WorldWideScience

Sample records for high accuracy compared

  1. Diagnostic accuracy of high-definition CT coronary angiography in high-risk patients

    International Nuclear Information System (INIS)

    Iyengar, S.S.; Morgan-Hughes, G.; Ukoumunne, O.; Clayton, B.; Davies, E.J.; Nikolaou, V.; Hyde, C.J.; Shore, A.C.; Roobottom, C.A.

    2016-01-01

    Aim: To assess the diagnostic accuracy of computed tomography coronary angiography (CTCA) using a combination of high-definition CT (HD-CTCA) and high level of reader experience, with invasive coronary angiography (ICA) as the reference standard, in high-risk patients for the investigation of coronary artery disease (CAD). Materials and methods: Three hundred high-risk patients underwent HD-CTCA and ICA. Independent experts evaluated the images for the presence of significant CAD, defined primarily as the presence of moderate (≥50%) stenosis and secondarily as the presence of severe (≥70%) stenosis in at least one coronary segment, in a blinded fashion. HD-CTCA was compared to ICA as the reference standard. Results: No patients were excluded. Two hundred and six patients (69%) had moderate and 178 (59%) had severe stenosis in at least one vessel at ICA. The sensitivity, specificity, positive predictive value, and negative predictive value were 97.1%, 97.9%, 99% and 93.9% for moderate stenosis, and 98.9%, 93.4%, 95.7% and 98.3%, for severe stenosis, on a per-patient basis. Conclusion: The combination of HD-CTCA and experienced readers applied to a high-risk population, results in high diagnostic accuracy comparable to ICA. Modern generation CT systems in experienced hands might be considered for an expanded role. - Highlights: • Diagnostic accuracy of High-Definition CT Angiography (HD-CTCA) has been assessed. • Invasive Coronary angiography (ICA) is the reference standard. • Diagnostic accuracy of HD-CTCA is comparable to ICA. • Diagnostic accuracy is not affected by coronary calcium or stents. • HD-CTCA provides a non-invasive alternative in high-risk patients.

  2. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Qingzhong Cai

    2016-06-01

    Full Text Available An inertial navigation system (INS has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs using common turntables, has a great application potential in future atomic gyro INSs.

  3. Diagnostic accuracy of transabdominal high-resolution US for staging gallbladder cancer and differential diagnosis of neoplastic polyps compared with EUS.

    Science.gov (United States)

    Lee, Jeong Sub; Kim, Jung Hoon; Kim, Yong Jae; Ryu, Ji Kon; Kim, Yong-Tae; Lee, Jae Young; Han, Joon Koo

    2017-07-01

    To compare the diagnostic accuracy of transabdominal high-resolution ultrasound (HRUS) for staging gallbladder cancer and differential diagnosis of neoplastic polyps compared with endoscopic ultrasound (EUS) and pathology. Among 125 patients who underwent both HRUS and EUS, we included 29 pathologically proven cancers (T1 = 7, T2 = 19, T3 = 3) including 15 polypoid cancers and 50 surgically proven polyps (neoplastic = 30, non-neoplastic = 20). We reviewed formal reports and assessed the accuracy of HRUS and EUS for diagnosing cancer as well as the differential diagnosis of neoplastic polyps. Statistical analyses were performed using chi-square tests. The sensitivity, specificity, PPV, and NPV for gallbladder cancer were 82.7 %, 44.4 %, 82.7 %, and 44 % using HRUS and 86.2 %, 22.2 %, 78.1 %, and 33.3 % using EUS. HRUS and EUS correctly diagnosed the stage in 13 and 12 patients. The sensitivity, specificity, PPV, and NPV for neoplastic polyps were 80 %, 80 %, 86 %, and 73 % using HRUS and 73 %, 85 %, 88 %, and 69 % using EUS. Single polyps (8/20 vs. 21/30), larger (1.0 ± 0.28 cm vs. 1.9 ± 0.85 cm) polyps, and older age (52.5 ± 13.2 vs. 66.1 ± 10.3 years) were common in neoplastic polyps (p diagnostic accuracy for GB cancer compared with EUS. • HRUS and EUS showed similar diagnostic accuracy for differentiating neoplastic polyps. • Single, larger polyps and older age were common in neoplastic polyps. • HRUS is less invasive compared with EUS.

  4. Accuracy of five intraoral scanners compared to indirect digitalization.

    Science.gov (United States)

    Güth, Jan-Frederik; Runkel, Cornelius; Beuer, Florian; Stimmelmayr, Michael; Edelhoff, Daniel; Keul, Christine

    2017-06-01

    Direct and indirect digitalization offer two options for computer-aided design (CAD)/ computer-aided manufacturing (CAM)-generated restorations. The aim of this study was to evaluate the accuracy of different intraoral scanners and compare them to the process of indirect digitalization. A titanium testing model was directly digitized 12 times with each intraoral scanner: (1) CS 3500 (CS), (2) Zfx Intrascan (ZFX), (3) CEREC AC Bluecam (BLU), (4) CEREC AC Omnicam (OC) and (5) True Definition (TD). As control, 12 polyether impressions were taken and the referring plaster casts were digitized indirectly with the D-810 laboratory scanner (CON). The accuracy (trueness/precision) of the datasets was evaluated by an analysing software (Geomagic Qualify 12.1) using a "best fit alignment" of the datasets with a highly accurate reference dataset of the testing model, received from industrial computed tomography. Direct digitalization using the TD showed the significant highest overall "trueness", followed by CS. Both performed better than CON. BLU, ZFX and OC showed higher differences from the reference dataset than CON. Regarding the overall "precision", the CS 3500 intraoral scanner and the True Definition showed the best performance. CON, BLU and OC resulted in significantly higher precision than ZFX did. Within the limitations of this in vitro study, the accuracy of the ascertained datasets was dependent on the scanning system. The direct digitalization was not superior to indirect digitalization for all tested systems. Regarding the accuracy, all tested intraoral scanning technologies seem to be able to reproduce a single quadrant within clinical acceptable accuracy. However, differences were detected between the tested systems.

  5. High-accuracy measurements of the normal specular reflectance

    International Nuclear Information System (INIS)

    Voarino, Philippe; Piombini, Herve; Sabary, Frederic; Marteau, Daniel; Dubard, Jimmy; Hameury, Jacques; Filtz, Jean Remy

    2008-01-01

    The French Laser Megajoule (LMJ) is designed and constructed by the French Commissariata l'Energie Atomique (CEA). Its amplifying section needs highly reflective multilayer mirrors for the flash lamps. To monitor and improve the coating process, the reflectors have to be characterized to high accuracy. The described spectrophotometer is designed to measure normal specular reflectance with high repeatability by using a small spot size of 100 μm. Results are compared with ellipsometric measurements. The instrument can also perform spatial characterization to detect coating nonuniformity

  6. Comparative diagnostic accuracy in virtual dermatopathology

    DEFF Research Database (Denmark)

    Mooney, E.; Hood, A.F.; Lampros, J.

    2011-01-01

    studies comparing the diagnostic accuracy and acceptability of virtual slides compared to traditional glass slides. Methods: Ten Nordic dermatopathologists and pathologists were given a randomized combination of 20 virtual and glass slides and asked to identify the diagnoses. They were then asked to give...... their impressions about the virtual images. Descriptive data analysis and comparison of groups using Fisher's exact test were performed. Objective: To compare the diagnostic ability of dermatopathologists and pathologists in two image formats: the traditional (glass) microscopic slides, and whole mount digitized...... of virtual or glass slides did not affect the percentage of questions answered correctly. Seven of nine participants completing the questionnaire, felt virtual microscopy is useful for both learning and testing. Conclusion: There was no significant difference in the participants' diagnostic ability using...

  7. A high accuracy land use/cover retrieval system

    Directory of Open Access Journals (Sweden)

    Alaa Hefnawy

    2012-03-01

    Full Text Available The effects of spatial resolution on the accuracy of mapping land use/cover types have received increasing attention as a large number of multi-scale earth observation data become available. Although many methods of semi automated image classification of remotely sensed data have been established for improving the accuracy of land use/cover classification during the past 40 years, most of them were employed in single-resolution image classification, which led to unsatisfactory results. In this paper, we propose a multi-resolution fast adaptive content-based retrieval system of satellite images. Through our proposed system, we apply a Super Resolution technique for the Landsat-TM images to have a high resolution dataset. The human–computer interactive system is based on modified radial basis function for retrieval of satellite database images. We apply the backpropagation supervised artificial neural network classifier for both the multi and single resolution datasets. The results show significant improved land use/cover classification accuracy for the multi-resolution approach compared with those from single-resolution approach.

  8. High accuracy FIONA-AFM hybrid imaging

    International Nuclear Information System (INIS)

    Fronczek, D.N.; Quammen, C.; Wang, H.; Kisker, C.; Superfine, R.; Taylor, R.; Erie, D.A.; Tessmer, I.

    2011-01-01

    Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish different proteins from one another. Here, we combine high resolution fluorescence microscopy and AFM (FIONA-AFM) to allow the identification of different proteins in such complexes. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, we are able to align fluorescence and AFM information to ≥8 nm accuracy. This accuracy is sufficient to identify individual fluorescently labeled proteins in most multi-protein complexes. We investigate the limitations of localization precision and accuracy in fluorescence and AFM images separately and their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two orthogonal techniques (FIONA and AFM) opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10 nm) information about the conformational properties of multi-protein complexes and the fluorescence can indicate spatial relationships of the proteins in the complexes. -- Research highlights: → Integration of fluorescent signals in AFM topography with high (<10 nm) accuracy. → Investigation of limitations and quantitative analysis of fluorescence-AFM image registration using quantum dots. → Fluorescence center tracking and display as localization probability distributions in AFM topography (FIONA-AFM). → Application of FIONA-AFM to a biological sample containing damaged DNA and the DNA repair proteins UvrA and UvrB conjugated to quantum dots.

  9. High Accuracy Transistor Compact Model Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hembree, Charles E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mar, Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  10. High Accuracy Piezoelectric Kinemometer; Cinemometro piezoelectrico de alta exactitud (VUAE)

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Martinez, F. J.; Frutos, J. de; Pastor, C.; Vazquez Rodriguez, M.

    2012-07-01

    We have developed a portable computerized and low consumption, our system is called High Accuracy Piezoelectric Kinemometer measurement, herein VUAE. By the high accuracy obtained by VUAE it make able to use the VUAE to obtain references measurements of system for measuring Speeds in Vehicles. Therefore VUAE could be used how reference equipment to estimate the error of installed kinemometers. The VUAE was created with n (n=2) pairs of ultrasonic transmitter-receiver, herein E-Rult. The transmitters used in the n couples E-Rult generate n ultrasonic barriers and receivers receive the echoes when the vehicle crosses the barriers. Digital processing of the echoes signals let us to obtain acceptable signals. Later, by mean of cross correlation technics is possible make a highly exact estimation of speed of the vehicle. The log of the moments of interception and the distance between each of the n ultrasounds allows for a highly exact estimation of speed of the vehicle. VUAE speed measurements were compared to a speed reference system based on piezoelectric cables. (Author) 11 refs.

  11. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    Science.gov (United States)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  12. K0-INAA method accuracy using Zn as comparator

    International Nuclear Information System (INIS)

    Bedregal, P.; Mendoza, P.; Ubillus, M.; Montoya, E.

    2010-01-01

    An evaluation of the accuracy in the application of the k 0 -INAA method using Zn foil as comparator is presented. A good agreement was found in the precision within analysts and between them, as well as in the assessment of trueness for most elements. The determination of important experimental parameters like gamma peak counting efficiency, γ-γ true coincidence, comparator preparation and quality assurance/quality control is also described and discussed.

  13. Comparative analysis of Worldview-2 and Landsat 8 for coastal saltmarsh mapping accuracy assessment

    Science.gov (United States)

    Rasel, Sikdar M. M.; Chang, Hsing-Chung; Diti, Israt Jahan; Ralph, Tim; Saintilan, Neil

    2016-05-01

    Coastal saltmarsh and their constituent components and processes are of an interest scientifically due to their ecological function and services. However, heterogeneity and seasonal dynamic of the coastal wetland system makes it challenging to map saltmarshes with remotely sensed data. This study selected four important saltmarsh species Pragmitis australis, Sporobolus virginicus, Ficiona nodosa and Schoeloplectus sp. as well as a Mangrove and Pine tree species, Avecinia and Casuarina sp respectively. High Spatial Resolution Worldview-2 data and Coarse Spatial resolution Landsat 8 imagery were selected in this study. Among the selected vegetation types some patches ware fragmented and close to the spatial resolution of Worldview-2 data while and some patch were larger than the 30 meter resolution of Landsat 8 data. This study aims to test the effectiveness of different classifier for the imagery with various spatial and spectral resolutions. Three different classification algorithm, Maximum Likelihood Classifier (MLC), Support Vector Machine (SVM) and Artificial Neural Network (ANN) were tested and compared with their mapping accuracy of the results derived from both satellite imagery. For Worldview-2 data SVM was giving the higher overall accuracy (92.12%, kappa =0.90) followed by ANN (90.82%, Kappa 0.89) and MLC (90.55%, kappa = 0.88). For Landsat 8 data, MLC (82.04%) showed the highest classification accuracy comparing to SVM (77.31%) and ANN (75.23%). The producer accuracy of the classification results were also presented in the paper.

  14. Compensation of kinematic geometric parameters error and comparative study of accuracy testing for robot

    Science.gov (United States)

    Du, Liang; Shi, Guangming; Guan, Weibin; Zhong, Yuansheng; Li, Jin

    2014-12-01

    Geometric error is the main error of the industrial robot, and it plays a more significantly important fact than other error facts for robot. The compensation model of kinematic error is proposed in this article. Many methods can be used to test the robot accuracy, therefore, how to compare which method is better one. In this article, a method is used to compare two methods for robot accuracy testing. It used Laser Tracker System (LTS) and Three Coordinate Measuring instrument (TCM) to test the robot accuracy according to standard. According to the compensation result, it gets the better method which can improve the robot accuracy apparently.

  15. Comparative Dose Accuracy of Durable and Patch Insulin Infusion Pumps

    Science.gov (United States)

    Jahn, Luis G.; Capurro, Jorge J.; Levy, Brian L.

    2013-01-01

    Background: As all major insulin pump manufacturers comply with the international infusion pump standard EN 60601-2-24:1998, there may be a general assumption that all pumps are equal in insulin-delivery accuracy. This research investigates single-dose and averaged-dose accuracy of incremental basal deliveries for one patch model and three durable models of insulin pumps. Method: For each pump model, discrete single doses delivered during 0.5 U/h basal rate infusion over a 20 h period were measured using a time-stamped microgravimetric system. Dose accuracy was analyzed by comparing single doses and time-averaged doses to specific accuracy thresholds (±5% to ±30%). Results: The percentage of single doses delivered outside accuracy thresholds of ±5%, ±10%, and ±20% were as follows: Animas OneTouch® Ping® (43.2%, 14.3%, and 1.8%, respectively), Roche Accu-Chek® Combo (50.6%, 24.4%, and 5.5%), Medtronic Paradigm® RevelTM/VeoTM (54.2%, 26.7%, and 6.6%), and Insulet OmniPod® (79.1%, 60.5%, and 34.9%). For 30 min, 1 h, and 2 h averaging windows, the percentage of doses delivered outside a ±15% accuracy were as follows: OneTouch Ping (1.0%, 0.4%, and 0%, respectively), Accu-Chek Combo (4.2%, 3.5%, and 3.1%), Paradigm Revel/Veo (3.9%, 3.1%, and 2.2%), and OmniPod (33.9%, 19.9%, and 10.3%). Conclusions: This technical evaluation demonstrates significant differences in single-dose and averaged-dose accuracy among the insulin pumps tested. Differences in dose accuracy were most evident between the patch pump model and the group of durable pump models. Of the pumps studied, the Animas OneTouch Ping demonstrated the best single-dose and averaged-dose accuracy. Further research on the clinical relevance of these findings is warranted. PMID:23911184

  16. A High-Throughput, High-Accuracy System-Level Simulation Framework for System on Chips

    Directory of Open Access Journals (Sweden)

    Guanyi Sun

    2011-01-01

    Full Text Available Today's System-on-Chips (SoCs design is extremely challenging because it involves complicated design tradeoffs and heterogeneous design expertise. To explore the large solution space, system architects have to rely on system-level simulators to identify an optimized SoC architecture. In this paper, we propose a system-level simulation framework, System Performance Simulation Implementation Mechanism, or SPSIM. Based on SystemC TLM2.0, the framework consists of an executable SoC model, a simulation tool chain, and a modeling methodology. Compared with the large body of existing research in this area, this work is aimed at delivering a high simulation throughput and, at the same time, guaranteeing a high accuracy on real industrial applications. Integrating the leading TLM techniques, our simulator can attain a simulation speed that is not slower than that of the hardware execution by a factor of 35 on a set of real-world applications. SPSIM incorporates effective timing models, which can achieve a high accuracy after hardware-based calibration. Experimental results on a set of mobile applications proved that the difference between the simulated and measured results of timing performance is within 10%, which in the past can only be attained by cycle-accurate models.

  17. MUSCLE: multiple sequence alignment with high accuracy and high throughput.

    Science.gov (United States)

    Edgar, Robert C

    2004-01-01

    We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.

  18. Comparing Diagnostic Accuracy of Cognitive Screening Instruments: A Weighted Comparison Approach

    Directory of Open Access Journals (Sweden)

    A.J. Larner

    2013-03-01

    Full Text Available Background/Aims: There are many cognitive screening instruments available to clinicians when assessing patients' cognitive function, but the best way to compare the diagnostic utility of these tests is uncertain. One method is to undertake a weighted comparison which takes into account the difference in sensitivity and specificity of two tests, the relative clinical misclassification costs of true- and false-positive diagnosis, and also disease prevalence. Methods: Data were examined from four pragmatic diagnostic accuracy studies from one clinic which compared the Mini-Mental State Examination (MMSE with the Addenbrooke's Cognitive Examination-Revised (ACE-R, the Montreal Cognitive Assessment (MoCA, the Test Your Memory (TYM test, and the Mini-Mental Parkinson (MMP, respectively. Results: Weighted comparison calculations suggested a net benefit for ACE-R, MoCA, and MMP compared to MMSE, but a net loss for TYM test compared to MMSE. Conclusion: Routine incorporation of weighted comparison or other similar net benefit measures into diagnostic accuracy studies merits consideration to better inform clinicians of the relative value of cognitive screening instruments.

  19. The Accuracy of the Information Presented in Credit Bureau Reports: Research and Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Vladimir Simović

    2015-12-01

    Full Text Available This paper presents research results regarding information accuracy in the Serbian credit bureau reports and tries to identify the reasons which affect the accuracy of the information presented in credit bureau reports, in global terms. The research was conducted by interviewing respondents. Comparative analysis was used in order to formulate proposal of factors which determine information accuracy in the credit bureau reports. The results show that the materially significant errors in information presented in Serbian credit bureau reports make 0.5% of the sample. This implies that creditors in Serbia base their credit decisions on reliable information. The results of this study were compared to results of the studies conducted in USA and Germany in order to formulate proposal of factors which influence the information accuracy in the credit bureau reports. In order toimprove information accuracy in credit bureau reports, in global terms, special attention should be paid to formulation of international standards of credit reporting and identification systems of natural persons and legal entities.

  20. High-accuracy user identification using EEG biometrics.

    Science.gov (United States)

    Koike-Akino, Toshiaki; Mahajan, Ruhi; Marks, Tim K; Ye Wang; Watanabe, Shinji; Tuzel, Oncel; Orlik, Philip

    2016-08-01

    We analyze brain waves acquired through a consumer-grade EEG device to investigate its capabilities for user identification and authentication. First, we show the statistical significance of the P300 component in event-related potential (ERP) data from 14-channel EEGs across 25 subjects. We then apply a variety of machine learning techniques, comparing the user identification performance of various different combinations of a dimensionality reduction technique followed by a classification algorithm. Experimental results show that an identification accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition, we demonstrate that the user identification accuracy can be significantly improved to more than 96.7% by joint classification of multiple epochs.

  1. Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image

    Science.gov (United States)

    Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.

    2018-04-01

    At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.

  2. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...

  3. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  4. Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections

    Science.gov (United States)

    Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt

    2018-03-01

    Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 {M}ȯ –30 {M}ȯ non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).

  5. High accuracy wavelength calibration for a scanning visible spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Scotti, Filippo; Bell, Ronald E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2010-10-15

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies {<=}0.2 A. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of {approx}0.25 A has been demonstrated. With the addition of a high resolution (0.075 arc sec) optical encoder on the grating stage, greater precision ({approx}0.005 A) is possible, allowing absolute velocity measurements within {approx}0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  6. Switched-capacitor techniques for high-accuracy filter and ADC design

    NARCIS (Netherlands)

    Quinn, P.J.; Roermund, van A.H.M.

    2007-01-01

    Switched capacitor (SC) techniques are well proven to be excellent candidates for implementing critical analogue functions with high accuracy, surpassing other analogue techniques when embedded in mixed-signal CMOS VLSI. Conventional SC circuits are primarily limited in accuracy by a) capacitor

  7. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    Directory of Open Access Journals (Sweden)

    Guanwu Zhou

    2014-07-01

    Full Text Available Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system’s performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

  8. Design-related bias in estimates of accuracy when comparing imaging tests: examples from breast imaging research

    International Nuclear Information System (INIS)

    Houssami, Nehmat; Ciatto, Stefano

    2010-01-01

    This work highlights concepts on the potential for design-related factors to bias estimates of test accuracy in comparative imaging research. We chose two design factors, selection of eligible subjects and the reference standard, to examine the effect of design limitations on estimates of accuracy. Estimates of sensitivity in a study of the comparative accuracy of mammography and ultrasound differed according to how subjects were selected. Comparison of a new imaging test with an existing test should distinguish whether the new test is to be used as a replacement for, or as an adjunct to, the conventional test, to guide the method for subject selection. Quality of the reference standard, examined in a meta-analysis of preoperative breast MRI, varied across studies and was associated with estimates of incremental accuracy. Potential solutions to deal with the reference standard are outlined where an ideal reference standard may not be available in all subjects. These examples of breast imaging research demonstrate that design-related bias, when comparing a new imaging test with a conventional imaging test, may bias accuracy in a direction that favours the new test by overestimating the accuracy of the new test or by underestimating that of the conventional test. (orig.)

  9. High-accuracy mass spectrometry for fundamental studies.

    Science.gov (United States)

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  10. Accuracy Assessment for the Three-Dimensional Coordinates by High-Speed Videogrammetric Measurement

    Directory of Open Access Journals (Sweden)

    Xianglei Liu

    2018-01-01

    Full Text Available High-speed CMOS camera is a new kind of transducer to make the videogrammetric measurement for monitoring the displacement of high-speed shaking table structure. The purpose of this paper is to validate the three-dimensional coordinate accuracy of the shaking table structure acquired from the presented high-speed videogrammetric measuring system. In the paper, all of the key intermediate links are discussed, including the high-speed CMOS videogrammetric measurement system, the layout of the control network, the elliptical target detection, and the accuracy validation of final 3D spatial results. Through the accuracy analysis, the submillimeter accuracy can be made for the final the three-dimensional spatial coordinates which certify that the proposed high-speed videogrammetric technique is a better alternative technique which can replace the traditional transducer technique for monitoring the dynamic response for the shaking table structure.

  11. An angle encoder for super-high resolution and super-high accuracy using SelfA

    Science.gov (United States)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  12. A generalized polynomial chaos based ensemble Kalman filter with high accuracy

    International Nuclear Information System (INIS)

    Li Jia; Xiu Dongbin

    2009-01-01

    As one of the most adopted sequential data assimilation methods in many areas, especially those involving complex nonlinear dynamics, the ensemble Kalman filter (EnKF) has been under extensive investigation regarding its properties and efficiency. Compared to other variants of the Kalman filter (KF), EnKF is straightforward to implement, as it employs random ensembles to represent solution states. This, however, introduces sampling errors that affect the accuracy of EnKF in a negative manner. Though sampling errors can be easily reduced by using a large number of samples, in practice this is undesirable as each ensemble member is a solution of the system of state equations and can be time consuming to compute for large-scale problems. In this paper we present an efficient EnKF implementation via generalized polynomial chaos (gPC) expansion. The key ingredients of the proposed approach involve (1) solving the system of stochastic state equations via the gPC methodology to gain efficiency; and (2) sampling the gPC approximation of the stochastic solution with an arbitrarily large number of samples, at virtually no additional computational cost, to drastically reduce the sampling errors. The resulting algorithm thus achieves a high accuracy at reduced computational cost, compared to the classical implementations of EnKF. Numerical examples are provided to verify the convergence property and accuracy improvement of the new algorithm. We also prove that for linear systems with Gaussian noise, the first-order gPC Kalman filter method is equivalent to the exact Kalman filter.

  13. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    Science.gov (United States)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  14. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.

    Science.gov (United States)

    Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui

    2018-06-01

    Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.

  15. An angle encoder for super-high resolution and super-high accuracy using SelfA

    International Nuclear Information System (INIS)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-01-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 2 21 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science and Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 2 33 , that is, corresponding to a 0.0015″ signal period

  16. Fast and High Accuracy Wire Scanner

    CERN Document Server

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  17. Systematic review of discharge coding accuracy

    Science.gov (United States)

    Burns, E.M.; Rigby, E.; Mamidanna, R.; Bottle, A.; Aylin, P.; Ziprin, P.; Faiz, O.D.

    2012-01-01

    Introduction Routinely collected data sets are increasingly used for research, financial reimbursement and health service planning. High quality data are necessary for reliable analysis. This study aims to assess the published accuracy of routinely collected data sets in Great Britain. Methods Systematic searches of the EMBASE, PUBMED, OVID and Cochrane databases were performed from 1989 to present using defined search terms. Included studies were those that compared routinely collected data sets with case or operative note review and those that compared routinely collected data with clinical registries. Results Thirty-two studies were included. Twenty-five studies compared routinely collected data with case or operation notes. Seven studies compared routinely collected data with clinical registries. The overall median accuracy (routinely collected data sets versus case notes) was 83.2% (IQR: 67.3–92.1%). The median diagnostic accuracy was 80.3% (IQR: 63.3–94.1%) with a median procedure accuracy of 84.2% (IQR: 68.7–88.7%). There was considerable variation in accuracy rates between studies (50.5–97.8%). Since the 2002 introduction of Payment by Results, accuracy has improved in some respects, for example primary diagnoses accuracy has improved from 73.8% (IQR: 59.3–92.1%) to 96.0% (IQR: 89.3–96.3), P= 0.020. Conclusion Accuracy rates are improving. Current levels of reported accuracy suggest that routinely collected data are sufficiently robust to support their use for research and managerial decision-making. PMID:21795302

  18. THE EFFECT OF MODERATE AND HIGH-INTENSITY FATIGUE ON GROUNDSTROKE ACCURACY IN EXPERT AND NON-EXPERT TENNIS PLAYERS

    Directory of Open Access Journals (Sweden)

    Mark Lyons

    2013-06-01

    Full Text Available Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female and 17 non-expert (13 male, 4 female tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70% and high-intensities (90% set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test. Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA's revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player's achievement goal indicators. Future research is required to explore the effects of fatigue on

  19. DIRECT GEOREFERENCING : A NEW STANDARD IN PHOTOGRAMMETRY FOR HIGH ACCURACY MAPPING

    Directory of Open Access Journals (Sweden)

    A. Rizaldy

    2012-07-01

    Full Text Available Direct georeferencing is a new method in photogrammetry, especially in the digital camera era. Theoretically, this method does not require ground control points (GCP and the Aerial Triangulation (AT, to process aerial photography into ground coordinates. Compared with the old method, this method has three main advantages: faster data processing, simple workflow and less expensive project, at the same accuracy. Direct georeferencing using two devices, GPS and IMU. GPS recording the camera coordinates (X, Y, Z, and IMU recording the camera orientation (omega, phi, kappa. Both parameters merged into Exterior Orientation (EO parameter. This parameters required for next steps in the photogrammetric projects, such as stereocompilation, DSM generation, orthorectification and mosaic. Accuracy of this method was tested on topographic map project in Medan, Indonesia. Large-format digital camera Ultracam X from Vexcel is used, while the GPS / IMU is IGI AeroControl. 19 Independent Check Point (ICP were used to determine the accuracy. Horizontal accuracy is 0.356 meters and vertical accuracy is 0.483 meters. Data with this accuracy can be used for 1:2.500 map scale project.

  20. Treatment accuracy of hypofractionated spine and other highly conformal IMRT treatments

    International Nuclear Information System (INIS)

    Sutherland, B.; Hanlon, P.; Charles, P.

    2011-01-01

    Full text: Spinal cord metastases pose difficult challenges for radiation treatment due to tight dose constraints and a concave PTY. This project aimed to thoroughly test the treatment accuracy of the Eclipse Treatment Planning System (TPS) for highly modulated IMRT treatments, in particular of the thoracic spine, using an Elekta Synergy Linear Accelerator. The increased understanding obtained through different quality assurance techniques allowed recommendations to be made for treatment site commissioning with improved accuracy at the Princess Alexandra Hospital (PAH). Three thoracic spine IMRT plans at the PAH were used for data collection. Complex phantom models were built using CT data, and fields simulated using Monte Carlo modelling. The simulated dose distributions were compared with the TPS using gamma analysis and DYH comparison. High resolution QA was done for all fields using the MatriXX ion chamber array, MapCHECK2 diode array shifted, and the EPlD to determine a procedure for commissioning new treatment sites. Basic spine simulations found the TPS overestimated absorbed dose to bone, however within spinal cord there was good agreement. High resolution QA found the average gamma pass rate of the fields to be 99.1 % for MatriXX, 96.5% for MapCHECK2 shifted and 97.7% for EPlD. Preliminary results indicate agreement between the TPS and delivered dose distributions higher than previously believed for the investigated IMRT plans. The poor resolution of the MatriXX, and normalisation issues with MapCHECK2 leads to probable recommendation of EPlD for future IMRT commissioning due to the high resolution and minimal setup required.

  1. High accuracy satellite drag model (HASDM)

    Science.gov (United States)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  2. A New Three-Dimensional High-Accuracy Automatic Alignment System For Single-Mode Fibers

    Science.gov (United States)

    Yun-jiang, Rao; Shang-lian, Huang; Ping, Li; Yu-mei, Wen; Jun, Tang

    1990-02-01

    In order to achieve the low-loss splices of single-mode fibers, a new three-dimension high-accuracy automatic alignment system for single -mode fibers has been developed, which includes a new-type three-dimension high-resolution microdisplacement servo stage driven by piezoelectric elements, a new high-accuracy measurement system for the misalignment error of the fiber core-axis, and a special single chip microcomputer processing system. The experimental results show that alignment accuracy of ±0.1 pin with a movable stroke of -±20μm has been obtained. This new system has more advantages than that reported.

  3. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    Science.gov (United States)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  4. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Guy Jean-Pierre Schumann

    2016-01-01

    Full Text Available Digital elevation models (DEMs are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  5. A Comparative Study of Precise Point Positioning (PPP Accuracy Using Online Services

    Directory of Open Access Journals (Sweden)

    Malinowski Marcin

    2016-12-01

    Full Text Available Precise Point Positioning (PPP is a technique used to determine the position of receiver antenna without communication with the reference station. It may be an alternative solution to differential measurements, where maintaining a connection with a single RTK station or a regional network of reference stations RTN is necessary. This situation is especially common in areas with poorly developed infrastructure of ground stations. A lot of research conducted so far on the use of the PPP technique has been concerned about the development of entire day observation sessions. However, this paper presents the results of a comparative analysis of accuracy of absolute determination of position from observations which last between 1 to 7 hours with the use of four permanent services which execute calculations with PPP technique such as: Automatic Precise Positioning Service (APPS, Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP, GNSS Analysis and Positioning Software (GAPS and magicPPP - Precise Point Positioning Solution (magicGNSS. On the basis of acquired results of measurements, it can be concluded that at least two-hour long measurements allow acquiring an absolute position with an accuracy of 2-4 cm. An evaluation of the impact on the accuracy of simultaneous positioning of three points test network on the change of the horizontal distance and the relative height difference between measured triangle vertices was also conducted. Distances and relative height differences between points of the triangular test network measured with a laser station Leica TDRA6000 were adopted as references. The analyses of results show that at least two hours long measurement sessions can be used to determine the horizontal distance or the difference in height with an accuracy of 1-2 cm. Rapid products employed in calculations conducted with PPP technique reached the accuracy of determining coordinates on a close level as in elaborations which employ

  6. A high accuracy algorithm of displacement measurement for a micro-positioning stage

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2017-05-01

    Full Text Available A high accuracy displacement measurement algorithm for a two degrees of freedom compliant precision micro-positioning stage is proposed based on the computer micro-vision technique. The algorithm consists of an integer-pixel and a subpixel matching procedure. Series of simulations are conducted to verify the proposed method. The results show that the proposed algorithm possesses the advantages of high precision and stability, the resolution can attain to 0.01 pixel theoretically. In addition, the consuming time is reduced about 6.7 times compared with the classical normalized cross correlation algorithm. To validate the practical performance of the proposed algorithm, a laser interferometer measurement system (LIMS is built up. The experimental results demonstrate that the algorithm has better adaptability than that of the LIMS.

  7. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Gastegger, Michael; Kauffmann, Clemens; Marquetand, Philipp, E-mail: philipp.marquetand@univie.ac.at [Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna (Austria); Behler, Jörg [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum (Germany)

    2016-05-21

    Many approaches, which have been developed to express the potential energy of large systems, exploit the locality of the atomic interactions. A prominent example is the fragmentation methods in which the quantum chemical calculations are carried out for overlapping small fragments of a given molecule that are then combined in a second step to yield the system’s total energy. Here we compare the accuracy of the systematic molecular fragmentation approach with the performance of high-dimensional neural network (HDNN) potentials introduced by Behler and Parrinello. HDNN potentials are similar in spirit to the fragmentation approach in that the total energy is constructed as a sum of environment-dependent atomic energies, which are derived indirectly from electronic structure calculations. As a benchmark set, we use all-trans alkanes containing up to eleven carbon atoms at the coupled cluster level of theory. These molecules have been chosen because they allow to extrapolate reliable reference energies for very long chains, enabling an assessment of the energies obtained by both methods for alkanes including up to 10 000 carbon atoms. We find that both methods predict high-quality energies with the HDNN potentials yielding smaller errors with respect to the coupled cluster reference.

  8. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes

    International Nuclear Information System (INIS)

    Gastegger, Michael; Kauffmann, Clemens; Marquetand, Philipp; Behler, Jörg

    2016-01-01

    Many approaches, which have been developed to express the potential energy of large systems, exploit the locality of the atomic interactions. A prominent example is the fragmentation methods in which the quantum chemical calculations are carried out for overlapping small fragments of a given molecule that are then combined in a second step to yield the system’s total energy. Here we compare the accuracy of the systematic molecular fragmentation approach with the performance of high-dimensional neural network (HDNN) potentials introduced by Behler and Parrinello. HDNN potentials are similar in spirit to the fragmentation approach in that the total energy is constructed as a sum of environment-dependent atomic energies, which are derived indirectly from electronic structure calculations. As a benchmark set, we use all-trans alkanes containing up to eleven carbon atoms at the coupled cluster level of theory. These molecules have been chosen because they allow to extrapolate reliable reference energies for very long chains, enabling an assessment of the energies obtained by both methods for alkanes including up to 10 000 carbon atoms. We find that both methods predict high-quality energies with the HDNN potentials yielding smaller errors with respect to the coupled cluster reference.

  9. Meditation experience predicts introspective accuracy.

    Directory of Open Access Journals (Sweden)

    Kieran C R Fox

    Full Text Available The accuracy of subjective reports, especially those involving introspection of one's own internal processes, remains unclear, and research has demonstrated large individual differences in introspective accuracy. It has been hypothesized that introspective accuracy may be heightened in persons who engage in meditation practices, due to the highly introspective nature of such practices. We undertook a preliminary exploration of this hypothesis, examining introspective accuracy in a cross-section of meditation practitioners (1-15,000 hrs experience. Introspective accuracy was assessed by comparing subjective reports of tactile sensitivity for each of 20 body regions during a 'body-scanning' meditation with averaged, objective measures of tactile sensitivity (mean size of body representation area in primary somatosensory cortex; two-point discrimination threshold as reported in prior research. Expert meditators showed significantly better introspective accuracy than novices; overall meditation experience also significantly predicted individual introspective accuracy. These results suggest that long-term meditators provide more accurate introspective reports than novices.

  10. High accuracy digital aging monitor based on PLL-VCO circuit

    International Nuclear Information System (INIS)

    Zhang Yuejun; Jiang Zhidi; Wang Pengjun; Zhang Xuelong

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm 2 . After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%. (semiconductor integrated circuits)

  11. A proposal for limited criminal liability in high-accuracy endoscopic sinus surgery.

    Science.gov (United States)

    Voultsos, P; Casini, M; Ricci, G; Tambone, V; Midolo, E; Spagnolo, A G

    2017-02-01

    The aim of the present study is to propose legal reform limiting surgeons' criminal liability in high-accuracy and high-risk surgery such as endoscopic sinus surgery (ESS). The study includes a review of the medical literature, focusing on identifying and examining reasons why ESS carries a very high risk of serious complications related to inaccurate surgical manoeuvers and reviewing British and Italian legal theory and case-law on medical negligence, especially with regard to Italian Law 189/2012 (so called "Balduzzi" Law). It was found that serious complications due to inaccurate surgical manoeuvers may occur in ESS regardless of the skill, experience and prudence/diligence of the surgeon. Subjectivity should be essential to medical negligence, especially regarding high-accuracy surgery. Italian Law 189/2012 represents a good basis for the limitation of criminal liability resulting from inaccurate manoeuvres in high-accuracy surgery such as ESS. It is concluded that ESS surgeons should be relieved of criminal liability in cases of simple/ordinary negligence where guidelines have been observed. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.

  12. Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations.

    Science.gov (United States)

    Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza

    2018-03-01

    This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

  13. High current high accuracy IGBT pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 μF capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles

  14. High-accuracy determination for optical indicatrix rotation in ferroelectric DTGS

    OpenAIRE

    O.S.Kushnir; O.A.Bevz; O.G.Vlokh

    2000-01-01

    Optical indicatrix rotation in deuterated ferroelectric triglycine sulphate is studied with the high-accuracy null-polarimetric technique. The behaviour of the effect in ferroelectric phase is referred to quadratic spontaneous electrooptics.

  15. Achieving High Accuracy in Calculations of NMR Parameters

    DEFF Research Database (Denmark)

    Faber, Rasmus

    quantum chemical methods have been developed, the calculation of NMR parameters with quantitative accuracy is far from trivial. In this thesis I address some of the issues that makes accurate calculation of NMR parameters so challenging, with the main focus on SSCCs. High accuracy quantum chemical......, but no programs were available to perform such calculations. As part of this thesis the CFOUR program has therefore been extended to allow the calculation of SSCCs using the CC3 method. CC3 calculations of SSCCs have then been performed for several molecules, including some difficult cases. These results show...... vibrations must be included. The calculation of vibrational corrections to NMR parameters has been reviewed as part of this thesis. A study of the basis set convergence of vibrational corrections to nuclear shielding constants has also been performed. The basis set error in vibrational correction...

  16. Computer modeling of oil spill trajectories with a high accuracy method

    International Nuclear Information System (INIS)

    Garcia-Martinez, Reinaldo; Flores-Tovar, Henry

    1999-01-01

    This paper proposes a high accuracy numerical method to model oil spill trajectories using a particle-tracking algorithm. The Euler method, used to calculate oil trajectories, can give adequate solutions in most open ocean applications. However, this method may not predict accurate particle trajectories in certain highly non-uniform velocity fields near coastal zones or in river problems. Simple numerical experiments show that the Euler method may also introduce artificial numerical dispersion that could lead to overestimation of spill areas. This article proposes a fourth-order Runge-Kutta method with fourth-order velocity interpolation to calculate oil trajectories that minimise these problems. The algorithm is implemented in the OilTrack model to predict oil trajectories following the 'Nissos Amorgos' oil spill accident that occurred in the Gulf of Venezuela in 1997. Despite lack of adequate field information, model results compare well with observations in the impacted area. (Author)

  17. Innovative Technique for High-Accuracy Remote Monitoring of Surface Water

    Science.gov (United States)

    Gisler, A.; Barton-Grimley, R. A.; Thayer, J. P.; Crowley, G.

