the pitch and roll errors were 0.050° and 0.090°, respectively. The pitch and roll errors both decreased to 0.024° when the proposed attitude error determination method was used. This decrease validates the effectiveness of the compensation method. Experimental results demonstrated that the integration of the inclinometer and encoders improved the performance of the low-cost, two-axis, rotating platform in terms of attitude accuracy. (paper)

  4. Accuracy assessment of high-rate GPS measurements for seismology

    Science.gov (United States)

    Elosegui, P.; Davis, J. L.; Ekström, G.

    2007-12-01

    Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.

  5. 100% classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox.

    Directory of Open Access Journals (Sweden)

    Francisco J Valverde-Albacete

    Full Text Available The most widely spread measure of performance, accuracy, suffers from a paradox: predictive models with a given level of accuracy may have greater predictive power than models with higher accuracy. Despite optimizing classification error rate, high accuracy models may fail to capture crucial information transfer in the classification task. We present evidence of this behavior by means of a combinatorial analysis where every possible contingency matrix of 2, 3 and 4 classes classifiers are depicted on the entropy triangle, a more reliable information-theoretic tool for classification assessment. Motivated by this, we develop from first principles a measure of classification performance that takes into consideration the information learned by classifiers. We are then able to obtain the entropy-modulated accuracy (EMA, a pessimistic estimate of the expected accuracy with the influence of the input distribution factored out, and the normalized information transfer factor (NIT, a measure of how efficient is the transmission of information from the input to the output set of classes. The EMA is a more natural measure of classification performance than accuracy when the heuristic to maximize is the transfer of information through the classifier instead of classification error count. The NIT factor measures the effectiveness of the learning process in classifiers and also makes it harder for them to "cheat" using techniques like specialization, while also promoting the interpretability of results. Their use is demonstrated in a mind reading task competition that aims at decoding the identity of a video stimulus based on magnetoencephalography recordings. We show how the EMA and the NIT factor reject rankings based in accuracy, choosing more meaningful and interpretable classifiers.

  6. Partition method and experimental validation for impact dynamics of flexible multibody system

    Science.gov (United States)

    Wang, J. Y.; Liu, Z. Y.; Hong, J. Z.

    2018-06-01

    The impact problem of a flexible multibody system is a non-smooth, high-transient, and strong-nonlinear dynamic process with variable boundary. How to model the contact/impact process accurately and efficiently is one of the main difficulties in many engineering applications. The numerical approaches being used widely in impact analysis are mainly from two fields: multibody system dynamics (MBS) and computational solid mechanics (CSM). Approaches based on MBS provide a more efficient yet less accurate analysis of the contact/impact problems, while approaches based on CSM are well suited for particularly high accuracy needs, yet require very high computational effort. To bridge the gap between accuracy and efficiency in the dynamic simulation of a flexible multibody system with contacts/impacts, a partition method is presented considering that the contact body is divided into two parts, an impact region and a non-impact region. The impact region is modeled using the finite element method to guarantee the local accuracy, while the non-impact region is modeled using the modal reduction approach to raise the global efficiency. A three-dimensional rod-plate impact experiment is designed and performed to validate the numerical results. The principle for how to partition the contact bodies is proposed: the maximum radius of the impact region can be estimated by an analytical method, and the modal truncation orders of the non-impact region can be estimated by the highest frequency of the signal measured. The simulation results using the presented method are in good agreement with the experimental results. It shows that this method is an effective formulation considering both accuracy and efficiency. Moreover, a more complicated multibody impact problem of a crank slider mechanism is investigated to strengthen this conclusion.

  7. Note: Optical and electronic design of an amplitude-modulated continuous-wave laser scanner for high-accuracy distance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Junhwan; Hwang, Sungui; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju (Korea, Republic of)

    2015-04-15

    To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical system and signal processing design are performed using 3D measurements.

  8. Note: Optical and electronic design of an amplitude-modulated continuous-wave laser scanner for high-accuracy distance measurement

    International Nuclear Information System (INIS)

    Jang, Junhwan; Hwang, Sungui; Park, Kyihwan

    2015-01-01

    To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical system and signal processing design are performed using 3D measurements

  9. Spectroscopic characterization of galaxy clusters in RCS-1: spectroscopic confirmation, redshift accuracy, and dynamical mass-richness relation

    Science.gov (United States)

    Gilbank, David G.; Barrientos, L. Felipe; Ellingson, Erica; Blindert, Kris; Yee, H. K. C.; Anguita, T.; Gladders, M. D.; Hall, P. B.; Hertling, G.; Infante, L.; Yan, R.; Carrasco, M.; Garcia-Vergara, Cristina; Dawson, K. S.; Lidman, C.; Morokuma, T.

    2018-05-01

    We present follow-up spectroscopic observations of galaxy clusters from the first Red-sequence Cluster Survey (RCS-1). This work focuses on two samples, a lower redshift sample of ˜30 clusters ranging in redshift from z ˜ 0.2-0.6 observed with multiobject spectroscopy (MOS) on 4-6.5-m class telescopes and a z ˜ 1 sample of ˜10 clusters 8-m class telescope observations. We examine the detection efficiency and redshift accuracy of the now widely used red-sequence technique for selecting clusters via overdensities of red-sequence galaxies. Using both these data and extended samples including previously published RCS-1 spectroscopy and spectroscopic redshifts from SDSS, we find that the red-sequence redshift using simple two-filter cluster photometric redshifts is accurate to σz ≈ 0.035(1 + z) in RCS-1. This accuracy can potentially be improved with better survey photometric calibration. For the lower redshift sample, ˜5 per cent of clusters show some (minor) contamination from secondary systems with the same red-sequence intruding into the measurement aperture of the original cluster. At z ˜ 1, the rate rises to ˜20 per cent. Approximately ten per cent of projections are expected to be serious, where the two components contribute significant numbers of their red-sequence galaxies to another cluster. Finally, we present a preliminary study of the mass-richness calibration using velocity dispersions to probe the dynamical masses of the clusters. We find a relation broadly consistent with that seen in the local universe from the WINGS sample at z ˜ 0.05.

  10. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Lu, J.; Zhang, Wenqi

    2007-01-01

    is influenced by inductive noise caused by the high welding current. In this study, the dynamic resistance is determined by measuring the voltage at primary side and current at secondary side. This increases the accuracy of measurement because of higher signal-noise ratio, and allows to apply to in-process......The conventional methods of determining the dynamic resistance were mostly done by measuring the voltage and current at secondary side of transformer in resistance welding machines, in which the measuring set-up normally interferes with the movement of electrode, and the measuring precision...

  11. Innovative High-Accuracy Lidar Bathymetric Technique for the Frequent Measurement of River Systems

    Science.gov (United States)

    Gisler, A.; Crowley, G.; Thayer, J. P.; Thompson, G. S.; Barton-Grimley, R. A.

    2015-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for understanding how rivers evolve over many timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  12. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    Science.gov (United States)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  13. Hybrid RANS-LES using high order numerical methods

    Science.gov (United States)

    Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael

    2017-11-01

    Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  14. Accuracy of applicator tip reconstruction in MRI-guided interstitial 192Ir-high-dose-rate brachytherapy of liver tumors

    International Nuclear Information System (INIS)

    Wybranski, Christian; Eberhardt, Benjamin; Fischbach, Katharina; Fischbach, Frank; Walke, Mathias; Hass, Peter; Röhl, Friedrich-Wilhelm; Kosiek, Ortrud; Kaiser, Mandy; Pech, Maciej; Lüdemann, Lutz; Ricke, Jens

    2015-01-01

    Background and purpose: To evaluate the reconstruction accuracy of brachytherapy (BT) applicators tips in vitro and in vivo in MRI-guided 192 Ir-high-dose-rate (HDR)-BT of inoperable liver tumors. Materials and methods: Reconstruction accuracy of plastic BT applicators, visualized by nitinol inserts, was assessed in MRI phantom measurements and in MRI 192 Ir-HDR-BT treatment planning datasets of 45 patients employing CT co-registration and vector decomposition. Conspicuity, short-term dislocation, and reconstruction errors were assessed in the clinical data. The clinical effect of applicator reconstruction accuracy was determined in follow-up MRI data. Results: Applicator reconstruction accuracy was 1.6 ± 0.5 mm in the phantom measurements. In the clinical MRI datasets applicator conspicuity was rated good/optimal in ⩾72% of cases. 16/129 applicators showed not time dependent deviation in between MRI/CT acquisition (p > 0.1). Reconstruction accuracy was 5.5 ± 2.8 mm, and the average image co-registration error was 3.1 ± 0.9 mm. Vector decomposition revealed no preferred direction of reconstruction errors. In the follow-up data deviation of planned dose distribution and irradiation effect was 6.9 ± 3.3 mm matching the mean co-registration error (6.5 ± 2.5 mm; p > 0.1). Conclusion: Applicator reconstruction accuracy in vitro conforms to AAPM TG 56 standard. Nitinol-inserts are feasible for applicator visualization and yield good conspicuity in MRI treatment planning data. No preferred direction of reconstruction errors were found in vivo

  15. STTR Phase I: Low-Cost, High-Accuracy, Whole-Building Carbon Dioxide Monitoring for Demand Control Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hallstrom, Jason; Ni, Zheng Richard

    2018-05-15

    This STTR Phase I project assessed the feasibility of a new CO2 sensing system optimized for low-cost, high-accuracy, whole-building monitoring for use in demand control ventilation. The focus was on the development of a wireless networking platform and associated firmware to provide signal conditioning and conversion, fault- and disruptiontolerant networking, and multi-hop routing at building scales to avoid wiring costs. Early exploration of a bridge (or “gateway”) to direct digital control services was also explored. Results of the project contributed to an improved understanding of a new electrochemical sensor for monitoring indoor CO2 concentrations, as well as the electronics and networking infrastructure required to deploy those sensors at building scales. New knowledge was acquired concerning the sensor’s accuracy, environmental response, and failure modes, and the acquisition electronics required to achieve accuracy over a wide range of CO2 concentrations. The project demonstrated that the new sensor offers repeatable correspondence with commercial optical sensors, with supporting electronics that offer gain accuracy within 0.5%, and acquisition accuracy within 1.5% across three orders of magnitude variation in generated current. Considering production, installation, and maintenance costs, the technology presents a foundation for achieving whole-building CO2 sensing at a price point below $0.066 / sq-ft – meeting economic feasibility criteria established by the Department of Energy. The technology developed under this award addresses obstacles on the critical path to enabling whole-building CO2 sensing and demand control ventilation in commercial retrofits, small commercial buildings, residential complexes, and other highpotential structures that have been slow to adopt these technologies. It presents an opportunity to significantly reduce energy use throughout the United States a

  16. High-performance modeling of CO2 sequestration by coupling reservoir simulation and molecular dynamics

    KAUST Repository

    Bao, Kai

    2013-01-01

    The present work describes a parallel computational framework for CO2 sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel HPC systems. In this framework, a parallel reservoir simulator, Reservoir Simulation Toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, while the molecular dynamics simulations are performed to provide the required physical parameters. Numerous technologies from different fields are employed to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large scale CO2 sequestration for long-term storage in the subsurface geological formations, such as depleted reservoirs and deep saline aquifers, which has been proposed as one of the most attractive and practical solutions to reduce the CO2 emission problem to address the global-warming threat. To effectively solve such problems, fine grids and accurate prediction of the properties of fluid mixtures are essential for accuracy. In this work, the CO2 sequestration is presented as our first example to couple the reservoir simulation and molecular dynamics, while the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical process in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability are observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well demonstrated with several experiments with hundreds of millions to a billion cells. To our best knowledge, the work represents the first attempt to couple the reservoir simulation and molecular simulation for large scale modeling. Due to the complexity of the subsurface systems

  17. A study on low-cost, high-accuracy, and real-time stereo vision algorithms for UAV power line inspection

    Science.gov (United States)

    Wang, Hongyu; Zhang, Baomin; Zhao, Xun; Li, Cong; Lu, Cunyue

    2018-04-01

    Conventional stereo vision algorithms suffer from high levels of hardware resource utilization due to algorithm complexity, or poor levels of accuracy caused by inadequacies in the matching algorithm. To address these issues, we have proposed a stereo range-finding technique that produces an excellent balance between cost, matching accuracy and real-time performance, for power line inspection using UAV. This was achieved through the introduction of a special image preprocessing algorithm and a weighted local stereo matching algorithm, as well as the design of a corresponding hardware architecture. Stereo vision systems based on this technique have a lower level of resource usage and also a higher level of matching accuracy following hardware acceleration. To validate the effectiveness of our technique, a stereo vision system based on our improved algorithms were implemented using the Spartan 6 FPGA. In comparative experiments, it was shown that the system using the improved algorithms outperformed the system based on the unimproved algorithms, in terms of resource utilization and matching accuracy. In particular, Block RAM usage was reduced by 19%, and the improved system was also able to output range-finding data in real time.

  18. Interobserver variability and accuracy of high-definition endoscopic diagnosis for gastric intestinal metaplasia among experienced and inexperienced endoscopists.

    Science.gov (United States)

    Hyun, Yil Sik; Han, Dong Soo; Bae, Joong Ho; Park, Hye Sun; Eun, Chang Soo

    2013-05-01

    Accurate diagnosis of gastric intestinal metaplasia is important; however, conventional endoscopy is known to be an unreliable modality for diagnosing gastric intestinal metaplasia (IM). The aims of the study were to evaluate the interobserver variation in diagnosing IM by high-definition (HD) endoscopy and the diagnostic accuracy of this modality for IM among experienced and inexperienced endoscopists. Selected 50 cases, taken with HD endoscopy, were sent for a diagnostic inquiry of gastric IM through visual inspection to five experienced and five inexperienced endoscopists. The interobserver agreement between endoscopists was evaluated to verify the diagnostic reliability of HD endoscopy in diagnosing IM, and the diagnostic accuracy, sensitivity, and specificity were evaluated for validity of HD endoscopy in diagnosing IM. Interobserver agreement among the experienced endoscopists was "poor" (κ = 0.38) and it was also "poor" (κ = 0.33) among the inexperienced endoscopists. The diagnostic accuracy of the experienced endoscopists was superior to that of the inexperienced endoscopists (P = 0.003). Since diagnosis through visual inspection is unreliable in the diagnosis of IM, all suspicious areas for gastric IM should be considered to be biopsied. Furthermore, endoscopic experience and education are needed to raise the diagnostic accuracy of gastric IM.

  19. Quality assurance of geometric accuracy based on an electronic portal imaging device and log data analysis for Dynamic WaveArc irradiation.

    Science.gov (United States)

    Hirashima, Hideaki; Miyabe, Yuki; Nakamura, Mitsuhiro; Mukumoto, Nobutaka; Mizowaki, Takashi; Hiraoka, Masahiro

    2018-04-06

    The purpose of this study was to develop a simple verification method for the routine quality assurance (QA) of Dynamic WaveArc (DWA) irradiation using electronic portal imaging device (EPID) images and log data analysis. First, an automatic calibration method utilizing the outermost multileaf collimator (MLC) slits was developed to correct the misalignment between the center of the EPID and the beam axis. Moreover, to verify the detection accuracy of the MLC position according to the EPID images, various positions of the MLC with intentional errors in the range 0.1-1 mm were assessed. Second, to validate the geometric accuracy during DWA irradiation, tests were designed in consideration of three indices. Test 1 evaluated the accuracy of the MLC position. Test 2 assessed dose output consistency with variable dose rate (160-400 MU/min), gantry speed (2.2-6°/s), and ring speed (0.5-2.7°/s). Test 3 validated dose output consistency with variable values of the above parameters plus MLC speed (1.6-4.2 cm/s). All tests were delivered to the EPID and compared with those obtained using a stationary radiation beam with a 0° gantry angle. Irradiation log data were recorded simultaneously. The 0.1-mm intentional error on the MLC position could be detected by the EPID, which is smaller than the EPID pixel size. In Test 1, the MLC slit widths agreed within 0.20 mm of their exposed values. The averaged root-mean-square error (RMSE) of the dose outputs was less than 0.8% in Test 2 and Test 3. Using log data analysis in Test 3, the RMSE between the planned and recorded data was 0.1 mm, 0.12°, and 0.07° for the MLC position, gantry angle, and ring angle, respectively. The proposed method is useful for routine QA of the accuracy of DWA. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  20. Compressible dynamic stall control using high momentum microjets

    Science.gov (United States)

    Beahan, James J.; Shih, Chiang; Krothapalli, Anjaneyulu; Kumar, Rajan; Chandrasekhara, Muguru S.

    2014-09-01

    Control of the dynamic stall process of a NACA 0015 airfoil undergoing periodic pitching motion is investigated experimentally at the NASA Ames compressible dynamic stall facility. Multiple microjet nozzles distributed uniformly in the first 12 % chord from the airfoil's leading edge are used for the dynamic stall control. Point diffraction interferometry technique is used to characterize the control effectiveness, both qualitatively and quantitatively. The microjet control has been found to be very effective in suppressing both the emergence of the dynamic stall vortex and the associated massive flow separation at the entire operating range of angles of attack. At the high Mach number ( M = 0.4), the use of microjets appears to eliminate the shock structures that are responsible for triggering the shock-induced separation, establishing the fact that the use of microjets is effective in controlling dynamic stall with a strong compressibility effect. In general, microjet control has an overall positive effect in terms of maintaining leading edge suction pressure and preventing flow separation.

  1. Modified sine bar device measures small angles with high accuracy

    Science.gov (United States)

    Thekaekara, M.

    1968-01-01

    Modified sine bar device measures small angles with enough accuracy to calibrate precision optical autocollimators. The sine bar is a massive bar of steel supported by two cylindrical rods at one end and one at the other.

  2. Systematic review of discharge coding accuracy

    Science.gov (United States)

    Burns, E.M.; Rigby, E.; Mamidanna, R.; Bottle, A.; Aylin, P.; Ziprin, P.; Faiz, O.D.

    2012-01-01

    Introduction Routinely collected data sets are increasingly used for research, financial reimbursement and health service planning. High quality data are necessary for reliable analysis. This study aims to assess the published accuracy of routinely collected data sets in Great Britain. Methods Systematic searches of the EMBASE, PUBMED, OVID and Cochrane databases were performed from 1989 to present using defined search terms. Included studies were those that compared routinely collected data sets with case or operative note review and those that compared routinely collected data with clinical registries. Results Thirty-two studies were included. Twenty-five studies compared routinely collected data with case or operation notes. Seven studies compared routinely collected data with clinical registries. The overall median accuracy (routinely collected data sets versus case notes) was 83.2% (IQR: 67.3–92.1%). The median diagnostic accuracy was 80.3% (IQR: 63.3–94.1%) with a median procedure accuracy of 84.2% (IQR: 68.7–88.7%). There was considerable variation in accuracy rates between studies (50.5–97.8%). Since the 2002 introduction of Payment by Results, accuracy has improved in some respects, for example primary diagnoses accuracy has improved from 73.8% (IQR: 59.3–92.1%) to 96.0% (IQR: 89.3–96.3), P= 0.020. Conclusion Accuracy rates are improving. Current levels of reported accuracy suggest that routinely collected data are sufficiently robust to support their use for research and managerial decision-making. PMID:21795302

  3. Introduction to State Estimation of High-Rate System Dynamics.

    Science.gov (United States)

    Hong, Jonathan; Laflamme, Simon; Dodson, Jacob; Joyce, Bryan

    2018-01-13

    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer's convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model.

  4. Early static {sup 18}F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Nathalie L.; Winkelmann, Isabel; Wenter, Vera; Mille, Erik; Todica, Andrei; Brendel, Matthias; Bartenstein, Peter [Ludwig-Maximilians-University Munich, Department of Nuclear Medicine, Munich (Germany); Suchorska, Bogdana; Tonn, Joerg-Christian [Ludwig-Maximilians-University Munich, Department of Neurosurgery, Munich (Germany); Schmid-Tannwald, Christine [Ludwig-Maximilians-University Munich, Institute for Clinical Radiology, Munich (Germany); La Fougere, Christian [University of Tuebingen, Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Tuebingen (Germany)

    2016-06-15

    Current guidelines for glioma imaging by positron emission tomography (PET) using the amino acid analogue O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine ({sup 18}F-FET) recommend image acquisition from 20-40 min post injection (p.i.). The maximal tumour-to-background evaluation (TBR{sub max}) obtained in these summation images does not enable reliable differentiation between low and high grade glioma (LGG and HGG), which, however, can be achieved by dynamic {sup 18}F-FET-PET. We investigated the accuracy of tumour grading using TBR{sub max} values at different earlier time points after tracer injection. Three hundred and fourteen patients with histologically proven primary diagnosis of glioma (131 LGG, 183 HGG) who had undergone 40-min dynamic {sup 18}F-FET-PET scans were retrospectively evaluated. TBR{sub max} was assessed in the standard 20-40 min summation images, as well as in summation images from 0-10 min, 5-15 min, 5-20 min, and 15-30 min p.i., and kinetic analysis was performed. TBR{sub max} values and kinetic analysis were correlated with histological classification. ROC analyses were performed for each time frame and sensitivity, specificity, and accuracy were assessed. TBR{sub max} values in the earlier summation images were significantly better for tumour grading (P < 0.001) when compared to standard 20-40 min scans, with best results for the early 5-15 min scan. This was due to higher TBR{sub max} in the HGG (3.9 vs. 3.3; p < 0.001), while TBR{sub max} remained nearly stable in the LGG (2.2 vs. 2.1). Overall, accuracy increased from 70 % in the 20-40 min analysis to 77 % in the 5-15 min images, but did not reach the accuracy of dynamic analysis (80 %). Early TBR{sub max} assessment (5-15 min p.i.) is more accurate for the differentiation between LGG and HGG than the standard static scan (20-40 min p.i.) mainly caused by the characteristic high {sup 18}F-FET uptake of HGG in the initial phase. Therefore, when dynamic {sup 18}F-FET-PET cannot be performed

  5. High accuracy in silico sulfotransferase models.

    Science.gov (United States)

    Cook, Ian; Wang, Ting; Falany, Charles N; Leyh, Thomas S

    2013-11-29

    Predicting enzymatic behavior in silico is an integral part of our efforts to understand biology. Hundreds of millions of compounds lie in targeted in silico libraries waiting for their metabolic potential to be discovered. In silico "enzymes" capable of accurately determining whether compounds can inhibit or react is often the missing piece in this endeavor. This problem has now been solved for the cytosolic sulfotransferases (SULTs). SULTs regulate the bioactivities of thousands of compounds--endogenous metabolites, drugs and other xenobiotics--by transferring the sulfuryl moiety (SO3) from 3'-phosphoadenosine 5'-phosphosulfate to the hydroxyls and primary amines of these acceptors. SULT1A1 and 2A1 catalyze the majority of sulfation that occurs during human Phase II metabolism. Here, recent insights into the structure and dynamics of SULT binding and reactivity are incorporated into in silico models of 1A1 and 2A1 that are used to identify substrates and inhibitors in a structurally diverse set of 1,455 high value compounds: the FDA-approved small molecule drugs. The SULT1A1 models predict 76 substrates. Of these, 53 were known substrates. Of the remaining 23, 21 were tested, and all were sulfated. The SULT2A1 models predict 22 substrates, 14 of which are known substrates. Of the remaining 8, 4 were tested, and all are substrates. The models proved to be 100% accurate in identifying substrates and made no false predictions at Kd thresholds of 100 μM. In total, 23 "new" drug substrates were identified, and new linkages to drug inhibitors are predicted. It now appears to be possible to accurately predict Phase II sulfonation in silico.

  6. Accuracy Assessment and Analysis for GPT2

    Directory of Open Access Journals (Sweden)

    YAO Yibin

    2015-07-01

    Full Text Available GPT(global pressure and temperature is a global empirical model usually used to provide temperature and pressure for the determination of tropospheric delay, there are some weakness to GPT, these have been improved with a new empirical model named GPT2, which not only improves the accuracy of temperature and pressure, but also provides specific humidity, water vapor pressure, mapping function coefficients and other tropospheric parameters, and no accuracy analysis of GPT2 has been made until now. In this paper high-precision meteorological data from ECWMF and NOAA were used to test and analyze the accuracy of temperature, pressure and water vapor pressure expressed by GPT2, testing results show that the mean Bias of temperature is -0.59℃, average RMS is 3.82℃; absolute value of average Bias of pressure and water vapor pressure are less than 1 mb, GPT2 pressure has average RMS of 7 mb, and water vapor pressure no more than 3 mb, accuracy is different in different latitudes, all of them have obvious seasonality. In conclusion, GPT2 model has high accuracy and stability on global scale.

  7. Nonlinear Multivariate Spline-Based Control Allocation for High-Performance Aircraft

    NARCIS (Netherlands)

    Tol, H.J.; De Visser, C.C.; Van Kampen, E.; Chu, Q.P.

    2014-01-01

    High performance flight control systems based on the nonlinear dynamic inversion (NDI) principle require highly accurate models of aircraft aerodynamics. In general, the accuracy of the internal model determines to what degree the system nonlinearities can be canceled; the more accurate the model,

  8. High Accuracy Nonlinear Control and Estimation for Machine Tool Systems

    DEFF Research Database (Denmark)

    Papageorgiou, Dimitrios

    Component mass production has been the backbone of industry since the second industrial revolution, and machine tools are producing parts of widely varying size and design complexity. The ever-increasing level of automation in modern manufacturing processes necessitates the use of more...... sophisticated machine tool systems that are adaptable to different workspace conditions, while at the same time being able to maintain very narrow workpiece tolerances. The main topic of this thesis is to suggest control methods that can maintain required manufacturing tolerances, despite moderate wear and tear....... The purpose is to ensure that full accuracy is maintained between service intervals and to advice when overhaul is needed. The thesis argues that quality of manufactured components is directly related to the positioning accuracy of the machine tool axes, and it shows which low level control architectures...

  9. RADIANCE DOMAIN COMPOSITING FOR HIGH DYNAMIC RANGE IMAGING

    Directory of Open Access Journals (Sweden)

    M.R. Renu

    2013-02-01

    Full Text Available High dynamic range imaging aims at creating an image with a range of intensity variations larger than the range supported by a camera sensor. Most commonly used methods combine multiple exposure low dynamic range (LDR images, to obtain the high dynamic range (HDR image. Available methods typically neglect the noise term while finding appropriate weighting functions to estimate the camera response function as well as the radiance map. We look at the HDR imaging problem in a denoising frame work and aim at reconstructing a low noise radiance map from noisy low dynamic range images, which is tone mapped to get the LDR equivalent of the HDR image. We propose a maximum aposteriori probability (MAP based reconstruction of the HDR image using Gibb’s prior to model the radiance map, with total variation (TV as the prior to avoid unnecessary smoothing of the radiance field. To make the computation with TV prior efficient, we extend the majorize-minimize method of upper bounding the total variation by a quadratic function to our case which has a nonlinear term arising from the camera response function. A theoretical justification for doing radiance domain denoising as opposed to image domain denoising is also provided.

  10. Prediction of novel pre-microRNAs with high accuracy through boosting and SVM.

    Science.gov (United States)

    Zhang, Yuanwei; Yang, Yifan; Zhang, Huan; Jiang, Xiaohua; Xu, Bo; Xue, Yu; Cao, Yunxia; Zhai, Qian; Zhai, Yong; Xu, Mingqing; Cooke, Howard J; Shi, Qinghua

    2011-05-15

    High-throughput deep-sequencing technology has generated an unprecedented number of expressed short sequence reads, presenting not only an opportunity but also a challenge for prediction of novel microRNAs. To verify the existence of candidate microRNAs, we have to show that these short sequences can be processed from candidate pre-microRNAs. However, it is laborious and time consuming to verify these using existing experimental techniques. Therefore, here, we describe a new method, miRD, which is constructed using two feature selection strategies based on support vector machines (SVMs) and boosting method. It is a high-efficiency tool for novel pre-microRNA prediction with accuracy up to 94.0% among different species. miRD is implemented in PHP/PERL+MySQL+R and can be freely accessed at http://mcg.ustc.edu.cn/rpg/mird/mird.php.

  11. High Accuracy mass Measurement of the very Short-Lived Halo Nuclide $^{11}$Li

    CERN Multimedia

    Le scornet, G

    2002-01-01

    The archetypal halo nuclide $^{11}$Li has now attracted a wealth of experimental and theoretical attention. The most outstanding property of this nuclide, its extended radius that makes it as big as $^{48}$Ca, is highly dependent on the binding energy of the two neutrons forming the halo. New generation experiments using radioactive beams with elastic proton scattering, knock-out and transfer reactions, together with $\\textit{ab initio}$ calculations require the tightening of the constraint on the binding energy. Good metrology also requires confirmation of the sole existing precision result to guard against a possible systematic deviation (or mistake). We propose a high accuracy mass determintation of $^{11}$Li, a particularly challenging task due to its very short half-life of 8.6 ms, but one perfectly suiting the MISTRAL spectrometer, now commissioned at ISOLDE. We request 15 shifts of beam time.

  12. Endometrial cancer with cervical stromal invasion: diagnostic accuracy of diffusion-weighted and dynamic contrast enhanced MR imaging at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Gigin; Lu, Hsin-Ying [Chang Gung Memorial Hospital at Linkou and Chang Gung University, Department of Medical Imaging and Intervention, Institute for Radiological Research, Guishan, Taoyuan (China); Chang Gung Memorial Hospital at Linkou, Clinical Phenome Center, Guishan, Taoyuan (China); Huang, Yu-Ting; Lin, Yu-Chun; Ng, Shu-Hang; Ng, Koon-Kwan [Chang Gung Memorial Hospital at Linkou and Chang Gung University, Department of Medical Imaging and Intervention, Institute for Radiological Research, Guishan, Taoyuan (China); Chao, Angel; Lai, Chyong-Huey [Chang Gung Memorial Hospital at Linkou and Chang Gung University, Department of Obstetrics and Gynecology and Gynecologic Cancer Research Center, Guishan, Taoyuan (China); Yang, Lan-Yan [Chang Gung Memorial Hospital at Linkou and Chang Gung University, Clinical Trial Center, Guishan, Taoyuan (China); Wu, Ren-Chin [Chang Gung Memorial Hospital at Linkou and Chang Gung University, Department of Pathology, Guishan, Taoyuan (China)

    2017-05-15

    To compare the diagnostic accuracy of diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging for detecting cervical stromal invasion in endometrial cancer. Eighty-three consecutive women with endometrial cancer underwent preoperative evaluation in a 3-T unit, including T2-weighted, DW (b = 0 and 1000 s/mm{sup 2}), and DCE MR imaging. Two radiologists independently assessed presence of cervical stromal invasion, with histopathological reference as gold standard. For assessing cervical stromal invasion, the diagnostic accuracy, sensitivity, and specificity, respectively for Reader 1/Reader 2, were as follows: DW MR imaging - 95.2 %/91.6 %, 91.7 %/100 %, and 95.8 %/90.1 %; DCE MR imaging - 91.6 %/88 %, 58.3 %/50 %, and 97.2 %/94.4 %. The diagnostic performance of DW MR imaging (Reader 1: areas under the receiver operating characteristic curve (AUC) = 0.98; Reader 2: AUC = 0.97) was significantly higher than that of DCE MR imaging (p = 0.009 for Reader 2) or T2-weighted MR imaging (Reader 1: p = 0.006; Reader 2: p = 0.013). Patients with cervical stromal invasion showed a significantly greater canal width (p < 0.0001) and myometrial invasion extent (p = 0.006). DW MR imaging has superior diagnostic performance compared with DCE MR imaging in the detection of cervical stromal invasion. (orig.)

  13. Accuracy assessment of cadastral maps using high resolution aerial photos

    Directory of Open Access Journals (Sweden)

    Alwan Imzahim

    2018-01-01

    Full Text Available A cadastral map is a map that shows the boundaries and ownership of land parcels. Some cadastral maps show additional details, such as survey district names, unique identifying numbers for parcels, certificate of title numbers, positions of existing structures, section or lot numbers and their respective areas, adjoining and adjacent street names, selected boundary dimensions and references to prior maps. In Iraq / Baghdad Governorate, the main problem is that the cadastral maps are georeferenced to a local geodetic datum known as Clark 1880 while the widely used reference system for navigation purpose (GPS and GNSS and uses Word Geodetic System 1984 (WGS84 as a base reference datum. The objective of this paper is to produce a cadastral map with scale 1:500 (metric scale by using aerial photographs 2009 with high ground spatial resolution 10 cm reference WGS84 system. The accuracy assessment for the cadastral maps updating approach to urban large scale cadastral maps (1:500-1:1000 was ± 0.115 meters; which complies with the American Social for Photogrammetry and Remote Sensing Standards (ASPRS.

  14. Interethnic differences in the accuracy of anthropometric indicators of obesity in screening for high risk of coronary heart disease

    Science.gov (United States)

    Herrera, VM; Casas, JP; Miranda, JJ; Perel, P; Pichardo, R; González, A; Sanchez, JR; Ferreccio, C; Aguilera, X; Silva, E; Oróstegui, M; Gómez, LF; Chirinos, JA; Medina-Lezama, J; Pérez, CM; Suárez, E; Ortiz, AP; Rosero, L; Schapochnik, N; Ortiz, Z; Ferrante, D; Diaz, M; Bautista, LE

    2009-01-01

    Background Cut points for defining obesity have been derived from mortality data among Whites from Europe and the United States and their accuracy to screen for high risk of coronary heart disease (CHD) in other ethnic groups has been questioned. Objective To compare the accuracy and to define ethnic and gender-specific optimal cut points for body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) when they are used in screening for high risk of CHD in the Latin-American and the US populations. Methods We estimated the accuracy and optimal cut points for BMI, WC and WHR to screen for CHD risk in Latin Americans (n=18 976), non-Hispanic Whites (Whites; n=8956), non-Hispanic Blacks (Blacks; n=5205) and Hispanics (n=5803). High risk of CHD was defined as a 10-year risk ≥20% (Framingham equation). The area under the receiver operator characteristic curve (AUC) and the misclassification-cost term were used to assess accuracy and to identify optimal cut points. Results WHR had the highest AUC in all ethnic groups (from 0.75 to 0.82) and BMI had the lowest (from 0.50 to 0.59). Optimal cut point for BMI was similar across ethnic/gender groups (27 kg/m2). In women, cut points for WC (94 cm) and WHR (0.91) were consistent by ethnicity. In men, cut points for WC and WHR varied significantly with ethnicity: from 91 cm in Latin Americans to 102 cm in Whites, and from 0.94 in Latin Americans to 0.99 in Hispanics, respectively. Conclusion WHR is the most accurate anthropometric indicator to screen for high risk of CHD, whereas BMI is almost uninformative. The same BMI cut point should be used in all men and women. Unique cut points for WC and WHR should be used in all women, but ethnic-specific cut points seem warranted among men. PMID:19238159

  15. Effects of accuracy motivation and anchoring on metacomprehension judgment and accuracy.

    Science.gov (United States)

    Zhao, Qin

    2012-01-01

    The current research investigates how accuracy motivation impacts anchoring and adjustment in metacomprehension judgment and how accuracy motivation and anchoring affect metacomprehension accuracy. Participants were randomly assigned to one of six conditions produced by the between-subjects factorial design involving accuracy motivation (incentive or no) and peer performance anchor (95%, 55%, or no). Two studies showed that accuracy motivation did not impact anchoring bias, but the adjustment-from-anchor process occurred. Accuracy incentive increased anchor-judgment gap for the 95% anchor but not for the 55% anchor, which induced less certainty about the direction of adjustment. The findings offer support to the integrative theory of anchoring. Additionally, the two studies revealed a "power struggle" between accuracy motivation and anchoring in influencing metacomprehension accuracy. Accuracy motivation could improve metacomprehension accuracy in spite of anchoring effect, but if anchoring effect is too strong, it could overpower the motivation effect. The implications of the findings were discussed.

  16. The use of imprecise processing to improve accuracy in weather and climate prediction

    Energy Technology Data Exchange (ETDEWEB)

    Düben, Peter D., E-mail: dueben@atm.ox.ac.uk [University of Oxford, Atmospheric, Oceanic and Planetary Physics (United Kingdom); McNamara, Hugh [University of Oxford, Mathematical Institute (United Kingdom); Palmer, T.N. [University of Oxford, Atmospheric, Oceanic and Planetary Physics (United Kingdom)

    2014-08-15

    The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce

  17. The use of imprecise processing to improve accuracy in weather and climate prediction

    International Nuclear Information System (INIS)

    Düben, Peter D.; McNamara, Hugh; Palmer, T.N.

    2014-01-01

    The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce computation and

  18. Accuracy of dynamical-decoupling-based spectroscopy of Gaussian noise

    Science.gov (United States)

    Szańkowski, Piotr; Cywiński, Łukasz

    2018-03-01

    The fundamental assumption of dynamical-decoupling-based noise spectroscopy is that the coherence decay rate of qubit (or qubits) driven with a sequence of many pulses, is well approximated by the environmental noise spectrum spanned on frequency comb defined by the sequence. Here we investigate the precise conditions under which this commonly used spectroscopic approach is quantitatively correct. To this end we focus on two representative examples of spectral densities: the long-tailed Lorentzian, and finite-ranged Gaussian—both expected to be encountered when using the qubit for nanoscale nuclear resonance imaging. We have found that, in contrast to Lorentz spectrum, for which the corrections to the standard spectroscopic formulas can easily be made negligible, the spectra with finite range are more challenging to reconstruct accurately. For Gaussian line shape of environmental spectral density, direct application of the standard dynamical-decoupling-based spectroscopy leads to erroneous attribution of long-tail behavior to the reconstructed spectrum. Fortunately, artifacts such as this, can be completely avoided with the simple extension to standard reconstruction method.

  19. Equation of state of dense plasmas: Orbital-free molecular dynamics as the limit of quantum molecular dynamics for high-Z elements

    Energy Technology Data Exchange (ETDEWEB)

    Danel, J.-F.; Blottiau, P.; Kazandjian, L.; Piron, R.; Torrent, M. [CEA, DAM, DIF, 91297 Arpajon (France)

    2014-10-15

    The applicability of quantum molecular dynamics to the calculation of the equation of state of a dense plasma is limited at high temperature by computational cost. Orbital-free molecular dynamics, based on a semiclassical approximation and possibly on a gradient correction, is a simulation method available at high temperature. For a high-Z element such as lutetium, we examine how orbital-free molecular dynamics applied to the equation of state of a dense plasma can be regarded as the limit of quantum molecular dynamics at high temperature. For the normal mass density and twice the normal mass density, we show that the pressures calculated with the quantum approach converge monotonically towards those calculated with the orbital-free approach; we observe a faster convergence when the orbital-free approach includes the gradient correction. We propose a method to obtain an equation of state reproducing quantum molecular dynamics results up to high temperatures where this approach cannot be directly implemented. With the results already obtained for low-Z plasmas, the present study opens the way for reproducing the quantum molecular dynamics pressure for all elements up to high temperatures.

  20. Assessment of high precision, high accuracy Inductively Coupled Plasma-Optical Emission Spectroscopy to obtain concentration uncertainties less than 0.2% with variable matrix concentrations

    International Nuclear Information System (INIS)

    Rabb, Savelas A.; Olesik, John W.

    2008-01-01

    The ability to obtain high precision, high accuracy measurements in samples with complex matrices using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy (HP-ICP-OES) was investigated. The Common Analyte Internal Standard (CAIS) procedure was incorporated into the High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method to correct for matrix-induced changes in emission intensity ratios. Matrix matching and standard addition approaches to minimize matrix-induced errors when using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy were also assessed. The High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method was tested with synthetic solutions in a variety of matrices, alloy standard reference materials and geological reference materials

  1. The accuracy of {sup 68}Ga-PSMA PET/CT in primary lymph node staging in high-risk prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oebek, Can; Doganca, Tuenkut [Acibadem Taksim Hospital, Department of Urology, Istanbul (Turkey); Demirci, Emre [Sisli Etfal Training and Research Hospital, Department of Nuclear Medicine, Istanbul (Turkey); Ocak, Meltem [Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul (Turkey); Kural, Ali Riza [Acibadem University, Department of Urology, Istanbul (Turkey); Yildirim, Asif [Istanbul Medeniyet University, Department of Urology, Istanbul (Turkey); Yuecetas, Ugur [Istanbul Training and Research Hospital, Department of Urology, Istanbul (Turkey); Demirdag, Cetin [Istanbul University, Cerrahpasa School of Medicine, Department of Urology, Istanbul (Turkey); Erdogan, Sarper M. [Istanbul University, Cerrahpasa School of Medicine, Department of Public Health, Istanbul (Turkey); Kabasakal, Levent [Istanbul University, Cerrahpasa School of Medicine, Department of Nuclear Medicine, Istanbul (Turkey); Collaboration: Members of Urooncology Association, Turkey

    2017-10-15

    To assess the diagnostic accuracy of {sup 68}Ga-PSMA PET in predicting lymph node (LN) metastases in primary N staging in high-risk and very high-risk nonmetastatic prostate cancer in comparison with morphological imaging. This was a multicentre trial of the Society of Urologic Oncology in Turkey in conjunction with the Nuclear Medicine Department of Cerrahpasa School of Medicine, Istanbul University. Patients were accrued from eight centres. Patients with high-risk and very high-risk disease scheduled to undergo surgical treatment with extended LN dissection between July 2014 and October 2015 were included. Either MRI or CT was used for morphological imaging. PSMA PET/CT was performed and evaluated at a single centre. Sensitivity, specificity and accuracy were calculated for the detection of lymphatic metastases by PSMA PET/CT and morphological imaging. Kappa values were calculated to evaluate the correlation between the numbers of LN metastases detected by PSMA PET/CT and by histopathology. Data on 51 eligible patients are presented. The sensitivity, specificity and accuracy of PSMA PET in detecting LN metastases in the primary setting were 53%, 86% and 76%, and increased to 67%, 88% and 81% in the subgroup with of patients with ≥15 LN removed. Kappa values for the correlation between imaging and pathology were 0.41 for PSMA PET and 0.18 for morphological imaging. PSMA PET/CT is superior to morphological imaging for the detection of metastatic LNs in patients with primary prostate cancer. Surgical dissection remains the gold standard for precise lymphatic staging. (orig.)

  2. HEVC for high dynamic range services

    Science.gov (United States)

    Kim, Seung-Hwan; Zhao, Jie; Misra, Kiran; Segall, Andrew

    2015-09-01

    Displays capable of showing a greater range of luminance values can render content containing high dynamic range information in a way such that the viewers have a more immersive experience. This paper introduces the design aspects of a high dynamic range (HDR) system, and examines the performance of the HDR processing chain in terms of compression efficiency. Specifically it examines the relation between recently introduced Society of Motion Picture and Television Engineers (SMPTE) ST 2084 transfer function and the High Efficiency Video Coding (HEVC) standard. SMPTE ST 2084 is designed to cover the full range of an HDR signal from 0 to 10,000 nits, however in many situations the valid signal range of actual video might be smaller than SMPTE ST 2084 supported range. The above restricted signal range results in restricted range of code values for input video data and adversely impacts compression efficiency. In this paper, we propose a code value remapping method that extends the restricted range code values into the full range code values so that the existing standards such as HEVC may better compress the video content. The paper also identifies related non-normative encoder-only changes that are required for remapping method for a fair comparison with anchor. Results are presented comparing the efficiency of the current approach versus the proposed remapping method for HM-16.2.

  3. Interobserver Variability and Accuracy of High-Definition Endoscopic Diagnosis for Gastric Intestinal Metaplasia among Experienced and Inexperienced Endoscopists

    Science.gov (United States)

    Hyun, Yil Sik; Bae, Joong Ho; Park, Hye Sun; Eun, Chang Soo

    2013-01-01

    Accurate diagnosis of gastric intestinal metaplasia is important; however, conventional endoscopy is known to be an unreliable modality for diagnosing gastric intestinal metaplasia (IM). The aims of the study were to evaluate the interobserver variation in diagnosing IM by high-definition (HD) endoscopy and the diagnostic accuracy of this modality for IM among experienced and inexperienced endoscopists. Selected 50 cases, taken with HD endoscopy, were sent for a diagnostic inquiry of gastric IM through visual inspection to five experienced and five inexperienced endoscopists. The interobserver agreement between endoscopists was evaluated to verify the diagnostic reliability of HD endoscopy in diagnosing IM, and the diagnostic accuracy, sensitivity, and specificity were evaluated for validity of HD endoscopy in diagnosing IM. Interobserver agreement among the experienced endoscopists was "poor" (κ = 0.38) and it was also "poor" (κ = 0.33) among the inexperienced endoscopists. The diagnostic accuracy of the experienced endoscopists was superior to that of the inexperienced endoscopists (P = 0.003). Since diagnosis through visual inspection is unreliable in the diagnosis of IM, all suspicious areas for gastric IM should be considered to be biopsied. Furthermore, endoscopic experience and education are needed to raise the diagnostic accuracy of gastric IM. PMID:23678267

  4. Reconstructing Interlaced High-Dynamic-Range Video Using Joint Learning.

    Science.gov (United States)

    Inchang Choi; Seung-Hwan Baek; Kim, Min H

    2017-11-01

    For extending the dynamic range of video, it is a common practice to capture multiple frames sequentially with different exposures and combine them to extend the dynamic range of each video frame. However, this approach results in typical ghosting artifacts due to fast and complex motion in nature. As an alternative, video imaging with interlaced exposures has been introduced to extend the dynamic range. However, the interlaced approach has been hindered by jaggy artifacts and sensor noise, leading to concerns over image quality. In this paper, we propose a data-driven approach for jointly solving two specific problems of deinterlacing and denoising that arise in interlaced video imaging with different exposures. First, we solve the deinterlacing problem using joint dictionary learning via sparse coding. Since partial information of detail in differently exposed rows is often available via interlacing, we make use of the information to reconstruct details of the extended dynamic range from the interlaced video input. Second, we jointly solve the denoising problem by tailoring sparse coding to better handle additive noise in low-/high-exposure rows, and also adopt multiscale homography flow to temporal sequences for denoising. We anticipate that the proposed method will allow for concurrent capture of higher dynamic range video frames without suffering from ghosting artifacts. We demonstrate the advantages of our interlaced video imaging compared with the state-of-the-art high-dynamic-range video methods.