    2016-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems and agricultural waterways. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for monitoring water resources on fast timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  18. Comparing the Accuracy of Copula-Based Multivariate Density Forecasts in Selected Regions of Support

    NARCIS (Netherlands)

    C.G.H. Diks (Cees); V. Panchenko (Valentyn); O. Sokolinskiy (Oleg); D.J.C. van Dijk (Dick)

    2013-01-01

    textabstractThis paper develops a testing framework for comparing the predictive accuracy of copula-based multivariate density forecasts, focusing on a specific part of the joint distribution. The test is framed in the context of the Kullback-Leibler Information Criterion, but using (out-of-sample)

  19. Comparing the accuracy of copula-based multivariate density forecasts in selected regions of support

    NARCIS (Netherlands)

    Diks, C.; Panchenko, V.; Sokolinskiy, O.; van Dijk, D.

    2013-01-01

    This paper develops a testing framework for comparing the predictive accuracy of copula-based multivariate density forecasts, focusing on a specific part of the joint distribution. The test is framed in the context of the Kullback-Leibler Information Criterion, but using (out-of-sample) conditional

  20. High-Accuracy Spherical Near-Field Measurements for Satellite Antenna Testing

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2017-01-01

    The spherical near-field antenna measurement technique is unique in combining several distinct advantages and it generally constitutes the most accurate technique for experimental characterization of radiation from antennas. From the outset in 1970, spherical near-field antenna measurements have...... matured into a well-established technique that is widely used for testing antennas for many wireless applications. In particular, for high-accuracy applications, such as remote sensing satellite missions in ESA's Earth Observation Programme with uncertainty requirements at the level of 0.05dB - 0.10d......B, the spherical near-field antenna measurement technique is generally superior. This paper addresses the means to achieving high measurement accuracy; these include the measurement technique per se, its implementation in terms of proper measurement procedures, the use of uncertainty estimates, as well as facility...

  1. Accuracy of reading liquid based cytology slides using the ThinPrep Imager compared with conventional cytology: prospective study

    Science.gov (United States)

    d'Assuncao, Jefferson; Irwig, Les; Macaskill, Petra; Chan, Siew F; Richards, Adele; Farnsworth, Annabelle

    2007-01-01

    Objective To compare the accuracy of liquid based cytology using the computerised ThinPrep Imager with that of manually read conventional cytology. Design Prospective study. Setting Pathology laboratory in Sydney, Australia. Participants 55 164 split sample pairs (liquid based sample collected after conventional sample from one collection) from consecutive samples of women choosing both types of cytology and whose specimens were examined between August 2004 and June 2005. Main outcome measures Primary outcome was accuracy of slides for detecting squamous lesions. Secondary outcomes were rate of unsatisfactory slides, distribution of squamous cytological classifications, and accuracy of detecting glandular lesions. Results Fewer unsatisfactory slides were found for imager read cytology than for conventional cytology (1.8% v 3.1%; Pcytology (7.4% v 6.0% overall and 2.8% v 2.2% for cervical intraepithelial neoplasia of grade 1 or higher). Among 550 patients in whom imager read cytology was cervical intraepithelial neoplasia grade 1 or higher and conventional cytology was less severe than grade 1, 133 of 380 biopsy samples taken were high grade histology. Among 294 patients in whom imager read cytology was less severe than cervical intraepithelial neoplasia grade 1 and conventional cytology was grade 1 or higher, 62 of 210 biopsy samples taken were high grade histology. Imager read cytology therefore detected 71 more cases of high grade histology than did conventional cytology, resulting from 170 more biopsies. Similar results were found when one pathologist reread the slides, masked to cytology results. Conclusion The ThinPrep Imager detects 1.29 more cases of histological high grade squamous disease per 1000 women screened than conventional cytology, with cervical intraepithelial neoplasia grade 1 as the threshold for referral to colposcopy. More imager read slides than conventional slides were satisfactory for examination and more contained low grade cytological

  2. Geoid undulation accuracy

    Science.gov (United States)

    Rapp, Richard H.

    1993-01-01

    The determination of the geoid and equipotential surface of the Earth's gravity field, has long been of interest to geodesists and oceanographers. The geoid provides a surface to which the actual ocean surface can be compared with the differences implying information on the circulation patterns of the oceans. For use in oceanographic applications the geoid is ideally needed to a high accuracy and to a high resolution. There are applications that require geoid undulation information to an accuracy of +/- 10 cm with a resolution of 50 km. We are far from this goal today but substantial improvement in geoid determination has been made. In 1979 the cumulative geoid undulation error to spherical harmonic degree 20 was +/- 1.4 m for the GEM10 potential coefficient model. Today the corresponding value has been reduced to +/- 25 cm for GEM-T3 or +/- 11 cm for the OSU91A model. Similar improvements are noted by harmonic degree (wave-length) and in resolution. Potential coefficient models now exist to degree 360 based on a combination of data types. This paper discusses the accuracy changes that have taken place in the past 12 years in the determination of geoid undulations.

  3. Accuracy of High-Resolution Ultrasonography in the Detection of Extensor Tendon Lacerations.

    Science.gov (United States)

    Dezfuli, Bobby; Taljanovic, Mihra S; Melville, David M; Krupinski, Elizabeth A; Sheppard, Joseph E

    2016-02-01

    Lacerations to the extensor mechanism are usually diagnosed clinically. Ultrasound (US) has been a growing diagnostic tool for tendon injuries since the 1990s. To date, there has been no publication establishing the accuracy and reliability of US in the evaluation of extensor mechanism lacerations in the hand. The purpose of this study is to determine the accuracy of US to detect extensor tendon injuries in the hand. Sixteen fingers and 4 thumbs in 4 fresh-frozen and thawed cadaveric hands were used. Sixty-eight 0.5-cm transverse skin lacerations were created. Twenty-seven extensor tendons were sharply transected. The remaining skin lacerations were used as sham dissection controls. One US technologist and one fellowship-trained musculoskeletal radiologist performed real-time dynamic US studies in and out of water bath. A second fellowship trained musculoskeletal radiologist subsequently reviewed the static US images. Dynamic and static US interpretation accuracy was assessed using dissection as "truth." All 27 extensor tendon lacerations and controls were identified correctly with dynamic imaging as either injury models that had a transected extensor tendon or sham controls with intact extensor tendons (sensitivity = 100%, specificity = 100%, positive predictive value = 1.0; all significantly greater than chance). Static imaging had a sensitivity of 85%, specificity of 89%, and accuracy of 88% (all significantly greater than chance). The results of the dynamic real time versus static US imaging were clearly different but did not reach statistical significance. Diagnostic US is a very accurate noninvasive study that can identify extensor mechanism injuries. Clinically suspected cases of acute extensor tendon injury scanned by high-frequency US can aid and/or confirm the diagnosis, with dynamic imaging providing added value compared to static. Ultrasonography, to aid in the diagnosis of extensor mechanism lacerations, can be successfully used in a reliable and

  4. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy

    International Nuclear Information System (INIS)

    Liang Xin; Lambrichts, Ivo; Sun Yi; Denis, Kathleen; Hassan, Bassam; Li Limin; Pauwels, Ruben; Jacobs, Reinhilde

    2010-01-01

    Aim: The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: A dry human mandible was scanned with five CBCT systems (NewTom 3G, Accuitomo 3D, i-CAT, Galileos, Scanora 3D) and one MSCT scanner (Somatom Sensation 16). A 3D surface bone model was created from the six systems. The reference (gold standard) 3D model was obtained with a high resolution laser surface scanner. The 3D models from the five systems were compared with the gold standard using a point-based rigid registration algorithm. Results: The mean deviation from the gold standard for MSCT was 0.137 mm and for CBCT were 0.282, 0.225, 0.165, 0.386 and 0.206 mm for the i-CAT, Accuitomo, NewTom, Scanora and Galileos, respectively. Conclusion: The results show that the accuracy of CBCT 3D surface model reconstructions is somewhat lower but acceptable comparing to MSCT from the gold standard.

  5. Why is a high accuracy needed in dosimetry

    International Nuclear Information System (INIS)

    Lanzl, L.H.

    1976-01-01

    Dose and exposure intercomparisons on a national or international basis have become an important component of quality assurance in the practice of good radiotherapy. A high degree of accuracy of γ and x radiation dosimetry is essential in our international society, where medical information is so readily exchanged and used. The value of accurate dosimetry lies mainly in the avoidance of complications in normal tissue and an optimal degree of tumor control

  6. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.

    Science.gov (United States)

    Zhu, Xiangbin; Qiu, Huiling

    2016-01-01

    Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.

  7. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.

    Directory of Open Access Journals (Sweden)

    Xiangbin Zhu

    Full Text Available Human activity recognition(HAR from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.

  8. Innovative Fiber-Optic Gyroscopes (FOGs) for High Accuracy Space Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to develop a compact, highly innovative Inertial Reference/Measurement Unit (IRU/IMU) that pushes the state-of-the-art in high accuracy performance...

  9. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  10. Accuracy of High-Resolution MRI with Lumen Distention in Rectal Cancer Staging and Circumferential Margin Involvement Prediction

    International Nuclear Information System (INIS)

    Iannicelli, Elsa; Di Renzo, Sara; Ferri, Mario; Pilozzi, Emanuela; Di Girolamo, Marco; Sapori, Alessandra; Ziparo, Vincenzo; David, Vincenzo

    2014-01-01

    To evaluate the accuracy of magnetic resonance imaging (MRI) with lumen distention for rectal cancer staging and circumferential resection margin (CRM) involvement prediction. Seventy-three patients with primary rectal cancer underwent high-resolution MRI with a phased-array coil performed using 60-80 mL room air rectal distention, 1-3 weeks before surgery. MRI results were compared to postoperative histopathological findings. The overall MRI T staging accuracy was calculated. CRM involvement prediction and the N staging, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were assessed for each T stage. The agreement between MRI and histological results was assessed using weighted-kappa statistics. The overall MRI accuracy for T staging was 93.6% (k = 0.85). The accuracy, sensitivity, specificity, PPV and NPV for each T stage were as follows: 91.8%, 86.2%, 95.5%, 92.6% and 91.3% for the group ≤ T2; 90.4%, 94.6%, 86.1%, 87.5% and 94% for T3; 98,6%, 85.7%, 100%, 100% and 98.5% for T4, respectively. The predictive CRM accuracy was 94.5% (k = 0.86); the sensitivity, specificity, PPV and NPV were 89.5%, 96.3%, 89.5%, and 96.3% respectively. The N staging accuracy was 68.49% (k = 0.4). MRI performed with rectal lumen distention has proved to be an effective technique both for rectal cancer staging and involved CRM predicting

  11. Accuracy of High-Resolution MRI with Lumen Distention in Rectal Cancer Staging and Circumferential Margin Involvement Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Iannicelli, Elsa; Di Renzo, Sara [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ferri, Mario [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Pilozzi, Emanuela [Department of Clinical and Molecular Sciences, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Di Girolamo, Marco; Sapori, Alessandra [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ziparo, Vincenzo [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); David, Vincenzo [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy)

    2014-07-01

    To evaluate the accuracy of magnetic resonance imaging (MRI) with lumen distention for rectal cancer staging and circumferential resection margin (CRM) involvement prediction. Seventy-three patients with primary rectal cancer underwent high-resolution MRI with a phased-array coil performed using 60-80 mL room air rectal distention, 1-3 weeks before surgery. MRI results were compared to postoperative histopathological findings. The overall MRI T staging accuracy was calculated. CRM involvement prediction and the N staging, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were assessed for each T stage. The agreement between MRI and histological results was assessed using weighted-kappa statistics. The overall MRI accuracy for T staging was 93.6% (k = 0.85). The accuracy, sensitivity, specificity, PPV and NPV for each T stage were as follows: 91.8%, 86.2%, 95.5%, 92.6% and 91.3% for the group ≤ T2; 90.4%, 94.6%, 86.1%, 87.5% and 94% for T3; 98,6%, 85.7%, 100%, 100% and 98.5% for T4, respectively. The predictive CRM accuracy was 94.5% (k = 0.86); the sensitivity, specificity, PPV and NPV were 89.5%, 96.3%, 89.5%, and 96.3% respectively. The N staging accuracy was 68.49% (k = 0.4). MRI performed with rectal lumen distention has proved to be an effective technique both for rectal cancer staging and involved CRM predicting.

  12. Two high accuracy digital integrators for Rogowski current transducers

    Science.gov (United States)

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  13. Electron ray tracing with high accuracy

    International Nuclear Information System (INIS)

    Saito, K.; Okubo, T.; Takamoto, K.; Uno, Y.; Kondo, M.

    1986-01-01

    An electron ray tracing program is developed to investigate the overall geometrical and chromatic aberrations in electron optical systems. The program also computes aberrations due to manufacturing errors in lenses and deflectors. Computation accuracy is improved by (1) calculating electrostatic and magnetic scalar potentials using the finite element method with third-order isoparametric elements, and (2) solving the modified ray equation which the aberrations satisfy. Computation accuracy of 4 nm is achieved for calculating optical properties of the system with an electrostatic lens

  14. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, Eric M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  15. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1996-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  16. Accuracy of hiatal hernia detection with esophageal high-resolution manometry

    NARCIS (Netherlands)

    Weijenborg, P. W.; van Hoeij, F. B.; Smout, A. J. P. M.; Bredenoord, A. J.

    2015-01-01

    The diagnosis of a sliding hiatal hernia is classically made with endoscopy or barium esophagogram. Spatial separation of the lower esophageal sphincter (LES) and diaphragm, the hallmark of hiatal hernia, can also be observed on high-resolution manometry (HRM), but the diagnostic accuracy of this

  17. High Accuracy Acoustic Relative Humidity Measurement inDuct Flow with Air

    Directory of Open Access Journals (Sweden)

    Cees van der Geld

    2010-08-01

    Full Text Available An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  18. Accuracy of three-dimensional cone beam computed tomography digital model measurements compared with plaster study casts

    Directory of Open Access Journals (Sweden)

    Shuaib Al Ali

    2017-01-01

    Full Text Available Purpose: The purpose of this study was to assess the accuracy of three-dimensional (3D cone beam computed tomography (CBCT study casts by comparing with direct measurements taken from plaster study casts. Materials and Methods: The dental arches of 30 patient subjects were imaged with a Kodak 9300 3D CBCT devise; Anatomodels were created and in vivo 5 imaging software was used to measure 10 dental arch variables which were compared to measurements of plaster study casts. Results: Three of the 10 variables, i.e., overbite, maxillary intermolar width, and arch length, were found significantly smaller (P < 0.05 using the Anatomodels following nonparametric Wilcoxon signed-rank testing. None of the differences found in the study averaged <0.5 mm. Conclusions: 3D CBCT imaging provided clinically acceptable accuracy for dental arch analysis. 3D CBCT imaging tended to underestimate the actual measurement compared to plaster study casts.

  19. High Accuracy Positioning using Jet Thrusters for Quadcopter

    Directory of Open Access Journals (Sweden)

    Pi ChenHuan

    2018-01-01

    Full Text Available A quadcopter is equipped with four additional jet thrusters on its horizontal plane and vertical to each other in order to improve the maneuverability and positioning accuracy of quadcopter. A dynamic model of the quadcopter with jet thrusters is derived and two controllers are implemented in simulation, one is a dual loop state feedback controller for pose control and another is an auxiliary jet thruster controller for accurate positioning. Step response simulations showed that the jet thruster can control the quadcopter with less overshoot compared to the conventional one. Over 10s loiter simulation with disturbance, the quadcopter with jet thruster decrease 85% of RMS error of horizontal disturbance compared to a conventional quadcopter with only a dual loop state feedback controller. The jet thruster controller shows the possibility for further accurate in the field of quadcopter positioning.

  20. The Osteoporosis Self-Assessment Tool versus alternative tests for selecting postmenopausal women for bone mineral density assessment: a comparative systematic review of accuracy

    DEFF Research Database (Denmark)

    Rud, B; Hilden, J; Hyldstrup, L

    2008-01-01

    for Stiffness Index assessed by calcaneal quantitative ultrasonography than for OST (relative sDOR: 1.9, p = 0.005). Studies were few in Asian and black women. Methodological quality, assessed with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) checklist, was generally low. CONCLUSIONS: In white......We performed a systematic review of studies comparing the Osteoporosis Self-Assessment Tool (OST) and other tests used to select women for bone mineral density (BMD) assessment. In comparative meta-analyses, we found that the accuracy of OST was similar to other tests that are based on information...... from the medical history. By contrast, assessment by quantitative ultrasonography at the heel was more accurate than OST in discriminating between women with high and low BMD. The methodological quality of the included studies was generally low. INTRODUCTION: Numerous tests are suggested for triaging...

  1. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed. copyright 1997 American Institute of Physics

  2. Accuracy assessment of airborne laser scanning strips using planar features

    NARCIS (Netherlands)

    Soudarissanane, S.S.; Van der Sande, C.J.; Khoshelham, K.

    2010-01-01

    Airborne Laser Scanning (ALS) is widely used in many applications for its high measurement accuracy, fast acquisition capability, and large spatial coverage. Accuracy assessment of the ALS data usually relies on comparing corresponding tie elements, often points or lines, in the overlapping strips.

  3. The effect of pattern overlap on the accuracy of high resolution electron backscatter diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Vivian, E-mail: v.tong13@imperial.ac.uk [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Jiang, Jun [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Britton, T. Ben [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-15

    High resolution, cross-correlation-based, electron backscatter diffraction (EBSD) measures the variation of elastic strains and lattice rotations from a reference state. Regions near grain boundaries are often of interest but overlap of patterns from the two grains could reduce accuracy of the cross-correlation analysis. To explore this concern, patterns from the interior of two grains have been mixed to simulate the interaction volume crossing a grain boundary so that the effect on the accuracy of the cross correlation results can be tested. It was found that the accuracy of HR-EBSD strain measurements performed in a FEG-SEM on zirconium remains good until the incident beam is less than 18 nm from a grain boundary. A simulated microstructure was used to measure how often pattern overlap occurs at any given EBSD step size, and a simple relation was found linking the probability of overlap with step size. - Highlights: • Pattern overlap occurs at grain boundaries and reduces HR-EBSD accuracy. • A test is devised to measure the accuracy of HR-EBSD in the presence of overlap. • High pass filters can sometimes, but not generally, improve HR-EBSD measurements. • Accuracy of HR-EBSD remains high until the reference pattern intensity is <72%. • 9% of points near a grain boundary will have significant error for 200nm step size in Zircaloy-4.

  4. Read-only high accuracy volume holographic optical correlator

    Science.gov (United States)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  5. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time

    Science.gov (United States)

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2015-01-01

    Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their

  6. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    Directory of Open Access Journals (Sweden)

    Zheng You

    2013-04-01

    Full Text Available The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  7. Optical system error analysis and calibration method of high-accuracy star trackers.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; You, Zheng

    2013-04-08

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  8. Comparing the accuracy of ABC and time-driven ABC in complex and dynamic environments: a simulation analysis

    OpenAIRE

    S. HOOZÉE; M. VANHOUCKE; W. BRUGGEMAN; -

    2010-01-01

    This paper compares the accuracy of traditional ABC and time-driven ABC in complex and dynamic environments through simulation analysis. First, when unit times in time-driven ABC are known or can be flawlessly estimated, time-driven ABC coincides with the benchmark system and in this case our results show that the overall accuracy of traditional ABC depends on (1) existing capacity utilization, (2) diversity in the actual mix of productive work, and (3) error in the estimated percentage mix. ...

  9. Comparing the accuracy of perturbative and variational calculations for predicting fundamental vibrational frequencies of dihalomethanes

    Science.gov (United States)

    Krasnoshchekov, Sergey V.; Schutski, Roman S.; Craig, Norman C.; Sibaev, Marat; Crittenden, Deborah L.

    2018-02-01

    Three dihalogenated methane derivatives (CH2F2, CH2FCl, and CH2Cl2) were used as model systems to compare and assess the accuracy of two different approaches for predicting observed fundamental frequencies: canonical operator Van Vleck vibrational perturbation theory (CVPT) and vibrational configuration interaction (VCI). For convenience and consistency, both methods employ the Watson Hamiltonian in rectilinear normal coordinates, expanding the potential energy surface (PES) as a Taylor series about equilibrium and constructing the wavefunction from a harmonic oscillator product basis. At the highest levels of theory considered here, fourth-order CVPT and VCI in a harmonic oscillator basis with up to 10 quanta of vibrational excitation in conjunction with a 4-mode representation sextic force field (SFF-4MR) computed at MP2/cc-pVTZ with replacement CCSD(T)/aug-cc-pVQZ harmonic force constants, the agreement between computed fundamentals is closer to 0.3 cm-1 on average, with a maximum difference of 1.7 cm-1. The major remaining accuracy-limiting factors are the accuracy of the underlying electronic structure model, followed by the incompleteness of the PES expansion. Nonetheless, computed and experimental fundamentals agree to within 5 cm-1, with an average difference of 2 cm-1, confirming the utility and accuracy of both theoretical models. One exception to this rule is the formally IR-inactive but weakly allowed through Coriolis-coupling H-C-H out-of-plane twisting mode of dichloromethane, whose spectrum we therefore revisit and reassign. We also investigate convergence with respect to order of CVPT, VCI excitation level, and order of PES expansion, concluding that premature truncation substantially decreases accuracy, although VCI(6)/SFF-4MR results are still of acceptable accuracy, and some error cancellation is observed with CVPT2 using a quartic force field.

  10. Innovative Fiber-Optic Gyroscopes (FOGs) for High Accuracy Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future science and exploratory missions will require much lighter, smaller, and longer life rate sensors that can provide high accuracy navigational...

  11. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions - Effect of Velocity

    Science.gov (United States)

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2013-01-01

    Background Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. Methods The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. Findings Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5o) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5o and 3.1o). In slow motions, relative accuracy varied from 2o to 7o depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. Interpretation Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. Conclusions Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to

  12. Who should be performing routine abdominal ultrasound? A prospective double-blind study comparing the accuracy of radiologist and radiographer

    International Nuclear Information System (INIS)

    Leslie, A.; Lockyer, H.; Virjee, J.P.

    2000-01-01

    AIM: To compare the accuracy of radiographers and radiologists in routine abdominal ultrasound. MATERIALS AND METHODS: One hundred consecutive patients attending for routine abdominal ultrasound were included. Each patient was examined by both a radiographer and radiologist. Both operators noted their findings and wrote a concluding report without conferring. Reports were compared. Where there was disagreement the patient was either re-examined by another radiologist or had further investigation. RESULTS: Of 100 patients, 52 were men and 48 were women. The age range was 19-88 years (median 52 years). Thirty-seven patients had renal tract ultrasound, one had an aortic ultrasound and 62 had general upper abdominal ultrasound. In 44 cases both operators reported the examination as normal. In 49 cases both operators reported the examinations as abnormal and there was complete agreement between the operators. In seven cases there was not complete agreement between operators. Three of these disagreements were considered minor and four major. In three of the seven cases the radiographer was correct, and in four the radiologist was correct. CONCLUSION: Experienced radiographers and radiologists are highly accurate in performing and interpreting routine abdominal sonography. Both operators missed a small minority of abnormalities. There was no statistically significant difference in the accuracy of radiographers and radiologist. Leslie, A. (2000)

  13. Accuracy of cell calculation methods used for analysis of high conversion light water reactor lattice

    International Nuclear Information System (INIS)

    Jeong, Chang-Joon; Okumura, Keisuke; Ishiguro, Yukio; Tanaka, Ken-ichi

    1990-01-01

    Validation tests were made for the accuracy of cell calculation methods used in analyses of tight lattices of a mixed-oxide (MOX) fuel core in a high conversion light water reactor (HCLWR). A series of cell calculations was carried out for the lattices referred from an international HCLWR benchmark comparison, with emphasis placed on the resonance calculation methods; the NR, IR approximations, the collision probability method with ultra-fine energy group. Verification was also performed for the geometrical modelling; a hexagonal/cylindrical cell, and the boundary condition; mirror/white reflection. In the calculations, important reactor physics parameters, such as the neutron multiplication factor, the conversion ratio and the void coefficient, were evaluated using the above methods for various HCLWR lattices with different moderator to fuel volume ratios, fuel materials and fissile plutonium enrichments. The calculated results were compared with each other, and the accuracy and applicability of each method were clarified by comparison with continuous energy Monte Carlo calculations. It was verified that the accuracy of the IR approximation became worse when the neutron spectrum became harder. It was also concluded that the cylindrical cell model with the white boundary condition was not so suitable for MOX fuelled lattices, as for UO 2 fuelled lattices. (author)

  14. COMPARATIVE ACCURACY EVALUATION OF FINE-SCALE GLOBAL AND LOCAL DIGITAL SURFACE MODELS: THE TSHWANE CASE STUDY I

    Directory of Open Access Journals (Sweden)

    A. Breytenbach

    2016-10-01

    Full Text Available Conducted in the City of Tshwane, South Africa, this study set about to test the accuracy of DSMs derived from different remotely sensed data locally. VHR digital mapping camera stereo-pairs, tri-stereo imagery collected by a Pléiades satellite and data detected from the Tandem-X InSAR satellite configuration were fundamental in the construction of seamless DSM products at different postings, namely 2 m, 4 m and 12 m. The three DSMs were sampled against independent control points originating from validated airborne LiDAR data. The reference surfaces were derived from the same dense point cloud at grid resolutions corresponding to those of the samples. The absolute and relative positional accuracies were computed using well-known DEM error metrics and accuracy statistics. Overall vertical accuracies were also assessed and compared across seven slope classes and nine primary land cover classes. Although all three DSMs displayed significantly more vertical errors where solid waterbodies, dense natural and/or alien woody vegetation and, in a lesser degree, urban residential areas with significant canopy cover were encountered, all three surpassed their expected positional accuracies overall.

  15. Horizontal Positional Accuracy of Google Earth’s High-Resolution Imagery Archive

    Directory of Open Access Journals (Sweden)

    David Potere

    2008-12-01

    Full Text Available Google Earth now hosts high-resolution imagery that spans twenty percent of the Earth’s landmass and more than a third of the human population. This contemporary highresolution archive represents a significant, rapidly expanding, cost-free and largely unexploited resource for scientific inquiry. To increase the scientific utility of this archive, we address horizontal positional accuracy (georegistration by comparing Google Earth with Landsat GeoCover scenes over a global sample of 436 control points located in 109 cities worldwide. Landsat GeoCover is an orthorectified product with known absolute positional accuracy of less than 50 meters root-mean-squared error (RMSE. Relative to Landsat GeoCover, the 436 Google Earth control points have a positional accuracy of 39.7 meters RMSE (error magnitudes range from 0.4 to 171.6 meters. The control points derived from satellite imagery have an accuracy of 22.8 meters RMSE, which is significantly more accurate than the 48 control-points based on aerial photography (41.3 meters RMSE; t-test p-value < 0.01. The accuracy of control points in more-developed countries is 24.1 meters RMSE, which is significantly more accurate than the control points in developing countries (44.4 meters RMSE; t-test p-value < 0.01. These findings indicate that Google Earth highresolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world’s peri-urban areas.

  16. Boosted classification trees result in minor to modest improvement in the accuracy in classifying cardiovascular outcomes compared to conventional classification trees

    Science.gov (United States)

    Austin, Peter C; Lee, Douglas S

    2011-01-01

    Purpose: Classification trees are increasingly being used to classifying patients according to the presence or absence of a disease or health outcome. A limitation of classification trees is their limited predictive accuracy. In the data-mining and machine learning literature, boosting has been developed to improve classification. Boosting with classification trees iteratively grows classification trees in a sequence of reweighted datasets. In a given iteration, subjects that were misclassified in the previous iteration are weighted more highly than subjects that were correctly classified. Classifications from each of the classification trees in the sequence are combined through a weighted majority vote to produce a final classification. The authors' objective was to examine whether boosting improved the accuracy of classification trees for predicting outcomes in cardiovascular patients. Methods: We examined the utility of boosting classification trees for classifying 30-day mortality outcomes in patients hospitalized with either acute myocardial infarction or congestive heart failure. Results: Improvements in the misclassification rate using boosted classification trees were at best minor compared to when conventional classification trees were used. Minor to modest improvements to sensitivity were observed, with only a negligible reduction in specificity. For predicting cardiovascular mortality, boosted classification trees had high specificity, but low sensitivity. Conclusions: Gains in predictive accuracy for predicting cardiovascular outcomes were less impressive than gains in performance observed in the data mining literature. PMID:22254181

  17. High Accuracy Evaluation of the Finite Fourier Transform Using Sampled Data

    Science.gov (United States)

    Morelli, Eugene A.

    1997-01-01

    Many system identification and signal processing procedures can be done advantageously in the frequency domain. A required preliminary step for this approach is the transformation of sampled time domain data into the frequency domain. The analytical tool used for this transformation is the finite Fourier transform. Inaccuracy in the transformation can degrade system identification and signal processing results. This work presents a method for evaluating the finite Fourier transform using cubic interpolation of sampled time domain data for high accuracy, and the chirp Zeta-transform for arbitrary frequency resolution. The accuracy of the technique is demonstrated in example cases where the transformation can be evaluated analytically. Arbitrary frequency resolution is shown to be important for capturing details of the data in the frequency domain. The technique is demonstrated using flight test data from a longitudinal maneuver of the F-18 High Alpha Research Vehicle.

  18. A study on low-cost, high-accuracy, and real-time stereo vision algorithms for UAV power line inspection

    Science.gov (United States)

    Wang, Hongyu; Zhang, Baomin; Zhao, Xun; Li, Cong; Lu, Cunyue

    2018-04-01

    Conventional stereo vision algorithms suffer from high levels of hardware resource utilization due to algorithm complexity, or poor levels of accuracy caused by inadequacies in the matching algorithm. To address these issues, we have proposed a stereo range-finding technique that produces an excellent balance between cost, matching accuracy and real-time performance, for power line inspection using UAV. This was achieved through the introduction of a special image preprocessing algorithm and a weighted local stereo matching algorithm, as well as the design of a corresponding hardware architecture. Stereo vision systems based on this technique have a lower level of resource usage and also a higher level of matching accuracy following hardware acceleration. To validate the effectiveness of our technique, a stereo vision system based on our improved algorithms were implemented using the Spartan 6 FPGA. In comparative experiments, it was shown that the system using the improved algorithms outperformed the system based on the unimproved algorithms, in terms of resource utilization and matching accuracy. In particular, Block RAM usage was reduced by 19%, and the improved system was also able to output range-finding data in real time.

  19. High accuracy interface characterization of three phase material systems in three dimensions

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Hansen, Karin Vels; Larsen, Rasmus

    2010-01-01

    Quantification of interface properties such as two phase boundary area and triple phase boundary length is important in the characterization ofmanymaterial microstructures, in particular for solid oxide fuel cell electrodes. Three-dimensional images of these microstructures can be obtained...... by tomography schemes such as focused ion beam serial sectioning or micro-computed tomography. We present a high accuracy method of calculating two phase surface areas and triple phase length of triple phase systems from subvoxel accuracy segmentations of constituent phases. The method performs a three phase...... polygonization of the interface boundaries which results in a non-manifold mesh of connected faces. We show how the triple phase boundaries can be extracted as connected curve loops without branches. The accuracy of the method is analyzed by calculations on geometrical primitives...

  20. ACCURACY ASSESSMENT OF COASTAL TOPOGRAPHY DERIVED FROM UAV IMAGES

    Directory of Open Access Journals (Sweden)

    N. Long

    2016-06-01

    Full Text Available To monitor coastal environments, Unmanned Aerial Vehicle (UAV is a low-cost and easy to use solution to enable data acquisition with high temporal frequency and spatial resolution. Compared to Light Detection And Ranging (LiDAR or Terrestrial Laser Scanning (TLS, this solution produces Digital Surface Model (DSM with a similar accuracy. To evaluate the DSM accuracy on a coastal environment, a campaign was carried out with a flying wing (eBee combined with a digital camera. Using the Photoscan software and the photogrammetry process (Structure From Motion algorithm, a DSM and an orthomosaic were produced. Compared to GNSS surveys, the DSM accuracy is estimated. Two parameters are tested: the influence of the methodology (number and distribution of Ground Control Points, GCPs and the influence of spatial image resolution (4.6 cm vs 2 cm. The results show that this solution is able to reproduce the topography of a coastal area with a high vertical accuracy (< 10 cm. The georeferencing of the DSM require a homogeneous distribution and a large number of GCPs. The accuracy is correlated with the number of GCPs (use 19 GCPs instead of 10 allows to reduce the difference of 4 cm; the required accuracy should be dependant of the research problematic. Last, in this particular environment, the presence of very small water surfaces on the sand bank does not allow to improve the accuracy when the spatial resolution of images is decreased.

  1. Comparative Geometrical Accuracy Investigations of Hand-Held 3d Scanning Systems - AN Update

    Science.gov (United States)

    Kersten, T. P.; Lindstaedt, M.; Starosta, D.

    2018-05-01

    Hand-held 3D scanning systems are increasingly available on the market from several system manufacturers. These systems are deployed for 3D recording of objects with different size in diverse applications, such as industrial reverse engineering, and documentation of museum exhibits etc. Typical measurement distances range from 0.5 m to 4.5 m. Although they are often easy-to-use, the geometric performance of these systems, especially the precision and accuracy, are not well known to many users. First geometrical investigations of a variety of diverse hand-held 3D scanning systems were already carried out by the Photogrammetry & Laser Scanning Lab of the HafenCity University Hamburg (HCU Hamburg) in cooperation with two other universities in 2016. To obtain more information about the accuracy behaviour of the latest generation of hand-held 3D scanning systems, HCU Hamburg conducted further comparative geometrical investigations using structured light systems with speckle pattern (Artec Spider, Mantis Vision PocketScan 3D, Mantis Vision F5-SR, Mantis Vision F5-B, and Mantis Vision F6), and photogrammetric systems (Creaform HandySCAN 700 and Shining FreeScan X7). In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data was acquired by measurements with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.

  2. The use of high accuracy NAA for the certification of NIST botanical standard reference materials

    International Nuclear Information System (INIS)

    Becker, D.A.; Greenberg, R.R.; Stone, S.F.

    1992-01-01

    Neutron activation analysis is one of many analytical techniques used at the National Institute of Standards and Technology (NIST) for the certification of NIST Standard Reference Materials (SRMs). NAA competes favorably with all other techniques because of it's unique capabilities for high accuracy even at very low concentrations for many elements. In this paper, instrumental and radiochemical NAA results are described for 25 elements in two new NIST SRMs, SRM 1515 (Apple Leaves) and SRM 1547 (Peach Leaves), and are compared to the certified values for 19 elements in these two new botanical reference materials. (author) 7 refs.; 4 tabs

  3. Remifentanil maintains lower initial delayed nonmatching-to-sample accuracy compared to food pellets in male rhesus monkeys.

    Science.gov (United States)

    Hutsell, Blake A; Banks, Matthew L

    2017-12-01

    Emerging human laboratory and preclinical drug self-administration data suggest that a history of contingent abused drug exposure impairs performance in operant discrimination procedures, such as delayed nonmatching-to-sample (DNMTS), that are hypothesized to assess components of executive function. However, these preclinical discrimination studies have exclusively used food as the reinforcer and the effects of drugs as reinforcers in these operant procedures are unknown. The present study determined effects of contingent intravenous remifentanil injections on DNMTS performance hypothesized to assess 1 aspect of executive function, working memory. Daily behavioral sessions consisted of 2 components with sequential intravenous remifentanil (0, 0.01-1.0 μg/kg/injection) or food (0, 1-10 pellets) availability in nonopioid dependent male rhesus monkeys (n = 3). Remifentanil functioned as a reinforcer in the DNMTS procedure. Similar delay-dependent DNMTS accuracy was observed under both remifentanil- and food-maintained components, such that higher accuracies were maintained at shorter (0.1-1.0 s) delays and lower accuracies approaching chance performance were maintained at longer (10-32 s) delays. Remifentanil maintained significantly lower initial DNMTS accuracy compared to food. Reinforcer magnitude was not an important determinant of DNMTS accuracy for either remifentanil or food. These results extend the range of experimental procedures under which drugs function as reinforcers. Furthermore, the selective remifentanil-induced decrease in initial DNMTS accuracy is consistent with a selective impairment of attentional, but not memorial, processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  5. NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis.

    Science.gov (United States)

    Markiewicz, Pawel J; Ehrhardt, Matthias J; Erlandsson, Kjell; Noonan, Philip J; Barnes, Anna; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Ourselin, Sebastien

    2018-01-01

    We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coefficient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data.

  6. Accuracy of Digital vs Conventional Implant Impression Approach: A Three-Dimensional Comparative In Vitro Analysis.

    Science.gov (United States)

    Basaki, Kinga; Alkumru, Hasan; De Souza, Grace; Finer, Yoav

    To assess the three-dimensional (3D) accuracy and clinical acceptability of implant definitive casts fabricated using a digital impression approach and to compare the results with those of a conventional impression method in a partially edentulous condition. A mandibular reference model was fabricated with implants in the first premolar and molar positions to simulate a patient with bilateral posterior edentulism. Ten implant-level impressions per method were made using either an intraoral scanner with scanning abutments for the digital approach or an open-tray technique and polyvinylsiloxane material for the conventional approach. 3D analysis and comparison of implant location on resultant definitive casts were performed using laser scanner and quality control software. The inter-implant distances and interimplant angulations for each implant pair were measured for the reference model and for each definitive cast (n = 20 per group); these measurements were compared to calculate the magnitude of error in 3D for each definitive cast. The influence of implant angulation on definitive cast accuracy was evaluated for both digital and conventional approaches. Statistical analysis was performed using t test (α = .05) for implant position and angulation. Clinical qualitative assessment of accuracy was done via the assessment of the passivity of a master verification stent for each implant pair, and significance was analyzed using chi-square test (α = .05). A 3D error of implant positioning was observed for the two impression techniques vs the reference model, with mean ± standard deviation (SD) error of 116 ± 94 μm and 56 ± 29 μm for the digital and conventional approaches, respectively (P = .01). In contrast, the inter-implant angulation errors were not significantly different between the two techniques (P = .83). Implant angulation did not have a significant influence on definitive cast accuracy within either technique (P = .64). The verification stent

  7. Innovative High-Accuracy Lidar Bathymetric Technique for the Frequent Measurement of River Systems

    Science.gov (United States)

    Gisler, A.; Crowley, G.; Thayer, J. P.; Thompson, G. S.; Barton-Grimley, R. A.

    2015-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for understanding how rivers evolve over many timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  8. Accuracy Assessment of Different Digital Surface Models

    Directory of Open Access Journals (Sweden)

    Ugur Alganci

    2018-03-01

    Full Text Available Digital elevation models (DEMs, which can occur in the form of digital surface models (DSMs or digital terrain models (DTMs, are widely used as important geospatial information sources for various remote sensing applications, including the precise orthorectification of high-resolution satellite images, 3D spatial analyses, multi-criteria decision support systems, and deformation monitoring. The accuracy of DEMs has direct impacts on specific calculations and process chains; therefore, it is important to select the most appropriate DEM by considering the aim, accuracy requirement, and scale of each study. In this research, DSMs obtained from a variety of satellite sensors were compared to analyze their accuracy and performance. For this purpose, freely available Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER 30 m, Shuttle Radar Topography Mission (SRTM 30 m, and Advanced Land Observing Satellite (ALOS 30 m resolution DSM data were obtained. Additionally, 3 m and 1 m resolution DSMs were produced from tri-stereo images from the SPOT 6 and Pleiades high-resolution (PHR 1A satellites, respectively. Elevation reference data provided by the General Command of Mapping, the national mapping agency of Turkey—produced from 30 cm spatial resolution stereo aerial photos, with a 5 m grid spacing and ±3 m or better overall vertical accuracy at the 90% confidence interval (CI—were used to perform accuracy assessments. Gross errors and water surfaces were removed from the reference DSM. The relative accuracies of the different DSMs were tested using a different number of checkpoints determined by different methods. In the first method, 25 checkpoints were selected from bare lands to evaluate the accuracies of the DSMs on terrain surfaces. In the second method, 1000 randomly selected checkpoints were used to evaluate the methods’ accuracies for the whole study area. In addition to the control point approach, vertical cross

  9. Comparing diagnostic accuracy of bedside ultrasound and radiography for bone fracture screening in multiple trauma patients at the ED.

    Science.gov (United States)

    Bolandparvaz, Shahram; Moharamzadeh, Payman; Jamali, Kazem; Pouraghaei, Mahboob; Fadaie, Maryam; Sefidbakht, Sepideh; Shahsavari, Kavous

    2013-11-01

    Long bone fractures are currently diagnosed using radiography, but radiography has some disadvantages (radiation and being time consuming). The present study compared the diagnostic accuracy of bedside ultrasound and radiography in multiple trauma patients at the emergency department (ED). The study assessed 80 injured patients with multiple trauma from February 2011 to July 2012. The patients were older than 18 years and triaged to the cardiopulmonary resuscitation ward of the ED. Bedside ultrasound and radiography were conducted for them. The findings were separately and blindly assessed by 2 radiologists. Sensitivity, specificity, the positive and negative predictive value, and κ coefficient were measured to assess the accuracy and validity of ultrasound as compared with radiography. The sensitivity of ultrasound for diagnosis of limb bone fractures was not high enough and ranged between 55% and 75% depending on the fracture site. The specificity of this diagnostic method had an acceptable range of 62% to 84%. Ultrasound negative prediction value was higher than other indices under study and ranged between 73% and 83%, but its positive prediction value varied between 33.3% and 71%. The κ coefficient for diagnosis of long bone fractures of upper limb (κ = 0.58) and upper limb joints (κ = 0.47) and long bones of lower limb (κ = 0.52) was within the medium range. However, the value for diagnosing fractures of lower limb joints (κ = 0.47) was relatively low. Bedside ultrasound is not a reliable method for diagnosing fractures of upper and lower limb bones compared with radiography. © 2013 Elsevier Inc. All rights reserved.

  10. Accuracy of Combined Computed Tomography Colonography and Dual Energy Iiodine Map Imaging for Detecting Colorectal masses using High-pitch Dual-source CT.

    Science.gov (United States)

    Sun, Kai; Han, Ruijuan; Han, Yang; Shi, Xuesen; Hu, Jiang; Lu, Bin

    2018-02-28

    To evaluate the diagnostic accuracy of combined computed tomography colonography (CTC) and dual-energy iodine map imaging for detecting colorectal masses using high-pitch dual-source CT, compared with optical colonography (OC) and histopathologic findings. Twenty-eight consecutive patients were prospectively enrolled in this study. All patients were underwent contrast-enhanced CTC acquisition using dual-energy mode and OC and pathologic examination. The size of the space-occupied mass, the CT value after contrast enhancement, and the iodine value were measured and statistically compared. The sensitivity, specificity, accuracy rate, and positive predictive and negative predictive values of dual-energy contrast-enhanced CTC were calculated and compared between conventional CTC and dual-energy iodine images. The iodine value of stool was significantly lower than the colonic neoplasia (P dual-energy iodine maps imaging was 95.6% (95% CI = 77.9%-99.2%). The specificity of the two methods was 42.8% (95% CI = 15.4%-93.5%) and 100% (95% CI = 47.9%-100%; P = 0.02), respectively. Compared with optical colonography and histopathology, combined CTC and dual-energy iodine maps imaging can distinguish stool and colonic neoplasia, distinguish between benign and malignant tumors initially and improve the diagnostic accuracy of CTC for colorectal cancer screening.

  11. High-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects.

    Science.gov (United States)

    Zeng, Zhaoli; Qu, Xueming; Tan, Yidong; Tan, Runtao; Zhang, Shulian

    2015-06-29

    A simple and high-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects is presented. The single high-order feedback effect is realized when dual-frequency laser reflects numerous times in a Fabry-Perot cavity and then goes back to the laser resonator along the same route. In this case, two orthogonally polarized feedback fringes with nanoscale resolution are obtained. This self-mixing interferometer has the advantages of higher sensitivity to weak signal than that of conventional interferometer. In addition, two orthogonally polarized fringes are useful for discriminating the moving direction of measured object. The experiment of measuring 2.5nm step is conducted, which shows a great potential in nanometrology.

  12. Automated novel high-accuracy miniaturized positioning system for use in analytical instrumentation

    Science.gov (United States)

    Siomos, Konstadinos; Kaliakatsos, John; Apostolakis, Manolis; Lianakis, John; Duenow, Peter

    1996-01-01

    The development of three-dimensional automotive devices (micro-robots) for applications in analytical instrumentation, clinical chemical diagnostics and advanced laser optics, depends strongly on the ability of such a device: firstly to be positioned with high accuracy, reliability, and automatically, by means of user friendly interface techniques; secondly to be compact; and thirdly to operate under vacuum conditions, free of most of the problems connected with conventional micropositioners using stepping-motor gear techniques. The objective of this paper is to develop and construct a mechanically compact computer-based micropositioning system for coordinated motion in the X-Y-Z directions with: (1) a positioning accuracy of less than 1 micrometer, (the accuracy of the end-position of the system is controlled by a hard/software assembly using a self-constructed optical encoder); (2) a heat-free propulsion mechanism for vacuum operation; and (3) synchronized X-Y motion.

  13. Identification and delineation of areas flood hazard using high accuracy of DEM data

    Science.gov (United States)

    Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.

    2018-05-01

    Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.

  14. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    Science.gov (United States)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  15. Coronary CT angiography using prospective ECG triggering. High diagnostic accuracy with low radiation dose

    International Nuclear Information System (INIS)

    Arnoldi, E.; Ramos-Duran, L.; Abro, J.A.; Costello, P.; Zwerner, P.L.; Schoepf, U.J.; Nikolaou, K.; Reiser, M.F.

    2010-01-01

    The purpose of this study was to evaluate the diagnostic performance of coronary CT angiography (coronary CTA) using prospective ECG triggering (PT) for the detection of significant coronary artery stenosis compared to invasive coronary angiography (ICA). A total of 20 patients underwent coronary CTA with PT using a 128-slice CT scanner (Definition trademark AS+, Siemens) and ICA. All coronary CTA studies were evaluated for significant coronary artery stenoses (≥50% luminal narrowing) by 2 observers in consensus using the AHA-15-segment model. Findings in CTA were compared to those in ICA. Coronary CTA using PT had 88% sensitivity in comparison to 100% with ICA, 95% to 88% specificity, 80% to 92% positive predictive value and 97% to 100% negative predictive value for diagnosing significant coronary artery stenosis on per segment per patient analysis, respectively. Mean effective radiation dose-equivalent of CTA was 2.6±1 mSv. Coronary CTA using PT enables non-invasive diagnosis of significant coronary artery stenosis with high diagnostic accuracy in comparison to ICA and is associated with comparably low radiation exposure. (orig.) [de

  16. High accuracy positioning using carrier-phases with the opensource GPSTK software

    OpenAIRE

    Salazar Hernández, Dagoberto José; Hernández Pajares, Manuel; Juan Zornoza, José Miguel; Sanz Subirana, Jaume

    2008-01-01

    The objective of this work is to show how using a proper GNSS data management strategy, combined with the flexibility provided by the open source "GPS Toolkit" (GPSTk), it is possible to easily develop both simple code-based processing strategies as well as basic high accuracy carrier-phase positioning techniques like Precise Point Positioning (PPP

  17. A New Approach to High-accuracy Road Orthophoto Mapping Based on Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Ming Yang

    2011-12-01

    Full Text Available Existing orthophoto map based on satellite photography and aerial photography is not precise enough for road marking. This paper proposes a new approach to high-accuracy orthophoto mapping. The approach uses inverse perspective transformation to process the image information and generates the orthophoto fragment. The offline interpolation algorithm is used to process the location information. It processes the dead reckoning and the EKF location information, and uses the result to transform the fragments to the global coordinate system. At last it uses wavelet transform to divides the image to two frequency bands and uses weighted median algorithm to deal with them separately. The result of experiment shows that the map produced with this method has high accuracy.

  18. COMPARATIVE ASSESSMENT OF VERY HIGH RESOLUTION SATELLITE AND AERIAL ORTHOIMAGERY

    Directory of Open Access Journals (Sweden)

    P. Agrafiotis

    2015-03-01

    Full Text Available This paper aims to assess the accuracy and radiometric quality of orthorectified high resolution satellite imagery from Pleiades-1B satellites through a comparative evaluation of their quantitative and qualitative properties. A Pleiades-B1 stereopair of high resolution images taken in 2013, two adjacent GeoEye-1 stereopairs from 2011 and aerial orthomosaic (LSO provided by NCMA S.A (Hellenic Cadastre from 2007 have been used for the comparison tests. As control dataset orthomosaic from aerial imagery provided also by NCMA S.A (0.25m GSD from 2012 was selected. The process for DSM and orthoimage production was performed using commercial digital photogrammetric workstations. The two resulting orthoimages and the aerial orthomosaic (LSO were relatively and absolutely evaluated for their quantitative and qualitative properties. Test measurements were performed using the same check points in order to establish their accuracy both as far as the single point coordinates as well as their distances are concerned. Check points were distributed according to JRC Guidelines for Best Practice and Quality Checking of Ortho Imagery and NSSDA standards while areas with different terrain relief and land cover were also included. The tests performed were based also on JRC and NSSDA accuracy standards. Finally, tests were carried out in order to assess the radiometric quality of the orthoimagery. The results are presented with a statistical analysis and they are evaluated in order to present the merits and demerits of the imaging sensors involved for orthoimage production. The results also serve for a critical approach for the usability and cost efficiency of satellite imagery for the production of Large Scale Orthophotos.

  19. A new ultra-high-accuracy angle generator: current status and future direction

    Science.gov (United States)

    Guertin, Christian F.; Geckeler, Ralf D.

    2017-09-01

    Lack of an extreme high-accuracy angular positioning device available in the United States has left a gap in industrial and scientific efforts conducted there, requiring certain user groups to undertake time-consuming work with overseas laboratories. Specifically, in x-ray mirror metrology the global research community is advancing the state-of-the-art to unprecedented levels. We aim to fill this U.S. gap by developing a versatile high-accuracy angle generator as a part of the national metrology tool set for x-ray mirror metrology and other important industries. Using an established calibration technique to measure the errors of the encoder scale graduations for full-rotation rotary encoders, we implemented an optimized arrangement of sensors positioned to minimize propagation of calibration errors. Our initial feasibility research shows that upon scaling to a full prototype and including additional calibration techniques we can expect to achieve uncertainties at the level of 0.01 arcsec (50 nrad) or better and offer the immense advantage of a highly automatable and customizable product to the commercial market.

  20. Ultra-high accuracy optical testing: creating diffraction-limited short-wavelength optical systems

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman, Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli, Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-01-01

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-(angstrom) and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date

  1. Rational calculation accuracy in acousto-optical matrix-vector processor

    Science.gov (United States)

    Oparin, V. V.; Tigin, Dmitry V.

    1994-01-01

    The high speed of parallel computations for a comparatively small-size processor and acceptable power consumption makes the usage of acousto-optic matrix-vector multiplier (AOMVM) attractive for processing of large amounts of information in real time. The limited accuracy of computations is an essential disadvantage of such a processor. The reduced accuracy requirements allow for considerable simplification of the AOMVM architecture and the reduction of the demands on its components.

  2. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains

    Science.gov (United States)

    Moorhead, Jerry; Gowda, Prasanna H.; Hobbins, Michael; Senay, Gabriel; Paul, George; Marek, Thomas; Porter, Dana

    2015-01-01

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which is essential for regional scale water resources management. Data used in the development of NOAA daily ETref maps are derived from observations over surfaces that are different from short (grass — ETos) or tall (alfalfa — ETrs) reference crops, often in nonagricultural settings, which carries an unknown discrepancy between assumed and actual conditions. In this study, NOAA daily ETos and ETrs maps were evaluated for accuracy, using observed data from the Texas High Plains Evapotranspiration (TXHPET) network. Daily ETos, ETrs and the climatic data (air temperature, wind speed, and solar radiation) used for calculating ETref were extracted from the NOAA maps for TXHPET locations and compared against ground measurements on reference grass surfaces. NOAA ETrefmaps generally overestimated the TXHPET observations (1.4 and 2.2 mm/day ETos and ETrs, respectively), which may be attributed to errors in the NLDAS modeled air temperature and wind speed, to which reference ETref is most sensitive. Therefore, a bias correction to NLDAS modeled air temperature and wind speed data, or adjustment to the resulting NOAA ETref, may be needed to improve the accuracy of NOAA ETref maps.

  3. Comparative magnetic resonance imaging of renal space-occupying lesions with a high and a low field MRI system

    International Nuclear Information System (INIS)

    Gehl, H.B.; Lorch, H.; Amblank, O.B.M.; Engerhoff, B.; Weiss, H.D.

    1998-01-01

    Purpose: A prospective study of the diagnostic accuracy and image quality of two MRI systems in the detection of renal tumors was investigated. Materials and Methods: 34 patients with the clinical suspicion of a space-occupying renal lesion were examined by MRI with a low field (0.2 Tesla magnet) and a high field (1.5 Tesla magnet) for comparison. An 'informed' and a 'blind' observer evaluated all of the MR images. In addition, the signal-to-noise and contrast-to-noise ratios were evaluated as second quality parameters. Results: In 29 cases the results could be compared with a confirmed release diagnosis. Diagnostic accuracy was comparable with both systems (Sensitivity for both observer on LF apparatus: 83%, HF apparatus: 81%) although the signal-to-noise and contrast-to-noise ratios were significantly poorer at low field. Conclusions: The low field system in comparable to the high field MRI for detection and differentiation of renal space-occupying lesions. (orig.) [de

  4. High diagnostic accuracy of the Sysmex XT-2000iV delta total nucleated cells on effusions for feline infectious peritonitis.

    Science.gov (United States)

    Giordano, Alessia; Stranieri, Angelica; Rossi, Gabriele; Paltrinieri, Saverio

    2015-06-01

    The ΔWBC (the ratio between DIFF and BASO counts of the Sysmex XT-2000iV), hereafter defined as ΔTNC (total nucleated cells), is high in effusions due to feline infectious peritonitis (FIP), as cells are entrapped in fibrin clots formed in the BASO reagent. Similar clots form in the Rivalta's test, a method with high diagnostic accuracy for FIP. The objective of this study was to determine the diagnostic accuracy for FIP and the optimal cutoff of ΔTNC. After a retrospective search of our database, DIFF and BASO counts, and the ΔTNC from cats with and without FIP were compared to each other. Sensitivity, specificity, and positive and negative likelihood ratios (LR+, LR-) were calculated. A ROC curve was designed to determine the cutoff for best sensitivity and specificity. Effusions from 20 FIP and 31 non-FIP cats were analyzed. The ΔTNC was higher (P  2.5 had 100% specificity. The ΔTNC has a high diagnostic accuracy for FIP-related effusions by providing an estimate of precipitable proteins, as the Rivalta's test, in addition to the cell count. As fibrin clots result in false lower BASO counts, the ΔTNC is preferable to the WBC count generated by the BASO channel alone in suspected FIP effusions. © 2015 American Society for Veterinary Clinical Pathology.

  5. Accuracy and precision of flash glucose monitoring sensors inserted into the abdomen and upper thigh compared with the upper arm.

    Science.gov (United States)

    Charleer, Sara; Mathieu, Chantal; Nobels, Frank; Gillard, Pieter

    2018-06-01

    Nowadays, most Belgian patients with type 1 diabetes use flash glucose monitoring (FreeStyle Libre [FSL]; Abbott Diabetes Care, Alameda, California) to check their glucose values, but some patients find the sensor on the upper arm too visible. The aim of the present study was to compare the accuracy and precision of FSL sensors when placed on different sites. A total of 23 adults with type 1 diabetes used three FSL sensors simultaneously for 14 days on the upper arm, abdomen and upper thigh. FSL measurements were compared with capillary blood glucose (BG) measurements obtained with a built-in FSL BG meter. The aggregated mean absolute relative difference was 11.8 ± 12.0%, 18.5 ± 18.4% and 12.3 ± 13.8% for the arm, abdomen (P = .002 vs arm) and thigh (P = .5 vs arm), respectively. Results of Clarke error grid analysis for the arm and thigh were similar (zone A: 84.9% vs 84.5%; P = .6), while less accuracy was seen for the abdomen (zone A: 69.4%; P = .01). Apart from the first day, the accuracy of FSL sensors on the arm and thigh was more stable across the 14-day wear duration than accuracy of sensors on the abdomen, which deteriorated mainly during week 2 (P < .0005). The aggregated precision absolute relative difference was markedly lower for the arm/thigh (10.9 ± 11.9%) compared with the arm/abdomen (20.9 ± 22.8%; P = .002). Our results indicate that the accuracy and precision of FSL sensors placed on the upper thigh are similar to the upper arm, whereas the abdomen performed unacceptably poorly. © 2018 John Wiley & Sons Ltd.

  6. Measuring Adolescent Self-Awareness and Accuracy Using a Performance-Based Assessment and Parental Report

    Directory of Open Access Journals (Sweden)

    Sharon Zlotnik

    2018-02-01

    Full Text Available AimThe aim of this study was to assess awareness of performance and performance accuracy for a task that requires executive functions (EF, among healthy adolescents and to compare their performance to their parent’s ratings.MethodParticipants: 109 healthy adolescents (mean age 15.2 ± 1.86 years completed the Weekly Calendar Planning Activity (WCPA. The discrepancy between self-estimated and actual performance was used to measure the level of awareness. The participants were divided into high and low accuracy groups according to the WCPA accuracy median score. The participants were also divided into high and low awareness groups. A comparison was conducted between groups using WCPA performance and parent ratings on the Behavior Rating Inventory of Executive Function (BRIEF.ResultsHigher awareness was associated with better EF performance. Participants with high accuracy scores were more likely to show high awareness of performance as compared to participants with low accuracy scores. The high accuracy group had better parental ratings of EF, higher efficiency, followed more rules, and were more aware of their WCPA performance.ConclusionOur results highlight the important contribution that self-awareness of performance may have on the individual’s function. Assessing the level of awareness and providing metacognitive training techniques for those adolescents who are less aware, could support their performance.

  7. Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis.

    Science.gov (United States)

    Jamshidy, Ladan; Mozaffari, Hamid Reza; Faraji, Payam; Sharifi, Roohollah

    2016-01-01

    Introduction . One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods . A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with two-stage technique using an appropriate tray. To measure the marginal gap, the distance between the restoration margin and preparation finish line of plaster dies was vertically determined in mid mesial, distal, buccal, and lingual (MDBL) regions by a stereomicroscope using a standard method. Results . The results of independent test showed that the mean value of the marginal gap obtained by one-stage impression technique was higher than that of two-stage impression technique. Further, there was no significant difference between one- and two-stage impression techniques in mid buccal region, but a significant difference was reported between the two impression techniques in MDL regions and in general. Conclusion . The findings of the present study indicated higher accuracy for two-stage impression technique than for the one-stage impression technique.

  8. Contributions of speed and accuracy to translational selection in bacteria.

    Directory of Open Access Journals (Sweden)

    Wenqi Ran

    Full Text Available Among bacteria, we have previously shown that species that are capable of rapid growth have stronger selection on codon usage than slow growing species, and possess higher numbers of rRNA and tRNA genes. This suggests that fast-growers are adapted for fast protein synthesis. There is also considerable evidence that codon usage is influenced by accuracy of translation, and some authors have argued that accuracy is more important than speed. Here we compare the strength of the two effects by studying the codon usages in high and low expression genes and on conserved and variable sites within high expression genes. We introduce a simple statistical method that can be used to assess the significance and the strength of the two types of bias in the same sets of sequences. We compare our statistical measure of codon bias to the common used codon adaptation index, and show that the new measure is preferable for three reasons for the purposes of this analysis. Across a large sample of bacterial genomes, both effects from speed and accuracy are clearly visible, although the speed effect appears to be much stronger than the accuracy effect and is found to be significant in a larger proportion of genomes. It is also difficult to explain the correlation of codon bias in the high expression genes with growth rates and numbers of copies of tRNA and rRNA genes on the basis of selection for accuracy. Hence we conclude that selection for translational speed is a dominant effect in driving codon usage bias in fast-growing bacteria, with selection for accuracy playing a small supplementary role.

  9. Reliability and accuracy of Crystaleye spectrophotometric system.

    Science.gov (United States)

    Chen, Li; Tan, Jian Guo; Zhou, Jian Feng; Yang, Xu; Du, Yang; Wang, Fang Ping

    2010-01-01

    to develop an in vitro shade-measuring model to evaluate the reliability and accuracy of the Crystaleye spectrophotometric system, a newly developed spectrophotometer. four shade guides, VITA Classical, VITA 3D-Master, Chromascop and Vintage Halo NCC, were measured with the Crystaleye spectrophotometer in a standardised model, ten times for 107 shade tabs. The shade-matching results and the CIE L*a*b* values of the cervical, body and incisal regions for each measurement were automatically analysed using the supporting software. Reliability and accuracy were calculated for each shade tab both in percentage and in colour difference (ΔE). Difference was analysed by one-way ANOVA in the cervical, body and incisal regions. range of reliability was 88.81% to 98.97% and 0.13 to 0.24 ΔE units, and that of accuracy was 44.05% to 91.25% and 1.03 to 1.89 ΔE units. Significant differences in reliability and accuracy were found between the body region and the cervical and incisal regions. Comparisons made among regions and shade guides revealed that evaluation in ΔE was prone to disclose the differences. measurements with the Crystaleye spectrophotometer had similar, high reliability in different shade guides and regions, indicating predictable repeated measurements. Accuracy in the body region was high and less variable compared with the cervical and incisal regions.

  10. High Accuracy Attitude Control System Design for Satellite with Flexible Appendages

    Directory of Open Access Journals (Sweden)

    Wenya Zhou

    2014-01-01

    Full Text Available In order to realize the high accuracy attitude control of satellite with flexible appendages, attitude control system consisting of the controller and structural filter was designed. When the low order vibration frequency of flexible appendages is approximating the bandwidth of attitude control system, the vibration signal will enter the control system through measurement device to bring impact on the accuracy or even the stability. In order to reduce the impact of vibration of appendages on the attitude control system, the structural filter is designed in terms of rejecting the vibration of flexible appendages. Considering the potential problem of in-orbit frequency variation of the flexible appendages, the design method for the adaptive notch filter is proposed based on the in-orbit identification technology. Finally, the simulation results are given to demonstrate the feasibility and effectiveness of the proposed design techniques.

  11. Model Accuracy Comparison for High Resolution Insar Coherence Statistics Over Urban Areas

    Science.gov (United States)

    Zhang, Yue; Fu, Kun; Sun, Xian; Xu, Guangluan; Wang, Hongqi

    2016-06-01

    The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR) images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR) coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  12. MODEL ACCURACY COMPARISON FOR HIGH RESOLUTION INSAR COHERENCE STATISTICS OVER URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2016-06-01

    Full Text Available The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  13. A Clinical Comparative Study of 3-Dimensional Accuracy between Digital and Conventional Implant Impression Techniques.

    Science.gov (United States)

    Alsharbaty, Mohammed Hussein M; Alikhasi, Marzieh; Zarrati, Simindokht; Shamshiri, Ahmed Reza

    2018-02-09

    To evaluate the accuracy of a digital implant impression technique using a TRIOS 3Shape intraoral scanner (IOS) compared to conventional implant impression techniques (pick-up and transfer) in clinical situations. Thirty-six patients who had two implants (Implantium, internal connection) ranging in diameter between 3.8 and 4.8 mm in posterior regions participated in this study after signing a consent form. Thirty-six reference models (RM) were fabricated by attaching two impression copings intraorally, splinted with autopolymerizing acrylic resin, verified by sectioning through the middle of the index, and rejoined again with freshly mixed autopolymerizing acrylic resin pattern (Pattern Resin) with the brush bead method. After that, the splinted assemblies were attached to implant analogs (DANSE) and impressed with type III dental stone (Gypsum Microstone) in standard plastic die lock trays. Thirty-six working casts were fabricated for each conventional impression technique (i.e., pick-up and transfer). Thirty-six digital impressions were made with a TRIOS 3Shape IOS. Eight of the digitally scanned files were damaged; 28 digital scan files were retrieved to STL format. A coordinate-measuring machine (CMM) was used to record linear displacement measurements (x, y, and z-coordinates), interimplant distances, and angular displacements for the RMs and conventionally fabricated working casts. CATIA 3D evaluation software was used to assess the digital STL files for the same variables as the CMM measurements. CMM measurements made on the RMs and conventionally fabricated working casts were compared with 3D software measurements made on the digitally scanned files. Data were statistically analyzed using the generalized estimating equation (GEE) with an exchangeable correlation matrix and linear method, followed by the Bonferroni method for pairwise comparisons (α = 0.05). The results showed significant differences between the pick-up and digital groups in all of the

  14. Technics study on high accuracy crush dressing and sharpening of diamond grinding wheel

    Science.gov (United States)

    Jia, Yunhai; Lu, Xuejun; Li, Jiangang; Zhu, Lixin; Song, Yingjie

    2011-05-01

    Mechanical grinding of artificial diamond grinding wheel was traditional wheel dressing process. The rotate speed and infeed depth of tool wheel were main technics parameters. The suitable technics parameters of metals-bonded diamond grinding wheel and resin-bonded diamond grinding wheel high accuracy crush dressing were obtained by a mount of experiment in super-hard material wheel dressing grind machine and by analysis of grinding force. In the same time, the effect of machine sharpening and sprinkle granule sharpening was contrasted. These analyses and lots of experiments had extent instruction significance to artificial diamond grinding wheel accuracy crush dressing.

  15. Interethnic differences in the accuracy of anthropometric indicators of obesity in screening for high risk of coronary heart disease

    Science.gov (United States)

    Herrera, VM; Casas, JP; Miranda, JJ; Perel, P; Pichardo, R; González, A; Sanchez, JR; Ferreccio, C; Aguilera, X; Silva, E; Oróstegui, M; Gómez, LF; Chirinos, JA; Medina-Lezama, J; Pérez, CM; Suárez, E; Ortiz, AP; Rosero, L; Schapochnik, N; Ortiz, Z; Ferrante, D; Diaz, M; Bautista, LE

    2009-01-01

    Background Cut points for defining obesity have been derived from mortality data among Whites from Europe and the United States and their accuracy to screen for high risk of coronary heart disease (CHD) in other ethnic groups has been questioned. Objective To compare the accuracy and to define ethnic and gender-specific optimal cut points for body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) when they are used in screening for high risk of CHD in the Latin-American and the US populations. Methods We estimated the accuracy and optimal cut points for BMI, WC and WHR to screen for CHD risk in Latin Americans (n=18 976), non-Hispanic Whites (Whites; n=8956), non-Hispanic Blacks (Blacks; n=5205) and Hispanics (n=5803). High risk of CHD was defined as a 10-year risk ≥20% (Framingham equation). The area under the receiver operator characteristic curve (AUC) and the misclassification-cost term were used to assess accuracy and to identify optimal cut points. Results WHR had the highest AUC in all ethnic groups (from 0.75 to 0.82) and BMI had the lowest (from 0.50 to 0.59). Optimal cut point for BMI was similar across ethnic/gender groups (27 kg/m2). In women, cut points for WC (94 cm) and WHR (0.91) were consistent by ethnicity. In men, cut points for WC and WHR varied significantly with ethnicity: from 91 cm in Latin Americans to 102 cm in Whites, and from 0.94 in Latin Americans to 0.99 in Hispanics, respectively. Conclusion WHR is the most accurate anthropometric indicator to screen for high risk of CHD, whereas BMI is almost uninformative. The same BMI cut point should be used in all men and women. Unique cut points for WC and WHR should be used in all women, but ethnic-specific cut points seem warranted among men. PMID:19238159

  16. High accuracy subwavelength distance measurements: A variable-angle standing-wave total-internal-reflection optical microscope

    International Nuclear Information System (INIS)

    Haynie, A.; Min, T.-J.; Luan, L.; Mu, W.; Ketterson, J. B.

    2009-01-01

    We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.

  17. CARETS: A prototype regional environmental information system. Volume 6: Cost, accuracy and consistency comparisons of land use maps made from high-altitude aircraft photography and ERTS imagery

    Science.gov (United States)

    Alexander, R. H. (Principal Investigator); Fitzpatrick, K. A.

    1975-01-01

    The author has identified the following significant results. Level 2 land use maps produced at three scales (1:24,000, 1:100,000, and 1:250,000) from high altitude photography were compared with each other and with point data obtained in the field. The same procedures were employed to determine the accuracy of the Level 1 land use maps produced at 1:250,000 from high altitude photography and color composite ERTS imagery. Accuracy of the Level 2 maps was 84.9 percent at 1:24,000, 77.4 percent at 1:100,000 and 73.0 percent at 1:250,000. Accuracy of the Level 1 1:250,000 maps was 76.5 percent for aerial photographs and 69.5 percent for ERTS imagery. The cost of Level 2 land use mapping at 1:24,000 was found to be high ($11.93 per sq km). The cost of mapping at 1:100,000 ($1.75) was about two times as expensive as mapping at 1:250,000 ($.88), and the accuracy increased by only 4.4 percent.

  18. High accuracy of family history of melanoma in Danish melanoma cases

    DEFF Research Database (Denmark)

    Wadt, Karin A W; Drzewiecki, Krzysztof T; Gerdes, Anne-Marie

    2015-01-01

    The incidence of melanoma in Denmark has immensely increased over the last 10 years making Denmark a high risk country for melanoma. In the last two decades multiple public campaigns have sought to increase the awareness of melanoma. Family history of melanoma is a known major risk factor...... but previous studies have shown that self-reported family history of melanoma is highly inaccurate. These studies are 15 years old and we wanted to examine if a higher awareness of melanoma has increased the accuracy of self-reported family history of melanoma. We examined the family history of 181 melanoma...

  19. Diagnosing Eyewitness Accuracy

    OpenAIRE

    Russ, Andrew

    2015-01-01

    Eyewitnesses frequently mistake innocent people for the perpetrator of an observed crime. Such misidentifications have led to the wrongful convictions of many people. Despite this, no reliable method yet exists to determine eyewitness accuracy. This thesis explored two new experimental methods for this purpose. Chapter 2 investigated whether repetition priming can measure prior exposure to a target and compared this with observers’ explicit eyewitness accuracy. Across three experiments slower...

  20. Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Ladan Jamshidy

    2016-01-01

    Full Text Available Introduction. One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods. A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with two-stage technique using an appropriate tray. To measure the marginal gap, the distance between the restoration margin and preparation finish line of plaster dies was vertically determined in mid mesial, distal, buccal, and lingual (MDBL regions by a stereomicroscope using a standard method. Results. The results of independent test showed that the mean value of the marginal gap obtained by one-stage impression technique was higher than that of two-stage impression technique. Further, there was no significant difference between one- and two-stage impression techniques in mid buccal region, but a significant difference was reported between the two impression techniques in MDL regions and in general. Conclusion. The findings of the present study indicated higher accuracy for two-stage impression technique than for the one-stage impression technique.

  1. Diagnostic accuracy of contrast-enhanced MR angiography and unenhanced proton MR imaging compared with CT pulmonary angiography in chronic thromboembolic pulmonary hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Rajaram, Smitha [Unit of Academic Radiology, University of Sheffield, Sheffield (United Kingdom); Academic Unit of Radiology, C Floor, Royal Hallamshire Hospital, Sheffield (United Kingdom); Swift, Andrew J.; Wild, Jim M. [Unit of Academic Radiology, University of Sheffield, Sheffield (United Kingdom); Sheffield Cardiovascular Biomedical Research Unit, Sheffield (United Kingdom); Capener, David; Telfer, Adam [Unit of Academic Radiology, University of Sheffield, Sheffield (United Kingdom); Davies, Christine; Hill, Catherine [Sheffield Teaching Hospitals Trust, Department of Radiology, Sheffield (United Kingdom); Condliffe, Robin; Elliot, Charles; Kiely, David G. [Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield (United Kingdom); Sheffield Cardiovascular Biomedical Research Unit, Sheffield (United Kingdom); Hurdman, Judith [Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield (United Kingdom)

    2012-02-15

    To evaluate the diagnostic accuracy of contrast-enhanced MR angiography (CE-MRA) and the added benefit of unenhanced proton MR angiography compared with CT pulmonary angiography (CTPA) in patients with chronic thromboembolic disease (CTE). A 2 year retrospective study of 53 patients with chronic thromboembolic pulmonary hypertension who underwent CTPA and MRI for suspected pulmonary hypertension and a control group of 36 patients with no CT evidence of pulmonary embolism. The MRI was evaluated for CTE and the combined diagnostic accuracy of ce-MRA and unenhanced proton MRA was determined. CE-MRA generated lung perfusion maps were also assessed. The overall sensitivity and specificity of CE-MRA in diagnosing proximal and distal CTE were 98% and 94%, respectively. The sensitivity improved from 50% to 88% for central vessel disease when CE-MRA images were analysed with unenhanced proton MRA. The CE-MRA identified more stenoses (29/18), post-stenosis dilatation (23/7) and occlusions (37/29) compared with CTPA. The CE-MRA perfusion images showed a sensitivity of 92% for diagnosing CTE. CE-MRA has high sensitivity and specificity for diagnosing CTE. The sensitivity of CE-MRA for visualisation of adherent central and lobar thrombus significantly improves with the addition of unenhanced proton MRA which delineates the vessel wall. (orig.)

  2. Diagnostic accuracy of contrast-enhanced MR angiography and unenhanced proton MR imaging compared with CT pulmonary angiography in chronic thromboembolic pulmonary hypertension

    International Nuclear Information System (INIS)

    Rajaram, Smitha; Swift, Andrew J.; Wild, Jim M.; Capener, David; Telfer, Adam; Davies, Christine; Hill, Catherine; Condliffe, Robin; Elliot, Charles; Kiely, David G.; Hurdman, Judith

    2012-01-01

    To evaluate the diagnostic accuracy of contrast-enhanced MR angiography (CE-MRA) and the added benefit of unenhanced proton MR angiography compared with CT pulmonary angiography (CTPA) in patients with chronic thromboembolic disease (CTE). A 2 year retrospective study of 53 patients with chronic thromboembolic pulmonary hypertension who underwent CTPA and MRI for suspected pulmonary hypertension and a control group of 36 patients with no CT evidence of pulmonary embolism. The MRI was evaluated for CTE and the combined diagnostic accuracy of ce-MRA and unenhanced proton MRA was determined. CE-MRA generated lung perfusion maps were also assessed. The overall sensitivity and specificity of CE-MRA in diagnosing proximal and distal CTE were 98% and 94%, respectively. The sensitivity improved from 50% to 88% for central vessel disease when CE-MRA images were analysed with unenhanced proton MRA. The CE-MRA identified more stenoses (29/18), post-stenosis dilatation (23/7) and occlusions (37/29) compared with CTPA. The CE-MRA perfusion images showed a sensitivity of 92% for diagnosing CTE. CE-MRA has high sensitivity and specificity for diagnosing CTE. The sensitivity of CE-MRA for visualisation of adherent central and lobar thrombus significantly improves with the addition of unenhanced proton MRA which delineates the vessel wall. (orig.)

  3. Ultra-wideband ranging precision and accuracy

    International Nuclear Information System (INIS)

    MacGougan, Glenn; O'Keefe, Kyle; Klukas, Richard

    2009-01-01

    This paper provides an overview of ultra-wideband (UWB) in the context of ranging applications and assesses the precision and accuracy of UWB ranging from both a theoretical perspective and a practical perspective using real data. The paper begins with a brief history of UWB technology and the most current definition of what constitutes an UWB signal. The potential precision of UWB ranging is assessed using Cramer–Rao lower bound analysis. UWB ranging methods are described and potential error sources are discussed. Two types of commercially available UWB ranging radios are introduced which are used in testing. Actual ranging accuracy is assessed from line-of-sight testing under benign signal conditions by comparison to high-accuracy electronic distance measurements and to ranges derived from GPS real-time kinematic positioning. Range measurements obtained in outdoor testing with line-of-sight obstructions and strong reflection sources are compared to ranges derived from classically surveyed positions. The paper concludes with a discussion of the potential applications for UWB ranging

  4. Geometrical accuracy of metallic objects produced with additive or subtractive manufacturing: A comparative in vitro study.

    Science.gov (United States)

    Braian, Michael; Jönsson, David; Kevci, Mir; Wennerberg, Ann

    2018-04-06

    To evaluate the accuracy and precision of objects produced by additive manufacturing systems (AM) for use in dentistry and to compare with subtractive manufacturing systems (SM). Ten specimens of two geometrical objects were produced by five different AM machines and one SM machine. Object A mimics an inlay-shaped object, while object B imitates a four-unit bridge model. All the objects were sorted into different measurement dimensions (x, y, z), linear distances, angles and corner radius. None of the additive manufacturing or subtractive manufacturing groups presented a perfect match to the CAD file with regard to all parameters included in the present study. Considering linear measurements, the precision for subtractive manufacturing group was consistent in all axes for object A, presenting results of additive manufacturing groups had consistent precision in the x-axis and y-axis but not in the z-axis. With regard to corner radius measurements, the SM group had the best overall accuracy and precision for both objects A and B when compared to the AM groups. Within the limitations of this in vitro study, the conclusion can be made that subtractive manufacturing presented overall precision on all measurements below 0.050mm. The AM machines also presented fairly good precision, additive techniques are now being implemented. Thus all these production techniques need to be tested, compared and validated. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  5. Cutting velocity accuracy as a criterion for comparing robot trajectories and manual movements for medical industry

    Science.gov (United States)

    Vorotnikov, A. A.; Klimov, D. D.; Romash, E. V.; Bashevskaya, O. S.; Poduraev, Yu. V.; Bazykyan, E. A.; Chunihin, A. A.

    2018-03-01

    Industrial robots perform technological operations, such as spot and arc welding, machining and laser cutting along different trajectories within their performance characteristics. The evaluation of these characteristics is carried out according to the criteria of the standard ISO 9283. The criteria of this standard are applicable in industrial manufacturing, but not in the medical industry, as they are not developed in the framework of medical tasks. Therefore, it is necessary to evaluate according to criteria built on different principles. In this article, the question of comparative evaluation of trajectories from program movements of a robot and manual movements of a surgeon, arising during the development of robotic medical complexes using industrial robots, is considered. A comparative evaluation is required to prove the expediency of automating medical operations in maxillofacial surgery. This study focuses on the estimation of velocity accuracy of a medical instrument. To obtain the velocity of the medical instrument, coordinates of the trajectory points from the program movements of the robot KUKA LWR4+ and trajectories from the manual movements of a professional surgeon have been measured. The measurement was carried out using a coordinate measuring machine, the laser tracker Leica LTD800. The accuracy estimation was carried out by two criteria: the criterion set out in the ISO 9283 standard, and the developed alternative criterion, the description of which is presented in this article. A quantitative comparative evaluation of the trajectories of a robot and a surgeon was obtained.

  6. Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks.