  5. Dynamic high-cadence cycling improves motor symptoms in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Angela eRidgel

    2015-09-01

    Full Text Available Rationale: Individuals with Parkinson’s disease (PD often have deficits in kinesthesia. There is a need for rehabilitation interventions that improve these kinesthetic deficits. Forced (tandem cycling at a high cadence improves motor function. However, tandem cycling is difficult to implement in a rehabilitation setting. Objective: To construct an instrumented, motored cycle and to examine if high cadence dynamic cycling promotes improvements in motor function. Method: This motored cycle had two different modes: dynamic and static cycling. In dynamic mode, the motor maintained 75-85 rpm. In static mode, the rider determined the pedaling cadence. UPDRS Motor III and Timed Up and Go (TUG were used to assess changes in motor function after three cycling sessions. Results: Individuals in the static group showed a lower cadence but a higher power, torque and heart rate than the dynamic group. UPDRS score showed a significant 13.9% improvement in the dynamic group and only a 0.9% improvement in the static group. There was also a 16.5% improvement in TUG time in the dynamic group but only an 8% improvement in the static group. Conclusion: These findings show that dynamic cycling can improve PD motor function and that activation of proprioceptors with a high cadence but variable pattern may be important for motor improvements in PD.

  6. Climate Dynamics and Hysteresis at Low and High Obliquity

    Science.gov (United States)

    Colose, C.; Del Genio, A. D.; Way, M.

    2017-12-01

    We explore the large-scale climate dynamics at low and high obliquity for an Earth-like planet using the ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) 3-D General Circulation model being developed at NASA GISS as part of the Nexus for Exoplanet System Science (NExSS) initiative. We highlight the role of ocean heat storage and transport in determining the seasonal cycle at high obliquity, and describe the large-scale circulation and resulting regional climate patterns using both aquaplanet and Earth topographical boundary conditions. Finally, we contrast the hysteresis structure to varying CO2 concentration for a low and high obliquity planet near the outer edge of the habitable zone. We discuss the prospects for habitability for a high obliquity planet susceptible to global glaciation.

  7. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging

    Science.gov (United States)

    Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun

    2018-06-01

    Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be

  8. A three axis turntable's online initial state measurement method based on the high-accuracy laser gyro SINS

    Science.gov (United States)

    Gao, Chunfeng; Wei, Guo; Wang, Qi; Xiong, Zhenyu; Wang, Qun; Long, Xingwu

    2016-10-01

    As an indispensable equipment in inertial technology tests, the three-axis turntable is widely used in the calibration of various types inertial navigation systems (INS). In order to ensure the calibration accuracy of INS, we need to accurately measure the initial state of the turntable. However, the traditional measuring method needs a lot of exterior equipment (such as level instrument, north seeker, autocollimator, etc.), and the test processing is complex, low efficiency. Therefore, it is relatively difficult for the inertial measurement equipment manufacturers to realize the self-inspection of the turntable. Owing to the high precision attitude information provided by the laser gyro strapdown inertial navigation system (SINS) after fine alignment, we can use it as the attitude reference of initial state measurement of three-axis turntable. For the principle that the fixed rotation vector increment is not affected by measuring point, we use the laser gyro INS and the encoder of the turntable to provide the attitudes of turntable mounting plat. Through this way, the high accuracy measurement of perpendicularity error and initial attitude of the three-axis turntable has been achieved.

  9. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.

    Science.gov (United States)

    Zhu, Xiangbin; Qiu, Huiling

    2016-01-01

    Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.

  10. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.

    Directory of Open Access Journals (Sweden)

    Xiangbin Zhu

    Full Text Available Human activity recognition(HAR from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.

  11. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    Science.gov (United States)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  12. Analysis Of Dynamic Dent Resistance Of Auto Body Panel

    International Nuclear Information System (INIS)

    Deolgaonkar, S. S.; Nandedkar, V. M.

    2007-01-01

    In automotive industry there is increasing demand for higher quality exterior panels, better functional properties and lower weight. The demand for weight reduction has led to thinner sheets, greater use of high strength steels and a change from steel to aluminum grades. This thickness reduction, which causes decrease in the dent resistance, promoted examination of the dent resistance against static and dynamic concentrated loads. This paper describes an investigation of the suitability of explicit dynamic FE analysis as a mean to determine the dynamic dent properties of the panel. This investigation is carried out on the body panel of utility vehicle and covers two parts, in first experimental analysis is carried out on developed test rig, which is interfaced with the computer. This test rig measures deflection with accuracy of .001mm. The experimental results are then compared with the simulation results, which is the second part. Simulation is carried with non-linear transient dynamic explicit analysis using Ansys -Ls Dyna. The experimental results show great accuracy with simulation results. The effect of change in thickness and geometry of the existing fender is then studied with help of simulation technique. By considering the best possible option overall weight of fender is reduced by 7.07 % by keeping the dent resistance of the panel constant

  13. Dynamics modeling and modal experimental study of high speed motorized spindle

    International Nuclear Information System (INIS)

    Li, Yunsong; Chen, Xiaoan; Zhang, Peng; Zhou, Jinming

    2017-01-01

    This paper presents a dynamical model of high speed motorized spindles in free state and work state. In the free state, the housing is modeled as a rotor with equivalent masses including bearing pedestals, motor stator and rear end cover. As a consequence, a double rotor dynamics can be modeled for high speed motorized spindles by a bearing element which connects the housing and bearing pedestals. In the work state, the housing is fixed and the system becomes a bearing-rotor dynamical model. An excitation-measurement test in the free state is designed to analyze the cross spectral density and auto spectral density of input and output signals. Then the frequency response function of system and coherence function of input and output signals which are used to analyze the inherent characteristics of the double- rotor model can be obtained. The other vibration test in the work state is designed to research the dynamical supporting characteristics of bearings and the effects from bearings on the inherent characteristics of the system. The good agreement between the experimental data and theoretical results indicates that the dynamical model in two states is capable of accurately predicting the dynamic behavior of high speed motorized spindles

  14. Dynamics modeling and modal experimental study of high speed motorized spindle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunsong; Chen, Xiaoan; Zhang, Peng; Zhou, Jinming [Chongqing Univ., Chongqing (China)

    2017-03-15

    This paper presents a dynamical model of high speed motorized spindles in free state and work state. In the free state, the housing is modeled as a rotor with equivalent masses including bearing pedestals, motor stator and rear end cover. As a consequence, a double rotor dynamics can be modeled for high speed motorized spindles by a bearing element which connects the housing and bearing pedestals. In the work state, the housing is fixed and the system becomes a bearing-rotor dynamical model. An excitation-measurement test in the free state is designed to analyze the cross spectral density and auto spectral density of input and output signals. Then the frequency response function of system and coherence function of input and output signals which are used to analyze the inherent characteristics of the double- rotor model can be obtained. The other vibration test in the work state is designed to research the dynamical supporting characteristics of bearings and the effects from bearings on the inherent characteristics of the system. The good agreement between the experimental data and theoretical results indicates that the dynamical model in two states is capable of accurately predicting the dynamic behavior of high speed motorized spindles.

  15. High-accuracy contouring using projection moiré

    Science.gov (United States)

    Sciammarella, Cesar A.; Lamberti, Luciano; Sciammarella, Federico M.

    2005-09-01

    Shadow and projection moiré are the oldest forms of moiré to be used in actual technical applications. In spite of this fact and the extensive number of papers that have been published on this topic, the use of shadow moiré as an accurate tool that can compete with alternative devices poses very many problems that go to the very essence of the mathematical models used to obtain contour information from fringe pattern data. In this paper some recent developments on the projection moiré method are presented. Comparisons between the results obtained with the projection method and the results obtained by mechanical devices that operate with contact probes are presented. These results show that the use of projection moiré makes it possible to achieve the same accuracy that current mechanical touch probe devices can provide.

  16. Development of high fidelity soot aerosol dynamics models using method of moments with interpolative closure

    KAUST Repository

    Roy, Subrata P.

    2014-01-28

    The method of moments with interpolative closure (MOMIC) for soot formation and growth provides a detailed modeling framework maintaining a good balance in generality, accuracy, robustness, and computational efficiency. This study presents several computational issues in the development and implementation of the MOMIC-based soot modeling for direct numerical simulations (DNS). The issues of concern include a wide dynamic range of numbers, choice of normalization, high effective Schmidt number of soot particles, and realizability of the soot particle size distribution function (PSDF). These problems are not unique to DNS, but they are often exacerbated by the high-order numerical schemes used in DNS. Four specific issues are discussed in this article: the treatment of soot diffusion, choice of interpolation scheme for MOMIC, an approach to deal with strongly oxidizing environments, and realizability of the PSDF. General, robust, and stable approaches are sought to address these issues, minimizing the use of ad hoc treatments such as clipping. The solutions proposed and demonstrated here are being applied to generate new physical insight into complex turbulence-chemistry-soot-radiation interactions in turbulent reacting flows using DNS. © 2014 Copyright Taylor and Francis Group, LLC.

  17. High accuracy amplitude and phase measurements based on a double heterodyne architecture

    International Nuclear Information System (INIS)

    Zhao Danyang; Wang Guangwei; Pan Weimin

    2015-01-01

    In the digital low level RF (LLRF) system of a circular (particle) accelerator, the RF field signal is usually down converted to a fixed intermediate frequency (IF). The ratio of IF and sampling frequency determines the processing required, and differs in various LLRF systems. It is generally desirable to design a universally compatible architecture for different IFs with no change to the sampling frequency and algorithm. A new RF detection method based on a double heterodyne architecture for wide IF range has been developed, which achieves the high accuracy requirement of modern LLRF. In this paper, the relation of IF and phase error is systematically analyzed for the first time and verified by experiments. The effects of temperature drift for 16 h IF detection are inhibited by the amplitude and phase calibrations. (authors)

  18. Development of GPS Receiver Kalman Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications

    Science.gov (United States)

    2016-06-01

    Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications Executive Summary The Global Positioning system ( GPS ) is the primary...software that may need to be developed for performance prediction of current or future systems that incorporate GPS . The ultimate aim is to help inform...Defence Science and Technology Organisation in 1986. His major areas of work were adaptive tracking , sig- nal processing, and radar systems engineering

  19. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains

    Science.gov (United States)

    Moorhead, Jerry; Gowda, Prasanna H.; Hobbins, Michael; Senay, Gabriel; Paul, George; Marek, Thomas; Porter, Dana

    2015-01-01

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which is essential for regional scale water resources management. Data used in the development of NOAA daily ETref maps are derived from observations over surfaces that are different from short (grass — ETos) or tall (alfalfa — ETrs) reference crops, often in nonagricultural settings, which carries an unknown discrepancy between assumed and actual conditions. In this study, NOAA daily ETos and ETrs maps were evaluated for accuracy, using observed data from the Texas High Plains Evapotranspiration (TXHPET) network. Daily ETos, ETrs and the climatic data (air temperature, wind speed, and solar radiation) used for calculating ETref were extracted from the NOAA maps for TXHPET locations and compared against ground measurements on reference grass surfaces. NOAA ETrefmaps generally overestimated the TXHPET observations (1.4 and 2.2 mm/day ETos and ETrs, respectively), which may be attributed to errors in the NLDAS modeled air temperature and wind speed, to which reference ETref is most sensitive. Therefore, a bias correction to NLDAS modeled air temperature and wind speed data, or adjustment to the resulting NOAA ETref, may be needed to improve the accuracy of NOAA ETref maps.

  20. Accuracy of thick-walled hollows during piercing on three-high mill

    International Nuclear Information System (INIS)

    Potapov, I.N.; Romantsev, B.A.; Shamanaev, V.I.; Popov, V.A.; Kharitonov, E.A.

    1975-01-01

    The results of investigations are presented concerning the accuracy of geometrical dimensions of thick-walled sleeves produced by piercing on a 100-ton trio screw rolling mill MISiS with three schemes of fixing and centering the rod. The use of a spherical thrust journal for the rod and of a long centering bushing makes it possible to diminish the non-uniformity of the wall thickness of the sleeves by 30-50%. It is established that thick-walled sleeves with accurate geometrical dimensions (nonuniformity of the wall thickness being less than 10%) can be produced if the system sleeve - mandrel - rod is highly rigid and the rod has a two- or three-fold stability margin over the length equal to that of the sleeve being pierced. The process of piercing is expedient to be carried out with increased angles of feed (14-16 deg). Blanks have been made from steel 12Kh1MF

  1. Model Accuracy Comparison for High Resolution Insar Coherence Statistics Over Urban Areas

    Science.gov (United States)

    Zhang, Yue; Fu, Kun; Sun, Xian; Xu, Guangluan; Wang, Hongqi

    2016-06-01

    The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR) images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR) coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  2. MODEL ACCURACY COMPARISON FOR HIGH RESOLUTION INSAR COHERENCE STATISTICS OVER URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2016-06-01

    Full Text Available The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  3. Plasma resonance and flux dynamics in layered high-Tc superconductors

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sakai, S.

    2000-01-01

    Flux dynamics of layered high Tc superconductors are considered with special emphasis on the small oscillation modes. In particular we find the dispersion relation for the plasma modes and discuss the spectra to be observed in microwave experiments.......Flux dynamics of layered high Tc superconductors are considered with special emphasis on the small oscillation modes. In particular we find the dispersion relation for the plasma modes and discuss the spectra to be observed in microwave experiments....

  4. Dynamics of Gauge Fields at High Temperature

    NARCIS (Netherlands)

    Nauta, B.J.

    2000-01-01

    An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the

  5. High construal level can help negotiators to reach integrative agreements: The role of information exchange and judgement accuracy.

    Science.gov (United States)

    Wening, Stefanie; Keith, Nina; Abele, Andrea E

    2016-06-01

    In negotiations, a focus on interests (why negotiators want something) is key to integrative agreements. Yet, many negotiators spontaneously focus on positions (what they want), with suboptimal outcomes. Our research applies construal-level theory to negotiations and proposes that a high construal level instigates a focus on interests during negotiations which, in turn, positively affects outcomes. In particular, we tested the notion that the effect of construal level on outcomes was mediated by information exchange and judgement accuracy. Finally, we expected the mere mode of presentation of task material to affect construal levels and manipulated construal levels using concrete versus abstract negotiation tasks. In two experiments, participants negotiated in dyads in either a high- or low-construal-level condition. In Study 1, high-construal-level dyads outperformed dyads in the low-construal-level condition; this main effect was mediated by information exchange. Study 2 replicated both the main and mediation effects using judgement accuracy as mediator and additionally yielded a positive effect of a high construal level on a second, more complex negotiation task. These results not only provide empirical evidence for the theoretically proposed link between construal levels and negotiation outcomes but also shed light on the processes underlying this effect. © 2015 The British Psychological Society.

  6. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    Science.gov (United States)

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  7. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    International Nuclear Information System (INIS)

    Burkhard, Boeckem

    1999-01-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle Δβ, is to first approximation proportional to the refraction angle: β IR ν(β blue - β IR ) = ν Δβ, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of the in [1] proposed conception of the dual

  8. Spatiotemporal Dynamics of Surface Water Extent from Three Decades of Seasonally Continuous Landsat Time Series at Subcontinental Scale

    Science.gov (United States)

    Tulbure, M. G.; Broich, M.; Stehman, Stephen V.

    2016-06-01

    Surface water is a critical resource in semi-arid areas. The Murray-Darling Basin (MDB) of Australia, one of the largest semi-arid basins in the world is aiming to set a worldwide example of how to balance multiple interests (i.e. environment, agriculture and urban use), but has suffered significant water shrinkages during the Millennium Drought (1999-2009), followed by extensive flooding. Baseline information and systematic quantification of surface water (SW) extent and flooding dynamics in space and time are needed for managing SW resources across the basin but are currently lacking. To synoptically quantify changes in SW extent and flooding dynamics over MDB, we used seasonally continuous Landsat TM and ETM+ data (1986 - 2011) and generic machine learning algorithms. We further mapped flooded forest at a riparian forest site that experienced severe tree dieback due to changes in flooding regime. We used a stratified sampling design to assess the accuracy of the SW product across time. Accuracy assessment yielded an overall classification accuracy of 99.94%, with producer's and user's accuracy of SW of 85.4% and 97.3%, respectively. Overall accuracy was the same for Landsat 5 and 7 data but user's and producer's accuracy of water were higher for Landsat 7 than 5 data and stable over time. Our validated results document a rapid loss in SW bodies. The number, size, and total area of SW showed high seasonal variability with highest numbers in winter and lowest numbers in summer. SW extent per season per year showed high interannual and seasonal variability, with low seasonal variability during the Millennium Drought. Examples of current uses of the new dataset will be presented and include (1) assessing ecosystem response to flooding with implications for environmental water releases, one of the largest investment in environment in Australia; (2) quantifying drivers of SW dynamics (e.g. climate, human activity); (3) quantifying changes in SW dynamics and

  9. Non-equilibrium dynamics from RPMD and CMD.

    Science.gov (United States)

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F

    2016-11-28

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t 4 ) and O(t 1 ), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t 5 ) and O(t 2 ), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  10. What do we mean by accuracy in geomagnetic measurements?

    Science.gov (United States)

    Green, A.W.

    1990-01-01

    High accuracy is what distinguishes measurements made at the world's magnetic observatories from other types of geomagnetic measurements. High accuracy in determining the absolute values of the components of the Earth's magnetic field is essential to studying geomagnetic secular variation and processes at the core mantle boundary, as well as some magnetospheric processes. In some applications of geomagnetic data, precision (or resolution) of measurements may also be important. In addition to accuracy and resolution in the amplitude domain, it is necessary to consider these same quantities in the frequency and space domains. New developments in geomagnetic instruments and communications make real-time, high accuracy, global geomagnetic observatory data sets a real possibility. There is a growing realization in the scientific community of the unique relevance of geomagnetic observatory data to the principal contemporary problems in solid Earth and space physics. Together, these factors provide the promise of a 'renaissance' of the world's geomagnetic observatory system. ?? 1990.

  11. Impact of sampling interval in training data acquisition on intrafractional predictive accuracy of indirect dynamic tumor-tracking radiotherapy.

    Science.gov (United States)

    Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Akimoto, Mami; Miyabe, Yuki; Yokota, Kenji; Matsuo, Yukinori; Mizowaki, Takashi; Hiraoka, Masahiro

    2017-08-01

    To explore the effect of sampling interval of training data acquisition on the intrafractional prediction error of surrogate signal-based dynamic tumor-tracking using a gimbal-mounted linac. Twenty pairs of respiratory motions were acquired from 20 patients (ten lung, five liver, and five pancreatic cancer patients) who underwent dynamic tumor-tracking with the Vero4DRT. First, respiratory motions were acquired as training data for an initial construction of the prediction model before the irradiation. Next, additional respiratory motions were acquired for an update of the prediction model due to the change of the respiratory pattern during the irradiation. The time elapsed prior to the second acquisition of the respiratory motion was 12.6 ± 3.1 min. A four-axis moving phantom reproduced patients' three dimensional (3D) target motions and one dimensional surrogate motions. To predict the future internal target motion from the external surrogate motion, prediction models were constructed by minimizing residual prediction errors for training data acquired at 80 and 320 ms sampling intervals for 20 s, and at 500, 1,000, and 2,000 ms sampling intervals for 60 s using orthogonal kV x-ray imaging systems. The accuracies of prediction models trained with various sampling intervals were estimated based on training data with each sampling interval during the training process. The intrafractional prediction errors for various prediction models were then calculated on intrafractional monitoring images taken for 30 s at the constant sampling interval of a 500 ms fairly to evaluate the prediction accuracy for the same motion pattern. In addition, the first respiratory motion was used for the training and the second respiratory motion was used for the evaluation of the intrafractional prediction errors for the changed respiratory motion to evaluate the robustness of the prediction models. The training error of the prediction model was 1.7 ± 0.7 mm in 3D for all sampling

  12. High diagnostic accuracy of the Sysmex XT-2000iV delta total nucleated cells on effusions for feline infectious peritonitis.

    Science.gov (United States)

    Giordano, Alessia; Stranieri, Angelica; Rossi, Gabriele; Paltrinieri, Saverio

    2015-06-01

    The ΔWBC (the ratio between DIFF and BASO counts of the Sysmex XT-2000iV), hereafter defined as ΔTNC (total nucleated cells), is high in effusions due to feline infectious peritonitis (FIP), as cells are entrapped in fibrin clots formed in the BASO reagent. Similar clots form in the Rivalta's test, a method with high diagnostic accuracy for FIP. The objective of this study was to determine the diagnostic accuracy for FIP and the optimal cutoff of ΔTNC. After a retrospective search of our database, DIFF and BASO counts, and the ΔTNC from cats with and without FIP were compared to each other. Sensitivity, specificity, and positive and negative likelihood ratios (LR+, LR-) were calculated. A ROC curve was designed to determine the cutoff for best sensitivity and specificity. Effusions from 20 FIP and 31 non-FIP cats were analyzed. The ΔTNC was higher (P  2.5 had 100% specificity. The ΔTNC has a high diagnostic accuracy for FIP-related effusions by providing an estimate of precipitable proteins, as the Rivalta's test, in addition to the cell count. As fibrin clots result in false lower BASO counts, the ΔTNC is preferable to the WBC count generated by the BASO channel alone in suspected FIP effusions. © 2015 American Society for Veterinary Clinical Pathology.

  13. A qualitative numerical study of high dimensional dynamical systems

    Science.gov (United States)

    Albers, David James

    Since Poincare, the father of modern mathematical dynamical systems, much effort has been exerted to achieve a qualitative understanding of the physical world via a qualitative understanding of the functions we use to model the physical world. In this thesis, we construct a numerical framework suitable for a qualitative, statistical study of dynamical systems using the space of artificial neural networks. We analyze the dynamics along intervals in parameter space, separating the set of neural networks into roughly four regions: the fixed point to the first bifurcation; the route to chaos; the chaotic region; and a transition region between chaos and finite-state neural networks. The study is primarily with respect to high-dimensional dynamical systems. We make the following general conclusions as the dimension of the dynamical system is increased: the probability of the first bifurcation being of type Neimark-Sacker is greater than ninety-percent; the most probable route to chaos is via a cascade of bifurcations of high-period periodic orbits, quasi-periodic orbits, and 2-tori; there exists an interval of parameter space such that hyperbolicity is violated on a countable, Lebesgue measure 0, "increasingly dense" subset; chaos is much more likely to persist with respect to parameter perturbation in the chaotic region of parameter space as the dimension is increased; moreover, as the number of positive Lyapunov exponents is increased, the likelihood that any significant portion of these positive exponents can be perturbed away decreases with increasing dimension. The maximum Kaplan-Yorke dimension and the maximum number of positive Lyapunov exponents increases linearly with dimension. The probability of a dynamical system being chaotic increases exponentially with dimension. The results with respect to the first bifurcation and the route to chaos comment on previous results of Newhouse, Ruelle, Takens, Broer, Chenciner, and Iooss. Moreover, results regarding the high

  14. Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations.

    Science.gov (United States)

    Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.

  15. "Dilute-and-inject" multi-target screening assay for highly polar doping agents using hydrophilic interaction liquid chromatography high resolution/high accuracy mass spectrometry for sports drug testing.

    Science.gov (United States)

    Görgens, Christian; Guddat, Sven; Orlovius, Anne-Katrin; Sigmund, Gerd; Thomas, Andreas; Thevis, Mario; Schänzer, Wilhelm

    2015-07-01

    In the field of LC-MS, reversed phase liquid chromatography is the predominant method of choice for the separation of prohibited substances from various classes in sports drug testing. However, highly polar and charged compounds still represent a challenging task in liquid chromatography due to their difficult chromatographic behavior using reversed phase materials. A very promising approach for the separation of hydrophilic compounds is hydrophilic interaction liquid chromatography (HILIC). Despite its great potential and versatile advantages for the separation of highly polar compounds, HILIC is up to now not very common in doping analysis, although most manufacturers offer a variety of HILIC columns in their portfolio. In this study, a novel multi-target approach based on HILIC high resolution/high accuracy mass spectrometry is presented to screen for various polar stimulants, stimulant sulfo-conjugates, glycerol, AICAR, ethyl glucuronide, morphine-3-glucuronide, and myo-inositol trispyrophosphate after direct injection of diluted urine specimens. The usage of an effective online sample cleanup and a zwitterionic HILIC analytical column in combination with a new generation Hybrid Quadrupol-Orbitrap® mass spectrometer enabled the detection of highly polar analytes without any time-consuming hydrolysis or further purification steps, far below the required detection limits. The methodology was fully validated for qualitative and quantitative (AICAR, glycerol) purposes considering the parameters specificity; robustness (rRT  0.99); intra- and inter-day precision at low, medium, and high concentration levels (CV < 20%); limit of detection (stimulants and stimulant sulfo-conjugates < 10 ng/mL; norfenefrine; octopamine < 30 ng/mL; AICAR < 10 ng/mL; glycerol 100 μg/mL; ETG < 100 ng/mL); accuracy (AICAR 103.8-105.5%, glycerol 85.1-98.3% at three concentration levels) and ion suppression/enhancement effects.

  16. Accuracy Assessment of Different Digital Surface Models

    Directory of Open Access Journals (Sweden)

    Ugur Alganci

    2018-03-01

    Full Text Available Digital elevation models (DEMs, which can occur in the form of digital surface models (DSMs or digital terrain models (DTMs, are widely used as important geospatial information sources for various remote sensing applications, including the precise orthorectification of high-resolution satellite images, 3D spatial analyses, multi-criteria decision support systems, and deformation monitoring. The accuracy of DEMs has direct impacts on specific calculations and process chains; therefore, it is important to select the most appropriate DEM by considering the aim, accuracy requirement, and scale of each study. In this research, DSMs obtained from a variety of satellite sensors were compared to analyze their accuracy and performance. For this purpose, freely available Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER 30 m, Shuttle Radar Topography Mission (SRTM 30 m, and Advanced Land Observing Satellite (ALOS 30 m resolution DSM data were obtained. Additionally, 3 m and 1 m resolution DSMs were produced from tri-stereo images from the SPOT 6 and Pleiades high-resolution (PHR 1A satellites, respectively. Elevation reference data provided by the General Command of Mapping, the national mapping agency of Turkey—produced from 30 cm spatial resolution stereo aerial photos, with a 5 m grid spacing and ±3 m or better overall vertical accuracy at the 90% confidence interval (CI—were used to perform accuracy assessments. Gross errors and water surfaces were removed from the reference DSM. The relative accuracies of the different DSMs were tested using a different number of checkpoints determined by different methods. In the first method, 25 checkpoints were selected from bare lands to evaluate the accuracies of the DSMs on terrain surfaces. In the second method, 1000 randomly selected checkpoints were used to evaluate the methods’ accuracies for the whole study area. In addition to the control point approach, vertical cross

  17. Target Price Accuracy

    Directory of Open Access Journals (Sweden)

    Alexander G. Kerl

    2011-04-01

    Full Text Available This study analyzes the accuracy of forecasted target prices within analysts’ reports. We compute a measure for target price forecast accuracy that evaluates the ability of analysts to exactly forecast the ex-ante (unknown 12-month stock price. Furthermore, we determine factors that explain this accuracy. Target price accuracy is negatively related to analyst-specific optimism and stock-specific risk (measured by volatility and price-to-book ratio. However, target price accuracy is positively related to the level of detail of each report, company size and the reputation of the investment bank. The potential conflicts of interests between an analyst and a covered company do not bias forecast accuracy.

  18. The dynamics of the nuclei-nuclei interactions at very high energies

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1988-01-01

    The lectures on the dynamics of nuclei-nuclei interactions at very high energies, presented in the Summer School on Nuclear Physics and Particle Physics (1988), are shown. The equation of state of the hadronic matter is analyzed, by means of simple models, and some orders of magnitude can be asserted. The main characteristics of the high energy hadronic interactions are recalled. The basis of the dynamics of the relativistic fluids are given. Applications of this dynamics in the description of the space-time evolution of a plasma, generated by heavy ions collision, are carried out [fr

  19. A high dynamic range pulse counting detection system for mass spectrometry.

    Science.gov (United States)

    Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng

    2014-01-30

    A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.

  20. New perspectives for high accuracy SLR with second generation geodesic satellites

    Science.gov (United States)

    Lund, Glenn

    1993-01-01

    This paper reports on the accuracy limitations imposed by geodesic satellite signatures, and on the potential for achieving millimetric performances by means of alternative satellite concepts and an optimized 2-color system tradeoff. Long distance laser ranging, when performed between a ground (emitter/receiver) station and a distant geodesic satellite, is now reputed to enable short arc trajectory determinations to be achieved with an accuracy of 1 to 2 centimeters. This state-of-the-art accuracy is limited principally by the uncertainties inherent to single-color atmospheric path length correction. Motivated by the study of phenomena such as postglacial rebound, and the detailed analysis of small-scale volcanic and strain deformations, the drive towards millimetric accuracies will inevitably be felt. With the advent of short pulse (less than 50 ps) dual wavelength ranging, combined with adequate detection equipment (such as a fast-scanning streak camera or ultra-fast solid-state detectors) the atmospheric uncertainty could potentially be reduced to the level of a few millimeters, thus, exposing other less significant error contributions, of which by far the most significant will then be the morphology of the retroreflector satellites themselves. Existing geodesic satellites are simply dense spheres, several 10's of cm in diameter, encrusted with a large number (426 in the case of LAGEOS) of small cube-corner reflectors. A single incident pulse, thus, results in a significant number of randomly phased, quasi-simultaneous return pulses. These combine coherently at the receiver to produce a convolved interference waveform which cannot, on a shot to shot basis, be accurately and unambiguously correlated to the satellite center of mass. This paper proposes alternative geodesic satellite concepts, based on the use of a very small number of cube-corner retroreflectors, in which the above difficulties are eliminated while ensuring, for a given emitted pulse, the return

  1. Analysis of the accuracy and robustness of the leap motion controller.

    Science.gov (United States)

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-05-14

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.

  2. Reliability and accuracy of Crystaleye spectrophotometric system.

    Science.gov (United States)

    Chen, Li; Tan, Jian Guo; Zhou, Jian Feng; Yang, Xu; Du, Yang; Wang, Fang Ping

    2010-01-01

    to develop an in vitro shade-measuring model to evaluate the reliability and accuracy of the Crystaleye spectrophotometric system, a newly developed spectrophotometer. four shade guides, VITA Classical, VITA 3D-Master, Chromascop and Vintage Halo NCC, were measured with the Crystaleye spectrophotometer in a standardised model, ten times for 107 shade tabs. The shade-matching results and the CIE L*a*b* values of the cervical, body and incisal regions for each measurement were automatically analysed using the supporting software. Reliability and accuracy were calculated for each shade tab both in percentage and in colour difference (ΔE). Difference was analysed by one-way ANOVA in the cervical, body and incisal regions. range of reliability was 88.81% to 98.97% and 0.13 to 0.24 ΔE units, and that of accuracy was 44.05% to 91.25% and 1.03 to 1.89 ΔE units. Significant differences in reliability and accuracy were found between the body region and the cervical and incisal regions. Comparisons made among regions and shade guides revealed that evaluation in ΔE was prone to disclose the differences. measurements with the Crystaleye spectrophotometer had similar, high reliability in different shade guides and regions, indicating predictable repeated measurements. Accuracy in the body region was high and less variable compared with the cervical and incisal regions.

  3. Non-equilibrium QCD of high-energy multi-gluon dynamics

    International Nuclear Information System (INIS)

    Geiger, K.

    1996-01-01

    A non-equilibrium QCD description of multiparticle dynamics in space-time is of both fundamental and phenomenological interest. Here the authors discusses an attempt to derive from first principles, a real-time formalism to study the dynamical interplay of quantum and statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD processes. The ultimate goal (from which one is still far away) is to have a practically applicable description of the space-time evolution of a general initial system of gluons and quarks, characterized by some large energy or momentum scale, that expands, diffuses and dissipates according to the self- and mutual-interactions, and eventually converts dynamically into final state hadrons. For example, the evolution of parton showers in the mechanism of parton-hadron conversion in high-energy hadronic collisions, or, the description of formation, evolution and freezeout of a quark-gluon plasma, in ultra-relativistic heavy-ion collisions

  4. Comparative analysis of Worldview-2 and Landsat 8 for coastal saltmarsh mapping accuracy assessment

    Science.gov (United States)

    Rasel, Sikdar M. M.; Chang, Hsing-Chung; Diti, Israt Jahan; Ralph, Tim; Saintilan, Neil

    2016-05-01

    Coastal saltmarsh and their constituent components and processes are of an interest scientifically due to their ecological function and services. However, heterogeneity and seasonal dynamic of the coastal wetland system makes it challenging to map saltmarshes with remotely sensed data. This study selected four important saltmarsh species Pragmitis australis, Sporobolus virginicus, Ficiona nodosa and Schoeloplectus sp. as well as a Mangrove and Pine tree species, Avecinia and Casuarina sp respectively. High Spatial Resolution Worldview-2 data and Coarse Spatial resolution Landsat 8 imagery were selected in this study. Among the selected vegetation types some patches ware fragmented and close to the spatial resolution of Worldview-2 data while and some patch were larger than the 30 meter resolution of Landsat 8 data. This study aims to test the effectiveness of different classifier for the imagery with various spatial and spectral resolutions. Three different classification algorithm, Maximum Likelihood Classifier (MLC), Support Vector Machine (SVM) and Artificial Neural Network (ANN) were tested and compared with their mapping accuracy of the results derived from both satellite imagery. For Worldview-2 data SVM was giving the higher overall accuracy (92.12%, kappa =0.90) followed by ANN (90.82%, Kappa 0.89) and MLC (90.55%, kappa = 0.88). For Landsat 8 data, MLC (82.04%) showed the highest classification accuracy comparing to SVM (77.31%) and ANN (75.23%). The producer accuracy of the classification results were also presented in the paper.

  5. Atomic-accuracy prediction of protein loop structures through an RNA-inspired Ansatz.

    Directory of Open Access Journals (Sweden)

    Rhiju Das

    Full Text Available Consistently predicting biopolymer structure at atomic resolution from sequence alone remains a difficult problem, even for small sub-segments of large proteins. Such loop prediction challenges, which arise frequently in comparative modeling and protein design, can become intractable as loop lengths exceed 10 residues and if surrounding side-chain conformations are erased. Current approaches, such as the protein local optimization protocol or kinematic inversion closure (KIC Monte Carlo, involve stages that coarse-grain proteins, simplifying modeling but precluding a systematic search of all-atom configurations. This article introduces an alternative modeling strategy based on a 'stepwise ansatz', recently developed for RNA modeling, which posits that any realistic all-atom molecular conformation can be built up by residue-by-residue stepwise enumeration. When harnessed to a dynamic-programming-like recursion in the Rosetta framework, the resulting stepwise assembly (SWA protocol enables enumerative sampling of a 12 residue loop at a significant but achievable cost of thousands of CPU-hours. In a previously established benchmark, SWA recovers crystallographic conformations with sub-Angstrom accuracy for 19 of 20 loops, compared to 14 of 20 by KIC modeling with a comparable expenditure of computational power. Furthermore, SWA gives high accuracy results on an additional set of 15 loops highlighted in the biological literature for their irregularity or unusual length. Successes include cis-Pro touch turns, loops that pass through tunnels of other side-chains, and loops of lengths up to 24 residues. Remaining problem cases are traced to inaccuracies in the Rosetta all-atom energy function. In five additional blind tests, SWA achieves sub-Angstrom accuracy models, including the first such success in a protein/RNA binding interface, the YbxF/kink-turn interaction in the fourth 'RNA-puzzle' competition. These results establish all-atom enumeration as

  6. Diagnostic accuracy of metronome-paced tachypnea to detect dynamic hyperinflation

    NARCIS (Netherlands)

    Lahaije, A.J.M.C.; Willems, L.M.; Hees, H.W. van; Dekhuijzen, P.N.R.; Helvoort, H.A.C. van; Heijdra, Y.F.

    2013-01-01

    INTRODUCTION: This prospective study was carried out to investigate if metronome-paced tachypnea (MPT) can serve as an accurate diagnostic tool to identify patients with chronic obstructive pulmonary disease (COPD) who are susceptible to develop dynamic hyperinflation during exercise. Commonly, this

  7. Integral equation models for image restoration: high accuracy methods and fast algorithms

    International Nuclear Information System (INIS)

    Lu, Yao; Shen, Lixin; Xu, Yuesheng

    2010-01-01

    Discrete models are consistently used as practical models for image restoration. They are piecewise constant approximations of true physical (continuous) models, and hence, inevitably impose bottleneck model errors. We propose to work directly with continuous models for image restoration aiming at suppressing the model errors caused by the discrete models. A systematic study is conducted in this paper for the continuous out-of-focus image models which can be formulated as an integral equation of the first kind. The resulting integral equation is regularized by the Lavrentiev method and the Tikhonov method. We develop fast multiscale algorithms having high accuracy to solve the regularized integral equations of the second kind. Numerical experiments show that the methods based on the continuous model perform much better than those based on discrete models, in terms of PSNR values and visual quality of the reconstructed images

  8. Tolerances on MLC leaf position accuracy for IMRT delivery with a dynamic MLC

    International Nuclear Information System (INIS)

    Rangel, Alejandra; Dunscombe, Peter

    2009-01-01

    The objective determination of performance standards for radiation therapy equipment requires, ideally, establishing the quantitative relationship between performance deviations and clinical outcome or some acceptable surrogate. In this simulation study the authors analyzed the dosimetric impact of random (leaf by leaf) and systematic (entire leaf bank) errors in the position of the MLC leaves on seven clinical prostate and seven clinical head and neck IMRT plans delivered using a dynamic MLC. In-house software was developed to incorporate normally distributed errors of up to ±2 mm in individual leaf position or systematic errors (±1 and ±0.5 mm in all leaves of both leaf banks or +1 mm in one bank only) into the 14 plans, thus simulating treatment delivery using a suboptimally performing MLC. The dosimetric consequences of suboptimal MLC performance were quantified using the equivalent uniform doses (EUDs) of the clinical target volumes and important organs at risk (OARs). The deviation of the EUDs of the selected structures as the performance of the MLC deteriorated was used as the objective surrogate of clinical outcome. Random errors of 2 mm resulted in negligible changes for all structures of interest in both sites. In contrast, systematic errors can lead to potentially significant dosimetric changes that may compromise clinical outcome. If a 2% change in EUD of the target and 2 Gy for the OARs were adopted as acceptable levels of deviation in dose due to MLC effects alone, then systematic errors in leaf position will need to be limited to 0.3 mm. This study provides guidance, based on a dosimetric surrogate of clinical outcome, for the development of one component, leaf position accuracy of performance standards for multileaf collimators.

  9. Dynamical symmetry breaking with hypercolour and high colour representations

    International Nuclear Information System (INIS)

    Zoupanos, G.

    1985-01-01

    A model is presented in which the electroweak gauge group is spontaneously broken according to a dynamical scenario based on the existence of high colour representations. An unattractive feature of this scenario was the necessity to introduce elementary Higgs fields in order to obtain the spontaneous symmetry breaking of part of the theory. In the present model, this breaking can also be understood dynamically with the introduction of hypercolour interactions. (author)

  10. Achieving Climate Change Absolute Accuracy in Orbit

    Science.gov (United States)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  11. Runtime Testability in Dynamic Highly-Availability Component-based Systems

    NARCIS (Netherlands)

    Gonzalez, A.; Piel, E.; Gross, H.G.; Van Gemund, A.J.C.

    2010-01-01

    Runtime testing is emerging as the solution for the integration and assessment of highly dynamic, high availability software systems where traditional development-time integration testing cannot be performed. A prerequisite for runtime testing is the knowledge about to which extent the system can be

  12. Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan Patrick; Schultz, Peter Andrew; Crozier, Paul; Moore, Stan Gerald; Swiler, Laura Painton; Stephens, John Adam; Trott, Christian Robert; Foiles, Stephen Martin; Tucker, Garritt J. (Drexel University)

    2014-09-01

    This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers

  13. Medication adherence assessment: high accuracy of the new Ingestible Sensor System in kidney transplants.

    Science.gov (United States)

    Eisenberger, Ute; Wüthrich, Rudolf P; Bock, Andreas; Ambühl, Patrice; Steiger, Jürg; Intondi, Allison; Kuranoff, Susan; Maier, Thomas; Green, Damian; DiCarlo, Lorenzo; Feutren, Gilles; De Geest, Sabina

    2013-08-15

    This open-label single-arm exploratory study evaluated the accuracy of the Ingestible Sensor System (ISS), a novel technology for directly assessing the ingestion of oral medications and treatment adherence. ISS consists of an ingestible event marker (IEM), a microsensor that becomes activated in gastric fluid, and an adhesive personal monitor (APM) that detects IEM activation. In this study, the IEM was combined to enteric-coated mycophenolate sodium (ECMPS). Twenty stable adult kidney transplants received IEM-ECMPS for a mean of 9.2 weeks totaling 1227 cumulative days. Eight patients prematurely discontinued treatment due to ECMPS gastrointestinal symptoms (n=2), skin intolerance to APM (n=2), and insufficient system usability (n=4). Rash or erythema due to APM was reported in 7 (37%) patients, all during the first month of use. No serious or severe adverse events and no rejection episode were reported. IEM detection accuracy was 100% over 34 directly observed ingestions; Taking Adherence was 99.4% over a total of 2824 prescribed IEM-ECMPS ingestions. ISS could detect accurately the ingestion of two IEM-ECMPS capsules taken at the same time (detection rate of 99.3%, n=2376). ISS is a promising new technology that provides highly reliable measurements of intake and timing of intake of drugs that are combined with the IEM.

  14. Towards Building Reliable, High-Accuracy Solar Irradiance Database For Arid Climates

    Science.gov (United States)

    Munawwar, S.; Ghedira, H.

    2012-12-01

    Middle East's growing interest in renewable energy has led to increased activity in solar technology development with the recent commissioning of several utility-scale solar power projects and many other commercial installations across the Arabian Peninsula. The region, lying in a virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2, is also one of the most promising candidates for solar energy deployment. However, it is not the availability of resource, but its characterization and reasonably accurate assessment that determines the application potential. Solar irradiance, magnitude and variability inclusive, is the key input in assessing the economic feasibility of a solar system. The accuracy of such data is of critical importance for realistic on-site performance estimates. This contribution aims to identify the key stages in developing a robust solar database for desert climate by focusing on the challenges that an arid environment presents to parameterization of solar irradiance attenuating factors. Adjustments are proposed based on the currently available resource assessment tools to produce high quality data for assessing bankability. Establishing and maintaining ground solar irradiance measurements is an expensive affair and fairly limited in time (recently operational) and space (fewer sites) in the Gulf region. Developers within solar technology industry, therefore, rely on solar radiation models and satellite-derived data for prompt resource assessment needs. It is imperative that such estimation tools are as accurate as possible. While purely empirical models have been widely researched and validated in the Arabian Peninsula's solar modeling history, they are known to be intrinsically site-specific. A primal step to modeling is an in-depth understanding of the region's climate, identifying the key players attenuating radiation and their appropriate characterization to determine solar irradiance. Physical approach

  15. High-Resolution Monitoring of Himalayan Glacier Dynamics Using Unmanned Aerial Vehicles

    Science.gov (United States)

    Immerzeel, W.; Kraaijenbrink, P. D. A.; Shea, J.; Shrestha, A. B.; Pellicciotti, F.; Bierkens, M. F.; de Jong, S. M.