    Science.gov (United States)

    Blanche, Paul; Proust-Lima, Cécile; Loubère, Lucie; Berr, Claudine; Dartigues, Jean-François; Jacqmin-Gadda, Hélène

    2015-03-01

    Thanks to the growing interest in personalized medicine, joint modeling of longitudinal marker and time-to-event data has recently started to be used to derive dynamic individual risk predictions. Individual predictions are called dynamic because they are updated when information on the subject's health profile grows with time. We focus in this work on statistical methods for quantifying and comparing dynamic predictive accuracy of this kind of prognostic models, accounting for right censoring and possibly competing events. Dynamic area under the ROC curve (AUC) and Brier Score (BS) are used to quantify predictive accuracy. Nonparametric inverse probability of censoring weighting is used to estimate dynamic curves of AUC and BS as functions of the time at which predictions are made. Asymptotic results are established and both pointwise confidence intervals and simultaneous confidence bands are derived. Tests are also proposed to compare the dynamic prediction accuracy curves of two prognostic models. The finite sample behavior of the inference procedures is assessed via simulations. We apply the proposed methodology to compare various prediction models using repeated measures of two psychometric tests to predict dementia in the elderly, accounting for the competing risk of death. Models are estimated on the French Paquid cohort and predictive accuracies are evaluated and compared on the French Three-City cohort. © 2014, The International Biometric Society.

  7. Evaluating arguments during instigations of defence motivation and accuracy motivation.

    Science.gov (United States)

    Liu, Cheng-Hong

    2017-05-01

    When people evaluate the strength of an argument, their motivations are likely to influence the evaluation. However, few studies have specifically investigated the influences of motivational factors on argument evaluation. This study examined the effects of defence and accuracy motivations on argument evaluation. According to the compatibility between the advocated positions of arguments and participants' prior beliefs and the objective strength of arguments, participants evaluated four types of arguments: compatible-strong, compatible-weak, incompatible-strong, and incompatible-weak arguments. Experiment 1 revealed that participants possessing a high defence motivation rated compatible-weak arguments as stronger and incompatible-strong ones as weaker than participants possessing a low defence motivation. However, the strength ratings between the high and low defence groups regarding both compatible-strong and incompatible-weak arguments were similar. Experiment 2 revealed that when participants possessed a high accuracy motivation, they rated compatible-weak arguments as weaker and incompatible-strong ones as stronger than when they possessed a low accuracy motivation. However, participants' ratings on both compatible-strong and incompatible-weak arguments were similar when comparing high and low accuracy conditions. The results suggest that defence and accuracy motivations are two major motives influencing argument evaluation. However, they primarily influence the evaluation results for compatible-weak and incompatible-strong arguments, but not for compatible-strong and incompatible-weak arguments. © 2016 The British Psychological Society.

  8. A diabetes dashboard and physician efficiency and accuracy in accessing data needed for high-quality diabetes care.

    Science.gov (United States)

    Koopman, Richelle J; Kochendorfer, Karl M; Moore, Joi L; Mehr, David R; Wakefield, Douglas S; Yadamsuren, Borchuluun; Coberly, Jared S; Kruse, Robin L; Wakefield, Bonnie J; Belden, Jeffery L

    2011-01-01

    We compared use of a new diabetes dashboard screen with use of a conventional approach of viewing multiple electronic health record (EHR) screens to find data needed for ambulatory diabetes care. We performed a usability study, including a quantitative time study and qualitative analysis of information-seeking behaviors. While being recorded with Morae Recorder software and "think-aloud" interview methods, 10 primary care physicians first searched their EHR for 10 diabetes data elements using a conventional approach for a simulated patient, and then using a new diabetes dashboard for another. We measured time, number of mouse clicks, and accuracy. Two coders analyzed think-aloud and interview data using grounded theory methodology. The mean time needed to find all data elements was 5.5 minutes using the conventional approach vs 1.3 minutes using the diabetes dashboard (P dashboard (P dashboard (P dashboard improves both the efficiency and accuracy of acquiring data needed for high-quality diabetes care. Usability analysis tools can provide important insights into the value of optimizing physician use of health information technologies.

  9. Feasibility and Accuracy of Digitizing Edentulous Maxillectomy Defects: A Comparative Study.

    Science.gov (United States)

    Elbashti, Mahmoud E; Hattori, Mariko; Patzelt, Sebastian Bm; Schulze, Dirk; Sumita, Yuka I; Taniguchi, Hisashi

    The aim of this study was to evaluate the feasibility and accuracy of using an intraoral scanner to digitize edentulous maxillectomy defects. A total of 20 maxillectomy models with two defect types were digitized using cone beam computed tomography. Conventional and digital impressions were made using silicone impression material and a laboratory optical scanner as well as a chairside intraoral scanner. The 3D datasets were analyzed using 3D evaluation software. Two-way analysis of variance revealed no interaction between defect types and impression methods, and the accuracy of the impression methods was significantly different (P = .0374). Digitizing edentulous maxillectomy defect models using a chairside intraoral scanner appears to be feasible and accurate.

  10. Evaluation of bilirubin interference and accuracy of six creatinine assays compared with isotope dilution-liquid chromatography mass spectrometry.

    Science.gov (United States)

    Nah, Hyunjin; Lee, Sang-Guk; Lee, Kyeong-Seob; Won, Jae-Hee; Kim, Hyun Ok; Kim, Jeong-Ho

    2016-02-01

    The aim of this study was to estimate bilirubin interference and accuracy of six routine methods for measuring creatinine compared with isotope dilution-liquid chromatography mass spectrometry (ID-LC/MS). A total of 40 clinical serum samples from 31 patients with serum total bilirubin concentration >68.4μmol/L were collected. Serum creatinine was measured using two enzymatic reagents and four Jaffe reagents as well as ID-LC/MS. Correlations between bilirubin concentration and percent difference in creatinine compared with ID-LC/MS were analyzed to investigate bilirubin interference. Bias estimations between the six reagents and ID-LC/MS were performed. Recovery tests using National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 967a were also performed. Both the enzymatic methods showed no bilirubin interference. However, three of the four Jaffe methods demonstrated significant bilirubin concentration-dependent interference in samples with creatinine levels creatinine levels ranging from 53.0 to 97.2μmol/L. Comparison of these methods with ID-LC/MS using patients' samples with elevated bilirubin revealed that the tested methods failed to achieve the bias goal at especially low levels of creatinine. In addition, recovery test using NIST SRM 967a showed that bias in one Jaffe method and two enzymatic methods did not achieve the bias goal at either low or high level of creatinine, indicating they had calibration bias. One enzymatic method failed to achieve all the bias goals in both comparison experiment and recovery test. It is important to understand that both bilirubin interference and calibration traceability to ID-LC/MS should be considered to improve the accuracy of creatinine measurement. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  11. The development and evaluation of an audit tool for measuring reporting accuracy of radiographers compared with radiologists for intra-luminal pathology detected at computed tomography colonography (CTC)

    International Nuclear Information System (INIS)

    Rimes, Susan Jane; Fox, Danial; Knapp, Karen M.; Meertens, Robert

    2015-01-01

    Objective: To design and test an audit tool to measure the reporting accuracy of radiographers using radiologist reports as the gold standard. Design: A database was designed to capture radiographer and radiologist report data. The radiographer preliminary evaluation of intraluminal pathology was given a score (PDS score) by the reporting radiologist based on the pathology present, the discrepancy between the preliminary evaluation and the final report and the significance of that discrepancy on the clinical management of the patient. To test the reliability of this scoring system, 30 randomly selected cases (n = 1815) were retrospectively compared and assessed for accuracy using the PDS score by 3 independent practitioners. Inter rater reliability was assessed using percentage agreement and kappa scores. Results: There was 100% agreement between participants for all significant pathologies. Inter rater agreement was 80–93% for normal studies and insignificant pathologies. Conclusion: Results indicate that the tool provides a practical, easy to use and reliable method to record, monitor and evaluate a preliminary evaluation of the colon by radiographers. - Highlights: • Radiographers issue a preliminary clinical evaluation of computed tomography colonography. • A database was set up to collate and audit radiographer preliminary clinical evaluation. • Radiographer primary clinical evaluations were scored for accuracy against the radiology report. • Radiographer accuracy was high when compared with the radiology report. • Radiographers can support radiologists through double reporting of intraluminal pathology

  12. High-accuracy drilling with an image guided light weight robot: autonomous versus intuitive feed control.

    Science.gov (United States)

    Tauscher, Sebastian; Fuchs, Alexander; Baier, Fabian; Kahrs, Lüder A; Ortmaier, Tobias

    2017-10-01

    Assistance of robotic systems in the operating room promises higher accuracy and, hence, demanding surgical interventions become realisable (e.g. the direct cochlear access). Additionally, an intuitive user interface is crucial for the use of robots in surgery. Torque sensors in the joints can be employed for intuitive interaction concepts. Regarding the accuracy, they lead to a lower structural stiffness and, thus, to an additional error source. The aim of this contribution is to examine, if an accuracy needed for demanding interventions can be achieved by such a system or not. Feasible accuracy results of the robot-assisted process depend on each work-flow step. This work focuses on the determination of the tool coordinate frame. A method for drill axis definition is implemented and analysed. Furthermore, a concept of admittance feed control is developed. This allows the user to control feeding along the planned path by applying a force to the robots structure. The accuracy is researched by drilling experiments with a PMMA phantom and artificial bone blocks. The described drill axis estimation process results in a high angular repeatability ([Formula: see text]). In the first set of drilling results, an accuracy of [Formula: see text] at entrance and [Formula: see text] at target point excluding imaging was achieved. With admittance feed control an accuracy of [Formula: see text] at target point was realised. In a third set twelve holes were drilled in artificial temporal bone phantoms including imaging. In this set-up an error of [Formula: see text] and [Formula: see text] was achieved. The results of conducted experiments show that accuracy requirements for demanding procedures such as the direct cochlear access can be fulfilled with compliant systems. Furthermore, it was shown that with the presented admittance feed control an accuracy of less then [Formula: see text] is achievable.

  13. High accuracy of family history of melanoma in Danish melanoma cases.

    Science.gov (United States)

    Wadt, Karin A W; Drzewiecki, Krzysztof T; Gerdes, Anne-Marie

    2015-12-01

    The incidence of melanoma in Denmark has immensely increased over the last 10 years making Denmark a high risk country for melanoma. In the last two decades multiple public campaigns have sought to increase the awareness of melanoma. Family history of melanoma is a known major risk factor but previous studies have shown that self-reported family history of melanoma is highly inaccurate. These studies are 15 years old and we wanted to examine if a higher awareness of melanoma has increased the accuracy of self-reported family history of melanoma. We examined the family history of 181 melanoma probands who reported 199 cases of melanoma in relatives, of which 135 cases where in first degree relatives. We confirmed the diagnosis of melanoma in 77% of all relatives, and in 83% of first degree relatives. In 181 probands we validated the negative family history of melanoma in 748 first degree relatives and found only 1 case of melanoma which was not reported in a 3 case melanoma family. Melanoma patients in Denmark report family history of melanoma in first and second degree relatives with a high level of accuracy with a true positive predictive value between 77 and 87%. In 99% of probands reporting a negative family history of melanoma in first degree relatives this information is correct. In clinical practice we recommend that melanoma diagnosis in relatives should be verified if possible, but even unverified reported melanoma cases in relatives should be included in the indication of genetic testing and assessment of melanoma risk in the family.

  14. Fission product model for BWR analysis with improved accuracy in high burnup

    International Nuclear Information System (INIS)

    Ikehara, Tadashi; Yamamoto, Munenari; Ando, Yoshihira

    1998-01-01

    A new fission product (FP) chain model has been studied to be used in a BWR lattice calculation. In attempting to establish the model, two requirements, i.e. the accuracy in predicting burnup reactivity and the easiness in practical application, are simultaneously considered. The resultant FP model consists of 81 explicit FP nuclides and two lumped pseudo nuclides having the absorption cross sections independent of burnup history and fuel composition. For the verification, extensive numerical tests covering over a wide range of operational conditions and fuel compositions have been carried out. The results indicate that the estimated errors in burnup reactivity are within 0.1%Δk for exposures up to 100GWd/t. It is concluded that the present model can offer a high degree of accuracy for FP representation in BWR lattice calculation. (author)

  15. Diagnostic accuracy in virtual dermatopathology

    DEFF Research Database (Denmark)

    Mooney, E.; Kempf, W.; Jemec, G.B.E.

    2012-01-01

    Background Virtual microscopy is used for teaching medical students and residents and for in-training and certification examinations in the United States. However, no existing studies compare diagnostic accuracy using virtual slides and photomicrographs. The objective of this study was to compare...... diagnostic accuracy of dermatopathologists and pathologists using photomicrographs vs. digitized images, through a self-assessment examination, and to elucidate assessment of virtual dermatopathology. Methods Forty-five dermatopathologists and pathologists received a randomized combination of 15 virtual...... slides and photomicrographs with corresponding clinical photographs and information in a self-assessment examination format. Descriptive data analysis and comparison of groups were performed using a chi-square test. Results Diagnostic accuracy in dermatopathology using virtual dermatopathology...

  16. Precision, accuracy, cross reactivity and comparability of serum indices measurement on Abbott Architect c8000, Beckman Coulter AU5800 and Roche Cobas 6000 c501 clinical chemistry analyzers.

    Science.gov (United States)

    Nikolac Gabaj, Nora; Miler, Marijana; Vrtarić, Alen; Hemar, Marina; Filipi, Petra; Kocijančić, Marija; Šupak Smolčić, Vesna; Ćelap, Ivana; Šimundić, Ana-Maria

    2018-04-25

    The aim of our study was to perform verification of serum indices on three clinical chemistry platforms. This study was done on three analyzers: Abbott Architect c8000, Beckman Coulter AU5800 (BC) and Roche Cobas 6000 c501. The following analytical specifications were verified: precision (two patient samples), accuracy (sample with the highest concentration of interferent was serially diluted and measured values compared to theoretical values), comparability (120 patients samples) and cross reactivity (samples with increasing concentrations of interferent were divided in two aliquots and remaining interferents were added in each aliquot. Measurements were done before and after adding interferents). Best results for precision were obtained for the H index (0.72%-2.08%). Accuracy for the H index was acceptable for Cobas and BC, while on Architect, deviations in the high concentration range were observed (y=0.02 [0.01-0.07]+1.07 [1.06-1.08]x). All three analyzers showed acceptable results in evaluating accuracy of L index and unacceptable results for I index. The H index was comparable between BC and both, Architect (Cohen's κ [95% CI]=0.795 [0.692-0.898]) and Roche (Cohen's κ [95% CI]=0.825 [0.729-0.922]), while Roche and Architect were not comparable. The I index was not comparable between all analyzer combinations, while the L index was only comparable between Abbott and BC. Cross reactivity analysis mostly showed that serum indices measurement is affected when a combination of interferences is present. There is heterogeneity between analyzers in the hemolysis, icteria, lipemia (HIL) quality performance. Verification of serum indices in routine work is necessary to establish analytical specifications.

  17. Factors Determining the Inter-observer Variability and Diagnostic Accuracy of High-resolution Manometry for Esophageal Motility Disorders.

    Science.gov (United States)

    Kim, Ji Hyun; Kim, Sung Eun; Cho, Yu Kyung; Lim, Chul-Hyun; Park, Moo In; Hwang, Jin Won; Jang, Jae-Sik; Oh, Minkyung

    2018-01-30

    Although high-resolution manometry (HRM) has the advantage of visual intuitiveness, its diagnostic validity remains under debate. The aim of this study was to evaluate the diagnostic accuracy of HRM for esophageal motility disorders. Six staff members and 8 trainees were recruited for the study. In total, 40 patients enrolled in manometry studies at 3 institutes were selected. Captured images of 10 representative swallows and a single swallow in analyzing mode in both high-resolution pressure topography (HRPT) and conventional line tracing formats were provided with calculated metrics. Assessments of esophageal motility disorders showed fair agreement for HRPT and moderate agreement for conventional line tracing (κ = 0.40 and 0.58, respectively). With the HRPT format, the k value was higher in category A (esophagogastric junction [EGJ] relaxation abnormality) than in categories B (major body peristalsis abnormalities with intact EGJ relaxation) and C (minor body peristalsis abnormalities or normal body peristalsis with intact EGJ relaxation). The overall exact diagnostic accuracy for the HRPT format was 58.8% and rater's position was an independent factor for exact diagnostic accuracy. The diagnostic accuracy for major disorders was 63.4% with the HRPT format. The frequency of major discrepancies was higher for category B disorders than for category A disorders (38.4% vs 15.4%; P < 0.001). The interpreter's experience significantly affected the exact diagnostic accuracy of HRM for esophageal motility disorders. The diagnostic accuracy for major disorders was higher for achalasia than distal esophageal spasm and jackhammer esophagus.

  18. Accuracy of Referring Provider and Endoscopist Impressions of Colonoscopy Indication.

    Science.gov (United States)

    Naveed, Mariam; Clary, Meredith; Ahn, Chul; Kubiliun, Nisa; Agrawal, Deepak; Cryer, Byron; Murphy, Caitlin; Singal, Amit G

    2017-07-01

    Background: Referring provider and endoscopist impressions of colonoscopy indication are used for clinical care, reimbursement, and quality reporting decisions; however, the accuracy of these impressions is unknown. This study assessed the sensitivity, specificity, positive and negative predictive value, and overall accuracy of methods to classify colonoscopy indication, including referring provider impression, endoscopist impression, and administrative algorithm compared with gold standard chart review. Methods: We randomly sampled 400 patients undergoing a colonoscopy at a Veterans Affairs health system between January 2010 and December 2010. Referring provider and endoscopist impressions of colonoscopy indication were compared with gold-standard chart review. Indications were classified into 4 mutually exclusive categories: diagnostic, surveillance, high-risk screening, or average-risk screening. Results: Of 400 colonoscopies, 26% were performed for average-risk screening, 7% for high-risk screening, 26% for surveillance, and 41% for diagnostic indications. Accuracy of referring provider and endoscopist impressions of colonoscopy indication were 87% and 84%, respectively, which were significantly higher than that of the administrative algorithm (45%; P 90%) for determining screening (vs nonscreening) indication, but specificity of the administrative algorithm was lower (40.3%) compared with referring provider (93.7%) and endoscopist (84.0%) impressions. Accuracy of endoscopist, but not referring provider, impression was lower in patients with a family history of colon cancer than in those without (65% vs 84%; P =.001). Conclusions: Referring provider and endoscopist impressions of colonoscopy indication are both accurate and may be useful data to incorporate into algorithms classifying colonoscopy indication. Copyright © 2017 by the National Comprehensive Cancer Network.

  19. SU-E-J-03: Characterization of the Precision and Accuracy of a New, Preclinical, MRI-Guided Focused Ultrasound System for Image-Guided Interventions in Small-Bore, High-Field Magnets

    International Nuclear Information System (INIS)

    Ellens, N; Farahani, K

    2015-01-01

    Purpose: MRI-guided focused ultrasound (MRgFUS) has many potential and realized applications including controlled heating and localized drug delivery. The development of many of these applications requires extensive preclinical work, much of it in small animal models. The goal of this study is to characterize the spatial targeting accuracy and reproducibility of a preclinical high field MRgFUS system for thermal ablation and drug delivery applications. Methods: The RK300 (FUS Instruments, Toronto, Canada) is a motorized, 2-axis FUS positioning system suitable for small bore (72 mm), high-field MRI systems. The accuracy of the system was assessed in three ways. First, the precision of the system was assessed by sonicating regular grids of 5 mm squares on polystyrene plates and comparing the resulting focal dimples to the intended pattern, thereby assessing the reproducibility and precision of the motion control alone. Second, the targeting accuracy was assessed by imaging a polystyrene plate with randomly drilled holes and replicating the hole pattern by sonicating the observed hole locations on intact polystyrene plates and comparing the results. Third, the practicallyrealizable accuracy and precision were assessed by comparing the locations of transcranial, FUS-induced blood-brain-barrier disruption (BBBD) (observed through Gadolinium enhancement) to the intended targets in a retrospective analysis of animals sonicated for other experiments. Results: The evenly-spaced grids indicated that the precision was 0.11 +/− 0.05 mm. When image-guidance was included by targeting random locations, the accuracy was 0.5 +/− 0.2 mm. The effective accuracy in the four rodent brains assessed was 0.8 +/− 0.6 mm. In all cases, the error appeared normally distributed (p<0.05) in both orthogonal axes, though the left/right error was systematically greater than the superior/inferior error. Conclusions: The targeting accuracy of this device is sub-millimeter, suitable for many

  20. SU-E-J-03: Characterization of the Precision and Accuracy of a New, Preclinical, MRI-Guided Focused Ultrasound System for Image-Guided Interventions in Small-Bore, High-Field Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ellens, N [Johns Hopkins University, Baltimore, Maryland (United States); Farahani, K [National Cancer Institute, Bethesda, MD (United States)

    2015-06-15

    Purpose: MRI-guided focused ultrasound (MRgFUS) has many potential and realized applications including controlled heating and localized drug delivery. The development of many of these applications requires extensive preclinical work, much of it in small animal models. The goal of this study is to characterize the spatial targeting accuracy and reproducibility of a preclinical high field MRgFUS system for thermal ablation and drug delivery applications. Methods: The RK300 (FUS Instruments, Toronto, Canada) is a motorized, 2-axis FUS positioning system suitable for small bore (72 mm), high-field MRI systems. The accuracy of the system was assessed in three ways. First, the precision of the system was assessed by sonicating regular grids of 5 mm squares on polystyrene plates and comparing the resulting focal dimples to the intended pattern, thereby assessing the reproducibility and precision of the motion control alone. Second, the targeting accuracy was assessed by imaging a polystyrene plate with randomly drilled holes and replicating the hole pattern by sonicating the observed hole locations on intact polystyrene plates and comparing the results. Third, the practicallyrealizable accuracy and precision were assessed by comparing the locations of transcranial, FUS-induced blood-brain-barrier disruption (BBBD) (observed through Gadolinium enhancement) to the intended targets in a retrospective analysis of animals sonicated for other experiments. Results: The evenly-spaced grids indicated that the precision was 0.11 +/− 0.05 mm. When image-guidance was included by targeting random locations, the accuracy was 0.5 +/− 0.2 mm. The effective accuracy in the four rodent brains assessed was 0.8 +/− 0.6 mm. In all cases, the error appeared normally distributed (p<0.05) in both orthogonal axes, though the left/right error was systematically greater than the superior/inferior error. Conclusions: The targeting accuracy of this device is sub-millimeter, suitable for many

  1. Comparative accuracy of Computed Tomography and lymphoangiography in detecting lymph node metastases from epithelial cancer of the ovary

    International Nuclear Information System (INIS)

    La Fianza, A.; Dore, R.; Campani, R.; Babilonti, L.; Tateo, S.

    1991-01-01

    The accuracy is investigated of both lymphangiography and CT in detecting lymph nodes metastases in 59 patients evaluated preoperatively and subsequently submitted to surgery with selective/systemic pelvic and paraaortic lymphadenectomy. CT accuracy was also investigated in 46 patients with a clinically suspected relapse of ovarian cancer (verified by means of clinical and/or CT follow-up in 36 patients, by laparotomy in 7, by fine-needle biopsy in 1 and by necroscopy in the last 2). In the first group (previously untreated patients) the overall results in the pelvis were, respectively, for lymphangiography and CT: 94.9% vs 89.8% accuracy, 86.6% vs 60% sensitivity, 97.7% vs 100% specificity, and 92.8% vs 100%, 95.5% vs 88% positive and negative predictive values. In the paraaortic region the results were: 89.1% vs 86.5% accuracy, 73.3% vs 66.6% sensitivity, 100% specificity for both techniques, 100% positive predictive value, and 84.6% vs 81.5% negative predictive value. In the second group (clinically suspected relapse), CT accuracy, sensitivity and specificity were, respectively: 91.3%, 81.8%,and 100%. Our experience demonstrated a high incidence of lymph node metastases in ovarian cancer, both in pelvic (15/49; 25.5%) and especially in aortic (15/37; 40.5%) locations in untreated patients, and an even higher incidence in relapses (22/42; 52.5%). The high specificity and positive predictive value of CT depended on the fact that there were no false positives. We arbitrarily considered as metastatic a lymph node with diameter >2cm, and this threshold seemed to be of clinical value since it made a good predictor of metastases. Among diagnostic imaging modalities, CT is suggested as the method of choice for the evaluation of pelvic and paraaortic lymph node metastases in untreated and relapsing ovarian cancers. Lymphangiography, a more invasive- though more accurate- technique, is indicated after normal CT

  2. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Gnad, Florian; de Godoy, Lyris M F; Cox, Jürgen

    2009-01-01

    Protein phosphorylation is a fundamental regulatory mechanism that affects many cell signaling processes. Using high-accuracy MS and stable isotope labeling in cell culture-labeling, we provide a global view of the Saccharomyces cerevisiae phosphoproteome, containing 3620 phosphorylation sites ma...

  3. High Accuracy Mass Measurement of the Dripline Nuclides $^{12,14}$Be

    CERN Multimedia

    2002-01-01

    State-of-the art, three-body nuclear models that describe halo nuclides require the binding energy of the halo neutron(s) as a critical input parameter. In the case of $^{14}$Be, the uncertainty of this quantity is currently far too large (130 keV), inhibiting efforts at detailed theoretical description. A high accuracy, direct mass deterlnination of $^{14}$Be (as well as $^{12}$Be to obtain the two-neutron separation energy) is therefore required. The measurement can be performed with the MISTRAL spectrometer, which is presently the only possible solution due to required accuracy (10 keV) and short half-life (4.5 ms). Having achieved a 5 keV uncertainty for the mass of $^{11}$Li (8.6 ms), MISTRAL has proved the feasibility of such measurements. Since the current ISOLDE production rate of $^{14}$Be is only about 10/s, the installation of a beam cooler is underway in order to improve MISTRAL transmission. The projected improvement of an order of magnitude (in each transverse direction) will make this measureme...

  4. High Accuracy Beam Current Monitor System for CEBAF'S Experimental Hall A

    International Nuclear Information System (INIS)

    J. Denard; A. Saha; G. Lavessiere

    2001-01-01

    CEBAF accelerator delivers continuous wave (CW) electron beams to three experimental Halls. In Hall A, all experiments require continuous, non-invasive current measurements and a few experiments require an absolute accuracy of 0.2 % in the current range from 1 to 180 (micro)A. A Parametric Current Transformer (PCT), manufactured by Bergoz, has an accurate and stable sensitivity of 4 (micro)A/V but its offset drifts at the muA level over time preclude its direct use for continuous measurements. Two cavity monitors are calibrated against the PCT with at least 50 (micro)A of beam current. The calibration procedure suppresses the error due to PCT's offset drifts by turning the beam on and off, which is invasive to the experiment. One of the goals of the system is to minimize the calibration time without compromising the measurement's accuracy. The linearity of the cavity monitors is a critical parameter for transferring the accurate calibration done at high currents over the whole dynamic range. The method for measuring accurately the linearity is described

  5. Comparing The Accuracy of Different Map Projections and Datums Using Truth Data

    Directory of Open Access Journals (Sweden)

    Amjed Naser Mohsin AL-Hameedawi

    2018-02-01

    Full Text Available Positional inaccuracy is a major public engineering problem, and the cause of errors which lead to inaccurate measurements. The main challenge faced by many researchers is the accuracy. Hence, this paper involved comparing various map projections and datums effect on accuracy using 7 parameter method and root mean square errors (RMSE test. In order to prepare data for analysis, sets of points in the study area, which is located in north of Iraq in Sulaymaniyah Governorate (Arbat City, were selected as follows: first set of ten checkpoints (reference points was selected randomly. The cartographic parameters for these points were (Lat. /Long. coordinates and datum was WGS84 using Differential GPS. Then other sets of points were ten Ground Control Points (GCP for the same positions, but in this case were Cartesian coordinates with different projections and datums. The idea was to convert coordinates system of the second set points to geographic coordinate system for all specified projections using 7 parameter method. After that calculate RMSE between transformed coordinates and original coordinates (first set of checkpoints. The projection and datum that will guarantee less RMSE will be the best for study area. In this method required acquire ground control points (GCP and global position system points (GPS points, for the purpose completing the study all the needed coordinates were measured using DGPS. Not only datum transformation from global datum (WGS1984-UTM-Zone-38N to local datum (Karbala1979-UTM-Zone-38N were performed, but also producing new maps for the purpose of comparisons. The results demonstrated that UTM projection and local datum (Karbala1979-UTM-Zone-38N were the best for study area according to RMSE test.

  6. High-accuracy determination of the neutron flux at n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V. [Sezione di Bari, INFN, Bari (Italy); Guerrero, C.; Andriamonje, S.; Boccone, V.; Brugger, M.; Calviani, M.; Cerutti, F.; Chin, M.; Ferrari, A.; Kadi, Y.; Losito, R.; Versaci, R.; Vlachoudis, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA), Athens (Greece); Tarrio, D.; Duran, I.; Leal-Cidoncha, E.; Paradela, C. [Universidade de Santiago de Compostela, Santiago (Spain); Altstadt, S.; Goebel, K.; Langer, C.; Reifarth, R.; Schmidt, S.; Weigand, M. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (Germany); Andrzejewski, J.; Marganiec, J.; Perkowski, J. [Uniwersytet Lodzki, Lodz (Poland); Audouin, L.; Leong, L.S.; Tassan-Got, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Becares, V.; Cano-Ott, D.; Garcia, A.R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S. [Charles University, Prague (Czech Republic); Belloni, F.; Fraval, K.; Gunsing, F.; Lampoudis, C.; Papaevangelou, T. [Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E.; Chiaveri, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Billowes, J.; Ware, T.; Wright, T. [University of Manchester, Manchester (United Kingdom); Bosnar, D.; Zugec, P. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Calvino, F.; Cortes, G.; Gomez-Hornillos, M.B.; Riego, A. [Universitat Politecnica de Catalunya, Barcelona (Spain); Carrapico, C.; Goncalves, I.F.; Sarmento, R.; Vaz, P. [Universidade Tecnica de Lisboa, Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Lisboa (Portugal); Cortes-Giraldo, M.A.; Praena, J.; Quesada, J.M.; Sabate-Gilarte, M. [Universidad de Sevilla, Sevilla (Spain); Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R. [National Technical University of Athens (NTUA), Athens (Greece); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Dressler, R.; Kivel, N.; Schumann, D.; Steinegger, P. [Paul Scherrer Institut, Villigen PSI (Switzerland); Dzysiuk, N.; Mastinu, P.F. [Laboratori Nazionali di Legnaro, INFN, Rome (Italy); Eleftheriadis, C.; Manousos, A. [Aristotle University of Thessaloniki, Thessaloniki (Greece); Ganesan, S.; Gurusamy, P.; Saxena, A. [Bhabha Atomic Research Centre (BARC), Mumbai (IN); Griesmayer, E.; Jericha, E.; Leeb, H. [Technische Universitaet Wien, Atominstitut, Wien (AT); Hernandez-Prieto, A. [European Organization for Nuclear Research (CERN), Geneva (CH); Universitat Politecnica de Catalunya, Barcelona (ES); Jenkins, D.G.; Vermeulen, M.J. [University of York, Heslington, York (GB); Kaeppeler, F. [Institut fuer Kernphysik, Karlsruhe Institute of Technology, Campus Nord, Karlsruhe (DE); Koehler, P. [Oak Ridge National Laboratory (ORNL), Oak Ridge (US); Lederer, C. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE); University of Vienna, Faculty of Physics, Vienna (AT); Massimi, C.; Mingrone, F.; Vannini, G. [Universita di Bologna (IT); INFN, Sezione di Bologna, Dipartimento di Fisica, Bologna (IT); Mengoni, A.; Ventura, A. [Agenzia nazionale per le nuove tecnologie, l' energia e lo sviluppo economico sostenibile (ENEA), Bologna (IT); Milazzo, P.M. [Sezione di Trieste, INFN, Trieste (IT); Mirea, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Mondalaers, W.; Plompen, A.; Schillebeeckx, P. [Institute for Reference Materials and Measurements, European Commission JRC, Geel (BE); Pavlik, A.; Wallner, A. [University of Vienna, Faculty of Physics, Vienna (AT); Rauscher, T. [University of Basel, Department of Physics and Astronomy, Basel (CH); Roman, F. [European Organization for Nuclear Research (CERN), Geneva (CH); Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Rubbia, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Laboratori Nazionali del Gran Sasso dell' INFN, Assergi (AQ) (IT); Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE)

    2013-12-15

    The neutron flux of the n{sub T}OF facility at CERN was measured, after installation of the new spallation target, with four different systems based on three neutron-converting reactions, which represent accepted cross sections standards in different energy regions. A careful comparison and combination of the different measurements allowed us to reach an unprecedented accuracy on the energy dependence of the neutron flux in the very wide range (thermal to 1 GeV) that characterizes the n{sub T}OF neutron beam. This is a pre-requisite for the high accuracy of cross section measurements at n{sub T}OF. An unexpected anomaly in the neutron-induced fission cross section of {sup 235}U is observed in the energy region between 10 and 30keV, hinting at a possible overestimation of this important cross section, well above currently assigned uncertainties. (orig.)

  7. Evaluation of the geometric stability and the accuracy potential of digital cameras — Comparing mechanical stabilisation versus parameterisation

    Science.gov (United States)

    Rieke-Zapp, D.; Tecklenburg, W.; Peipe, J.; Hastedt, H.; Haig, Claudia

    Recent tests on the geometric stability of several digital cameras that were not designed for photogrammetric applications have shown that the accomplished accuracies in object space are either limited or that the accuracy potential is not exploited to the fullest extent. A total of 72 calibrations were calculated with four different software products for eleven digital camera models with different hardware setups, some with mechanical fixation of one or more parts. The calibration procedure was chosen in accord to a German guideline for evaluation of optical 3D measuring systems [VDI/VDE, VDI/VDE 2634 Part 1, 2002. Optical 3D Measuring Systems-Imaging Systems with Point-by-point Probing. Beuth Verlag, Berlin]. All images were taken with ringflashes which was considered a standard method for close-range photogrammetry. In cases where the flash was mounted to the lens, the force exerted on the lens tube and the camera mount greatly reduced the accomplished accuracy. Mounting the ringflash to the camera instead resulted in a large improvement of accuracy in object space. For standard calibration best accuracies in object space were accomplished with a Canon EOS 5D and a 35 mm Canon lens where the focusing tube was fixed with epoxy (47 μm maximum absolute length measurement error in object space). The fixation of the Canon lens was fairly easy and inexpensive resulting in a sevenfold increase in accuracy compared with the same lens type without modification. A similar accuracy was accomplished with a Nikon D3 when mounting the ringflash to the camera instead of the lens (52 μm maximum absolute length measurement error in object space). Parameterisation of geometric instabilities by introduction of an image variant interior orientation in the calibration process improved results for most cameras. In this case, a modified Alpa 12 WA yielded the best results (29 μm maximum absolute length measurement error in object space). Extending the parameter model with Fi

  8. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications....

  9. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation

    Directory of Open Access Journals (Sweden)

    Euiho Kim

    2017-09-01

    Full Text Available In the Federal Aviation Administration’s (FAA performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0–77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment.

  10. Quantitative accuracy assessment of thermalhydraulic code predictions with SARBM

    International Nuclear Information System (INIS)

    Prosek, A.

    2001-01-01

    In recent years, the nuclear reactor industry has focused significant attention on nuclear reactor systems code accuracy and uncertainty issues. A few methods suitable to quantify code accuracy of thermalhydraulic code calculations were proposed and applied in the past. In this study a Stochastic Approximation Ratio Based Method (SARBM) was adapted and proposed for accuracy quantification. The objective of the study was to qualify the SARBM. The study compare the accuracy obtained by SARBM with the results obtained by widely used Fast Fourier Transform Based Method (FFTBM). The methods were applied to RELAP5/MOD3.2 code calculations of various BETHSY experiments. The obtained results showed that the SARBM was able to satisfactorily predict the accuracy of the calculated trends when visually comparing plots and comparing the results with the qualified FFTBM. The analysis also showed that the new figure-of-merit called accuracy factor (AF) is more convenient than stochastic approximation ratio for combining single variable accuracy's into total accuracy. The accuracy results obtained for the selected tests suggest that the acceptability factors for the SAR method were reasonably defined. The results also indicate that AF is a useful quantitative measure of accuracy.(author)

  11. Verification of High Temperature Free Atom Thermal Scattering in MERCURY Compared to TART

    International Nuclear Information System (INIS)

    Cullen, D E; McKinley, S; Hagmann, C

    2006-01-01

    This is part of a series of reports verifying the accuracy of the relatively new MERCURY [1] Monte Carlo particle transport code by comparing its results to those of the older TART [2] Monte Carlo particle transport code. In the future we hope to extend these comparisons to include deterministic (Sn) codes [3]. Here we verify the accuracy of the free atom thermal scattering model [4] by using it over a very large temperature range. We would like to be able to use these Monte Carlo codes for astrophysical applications, where the temperature of the medium can be extremely high compared to the temperatures we normally encounter in our terrestrial applications [5]. The temperature is so high that is it often defined in eV rather than Kelvin. For a correspondence between the two scale 293.6 Kelvin (room temperature) corresponds to 0.0253 eV ∼ 1/40 eV. So that 1 eV temperature is about 12,000 Kelvin, and 1 keV temperature is about 12 million Kelvin. Here we use a relatively small system measured in cm, but by using ρR scaling [6] our results are equally applicable to systems measured in Km or thousands of Km or any size that we need for astrophysical applications. The emphasis here is not on modeling any given real system, but rather in verifying the accuracy of the free atom model to represent theoretical results over a large temperature range. There are two primary objectives of this report: (1) Verify agreement between MERCURY and TART results, both using continuous energy cross sections. In particular we want to verify the free atom scattering treatment in MERCURY as used over an extended temperature range; by comparison to many other codes for TART this has already been verified over many years [4, 7]. (2) Demonstrate that this agreement depends on using continuous energy cross sections. To demonstrate this we also present TART using the Multi-Band method [8, 9], which accounts for resonance self-shielding, and Multi-Group method, without self-shielding [9

  12. Amplitude Integrated Electroencephalography Compared With Conventional Video EEG for Neonatal Seizure Detection: A Diagnostic Accuracy Study.

    Science.gov (United States)

    Rakshasbhuvankar, Abhijeet; Rao, Shripada; Palumbo, Linda; Ghosh, Soumya; Nagarajan, Lakshmi

    2017-08-01

    This diagnostic accuracy study compared the accuracy of seizure detection by amplitude-integrated electroencephalography with the criterion standard conventional video EEG in term and near-term infants at risk of seizures. Simultaneous recording of amplitude-integrated EEG (2-channel amplitude-integrated EEG with raw trace) and video EEG was done for 24 hours for each infant. Amplitude-integrated EEG was interpreted by a neonatologist; video EEG was interpreted by a neurologist independently. Thirty-five infants were included in the analysis. In the 7 infants with seizures on video EEG, there were 169 seizure episodes on video EEG, of which only 57 were identified by amplitude-integrated EEG. Amplitude-integrated EEG had a sensitivity of 33.7% for individual seizure detection. Amplitude-integrated EEG had an 86% sensitivity for detection of babies with seizures; however, it was nonspecific, in that 50% of infants with seizures detected by amplitude-integrated EEG did not have true seizures by video EEG. In conclusion, our study suggests that amplitude-integrated EEG is a poor screening tool for neonatal seizures.

  13. High-accuracy defect sizing for CRDM penetration adapters using the ultrasonic TOFD technique

    International Nuclear Information System (INIS)

    Atkinson, I.