    2014-12-01

    Himalayan glacier tongues are commonly debris covered and play an important role in modulating the glacier response to climate . However, they remain relatively unstudied because of the inaccessibility of the terrain and the difficulties in field work caused by the thick debris mantles. Observations of debris-covered glaciers are therefore limited to point locations and airborne remote sensing may bridge the gap between scarce, point field observations and coarse resolution space-borne remote sensing. In this study we deploy an Unmanned Airborne Vehicle (UAV) on two debris covered glaciers in the Nepalese Himalayas: the Lirung and Langtang glacier during four field campaigns in 2013 and 2014. Based on stereo-imaging and the structure for motion algorithm we derive highly detailed ortho-mosaics and digital elevation models (DEMs), which we geometrically correct using differential GPS observations collected in the field. Based on DEM differencing and manual feature tracking we derive the mass loss and the surface velocity of the glacier at a high spatial resolution and accuracy. We also assess spatiotemporal changes in supra-glacial lakes and ice cliffs based on the imagery. On average, mass loss is limited and the surface velocity is very small. However, the spatial variability of melt rates is very high, and ice cliffs and supra-glacial ponds show mass losses that can be an order of magnitude higher than the average. We suggest that future research should focus on the interaction between supra-glacial ponds, ice cliffs and englacial hydrology to further understand the dynamics of debris-covered glaciers. Finally, we conclude that UAV deployment has large potential in glaciology and it represents a substantial advancement over methods currently applied in studying glacier surface features.

  16. An Approach for High-precision Stand-alone Positioning in a Dynamic Environment

    Science.gov (United States)

    Halis Saka, M.; Metin Alkan, Reha; Ozpercin, Alişir

    2015-04-01

    In this study, an algorithm is developed for precise positioning in dynamic environment utilizing a single geodetic GNSS receiver using carrier phase data. In this method, users should start the measurement on a known point near the project area for a couple of seconds making use of a single dual-frequency geodetic-grade receiver. The technique employs iono-free carrier phase observations with precise products. The equation of the algorithm is given below; Sm(t(i+1))=SC(ti)+[ΦIF (t(i+1) )-ΦIF (ti)] where, Sm(t(i+1)) is the phase-range between satellites and the receiver, SC(ti) is the initial range computed from the initial known point coordinates and the satellite coordinates and ΦIF is the ionosphere-free phase measurement (in meters). Tropospheric path delays are modelled using the standard tropospheric model. To accomplish the process, an in-house program was coded and some functions were adopted from Easy-Suite available at http://kom.aau.dk/~borre/easy. In order to assess the performance of the introduced algorithm in a dynamic environment, a dataset from a kinematic test measurement was used. The data were collected from a kinematic test measurement in Istanbul, Turkey. In the test measurement, a geodetic dual-frequency GNSS receiver, Ashtech Z-Xtreme, was set up on a known point on the shore and a couple of epochs were recorded for initialization. The receiver was then moved to a vessel and data were collected for approximately 2.5 hours and the measurement was finalized on a known point on the shore. While the kinematic measurement on the vessel were carried out, another GNSS receiver was set up on a geodetic point with known coordinates on the shore and data were collected in static mode to calculate the reference trajectory of the vessel using differential technique. The coordinates of the vessel were calculated for each measurement epoch with the introduced method. With the purpose of obtaining more robust results, all coordinates were calculated

  17. Accuracy versus run time in an adiabatic quantum search

    International Nuclear Information System (INIS)

    Rezakhani, A. T.; Pimachev, A. K.; Lidar, D. A.

    2010-01-01

    Adiabatic quantum algorithms are characterized by their run time and accuracy. The relation between the two is essential for quantifying adiabatic algorithmic performance yet is often poorly understood. We study the dynamics of a continuous time, adiabatic quantum search algorithm and find rigorous results relating the accuracy and the run time. Proceeding with estimates, we show that under fairly general circumstances the adiabatic algorithmic error exhibits a behavior with two discernible regimes: The error decreases exponentially for short times and then decreases polynomially for longer times. We show that the well-known quadratic speedup over classical search is associated only with the exponential error regime. We illustrate the results through examples of evolution paths derived by minimization of the adiabatic error. We also discuss specific strategies for controlling the adiabatic error and run time.

  18. High-accuracy biodistribution analysis of adeno-associated virus variants by double barcode sequencing.

    Science.gov (United States)

    Marsic, Damien; Méndez-Gómez, Héctor R; Zolotukhin, Sergei

    2015-01-01

    Biodistribution analysis is a key step in the evaluation of adeno-associated virus (AAV) capsid variants, whether natural isolates or produced by rational design or directed evolution. Indeed, when screening candidate vectors, accurate knowledge about which tissues are infected and how efficiently is essential. We describe the design, validation, and application of a new vector, pTR-UF50-BC, encoding a bioluminescent protein, a fluorescent protein and a DNA barcode, which can be used to visualize localization of transduction at the organism, organ, tissue, or cellular levels. In addition, by linking capsid variants to different barcoded versions of the vector and amplifying the barcode region from various tissue samples using barcoded primers, biodistribution of viral genomes can be analyzed with high accuracy and efficiency.

  19. Improving Spiking Dynamical Networks: Accurate Delays, Higher-Order Synapses, and Time Cells.

    Science.gov (United States)

    Voelker, Aaron R; Eliasmith, Chris

    2018-03-01

    Researchers building spiking neural networks face the challenge of improving the biological plausibility of their model networks while maintaining the ability to quantitatively characterize network behavior. In this work, we extend the theory behind the neural engineering framework (NEF), a method of building spiking dynamical networks, to permit the use of a broad class of synapse models while maintaining prescribed dynamics up to a given order. This theory improves our understanding of how low-level synaptic properties alter the accuracy of high-level computations in spiking dynamical networks. For completeness, we provide characterizations for both continuous-time (i.e., analog) and discrete-time (i.e., digital) simulations. We demonstrate the utility of these extensions by mapping an optimal delay line onto various spiking dynamical networks using higher-order models of the synapse. We show that these networks nonlinearly encode rolling windows of input history, using a scale invariant representation, with accuracy depending on the frequency content of the input signal. Finally, we reveal that these methods provide a novel explanation of time cell responses during a delay task, which have been observed throughout hippocampus, striatum, and cortex.

  20. Wetting dynamics at high values of contact line speed

    OpenAIRE

    Пономарев, К. О.; Феоктистов, Дмитрий Владимирович; Орлова, Евгения Георгиевна

    2015-01-01

    Experimental results analyses of dynamic contact angle change under the conditions of substrate wetting by distilled water at high values of the contact line speed was conducted. Three spreading modes for copper substrates with different roughness were selected: drop formation, spreading and equilibrium contact angle formation. Peculiarity of droplet spreading on superhydrophobic surface is found. It consists in a monotonic increase of the advancing dynamic contact angle. The effect of the dr...

  1. A variational nodal diffusion method of high accuracy; Varijaciona nodalna difuziona metoda visoke tachnosti

    Energy Technology Data Exchange (ETDEWEB)

    Tomasevic, Dj; Altiparmarkov, D [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1988-07-01

    A variational nodal diffusion method with accurate treatment of transverse leakage shape is developed and presented in this paper. Using Legendre expansion in transverse coordinates higher order quasi-one-dimensional nodal equations are formulated. Numerical solution has been carried out using analytical solutions in alternating directions assuming Legendre expansion of the RHS term. The method has been tested against 2D and 3D IAEA benchmark problem, as well as 2D CANDU benchmark problem. The results are highly accurate. The first order approximation yields to the same order of accuracy as the standard nodal methods with quadratic leakage approximation, while the second order reaches reference solution. (author)

  2. The profile of high school students’ scientific literacy on fluid dynamics

    Science.gov (United States)

    Parno; Yuliati, L.; Munfaridah, N.

    2018-05-01

    This study aims to describe the profile of scientific literacy of high school students on Fluid Dynamics materials. Scientific literacy is one of the ability to solve daily problems in accordance with the context of materials related to science and technology. The study was conducted on 90 high school students in Sumbawa using survey design. Data were collected using an instrument of scientific literacy for high school students on dynamic fluid materials. Data analysis was conducted descriptively to determine the students’ profile of scientific literacy. The results showed that high school students’ scientific literacy on Fluid Dynamics materials was in the low category. The highest average is obtained on indicators of scientific literacy i.e. the ability to interpret data and scientific evidence. The ability of scientific literacy is related to the mastery of concepts and learning experienced by students, therefore it is necessary to use learning that can trace this ability such as Science, Technology, Engineering, and Mathematics (STEM).

  3. A dynamically weighted multi-modal biometric security system

    CSIR Research Space (South Africa)

    Brown, Dane

    2016-09-01

    Full Text Available The face, fingerprint and palmprint feature vectors are automatically extracted and dynamically selected for fusion at the feature-level, toward an improved human identification accuracy. The feature-level has a higher potential accuracy than...

  4. DYNAMIC AUTHORIZATION BASED ON THE HISTORY OF EVENTS

    Directory of Open Access Journals (Sweden)

    Maxim V. Baklanovsky

    2016-11-01

    Full Text Available The new paradigm in the field of access control systems with fuzzy authorization is proposed. Let there is a set of objects in a single data transmissionnetwork. The goal is to develop dynamic authorization protocol based on correctness of presentation of events (news occurred earlier in the network. We propose mathematical method that keeps compactly the history of events, neglects more distant and least-significant events, composes and verifies authorization data. The history of events is represented as vectors of numbers. Each vector is multiplied by several stochastic vectors. The result is known that if vectors of events are sparse, then by solving the problem of -optimization they can be restored with high accuracy. Results of experiments for vectors restoring have shown that the greater the number of stochastic vectors is, the better accuracy of restored vectors is observed. It has been established that the largest absolute components are restored earlier. Access control system with the proposed dynamic authorization method enables to compute fuzzy confidence coefficients in networks with frequently changing set of participants, mesh-networks, multi-agent systems.

  5. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...... estimation is −1.8% and the relative standard deviation 5.4%. The approach can thus estimate both high and low velocities with equal accuracy and thereby makes it possible to present vector flow images with a high dynamic range. Measurements are made using the SARUS research scanner, a linear array......Conventional color flow images are limited in velocity range and can either show the high velocities in systole or be optimized for the lower diastolic velocities. The full dynamics of the flow is, thus, hard to visualize. The dynamic range can be significantly increased by employing synthetic...

  6. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    Directory of Open Access Journals (Sweden)

    Denis Fisseler

    2013-05-01

    Full Text Available The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2mmhas been obtained for static setups and of 1.2mmfor dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.

  7. High Accuracy Ground-based near-Earth-asteroid Astrometry using Synthetic Tracking

    Science.gov (United States)

    Zhai, Chengxing; Shao, Michael; Saini, Navtej; Sandhu, Jagmit; Werne, Thomas; Choi, Philip; Ely, Todd A.; Jacobs, Chirstopher S.; Lazio, Joseph; Martin-Mur, Tomas J.; Owen, William M.; Preston, Robert; Turyshev, Slava; Michell, Adam; Nazli, Kutay; Cui, Isaac; Monchama, Rachel

    2018-01-01

    Accurate astrometry is crucial for determining the orbits of near-Earth-asteroids (NEAs). Further, the future of deep space high data rate communications is likely to be optical communications, such as the Deep Space Optical Communications package that is part of the baseline payload for the planned Psyche Discovery mission to the Psyche asteroid. We have recently upgraded our instrument on the Pomona College 1 m telescope, at JPL's Table Mountain Facility, for conducting synthetic tracking by taking many short exposure images. These images can be then combined in post-processing to track both asteroid and reference stars to yield accurate astrometry. Utilizing the precision of the current and future Gaia data releases, the JPL-Pomona College effort is now demonstrating precision astrometry on NEAs, which is likely to be of considerable value for cataloging NEAs. Further, treating NEAs as proxies of future spacecraft that carry optical communication lasers, our results serve as a measure of the astrometric accuracy that could be achieved for future plane-of-sky optical navigation.

  8. Highly Resolved Studies of Vacuum Ultraviolet Photoionization Dynamics

    Science.gov (United States)

    Kakar, Sandeep

    We use measurements of dispersed fluorescence from electronically excited photoions to study fundamental aspects of intramolecular dynamics. Our experimental innovations make it possible to obtain highly resolved photoionization data that offer qualitative insights into molecular scattering. In particular, we obtain vibrationally resolved data to probe coupling between the electronic and nuclear degrees of freedom by studying the distribution of vibrational energy among photoions. Vibrationally resolved branching ratios are measured over a broad spectral range of excitation energy and their non-Franck-Condon behavior is used as a tool to investigate two diverse aspects of shape resonant photoionization. First, vibrational branching ratios are obtained for the SiF_4 5a _1^{-1} and CS_2 5sigma_{rm u} ^{-1} photoionization channels to help elucidate the microscopic aspects of shape resonant wavefunction for polyatomic molecules. It is shown that in such molecules the shape resonant wavefunction is not necessarily attributable to a specific bond in the molecule. Second, the multichannel aspect of shape resonant photoionization dynamics, reflected in continuum channel coupling, is investigated by obtaining vibrational branching ratios for the 2 sigma_{rm u}^{ -1} and 4sigma^{ -1} photoionization of the isoelectronic molecules N_2 and CO, respectively. These data indicate that effects of continuum coupling may be widespread. We also present the first set of rotationally resolved data over a wide energy range for the 2 sigma_{rm u}^{ -1} photoionization of N_2. These data probe the partitioning of the angular momentum between the photoelectron and photoion, and highlight the multicenter nature of the molecular potential. These case studies illustrate the utility of dispersed fluorescence measurements as a complement to photoelectron spectroscopy for obtaining highly resolved data for molecular photoionization. These measurements makes it possible to probe intrinsically

  9. Comparison of linear intrascan and interscan dynamic ranges of Orbitrap and ion-mobility time-of-flight mass spectrometers.

    Science.gov (United States)

    Kaufmann, Anton; Walker, Stephan

    2017-11-30

    The linear intrascan and interscan dynamic ranges of mass spectrometers are important in metabolome and residue analysis. A large linear dynamic range is mandatory if both low- and high-abundance ions have to be detected and quantitated in heavy matrix samples. These performance criteria, as provided by modern high-resolution mass spectrometry (HRMS), were systematically investigated. The comparison included two generations of Orbitraps, and an ion mobility quadrupole time-of-flight (QTOF) system In addition, different scan modes, as provided by the utilized instruments, were investigated. Calibration curves of different compounds covering a concentration range of five orders of magnitude were measured to evaluate the linear interscan dynamic range. The linear intrascan dynamic range and the resulting mass accuracy were evaluated by repeating these measurements in the presence of a very intense background. Modern HRMS instruments can show linear dynamic ranges of five orders of magnitude. Often, however, the linear dynamic range is limited by the detection capability (sensitivity and selectivity) and by the electrospray ionization. Orbitraps, as opposed to TOF instruments, show a reduced intrascan dynamic range. This is due to the limited C-trap and Orbitrap capacity. The tested TOF instrument shows poorer mass accuracies than the Orbitraps. In contrast, hyphenation with an ion-mobility device seems not to affect the linear dynamic range. The linear dynamic range of modern HRMS instrumentation has been significantly improved. This also refers to the virtual absence of systematic mass shifts at high ion abundances. The intrascan dynamic range of the current Orbitrap technology may still be a limitation when analyzing complex matrix extracts. On the other hand, the linear dynamic range is not only limited by the detector technology, but can also be shortened by peripheral devices, where the ionization and transfer of ions take place. Copyright © 2017 John Wiley

  10. Dynamic Reference Electrode development for redox potential measurements in fluoride molten salt at high temperature

    International Nuclear Information System (INIS)

    Durán-Klie, Gabriela; Rodrigues, Davide; Delpech, Sylvie

    2016-01-01

    Measurement of redox potential in fluoride media is a major problem due to the difficulty to design a reference electrode with high stability, high mechanical resistance and high accuracy. In the frame of molten salt reactor studies, a dynamic reference electrode (DRE) is developed to measure redox potential in fluoride molten salt at high temperature. DRE is based on the in-situ generation of a transient redox system. The choice of the redox couple corresponds to the cathodic limit of the molten salt considered. As a preliminary step, the demonstration of feasibility of generating a DRE was done in LiF-NaF-KF (46.5–11.5–42 mol%) media at 500 °C. In this salt, the reference redox system generated by coulometry at applied current is KF/K, metallic potassium being electrodeposited on a tungsten wire electrode. The validation of the DRE response and the experimental optimization parameters for DRE generation were realized by following the NiF 2 /Ni redox potential evolution as a function of NiF 2 concentration in the fused salt. The current value applied for DRE generation was optimized. It depends on the amount of metallic cations contained in the fused salt and which can be electrochemically reduced simultaneously during the DRE generation. The current corresponding to the DRE generation has to be 4 times greater than the current corresponding to the reduction of the other elements.

  11. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    International Nuclear Information System (INIS)

    Zhang, Shen; Kang, Wei; Wang, Hongwei; Zhang, Ping; He, X. T.

    2016-01-01

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  12. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shen; Kang, Wei, E-mail: weikang@pku.edu.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Wang, Hongwei [College of Engineering, Peking University, Beijing 100871 (China); Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); He, X. T., E-mail: xthe@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2016-04-15

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  13. High-Accuracy Measurements of Total Column Water Vapor From the Orbiting Carbon Observatory-2

    Science.gov (United States)

    Nelson, Robert R.; Crisp, David; Ott, Lesley E.; O'Dell, Christopher W.

    2016-01-01

    Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution [1.3 x 2.3 km(exp. 2)] and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products.

  14. Coorientational Accuracy and Differentiation in the Management of Conflict.

    Science.gov (United States)

    Papa, Michael J.; Pood, Elliott A.

    1988-01-01

    Investigates the relationship between coorientational accuracy and differentiation time and two dimensions of conflict (interaction satisfaction and assertiveness of influence strategies). Suggests that entering a conflict with high coorientational accuracy leads to less differentiation and fewer assertive strategies during the confrontation and…

  15. Tracking Accuracy of a Real-Time Fiducial Tracking System for Patient Positioning and Monitoring in Radiation Therapy

    International Nuclear Information System (INIS)

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W.

    2010-01-01

    Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.

  16. A content analysis of the quantity and accuracy of dietary supplement information found in magazines with high adolescent readership.

    Science.gov (United States)

    Shaw, Patricia; Zhang, Vivien; Metallinos-Katsaras, Elizabeth

    2009-02-01

    The objective of this study was to examine the quantity and accuracy of dietary supplement (DS) information through magazines with high adolescent readership. Eight (8) magazines (3 teen and 5 adult with high teen readership) were selected. A content analysis for DS was conducted on advertisements and editorials (i.e., articles, advice columns, and bulletins). Noted claims/cautions regarding DS were evaluated for accuracy using Medlineplus.gov and Naturaldatabase.com. Claims for dietary supplements with three or more types of ingredients and those in advertisements were not evaluated. Advertisements were evaluated with respect to size, referenced research, testimonials, and Dietary Supplement Health and Education Act of 1994 (DSHEA) warning visibility. Eighty-eight (88) issues from eight magazines yielded 238 DS references. Fifty (50) issues from five magazines contained no DS reference. Among teen magazines, seven DS references were found: five in the editorials and two in advertisements. In adult magazines, 231 DS references were found: 139 in editorials and 92 in advertisements. Of the 88 claims evaluated, 15% were accurate, 23% were inconclusive, 3% were inaccurate, 5% were partially accurate, and 55% were unsubstantiated (i.e., not listed in reference databases). Of the 94 DS evaluated in advertisements, 43% were full page or more, 79% did not have a DSHEA warning visible, 46% referred to research, and 32% used testimonials. Teen magazines contain few references to DS, none accurate. Adult magazines that have a high teen readership contain a substantial amount of DS information with questionable accuracy, raising concerns that this information may increase the chances of inappropriate DS use by adolescents, thereby increasing the potential for unexpected effects or possible harm.

  17. Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method

    Science.gov (United States)

    Brovelli, Maria Antonia; Crespi, Mattia; Fratarcangeli, Francesca; Giannone, Francesca; Realini, Eugenio

    Interest in high-resolution satellite imagery (HRSI) is spreading in several application fields, at both scientific and commercial levels. Fundamental and critical goals for the geometric use of this kind of imagery are their orientation and orthorectification, processes able to georeference the imagery and correct the geometric deformations they undergo during acquisition. In order to exploit the actual potentialities of orthorectified imagery in Geomatics applications, the definition of a methodology to assess the spatial accuracy achievable from oriented imagery is a crucial topic. In this paper we want to propose a new method for accuracy assessment based on the Leave-One-Out Cross-Validation (LOOCV), a model validation method already applied in different fields such as machine learning, bioinformatics and generally in any other field requiring an evaluation of the performance of a learning algorithm (e.g. in geostatistics), but never applied to HRSI orientation accuracy assessment. The proposed method exhibits interesting features which are able to overcome the most remarkable drawbacks involved by the commonly used method (Hold-Out Validation — HOV), based on the partitioning of the known ground points in two sets: the first is used in the orientation-orthorectification model (GCPs — Ground Control Points) and the second is used to validate the model itself (CPs — Check Points). In fact the HOV is generally not reliable and it is not applicable when a low number of ground points is available. To test the proposed method we implemented a new routine that performs the LOOCV in the software SISAR, developed by the Geodesy and Geomatics Team at the Sapienza University of Rome to perform the rigorous orientation of HRSI; this routine was tested on some EROS-A and QuickBird images. Moreover, these images were also oriented using the world recognized commercial software OrthoEngine v. 10 (included in the Geomatica suite by PCI), manually performing the LOOCV

  18. Validation of the Amsterdam Dynamic Facial Expression Set--Bath Intensity Variations (ADFES-BIV: A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions.

    Directory of Open Access Journals (Sweden)

    Tanja S H Wingenbach

    Full Text Available Most of the existing sets of facial expressions of emotion contain static photographs. While increasing demand for stimuli with enhanced ecological validity in facial emotion recognition research has led to the development of video stimuli, these typically involve full-blown (apex expressions. However, variations of intensity in emotional facial expressions occur in real life social interactions, with low intensity expressions of emotions frequently occurring. The current study therefore developed and validated a set of video stimuli portraying three levels of intensity of emotional expressions, from low to high intensity. The videos were adapted from the Amsterdam Dynamic Facial Expression Set (ADFES and termed the Bath Intensity Variations (ADFES-BIV. A healthy sample of 92 people recruited from the University of Bath community (41 male, 51 female completed a facial emotion recognition task including expressions of 6 basic emotions (anger, happiness, disgust, fear, surprise, sadness and 3 complex emotions (contempt, embarrassment, pride that were expressed at three different intensities of expression and neutral. Accuracy scores (raw and unbiased (Hu hit rates were calculated, as well as response times. Accuracy rates above chance level of responding were found for all emotion categories, producing an overall raw hit rate of 69% for the ADFES-BIV. The three intensity levels were validated as distinct categories, with higher accuracies and faster responses to high intensity expressions than intermediate intensity expressions, which had higher accuracies and faster responses than low intensity expressions. To further validate the intensities, a second study with standardised display times was conducted replicating this pattern. The ADFES-BIV has greater ecological validity than many other emotion stimulus sets and allows for versatile applications in emotion research. It can be retrieved free of charge for research purposes from the

  19. Validation of the Amsterdam Dynamic Facial Expression Set--Bath Intensity Variations (ADFES-BIV): A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions.

    Science.gov (United States)

    Wingenbach, Tanja S H; Ashwin, Chris; Brosnan, Mark

    2016-01-01

    Most of the existing sets of facial expressions of emotion contain static photographs. While increasing demand for stimuli with enhanced ecological validity in facial emotion recognition research has led to the development of video stimuli, these typically involve full-blown (apex) expressions. However, variations of intensity in emotional facial expressions occur in real life social interactions, with low intensity expressions of emotions frequently occurring. The current study therefore developed and validated a set of video stimuli portraying three levels of intensity of emotional expressions, from low to high intensity. The videos were adapted from the Amsterdam Dynamic Facial Expression Set (ADFES) and termed the Bath Intensity Variations (ADFES-BIV). A healthy sample of 92 people recruited from the University of Bath community (41 male, 51 female) completed a facial emotion recognition task including expressions of 6 basic emotions (anger, happiness, disgust, fear, surprise, sadness) and 3 complex emotions (contempt, embarrassment, pride) that were expressed at three different intensities of expression and neutral. Accuracy scores (raw and unbiased (Hu) hit rates) were calculated, as well as response times. Accuracy rates above chance level of responding were found for all emotion categories, producing an overall raw hit rate of 69% for the ADFES-BIV. The three intensity levels were validated as distinct categories, with higher accuracies and faster responses to high intensity expressions than intermediate intensity expressions, which had higher accuracies and faster responses than low intensity expressions. To further validate the intensities, a second study with standardised display times was conducted replicating this pattern. The ADFES-BIV has greater ecological validity than many other emotion stimulus sets and allows for versatile applications in emotion research. It can be retrieved free of charge for research purposes from the corresponding author.

  20. From Particles and Point Clouds to Voxel Models: High Resolution Modeling of Dynamic Landscapes in Open Source GIS

    Science.gov (United States)

    Mitasova, H.; Hardin, E. J.; Kratochvilova, A.; Landa, M.

    2012-12-01

    Multitemporal data acquired by modern mapping technologies provide unique insights into processes driving land surface dynamics. These high resolution data also offer an opportunity to improve the theoretical foundations and accuracy of process-based simulations of evolving landforms. We discuss development of new generation of visualization and analytics tools for GRASS GIS designed for 3D multitemporal data from repeated lidar surveys and from landscape process simulations. We focus on data and simulation methods that are based on point sampling of continuous fields and lead to representation of evolving surfaces as series of raster map layers or voxel models. For multitemporal lidar data we present workflows that combine open source point cloud processing tools with GRASS GIS and custom python scripts to model and analyze dynamics of coastal topography (Figure 1) and we outline development of coastal analysis toolbox. The simulations focus on particle sampling method for solving continuity equations and its application for geospatial modeling of landscape processes. In addition to water and sediment transport models, already implemented in GIS, the new capabilities under development combine OpenFOAM for wind shear stress simulation with a new module for aeolian sand transport and dune evolution simulations. Comparison of observed dynamics with the results of simulations is supported by a new, integrated 2D and 3D visualization interface that provides highly interactive and intuitive access to the redesigned and enhanced visualization tools. Several case studies will be used to illustrate the presented methods and tools and demonstrate the power of workflows built with FOSS and highlight their interoperability.Figure 1. Isosurfaces representing evolution of shoreline and a z=4.5m contour between the years 1997-2011at Cape Hatteras, NC extracted from a voxel model derived from series of lidar-based DEMs.

  1. A low-power high dynamic range front-end ASIC for imaging calorimeters

    CERN Document Server

    Bagliesi, M G; Marrocchesi, P S; Meucci, M; Millucci, V; Morsani, F; Paoletti, R; Pilo, F; Scribano, A; Turini, N; Valle, G D

    2002-01-01

    High granularity calorimeters with shower imaging capabilities require dedicated front-end electronics. The ICON 4CH and VA4 PMT chip-set is suitable for very high dynamic range systems with strict noise requirements. The ICON 4CH is a 4 channel input, 12 channel output ASIC designed for use in a multi-anode photomultiplier system with very large dynamic range and low-noise requirements. Each of the four input signals to the ASIC is split equally into three branches by a current conveyor. Each of the three branches is scaled differently: 1:1, 1:8 and 1:80. The signal is read out by a 12 channel low noise/low power high dynamic range charge sensitive preamplifier-shaper circuit (VA4-PMT chip), with simultaneous sample- and-hold, multiplexed analog read-out, calibration facilities. Tests performed in our lab with a PMT are reported in terms of linearity, dynamic range and cross-talk of the system. (5 refs).

  2. Social power facilitates the effect of prosocial orientation on empathic accuracy.

    Science.gov (United States)

    Côté, Stéphane; Kraus, Michael W; Cheng, Bonnie Hayden; Oveis, Christopher; van der Löwe, Ilmo; Lian, Hua; Keltner, Dacher

    2011-08-01

    Power increases the tendency to behave in a goal-congruent fashion. Guided by this theoretical notion, we hypothesized that elevated power would strengthen the positive association between prosocial orientation and empathic accuracy. In 3 studies with university and adult samples, prosocial orientation was more strongly associated with empathic accuracy when distinct forms of power were high than when power was low. In Study 1, a physiological indicator of prosocial orientation, respiratory sinus arrhythmia, exhibited a stronger positive association with empathic accuracy in a face-to-face interaction among dispositionally high-power individuals. In Study 2, experimentally induced prosocial orientation increased the ability to accurately judge the emotions of a stranger but only for individuals induced to feel powerful. In Study 3, a trait measure of prosocial orientation was more strongly related to scores on a standard test of empathic accuracy among employees who occupied high-power positions within an organization. Study 3 further showed a mediated relationship between prosocial orientation and career satisfaction through empathic accuracy among employees in high-power positions but not among employees in lower power positions. Discussion concentrates upon the implications of these findings for studies of prosociality, power, and social behavior.

  3. Bayesian Inference of High-Dimensional Dynamical Ocean Models

    Science.gov (United States)

    Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.

    2015-12-01

    This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.

  4. ACCURACY ASSESSMENT OF COASTAL TOPOGRAPHY DERIVED FROM UAV IMAGES

    Directory of Open Access Journals (Sweden)

    N. Long

    2016-06-01

    Full Text Available To monitor coastal environments, Unmanned Aerial Vehicle (UAV is a low-cost and easy to use solution to enable data acquisition with high temporal frequency and spatial resolution. Compared to Light Detection And Ranging (LiDAR or Terrestrial Laser Scanning (TLS, this solution produces Digital Surface Model (DSM with a similar accuracy. To evaluate the DSM accuracy on a coastal environment, a campaign was carried out with a flying wing (eBee combined with a digital camera. Using the Photoscan software and the photogrammetry process (Structure From Motion algorithm, a DSM and an orthomosaic were produced. Compared to GNSS surveys, the DSM accuracy is estimated. Two parameters are tested: the influence of the methodology (number and distribution of Ground Control Points, GCPs and the influence of spatial image resolution (4.6 cm vs 2 cm. The results show that this solution is able to reproduce the topography of a coastal area with a high vertical accuracy (< 10 cm. The georeferencing of the DSM require a homogeneous distribution and a large number of GCPs. The accuracy is correlated with the number of GCPs (use 19 GCPs instead of 10 allows to reduce the difference of 4 cm; the required accuracy should be dependant of the research problematic. Last, in this particular environment, the presence of very small water surfaces on the sand bank does not allow to improve the accuracy when the spatial resolution of images is decreased.

  5. Dynamic modeling method for infrared smoke based on enhanced discrete phase model

    Science.gov (United States)

    Zhang, Zhendong; Yang, Chunling; Zhang, Yan; Zhu, Hongbo

    2018-03-01

    The dynamic modeling of infrared (IR) smoke plays an important role in IR scene simulation systems and its accuracy directly influences the system veracity. However, current IR smoke models cannot provide high veracity, because certain physical characteristics are frequently ignored in fluid simulation; simplifying the discrete phase as a continuous phase and ignoring the IR decoy missile-body spinning. To address this defect, this paper proposes a dynamic modeling method for IR smoke, based on an enhanced discrete phase model (DPM). A mathematical simulation model based on an enhanced DPM is built and a dynamic computing fluid mesh is generated. The dynamic model of IR smoke is then established using an extended equivalent-blackbody-molecule model. Experiments demonstrate that this model realizes a dynamic method for modeling IR smoke with higher veracity.

  6. Dynamic tensile fracture of mortar at ultra-high strain-rates

    International Nuclear Information System (INIS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-01-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10 4 to 4 × 10 4  s −1 . The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading

  7. Dynamic Stability Analysis Using High-Order Interpolation

    Directory of Open Access Journals (Sweden)

    Juarez-Toledo C.

    2012-10-01

    Full Text Available A non-linear model with robust precision for transient stability analysis in multimachine power systems is proposed. The proposed formulation uses the interpolation of Lagrange and Newton's Divided Difference. The High-Order Interpolation technique developed can be used for evaluation of the critical conditions of the dynamic system.The technique is applied to a 5-area 45-machine model of the Mexican interconnected system. As a particular case, this paper shows the application of the High-Order procedure for identifying the slow-frequency mode for a critical contingency. Numerical examples illustrate the method and demonstrate the ability of the High-Order technique to isolate and extract temporal modal behavior.

  8. Study on dynamic performance of SOFC

    Science.gov (United States)

    Zhan, Haiyang; Liang, Qianchao; Wen, Qiang; Zhu, Runkai

    2017-05-01

    In order to solve the problem of real-time matching of load and fuel cell power, it is urgent to study the dynamic response process of SOFC in the case of load mutation. The mathematical model of SOFC is constructed, and its performance is simulated. The model consider the influence factors such as polarization effect, ohmic loss. It also takes the diffusion effect, thermal effect, energy exchange, mass conservation, momentum conservation. One dimensional dynamic mathematical model of SOFC is constructed by using distributed lumped parameter method. The simulation results show that the I-V characteristic curves are in good agreement with the experimental data, and the accuracy of the model is verified. The voltage response curve, power response curve and the efficiency curve are obtained by this way. It lays a solid foundation for the research of dynamic performance and optimal control in power generation system of high power fuel cell stack.

  9. Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack

    DEFF Research Database (Denmark)

    Nguyen, Gia; Sahlin, Simon Lennart; Andreasen, Søren Juhl

    2016-01-01

    High temperature polymer fuel cells operating at 100 to 200◦C require simple fuel processing and produce high quality heat that can integrate well with domestic heating systems. Because the transportation of hydrogen is challenging, an alternative option is to reform natural gas on site....... This article presents the development of a dynamic model and the comparison with experimental data from a high temperature proton exchange membrane fuel cell stack operating on hydrogen with carbon monoxide concentrations up to 0.8%, and temperatures from 155 to 175◦C. The dynamic response of the fuel cell...... is investigated with simulated reformate gas. The dynamic response of the fuel cell stack was compared with a step change in current from 0.09 to 0.18 and back to 0.09 A/cm2 . This article shows that the dynamic model calculates the voltage at steady state well. The dynamic response for a change in current shows...

  10. The use of high accuracy NAA for the certification of NIST botanical standard reference materials

    International Nuclear Information System (INIS)

    Becker, D.A.; Greenberg, R.R.; Stone, S.F.

    1992-01-01

    Neutron activation analysis is one of many analytical techniques used at the National Institute of Standards and Technology (NIST) for the certification of NIST Standard Reference Materials (SRMs). NAA competes favorably with all other techniques because of it's unique capabilities for high accuracy even at very low concentrations for many elements. In this paper, instrumental and radiochemical NAA results are described for 25 elements in two new NIST SRMs, SRM 1515 (Apple Leaves) and SRM 1547 (Peach Leaves), and are compared to the certified values for 19 elements in these two new botanical reference materials. (author) 7 refs.; 4 tabs

  11. Three-dimensional sensing methodology combining stereo vision and phase-measuring profilometry based on dynamic programming

    Science.gov (United States)

    Lee, Hyunki; Kim, Min Young; Moon, Jeon Il

    2017-12-01

    Phase measuring profilometry and moiré methodology have been widely applied to the three-dimensional shape measurement of target objects, because of their high measuring speed and accuracy. However, these methods suffer from inherent limitations called a correspondence problem, or 2π-ambiguity problem. Although a kind of sensing method to combine well-known stereo vision and phase measuring profilometry (PMP) technique simultaneously has been developed to overcome this problem, it still requires definite improvement for sensing speed and measurement accuracy. We propose a dynamic programming-based stereo PMP method to acquire more reliable depth information and in a relatively small time period. The proposed method efficiently fuses information from two stereo sensors in terms of phase and intensity simultaneously based on a newly defined cost function of dynamic programming. In addition, the important parameters are analyzed at the view point of the 2π-ambiguity problem and measurement accuracy. To analyze the influence of important hardware and software parameters related to the measurement performance and to verify its efficiency, accuracy, and sensing speed, a series of experimental tests were performed with various objects and sensor configurations.

  12. Evaluating arguments during instigations of defence motivation and accuracy motivation.

    Science.gov (United States)

    Liu, Cheng-Hong

    2017-05-01

    When people evaluate the strength of an argument, their motivations are likely to influence the evaluation. However, few studies have specifically investigated the influences of motivational factors on argument evaluation. This study examined the effects of defence and accuracy motivations on argument evaluation. According to the compatibility between the advocated positions of arguments and participants' prior beliefs and the objective strength of arguments, participants evaluated four types of arguments: compatible-strong, compatible-weak, incompatible-strong, and incompatible-weak arguments. Experiment 1 revealed that participants possessing a high defence motivation rated compatible-weak arguments as stronger and incompatible-strong ones as weaker than participants possessing a low defence motivation. However, the strength ratings between the high and low defence groups regarding both compatible-strong and incompatible-weak arguments were similar. Experiment 2 revealed that when participants possessed a high accuracy motivation, they rated compatible-weak arguments as weaker and incompatible-strong ones as stronger than when they possessed a low accuracy motivation. However, participants' ratings on both compatible-strong and incompatible-weak arguments were similar when comparing high and low accuracy conditions. The results suggest that defence and accuracy motivations are two major motives influencing argument evaluation. However, they primarily influence the evaluation results for compatible-weak and incompatible-strong arguments, but not for compatible-strong and incompatible-weak arguments. © 2016 The British Psychological Society.

  13. Fuzzy Constrained Predictive Optimal Control of High Speed Train with Actuator Dynamics

    Directory of Open Access Journals (Sweden)

    Xi Wang

    2016-01-01

    Full Text Available We investigate the problem of fuzzy constrained predictive optimal control of high speed train considering the effect of actuator dynamics. The dynamics feature of the high speed train is modeled as a cascade of cars connected by flexible couplers, and the formulation is mathematically transformed into a Takagi-Sugeno (T-S fuzzy model. The goal of this study is to design a state feedback control law at each decision step to enhance safety, comfort, and energy efficiency of high speed train subject to safety constraints on the control input. Based on Lyapunov stability theory, the problem of optimizing an upper bound on the cruise control cost function subject to input constraints is reduced to a convex optimization problem involving linear matrix inequalities (LMIs. Furthermore, we analyze the influences of second-order actuator dynamics on the fuzzy constrained predictive controller, which shows risk of potentially deteriorating the overall system. Employing backstepping method, an actuator compensator is proposed to accommodate for the influence of the actuator dynamics. The experimental results show that with the proposed approach high speed train can track the desired speed, the relative coupler displacement between the neighbouring cars is stable at the equilibrium state, and the influence of actuator dynamics is reduced, which demonstrate the validity and effectiveness of the proposed approaches.

  14. Approximation of quantum observables by molecular dynamics simulations

    KAUST Repository

    Sandberg, Mattias

    2016-01-01

    In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.

  15. Approximation of quantum observables by molecular dynamics simulations

    KAUST Repository

    Sandberg, Mattias

    2016-01-06

    In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.

  16. The numerical dynamic for highly nonlinear partial differential equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  17. Effects of reward on the accuracy and dynamics of smooth pursuit eye movements.

    Science.gov (United States)

    Brielmann, Aenne A; Spering, Miriam

    2015-08-01

    Reward modulates behavioral choices and biases goal-oriented behavior, such as eye or hand movements, toward locations or stimuli associated with higher rewards. We investigated reward effects on the accuracy and timing of smooth pursuit eye movements in 4 experiments. Eye movements were recorded in participants tracking a moving visual target on a computer monitor. Before target motion onset, a monetary reward cue indicated whether participants could earn money by tracking accurately, or whether the trial was unrewarded (Experiments 1 and 2, n = 11 each). Reward significantly improved eye-movement accuracy across different levels of task difficulty. Improvements were seen even in the earliest phase of the eye movement, within 70 ms of tracking onset, indicating that reward impacts visual-motor processing at an early level. We obtained similar findings when reward was not precued but explicitly associated with the pursuit target (Experiment 3, n = 16); critically, these results were not driven by stimulus prevalence or other factors such as preparation or motivation. Numerical cues (Experiment 4, n = 9) were not effective. (c) 2015 APA, all rights reserved).

  18. High-Latitude Ionospheric Dynamics During Conditions of Northward IMF

    Science.gov (United States)

    Sharber, J. R.

    1996-01-01

    In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.

  19. High-precision X-ray spectroscopy of highly-charged ions at the experimental storage ring using silicon microcalorimeters

    Science.gov (United States)

    Scholz, Pascal A.; Andrianov, Victor; Echler, Artur; Egelhof, Peter; Kilbourne, Caroline; Kiselev, Oleg; Kraft-Bermuth, Saskia; McCammon, Dan

    2017-10-01

    X-ray spectroscopy on highly charged heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. One limitation of the current accuracy of such experiments is the energy resolution of available X-ray detectors for energies up to 100 keV. To improve this accuracy, a novel detector concept, namely the concept of microcalorimeters, is exploited for this kind of measurements. The microcalorimeters used in the present experiments consist of silicon thermometers, ensuring a high dynamic range, and of absorbers made of high-Z material to provide high X-ray absorption efficiency. Recently, besides an earlier used detector, a new compact detector design, housed in a new dry cryostat equipped with a pulse tube cooler, was applied at a test beamtime at the experimental storage ring (ESR) of the GSI facility in Darmstadt. A U89+ beam at 75 MeV/u and a 124Xe54+ beam at various beam energies, both interacting with an internal gas-jet target, were used in different cycles. This test was an important benchmark for designing a larger array with an improved lateral sensitivity and statistical accuracy.

  20. Dynamic high resolution imaging of rats

    International Nuclear Information System (INIS)

    Miyaoka, R.S.; Lewellen, T.K.; Bice, A.N.

    1990-01-01

    A positron emission tomography with the sensitivity and resolution to do dynamic imaging of rats would be an invaluable tool for biological researchers. In this paper, the authors determine the biological criteria for dynamic positron emission imaging of rats. To be useful, 3 mm isotropic resolution and 2-3 second time binning were necessary characteristics for such a dedicated tomograph. A single plane in which two objects of interest could be imaged simultaneously was considered acceptable. Multi-layered detector designs were evaluated as a possible solution to the dynamic imaging and high resolution imaging requirements. The University of Washington photon history generator was used to generate data to investigate a tomograph's sensitivity to true, scattered and random coincidences for varying detector ring diameters. Intrinsic spatial uniformity advantages of multi-layered detector designs over conventional detector designs were investigated using a Monte Carlo program. As a result, a modular three layered detector prototype is being developed. A module will consist of a layer of five 3.5 mm wide crystals and two layers of six 2.5 mm wide crystals. The authors believe adequate sampling can be achieved with a stationary detector system using these modules. Economical crystal decoding strategies have been investigated and simulations have been run to investigate optimum light channeling methods for block decoding strategies. An analog block decoding method has been proposed and will be experimentally evaluated to determine whether it can provide the desired performance

  1. Flight Loads Prediction of High Aspect Ratio Wing Aircraft Using Multibody Dynamics

    Directory of Open Access Journals (Sweden)

    Michele Castellani

    2016-01-01

    Full Text Available A framework based on multibody dynamics has been developed for the static and dynamic aeroelastic analyses of flexible high aspect ratio wing aircraft subject to structural geometric nonlinearities. Multibody dynamics allows kinematic nonlinearities and nonlinear relationships in the forces definition and is an efficient and promising methodology to model high aspect ratio wings, which are known to be prone to structural nonlinear effects because of the high deflections in flight. The multibody dynamics framework developed employs quasi-steady aerodynamics strip theory and discretizes the wing as a series of rigid bodies interconnected by beam elements, representative of the stiffness distribution, which can undergo arbitrarily large displacements and rotations. The method is applied to a flexible high aspect ratio wing commercial aircraft and both trim and gust response analyses are performed in order to calculate flight loads. These results are then compared to those obtained with the standard linear aeroelastic approach provided by the Finite Element Solver Nastran. Nonlinear effects come into play mainly because of the need of taking into account the large deflections of the wing for flight loads computation and of considering the aerodynamic forces as follower forces.

  2. CARETS: A prototype regional environmental information system. Volume 6: Cost, accuracy and consistency comparisons of land use maps made from high-altitude aircraft photography and ERTS imagery

    Science.gov (United States)

    Alexander, R. H. (Principal Investigator); Fitzpatrick, K. A.

    1975-01-01

    The author has identified the following significant results. Level 2 land use maps produced at three scales (1:24,000, 1:100,000, and 1:250,000) from high altitude photography were compared with each other and with point data obtained in the field. The same procedures were employed to determine the accuracy of the Level 1 land use maps produced at 1:250,000 from high altitude photography and color composite ERTS imagery. Accuracy of the Level 2 maps was 84.9 percent at 1:24,000, 77.4 percent at 1:100,000 and 73.0 percent at 1:250,000. Accuracy of the Level 1 1:250,000 maps was 76.5 percent for aerial photographs and 69.5 percent for ERTS imagery. The cost of Level 2 land use mapping at 1:24,000 was found to be high ($11.93 per sq km). The cost of mapping at 1:100,000 ($1.75) was about two times as expensive as mapping at 1:250,000 ($.88), and the accuracy increased by only 4.4 percent.

  3. High-frequency microrheology reveals cytoskeleton dynamics in living cells

    Science.gov (United States)

    Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix

    2017-08-01

    Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.

  4. Analysis of the plasmodium falciparum proteome by high-accuracy mass spectrometry

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Ishihama, Yasushi; Andersen, Jens S

    2002-01-01

    -accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last...