    1995-01-01

    Ultrasonic time-of-flight diffraction (TOFD) is the preferred technique for critical sizing of throughwall orientated defects in a wide range of components, primarily because it is intrinsically more accurate than amplitude-based techniques. For the same reason, TOFD is the preferred technique for sizing the cracks in control rod drive mechanism (CRDM) penetration adapters, which have been the subject of much recent attention. Once the considerable problem of restricted access for the UT probes has been overcome, this inspection lends itself to very high accuracy defect sizing using TOFD. In qualification trials under industrial conditions, depth sizing to an accuracy of ≤ 0.5 mm has been routinely achieved throughout the full wall thickness (16 mm) of the penetration adapters, using only a single probe pair and without recourse to signal processing. (author)

  14. Rigorous Training of Dogs Leads to High Accuracy in Human Scent Matching-To-Sample Performance.

    Directory of Open Access Journals (Sweden)

    Sophie Marchal

    Full Text Available Human scent identification is based on a matching-to-sample task in which trained dogs are required to compare a scent sample collected from an object found at a crime scene to that of a suspect. Based on dogs' greater olfactory ability to detect and process odours, this method has been used in forensic investigations to identify the odour of a suspect at a crime scene. The excellent reliability and reproducibility of the method largely depend on rigor in dog training. The present study describes the various steps of training that lead to high sensitivity scores, with dogs matching samples with 90% efficiency when the complexity of the scents presented during the task in the sample is similar to that presented in the in lineups, and specificity reaching a ceiling, with no false alarms in human scent matching-to-sample tasks. This high level of accuracy ensures reliable results in judicial human scent identification tests. Also, our data should convince law enforcement authorities to use these results as official forensic evidence when dogs are trained appropriately.

  15. High accuracy mantle convection simulation through modern numerical methods

    KAUST Repository

    Kronbichler, Martin

    2012-08-21

    Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.

  16. High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders.

    Science.gov (United States)

    Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian

    2017-01-01

    The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Measurement system with high accuracy for laser beam quality.

    Science.gov (United States)

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  18. Accuracy of Skin Cancer Diagnosis by Physician Assistants Compared With Dermatologists in a Large Health Care System.

    Science.gov (United States)

    Anderson, Alyce M; Matsumoto, Martha; Saul, Melissa I; Secrest, Aaron M; Ferris, Laura K

    2018-05-01

    Physician assistants (PAs) are increasingly used in dermatology practices to diagnose skin cancers, although, to date, their diagnostic accuracy compared with board-certified dermatologists has not been well studied. To compare diagnostic accuracy for skin cancer of PAs with that of dermatologists. Medical record review of 33 647 skin cancer screening examinations in 20 270 unique patients who underwent screening at University of Pittsburgh Medical Center-affiliated dermatology offices from January 1, 2011, to December 31, 2015. International Classification of Diseases, Ninth Revision code V76.43 and International Classification of Diseases and Related Health Problems, Tenth Revision code Z12.83 were used to identify pathology reports from skin cancer screening examinations by dermatologists and PAs. Examination performed by a PA or dermatologist. Number needed to biopsy (NNB) to diagnose skin cancer (nonmelanoma, invasive melanoma, or in situ melanoma). Of 20 270 unique patients, 12 722 (62.8%) were female, mean (SD) age at the first visit was 52.7 (17.4) years, and 19 515 patients (96.3%) self-reported their race/ethnicity as non-Hispanic white. To diagnose 1 case of skin cancer, the NNB was 3.9 for PAs and 3.3 for dermatologists (P < .001). Per diagnosed melanoma, the NNB was 39.4 for PAs and 25.4 for dermatologists (P = .007). Patients screened by a PA were significantly less likely than those screened by a dermatologist to be diagnosed with melanoma in situ (1.1% vs 1.8% of visits, P = .02), but differences were not significant for invasive melanoma (0.7% vs 0.8% of visits, P = .83) or nonmelanoma skin cancer (6.1% vs 6.1% of visits, P = .98). Compared with dermatologists, PAs performed more skin biopsies per case of skin cancer diagnosed and diagnosed fewer melanomas in situ, suggesting that the diagnostic accuracy of PAs may be lower than that of dermatologists. Although the availability of PAs may help increase access to care and reduce

  19. Location accuracy evaluation of lightning location systems using natural lightning flashes recorded by a network of high-speed cameras

    Science.gov (United States)

    Alves, J.; Saraiva, A. C. V.; Campos, L. Z. D. S.; Pinto, O., Jr.; Antunes, L.

    2014-12-01

    This work presents a method for the evaluation of location accuracy of all Lightning Location System (LLS) in operation in southeastern Brazil, using natural cloud-to-ground (CG) lightning flashes. This can be done through a multiple high-speed cameras network (RAMMER network) installed in the Paraiba Valley region - SP - Brazil. The RAMMER network (Automated Multi-camera Network for Monitoring and Study of Lightning) is composed by four high-speed cameras operating at 2,500 frames per second. Three stationary black-and-white (B&W) cameras were situated in the cities of São José dos Campos and Caçapava. A fourth color camera was mobile (installed in a car), but operated in a fixed location during the observation period, within the city of São José dos Campos. The average distance among cameras was 13 kilometers. Each RAMMER sensor position was determined so that the network can observe the same lightning flash from different angles and all recorded videos were GPS (Global Position System) time stamped, allowing comparisons of events between cameras and the LLS. The RAMMER sensor is basically composed by a computer, a Phantom high-speed camera version 9.1 and a GPS unit. The lightning cases analyzed in the present work were observed by at least two cameras, their position was visually triangulated and the results compared with BrasilDAT network, during the summer seasons of 2011/2012 and 2012/2013. The visual triangulation method is presented in details. The calibration procedure showed an accuracy of 9 meters between the accurate GPS position of the object triangulated and the result from the visual triangulation method. Lightning return stroke positions, estimated with the visual triangulation method, were compared with LLS locations. Differences between solutions were not greater than 1.8 km.

  20. Enhancing the Accuracy of Advanced High Temperature Mechanical Testing through Thermography

    Directory of Open Access Journals (Sweden)

    Jonathan Jones

    2018-03-01

    Full Text Available This paper describes the advantages and enhanced accuracy thermography provides to high temperature mechanical testing. This technique is not only used to monitor, but also to control test specimen temperatures where the infra-red technique enables accurate non-invasive control of rapid thermal cycling for non-metallic materials. Isothermal and dynamic waveforms are employed over a 200–800 °C temperature range to pre-oxidised and coated specimens to assess the capability of the technique. This application shows thermography to be accurate to within ±2 °C of thermocouples, a standardised measurement technique. This work demonstrates the superior visibility of test temperatures previously unobtainable by conventional thermocouples or even more modern pyrometers that thermography can deliver. As a result, the speed and accuracy of thermal profiling, thermal gradient measurements and cold/hot spot identification using the technique has increased significantly to the point where temperature can now be controlled by averaging over a specified area. The increased visibility of specimen temperatures has revealed additional unknown effects such as thermocouple shadowing, preferential crack tip heating within an induction coil, and, fundamental response time of individual measurement techniques which are investigated further.

  1. Technical accuracy of a neuronavigation system measured with a high-precision mechanical micromanipulator.

    Science.gov (United States)

    Kaus, M; Steinmeier, R; Sporer, T; Ganslandt, O; Fahlbusch, R

    1997-12-01

    This study was designed to determine and evaluate the different system-inherent sources of erroneous target localization of a light-emitting diode (LED)-based neuronavigation system (StealthStation, Stealth Technologies, Boulder, CO). The localization accuracy was estimated by applying a high-precision mechanical micromanipulator to move and exactly locate (+/- 0.1 micron) the pointer at multiple positions in the physical three-dimensional space. The localization error was evaluated by calculating the spatial distance between the (known) LED positions and the LED coordinates measured by the neuronavigator. The results are based on a study of approximately 280,000 independent coordinate measurements. The maximum localization error detected was 0.55 +/- 0.29 mm, with the z direction (distance to the camera array) being the most erroneous coordinate. Minimum localization error was found at a distance of 1400 mm from the central camera (optimal measurement position). Additional error due to 1) mechanical vibrations of the camera tripod (+/- 0.15 mm) and the reference frame (+/- 0.08 mm) and 2) extrapolation of the pointer tip position from the LED coordinates of at least +/- 0.12 mm were detected, leading to a total technical error of 0.55 +/- 0.64 mm. Based on this technical accuracy analysis, a set of handling recommendations is proposed, leading to an improved localization accuracy. The localization error could be reduced by 0.3 +/- 0.15 mm by correct camera positioning (1400 mm distance) plus 0.15 mm by vibration-eliminating fixation of the camera. Correct handling of the probe during the operation may improve the accuracy by up to 0.1 mm.

  2. Accuracy and high-speed technique for autoprocessing of Young's fringes

    Science.gov (United States)

    Chen, Wenyi; Tan, Yushan

    1991-12-01

    In this paper, an accurate and high-speed method for auto-processing of Young's fringes is proposed. A group of 1-D sampled intensity values along three or more different directions are taken from Young's fringes, and the fringe spacings of each direction are obtained by 1-D FFT respectively. Two directions that have smaller fringe spacing are selected from all directions. The accurate fringe spacings along these two directions are obtained by using orthogonal coherent phase detection technique (OCPD). The actual spacing and angle of Young's fringes, therefore, can be calculated. In this paper, the principle of OCPD is introduced in detail. The accuracy of the method is evaluated theoretically and experimentally.

  3. Reproducibility and accuracy of linear measurements on dental models derived from cone-beam computed tomography compared with digital dental casts

    NARCIS (Netherlands)

    Waard, O. de; Rangel, F.A.; Fudalej, P.S.; Bronkhorst, E.M.; Kuijpers-Jagtman, A.M.; Breuning, K.H.

    2014-01-01

    INTRODUCTION: The aim of this study was to determine the reproducibility and accuracy of linear measurements on 2 types of dental models derived from cone-beam computed tomography (CBCT) scans: CBCT images, and Anatomodels (InVivoDental, San Jose, Calif); these were compared with digital models

  4. Accuracy Analysis of a Dam Model from Drone Surveys

    Science.gov (United States)

    Buffi, Giulia; Venturi, Sara

    2017-01-01

    This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations. PMID:28771185

  5. Accuracy Analysis of a Dam Model from Drone Surveys

    Directory of Open Access Journals (Sweden)

    Elena Ridolfi

    2017-08-01

    Full Text Available This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations.

  6. Accuracy Analysis of a Dam Model from Drone Surveys.

    Science.gov (United States)

    Ridolfi, Elena; Buffi, Giulia; Venturi, Sara; Manciola, Piergiorgio

    2017-08-03

    This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations.

  7. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter.

    Science.gov (United States)

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-10-12

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  8. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter

    Directory of Open Access Journals (Sweden)

    Peilu Liu

    2017-10-01

    Full Text Available In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA. In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  9. Evaluation of the accuracy of the CellaVision™ DM96 in a high HIV-prevalence population in South Africa

    Directory of Open Access Journals (Sweden)

    Jenifer L. Vaughan

    2016-03-01

    Objectives: This study aimed to evaluate the accuracy of the DM96 in a South African laboratory, with emphasis on its performance in samples collected from HIV-positive patients. Methods: A total of 149 samples submitted for a routine differential white cell count in 2012 and 2013 at the Chris Hani Baragwanath Academic Hospital in Johannesburg, South Africa were included, of which 79 (53.0% were collected from HIV-positive patients. Results of DM96 analysis pre- and post-classification were compared with a manual differential white cell count and the impact of HIV infection and other variables of interest were assessed. Results: Pre- and post-classification accuracies were similar to those reported in developed countries. Reclassification was required in 16% of cells, with particularly high misclassification rates for eosinophils (31.7%, blasts (33.7% and basophils (93.5%. Multivariate analysis revealed a significant relationship between the number of misclassified cells and both the white cell count (p = 0.035 and the presence of malignant cells in the blood (p = 0.049, but not with any other variables analysed, including HIV status. Conclusion: The DM96 exhibited acceptable accuracy in this South African laboratory, which was not impacted by HIV infection. However, as it does not eliminate the need for experienced morphologists, its cost may be unjustifiable in a resource-constrained setting.

  10. Conclusions about children's reporting accuracy for energy and macronutrients over multiple interviews depend on the analytic approach for comparing reported information to reference information.

    Science.gov (United States)

    Baxter, Suzanne Domel; Smith, Albert F; Hardin, James W; Nichols, Michele D

    2007-04-01

    Validation study data are used to illustrate that conclusions about children's reporting accuracy for energy and macronutrients over multiple interviews (ie, time) depend on the analytic approach for comparing reported and reference information-conventional, which disregards accuracy of reported items and amounts, or reporting-error-sensitive, which classifies reported items as matches (eaten) or intrusions (not eaten), and amounts as corresponding or overreported. Children were observed eating school meals on 1 day (n=12), or 2 (n=13) or 3 (n=79) nonconsecutive days separated by >or=25 days, and interviewed in the morning after each observation day about intake the previous day. Reference (observed) and reported information were transformed to energy and macronutrients (ie, protein, carbohydrate, and fat), and compared. For energy and each macronutrient: report rates (reported/reference), correspondence rates (genuine accuracy measures), and inflation ratios (error measures). Mixed-model analyses. Using the conventional approach for analyzing energy and macronutrients, report rates did not vary systematically over interviews (all four P values >0.61). Using the reporting-error-sensitive approach for analyzing energy and macronutrients, correspondence rates increased over interviews (all four P values macronutrients improved over time, but the conventional approach masked improvements and overestimated accuracy. The reporting-error-sensitive approach is recommended when analyzing data from validation studies of dietary reporting accuracy for energy and macronutrients.

  11. Diagnostic accuracy of dual energy CT angiography in patients with diabetes mellitus

    International Nuclear Information System (INIS)

    Schabel, C.; Bongers, M.N.; Syha, R.; Ketelsen, D.; Homann, G.; Notohamiprodjo, M.; Nikolaou, K.; Bamberg, F.; Thomas, C.

    2015-01-01

    Peripheral arterial disease (PAD) represents a major and highly prevalent complication in patients with diabetes mellitus. The diagnostic, non-invasive work-up by computed tomography angiography (CTA) is limited in the presence of extensive calcification. The aim of the study was to determine the diagnostic accuracy of dual energy CTA (DE-CTA) for the detection and characterization of PAD in patients with diabetes mellitus. In this study 30 diabetic patients with suspected or known PAD were retrospectively included in the analysis. All subjects underwent DE-CTA (Somatom Definition Flash, Siemens Healthcare, Erlangen, Germany) prior to invasive angiography, which served as the reference standard. Blinded analysis included assessment of the presence and degree of peripheral stenosis on curved multiplanar reformatting (MPR) and maximum intensity projections (MIP). Conventional measures of diagnostic accuracy were derived. Among the 30 subjects included in the analysis (83 % male, mean age 70.0 ± 10.5 years, 83 % diabetes type 2), the prevalence of critical stenosis in 331 evaluated vessel segments was high (30 %). Dual energy CT identified critical stenoses with a high sensitivity and good specificity using curved MPR (100 % and 93.1 %, respectively) and MIP images (99 % and 91.8 %, respectively). In stratified analysis, the diagnostic accuracy was higher for stenosis pertaining to the pelvic and thigh vessels as compared with the lower extremities (curved MPR accuracy 97.1 % vs. 99.2 vs. 90.9 %; respectively, p < 0.001). The use of DE-CTA allows reliable detection and characterization of peripheral arterial stenosis in patients with diabetes mellitus with higher accuracy in vessels in the pelvic and thigh regions compared with the vessels in the lower legs. (orig.) [de

  12. Cause and Cure - Deterioration in Accuracy of CFD Simulations With Use of High-Aspect-Ratio Triangular Tetrahedral Grids

    Science.gov (United States)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar

    2017-01-01

    Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD re-searchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions and also cause numerical instability. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where triangular/tetrahedral elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identities the reason behind the difficulties in use of such high-aspect ratio triangular/tetrahedral elements is presented here. As will be shown, it turns out that the degree of accuracy deterioration of gradient computation involving a triangular element is hinged on the value of its shape factor Gamma def = sq sin Alpha1 + sq sin Alpha2 + sq sin Alpha3, where Alpha1; Alpha2 and Alpha3 are the internal angles of the element. In fact, it is shown that the degree of accuracy deterioration increases monotonically as the value of Gamma decreases monotonically from its maximal value 9/4 (attained by an equilateral triangle only) to a value much less than 1 (associated with a highly obtuse triangle). By taking advantage of the fact that a high-aspect ratio triangle is not necessarily highly obtuse, and in fact it can have a shape factor whose value is close to the maximal value 9/4, a potential solution to avoid accuracy deterioration of gradient computation associated with a high-aspect ratio triangular grid is given. Also a brief discussion on the extension of the current mathematical framework to the

  13. Very high-accuracy calibration of radiation pattern and gain of a near-field probe

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2014-01-01

    In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission of the Europ...

  14. From journal to headline: the accuracy of climate science news in Danish high quality newspapers

    DEFF Research Database (Denmark)

    Vestergård, Gunver Lystbæk

    2011-01-01

    analysis to examine the accuracy of Danish high quality newspapers in quoting scientific publications from 1997 to 2009. Out of 88 articles, 46 contained inaccuracies though the majority was found to be insignificant and random. The study concludes that Danish broadsheet newspapers are ‘moderately...

  15. Physiologically-based, predictive analytics using the heart-rate-to-Systolic-Ratio significantly improves the timeliness and accuracy of sepsis prediction compared to SIRS.

    Science.gov (United States)

    Danner, Omar K; Hendren, Sandra; Santiago, Ethel; Nye, Brittany; Abraham, Prasad

    2017-04-01

    Enhancing the efficiency of diagnosis and treatment of severe sepsis by using physiologically-based, predictive analytical strategies has not been fully explored. We hypothesize assessment of heart-rate-to-systolic-ratio significantly increases the timeliness and accuracy of sepsis prediction after emergency department (ED) presentation. We evaluated the records of 53,313 ED patients from a large, urban teaching hospital between January and June 2015. The HR-to-systolic ratio was compared to SIRS criteria for sepsis prediction. There were 884 patients with discharge diagnoses of sepsis, severe sepsis, and/or septic shock. Variations in three presenting variables, heart rate, systolic BP and temperature were determined to be primary early predictors of sepsis with a 74% (654/884) accuracy compared to 34% (304/884) using SIRS criteria (p < 0.0001)in confirmed septic patients. Physiologically-based predictive analytics improved the accuracy and expediency of sepsis identification via detection of variations in HR-to-systolic ratio. This approach may lead to earlier sepsis workup and life-saving interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Gene masking - a technique to improve accuracy for cancer classification with high dimensionality in microarray data.

    Science.gov (United States)

    Saini, Harsh; Lal, Sunil Pranit; Naidu, Vimal Vikash; Pickering, Vincel Wince; Singh, Gurmeet; Tsunoda, Tatsuhiko; Sharma, Alok

    2016-12-05

    High dimensional feature space generally degrades classification in several applications. In this paper, we propose a strategy called gene masking, in which non-contributing dimensions are heuristically removed from the data to improve classification accuracy. Gene masking is implemented via a binary encoded genetic algorithm that can be integrated seamlessly with classifiers during the training phase of classification to perform feature selection. It can also be used to discriminate between features that contribute most to the classification, thereby, allowing researchers to isolate features that may have special significance. This technique was applied on publicly available datasets whereby it substantially reduced the number of features used for classification while maintaining high accuracies. The proposed technique can be extremely useful in feature selection as it heuristically removes non-contributing features to improve the performance of classifiers.

  17. High-accuracy critical exponents for O(N) hierarchical 3D sigma models

    International Nuclear Information System (INIS)

    Godina, J. J.; Li, L.; Meurice, Y.; Oktay, M. B.

    2006-01-01

    The critical exponent γ and its subleading exponent Δ in the 3D O(N) Dyson's hierarchical model for N up to 20 are calculated with high accuracy. We calculate the critical temperatures for the measure δ(φ-vector.φ-vector-1). We extract the first coefficients of the 1/N expansion from our numerical data. We show that the leading and subleading exponents agree with Polchinski equation and the equivalent Litim equation, in the local potential approximation, with at least 4 significant digits

  18. Accuracy of Binary Black Hole waveforms for Advanced LIGO searches

    Science.gov (United States)

    Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Chu, Tony; Fong, Heather; Brown, Duncan; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    Coalescing binaries of compact objects are flagship sources for the first direct detection of gravitational waves with LIGO-Virgo observatories. Matched-filtering based detection searches aimed at binaries of black holes will use aligned spin waveforms as filters, and their efficiency hinges on the accuracy of the underlying waveform models. A number of gravitational waveform models are available in literature, e.g. the Effective-One-Body, Phenomenological, and traditional post-Newtonian ones. While Numerical Relativity (NR) simulations provide for the most accurate modeling of gravitational radiation from compact binaries, their computational cost limits their application in large scale searches. In this talk we assess the accuracy of waveform models in two regions of parameter space, which have only been explored cursorily in the past: the high mass-ratio regime as well as the comparable mass-ratio + high spin regime.s Using the SpEC code, six q = 7 simulations with aligned-spins and lasting 60 orbits, and tens of q ∈ [1,3] simulations with high black hole spins were performed. We use them to study the accuracy and intrinsic parameter biases of different waveform families, and assess their viability for Advanced LIGO searches.

  19. High-accuracy numerical integration of charged particle motion – with application to ponderomotive force

    International Nuclear Information System (INIS)

    Furukawa, Masaru; Ohkawa, Yushiro; Matsuyama, Akinobu

    2016-01-01

    A high-accuracy numerical integration algorithm for a charged particle motion is developed. The algorithm is based on the Hamiltonian mechanics and the operator decomposition. The algorithm is made to be time-reversal symmetric, and its order of accuracy can be increased to any order by using a recurrence formula. One of the advantages is that it is an explicit method. An effective way to decompose the time evolution operator is examined; the Poisson tensor is decomposed and non-canonical variables are adopted. The algorithm is extended to a time dependent fields' case by introducing the extended phase space. Numerical tests showing the performance of the algorithm are presented. One is the pure cyclotron motion for a long time period, and the other is a charged particle motion in a rapidly oscillating field. (author)

  20. Conclusions about children’s reporting accuracy for energy and macronutrients over multiple interviews depend on the analytic approach for comparing reported information to reference information

    Science.gov (United States)

    Baxter, Suzanne Domel; Smith, Albert F.; Hardin, James W.; Nichols, Michele D.

    2008-01-01

    Objective Validation-study data are used to illustrate that conclusions about children’s reporting accuracy for energy and macronutrients over multiple interviews (ie, time) depend on the analytic approach for comparing reported and reference information—conventional, which disregards accuracy of reported items and amounts, or reporting-error-sensitive, which classifies reported items as matches (eaten) or intrusions (not eaten), and amounts as corresponding or overreported. Subjects and design Children were observed eating school meals on one day (n = 12), or two (n = 13) or three (n = 79) nonconsecutive days separated by ≥25 days, and interviewed in the morning after each observation day about intake the previous day. Reference (observed) and reported information were transformed to energy and macronutrients (protein, carbohydrate, fat), and compared. Main outcome measures For energy and each macronutrient: report rates (reported/reference), correspondence rates (genuine accuracy measures), inflation ratios (error measures). Statistical analyses Mixed-model analyses. Results Using the conventional approach for analyzing energy and macronutrients, report rates did not vary systematically over interviews (Ps > .61). Using the reporting-error-sensitive approach for analyzing energy and macronutrients, correspondence rates increased over interviews (Ps macronutrients improved over time, but the conventional approach masked improvements and overestimated accuracy. Applications The reporting-error-sensitive approach is recommended when analyzing data from validation studies of dietary reporting accuracy for energy and macronutrients. PMID:17383265

  1. An output amplitude configurable wideband automatic gain control with high gain step accuracy

    International Nuclear Information System (INIS)

    He Xiaofeng; Ye Tianchun; Mo Taishan; Ma Chengyan

    2012-01-01

    An output amplitude configurable wideband automatic gain control (AGC) with high gain step accuracy for the GNSS receiver is presented. The amplitude of an AGC is configurable in order to cooperate with baseband chips to achieve interference suppression and be compatible with different full range ADCs. And what's more, the gain-boosting technology is introduced and the circuit is improved to increase the step accuracy. A zero, which is composed by the source feedback resistance and the source capacity, is introduced to compensate for the pole. The AGC is fabricated in a 0.18 μm CMOS process. The AGC shows a 62 dB gain control range by 1 dB each step with a gain error of less than 0.2 dB. The AGC provides 3 dB bandwidth larger than 80 MHz and the overall power consumption is less than 1.8 mA, and the die area is 800 × 300 μm 2 . (semiconductor integrated circuits)

  2. performance routines followed by free throw shooting accuracy in secondary basketball players

    Directory of Open Access Journals (Sweden)

    Phelps Ashley

    2015-12-01

    Full Text Available Study aim: The purpose of the current study was to determine whether existing pre-performance routines had an effect on free throw shooting accuracy in high school pupils as compared to shooting without a pre-performance routine.

  3. High accuracy magnetic field mapping of the LEP spectrometer magnet

    CERN Document Server

    Roncarolo, F

    2000-01-01

    The Large Electron Positron accelerator (LEP) is a storage ring which has been operated since 1989 at the European Laboratory for Particle Physics (CERN), located in the Geneva area. It is intended to experimentally verify the Standard Model theory and in particular to detect with high accuracy the mass of the electro-weak force bosons. Electrons and positrons are accelerated inside the LEP ring in opposite directions and forced to collide at four locations, once they reach an energy high enough for the experimental purposes. During head-to-head collisions the leptons loose all their energy and a huge amount of energy is concentrated in a small region. In this condition the energy is quickly converted in other particles which tend to go away from the interaction point. The higher the energy of the leptons before the collisions, the higher the mass of the particles that can escape. At LEP four large experimental detectors are accommodated. All detectors are multi purpose detectors covering a solid angle of alm...

  4. Determination of UAV position using high accuracy navigation platform

    Directory of Open Access Journals (Sweden)

    Ireneusz Kubicki

    2016-07-01

    Full Text Available The choice of navigation system for mini UAV is very important because of its application and exploitation, particularly when the installed on it a synthetic aperture radar requires highly precise information about an object’s position. The presented exemplary solution of such a system draws attention to the possible problems associated with the use of appropriate technology, sensors, and devices or with a complete navigation system. The position and spatial orientation errors of the measurement platform influence on the obtained SAR imaging. Both, turbulences and maneuvers performed during flight cause the changes in the position of the airborne object resulting in deterioration or lack of images from SAR. Consequently, it is necessary to perform operations for reducing or eliminating the impact of the sensors’ errors on the UAV position accuracy. You need to look for compromise solutions between newer better technologies and in the field of software. Keywords: navigation systems, unmanned aerial vehicles, sensors integration

  5. General Theory versus ENA Theory: Comparing Their Predictive Accuracy and Scope.

    Science.gov (United States)

    Ellis, Lee; Hoskin, Anthony; Hartley, Richard; Walsh, Anthony; Widmayer, Alan; Ratnasingam, Malini

    2015-12-01

    General theory attributes criminal behavior primarily to low self-control, whereas evolutionary neuroandrogenic (ENA) theory envisions criminality as being a crude form of status-striving promoted by high brain exposure to androgens. General theory predicts that self-control will be negatively correlated with risk-taking, while ENA theory implies that these two variables should actually be positively correlated. According to ENA theory, traits such as pain tolerance and muscularity will be positively associated with risk-taking and criminality while general theory makes no predictions concerning these relationships. Data from Malaysia and the United States are used to test 10 hypotheses derived from one or both of these theories. As predicted by both theories, risk-taking was positively correlated with criminality in both countries. However, contrary to general theory and consistent with ENA theory, the correlation between self-control and risk-taking was positive in both countries. General theory's prediction of an inverse correlation between low self-control and criminality was largely supported by the U.S. data but only weakly supported by the Malaysian data. ENA theory's predictions of positive correlations between pain tolerance, muscularity, and offending were largely confirmed. For the 10 hypotheses tested, ENA theory surpassed general theory in predictive scope and accuracy. © The Author(s) 2014.

  6. Accuracy of Digital vs. Conventional Implant Impressions

    Science.gov (United States)

    Lee, Sang J.; Betensky, Rebecca A.; Gianneschi, Grace E.; Gallucci, German O.

    2015-01-01

    The accuracy of digital impressions greatly influences the clinical viability in implant restorations. The aim of this study is to compare the accuracy of gypsum models acquired from the conventional implant impression to digitally milled models created from direct digitalization by three-dimensional analysis. Thirty gypsum and 30 digitally milled models impressed directly from a reference model were prepared. The models were scanned by a laboratory scanner and 30 STL datasets from each group were imported to an inspection software. The datasets were aligned to the reference dataset by a repeated best fit algorithm and 10 specified contact locations of interest were measured in mean volumetric deviations. The areas were pooled by cusps, fossae, interproximal contacts, horizontal and vertical axes of implant position and angulation. The pooled areas were statistically analysed by comparing each group to the reference model to investigate the mean volumetric deviations accounting for accuracy and standard deviations for precision. Milled models from digital impressions had comparable accuracy to gypsum models from conventional impressions. However, differences in fossae and vertical displacement of the implant position from the gypsum and digitally milled models compared to the reference model, exhibited statistical significance (p<0.001, p=0.020 respectively). PMID:24720423

  7. Accuracy of Plantar Electrodes Compared with Hand and Foot Electrodes in Fat-free-mass Measurement

    Directory of Open Access Journals (Sweden)

    Michel Y. Jaffrin

    2014-01-01

    Full Text Available This paper investigates the measurement of fat-free mass (FFM by bioimpedance using foot-to-foot impedancemeters (FFI with plantar electrodes measuring the foot-to-foot resistance R34 and hand-to-foot medical impedancemeters. FFM measurements were compared with corresponding data using Dual X-ray absorptiometry (DXA. Equations giving FFM were established using linear multiple regression on DXA data in a first group of 170 subjects. For validation, these equations were used on a second group of 86 subjects, and FFM were compared with DXA data; no significant difference was observed. The same protocol was repeated, but using electrodes on the right hand and foot in standing position to measure the hand to-foot resistance R13. Mean differences with DXA were higher for R13 than for R34. Effect of electrode size and feet position on resistance was also investigated. R34 decreased when electrode area increased or if feet were moved forward. It decreased if feet were moved backward. A proper configuration of contact electrodes can improve measurement accuracy and reproducibility of FFI.

  8. High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS

    Science.gov (United States)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu

    2017-05-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.

  9. Setup Accuracy of the Novalis ExacTrac 6DOF System for Frameless Radiosurgery

    International Nuclear Information System (INIS)

    Gevaert, Thierry; Verellen, Dirk; Tournel, Koen; Linthout, Nadine; Bral, Samuel; Engels, Benedikt; Collen, Christine; Depuydt, Tom; Duchateau, Michael; Reynders, Truus; Storme, Guy; De Ridder, Mark

    2012-01-01

    Purpose: Stereotactic radiosurgery using frame-based positioning is a well-established technique for the treatment of benign and malignant lesions. By contrast, a new trend toward frameless systems using image-guided positioning techniques is gaining mainstream acceptance. This study was designed to measure the detection and positioning accuracy of the ExacTrac/Novalis Body (ET/NB) for rotations and to compare the accuracy of the frameless with the frame-based radiosurgery technique. Methods and Materials: A program was developed in house to rotate reference computed tomography images. The angles measured by the system were compared with the known rotations. The accuracy of ET/NB was evaluated with a head phantom with seven lead beads inserted, mounted on a treatment couch equipped with a robotic tilt module, and was measured with a digital water level and portal films. Multiple hidden target tests (HTT) were performed to measure the overall accuracy of the different positioning techniques for radiosurgery (i.e., frameless and frame-based with relocatable mask or invasive ring, respectively). Results: The ET/NB system can detect rotational setup errors with an average accuracy of 0.09° (standard deviation [SD] 0.06°), 0.02° (SD 0.07°), and 0.06° (SD 0.14°) for longitudinal, lateral, and vertical rotations, respectively. The average positioning accuracy was 0.06° (SD 0.04°), 0.08° (SD 0.06°), and 0.08° (SD 0.07°) for longitudinal, lateral and vertical rotations, respectively. The results of the HTT showed an overall three-dimensional accuracy of 0.76 mm (SD 0.46 mm) for the frameless technique, 0.87 mm (SD 0.44 mm) for the relocatable mask, and 1.19 mm (SD 0.45 mm) for the frame-based technique. Conclusions: The study showed high detection accuracy and a subdegree positioning accuracy. On the basis of phantom studies, the frameless technique showed comparable accuracy to the frame-based approach.

  10. [Method for evaluating the positional accuracy of a six-degrees-of-freedom radiotherapy couch using high definition digital cameras].

    Science.gov (United States)

    Takemura, Akihiro; Ueda, Shinichi; Noto, Kimiya; Kurata, Yuichi; Shoji, Saori

    2011-01-01

    In this study, we proposed and evaluated a positional accuracy assessment method with two high-resolution digital cameras for add-on six-degrees-of-freedom radiotherapy (6D) couches. Two high resolution digital cameras (D5000, Nikon Co.) were used in this accuracy assessment method. These cameras were placed on two orthogonal axes of a linear accelerator (LINAC) coordinate system and focused on the isocenter of the LINAC. Pictures of a needle that was fixed on the 6D couch were taken by the cameras during couch motions of translation and rotation of each axis. The coordinates of the needle in the pictures were obtained using manual measurement, and the coordinate error of the needle was calculated. The accuracy of a HexaPOD evo (Elekta AB, Sweden) was evaluated using this method. All of the mean values of the X, Y, and Z coordinate errors in the translation tests were within ±0.1 mm. However, the standard deviation of the Z coordinate errors in the Z translation test was 0.24 mm, which is higher than the others. In the X rotation test, we found that the X coordinate of the rotational origin of the 6D couch was shifted. We proposed an accuracy assessment method for a 6D couch. The method was able to evaluate the accuracy of the motion of only the 6D couch and revealed the deviation of the origin of the couch rotation. This accuracy assessment method is effective for evaluating add-on 6D couch positioning.

  11. On the impact of improved dosimetric accuracy on head and neck high dose rate brachytherapy.

    Science.gov (United States)

    Peppa, Vasiliki; Pappas, Eleftherios; Major, Tibor; Takácsi-Nagy, Zoltán; Pantelis, Evaggelos; Papagiannis, Panagiotis

    2016-07-01

    To study the effect of finite patient dimensions and tissue heterogeneities in head and neck high dose rate brachytherapy. The current practice of TG-43 dosimetry was compared to patient specific dosimetry obtained using Monte Carlo simulation for a sample of 22 patient plans. The dose distributions were compared in terms of percentage dose differences as well as differences in dose volume histogram and radiobiological indices for the target and organs at risk (mandible, parotids, skin, and spinal cord). Noticeable percentage differences exist between TG-43 and patient specific dosimetry, mainly at low dose points. Expressed as fractions of the planning aim dose, percentage differences are within 2% with a general TG-43 overestimation except for the spine. These differences are consistent resulting in statistically significant differences of dose volume histogram and radiobiology indices. Absolute differences of these indices are however small to warrant clinical importance in terms of tumor control or complication probabilities. The introduction of dosimetry methods characterized by improved accuracy is a valuable advancement. It does not appear however to influence dose prescription or call for amendment of clinical recommendations for the mobile tongue, base of tongue, and floor of mouth patient cohort of this study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. How to address patients' defences: a pilot study of the accuracy of defence interpretations and alliance.

    Science.gov (United States)

    Junod, Olivier; de Roten, Yves; Martinez, Elena; Drapeau, Martin; Despland, Jean-Nicolas

    2005-12-01

    This pilot study examined the accuracy of therapist defence interpretations (TAD) in high-alliance patients (N = 7) and low-alliance patients (N = 8). TAD accuracy was assessed in the two subgroups by comparing for each case the patient's most frequent defensive level with the most frequent defensive level addressed by the therapist when making defence interpretations. Results show that in high-alliance patient-therapist dyads, the therapists tend to address accurate or higher (more mature) defensive level than patients most frequent level. On the other hand, the therapists address lower (more immature) defensive level in low-alliance dyads. These results are discussed along with possible ways to better assess TAD accuracy.

  13. Constructing Better Classifier Ensemble Based on Weighted Accuracy and Diversity Measure

    Directory of Open Access Journals (Sweden)

    Xiaodong Zeng

    2014-01-01

    Full Text Available A weighted accuracy and diversity (WAD method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases.

  14. Image quality, radiation dose, and diagnostic accuracy of prospectively ECG-triggered high-pitch coronary CT angiography at 70 kVp in a clinical setting: comparison with invasive coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long Jiang; Qi, Li; Zhou, Chang Sheng; Zhao, Yan E.; Li, Xie; Lu, Guang Ming [Jinling Hospital, Medical School of Nanjing University, Department of Medical Imaging, Nanjing, Jiangsu (China); Wang, Yining; Cao, Jian; Jin, Zhengyu [Peking Union Medical College Hospital, Department of Radiology, Beijing (China); Schoepf, U.J. [Jinling Hospital, Medical School of Nanjing University, Department of Medical Imaging, Nanjing, Jiangsu (China); Medical University of South Carolina, Division of Cardiovascular Imaging, Charleston, SC (United States); Meinel, Felix G. [Medical University of South Carolina, Division of Cardiovascular Imaging, Charleston, SC (United States); Ludwig-Maximilians-University Hospital, Institute for Clinical Radiology, Munich (Germany); Bayer, Richard R. [Medical University of South Carolina, Division of Cardiovascular Imaging, Charleston, SC (United States); Gong, Jian Bin [Jinling Hospital, Medical School of Nanjing University, Department of Cardiology, Nanjing, Jiangsu (China)

    2016-03-15

    To investigate image quality, radiation dose, and diagnostic performance of prospectively ECG-triggered high-pitch coronary CT angiography (CCTA) at 70 kVp compared to invasive coronary angiography (ICA) as reference standard. Forty-three patients underwent prospectively ECG-triggered high-pitch CCTA at 70 kVp using 30 cc (11 g iodine) contrast medium and ICA. Subjective and objective image quality was evaluated for each CCTA study. CCTA performance for diagnosing ≥50 % stenosis was assessed. Results were stratified according to heart rate (HR), body mass index (BMI), Agatston score, and image quality. At CCTA, 94.3 % (500/530) of coronary segments were of diagnostic quality. Using ICA as reference standard, sensitivity and accuracy were 100 % and 93.0 % on a per-patient basis. Per-vessel and per-segment performances were 92.2 % and 89.5 %; 79.5 % and 88.3 %, respectively. No differences were found in diagnostic accuracy between different HR, BMI, and calcification subgroups (all P > 0.05) on a per-patient basis. However, low image quality reduced diagnostic accuracy on a per-patient, per-vessel and per-segment basis (all P < 0.05). The mean effective radiation dose was 0.2 ± 0.0 mSv. Our presented protocol results in an effective radiation dose of 0.2 mSv and high diagnostic accuracy for stenosis detection in a selected, non-obese population. (orig.)

  15. Atypical self-focus effect on interoceptive accuracy in anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Olga Pollatos

    2016-09-01

    Full Text Available Background: Interoceptive abilities are known to be affected in anorexia nervosa (AN. Previous studies could show that private self-focus can enhance interoceptive accuracy (IAcc in healthy participants. As body dissatisfaction is high in AN, confrontation with bodily features such as the own face might have a directly opposed effect in AN. Whether patients with AN can benefit from self-focus in their IAcc and whether this pattern changes over the time-course of cognitive behavioral therapy was investigated in this study. Methods: 15 patients with AN from the Psychosomatic Clinic in Windach were assessed three times in the time course of a standardized cognitive-behavioral therapy. They were compared to 15 controls, recruited from Ulm University and tested in a comparable setting. Both groups performed the heartbeat perception task assessing interoceptive accuracy (IAcc under two conditions either enhancing (Self or decreasing (Other self-focused attention. Furthermore, body dissatisfaction was assessed by a subscale of the Eating Disorder Inventory 2. Results: Patients with AN scored higher in IAcc when watching others’ faces as compared to one’s own face while performing the heartbeat perception task. The opposite pattern was observed in controls. IAcc remained reduced in AN as compared to controls in the time-course of cognitive-behavioral therapy, while body-dissatisfaction improved in AN. High body dissatisfaction was related to poorer IAcc in the Self condition. Conclusions: Our findings suggest that using self-focused attention reduces IAcc in AN while the opposite pattern was observed in controls. Confronting anorexic patients with bodily features might increase body-related avoidance and therefore decrease interoceptive accuracy. The current study introduces a new perspective concerning the role of interoceptive processes in AN and generates further questions regarding the therapeutic utility of methods targeting self-focus in the

  16. Modifications Of Discrete Ordinate Method For Computations With High Scattering Anisotropy: Comparative Analysis

    Science.gov (United States)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2012-01-01

    A numerical accuracy analysis of the radiative transfer equation (RTE) solution based on separation of the diffuse light field into anisotropic and smooth parts is presented. The analysis uses three different algorithms based on the discrete ordinate method (DOM). Two methods, DOMAS and DOM2+, that do not use the truncation of the phase function, are compared against the TMS-method. DOMAS and DOM2+ use the Small-Angle Modification of RTE and the single scattering term, respectively, as an anisotropic part. The TMS method uses Delta-M method for truncation of the phase function along with the single scattering correction. For reference, a standard discrete ordinate method, DOM, is also included in analysis. The obtained results for cases with high scattering anisotropy show that at low number of streams (16, 32) only DOMAS provides an accurate solution in the aureole area. Outside of the aureole, the convergence and accuracy of DOMAS, and TMS is found to be approximately similar: DOMAS was found more accurate in cases with coarse aerosol and liquid water cloud models, except low optical depth, while the TMS showed better results in case of ice cloud.