  5. Predictive accuracy of backpropagation neural network ...

    Indian Academy of Sciences (India)

    incorporated into the BP model for high accuracy management purpose of irrigation water, which relies on accurate values of ET ... as seen from the recent food crisis demonstra- tion in most .... layers by using Geographical Information System.

  6. Dynamic flow control strategies of vehicle SCR Urea Dosing System

    Science.gov (United States)

    Lin, Wei; Zhang, Youtong; Asif, Malik

    2015-03-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions. That will lead to low NO X conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between -8% and 10% to -4% and 2% and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms. The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NO X emission remains almost unchanged. The trade-off between NO X conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.

  7. Validation of the Amsterdam Dynamic Facial Expression Set – Bath Intensity Variations (ADFES-BIV): A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions

    Science.gov (United States)

    Wingenbach, Tanja S. H.

    2016-01-01

    Most of the existing sets of facial expressions of emotion contain static photographs. While increasing demand for stimuli with enhanced ecological validity in facial emotion recognition research has led to the development of video stimuli, these typically involve full-blown (apex) expressions. However, variations of intensity in emotional facial expressions occur in real life social interactions, with low intensity expressions of emotions frequently occurring. The current study therefore developed and validated a set of video stimuli portraying three levels of intensity of emotional expressions, from low to high intensity. The videos were adapted from the Amsterdam Dynamic Facial Expression Set (ADFES) and termed the Bath Intensity Variations (ADFES-BIV). A healthy sample of 92 people recruited from the University of Bath community (41 male, 51 female) completed a facial emotion recognition task including expressions of 6 basic emotions (anger, happiness, disgust, fear, surprise, sadness) and 3 complex emotions (contempt, embarrassment, pride) that were expressed at three different intensities of expression and neutral. Accuracy scores (raw and unbiased (Hu) hit rates) were calculated, as well as response times. Accuracy rates above chance level of responding were found for all emotion categories, producing an overall raw hit rate of 69% for the ADFES-BIV. The three intensity levels were validated as distinct categories, with higher accuracies and faster responses to high intensity expressions than intermediate intensity expressions, which had higher accuracies and faster responses than low intensity expressions. To further validate the intensities, a second study with standardised display times was conducted replicating this pattern. The ADFES-BIV has greater ecological validity than many other emotion stimulus sets and allows for versatile applications in emotion research. It can be retrieved free of charge for research purposes from the corresponding author

  8. Detectors for high resolution dynamic pet

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1983-05-01

    This report reviews the motivation for high spatial resolution in dynamic positron emission tomography of the head and the technical problems in realizing this objective. We present recent progress in using small silicon photodiodes to measure the energy deposited by 511 keV photons in small BGO crystals with an energy resolution of 9.4% full-width at half-maximum. In conjunction with a suitable phototube coupled to a group of crystals, the photodiode signal to noise ratio is sufficient for the identification of individual crystals both for conventional and time-of-flight positron tomography

  9. Rating of Dynamic Coefficient for Simple Beam Bridge Design on High-Speed Railways

    Science.gov (United States)

    Diachenko, Leonid; Benin, Andrey; Smirnov, Vladimir; Diachenko, Anastasia

    2018-06-01

    The aim of the work is to improve the methodology for the dynamic computation of simple beam spans during the impact of high-speed trains. Mathematical simulation utilizing numerical and analytical methods of structural mechanics is used in the research. The article analyses parameters of the effect of high-speed trains on simple beam spanning bridge structures and suggests a technique of determining of the dynamic index to the live load. Reliability of the proposed methodology is confirmed by results of numerical simulation of high-speed train passage over spans with different speeds. The proposed algorithm of dynamic computation is based on a connection between maximum acceleration of the span in the resonance mode of vibrations and the main factors of stress-strain state. The methodology allows determining maximum and also minimum values of the main efforts in the construction that makes possible to perform endurance tests. It is noted that dynamic additions for the components of the stress-strain state (bending moments, transverse force and vertical deflections) are different. This condition determines the necessity for differentiated approach to evaluation of dynamic coefficients performing design verification of I and II groups of limiting state. The practical importance: the methodology of determining the dynamic coefficients allows making dynamic calculation and determining the main efforts in split beam spans without numerical simulation and direct dynamic analysis that significantly reduces the labour costs for design.

  10. From the numerics of dynamics to the dynamics of numerics and visa versa in high energy particle physics

    International Nuclear Information System (INIS)

    Zhong Ting

    2009-01-01

    Starting from the concepts of statistical symmetry we consider different aspects of the connections between nonlinear dynamics and high energy physics. We pay special attention to the interplay between number theory and dynamics. We subsequently utilize the so obtained insight to compute vital constants relevant to the program of grand unification and quantum gravity.

  11. Recent high-accuracy measurements of the 1S0 neutron-neutron scattering length

    International Nuclear Information System (INIS)

    Howell, C.R.; Chen, Q.; Gonzalez Trotter, D.E.; Salinas, F.; Crowell, A.S.; Roper, C.D.; Tornow, W.; Walter, R.L.; Carman, T.S.; Hussein, A.; Gibbs, W.R.; Gibson, B.F.; Morris, C.; Obst, A.; Sterbenz, S.; Whitton, M.; Mertens, G.; Moore, C.F.; Whiteley, C.R.; Pasyuk, E.; Slaus, I.; Tang, H.; Zhou, Z.; Gloeckle, W.; Witala, H.

    2000-01-01

    This paper reports two recent high-accuracy determinations of the 1 S 0 neutron-neutron scattering length, a nn . One was done at the Los Alamos National Laboratory using the π - d capture reaction to produce two neutrons with low relative momentum. The neutron-deuteron (nd) breakup reaction was used in other measurement, which was conducted at the Triangle Universities Nuclear Laboratory. The results from the two determinations were consistent with each other and with previous values obtained using the π - d capture reaction. The value obtained from the nd breakup measurements is a nn = -18.7 ± 0.1 (statistical) ± 0.6 (systematic) fm, and the value from the π - d capture experiment is a nn = -18.50 ± 0.05 ± 0.53 fm. The recommended value is a nn = -18.5 ± 0.3 fm. (author)

  12. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    Directory of Open Access Journals (Sweden)

    Mingjun Deng

    2017-12-01

    Full Text Available The Chinese Gaofen-3 (GF-3 mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method.

  13. Body composition analysis by DEXA by using dynamically changing samarium filtration

    DEFF Research Database (Denmark)

    Gotfredsen, Arne; Baeksgaard, L; Hilsted, J

    1997-01-01

    Dual-energy X-ray absorptiometry (DEXA) has a high accuracy for body composition analysis but is influenced by beam hardening and other error sources in the extremes of measurement. To compensate for beam hardening, the Norland XR-36 introduces a dynamically changing samarium filtration system......). Scans of six healthy volunteers covered with combinations of beef and lard (approximately 5-15 kg) showed a good agreement (r = 0.99) between reference and DEXA values of added soft tissue mass and fat percentage. We conclude that the DEXA method (and, in particular, the Norland XR-36 using dynamic...

  14. Shifting visual perspective during memory retrieval reduces the accuracy of subsequent memories.

    Science.gov (United States)

    Marcotti, Petra; St Jacques, Peggy L

    2018-03-01

    Memories for events can be retrieved from visual perspectives that were never experienced, reflecting the dynamic and reconstructive nature of memories. Characteristics of memories can be altered when shifting from an own eyes perspective, the way most events are initially experienced, to an observer perspective, in which one sees oneself in the memory. Moreover, recent evidence has linked these retrieval-related effects of visual perspective to subsequent changes in memories. Here we examine how shifting visual perspective influences the accuracy of subsequent memories for complex events encoded in the lab. Participants performed a series of mini-events that were experienced from their own eyes, and were later asked to retrieve memories for these events while maintaining the own eyes perspective or shifting to an alternative observer perspective. We then examined how shifting perspective during retrieval modified memories by influencing the accuracy of recall on a final memory test. Across two experiments, we found that shifting visual perspective reduced the accuracy of subsequent memories and that reductions in vividness when shifting visual perspective during retrieval predicted these changes in the accuracy of memories. Our findings suggest that shifting from an own eyes to an observer perspective influences the accuracy of long-term memories.

  15. Optimal dynamic performance for high-precision actuators/stages

    International Nuclear Information System (INIS)

    Preissner, C.; Lee, S.-H.; Royston, T. J.; Shu, D.

    2002-01-01

    System dynamic performance of actuator/stage groups, such as those found in optical instrument positioning systems and other high-precision applications, is dependent upon both individual component behavior and the system configuration. Experimental modal analysis techniques were implemented to determine the six degree of freedom stiffnesses and damping for individual actuator components. These experimental data were then used in a multibody dynamic computer model to investigate the effect of stage group configuration. Running the computer model through the possible stage configurations and observing the predicted vibratory response determined the optimal stage group configuration. Configuration optimization can be performed for any group of stages, provided there is stiffness and damping data available for the constituent pieces

  16. A molecular dynamics study of ambient and high pressure phases of silica: structure and enthalpy variation with molar volume.

    Science.gov (United States)

    Rajappa, Chitra; Sringeri, S Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J

    2014-06-28

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.

  17. Clinical evaluation of a medical high dynamic range display

    International Nuclear Information System (INIS)

    Marchessoux, Cedric; Paepe, Lode de; Vanovermeire, Olivier; Albani, Luigi

    2016-01-01

    Purpose: Recent new medical displays do have higher contrast and higher luminance but do not have a High Dynamic Range (HDR). HDR implies a minimum luminance value close to zero. A medical HDR display prototype based on two Liquid Crystal layers has been developed. The goal of this study is to evaluate the potential clinical benefit of such display in comparison with a low dynamic range (LDR) display. Methods: The study evaluated the clinical performance of the displays in a search and detection task. Eight radiologists read chest x-ray images some of which contained simulated lung nodules. The study used a JAFROC (Jacknife Free Receiver Operating Characteristic) approach for analyzing FROC data. The calculated figure of merit (FoM) is the probability that a lesion is rated higher than all rated nonlesions on all images. Time per case and accuracy for locating the center of the nodules were also compared. The nodules were simulated using Samei’s model. 214 CR and DR images [half were “healthy images” (chest nodule-free) and half “diseased images”] were used resulting in a total number of nodules equal to 199 with 25 images with 1 nodule, 51 images with 2 nodules, and 24 images with 3 nodules. A dedicated software interface was designed for visualizing the images for each session. For the JAFROC1 statistical analysis, the study is done per nodule category: all nodules, difficult nodules, and very difficult nodules. Results: For all nodules, the averaged FoM HDR is slightly higher than FoM LDR with 0.09% of difference. For the difficult nodules, the averaged FoM HDR is slightly higher than FoM LDR with 1.38% of difference. The averaged FoM HDR is slightly higher than FoM LDR with 0.71% of difference. For the true positive fraction (TPF), both displays (the HDR and the LDR ones) have similar TPF for all nodules, but looking at difficult and very difficult nodules, there are more TP for the HDR display. The true positive fraction has been also computed in

  18. Learning Data Set Influence on Identification Accuracy of Gas Turbine Neural Network Model

    Science.gov (United States)

    Kuznetsov, A. V.; Makaryants, G. M.

    2018-01-01

    There are many gas turbine engine identification researches via dynamic neural network models. It should minimize errors between model and real object during identification process. Questions about training data set processing of neural networks are usually missed. This article presents a study about influence of data set type on gas turbine neural network model accuracy. The identification object is thermodynamic model of micro gas turbine engine. The thermodynamic model input signal is the fuel consumption and output signal is the engine rotor rotation frequency. Four types input signals was used for creating training and testing data sets of dynamic neural network models - step, fast, slow and mixed. Four dynamic neural networks were created based on these types of training data sets. Each neural network was tested via four types test data sets. In the result 16 transition processes from four neural networks and four test data sets from analogous solving results of thermodynamic model were compared. The errors comparison was made between all neural network errors in each test data set. In the comparison result it was shown error value ranges of each test data set. It is shown that error values ranges is small therefore the influence of data set types on identification accuracy is low.

  19. Development of a video image-based QA system for the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system

    Energy Technology Data Exchange (ETDEWEB)

    Ebe, Kazuyu, E-mail: nrr24490@nifty.com; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji [Joetsu General Hospital, 616 Daido-Fukuda, Joetsu-shi, Niigata 943-8507 (Japan); Sugimoto, Satoru [Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421 (Japan); Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi [Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510 (Japan); Court, Laurence [The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2015-08-15

    Purpose: To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Methods: Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio–caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient’s tumor motion. A substitute target with the patient’s tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors’ QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients’ tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Results: Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors

  20. Development of a video image-based QA system for the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system

    International Nuclear Information System (INIS)

    Ebe, Kazuyu; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji; Sugimoto, Satoru; Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi; Court, Laurence

    2015-01-01

    Purpose: To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Methods: Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio–caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient’s tumor motion. A substitute target with the patient’s tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors’ QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients’ tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Results: Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors

  1. High-order hydrodynamic algorithms for exascale computing

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Nathaniel Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-05

    Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broad range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.

  2. Affine-Invariant Geometric Constraints-Based High Accuracy Simultaneous Localization and Mapping

    Directory of Open Access Journals (Sweden)

    Gangchen Hua

    2017-01-01

    Full Text Available In this study we describe a new appearance-based loop-closure detection method for online incremental simultaneous localization and mapping (SLAM using affine-invariant-based geometric constraints. Unlike other pure bag-of-words-based approaches, our proposed method uses geometric constraints as a supplement to improve accuracy. By establishing an affine-invariant hypothesis, the proposed method excludes incorrect visual words and calculates the dispersion of correctly matched visual words to improve the accuracy of the likelihood calculation. In addition, camera’s intrinsic parameters and distortion coefficients are adequate for this method. 3D measuring is not necessary. We use the mechanism of Long-Term Memory and Working Memory (WM to manage the memory. Only a limited size of the WM is used for loop-closure detection; therefore the proposed method is suitable for large-scale real-time SLAM. We tested our method using the CityCenter and Lip6Indoor datasets. Our proposed method results can effectively correct the typical false-positive localization of previous methods, thus gaining better recall ratios and better precision.

  3. Nonlinear dynamic analysis of flexible multibody systems

    Science.gov (United States)

    Bauchau, Olivier A.; Kang, Nam Kook

    1991-01-01

    Two approaches are developed to analyze the dynamic behavior of flexible multibody systems. In the first approach each body is modeled with a modal methodology in a local non-inertial frame of reference, whereas in the second approach, each body is modeled with a finite element methodology in the inertial frame. In both cases, the interaction among the various elastic bodies is represented by constraint equations. The two approaches were compared for accuracy and efficiency: the first approach is preferable when the nonlinearities are not too strong but it becomes cumbersome and expensive to use when many modes must be used. The second approach is more general and easier to implement but could result in high computation costs for a large system. The constraints should be enforced in a time derivative fashion for better accuracy and stability.

  4. A high-accuracy extraction of the isoscalar πN scattering length from pionic deuterium data

    International Nuclear Information System (INIS)

    Phillips, Daniel R.; Baru, Vadim; Hanhart, Christoph; Nogga, Andreas; Hoferichter, Martin; Kubis, Bastian

    2010-01-01

    We present a high-accuracy calculation of the π(bar sign)d scattering length using chiral perturbation theory up to order (M π /m p ) 7/2 . For the first time isospin-violating corrections are included consistently. The resulting value of a π -bar d has a theoretical uncertainty of a few percent. We use it, together with data on pionic deuterium and pionic hydrogen atoms, to extract the isoscalar and isovector pion-nucleon scattering lengths from a combined analysis, and obtain a + (7.9±3.2)·10 -3 M π -1 and a-bar (86.3±1.0)·10 -3 M π -1 .

  5. Identifying High Academic Potential in Australian Aboriginal Children Using Dynamic Testing

    Science.gov (United States)

    Chaffey, Graham W.; Bailey, Stan B.; Vine, Ken W.

    2015-01-01

    The primary purpose of this study was to determine the effectiveness of dynamic testing as a method for identifying high academic potential in Australian Aboriginal children. The 79 participating Aboriginal children were drawn from Years 3-5 in rural schools in northern New South Wales. The dynamic testing method used in this study involved a…

  6. Efficiency optimization of a fast Poisson solver in beam dynamics simulation

    Science.gov (United States)

    Zheng, Dawei; Pöplau, Gisela; van Rienen, Ursula

    2016-01-01

    Calculating the solution of Poisson's equation relating to space charge force is still the major time consumption in beam dynamics simulations and calls for further improvement. In this paper, we summarize a classical fast Poisson solver in beam dynamics simulations: the integrated Green's function method. We introduce three optimization steps of the classical Poisson solver routine: using the reduced integrated Green's function instead of the integrated Green's function; using the discrete cosine transform instead of discrete Fourier transform for the Green's function; using a novel fast convolution routine instead of an explicitly zero-padded convolution. The new Poisson solver routine preserves the advantages of fast computation and high accuracy. This provides a fast routine for high performance calculation of the space charge effect in accelerators.

  7. 4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters

    Science.gov (United States)

    Werner, René

    2017-01-01

    between 98% and 100%. Parameters of major influence on 4D VMAT dose simulation accuracy were the degree of temporal discretization of the dose delivery process (the higher, the better) and correct alignment of the assumed breathing phases at the beginning of the dose measurements and simulations. Given the high γ-passing rates between simulated motion-affected doses and dynamic measurements, we consider the simulations to provide a reliable basis for assessment of VMAT motion effects that–in the sense of 4D QA of VMAT treatment plans–allows to verify target coverage in hypofractioned VMAT-based radiotherapy of moving targets. Remaining differences between measurements and simulations motivate, however, further detailed studies. PMID:28231337

  8. High temperature gas dynamics an introduction for physicists and engineers

    CERN Document Server

    Bose, Tarit K

    2014-01-01

    High Temperature Gas Dynamics is a primer for scientists, engineers, and students who would like to have a basic understanding of the physics and the behavior of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer. Furthermore, collision processes between different particles are discussed. Separate chapters deal with the production of high-temperature gases and with electrical emission in plasmas, as well as related diagnostic techniques.This new edition adds over 100 pages and includes the following updates: several sections on radiative properties of high temperature gases and various radiation models, a section on shocks in magneto-gas-dynamics, a sectio...

  9. Image Alignment for Multiple Camera High Dynamic Range Microscopy.

    Science.gov (United States)

    Eastwood, Brian S; Childs, Elisabeth C

    2012-01-09

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.

  10. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dijken, Bart R.J. van [University of Groningen, University Medical Center Groningen Department of Radiology, Groningen (Netherlands); Laar, Peter Jan van; Hoorn, Anouk van der [University of Groningen, University Medical Center Groningen Department of Radiology, Groningen (Netherlands); University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Groningen (Netherlands); Holtman, Gea A. [University of Groningen, University Medical Center Groningen, Department of General Practice, Groningen (Netherlands)

    2017-10-15

    Treatment response assessment in high-grade gliomas uses contrast enhanced T1-weighted MRI, but is unreliable. Novel advanced MRI techniques have been studied, but the accuracy is not well known. Therefore, we performed a systematic meta-analysis to assess the diagnostic accuracy of anatomical and advanced MRI for treatment response in high-grade gliomas. Databases were searched systematically. Study selection and data extraction were done by two authors independently. Meta-analysis was performed using a bivariate random effects model when ≥5 studies were included. Anatomical MRI (five studies, 166 patients) showed a pooled sensitivity and specificity of 68% (95%CI 51-81) and 77% (45-93), respectively. Pooled apparent diffusion coefficients (seven studies, 204 patients) demonstrated a sensitivity of 71% (60-80) and specificity of 87% (77-93). DSC-perfusion (18 studies, 708 patients) sensitivity was 87% (82-91) with a specificity of 86% (77-91). DCE-perfusion (five studies, 207 patients) sensitivity was 92% (73-98) and specificity was 85% (76-92). The sensitivity of spectroscopy (nine studies, 203 patients) was 91% (79-97) and specificity was 95% (65-99). Advanced techniques showed higher diagnostic accuracy than anatomical MRI, the highest for spectroscopy, supporting the use in treatment response assessment in high-grade gliomas. (orig.)

  11. Response-only method for damage detection of beam-like structures using high accuracy frequencies with auxiliary mass spatial probing

    Science.gov (United States)

    Zhong, Shuncong; Oyadiji, S. Olutunde; Ding, Kang

    2008-04-01

    This paper proposes a new approach based on auxiliary mass spatial probing using spectral centre correction method (SCCM), to provide a simple solution for damage detection by just using the response time history of beam-like structures. The natural frequencies of a damaged beam with a traversing auxiliary mass change due to change in the inertia of the beam as the auxiliary mass is traversed along the beam, as well as the point-to-point variations in the flexibility of the beam. Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore, facilitate the identification and location of damage in the beam. That is, the auxiliary mass can be used to probe the dynamic characteristic of the beam by traversing the mass from one end of the beam to the other. However, it is impossible to obtain accurate modal frequencies by the direct operation of the fast Fourier transform (FFT) of the response data of the structure because the frequency spectrum can be only calculated from limited sampled time data which results in the well-known leakage effect. SCCM is identical to the energy centrobaric correction method (ECCM) which is a practical and effective method used in rotating mechanical fault diagnosis and which resolves the shortcoming of FFT and can provide high accuracy estimate of frequency, amplitude and phase. In the present work, the modal responses of damaged simply supported beams with auxiliary mass are computed using the finite element method (FEM). The graphical plots of the natural frequencies calculated by SCCM versus axial location of auxiliary mass are obtained. However, it is difficult to locate the crack directly from the curve of natural frequencies. A simple and fast method, the derivatives of natural frequency curve, is proposed in the paper which can provide crack information for damage detection of beam-like structures. The efficiency and practicability of the proposed method is illustrated via numerical

  12. High-dynamic-range imaging for cloud segmentation

    Science.gov (United States)

    Dev, Soumyabrata; Savoy, Florian M.; Lee, Yee Hui; Winkler, Stefan

    2018-04-01

    Sky-cloud images obtained from ground-based sky cameras are usually captured using a fisheye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is overexposed, and the regions near the horizon are underexposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRCloudSeg - an effective method for cloud segmentation using high-dynamic-range (HDR) imaging based on multi-exposure fusion. We describe the HDR image generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR radiance maps for cloud segmentation and achieves very good results.

  13. Balancing accuracy, efficiency, and flexibility in a radiative transfer parameterization for dynamical models

    Science.gov (United States)

    Pincus, R.; Mlawer, E. J.