  17. Improving calibration accuracy in gel dosimetry

    International Nuclear Information System (INIS)

    Oldham, M.; McJury, M.; Webb, S.; Baustert, I.B.; Leach, M.O.

    1998-01-01

    A new method of calibrating gel dosimeters (applicable to both Fricke and polyacrylamide gels) is presented which has intrinsically higher accuracy than current methods, and requires less gel. Two test-tubes of gel (inner diameter 2.5 cm, length 20 cm) are irradiated separately with a 10x10cm 2 field end-on in a water bath, such that the characteristic depth-dose curve is recorded in the gel. The calibration is then determined by fitting the depth-dose measured in water, against the measured change in relaxivity with depth in the gel. Increased accuracy is achieved in this simple depth-dose geometry by averaging the relaxivity at each depth. A large number of calibration data points, each with relatively high accuracy, are obtained. Calibration data over the full range of dose (1.6-10 Gy) is obtained by irradiating one test-tube to 10 Gy at dose maximum (D max ), and the other to 4.5 Gy at D max . The new calibration method is compared with a 'standard method' where five identical test-tubes of gel were irradiated to different known doses between 2 and 10 Gy. The percentage uncertainties in the slope and intercept of the calibration fit are found to be lower with the new method by a factor of about 4 and 10 respectively, when compared with the standard method and with published values. The gel was found to respond linearly within the error bars up to doses of 7 Gy, with a slope of 0.233±0.001 s -1 Gy -1 and an intercept of 1.106±0.005 Gy. For higher doses, nonlinear behaviour was observed. (author)

  18. Synchrotron accelerator technology for proton beam therapy with high accuracy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo

    2009-01-01

    Proton beam therapy was applied at the beginning to head and neck cancers, but it is now extended to prostate, lung and liver cancers. Thus the need for a pencil beam scanning method is increasing. With this method radiation dose concentration property of the proton beam will be further intensified. Hitachi group has supplied a pencil beam scanning therapy system as the first one for M. D. Anderson Hospital in United States, and it has been operational since May 2008. Hitachi group has been developing proton therapy system to correspond high-accuracy proton therapy to concentrate the dose in the diseased part which is located with various depths, and which sometimes has complicated shape. The author described here on the synchrotron accelerator technology that is an important element for constituting the proton therapy system. (K.Y.)

  19. Speech production accuracy and variability in young cochlear implant recipients: comparisons with typically developing age-peers.

    Science.gov (United States)

    Ertmer, David J; Goffman, Lisa

    2011-02-01

    The speech production accuracy and variability scores of 6 young cochlear implant (CI) recipients with 2 years of device experience were compared with those of typically developing (TD) age-peers. Words from the First Words Speech Test (FWST; Ertmer, 1999) were imitated 3 times to assess the accuracy and variability of initial consonants, vowels, and words. The initial consonants in the 4 sets of the FWST followed a typical order of development. The TD group produced targets with high accuracy and low variability. Their scores across FWST sets reflected the expected order of development. The CI group produced most targets less accurately and with more variability than the TD children. Relatively high accuracy for the consonants of Sets 1 and 2 indicated that these phonemes were acquired early and in a typical developmental order. A trend toward greater accuracy for Set 4 as compared with Set 3 suggested that later-emerging consonants were not acquired in the expected order. Variability was greatest for later-emerging initial consonants and whole words. Although considerable speech production proficiency was evident, age-level performance was not attained after 2 years of CI experience. Factors that might influence the order of consonant acquisition are discussed.

  20. Accuracy of a hexapod parallel robot kinematics based external fixator.

    Science.gov (United States)

    Faschingbauer, Maximilian; Heuer, Hinrich J D; Seide, Klaus; Wendlandt, Robert; Münch, Matthias; Jürgens, Christian; Kirchner, Rainer

    2015-12-01

    Different hexapod-based external fixators are increasingly used to treat bone deformities and fractures. Accuracy has not been measured sufficiently for all models. An infrared tracking system was applied to measure positioning maneuvers with a motorized Precision Hexapod® fixator, detecting three-dimensional positions of reflective balls mounted in an L-arrangement on the fixator, simulating bone directions. By omitting one dimension of the coordinates, projections were simulated as if measured on standard radiographs. Accuracy was calculated as the absolute difference between targeted and measured positioning values. In 149 positioning maneuvers, the median values for positioning accuracy of translations and rotations (torsions/angulations) were below 0.3 mm and 0.2° with quartiles ranging from -0.5 mm to 0.5 mm and -1.0° to 0.9°, respectively. The experimental setup was found to be precise and reliable. It can be applied to compare different hexapod-based fixators. Accuracy of the investigated hexapod system was high. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Accuracy assessment of a mobile terrestrial lidar survey at Padre Island National Seashore

    Science.gov (United States)

    Lim, Samsung; Thatcher, Cindy A.; Brock, John C.; Kimbrow, Dustin R.; Danielson, Jeffrey J.; Reynolds, B.J.

    2013-01-01

    The higher point density and mobility of terrestrial laser scanning (light detection and ranging (lidar)) is desired when extremely detailed elevation data are needed for mapping vertically orientated complex features such as levees, dunes, and cliffs, or when highly accurate data are needed for monitoring geomorphic changes. Mobile terrestrial lidar scanners have the capability for rapid data collection on a larger spatial scale compared with tripod-based terrestrial lidar, but few studies have examined the accuracy of this relatively new mapping technology. For this reason, we conducted a field test at Padre Island National Seashore of a mobile lidar scanner mounted on a sport utility vehicle and integrated with a position and orientation system. The purpose of the study was to assess the vertical and horizontal accuracy of data collected by the mobile terrestrial lidar system, which is georeferenced to the Universal Transverse Mercator coordinate system and the North American Vertical Datum of 1988. To accomplish the study objectives, independent elevation data were collected by conducting a high-accuracy global positioning system survey to establish the coordinates and elevations of 12 targets spaced throughout the 12 km transect. These independent ground control data were compared to the lidar scanner-derived elevations to quantify the accuracy of the mobile lidar system. The performance of the mobile lidar system was also tested at various vehicle speeds and scan density settings (e.g. field of view and linear point spacing) to estimate the optimal parameters for desired point density. After adjustment of the lever arm parameters, the final point cloud accuracy was 0.060 m (east), 0.095 m (north), and 0.053 m (height). The very high density of the resulting point cloud was sufficient to map fine-scale topographic features, such as the complex shape of the sand dunes.

  2. A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts

    Directory of Open Access Journals (Sweden)

    Hossein Hassani

    2015-08-01

    Full Text Available This paper introduces a complement statistical test for distinguishing between the predictive accuracy of two sets of forecasts. We propose a non-parametric test founded upon the principles of the Kolmogorov-Smirnov (KS test, referred to as the KS Predictive Accuracy (KSPA test. The KSPA test is able to serve two distinct purposes. Initially, the test seeks to determine whether there exists a statistically significant difference between the distribution of forecast errors, and secondly it exploits the principles of stochastic dominance to determine whether the forecasts with the lower error also reports a stochastically smaller error than forecasts from a competing model, and thereby enables distinguishing between the predictive accuracy of forecasts. We perform a simulation study for the size and power of the proposed test and report the results for different noise distributions, sample sizes and forecasting horizons. The simulation results indicate that the KSPA test is correctly sized, and robust in the face of varying forecasting horizons and sample sizes along with significant accuracy gains reported especially in the case of small sample sizes. Real world applications are also considered to illustrate the applicability of the proposed KSPA test in practice.

  3. PACMAN Project: A New Solution for the High-accuracy Alignment of Accelerator Components

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalán Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon; Modena, Michele; Novotny, Peter; Russenschuck, Stephan; Sanz, Claude; Severino, Giordana; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia

    2016-01-01

    The beam alignment requirements for the next generation of lepton colliders have become increasingly challenging. As an example, the alignment requirements for the three major collider components of the CLIC linear collider are as follows. Before the first beam circulates, the Beam Position Monitors (BPM), Accelerating Structures (AS)and quadrupoles will have to be aligned up to 10 μm w.r.t. a straight line over 200 m long segments, along the 20 km of linacs. PACMAN is a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale. It is an Innovative Doctoral Program, funded by the EU and hosted by CERN, providing high quality training to 10 Early Stage Researchers working towards a PhD thesis. The technical aim of the project is to improve the alignment accuracy of the CLIC components by developing new methods and tools addressing several steps of alignment simultaneously, to gain time and accuracy. The tools and methods developed will be validated on a test bench. This paper pr...

  4. Accuracy Assessment of Underwater Photogrammetric Three Dimensional Modelling for Coral Reefs

    Science.gov (United States)

    Guo, T.; Capra, A.; Troyer, M.; Gruen, A.; Brooks, A. J.; Hench, J. L.; Schmitt, R. J.; Holbrook, S. J.; Dubbini, M.

    2016-06-01

    Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks) with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values). Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.

  5. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    Science.gov (United States)

    Frey, Bradley J.; Leviton, Douglas B.

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  6. Rectal cancer staging: Multidetector-row computed tomography diagnostic accuracy in assessment of mesorectal fascia invasion

    Science.gov (United States)

    Ippolito, Davide; Drago, Silvia Girolama; Franzesi, Cammillo Talei; Fior, Davide; Sironi, Sandro

    2016-01-01

    AIM: To assess the diagnostic accuracy of multidetector-row computed tomography (MDCT) as compared with conventional magnetic resonance imaging (MRI), in identifying mesorectal fascia (MRF) invasion in rectal cancer patients. METHODS: Ninety-one patients with biopsy proven rectal adenocarcinoma referred for thoracic and abdominal CT staging were enrolled in this study. The contrast-enhanced MDCT scans were performed on a 256 row scanner (ICT, Philips) with the following acquisition parameters: tube voltage 120 KV, tube current 150-300 mAs. Imaging data were reviewed as axial and as multiplanar reconstructions (MPRs) images along the rectal tumor axis. MRI study, performed on 1.5 T with dedicated phased array multicoil, included multiplanar T2 and axial T1 sequences and diffusion weighted images (DWI). Axial and MPR CT images independently were compared to MRI and MRF involvement was determined. Diagnostic accuracy of both modalities was compared and statistically analyzed. RESULTS: According to MRI, the MRF was involved in 51 patients and not involved in 40 patients. DWI allowed to recognize the tumor as a focal mass with high signal intensity on high b-value images, compared with the signal of the normal adjacent rectal wall or with the lower tissue signal intensity background. The number of patients correctly staged by the native axial CT images was 71 out of 91 (41 with involved MRF; 30 with not involved MRF), while by using the MPR 80 patients were correctly staged (45 with involved MRF; 35 with not involved MRF). Local tumor staging suggested by MDCT agreed with those of MRI, obtaining for CT axial images sensitivity and specificity of 80.4% and 75%, positive predictive value (PPV) 80.4%, negative predictive value (NPV) 75% and accuracy 78%; while performing MPR the sensitivity and specificity increased to 88% and 87.5%, PPV was 90%, NPV 85.36% and accuracy 88%. MPR images showed higher diagnostic accuracy, in terms of MRF involvement, than native axial images

  7. Measuring the airway in 3 dimensions: a reliability and accuracy study.

    Science.gov (United States)

    El, Hakan; Palomo, Juan Martin

    2010-04-01

    The aim of the study was to compare the reliability and accuracy of 3 commercially available digital imaging and communications in medicine (DICOM) viewers for measuring upper airway volumes. Thirty cone-beam computed tomography scans were randomly selected, and the upper airway volumes were calculated for both oropharynx and nasal passage. Dolphin3D (version 11, Dolphin Imaging & Management Solutions, Chatsworth, Calif), InVivoDental (version 4.0.70, Anatomage, San Jose, Calif), and OnDemand3D (version 1.0.1.8407, CyberMed, Seoul, Korea) were compared with a previously tested manual segmentation program called OrthoSegment (OS) (developed at the Department of Orthodontics at Case Western Reserve University, Cleveland, Ohio). The measurements were repeated after 2 weeks, and the ICC was used for the reliability tests. All commercially available programs were compared with the OS program by using regression analysis. The Pearson correlation was used to evaluate the correlation between the OS and the automatic segmentation programs. The reliability was high for all programs. The highest correlation found was between the OS and Dolphin3D for the oropharynx, and between the OS and InVivoDental for nasal passage volume. A high correlation was found for all programs, but the results also showed statistically significant differences compared with the OS program. The programs also had inconsistencies among themselves. The 3 commercially available DICOM viewers are highly reliable in their airway volume calculations and showed high correlation of results but poor accuracy, suggesting systematic errors. Copyright 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  8. A new device for liver cancer biomarker detection with high accuracy

    Directory of Open Access Journals (Sweden)

    Shuaipeng Wang

    2015-06-01

    Full Text Available A novel cantilever array-based bio-sensor was batch-fabricated with IC compatible MEMS technology for precise liver cancer bio-marker detection. A micro-cavity was designed in the free end of the cantilever for local antibody-immobilization, thus adsorption of the cancer biomarker is localized in the micro-cavity, and the adsorption-induced k variation can be dramatically reduced with comparison to that caused by adsorption of the whole lever. The cantilever is pizeoelectrically driven into vibration which is pizeoresistively sensed by Wheatstone bridge. These structural features offer several advantages: high sensitivity, high throughput, high mass detection accuracy, and small volume. In addition, an analytical model has been established to eliminate the effect of adsorption-induced lever stiffness change and has been applied to precise mass detection of cancer biomarker AFP, the detected AFP antigen mass (7.6 pg/ml is quite close to the calculated one (5.5 pg/ml, two orders of magnitude better than the value by the fully antibody-immobilized cantilever sensor. These approaches will promote real application of the cantilever sensors in early diagnosis of cancer.

  9. In vivo assessment of catheter positioning accuracy and prolonged irradiation time on liver tolerance dose after single-fraction 192Ir high-dose-rate brachytherapy

    Directory of Open Access Journals (Sweden)

    Kropf Siegfried

    2011-09-01

    Full Text Available Abstract Background To assess brachytherapy catheter positioning accuracy and to evaluate the effects of prolonged irradiation time on the tolerance dose of normal liver parenchyma following single-fraction irradiation with 192 Ir. Materials and methods Fifty patients with 76 malignant liver tumors treated by computed tomography (CT-guided high-dose-rate brachytherapy (HDR-BT were included in the study. The prescribed radiation dose was delivered by 1 - 11 catheters with exposure times in the range of 844 - 4432 seconds. Magnetic resonance imaging (MRI datasets for assessing irradiation effects on normal liver tissue, edema, and hepatocyte dysfunction, obtained 6 and 12 weeks after HDR-BT, were merged with 3D dosimetry data. The isodose of the treatment plan covering the same volume as the irradiation effect was taken as a surrogate for the liver tissue tolerance dose. Catheter positioning accuracy was assessed by calculating the shift between the 3D center coordinates of the irradiation effect volume and the tolerance dose volume for 38 irradiation effects in 30 patients induced by catheters implanted in nearly parallel arrangement. Effects of prolonged irradiation were assessed in areas where the irradiation effect volume and tolerance dose volume did not overlap (mismatch areas by using a catheter contribution index. This index was calculated for 48 irradiation effects induced by at least two catheters in 44 patients. Results Positioning accuracy of the brachytherapy catheters was 5-6 mm. The orthogonal and axial shifts between the center coordinates of the irradiation effect volume and the tolerance dose volume in relation to the direction vector of catheter implantation were highly correlated and in first approximation identically in the T1-w and T2-w MRI sequences (p = 0.003 and p p = 0.001 and p = 0.004, respectively. There was a significant shift of the irradiation effect towards the catheter entry site compared with the planned dose

  10. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: A phantom study

    International Nuclear Information System (INIS)

    Hwang, Sung Ho; Oh, Yu Whan; Ham, Soo Youn; Kang, Eun Young; Lee, Ki Yeol

    2015-01-01

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 +/- 0.9%, and 1.7 +/- 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 +/- 7.4%) was significantly greater (p < 0.01) than that in the CPM (18.4 +/- 5.3%), with an IVV of 13.1 +/- 6.6%. However, the IVVs were in an acceptable range (< 25%), regardless of nodule size. The accuracy of 3D volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  11. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Ho; Oh, Yu Whan; Ham, Soo Youn [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Kang, Eun Young [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, Ki Yeol [Dept. of Radiology, Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2015-06-15

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 +/- 0.9%, and 1.7 +/- 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 +/- 7.4%) was significantly greater (p < 0.01) than that in the CPM (18.4 +/- 5.3%), with an IVV of 13.1 +/- 6.6%. However, the IVVs were in an acceptable range (< 25%), regardless of nodule size. The accuracy of 3D volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  12. The accuracy of digital breast tomosynthesis compared with coned compression magnification mammography in the assessment of abnormalities found on mammography

    International Nuclear Information System (INIS)

    Morel, J.C.; Iqbal, A.; Wasan, R.K.; Peacock, C.; Evans, D.R.; Rahim, R.; Goligher, J.; Michell, M.J.

    2014-01-01

    Aim: To compare the diagnostic accuracy of the digital breast tomosynthesis (DBT) with coned compression magnification mammography (CCMM). Materials and methods: The study design included two reading sessions completed by seven experienced radiologists. In the first session, all readers read bilateral standard two-view mammograms and a CCMM view of the lesion before giving a combined score for assessment. In the second session, readers read bilateral standard two-view mammograms plus one-view DBT. The two reading sessions of the experiment were separated by at least 2 weeks to reduce the chance of reader memory of the images read in the previous session from influencing the performance in the subsequent session. Results: Three hundred and fifty-four lesions were assessed and receiver-operative characteristic (ROC) analysis was used to evaluate the difference between the two modes. For standard two-view mammography plus CCMM, the area under the curve (AUC) was 0.87 [95% confidence interval (CI): 0.83–0.91] and for standard two-view mammography plus DBT the AUC was 0.93 (95% CI: 0.91–0.95). The difference between the AUCs was 0.06 with p-value of 0.0014. Conclusion: Two-view mammography with one-view DBT showed significantly improved accuracy compared to two-view mammography and CCMM in the assessment of mammographic abnormalities. These results show that DBT can be used effectively in the further evaluation of mammographic abnormalities found at screening and in symptomatic diagnostic practice. - Highlights: • Diagnostic accuracy of magnification mammography and digital breast tomosynthesis. • There is statistical difference between CCMM and DBT. • DBT has a role in evaluating mammographic abnormalities

  13. a New Approach for Accuracy Improvement of Pulsed LIDAR Remote Sensing Data

    Science.gov (United States)

    Zhou, G.; Huang, W.; Zhou, X.; He, C.; Li, X.; Huang, Y.; Zhang, L.

    2018-05-01

    In remote sensing applications, the accuracy of time interval measurement is one of the most important parameters that affect the quality of pulsed lidar data. The traditional time interval measurement technique has the disadvantages of low measurement accuracy, complicated circuit structure and large error. A high-precision time interval data cannot be obtained in these traditional methods. In order to obtain higher quality of remote sensing cloud images based on the time interval measurement, a higher accuracy time interval measurement method is proposed. The method is based on charging the capacitance and sampling the change of capacitor voltage at the same time. Firstly, the approximate model of the capacitance voltage curve in the time of flight of pulse is fitted based on the sampled data. Then, the whole charging time is obtained with the fitting function. In this method, only a high-speed A/D sampler and capacitor are required in a single receiving channel, and the collected data is processed directly in the main control unit. The experimental results show that the proposed method can get error less than 3 ps. Compared with other methods, the proposed method improves the time interval accuracy by at least 20 %.

  14. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2013-01-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now

  15. Cadastral Database Positional Accuracy Improvement

    Science.gov (United States)

    Hashim, N. M.; Omar, A. H.; Ramli, S. N. M.; Omar, K. M.; Din, N.

    2017-10-01

    Positional Accuracy Improvement (PAI) is the refining process of the geometry feature in a geospatial dataset to improve its actual position. This actual position relates to the absolute position in specific coordinate system and the relation to the neighborhood features. With the growth of spatial based technology especially Geographical Information System (GIS) and Global Navigation Satellite System (GNSS), the PAI campaign is inevitable especially to the legacy cadastral database. Integration of legacy dataset and higher accuracy dataset like GNSS observation is a potential solution for improving the legacy dataset. However, by merely integrating both datasets will lead to a distortion of the relative geometry. The improved dataset should be further treated to minimize inherent errors and fitting to the new accurate dataset. The main focus of this study is to describe a method of angular based Least Square Adjustment (LSA) for PAI process of legacy dataset. The existing high accuracy dataset known as National Digital Cadastral Database (NDCDB) is then used as bench mark to validate the results. It was found that the propose technique is highly possible for positional accuracy improvement of legacy spatial datasets.

  16. Photon caliper to achieve submillimeter positioning accuracy

    Science.gov (United States)

    Gallagher, Kyle J.; Wong, Jennifer; Zhang, Junan

    2017-09-01

    The purpose of this study was to demonstrate the feasibility of using a commercial two-dimensional (2D) detector array with an inherent detector spacing of 5 mm to achieve submillimeter accuracy in localizing the radiation isocenter. This was accomplished by delivering the Vernier ‘dose’ caliper to a 2D detector array where the nominal scale was the 2D detector array and the non-nominal Vernier scale was the radiation dose strips produced by the high-definition (HD) multileaf collimators (MLCs) of the linear accelerator. Because the HD MLC sequence was similar to the picket fence test, we called this procedure the Vernier picket fence (VPF) test. We confirmed the accuracy of the VPF test by offsetting the HD MLC bank by known increments and comparing the known offset with the VPF test result. The VPF test was able to determine the known offset within 0.02 mm. We also cross-validated the accuracy of the VPF test in an evaluation of couch hysteresis. This was done by using both the VPF test and the ExacTrac optical tracking system to evaluate the couch position. We showed that the VPF test was in agreement with the ExacTrac optical tracking system within a root-mean-square value of 0.07 mm for both the lateral and longitudinal directions. In conclusion, we demonstrated the VPF test can determine the offset between a 2D detector array and the radiation isocenter with submillimeter accuracy. Until now, no method to locate the radiation isocenter using a 2D detector array has been able to achieve such accuracy.

  17. High-accuracy mass determination of unstable nuclei with a Penning trap mass spectrometer

    CERN Multimedia

    2002-01-01

    The mass of a nucleus is its most fundamental property. A systematic study of nuclear masses as a function of neutron and proton number allows the observation of collective and single-particle effects in nuclear structure. Accurate mass data are the most basic test of nuclear models and are essential for their improvement. This is especially important for the astrophysical study of nuclear synthesis. In order to achieve the required high accuracy, the mass of ions captured in a Penning trap is determined via their cyclotron frequency $ \

  18. Accuracy and Precision of Three-Dimensional Low Dose CT Compared to Standard RSA in Acetabular Cups: An Experimental Study.

    Science.gov (United States)

    Brodén, Cyrus; Olivecrona, Henrik; Maguire, Gerald Q; Noz, Marilyn E; Zeleznik, Michael P; Sköldenberg, Olof

    2016-01-01

    Background and Purpose. The gold standard for detection of implant wear and migration is currently radiostereometry (RSA). The purpose of this study is to compare a three-dimensional computed tomography technique (3D CT) to standard RSA as an alternative technique for measuring migration of acetabular cups in total hip arthroplasty. Materials and Methods. With tantalum beads, we marked one cemented and one uncemented cup and mounted these on a similarly marked pelvic model. A comparison was made between 3D CT and standard RSA for measuring migration. Twelve repeated stereoradiographs and CT scans with double examinations in each position and gradual migration of the implants were made. Precision and accuracy of the 3D CT were calculated. Results. The accuracy of the 3D CT ranged between 0.07 and 0.32 mm for translations and 0.21 and 0.82° for rotation. The precision ranged between 0.01 and 0.09 mm for translations and 0.06 and 0.29° for rotations, respectively. For standard RSA, the precision ranged between 0.04 and 0.09 mm for translations and 0.08 and 0.32° for rotations, respectively. There was no significant difference in precision between 3D CT and standard RSA. The effective radiation dose of the 3D CT method, comparable to RSA, was estimated to be 0.33 mSv. Interpretation. Low dose 3D CT is a comparable method to standard RSA in an experimental setting.

  19. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images. A Japanese multicenter study

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kenichi; Matsuo, Shinro [Kanazawa University Hospital, Kanazawa (Japan); Kudo, Takashi [Nagasaki University Hospital, Nagasaki (Japan); Nakata, Tomoaki [Hakodate Goryoukaku Hospital, Hakodate (Japan); Kiso, Keisuke [National Cerebral and Cardiovascular Center, Suita (Japan); Kasai, Tokuo [Tokyo Medical University Hachioji Medical Center, Hachioji (Japan); Taniguchi, Yasuyo [Hyogo Brain and Heart Center, Himeji (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Tokyo (Japan); Nakagawa, Masayasu [Akita City Hospital, Akita (Japan); Sarai, Masayoshi [Fujita Health University Hospital, Toyoake (Japan); Hida, Satoshi [Tokyo Medical University Hospital, Tokyo (Japan); Tanaka, Hirokazu [Tokyo Medical University Ibaraki Medical Center, Ibaraki (Japan); Yokoyama, Kunihiko [Public Central Hospital of Matto Ishikawa, Hakusan (Japan); Okuda, Koichi [Kanazawa Medical University, Kahoku (Japan); Edenbrandt, Lars [University of Gothenburg, Gothenburg (Sweden)

    2017-12-15

    Artificial neural networks (ANN) might help to diagnose coronary artery disease. This study aimed to determine whether the diagnostic accuracy of an ANN-based diagnostic system and conventional quantitation are comparable. The ANN was trained to classify potentially abnormal areas as true or false based on the nuclear cardiology expert interpretation of 1001 gated stress/rest {sup 99m}Tc-MIBI images at 12 hospitals. The diagnostic accuracy of the ANN was compared with 364 expert interpretations that served as the gold standard of abnormality for the validation study. Conventional summed stress/rest/difference scores (SSS/SRS/SDS) were calculated and compared with receiver operating characteristics (ROC) analysis. The ANN generated a better area under the ROC curves (AUC) than SSS (0.92 vs. 0.82, p < 0.0001), indicating better identification of stress defects. The ANN also generated a better AUC than SDS (0.90 vs. 0.75, p < 0.0001) for stress-induced ischemia. The AUC for patients with old myocardial infarction based on rest defects was 0.97 (0.91 for SRS, p = 0.0061), and that for patients with and without a history of revascularization based on stress defects was 0.94 and 0.90 (p = 0.0055 and p < 0.0001 vs. SSS, respectively). The SSS/SRS/SDS steeply increased when ANN values (probability of abnormality) were >0.80. The ANN was diagnostically accurate in various clinical settings, including that of patients with previous myocardial infarction and coronary revascularization. The ANN could help to diagnose coronary artery disease. (orig.)

  20. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images. A Japanese multicenter study

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Matsuo, Shinro; Kudo, Takashi; Nakata, Tomoaki; Kiso, Keisuke; Kasai, Tokuo; Taniguchi, Yasuyo; Momose, Mitsuru; Nakagawa, Masayasu; Sarai, Masayoshi; Hida, Satoshi; Tanaka, Hirokazu; Yokoyama, Kunihiko; Okuda, Koichi; Edenbrandt, Lars

    2017-01-01

    Artificial neural networks (ANN) might help to diagnose coronary artery disease. This study aimed to determine whether the diagnostic accuracy of an ANN-based diagnostic system and conventional quantitation are comparable. The ANN was trained to classify potentially abnormal areas as true or false based on the nuclear cardiology expert interpretation of 1001 gated stress/rest 99m Tc-MIBI images at 12 hospitals. The diagnostic accuracy of the ANN was compared with 364 expert interpretations that served as the gold standard of abnormality for the validation study. Conventional summed stress/rest/difference scores (SSS/SRS/SDS) were calculated and compared with receiver operating characteristics (ROC) analysis. The ANN generated a better area under the ROC curves (AUC) than SSS (0.92 vs. 0.82, p < 0.0001), indicating better identification of stress defects. The ANN also generated a better AUC than SDS (0.90 vs. 0.75, p < 0.0001) for stress-induced ischemia. The AUC for patients with old myocardial infarction based on rest defects was 0.97 (0.91 for SRS, p = 0.0061), and that for patients with and without a history of revascularization based on stress defects was 0.94 and 0.90 (p = 0.0055 and p < 0.0001 vs. SSS, respectively). The SSS/SRS/SDS steeply increased when ANN values (probability of abnormality) were >0.80. The ANN was diagnostically accurate in various clinical settings, including that of patients with previous myocardial infarction and coronary revascularization. The ANN could help to diagnose coronary artery disease. (orig.)

  1. A comparative study on accuracy of liquid crystal forehead, digital electronic axillary, infrared tympanic with glass-mercury rectal thermometer in infants and young children.

    Science.gov (United States)

    Kongpanichkul, A; Bunjongpak, S

    2000-09-01

    This study was carried out to assess the accuracy of three devices namely, liquid crystal forehead, digital electronic axillary and infrared tympanic thermometer, using a glass-mercury rectal thermometer as the control. The subjects were two hundred children aged 0-48 months. The mean rectal temperature was 38.0 +/- 0.91 degrees C; forehead, 37.83 +/- 0.94 degrees C; tympanic, 37.77 +/- 0.95 degrees C, and axillary, 37.71 +/- 0.86 degrees C. Compared to the rectal temperature, all values were significantly lower (p < 0.05). Forehead, tympanic and axillary temperature differed from rectal temperature by at least 0.5 degrees C in 33.33 per cent, 23.5 per cent and 31.5 per cent of subjects, and at least 1 degrees C in 22 per cent, 1 per cent and 6 per cent of subjects respectively. Accuracy in detection of fever was 79 per cent for forehead, 85.5 per cent for tympanic and 84 per cent for axillary thermometry. Sensitivity of the three devices was 67-83 per cent in detection of fever and 64-77 per cent in detection of high fever. Tympanic thermometry had the best performance while forehead thermometry had the poorest. After using revised diagnostic threshold temperature by ROC curves, sensitivity of each device improved but accuracy was nearly the same. It is concluded that the three devices are not suitable as a substitute for a glass-mercury rectal thermometer in assessment of fever in infants and young children.

  2. Accuracy optimization of high-speed AFM measurements using Design of Experiments

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, F.; Hansen, Hans Nørgaard

    2010-01-01

    Atomic Force Microscopy (AFM) is being increasingly employed in industrial micro/nano manufacturing applications and integrated into production lines. In order to achieve reliable process and product control at high measuring speed, instrument optimization is needed. Quantitative AFM measurement...... results are influenced by a number of scan settings parameters, defining topography sampling and measurement time: resolution (number of profiles and points per profile), scan range and direction, scanning force and speed. Such parameters are influencing lateral and vertical accuracy and, eventually......, the estimated dimensions of measured features. The definition of scan settings is based on a comprehensive optimization that targets maximization of information from collected data and minimization of measurement uncertainty and scan time. The Design of Experiments (DOE) technique is proposed and applied...

  3. Accuracy of percutaneous pedicle screws for thoracic and lumbar spine fractures compared with open technique.

    Science.gov (United States)

    Paredes, Igor; Panero, Irene; Cepeda, Santiago; Castaño-Leon, Ana M; Jimenez-Roldan, Luis; Perez-Nuñez, Ángel; Alén, Jose A; Lagares, Alfonso

    2018-06-14

    This study aimed to compare the accuracy of screw placement between open pedicle screw fixation and percutaneous pedicle screw fixation (MIS) for the treatment of thoracolumbar spine fractures (TSF). Forty-nine patients with acute TSF who were treated with transpedicular screw fixation from January 2013 to December 2016 were retrospectively reviewed. The patients were divided into Open and MIS groups. Laminectomy was performed in either group if needed. The accuracy of the screw placement, the evolution of the Cobb sagital angle postoperatively and at 12-month follow up and the neurological status were recorded. AO type of fracture and TLICS score were also recorded. Mean age was 42 years old. Mean TLICS score was 6,29 and 5,96 for open and MIS groups respectively. Twenty five MIS and 24 open surgeries were performed, and 350 (175 in each group) screws were inserted (7,14 per patient). Twenty-four and 13 screws were considered ̈out ̈ in the open and MIS groups respectively (Odds ratio 1,98. 0,97-4,03 p=0,056). The Cobb sagittal angle went from 13,3o to 4,5o and from 14,9o to 8,2o in the Open and MIS groups respectively (both popen and MIS groups respectively. No neurological worsening was observed. For the treatment of acute thoracolumbar fractures, the MIS technique seems to achieve similar results to the open technique in relation to neurological improvement and deformity correction, while placing the screws more accurately.

  4. Assessment of Relative Accuracy of AHN-2 Laser Scanning Data Using Planar Features

    NARCIS (Netherlands)

    Khoshelham, K.; Soudarissanane, S.; Van der Sande, C.

    2010-01-01

    AHN-2 is the second part of the Actueel Hoogtebestand Nederland project, which concerns the acquisition of high-resolution altimetry data over the entire Netherlands using airborne laser scanning. The accuracy assessment of laser altimetry data usually relies on comparing corresponding tie elements,

  5. Surgical accuracy of three-dimensional virtual planning

    DEFF Research Database (Denmark)

    Stokbro, Kasper; Aagaard, Esben; Torkov, Peter

    2016-01-01

    This retrospective study evaluated the precision and positional accuracy of different orthognathic procedures following virtual surgical planning in 30 patients. To date, no studies of three-dimensional virtual surgical planning have evaluated the influence of segmentation on positional accuracy...... and transverse expansion. Furthermore, only a few have evaluated the precision and accuracy of genioplasty in placement of the chin segment. The virtual surgical plan was compared with the postsurgical outcome by using three linear and three rotational measurements. The influence of maxillary segmentation...

  6. Effect of Polyvinyl Siloxane Viscosity on Accuracy of Dental Implant Impressions

    Directory of Open Access Journals (Sweden)

    Ahmad Ghahremanloo

    2017-02-01

    Full Text Available Objectives: The aim of this study was to compare the accuracy of dental implant impressions obtained by a combination of different impression techniques and viscosities of polyvinyl siloxane (PVS.Materials and Methods: Four parallel fixtures were placed between mental foramina in a master model of lower dental arch. Three different viscosities (putty/light body, medium body/light body, and monophase: heavy body and direct and indirect techniques (six groups were used, and seven impressions were obtained from each group (n=42. To measure the accuracy of impressions, drift, horizontal, and vertical angles of the implants, as well as the hex rotation of the implants in casts were evaluated using a digitizer device (1μm accuracy, in comparison with master arch. Data were analyzed using five-factor two-way ANOVA and Tukey’s post-hoc test.Results: The accuracy of impressions was assessed and the results showed that direct technique was not significantly different from indirect technique (P>0.05. Also, there were no significant differences between the mentioned viscosities except for the horizontal angle (P=0.006.Conclusions: Viscosity of impression materials is of high significance for the accuracy of dental impressions.Keywords: Dental Materials; Dental Implants; Dental Impression Technique; Viscosity; Vinyl Polysiloxane; Dimensional Measurement Accuracy

  7. Comparative Study on Assimilating Remote Sensing High Frequency Radar Surface Currents at an Atlantic Marine Renewable Energy Test Site

    OpenAIRE

    Lei Ren; Michael Hartnett

    2017-01-01

    A variety of data assimilation approaches have been applied to enhance modelling capability and accuracy using observations from different sources. The algorithms have varying degrees of complexity of implementation, and they improve model results with varying degrees of success. Very little work has been carried out on comparing the implementation of different data assimilation algorithms using High Frequency radar (HFR) data into models of complex inshore waters strongly influenced by both ...

  8. Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: A novel in vivo analysis method.

    Science.gov (United States)

    Nedelcu, R; Olsson, P; Nyström, I; Rydén, J; Thor, A

    2018-02-01

    To evaluate a novel methodology using industrial scanners as a reference, and assess in vivo accuracy of 3 intraoral scanners (IOS) and conventional impressions. Further, to evaluate IOS precision in vivo. Four reference-bodies were bonded to the buccal surfaces of upper premolars and incisors in five subjects. After three reference-scans, ATOS Core 80 (ATOS), subjects were scanned three times with three IOS systems: 3M True Definition (3M), CEREC Omnicam (OMNI) and Trios 3 (TRIOS). One conventional impression (IMPR) was taken, 3M Impregum Penta Soft, and poured models were digitized with laboratory scanner 3shape D1000 (D1000). Best-fit alignment of reference-bodies and 3D Compare Analysis was performed. Precision of ATOS and D1000 was assessed for quantitative evaluation and comparison. Accuracy of IOS and IMPR were analyzed using ATOS as reference. Precision of IOS was evaluated through intra-system comparison. Precision of ATOS reference scanner (mean 0.6 μm) and D1000 (mean 0.5 μm) was high. Pairwise multiple comparisons of reference-bodies located in different tooth positions displayed a statistically significant difference of accuracy between two scanner-groups: 3M and TRIOS, over OMNI (p value range 0.0001 to 0.0006). IMPR did not show any statistically significant difference to IOS. However, deviations of IOS and IMPR were within a similar magnitude. No statistical difference was found for IOS precision. The methodology can be used for assessing accuracy of IOS and IMPR in vivo in up to five units bilaterally from midline. 3M and TRIOS had a higher accuracy than OMNI. IMPR overlapped both groups. Intraoral scanners can be used as a replacement for conventional impressions when restoring up to ten units without extended edentulous spans. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Social Power Increases Interoceptive Accuracy

    Directory of Open Access Journals (Sweden)

    Mehrad Moeini-Jazani

    2017-08-01

    Full Text Available Building on recent psychological research showing that power increases self-focused attention, we propose that having power increases accuracy in perception of bodily signals, a phenomenon known as interoceptive accuracy. Consistent with our proposition, participants in a high-power experimental condition outperformed those in the control and low-power conditions in the Schandry heartbeat-detection task. We demonstrate that the effect of power on interoceptive accuracy is not explained by participants’ physiological arousal, affective state, or general intention for accuracy. Rather, consistent with our reasoning that experiencing power shifts attentional resources inward, we show that the effect of power on interoceptive accuracy is dependent on individuals’ chronic tendency to focus on their internal sensations. Moreover, we demonstrate that individuals’ chronic sense of power also predicts interoceptive accuracy similar to, and independent of, how their situationally induced feeling of power does. We therefore provide further support on the relation between power and enhanced perception of bodily signals. Our findings offer a novel perspective–a psychophysiological account–on how power might affect judgments and behavior. We highlight and discuss some of these intriguing possibilities for future research.