    2017-12-01

    Radiation is key process in numerical models of the atmosphere. The problem is well-understood and the parameterization of radiation has seen relatively few conceptual advances in the past 15 years. It is nonthelss often the single most expensive component of all physical parameterizations despite being computed less frequently than other terms. This combination of cost and maturity suggests value in a single radiation parameterization that could be shared across models; devoting effort to a single parameterization might allow for fine tuning for efficiency. The challenge lies in the coupling of this parameterization to many disparate representations of clouds and aerosols. This talk will describe RRTMGP, a new radiation parameterization that seeks to balance efficiency and flexibility. This balance is struck by isolating computational tasks in "kernels" that expose as much fine-grained parallelism as possible. These have simple interfaces and are interoperable across programming languages so that they might be repalced by alternative implementations in domain-specific langauges. Coupling to the host model makes use of object-oriented features of Fortran 2003, minimizing branching within the kernels and the amount of data that must be transferred. We will show accuracy and efficiency results for a globally-representative set of atmospheric profiles using a relatively high-resolution spectral discretization.

  14. High resolution polarimeter-interferometer system for fast equilibrium dynamics and MHD instability studies on Joint-TEXT tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Zhuang, G., E-mail: ge-zhuang@hust.edu.cn; Li, Q.; Liu, Y.; Gao, L.; Zhou, Y. N.; Jian, X.; Xiong, C. Y.; Wang, Z. J. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-15

    A high-performance Faraday-effect polarimeter-interferometer system has been developed for the J-TEXT tokamak. This system has time response up to 1 μs, phase resolution < 0.1° and minimum spatial resolution ∼15 mm. High resolution permits investigation of fast equilibrium dynamics as well as magnetic and density perturbations associated with intrinsic Magneto-Hydro-Dynamic (MHD) instabilities and external coil-induced Resonant Magnetic Perturbations (RMP). The 3-wave technique, in which the line-integrated Faraday angle and electron density are measured simultaneously by three laser beams with specific polarizations and frequency offsets, is used. In order to achieve optimum resolution, three frequency-stabilized HCOOH lasers (694 GHz, >35 mW per cavity) and sensitive Planar Schottky Diode mixers are used, providing stable intermediate-frequency signals (0.5–3 MHz) with S/N > 50. The collinear R- and L-wave probe beams, which propagate through the plasma poloidal cross section (a = 0.25–0.27 m) vertically, are expanded using parabolic mirrors to cover the entire plasma column. Sources of systematic errors, e.g., stemming from mechanical vibration, beam non-collinearity, and beam polarization distortion are individually examined and minimized to ensure measurement accuracy. Simultaneous density and Faraday measurements have been successfully achieved for 14 chords. Based on measurements, temporal evolution of safety factor profile, current density profile, and electron density profile are resolved. Core magnetic and density perturbations associated with MHD tearing instabilities are clearly detected. Effects of non-axisymmetric 3D RMP in ohmically heated plasmas are directly observed by polarimetry for the first time.

  15. Accuracy assessment of airborne laser scanning strips using planar features

    NARCIS (Netherlands)

    Soudarissanane, S.S.; Van der Sande, C.J.; Khoshelham, K.

    2010-01-01

    Airborne Laser Scanning (ALS) is widely used in many applications for its high measurement accuracy, fast acquisition capability, and large spatial coverage. Accuracy assessment of the ALS data usually relies on comparing corresponding tie elements, often points or lines, in the overlapping strips.

  16. High accuracy mantle convection simulation through modern numerical methods

    KAUST Repository

    Kronbichler, Martin; Heister, Timo; Bangerth, Wolfgang

    2012-01-01

    Numerical simulation of the processes in the Earth's mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth's core. However, doing so presents many practical difficulties related

  17. High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders.

    Science.gov (United States)

    Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian

    2017-01-01

    The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Investigation of influence of errors of cutting machines with CNC on displacement trajectory accuracy of their actuating devices

    Science.gov (United States)

    Fedonin, O. N.; Petreshin, D. I.; Ageenko, A. V.

    2018-03-01

    In the article, the issue of increasing a CNC lathe accuracy by compensating for the static and dynamic errors of the machine is investigated. An algorithm and a diagnostic system for a CNC machine tool are considered, which allows determining the errors of the machine for their compensation. The results of experimental studies on diagnosing and improving the accuracy of a CNC lathe are presented.

  19. Dynamic photogrammetric calibration of industrial robots

    Science.gov (United States)

    Maas, Hans-Gerd

    1997-07-01

    Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot

  20. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points

    Energy Technology Data Exchange (ETDEWEB)

    Herfst, Rodolf; Dekker, Bert; Witvoet, Gert; Crowcombe, Will; Lange, Dorus de [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Sadeghian, Hamed, E-mail: hamed.sadeghianmarnani@tno.nl, E-mail: h.sadeghianmarnani@tudelft.nl [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Department of Precision and Microsystems Engineering, Delft University of Technology, Delft (Netherlands)

    2015-11-15

    One of the major limitations in the speed of the atomic force microscope (AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical (z) direction. According to the design principles of “light and stiff” and “static determinacy,” the bandwidth of the mechanical scanner is limited by the first eigenfrequency of the AFM head in case of tip scanning and by the sample stage in terms of sample scanning. Due to stringent requirements of the system, simply pushing the first eigenfrequency to an ever higher value has reached its limitation. We have developed a miniaturized, high speed AFM scanner in which the dynamics of the z-scanning stage are made insensitive to its surrounding dynamics via suspension of it on specific dynamically determined points. This resulted in a mechanical bandwidth as high as that of the z-actuator (50 kHz) while remaining insensitive to the dynamics of its base and surroundings. The scanner allows a practical z scan range of 2.1 μm. We have demonstrated the applicability of the scanner to the high speed scanning of nanostructures.

  1. Multi-camera and structured-light vision system (MSVS) for dynamic high-accuracy 3D measurements of railway tunnels.

    Science.gov (United States)

    Zhan, Dong; Yu, Long; Xiao, Jian; Chen, Tanglong

    2015-04-14

    Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results.

  2. High accuracy results for the energy levels of the molecular ions H+2, D+2 and HD+, up to J = 2

    International Nuclear Information System (INIS)

    Karr, J Ph; Hilico, L

    2006-01-01

    We present a nonrelativistic calculation of the rotation-vibration levels of the molecular ions H + 2 , D + 2 and HD + , relying on the diagonalization of the exact three-body Hamiltonian in a variational basis. The J = 2 levels are obtained with a very high accuracy of 10 -14 au (for most levels) representing an improvement by five orders of magnitude over previous calculations. The accuracy is also improved for the J = 1 levels of H + 2 and D + 2 with respect to earlier works. Moreover, we have computed the sensitivities of the energy levels with respect to the mass ratios, allowing these levels to be used for metrological purposes

  3. Evaluation of color encodings for high dynamic range pixels

    Science.gov (United States)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  4. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    International Nuclear Information System (INIS)

    Chen, L-C; Huang, Y-T; Chang, P-B

    2006-01-01

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed

  5. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Huang, Y-T [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Chang, P-B [Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China)

    2006-10-15

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  6. Ultra-wideband ranging precision and accuracy

    International Nuclear Information System (INIS)

    MacGougan, Glenn; O'Keefe, Kyle; Klukas, Richard

    2009-01-01

    This paper provides an overview of ultra-wideband (UWB) in the context of ranging applications and assesses the precision and accuracy of UWB ranging from both a theoretical perspective and a practical perspective using real data. The paper begins with a brief history of UWB technology and the most current definition of what constitutes an UWB signal. The potential precision of UWB ranging is assessed using Cramer–Rao lower bound analysis. UWB ranging methods are described and potential error sources are discussed. Two types of commercially available UWB ranging radios are introduced which are used in testing. Actual ranging accuracy is assessed from line-of-sight testing under benign signal conditions by comparison to high-accuracy electronic distance measurements and to ranges derived from GPS real-time kinematic positioning. Range measurements obtained in outdoor testing with line-of-sight obstructions and strong reflection sources are compared to ranges derived from classically surveyed positions. The paper concludes with a discussion of the potential applications for UWB ranging

  7. High-accuracy interferometric measurements of flatness and parallelism of a step gauge

    CSIR Research Space (South Africa)

    Kruger, OA

    2001-01-01

    Full Text Available The most commonly used method in the calibration of step gauges is the coordinate measuring machine (CMM), equipped with a laser interferometer for the highest accuracy. This paper describes a modification to a length-bar measuring machine...

  8. Dynamic behaviour of the high confinement mode of fusion plasmas

    International Nuclear Information System (INIS)

    Zohm, H.

    1995-05-01

    This paper describes the dynamic behaviour of the High Confinement mode (H-mode) of fusion plasmas, which is one of the most promising regimes of enhanced energy confinement in magnetic fusion research. The physics of the H-mode is not yet fully understood, and the detailed behaviour is complex. However, we establish a simple physics picture of the phenomenon. Although a first principles theory of the anomalous transport processes in a fusion plasma has not yet been given, we show that within the picture developed here, it is possible to describe the dynamic behaviour of the H-mode, namely the dynamics of the L-H transition and the occurrence of edge localized modes (ELMs). (orig.)

  9. Pressure-based high-order TVD methodology for dynamic stall control

    Science.gov (United States)

    Yang, H. Q.; Przekwas, A. J.

    1992-01-01

    The quantitative prediction of the dynamics of separating unsteady flows, such as dynamic stall, is of crucial importance. This six-month SBIR Phase 1 study has developed several new pressure-based methodologies for solving 3D Navier-Stokes equations in both stationary and moving (body-comforting) coordinates. The present pressure-based algorithm is equally efficient for low speed incompressible flows and high speed compressible flows. The discretization of convective terms by the presently developed high-order TVD schemes requires no artificial dissipation and can properly resolve the concentrated vortices in the wing-body with minimum numerical diffusion. It is demonstrated that the proposed Newton's iteration technique not only increases the convergence rate but also strongly couples the iteration between pressure and velocities. The proposed hyperbolization of the pressure correction equation is shown to increase the solver's efficiency. The above proposed methodologies were implemented in an existing CFD code, REFLEQS. The modified code was used to simulate both static and dynamic stalls on two- and three-dimensional wing-body configurations. Three-dimensional effect and flow physics are discussed.

  10. A diabetes dashboard and physician efficiency and accuracy in accessing data needed for high-quality diabetes care.

    Science.gov (United States)

    Koopman, Richelle J; Kochendorfer, Karl M; Moore, Joi L; Mehr, David R; Wakefield, Douglas S; Yadamsuren, Borchuluun; Coberly, Jared S; Kruse, Robin L; Wakefield, Bonnie J; Belden, Jeffery L

    2011-01-01

    We compared use of a new diabetes dashboard screen with use of a conventional approach of viewing multiple electronic health record (EHR) screens to find data needed for ambulatory diabetes care. We performed a usability study, including a quantitative time study and qualitative analysis of information-seeking behaviors. While being recorded with Morae Recorder software and "think-aloud" interview methods, 10 primary care physicians first searched their EHR for 10 diabetes data elements using a conventional approach for a simulated patient, and then using a new diabetes dashboard for another. We measured time, number of mouse clicks, and accuracy. Two coders analyzed think-aloud and interview data using grounded theory methodology. The mean time needed to find all data elements was 5.5 minutes using the conventional approach vs 1.3 minutes using the diabetes dashboard (P dashboard (P dashboard (P dashboard improves both the efficiency and accuracy of acquiring data needed for high-quality diabetes care. Usability analysis tools can provide important insights into the value of optimizing physician use of health information technologies.

  11. Phase-sensitive atomic dynamics in quantum light

    Science.gov (United States)

    Balybin, S. N.; Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Interaction between a quantum electromagnetic field and a model Ry atom with possible transitions to the continuum and to the low-lying resonant state is investigated. Strong sensitivity of atomic dynamics to the phase of applied coherent and squeezed vacuum light is found. Methods to extract the quantum field phase performing the measurements on the atomic system are proposed. In the case of the few-photon coherent state high accuracy of the phase determination is demonstrated, which appears to be much higher in comparison to the usually used quantum-optical methods such as homodyne detection.

  12. Dynamic scintigraphy of the kidneys with lasix

    International Nuclear Information System (INIS)

    Yudin, L.A.; Reznichenko, A.A.; Uskov, I.A.; Gol'dman, V.E.; Ivanova, Yu.V.; Naryshkina, V.M.; Budkevich, Yu.B.

    1991-01-01

    Dynamic scintigraphy with lasix in patients with hydronephrosis, nephrolithialis, chronic pyelonephritis, ureterohydronephrosis on an initial scintigram has shown retention of 99m Tc-DTPA in the urinary tracts: an increase or absence of the excretory segment on the activity-time curve up to the appearance of an obstructive type of a curve. Verified operative findings have shown a high sensitivity and accuracy of the detection of stenosis of the urinary tracts in the absence of the excretory segment on an initial scintigram irrespective of the reaction of lasix administration

  13. Developments of multibody system dynamics: computer simulations and experiments

    International Nuclear Information System (INIS)

    Yoo, Wan-Suk; Kim, Kee-Nam; Kim, Hyun-Woo; Sohn, Jeong-Hyun

    2007-01-01

    It is an exceptional success when multibody dynamics researchers Multibody System Dynamics journal one of the most highly ranked journals in the last 10 years. In the inaugural issue, Professor Schiehlen wrote an interesting article explaining the roots and perspectives of multibody system dynamics. Professor Shabana also wrote an interesting article to review developments in flexible multibody dynamics. The application possibilities of multibody system dynamics have grown wider and deeper, with many application examples being introduced with multibody techniques in the past 10 years. In this paper, the development of multibody dynamics is briefly reviewed and several applications of multibody dynamics are described according to the author's research results. Simulation examples are compared to physical experiments, which show reasonableness and accuracy of the multibody formulation applied to real problems. Computer simulations using the absolute nodal coordinate formulation (ANCF) were also compared to physical experiments; therefore, the validity of ANCF for large-displacement and large-deformation problems was shown. Physical experiments for large deformation problems include beam, plate, chain, and strip. Other research topics currently being carried out in the author's laboratory are also briefly explained

  14. Symbolic dynamics of the Lorenz equations

    International Nuclear Information System (INIS)

    Fang Hai-ping; Hao Bailin.

    1994-07-01

    The Lorenz equations are investigated in a wide range of parameters by using the method of symbolic dynamics. First, the systematics of stable periodic orbits in the Lorenz equations is compared with that of the one-dimensional cubic map, which shares the same discrete symmetry with the Lorenz model. The systematics is then ''corrected'' in such a way as to encompass all the known periodic windows of the Lorenz equations with only one exception. Second, in order to justify the above approach and to understand the exceptions, another 1D map with a discontinuity is extracted from an extension of the geometric Lorenz attractor and its symbolic dynamics is constructed. All this has to be done in light of symbolic dynamics of two-dimensional maps. Finally, symbolic dynamics for the actual Poincare return map of the Lorenz equations is constructed in a heuristic way. New periodic windows of the Lorenz equations and their parameters can be predicted from this symbolic dynamics in combination with the 1D cubic map. The extended geometric 2D Lorenz map and the 1D antisymmetric map with a discontinuity describe the topological aspects of the Lorenz equations to high accuracy. (author). 44 refs, 17 figs, 8 tabs

  15. Effects of noise on convergent game-learning dynamics

    International Nuclear Information System (INIS)

    Sanders, James B T; Galla, Tobias; Shapiro, Jonathan L

    2012-01-01

    We study stochastic effects on the lagging anchor dynamics, a reinforcement learning algorithm used to learn successful strategies in iterated games, which is known to converge to Nash points in the absence of noise. The dynamics is stochastic when players only have limited information about their opponents’ strategic propensities. The effects of this noise are studied analytically in the case where it is small but finite, and we show that the statistics and correlation properties of fluctuations can be computed to a high accuracy. We find that the system can exhibit quasicycles, driven by intrinsic noise. If players are asymmetric and use different parameters for their learning, a net payoff advantage can be achieved due to these stochastic oscillations around the deterministic equilibrium. (paper)

  16. Quantifying the accuracy of the tumor motion and area as a function of acceleration factor for the simulation of the dynamic keyhole magnetic resonance imaging method.

    Science.gov (United States)

    Lee, Danny; Greer, Peter B; Pollock, Sean; Kim, Taeho; Keall, Paul

    2016-05-01

    The dynamic keyhole is a new MR image reconstruction method for thoracic and abdominal MR imaging. To date, this method has not been investigated with cancer patient magnetic resonance imaging (MRI) data. The goal of this study was to assess the dynamic keyhole method for the task of lung tumor localization using cine-MR images reconstructed in the presence of respiratory motion. The dynamic keyhole method utilizes a previously acquired a library of peripheral k-space datasets at similar displacement and phase (where phase is simply used to determine whether the breathing is inhale to exhale or exhale to inhale) respiratory bins in conjunction with central k-space datasets (keyhole) acquired. External respiratory signals drive the process of sorting, matching, and combining the two k-space streams for each respiratory bin, thereby achieving faster image acquisition without substantial motion artifacts. This study was the first that investigates the impact of k-space undersampling on lung tumor motion and area assessment across clinically available techniques (zero-filling and conventional keyhole). In this study, the dynamic keyhole, conventional keyhole and zero-filling methods were compared to full k-space dataset acquisition by quantifying (1) the keyhole size required for central k-space datasets for constant image quality across sixty four cine-MRI datasets from nine lung cancer patients, (2) the intensity difference between the original and reconstructed images in a constant keyhole size, and (3) the accuracy of tumor motion and area directly measured by tumor autocontouring. For constant image quality, the dynamic keyhole method, conventional keyhole, and zero-filling methods required 22%, 34%, and 49% of the keyhole size (P lung tumor monitoring applications. This study demonstrates that the dynamic keyhole method is a promising technique for clinical applications such as image-guided radiation therapy requiring the MR monitoring of thoracic tumors. Based

  17. Improved evaluation of antivascular cancer therapy using constrained tracer-kinetic modeling for multi-agent dynamic contrast-enhanced MRI

    NARCIS (Netherlands)

    Hectors, Stefanie; Jacobs, Igor; Lok, Jasper; Peters, Johannes; Bussink, Johan; Hoeben, Freek J. M.; Keizer, Henk; Janssen, Henk M.; Nicolay, Klaas; Schabel, Matthias; Strijkers, Gustav

    2018-01-01

    Dynamic contrast-enhanced MRI (DCE-MRI) is a promising technique for assessing the response of tumor vasculature to anti-vascular therapies. Multi-agent DCE-MRI employs a combination of low and high molecular weight contrast agents, which potentially improves the accuracy of estimation of tumor

  18. Diffusive dynamics during the high-to-low density transition in amorphous ice

    Science.gov (United States)

    Perakis, Fivos; Amann-Winkel, Katrin; Lehmkühler, Felix; Sprung, Michael; Mariedahl, Daniel; Sellberg, Jonas A.; Pathak, Harshad; Späh, Alexander; Cavalca, Filippo; Schlesinger, Daniel; Ricci, Alessandro; Jain, Avni; Massani, Bernhard; Aubree, Flora; Benmore, Chris J.; Loerting, Thomas; Grübel, Gerhard; Pettersson, Lars G. M.; Nilsson, Anders

    2017-08-01

    Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.

  19. Adaptive Indoor Positioning Model Based on WLAN-Fingerprinting for Dynamic and Multi-Floor Environments

    Directory of Open Access Journals (Sweden)

    Iyad Husni Alshami

    2017-08-01

    Full Text Available The Global Positioning System demonstrates the significance of Location Based Services but it cannot be used indoors due to the lack of line of sight between satellites and receivers. Indoor Positioning Systems are needed to provide indoor Location Based Services. Wireless LAN fingerprints are one of the best choices for Indoor Positioning Systems because of their low cost, and high accuracy, however they have many drawbacks: creating radio maps is time consuming, the radio maps will become outdated with any environmental change, different mobile devices read the received signal strength (RSS differently, and peoples’ presence in LOS between access points and mobile device affects the RSS. This research proposes a new Adaptive Indoor Positioning System model (called DIPS based on: a dynamic radio map generator, RSS certainty technique and peoples’ presence effect integration for dynamic and multi-floor environments. Dynamic in our context refers to the effects of people and device heterogeneity. DIPS can achieve 98% and 92% positioning accuracy for floor and room positioning, and it achieves 1.2 m for point positioning error. RSS certainty enhanced the positioning accuracy for floor and room for different mobile devices by 11% and 9%. Then by considering the peoples’ presence effect, the error is reduced by 0.2 m. In comparison with other works, DIPS achieves better positioning without extra devices.

  20. Clinical assessment of the accuracy of blood glucose measurement devices.

    Science.gov (United States)

    Pfützner, Andreas; Mitri, Michael; Musholt, Petra B; Sachsenheimer, Daniela; Borchert, Marcus; Yap, Andrew; Forst, Thomas

    2012-04-01

    Blood glucose meters for patient self-measurement need to comply with the accuracy standards of the ISO 15197 guideline. We investigated the accuracy of the two new blood glucose meters BG*Star and iBG*Star (Sanofi-Aventis) in comparison to four other competitive devices (Accu-Chek Aviva, Roche Diagnostics; FreeStyle Freedom Lite, Abbott Medisense; Contour, Bayer; OneTouch Ultra 2, Lifescan) at different blood glucose ranges in a clinical setting with healthy subjects and patients with type 1 and type 2 diabetes. BGStar and iBGStar are employ dynamic electrochemistry, which is supposed to result in highly accurate results. The study was performed on 106 participants (53 female, 53 male, age (mean ± SD): 46 ± 16 years, type 1: 32 patients, type 2: 34 patients, and 40 healthy subjects). Two devices from each type and strips from two different production lots were used for glucose assessment (∼200 readings/meter). Spontaneous glucose assessments and glucose or insulin interventions under medical supervision were applied to perform measurements in the different glucose ranges in accordance with the ISO 15197 requirements. Sample values 400 mg/dL were prepared by laboratory manipulations. The YSI glucose analyzer (glucose oxidase method) served as the standard reference method which may be considered to be a limitation in light of glucose hexokinase-based meters. For all devices, there was a very close correlation between the glucose results compared to the YSI reference method results. The correlation coefficients were r = 0.995 for BGStar and r = 0.992 for iBGStar (Aviva: 0.995, Freedom Lite: 0.990, Contour: 0.993, Ultra 2: 0.990). Error-grid analysis according to Parkes and Clarke revealed both 100% of the readings to be within the clinically acceptable areas (Clarke: A + B with BG*Star (100 + 0), Aviva (97 + 3), and Contour (97 + 3); and 99.5% with iBG*Star (97.5 + 2), Freedom Lite (98 + 1.5), and Ultra 2 (97.5 + 2