  10. Effect of Polyvinyl Siloxane Viscosity on Accuracy of Dental Implant Impressions.

    Science.gov (United States)

    Ghahremanloo, Ahmad; Seifi, Mahdieh; Ghanbarzade, Jalil; Abrisham, Seyyed Mohammad; Javan, Rashid Abdolah

    2017-01-01

    The aim of this study was to compare the accuracy of dental implant impressions obtained by a combination of different impression techniques and viscosities of polyvinyl siloxane (PVS). Four parallel fixtures were placed between mental foramina in a master model of lower dental arch. Three different viscosities (putty/light body, medium body/light body, and monophase: heavy body) and direct and indirect techniques (six groups) were used, and seven impressions were obtained from each group (n=42). To measure the accuracy of impressions, drift, horizontal, and vertical angles of the implants, as well as the hex rotation of the implants in casts were evaluated using a digitizer device (1μm accuracy), in comparison with master arch. Data were analyzed using five-factor two-way ANOVA and Tukey's post-hoc test. The accuracy of impressions was assessed and the results showed that direct technique was not significantly different from indirect technique (P>0.05). Also, there were no significant differences between the mentioned viscosities except for the horizontal angle (P=0.006). Viscosity of impression materials is of high significance for the accuracy of dental impressions.

  11. Automated pulmonary nodule volumetry with an optimized algorithm - accuracy at different slice thicknesses compared to unidimensional and bidimentional measurements

    International Nuclear Information System (INIS)

    Vogel, M.N.; Schmuecker, S.; Maksimovich, O.; Claussen, C.D.; Horger, M.; Vonthein, R.; Bethge, W.; Dicken, V.

    2008-01-01

    Purpose: This in-vivo study quantifies the accuracy of automated pulmonary nodule volumetry in reconstructions with different slice thicknesses (ST) of clinical routine CT scans. The accuracy of volumetry is compared to that of unidimensional and bidimensional measurements. Materials and Methods: 28 patients underwent contrast enhanced 64-row CT scans of the chest and abdomen obtained in the clinical routine. All scans were reconstructed with 1, 3, and 5 mm ST. Volume, maximum axial diameter, and areas following the guidelines of Response Evaluation Criteria in Solid Tumors (RECIST) and the World Health Organization (WHO) were measured in all 101 lesions located in the overlap region of both scans using the new software tool OncoTreat (MeVis, Deutschland). The accuracy of quantifications in both scans was evaluated using the Bland and Altmann method. The reproducibility of measurements in dependence on the ST was compared using the likelihood ratio Chi-squared test. Results: A total of 101 nodules were identified in all patients. Segmentation was considered successful in 88.1% of the cases without local manual correction which was deliberately not employed in this study. For 80 nodules all 6 measurements were successful. These were statistically evaluated. The volumes were in the range 0.1 to 15.6 ml. Of all 80 lesions, 34 (42%) had direct contact to the pleura parietalis oder diaphragmalis and were termed parapleural, 32 (40%) were paravascular, 7 (9%) both parapleural and paravascular, the remaining 21 (27%) were free standing in the lung. The trueness differed significantly (Chi-square 7.22, p value 0.027) and was best with an ST of 3 mm and worst at 5 mm. Differences in precision were not significant (Chi-square 5.20, p value 0.074). The limits of agreement for an ST of 3 mm were ± 17.5% of the mean volume for volumetry, for maximum diameters ± 1.3 mm, and ± 31.8% for the calculated areas. Conclusion: Automated volumetry of pulmonary nodules using Onco

  12. Diagnostic accuracy of DXA compared to conventional spine radiographs for the detection of vertebral fractures in children

    International Nuclear Information System (INIS)

    Adiotomre, E.; Summers, L.; Digby, M.; Allison, A.; Walters, S.J.; Broadley, P.; Lang, I.; Morrison, G.; Bishop, N.; Arundel, P.; Offiah, A.C.

    2017-01-01

    In children, radiography is performed to diagnose vertebral fractures and dual energy x-ray absorptiometry (DXA) to assess bone density. In adults, DXA assesses both. We aimed to establish whether DXA can replace spine radiographs in assessment of paediatric vertebral fractures. Prospectively, lateral spine radiographs and lateral spine DXA of 250 children performed on the same day were independently scored by three radiologists using the simplified algorithm-based qualitative technique and blinded to results of the other modality. Consensus radiograph read and second read of 100 random images were performed. Diagnostic accuracy, inter/intraobserver and intermodality agreements, patient/carer experience and radiation dose were assessed. Average sensitivity and specificity (95 % confidence interval) in diagnosing one or more vertebral fractures requiring treatment was 70 % (58-82 %) and 97 % (94-100 %) respectively for DXA and 74 % (55-93 %) and 96 % (95-98 %) for radiographs. Fleiss' kappa for interobserver and average kappa for intraobserver reliability were 0.371 and 0.631 respectively for DXA and 0.418 and 0.621 for radiographs. Average effective dose was 41.9 μSv for DXA and 232.7 μSv for radiographs. Image quality was similar. Given comparable image quality and non-inferior diagnostic accuracy, lateral spine DXA should replace conventional radiographs for assessment of vertebral fractures in children. (orig.)

  13. Diagnostic accuracy of DXA compared to conventional spine radiographs for the detection of vertebral fractures in children

    Energy Technology Data Exchange (ETDEWEB)

    Adiotomre, E. [Sheffield Teaching Hospitals NHS Foundation Trust, Radiology Department, Sheffield, South Yorkshire (United Kingdom); Sheffield Children' s Hospital NHS Foundation Trust, Radiology Department, Sheffield, South Yorkshire (United Kingdom); Summers, L.; Digby, M. [University of Sheffield, Sheffield Medical School, Sheffield, South Yorkshire (United Kingdom); Allison, A.; Walters, S.J. [University of Sheffield, School of Health and Related Research, Sheffield, South Yorkshire (United Kingdom); Broadley, P.; Lang, I. [Sheffield Children' s Hospital NHS Foundation Trust, Radiology Department, Sheffield, South Yorkshire (United Kingdom); Morrison, G. [Sheffield Teaching Hospitals NHS Foundation Trust, Medical Physics, Sheffield, South Yorkshire (United Kingdom); Bishop, N.; Arundel, P. [University of Sheffield, Academic Unit of Child Health, Sheffield, South Yorkshire (United Kingdom); Offiah, A.C. [Sheffield Children' s Hospital NHS Foundation Trust, Radiology Department, Sheffield, South Yorkshire (United Kingdom); University of Sheffield, Academic Unit of Child Health, Sheffield, South Yorkshire (United Kingdom)

    2017-05-15

    In children, radiography is performed to diagnose vertebral fractures and dual energy x-ray absorptiometry (DXA) to assess bone density. In adults, DXA assesses both. We aimed to establish whether DXA can replace spine radiographs in assessment of paediatric vertebral fractures. Prospectively, lateral spine radiographs and lateral spine DXA of 250 children performed on the same day were independently scored by three radiologists using the simplified algorithm-based qualitative technique and blinded to results of the other modality. Consensus radiograph read and second read of 100 random images were performed. Diagnostic accuracy, inter/intraobserver and intermodality agreements, patient/carer experience and radiation dose were assessed. Average sensitivity and specificity (95 % confidence interval) in diagnosing one or more vertebral fractures requiring treatment was 70 % (58-82 %) and 97 % (94-100 %) respectively for DXA and 74 % (55-93 %) and 96 % (95-98 %) for radiographs. Fleiss' kappa for interobserver and average kappa for intraobserver reliability were 0.371 and 0.631 respectively for DXA and 0.418 and 0.621 for radiographs. Average effective dose was 41.9 μSv for DXA and 232.7 μSv for radiographs. Image quality was similar. Given comparable image quality and non-inferior diagnostic accuracy, lateral spine DXA should replace conventional radiographs for assessment of vertebral fractures in children. (orig.)

  14. Methodology for GPS Synchronization Evaluation with High Accuracy

    OpenAIRE

    Li Zan; Braun Torsten; Dimitrova Desislava

    2015-01-01

    Clock synchronization in the order of nanoseconds is one of the critical factors for time based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper we are particularly interested in GPS based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Ou...

  15. Methodology for GPS Synchronization Evaluation with High Accuracy

    OpenAIRE

    Li, Zan; Braun, Torsten; Dimitrova, Desislava Cvetanova

    2015-01-01

    Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. O...

  16. A high-accuracy optical linear algebra processor for finite element applications

    Science.gov (United States)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  17. THE IMPACT OF MODERATE AND HIGH INTENSITY TOTAL BODY FATIGUE ON PASSING ACCURACY IN EXPERT AND NOVICE BASKETBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Mark Lyons

    2006-06-01

    Full Text Available Despite the acknowledged importance of fatigue on performance in sport, ecologically sound studies investigating fatigue and its effects on sport-specific skills are surprisingly rare. The aim of this study was to investigate the effect of moderate and high intensity total body fatigue on passing accuracy in expert and novice basketball players. Ten novice basketball players (age: 23.30 ± 1.05 yrs and ten expert basketball players (age: 22.50 ± 0.41 yrs volunteered to participate in the study. Both groups performed the modified AAHPERD Basketball Passing Test under three different testing conditions: rest, moderate intensity and high intensity total body fatigue. Fatigue intensity was established using a percentage of the maximal number of squat thrusts performed by the participant in one minute. ANOVA with repeated measures revealed a significant (F 2,36 = 5.252, p = 0.01 level of fatigue by level of skill interaction. On examination of the mean scores it is clear that following high intensity total body fatigue there is a significant detriment in the passing performance of both novice and expert basketball players when compared to their resting scores. Fundamentally however, the detrimental impact of fatigue on passing performance is not as steep in the expert players compared to the novice players. The results suggest that expert or skilled players are better able to cope with both moderate and high intensity fatigue conditions and maintain a higher level of performance when compared to novice players. The findings of this research therefore, suggest the need for trainers and conditioning coaches in basketball to include moderate, but particularly high intensity exercise into their skills sessions. This specific training may enable players at all levels of the game to better cope with the demands of the game on court and maintain a higher standard of play

  18. High-accuracy measurement and compensation of grating line-density error in a tiled-grating compressor

    Science.gov (United States)

    Zhao, Dan; Wang, Xiao; Mu, Jie; Li, Zhilin; Zuo, Yanlei; Zhou, Song; Zhou, Kainan; Zeng, Xiaoming; Su, Jingqin; Zhu, Qihua

    2017-02-01

    The grating tiling technology is one of the most effective means to increase the aperture of the gratings. The line-density error (LDE) between sub-gratings will degrade the performance of the tiling gratings, high accuracy measurement and compensation of the LDE are of significance to improve the output pulses characteristics of the tiled-grating compressor. In this paper, the influence of LDE on the output pulses of the tiled-grating compressor is quantitatively analyzed by means of numerical simulation, the output beams drift and output pulses broadening resulting from the LDE are presented. Based on the numerical results we propose a compensation method to reduce the degradations of the tiled grating compressor by applying angular tilt error and longitudinal piston error at the same time. Moreover, a monitoring system is setup to measure the LDE between sub-gratings accurately and the dispersion variation due to the LDE is also demonstrated based on spatial-spectral interference. In this way, we can realize high-accuracy measurement and compensation of the LDE, and this would provide an efficient way to guide the adjustment of the tiling gratings.

  19. Diagnostic accuracy of low-dose CT compared with abdominal radiography in non-traumatic acute abdominal pain: prospective study and systematic review.

    Science.gov (United States)

    Alshamari, Muhammed; Norrman, Eva; Geijer, Mats; Jansson, Kjell; Geijer, Håkan

    2016-06-01

    Abdominal radiography is frequently used in acute abdominal non-traumatic pain despite the availability of more advanced diagnostic modalities. This study evaluates the diagnostic accuracy of low-dose CT compared with abdominal radiography, at similar radiation dose levels. Fifty-eight patients were imaged with both methods and were reviewed independently by three radiologists. The reference standard was obtained from the diagnosis in medical records. Sensitivity and specificity were calculated. A systematic review was performed after a literature search, finding a total of six relevant studies including the present. Overall sensitivity with 95 % CI for CT was 75 % (66-83 %) and 46 % (37-56 %) for radiography. Specificity was 87 % (77-94 %) for both methods. In the systematic review the overall sensitivity for CT varied between 75 and 96 % with specificity from 83 to 95 % while the overall sensitivity for abdominal radiography varied between 30 and 77 % with specificity 75 to 88 %. Based on the current study and available evidence, low-dose CT has higher diagnostic accuracy than abdominal radiography and it should, where logistically possible, replace abdominal radiography in the workup of adult patients with acute non-traumatic abdominal pain. • Low-dose CT has a higher diagnostic accuracy than radiography. • A systematic review shows that CT has better diagnostic accuracy than radiography. • Radiography has no place in the workup of acute non-traumatic abdominal pain.

  20. High-accuracy measurement of ship velocities by DGPS; DGPS ni yoru sensoku keisoku no koseidoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S; Koterayama, W [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-10

    The differential global positioning system (DGPS) can eliminate most of errors in ship velocity measurement by GPS positioning alone. Through two rounds of marine observations by towing an observation robot in summer 1995, the authors attempted high-accuracy measurement of ship velocities by DGPS, and also carried out both positioning by GPS alone and measurement using the bottom track of ADCP (acoustic Doppler current profiler). In this paper, the results obtained by these measurement methods were examined through comparison among them, and the accuracy of the measured ship velocities was considered. In DGPS measurement, both translocation method and interference positioning method were used. ADCP mounted on the observation robot allowed measurement of the velocity of current meter itself by its bottom track in shallow sea areas less than 350m. As the result of these marine observations, it was confirmed that the accuracy equivalent to that of direct measurement by bottom track is possible to be obtained by DGPS. 3 refs., 5 figs., 1 tab.

  1. Extrinsic factors affecting accuracy of ultrasonic flowmeters for LMFBRs

    International Nuclear Information System (INIS)

    Managan, W.W.

    1976-08-01

    Assuming that ultrasonic flowmeters of suitable intrinsic accuracy are feasible, this report explores factors extrinsic to the flowmeter which affect the accuracy such as asymmetric flow profile, regions of high turbulence and thermal stratification. By integrating isovelocity flow profile maps, the predicted performance of various flowmeter configurations may be compared to experimental data. For the two pipe arrangements analyzed, the single diametral path flowmeter results were within 5 percent of true flow rate. Theoretical correction factors could reduce the error for the straight pipe but increased the error for asymmetrical flow. On the same pipe arrangements a four path ultrasonic flowmeter spaced for Gaussian integration gave less than 1 percent error. For more general conclusions a range of flow profiles produced by typical LMFBR piping arrangements must be analyzed

  2. ACCURACY ASSESSMENT OF UNDERWATER PHOTOGRAMMETRIC THREE DIMENSIONAL MODELLING FOR CORAL REEFS

    Directory of Open Access Journals (Sweden)

    T. Guo

    2016-06-01

    Full Text Available Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values. Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.

  3. Dose delivery verification and accuracy assessment of stereotaxy in stereotactic radiotherapy and radiosurgery

    International Nuclear Information System (INIS)

    Pelagade, S.M.; Bopche, T.T.; Namitha, K.; Munshi, M.; Bhola, S.; Sharma, H.; Patel, B.K.; Vyas, R.K.

    2008-01-01

    The outcome of stereotactic radiotherapy (SRT) and stereotactic radiosurgery (SRS) in both benign and malignant tumors within the cranial region highly depends on precision in dosimetry, dose delivery and the accuracy assessment of stereotaxy associated with the unit. The frames BRW (Brown-Roberts-Wells) and GTC (Gill- Thomas-Cosman) can facilitate accurate patient positioning as well as precise targeting of tumours. The implementation of this technique may result in a significant benefit as compared to conventional therapy. As the target localization accuracy is improved, the demand for treatment planning accuracy of a TPS is also increased. The accuracy of stereotactic X Knife treatment planning system has two components to verify: (i) the dose delivery verification and the accuracy assessment of stereotaxy; (ii) to ensure that the Cartesian coordinate system associated is well established within the TPS for accurate determination of a target position. Both dose delivery verification and target positional accuracy affect dose delivery accuracy to a defined target. Hence there is a need to verify these two components in quality assurance protocol. The main intention of this paper is to present our dose delivery verification procedure using cylindrical wax phantom and accuracy assessment (target position) of stereotaxy using Geometric Phantom on Elekta's Precise linear accelerator for stereotactic installation

  4. CT Angiography of Peripheral Arterial Disease by 256-Slice Scanner: Accuracy, Advantages and Disadvantages Compared to Digital Subtraction Angiography.

    Science.gov (United States)

    Mishra, Atul; Jain, Narendra; Bhagwat, Anand

    2017-07-01

    Peripheral arterial occlusive disease (PAOD) may cause disabling claudication or critical limb ischemia. Multidetector computed tomography (CT) technology has evolved to the level of 256-slice CT scanners which has significantly improved the spatial and temporal resolution of the images. This has provided the capability of chasing the contrast bolus at a fast speed enabling angiographic imaging of long segments of the body. These images can be reconstructed in various planes and various modes for detailed analysis of the peripheral vascular diseases which helps in making treatment decision. The aim of this retrospective study was to compare the CT angiograms (CTAs) of all cases of PAOD done by 256-slice CT scanner at a tertiary care vascular center and comparing these images with the digital subtraction angiograms (DSAs) of these patients. The retrospective study included 53 patients who underwent both CTA and DSA at our center over a period of 3 years from March 2013 to March 2016. The CTA showed high sensitivity (93%) and specificity (92.7%) for overall assessment of degree of stenosis in a vascular segment in cases of aortic and lower limb occlusive disease. The assessment of lesions of infrapopliteal segment was comparatively inferior (sensitivity 91.6%, accuracy 73.3%, and positive predictive value 78.5%), more so in the presence of significant calcification. The advantages of CTA were its noninvasive nature, ability to image large area of body, almost no adverse effects to the patients, and better assessment of vessel wall disease. However, the CTA assessment of collaterals was inferior with a sensitivity of only 62.7% as compared to DSA. Overall, 256-slice CTA provides fast and accurate imaging of vascular tree which can restrict DSA only in few selected cases as a problem-solving tool where clinico-radiological mismatch is present.

  5. Cost-effective improvements of a rotating platform by integration of a high-accuracy inclinometer and encoders for attitude evaluation

    International Nuclear Information System (INIS)

    Wen, Chenyang; He, Shengyang; Hu, Peida; Bu, Changgen

    2017-01-01

    Attitude heading reference systems (AHRSs) based on micro-electromechanical system (MEMS) inertial sensors are widely used because of their low cost, light weight, and low power. However, low-cost AHRSs suffer from large inertial sensor errors. Therefore, experimental performance evaluation of MEMS-based AHRSs after system implementation is necessary. High-accuracy turntables can be used to verify the performance of MEMS-based AHRSs indoors, but they are expensive and unsuitable for outdoor tests. This study developed a low-cost two-axis rotating platform for indoor and outdoor attitude determination. A high-accuracy inclinometer and encoders were integrated into the platform to improve the achievable attitude test accuracy. An attitude error compensation method was proposed to calibrate the initial attitude errors caused by the movements and misalignment angles of the platform. The proposed attitude error determination method was examined through rotating experiments, which showed that the standard deviations of the pitch and roll errors were 0.050° and 0.090°, respectively. The pitch and roll errors both decreased to 0.024° when the proposed attitude error determination method was used. This decrease validates the effectiveness of the compensation method. Experimental results demonstrated that the integration of the inclinometer and encoders improved the performance of the low-cost, two-axis, rotating platform in terms of attitude accuracy. (paper)

  6. Accuracy assessment of high-rate GPS measurements for seismology

    Science.gov (United States)

    Elosegui, P.; Davis, J. L.; Ekström, G.

    2007-12-01

    Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.

  7. 100% classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox.

    Directory of Open Access Journals (Sweden)

    Francisco J Valverde-Albacete

    Full Text Available The most widely spread measure of performance, accuracy, suffers from a paradox: predictive models with a given level of accuracy may have greater predictive power than models with higher accuracy. Despite optimizing classification error rate, high accuracy models may fail to capture crucial information transfer in the classification task. We present evidence of this behavior by means of a combinatorial analysis where every possible contingency matrix of 2, 3 and 4 classes classifiers are depicted on the entropy triangle, a more reliable information-theoretic tool for classification assessment. Motivated by this, we develop from first principles a measure of classification performance that takes into consideration the information learned by classifiers. We are then able to obtain the entropy-modulated accuracy (EMA, a pessimistic estimate of the expected accuracy with the influence of the input distribution factored out, and the normalized information transfer factor (NIT, a measure of how efficient is the transmission of information from the input to the output set of classes. The EMA is a more natural measure of classification performance than accuracy when the heuristic to maximize is the transfer of information through the classifier instead of classification error count. The NIT factor measures the effectiveness of the learning process in classifiers and also makes it harder for them to "cheat" using techniques like specialization, while also promoting the interpretability of results. Their use is demonstrated in a mind reading task competition that aims at decoding the identity of a video stimulus based on magnetoencephalography recordings. We show how the EMA and the NIT factor reject rankings based in accuracy, choosing more meaningful and interpretable classifiers.

  8. Accuracy of Prediction Equations to Assess Percentage of Body Fat in Children and Adolescents with Down Syndrome Compared to Air Displacement Plethysmography

    Science.gov (United States)

    Gonzalez-Aguero, A.; Vicente-Rodriguez, G.; Ara, I.; Moreno, L. A.; Casajus, J. A.

    2011-01-01

    To determine the accuracy of the published percentage body fat (%BF) prediction equations (Durnin et al., Johnston et al., Brook and Slaughter et al.) from skinfold thickness compared to air displacement plethysmography (ADP) in children and adolescents with Down syndrome (DS). Twenty-eight children and adolescents with DS (10-20 years old; 12…

  9. FIELD ACCURACY TEST OF RPAS PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    P. Barry

    2013-08-01

    Full Text Available Baseline Surveys Ltd is a company which specialises in the supply of accurate geospatial data, such as cadastral, topographic and engineering survey data to commercial and government bodies. Baseline Surveys Ltd invested in aerial drone photogrammetric technology and had a requirement to establish the spatial accuracy of the geographic data derived from our unmanned aerial vehicle (UAV photogrammetry before marketing our new aerial mapping service. Having supplied the construction industry with survey data for over 20 years, we felt that is was crucial for our clients to clearly understand the accuracy of our photogrammetry so they can safely make informed spatial decisions, within the known accuracy limitations of our data. This information would also inform us on how and where UAV photogrammetry can be utilised. What we wanted to find out was the actual accuracy that can be reliably achieved using a UAV to collect data under field conditions throughout a 2 Ha site. We flew a UAV over the test area in a "lawnmower track" pattern with an 80% front and 80% side overlap; we placed 45 ground markers as check points and surveyed them in using network Real Time Kinematic Global Positioning System (RTK GPS. We specifically designed the ground markers to meet our accuracy needs. We established 10 separate ground markers as control points and inputted these into our photo modelling software, Agisoft PhotoScan. The remaining GPS coordinated check point data were added later in ArcMap to the completed orthomosaic and digital elevation model so we could accurately compare the UAV photogrammetry XYZ data with the RTK GPS XYZ data at highly reliable common points. The accuracy we achieved throughout the 45 check points was 95% reliably within 41 mm horizontally and 68 mm vertically and with an 11.7 mm ground sample distance taken from a flight altitude above ground level of 90 m.The area covered by one image was 70.2 m × 46.4 m, which equals 0.325 Ha. This

  10. The use of high accuracy NAA for the certification of NIST Standard Reference Materials

    International Nuclear Information System (INIS)

    Becker, D.A.; Greenberg, R.R.; Stone, S.

    1991-01-01

    Neutron activation analysis (NAA) is only one of many analytical techniques used at the National Institute of Standards and Technology (NIST) for the certification of NIST Standard Reference Materials (SRMs). We compete daily against all of the other available analytical techniques in terms of accuracy, precision, and the cost required to obtain that requisite accuracy and precision. Over the years, the authors have found that NAA can and does compete favorably with these other techniques because of its' unique capabilities for redundancy and quality assurance. Good examples are the two new NIST leaf SRMs, Apple Leaves (SRM 1515) and Peach Leaves (SRM 1547). INAA was used to measure the homogeneity of 12 elements in 15 samples of each material at the 100 mg sample size. In addition, instrumental and radiochemical NAA combined for 27 elemental determinations, out of a total of 54 elemental determinations made on each material with all NIST techniques combined. This paper describes the NIST NAA procedures used in these analyses, the quality assurance techniques employed, and the analytical results for the 24 elements determined by NAA in these new botanical SRMs. The NAA results are also compared to the final certified values for these SRMs

  11. Does the accuracy of single reading with CAD (computer-aided detection) compare with that of double reading?: A review of the literature

    International Nuclear Information System (INIS)

    Bennett, R.L.; Blanks, R.G.; Moss, S.M.

    2006-01-01

    Aim: To examine current evidence to determine whether the accuracy of single reading with computed-aided detection (CAD) compares with that of double reading. Methods: We performed a literature review to identify studies where both protocols had been investigated and compared. We identified eight studies that compared single reading with CAD against double reading, of which six reported on comparisons of both sensitivity and specificity. Results: Of the six studies identified, three showed no differences in either sensitivity or specificity. One showed single reading with CAD had a higher sensitivity at the same specificity, another that single reading with CAD had a higher specificity at the same sensitivity. However, one study, in a real-life setting, showed that single reading with CAD had a higher sensitivity but a lower specificity. Conclusion: As the majority of the studies were not in a real-life setting, used test sets, lacked sufficient training in the use of CAD and simulated double reading (using a protocol of recall if one suggests), current evidence is therefore limited as to the accuracy, in terms of sensitivity and specificity, of single reading with CAD in comparison with the most common practice in the UK of double reading using a protocol of consensus or arbitration

  12. High-accuracy resolver-to-digital conversion via phase locked loop based on PID controller

    Science.gov (United States)

    Li, Yaoling; Wu, Zhong

    2018-03-01

    The problem of resolver-to-digital conversion (RDC) is transformed into the problem of angle tracking control, and a phase locked loop (PLL) method based on PID controller is proposed in this paper. This controller comprises a typical PI controller plus an incomplete differential which can avoid the amplification of higher-frequency noise components by filtering the phase detection error with a low-pass filter. Compared with conventional ones, the proposed PLL method makes the converter a system of type III and thus the conversion accuracy can be improved. Experimental results demonstrate the effectiveness of the proposed method.

  13. Accuracy of applicator tip reconstruction in MRI-guided interstitial 192Ir-high-dose-rate brachytherapy of liver tumors

    International Nuclear Information System (INIS)

    Wybranski, Christian; Eberhardt, Benjamin; Fischbach, Katharina; Fischbach, Frank; Walke, Mathias; Hass, Peter; Röhl, Friedrich-Wilhelm; Kosiek, Ortrud; Kaiser, Mandy; Pech, Maciej; Lüdemann, Lutz; Ricke, Jens

    2015-01-01

    Background and purpose: To evaluate the reconstruction accuracy of brachytherapy (BT) applicators tips in vitro and in vivo in MRI-guided 192 Ir-high-dose-rate (HDR)-BT of inoperable liver tumors. Materials and methods: Reconstruction accuracy of plastic BT applicators, visualized by nitinol inserts, was assessed in MRI phantom measurements and in MRI 192 Ir-HDR-BT treatment planning datasets of 45 patients employing CT co-registration and vector decomposition. Conspicuity, short-term dislocation, and reconstruction errors were assessed in the clinical data. The clinical effect of applicator reconstruction accuracy was determined in follow-up MRI data. Results: Applicator reconstruction accuracy was 1.6 ± 0.5 mm in the phantom measurements. In the clinical MRI datasets applicator conspicuity was rated good/optimal in ⩾72% of cases. 16/129 applicators showed not time dependent deviation in between MRI/CT acquisition (p > 0.1). Reconstruction accuracy was 5.5 ± 2.8 mm, and the average image co-registration error was 3.1 ± 0.9 mm. Vector decomposition revealed no preferred direction of reconstruction errors. In the follow-up data deviation of planned dose distribution and irradiation effect was 6.9 ± 3.3 mm matching the mean co-registration error (6.5 ± 2.5 mm; p > 0.1). Conclusion: Applicator reconstruction accuracy in vitro conforms to AAPM TG 56 standard. Nitinol-inserts are feasible for applicator visualization and yield good conspicuity in MRI treatment planning data. No preferred direction of reconstruction errors were found in vivo

  14. STTR Phase I: Low-Cost, High-Accuracy, Whole-Building Carbon Dioxide Monitoring for Demand Control Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hallstrom, Jason; Ni, Zheng Richard

    2018-05-15

    This STTR Phase I project assessed the feasibility of a new CO2 sensing system optimized for low-cost, high-accuracy, whole-building monitoring for use in demand control ventilation. The focus was on the development of a wireless networking platform and associated firmware to provide signal conditioning and conversion, fault- and disruptiontolerant networking, and multi-hop routing at building scales to avoid wiring costs. Early exploration of a bridge (or “gateway”) to direct digital control services was also explored. Results of the project contributed to an improved understanding of a new electrochemical sensor for monitoring indoor CO2 concentrations, as well as the electronics and networking infrastructure required to deploy those sensors at building scales. New knowledge was acquired concerning the sensor’s accuracy, environmental response, and failure modes, and the acquisition electronics required to achieve accuracy over a wide range of CO2 concentrations. The project demonstrated that the new sensor offers repeatable correspondence with commercial optical sensors, with supporting electronics that offer gain accuracy within 0.5%, and acquisition accuracy within 1.5% across three orders of magnitude variation in generated current. Considering production, installation, and maintenance costs, the technology presents a foundation for achieving whole-building CO2 sensing at a price point below $0.066 / sq-ft – meeting economic feasibility criteria established by the Department of Energy. The technology developed under this award addresses obstacles on the critical path to enabling whole-building CO2 sensing and demand control ventilation in commercial retrofits, small commercial buildings, residential complexes, and other highpotential structures that have been slow to adopt these technologies. It presents an opportunity to significantly reduce energy use throughout the United States a

  15. Additive Manufacturing: A Comparative Analysis of Dimensional Accuracy and Skin Texture Reproduction of Auricular Prostheses Replicas.

    Science.gov (United States)

    Unkovskiy, Alexey; Spintzyk, Sebastian; Axmann, Detlef; Engel, Eva-Maria; Weber, Heiner; Huettig, Fabian

    2017-11-10

    The use of computer-aided design/computer-aided manufacturing (CAD/CAM) and additive manufacturing in maxillofacial prosthetics has been widely acknowledged. Rapid prototyping can be considered for manufacturing of auricular prostheses. Therefore, so-called prostheses replicas can be fabricated by digital means. The objective of this study was to identify a superior additive manufacturing method to fabricate auricular prosthesis replicas (APRs) within a digital workflow. Auricles of 23 healthy subjects (mean age of 37.8 years) were measured in vivo with respect to an anthropometrical protocol. Landmarks were volumized with fiducial balls for 3D scanning using a handheld structured light scanner. The 3D CAD dataset was postprocessed, and the same anthropometrical measurements were made in the CAD software with the digital lineal. Each CAD dataset was materialized using fused deposition modeling (FDM), selective laser sintering (SLS), and stereolithography (SL), constituting 53 APR samples. All distances between the landmarks were measured on the APRs. After the determination of the measurement error within the five data groups (in vivo, CAD, FDM, SLS, and SL), the mean values were compared using matched pairs method. To this, the in vivo and CAD dataset were set as references. Finally, the surface structure of the APRs was qualitatively evaluated with stereomicroscopy and profilometry to ascertain the level of skin detail reproduction. The anthropometrical approach showed drawbacks in measuring the protrusion of the ear's helix. The measurement error within all groups of measurements was calculated between 0.20 and 0.28 mm, implying a high reproducibility. The lowest mean differences of 53 produced APRs were found in FDM (0.43%) followed by SLS (0.54%) and SL (0.59%)--compared to in vivo, and again in FDM (0.20%) followed by SL (0.36%) and SLS (0.39%)--compared to CAD. None of these values exceed the threshold of clinical relevance (1.5%); however, the qualitative

  16. Interobserver variability and accuracy of high-definition endoscopic diagnosis for gastric intestinal metaplasia among experienced and inexperienced endoscopists.

    Science.gov (United States)

    Hyun, Yil Sik; Han, Dong Soo; Bae, Joong Ho; Park, Hye Sun; Eun, Chang Soo

    2013-05-01

    Accurate diagnosis of gastric intestinal metaplasia is important; however, conventional endoscopy is known to be an unreliable modality for diagnosing gastric intestinal metaplasia (IM). The aims of the study were to evaluate the interobserver variation in diagnosing IM by high-definition (HD) endoscopy and the diagnostic accuracy of this modality for IM among experienced and inexperienced endoscopists. Selected 50 cases, taken with HD endoscopy, were sent for a diagnostic inquiry of gastric IM through visual inspection to five experienced and five inexperienced endoscopists. The interobserver agreement between endoscopists was evaluated to verify the diagnostic reliability of HD endoscopy in diagnosing IM, and the diagnostic accuracy, sensitivity, and specificity were evaluated for validity of HD endoscopy in diagnosing IM. Interobserver agreement among the experienced endoscopists was "poor" (κ = 0.38) and it was also "poor" (κ = 0.33) among the inexperienced endoscopists. The diagnostic accuracy of the experienced endoscopists was superior to that of the inexperienced endoscopists (P = 0.003). Since diagnosis through visual inspection is unreliable in the diagnosis of IM, all suspicious areas for gastric IM should be considered to be biopsied. Furthermore, endoscopic experience and education are needed to raise the diagnostic accuracy of gastric IM.

  17. Pedicle Screw Insertion Accuracy Using O-Arm, Robotic Guidance, or Freehand Technique: A Comparative Study.

    Science.gov (United States)

    Laudato, Pietro Aniello; Pierzchala, Katarzyna; Schizas, Constantin

    2018-03-15

    A retrospective radiological study. The aim of this study was to evaluate the accuracy of pedicle screw insertion using O-Arm navigation, robotic assistance, or a freehand fluoroscopic technique. Pedicle screw insertion using either "O-Arm" navigation or robotic devices is gaining popularity. Although several studies are available evaluating each of those techniques separately, no direct comparison has been attempted. Eighty-four patients undergoing implantation of 569 lumbar and thoracic screws were divided into three groups. Eleven patients (64 screws) had screws inserted using robotic assistance, 25 patients (191 screws) using the O-arm, while 48 patients (314 screws) had screws inserted using lateral fluoroscopy in a freehand technique. A single experienced spine surgeon assisted by a spinal fellow performed all procedures. Screw placement accuracy was assessed by two independent observers on postoperative computed tomography (CTs) according to the A to D Rampersaud criteria. No statistically significant difference was noted between the three groups. About 70.4% of screws in the freehand group, 69.6% in the O arm group, and 78.8% in the robotic group were placed completely within the pedicle margins (grade A) (P > 0.05). About 6.4% of screws were considered misplaced (grades C&D) in the freehand group, 4.2% in the O-arm group, and 4.7% in the robotic group (P > 0.05). The spinal fellow inserted screws with the same accuracy as the senior surgeon (P > 0.05). The advent of new technologies does not appear to alter accuracy of screw placement in our setting. Under supervision, spinal fellows might perform equally well to experienced surgeons using new tools. The lack of difference in accuracy does not imply that the above-mentioned techniques have no added advantages. Other issues, such as surgeon/patient radiation, fiddle factor, teaching suitability, etc., outside the scope of our present study, need further assessment. 3.

  18. Diagnostic accuracy of {sup 18}F-FDG PET/CT compared with that of contrast-enhanced MRI of the breast at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Magometschnigg, Heinrich F.; Baltzer, Pascal A.; Fueger, Barbara; Helbich, Thomas H.; Weber, Michael [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Vienna (Austria); Karanikas, Georgios [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Vienna (Austria); Dubsky, Peter [Medical University of Vienna, Department of Surgery, Vienna (Austria); Rudas, Margaretha [Medical University of Vienna, Department of Pathology, Vienna (Austria); Pinker, Katja [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Vienna (Austria); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York (United States)

    2015-10-15

    To compare the diagnostic accuracy of prone {sup 18}F-FDG PET/CT with that of contrast-enhanced MRI (CE-MRI) at 3 T in suspicious breast lesions. To evaluate the influence of tumour size on diagnostic accuracy and the use of maximum standardized uptake value (SUV{sub MAX}) thresholds to differentiate malignant from benign breast lesions. A total of 172 consecutive patients with an imaging abnormality were included in this IRB-approved prospective study. All patients underwent {sup 18}F-FDG PET/CT and CE-MRI of the breast at 3 T in the prone position. Two reader teams independently evaluated the likelihood of malignancy as determined by {sup 18}F-FDG PET/CT and CE-MRI independently. {sup 18}F-FDG PET/CT data were qualitatively evaluated by visual interpretation. Quantitative assessment was performed by calculation of SUV{sub MAX}. Sensitivity, specificity, diagnostic accuracy, area under the curve and interreader agreement were calculated for all lesions and for lesions <10 mm. Histopathology was used as the standard of reference. There were 132 malignant and 40 benign lesions; 23 lesions (13.4 %) were <10 mm. Both {sup 18}F-FDG PET/CT and CE-MRI achieved an overall diagnostic accuracy of 93 %. There were no significant differences in sensitivity (p = 0.125), specificity (p = 0.344) or diagnostic accuracy (p = 1). For lesions <10 mm, diagnostic accuracy deteriorated to 91 % with both {sup 18}F-FDG PET/CT and CE-MRI. Although no significant difference was found for lesions <10 mm, CE-MRI at 3 T seemed to be more sensitive but less specific than {sup 18}F-FDG PET/CT. Interreader agreement was excellent (κ = 0.85 and κ = 0.92). SUV{sub MAX} threshold was not helpful in differentiating benign from malignant lesions. {sup 18}F-FDG PET/CT and CE-MRI at 3 T showed equal diagnostic accuracies in breast cancer diagnosis. For lesions <10 mm, diagnostic accuracy deteriorated, but was equal for {sup 18}F-FDG PET/CT and CE-MRI at 3 T. For lesions <10 mm, CE-MRI at 3 T seemed

  19. Modified sine bar device measures small angles with high accuracy

    Science.gov (United States)

    Thekaekara, M.

    1968-01-01

    Modified sine bar device measures small angles with enough accuracy to calibrate precision optical autocollimators. The sine bar is a massive bar of steel supported by two cylindrical rods at one end and one at the other.

  20. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: a phantom study.

    Science.gov (United States)

    Hwang, Sung Ho; Oh, Yu-Whan; Ham, Soo-Youn; Kang, Eun-Young; Lee, Ki Yeol

    2015-01-01

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 ± 0.9%, and 1.7 ± 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 ± 7.4%) was significantly greater (p volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  1. DIAGNOSTIC ACCURACY OF CLINICAL AND MAGNETIC RESONANCE IN KNEE MENISCI AND LIGAMENTOUS INJURIES

    Directory of Open Access Journals (Sweden)

    Nilesh

    2016-03-01

    Full Text Available OBJECTIVE The purpose of this study was to evaluate the reliability of clinical diagnosis compared to MRI findings in ligamentous and meniscal injuries with respect to arthroscopic confirmation as a gold standard. METHODS 485 patients with knee injuries were prospectively assessed by clinical evaluation and magnetic resonance imaging and correlated after therapeutic arthroscopy. The overall accuracy, clinically productive values of sensitivity and specificity was derived. The actual value of the test with respect to positive predictive and negative predictive value was also derived, taking arthroscopic findings as confirmatory. The overall partial and total agreement among the clinical, MRI and arthroscopy was documented. RESULTS The overall accuracy for clinical examination was 85, 92, 100 and 100 and accuracy for MRI was 90, 97, 97 and 97 for detecting medial meniscus, lateral meniscus, ACL and PCL tears respectively. Clinically lateral meniscus tears are difficult to diagnose clinically with negative predictive value (90 whereas ACL injuries do not need MRI for diagnosis as evident by a high negative predictive value (100 of clinical examination. Total agreement with the clinical findings confirmed by arthroscopy was 64.40% which was relatively high as compared to total agreement of MRI findings which was only 31.50%. We found similar total agreement versus total disagreement of both clinical and MRI to be only 2.74% indicating very high accuracy in clinical diagnosis of meniscal and ligamentous injuries combined. CONCLUSION The clinical evaluation alone is sufficient to diagnose meniscal and ACL/PCL pathologies and MRI should be considered only as a powerful negative diagnostic tool. The arthroscopy decision should not be heavily dependent on MRI for ligamentous injuries but reverse is true for meniscal lesions. MR evaluation functions as a powerful negative diagnostic tool to rule out doubtful and complex knee injuries.

  2. Accuracy Assessment and Analysis for GPT2

    Directory of Open Access Journals (Sweden)

    YAO Yibin

    2015-07-01

    Full Text Available GPT(global pressure and temperature is a global empirical model usually used to provide temperature and pressure for the determination of tropospheric delay, there are some weakness to GPT, these have been improved with a new empirical model named GPT2, which not only improves the accuracy of temperature and pressure, but also provides specific humidity, water vapor pressure, mapping function coefficients and other tropospheric parameters, and no accuracy analysis of GPT2 has been made until now. In this paper high-precision meteorological data from ECWMF and NOAA were used to test and analyze the accuracy of temperature, pressure and water vapor pressure expressed by GPT2, testing results show that the mean Bias of temperature is -0.59℃, average RMS is 3.82℃; absolute value of average Bias of pressure and water vapor pressure are less than 1 mb, GPT2 pressure has average RMS of 7 mb, and water vapor pressure no more than 3 mb, accuracy is different in different latitudes, all of them have obvious seasonality. In conclusion, GPT2 model has high accuracy and stability on global scale.

  3. A Comparative Evaluation of the Linear Dimensional Accuracy of Four Impression Techniques using Polyether Impression Material

    OpenAIRE

    Manoj, Smita Sara; Cherian, K. P.; Chitre, Vidya; Aras, Meena

    2013-01-01

    There is much discussion in the dental literature regarding the superiority of one impression technique over the other using addition silicone impression material. However, there is inadequate information available on the accuracy of different impression techniques using polyether. The purpose of this study was to assess the linear dimensional accuracy of four impression techniques using polyether on a laboratory model that simulates clinical practice. The impression material used was Impregu...

  4. High Accuracy Nonlinear Control and Estimation for Machine Tool Systems

    DEFF Research Database (Denmark)

    Papageorgiou, Dimitrios

    Component mass production has been the backbone of industry since the second industrial revolution, and machine tools are producing parts of widely varying size and design complexity. The ever-increasing level of automation in modern manufacturing processes necessitates the use of more...... sophisticated machine tool systems that are adaptable to different workspace conditions, while at the same time being able to maintain very narrow workpiece tolerances. The main topic of this thesis is to suggest control methods that can maintain required manufacturing tolerances, despite moderate wear and tear....... The purpose is to ensure that full accuracy is maintained between service intervals and to advice when overhaul is needed. The thesis argues that quality of manufactured components is directly related to the positioning accuracy of the machine tool axes, and it shows which low level control architectures...

  5. A Comparative Evaluation of the Linear Dimensional Accuracy of Four Impression Techniques using Polyether Impression Material.

    Science.gov (United States)

    Manoj, Smita Sara; Cherian, K P; Chitre, Vidya; Aras, Meena

    2013-12-01

    There is much discussion in the dental literature regarding the superiority of one impression technique over the other using addition silicone impression material. However, there is inadequate information available on the accuracy of different impression techniques using polyether. The purpose of this study was to assess the linear dimensional accuracy of four impression techniques using polyether on a laboratory model that simulates clinical practice. The impression material used was Impregum Soft™, 3 M ESPE and the four impression techniques used were (1) Monophase impression technique using medium body impression material. (2) One step double mix impression technique using heavy body and light body impression materials simultaneously. (3) Two step double mix impression technique using a cellophane spacer (heavy body material used as a preliminary impression to create a wash space with a cellophane spacer, followed by the use of light body material). (4) Matrix impression using a matrix of polyether occlusal registration material. The matrix is loaded with heavy body material followed by a pick-up impression in medium body material. For each technique, thirty impressions were made of a stainless steel master model that contained three complete crown abutment preparations, which were used as the positive control. Accuracy was assessed by measuring eight dimensions (mesiodistal, faciolingual and inter-abutment) on stone dies poured from impressions of the master model. A two-tailed t test was carried out to test the significance in difference of the distances between the master model and the stone models. One way analysis of variance (ANOVA) was used for multiple group comparison followed by the Bonferroni's test for pair wise comparison. The accuracy was tested at α = 0.05. In general, polyether impression material produced stone dies that were smaller except for the dies produced from the one step double mix impression technique. The ANOVA revealed a highly

  6. Prediction of novel pre-microRNAs with high accuracy through boosting and SVM.

    Science.gov (United States)

    Zhang, Yuanwei; Yang, Yifan; Zhang, Huan; Jiang, Xiaohua; Xu, Bo; Xue, Yu; Cao, Yunxia; Zhai, Qian; Zhai, Yong; Xu, Mingqing; Cooke, Howard J; Shi, Qinghua

    2011-05-15

    High-throughput deep-sequencing technology has generated an unprecedented number of expressed short sequence reads, presenting not only an opportunity but also a challenge for prediction of novel microRNAs. To verify the existence of candidate microRNAs, we have to show that these short sequences can be processed from candidate pre-microRNAs. However, it is laborious and time consuming to verify these using existing experimental techniques. Therefore, here, we describe a new method, miRD, which is constructed using two feature selection strategies based on support vector machines (SVMs) and boosting method. It is a high-efficiency tool for novel pre-microRNA prediction with accuracy up to 94.0% among different species. miRD is implemented in PHP/PERL+MySQL+R and can be freely accessed at http://mcg.ustc.edu.cn/rpg/mird/mird.php.

  7. High Accuracy mass Measurement of the very Short-Lived Halo Nuclide $^{11}$Li

    CERN Multimedia

    Le scornet, G

    2002-01-01

    The archetypal halo nuclide $^{11}$Li has now attracted a wealth of experimental and theoretical attention. The most outstanding property of this nuclide, its extended radius that makes it as big as $^{48}$Ca, is highly dependent on the binding energy of the two neutrons forming the halo. New generation experiments using radioactive beams with elastic proton scattering, knock-out and transfer reactions, together with $\\textit{ab initio}$ calculations require the tightening of the constraint on the binding energy. Good metrology also requires confirmation of the sole existing precision result to guard against a possible systematic deviation (or mistake). We propose a high accuracy mass determintation of $^{11}$Li, a particularly challenging task due to its very short half-life of 8.6 ms, but one perfectly suiting the MISTRAL spectrometer, now commissioned at ISOLDE. We request 15 shifts of beam time.

  8. Evaluation of Small Unmanned Aircraft Flight Trajectory Accuracy

    Directory of Open Access Journals (Sweden)

    Ramūnas Kikutis

    2014-12-01

    Full Text Available Today small unmanned aircraft are being more widely adapted for practical tasks. These tasks require high reliability and flight path accuracy. For such aircraft we have to deal with the chalenge how to compensate external factors and how to ensure the accuracy of the flight trajectory according to new regulations and standards. In this paper, new regulations for the flights of small unmanned aircraft in Lithuanian air space are discussed. Main factors, which affect errors of the autonomous flight path tracking, are discussed too. The emphasis is on the wind factor and the flight path of Dubbin’s trajectories. Research was performed with mathematical-dynamic model of UAV and it was compared with theoretical calculations. All calculations and experiments were accomplished for the circular part of Dubbin’s paths when the airplane was trimmed for circular trajectory flight in calm conditions. Further, for such flight the wind influence was analysed.

  9. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers.

    Science.gov (United States)

    Parent, Francois; Loranger, Sebastien; Mandal, Koushik Kanti; Iezzi, Victor Lambin; Lapointe, Jerome; Boisvert, Jean-Sébastien; Baiad, Mohamed Diaa; Kadoury, Samuel; Kashyap, Raman

    2017-04-01

    We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.

  10. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack

    2013-09-18

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  11. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack; Faverge, Mathieu; Ltaief, Hatem; Luszczek, Piotr R.

    2013-01-01

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  12. The effect of letter string length and report condition on letter recognition accuracy.

    Science.gov (United States)

    Raghunandan, Avesh; Karmazinaite, Berta; Rossow, Andrea S

    Letter sequence recognition accuracy has been postulated to be limited primarily by low-level visual factors. The influence of high level factors such as visual memory (load and decay) has been largely overlooked. This study provides insight into the role of these factors by investigating the interaction between letter sequence recognition accuracy, letter string length and report condition. Letter sequence recognition accuracy for trigrams and pentagrams were measured in 10 adult subjects for two report conditions. In the complete report condition subjects reported all 3 or all 5 letters comprising trigrams and pentagrams, respectively. In the partial report condition, subjects reported only a single letter in the trigram or pentagram. Letters were presented for 100ms and rendered in high contrast, using black lowercase Courier font that subtended 0.4° at the fixation distance of 0.57m. Letter sequence recognition accuracy was consistently higher for trigrams compared to pentagrams especially for letter positions away from fixation. While partial report increased recognition accuracy in both string length conditions, the effect was larger for pentagrams, and most evident for the final letter positions within trigrams and pentagrams. The effect of partial report on recognition accuracy for the final letter positions increased as eccentricity increased away from fixation, and was independent of the inner/outer position of a letter. Higher-level visual memory functions (memory load and decay) play a role in letter sequence recognition accuracy. There is also suggestion of additional delays imposed on memory encoding by crowded letter elements. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  13. Solving the stability-accuracy-diversity dilemma of recommender systems

    Science.gov (United States)

    Hou, Lei; Liu, Kecheng; Liu, Jianguo; Zhang, Runtong

    2017-02-01

    Recommender systems are of great significance in predicting the potential interesting items based on the target user's historical selections. However, the recommendation list for a specific user has been found changing vastly when the system changes, due to the unstable quantification of item similarities, which is defined as the recommendation stability problem. To improve the similarity stability and recommendation stability is crucial for the user experience enhancement and the better understanding of user interests. While the stability as well as accuracy of recommendation could be guaranteed by recommending only popular items, studies have been addressing the necessity of diversity which requires the system to recommend unpopular items. By ranking the similarities in terms of stability and considering only the most stable ones, we present a top- n-stability method based on the Heat Conduction algorithm (denoted as TNS-HC henceforth) for solving the stability-accuracy-diversity dilemma. Experiments on four benchmark data sets indicate that the TNS-HC algorithm could significantly improve the recommendation stability and accuracy simultaneously and still retain the high-diversity nature of the Heat Conduction algorithm. Furthermore, we compare the performance of the TNS-HC algorithm with a number of benchmark recommendation algorithms. The result suggests that the TNS-HC algorithm is more efficient in solving the stability-accuracy-diversity triple dilemma of recommender systems.

  14. Accuracy assessment of cadastral maps using high resolution aerial photos

    Directory of Open Access Journals (Sweden)

    Alwan Imzahim

    2018-01-01

    Full Text Available A cadastral map is a map that shows the boundaries and ownership of land parcels. Some cadastral maps show additional details, such as survey district names, unique identifying numbers for parcels, certificate of title numbers, positions of existing structures, section or lot numbers and their respective areas, adjoining and adjacent street names, selected boundary dimensions and references to prior maps. In Iraq / Baghdad Governorate, the main problem is that the cadastral maps are georeferenced to a local geodetic datum known as Clark 1880 while the widely used reference system for navigation purpose (GPS and GNSS and uses Word Geodetic System 1984 (WGS84 as a base reference datum. The objective of this paper is to produce a cadastral map with scale 1:500 (metric scale by using aerial photographs 2009 with high ground spatial resolution 10 cm reference WGS84 system. The accuracy assessment for the cadastral maps updating approach to urban large scale cadastral maps (1:500-1:1000 was ± 0.115 meters; which complies with the American Social for Photogrammetry and Remote Sensing Standards (ASPRS.

  15. Evaluation of the accuracy of the free-energy-minimization method

    International Nuclear Information System (INIS)

    Najafabadi, R.; Srolovitz, D.J.

    1995-01-01

    We have made a detailed comparison between three competing methods for determining the free energies of solids and their defects: the thermodynamic integration of Monte Carlo (TIMC) data, the quasiharmonic (QH) model, and the free-energy-minimization (FEM) method. The accuracy of these methods decreases from the TIMC to QH to FEM method, while the computational efficiency improves in that order. All three methods yield perfect crystal lattice parameters and free energies at finite temperatures which are in good agreement for three different Cu interatomic potentials [embedded atom method (EAM), Morse and Lennard-Jones]. The FEM error (relative to the TIMC) in the (001) surface free energy and in the vacancy formation energy were found to be much larger for the EAM potential than for the other two potentials. Part of the errors in the FEM determination of the free energies are associated with anharmonicities in the interatomic potentials, with the remainder attributed to decoupling of the atomic vibrations. The anharmonicity of the EAM potential was found to be unphysically large compared with experimental vacancy formation entropy determinations. Based upon these results, we show that the FEM method provides a reasonable compromise between accuracy and computational demands. However, the accuracy of this approach is sensitive to the choice of interatomic potential and the nature of the defect to which it is being applied. The accuracy of the FEM is best in high-symmetry environments (perfect crystal, high-symmetry defects, etc.) and when used to describe materials where the anharmonicity is not too large

  16. Diagnostic accuracy of ultrasound in upper and lower extremity long bone fractures of emergency department trauma patients.

    Science.gov (United States)

    Frouzan, Arash; Masoumi, Kambiz; Delirroyfard, Ali; Mazdaie, Behnaz; Bagherzadegan, Elnaz

    2017-08-01

    Long bone fractures are common injuries caused by trauma. Some studies have demonstrated that ultrasound has a high sensitivity and specificity in the diagnosis of upper and lower extremity long bone fractures. The aim of this study was to determine the accuracy of ultrasound compared with plain radiography in diagnosis of upper and lower extremity long bone fractures in traumatic patients. This cross-sectional study assessed 100 patients admitted to the emergency department of Imam Khomeini Hospital, Ahvaz, Iran with trauma to the upper and lower extremities, from September 2014 through October 2015. In all patients, first ultrasound and then standard plain radiography for the upper and lower limb was performed. Data were analyzed by SPSS version 21 to determine the specificity and sensitivity. The mean age of patients with upper and lower limb trauma were 31.43±12.32 years and 29.63±5.89 years, respectively. Radius fracture was the most frequent compared to other fractures (27%). Sensitivity, specificity, positive predicted value, and negative predicted value of ultrasound compared with plain radiography in the diagnosis of upper extremity long bones were 95.3%, 87.7%, 87.2% and 96.2%, respectively, and the highest accuracy was observed in left arm fractures (100%). Tibia and fibula fractures were the most frequent types compared to other fractures (89.2%). Sensitivity, specificity, PPV and NPV of ultrasound compared with plain radiography in the diagnosis of upper extremity long bone fractures were 98.6%, 83%, 65.4% and 87.1%, respectively, and the highest accuracy was observed in men, lower ages and femoral fractures. The results of this study showed that ultrasound compared with plain radiography has a high accuracy in the diagnosis of upper and lower extremity long bone fractures.

  17. A comparative analysis of pixel- and object-based detection of landslides from very high-resolution images

    Science.gov (United States)

    Keyport, Ren N.; Oommen, Thomas; Martha, Tapas R.; Sajinkumar, K. S.; Gierke, John S.

    2018-02-01

    A comparative analysis of landslides detected by pixel-based and object-oriented analysis (OOA) methods was performed using very high-resolution (VHR) remotely sensed aerial images for the San Juan La Laguna, Guatemala, which witnessed widespread devastation during the 2005 Hurricane Stan. A 3-band orthophoto of 0.5 m spatial resolution together with a 115 field-based landslide inventory were used for the analysis. A binary reference was assigned with a zero value for landslide and unity for non-landslide pixels. The pixel-based analysis was performed using unsupervised classification, which resulted in 11 different trial classes. Detection of landslides using OOA includes 2-step K-means clustering to eliminate regions based on brightness; elimination of false positives using object properties such as rectangular fit, compactness, length/width ratio, mean difference of objects, and slope angle. Both overall accuracy and F-score for OOA methods outperformed pixel-based unsupervised classification methods in both landslide and non-landslide classes. The overall accuracy for OOA and pixel-based unsupervised classification was 96.5% and 94.3%, respectively, whereas the best F-score for landslide identification for OOA and pixel-based unsupervised methods: were 84.3% and 77.9%, respectively.Results indicate that the OOA is able to identify the majority of landslides with a few false positive when compared to pixel-based unsupervised classification.

  18. Effects of accuracy motivation and anchoring on metacomprehension judgment and accuracy.

    Science.gov (United States)

    Zhao, Qin

    2012-01-01

    The current research investigates how accuracy motivation impacts anchoring and adjustment in metacomprehension judgment and how accuracy motivation and anchoring affect metacomprehension accuracy. Participants were randomly assigned to one of six conditions produced by the between-subjects factorial design involving accuracy motivation (incentive or no) and peer performance anchor (95%, 55%, or no). Two studies showed that accuracy motivation did not impact anchoring bias, but the adjustment-from-anchor process occurred. Accuracy incentive increased anchor-judgment gap for the 95% anchor but not for the 55% anchor, which induced less certainty about the direction of adjustment. The findings offer support to the integrative theory of anchoring. Additionally, the two studies revealed a "power struggle" between accuracy motivation and anchoring in influencing metacomprehension accuracy. Accuracy motivation could improve metacomprehension accuracy in spite of anchoring effect, but if anchoring effect is too strong, it could overpower the motivation effect. The implications of the findings were discussed.

  19. High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-07-15

    Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are

  20. Accuracy of rainfall measurement for scales of hydrological interest

    Directory of Open Access Journals (Sweden)

    S. J. Wood

    2000-01-01

    Full Text Available The dense network of 49 raingauges over the 135 km2 Brue catchment in Somerset, England is used to examine the accuracy of rainfall estimates obtained from raingauges and from weather radar. Methods for data quality control and classification of precipitation types are first described. A super-dense network comprising eight gauges within a 2 km grid square is employed to obtain a 'true value' of rainfall against which the 2 km radar grid and a single 'typical gauge' estimate can be compared. Accuracy is assessed as a function of rainfall intensity, for different periods of time-integration (15 minutes, 1 hour and 1 day and for two 8-gauge networks in areas of low and high relief. In a similar way, the catchment gauge network is used to provide the 'true catchment rainfall' and the accuracy of a radar estimate (an area-weighted average of radar pixel values and a single 'typical gauge' estimate of catchment rainfall evaluated as a function of rainfall intensity. A single gauge gives a standard error of estimate for rainfall in a 2 km square and over the catchment of 33% and 65% respectively, at rain rates of 4 mm in 15 minutes. Radar data at 2 km resolution give corresponding errors of 50% and 55%. This illustrates the benefit of using radar when estimating catchment scale rainfall. A companion paper (Wood et al., 2000 considers the accuracy of rainfall estimates obtained using raingauge and radar in combination. Keywords: rainfall, accuracy, raingauge, radar

  1. Analyzing thematic maps and mapping for accuracy

    Science.gov (United States)

    Rosenfield, G.H.

    1982-01-01

    Two problems which exist while attempting to test the accuracy of thematic maps and mapping are: (1) evaluating the accuracy of thematic content, and (2) evaluating the effects of the variables on thematic mapping. Statistical analysis techniques are applicable to both these problems and include techniques for sampling the data and determining their accuracy. In addition, techniques for hypothesis testing, or inferential statistics, are used when comparing the effects of variables. A comprehensive and valid accuracy test of a classification project, such as thematic mapping from remotely sensed data, includes the following components of statistical analysis: (1) sample design, including the sample distribution, sample size, size of the sample unit, and sampling procedure; and (2) accuracy estimation, including estimation of the variance and confidence limits. Careful consideration must be given to the minimum sample size necessary to validate the accuracy of a given. classification category. The results of an accuracy test are presented in a contingency table sometimes called a classification error matrix. Usually the rows represent the interpretation, and the columns represent the verification. The diagonal elements represent the correct classifications. The remaining elements of the rows represent errors by commission, and the remaining elements of the columns represent the errors of omission. For tests of hypothesis that compare variables, the general practice has been to use only the diagonal elements from several related classification error matrices. These data are arranged in the form of another contingency table. The columns of the table represent the different variables being compared, such as different scales of mapping. The rows represent the blocking characteristics, such as the various categories of classification. The values in the cells of the tables might be the counts of correct classification or the binomial proportions of these counts divided by

  2. Atomic-accuracy prediction of protein loop structures through an RNA-inspired Ansatz.

    Directory of Open Access Journals (Sweden)

    Rhiju Das

    Full Text Available Consistently predicting biopolymer structure at atomic resolution from sequence alone remains a difficult problem, even for small sub-segments of large proteins. Such loop prediction challenges, which arise frequently in comparative modeling and protein design, can become intractable as loop lengths exceed 10 residues and if surrounding side-chain conformations are erased. Current approaches, such as the protein local optimization protocol or kinematic inversion closure (KIC Monte Carlo, involve stages that coarse-grain proteins, simplifying modeling but precluding a systematic search of all-atom configurations. This article introduces an alternative modeling strategy based on a 'stepwise ansatz', recently developed for RNA modeling, which posits that any realistic all-atom molecular conformation can be built up by residue-by-residue stepwise enumeration. When harnessed to a dynamic-programming-like recursion in the Rosetta framework, the resulting stepwise assembly (SWA protocol enables enumerative sampling of a 12 residue loop at a significant but achievable cost of thousands of CPU-hours. In a previously established benchmark, SWA recovers crystallographic conformations with sub-Angstrom accuracy for 19 of 20 loops, compared to 14 of 20 by KIC modeling with a comparable expenditure of computational power. Furthermore, SWA gives high accuracy results on an additional set of 15 loops highlighted in the biological literature for their irregularity or unusual length. Successes include cis-Pro touch turns, loops that pass through tunnels of other side-chains, and loops of lengths up to 24 residues. Remaining problem cases are traced to inaccuracies in the Rosetta all-atom energy function. In five additional blind tests, SWA achieves sub-Angstrom accuracy models, including the first such success in a protein/RNA binding interface, the YbxF/kink-turn interaction in the fourth 'RNA-puzzle' competition. These results establish all-atom enumeration as

  3. High accuracy mapping with cartographic assessment for a fixed-wing remotely piloted aircraft system

    Science.gov (United States)

    Alves Júnior, Leomar Rufino; Ferreira, Manuel Eduardo; Côrtes, João Batista Ramos; de Castro Jorge, Lúcio André

    2018-01-01

    The lack of updated maps on large scale representations has encouraged the use of remotely piloted aircraft systems (RPAS) to generate maps for a wide range of professionals. However, some questions arise: do the orthomosaics generated by these systems have the cartographic precision required to use them? Which problems can be identified in stitching orthophotos to generate orthomosaics? To answer these questions, an aerophotogrammetric survey was conducted in an environmental conservation unit in the city of Goiânia. The flight plan was set up using the E-motion software, provided by Sensefly-a Swiss manufacturer of the RPAS Swinglet CAM used in this work. The camera installed in the RPAS was the Canon IXUS 220 HS, with the number of pixels in the sensor array of 12.1 megapixel, complementary metal oxide semiconductor 1 ∶ 2.3 ? (4000 × 3000 pixel), horizontal and vertical pixel sizes of 1.54 μm. Using the orthophotos, four orthomosaics were generated in the Pix4D mapper software. The first orthomosaic was generated without using the control points. The other three mosaics were generated using 4, 8, and 16 premarked ground control points. To check the precision and accuracy of the orthomosaics, 46 premarked targets were uniformly distributed in the block. The three-dimensional (3-D) coordinates of the premarked targets were read on the orthomosaic and compared with the coordinates obtained by the geodetic survey real-time kinematic positioning method using the global navigation satellite system receiver signals. The cartographic accuracy standard was evaluated by discrepancies between these coordinates. The bias was analyzed by the Student's t test and the accuracy by the chi-square probability considering the orthomosaic on a scale of 1 ∶ 250, in which 90% of the points tested must have a planimetric error of control points the scale was 10-fold smaller (1 ∶ 3000).

  4. Evidence for enhanced interoceptive accuracy in professional musicians

    Directory of Open Access Journals (Sweden)

    Katharina eSchirmer-Mokwa

    2015-12-01

    Full Text Available Interoception is defined as the perceptual activity involved in the processing of internal bodily signals. While the ability of internal perception is considered a relatively stable trait, recent data suggest that learning to integrate multisensory information can modulate it. Making music is a uniquely rich multisensory experience that has shown to alter motor, sensory, and multimodal representations in the brain of musicians. We hypothesize that musical training also heightens interoceptive accuracy comparable to other perceptual modalities. Thirteen professional singers, twelve string players, and thirteen matched non-musicians were examined using a well-established heartbeat discrimination paradigm complemented by self-reported dispositional traits. Results revealed that both groups of musicians displayed higher interoceptive accuracy than non-musicians, whereas no differences were found between singers and string-players. Regression analyses showed that accumulated musical practice explained about 49% variation in heartbeat perception accuracy in singers but not in string-players. Psychometric data yielded a number of psychologically plausible inter-correlations in musicians related to performance anxiety. However, dispositional traits were not a confounding factor on heartbeat discrimination accuracy. Together, these data provide first evidence indicating that professional musicians show enhanced interoceptive accuracy compared to non-musicians. We argue that musical training largely accounted for this effect.

  5. Comparative Accuracy of Facial Models Fabricated Using Traditional and 3D Imaging Techniques.

    Science.gov (United States)

    Lincoln, Ketu P; Sun, Albert Y T; Prihoda, Thomas J; Sutton, Alan J

    2016-04-01

    The purpose of this investigation was to compare the accuracy of facial models fabricated using facial moulage impression methods to the three-dimensional printed (3DP) fabrication methods using soft tissue images obtained from cone beam computed tomography (CBCT) and 3D stereophotogrammetry (3D-SPG) scans. A reference phantom model was fabricated using a 3D-SPG image of a human control form with ten fiducial markers placed on common anthropometric landmarks. This image was converted into the investigation control phantom model (CPM) using 3DP methods. The CPM was attached to a camera tripod for ease of image capture. Three CBCT and three 3D-SPG images of the CPM were captured. The DICOM and STL files from the three 3dMD and three CBCT were imported to the 3DP, and six testing models were made. Reversible hydrocolloid and dental stone were used to make three facial moulages of the CPM, and the impressions/casts were poured in type IV gypsum dental stone. A coordinate measuring machine (CMM) was used to measure the distances between each of the ten fiducial markers. Each measurement was made using one point as a static reference to the other nine points. The same measuring procedures were accomplished on all specimens. All measurements were compared between specimens and the control. The data were analyzed using ANOVA and Tukey pairwise comparison of the raters, methods, and fiducial markers. The ANOVA multiple comparisons showed significant difference among the three methods (p 3D-SPG showed statistical difference in comparison to the models fabricated using the traditional method of facial moulage and 3DP models fabricated from CBCT imaging. 3DP models fabricated using 3D-SPG were less accurate than the CPM and models fabricated using facial moulage and CBCT imaging techniques. © 2015 by the American College of Prosthodontists.

  6. Accuracy and reliability of Tzanck test compared to histopathology for diagnosis of basal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Dey

    2015-01-01

    Full Text Available Background: Histopathology is considered the gold standard for diagnosis of basal cell carcinoma (BCC but is time consuming and needs expertise to make a correct diagnosis. On the other hand, Tzanck test is a simple, easy, inexpensive and rapid test which uses exfoliative cytology to make a diagnosis. Objective: To compare the results of Tzanck test with histopathology in the diagnosis of BCC and to evaluate the diagnostic reliability and accuracy of Tzanck test in BCC. Materials and Method: Twenty-six patients with clinical suspicion of BCC were recruited. Samples for Tzanck test and histopathology were taken and diagnoses made independently. Results of Tzanck test were compared with histopathology. Results: Twenty-three cases were histopathologically proved to be BCC. Tzanck test correlated in 12 cases of BCC and could exclude all three non-BCC lesions. In 11 cases it failed to diagnose BCC. The sensitivity and specificity of Tzanck test were 52.2% and 100%, respectively, and positive and negative predictive values were 100% and 21.4%. Conclusion: Tzanck test can be recommended for initial, rapid evaluation of a clinically diagnosed case of BCC. Under experienced hands, it reliably confirms BCC. The limitation is low negative predictive value. Since it does not give information about subtypes of BCC which is of great value in therapeutic planning, histopathological confirmation is mandatory.

  7. Assessment of high precision, high accuracy Inductively Coupled Plasma-Optical Emission Spectroscopy to obtain concentration uncertainties less than 0.2% with variable matrix concentrations

    International Nuclear Information System (INIS)

    Rabb, Savelas A.; Olesik, John W.

    2008-01-01

    The ability to obtain high precision, high accuracy measurements in samples with complex matrices using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy (HP-ICP-OES) was investigated. The Common Analyte Internal Standard (CAIS) procedure was incorporated into the High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method to correct for matrix-induced changes in emission intensity ratios. Matrix matching and standard addition approaches to minimize matrix-induced errors when using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy were also assessed. The High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method was tested with synthetic solutions in a variety of matrices, alloy standard reference materials and geological reference materials

  8. The accuracy of {sup 68}Ga-PSMA PET/CT in primary lymph node staging in high-risk prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oebek, Can; Doganca, Tuenkut [Acibadem Taksim Hospital, Department of Urology, Istanbul (Turkey); Demirci, Emre [Sisli Etfal Training and Research Hospital, Department of Nuclear Medicine, Istanbul (Turkey); Ocak, Meltem [Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul (Turkey); Kural, Ali Riza [Acibadem University, Department of Urology, Istanbul (Turkey); Yildirim, Asif [Istanbul Medeniyet University, Department of Urology, Istanbul (Turkey); Yuecetas, Ugur [Istanbul Training and Research Hospital, Department of Urology, Istanbul (Turkey); Demirdag, Cetin [Istanbul University, Cerrahpasa School of Medicine, Department of Urology, Istanbul (Turkey); Erdogan, Sarper M. [Istanbul University, Cerrahpasa School of Medicine, Department of Public Health, Istanbul (Turkey); Kabasakal, Levent [Istanbul University, Cerrahpasa School of Medicine, Department of Nuclear Medicine, Istanbul (Turkey); Collaboration: Members of Urooncology Association, Turkey

    2017-10-15

    To assess the diagnostic accuracy of {sup 68}Ga-PSMA PET in predicting lymph node (LN) metastases in primary N staging in high-risk and very high-risk nonmetastatic prostate cancer in comparison with morphological imaging. This was a multicentre trial of the Society of Urologic Oncology in Turkey in conjunction with the Nuclear Medicine Department of Cerrahpasa School of Medicine, Istanbul University. Patients were accrued from eight centres. Patients with high-risk and very high-risk disease scheduled to undergo surgical treatment with extended LN dissection between July 2014 and October 2015 were included. Either MRI or CT was used for morphological imaging. PSMA PET/CT was performed and evaluated at a single centre. Sensitivity, specificity and accuracy were calculated for the detection of lymphatic metastases by PSMA PET/CT and morphological imaging. Kappa values were calculated to evaluate the correlation between the numbers of LN metastases detected by PSMA PET/CT and by histopathology. Data on 51 eligible patients are presented. The sensitivity, specificity and accuracy of PSMA PET in detecting LN metastases in the primary setting were 53%, 86% and 76%, and increased to 67%, 88% and 81% in the subgroup with of patients with ≥15 LN removed. Kappa values for the correlation between imaging and pathology were 0.41 for PSMA PET and 0.18 for morphological imaging. PSMA PET/CT is superior to morphological imaging for the detection of metastatic LNs in patients with primary prostate cancer. Surgical dissection remains the gold standard for precise lymphatic staging. (orig.)

  9. Windowed multipole sensitivity to target accuracy of the optimization procedure

    International Nuclear Information System (INIS)

    Josey, Colin; Forget, Benoit; Smith, Kord

    2015-01-01

    This paper compares the accuracy of the windowed multipole direct Doppler broadening method to that of the ENDF-B/VII.1 libraries that come with MCNP6. Various windowed multipole libraries were generated with different maximum allowed relative errors. Then, the libraries were compared to the MCNP6 data via resonance integral and through single assembly Monte Carlo analysis. Since the windowed multipole uses resonance parameters, resonance integrals are only affected by the number of resonances included in the library and not by the order of the background fitting function. The relative performance of each library with varying maximum allowed error was evaluated. It was found that setting a maximum target relative error of 0.1% in the library provided highly accurate data that closely matches the MCNP6 data for all temperatures of interest, while still having suitable computational performance. Additionally, a library with a maximum relative error of 1% also provided reasonable accuracy on eigenvalue and reaction rates with a noticeable improvement on performance, but with a few statistically significant differences with the MCNP6 data. (author)

  10. Interobserver Variability and Accuracy of High-Definition Endoscopic Diagnosis for Gastric Intestinal Metaplasia among Experienced and Inexperienced Endoscopists

    Science.gov (United States)

    Hyun, Yil Sik; Bae, Joong Ho; Park, Hye Sun; Eun, Chang Soo

    2013-01-01

    Accurate diagnosis of gastric intestinal metaplasia is important; however, conventional endoscopy is known to be an unreliable modality for diagnosing gastric intestinal metaplasia (IM). The aims of the study were to evaluate the interobserver variation in diagnosing IM by high-definition (HD) endoscopy and the diagnostic accuracy of this modality for IM among experienced and inexperienced endoscopists. Selected 50 cases, taken with HD endoscopy, were sent for a diagnostic inquiry of gastric IM through visual inspection to five experienced and five inexperienced endoscopists. The interobserver agreement between endoscopists was evaluated to verify the diagnostic reliability of HD endoscopy in diagnosing IM, and the diagnostic accuracy, sensitivity, and specificity were evaluated for validity of HD endoscopy in diagnosing IM. Interobserver agreement among the experienced endoscopists was "poor" (κ = 0.38) and it was also "poor" (κ = 0.33) among the inexperienced endoscopists. The diagnostic accuracy of the experienced endoscopists was superior to that of the inexperienced endoscopists (P = 0.003). Since diagnosis through visual inspection is unreliable in the diagnosis of IM, all suspicious areas for gastric IM should be considered to be biopsied. Furthermore, endoscopic experience and education are needed to raise the diagnostic accuracy of gastric IM. PMID:23678267

  11. The Drift Diffusion Model can account for the accuracy and reaction time of value-based choices under high and low time pressure

    Directory of Open Access Journals (Sweden)

    Milica Milosavljevic

    2010-10-01

    Full Text Available An important open problem is how values are compared to make simple choices. A natural hypothesis is that the brain carries out the computations associated with the value comparisons in a manner consistent with the Drift Diffusion Model (DDM, since this model has been able to account for a large amount of data in other domains. We investigated the ability of four different versions of the DDM to explain the data in a real binary food choice task under conditions of high and low time pressure. We found that a seven-parameter version of the DDM can account for the choice and reaction time data with high-accuracy, in both the high and low time pressure conditions. The changes associated with the introduction of time pressure could be traced to changes in two key model parameters: the barrier height and the noise in the slope of the drift process.

  12. Molecular Isotopic Distribution Analysis (MIDAs) with adjustable mass accuracy.

    Science.gov (United States)

    Alves, Gelio; Ogurtsov, Aleksey Y; Yu, Yi-Kuo

    2014-01-01

    In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

  13. A three axis turntable's online initial state measurement method based on the high-accuracy laser gyro SINS

    Science.gov (United States)

    Gao, Chunfeng; Wei, Guo; Wang, Qi; Xiong, Zhenyu; Wang, Qun; Long, Xingwu

    2016-10-01

    As an indispensable equipment in inertial technology tests, the three-axis turntable is widely used in the calibration of various types inertial navigation systems (INS). In order to ensure the calibration accuracy of INS, we need to accurately measure the initial state of the turntable. However, the traditional measuring method needs a lot of exterior equipment (such as level instrument, north seeker, autocollimator, etc.), and the test processing is complex, low efficiency. Therefore, it is relatively difficult for the inertial measurement equipment manufacturers to realize the self-inspection of the turntable. Owing to the high precision attitude information provided by the laser gyro strapdown inertial navigation system (SINS) after fine alignment, we can use it as the attitude reference of initial state measurement of three-axis turntable. For the principle that the fixed rotation vector increment is not affected by measuring point, we use the laser gyro INS and the encoder of the turntable to provide the attitudes of turntable mounting plat. Through this way, the high accuracy measurement of perpendicularity error and initial attitude of the three-axis turntable has been achieved.

  14. Digital versus conventional implant impressions for edentulous patients: accuracy outcomes.

    Science.gov (United States)

    Papaspyridakos, Panos; Gallucci, German O; Chen, Chun-Jung; Hanssen, Stijn; Naert, Ignace; Vandenberghe, Bart

    2016-04-01

    To compare the accuracy of digital and conventional impression techniques for completely edentulous patients and to determine the effect of different variables on the accuracy outcomes. A stone cast of an edentulous mandible with five implants was fabricated to serve as master cast (control) for both implant- and abutment-level impressions. Digital impressions (n = 10) were taken with an intraoral optical scanner (TRIOS, 3shape, Denmark) after connecting polymer scan bodies. For the conventional polyether impressions of the master cast, a splinted and a non-splinted technique were used for implant-level and abutment-level impressions (4 cast groups, n = 10 each). Master casts and conventional impression casts were digitized with an extraoral high-resolution scanner (IScan D103i, Imetric, Courgenay, Switzerland) to obtain digital volumes. Standard tessellation language (STL) datasets from the five groups of digital and conventional impressions were superimposed with the STL dataset from the master cast to assess the 3D (global) deviations. To compare the master cast with digital and conventional impressions at the implant level, analysis of variance (ANOVA) and Scheffe's post hoc test was used, while Wilcoxon's rank-sum test was used for testing the difference between abutment-level conventional impressions. Significant 3D deviations (P impressions (P > 0.001). Digital implant impressions are as accurate as conventional implant impressions. The splinted, implant-level impression technique is more accurate than the non-splinted one for completely edentulous patients, whereas there was no difference in the accuracy at the abutment level. The implant angulation up to 15° did not affect the accuracy of implant impressions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale.

    Science.gov (United States)

    Obuchowski, Nancy A

    2006-02-15

    ROC curves and summary measures of accuracy derived from them, such as the area under the ROC curve, have become the standard for describing and comparing the accuracy of diagnostic tests. Methods for estimating ROC curves rely on the existence of a gold standard which dichotomizes patients into disease present or absent. There are, however, many examples of diagnostic tests whose gold standards are not binary-scale, but rather continuous-scale. Unnatural dichotomization of these gold standards leads to bias and inconsistency in estimates of diagnostic accuracy. In this paper, we propose a non-parametric estimator of diagnostic test accuracy which does not require dichotomization of the gold standard. This estimator has an interpretation analogous to the area under the ROC curve. We propose a confidence interval for test accuracy and a statistical test for comparing accuracies of tests from paired designs. We compare the performance (i.e. CI coverage, type I error rate, power) of the proposed methods with several alternatives. An example is presented where the accuracies of two quick blood tests for measuring serum iron concentrations are estimated and compared.

  16. INVESTIGATION THE FITTING ACCURACY OF CAST AND SLM CO-CR DENTAL BRIDGES USING CAD SOFTWARE

    Directory of Open Access Journals (Sweden)

    Tsanka Dikova

    2017-09-01

    Full Text Available The aim of the present paper is to investigate the fitting accuracy of Co-Cr dental bridges, manufactured by three technologies, with the newly developed method using CAD software. The four-part dental bridges of Co-Cr alloys were produced by conventional casting of wax models, casting with 3D printed patterns and selective laser melting. The marginal and internal fit of dental bridges was studied out by two methods – silicone replica test and CAD software. As the silicone replica test characterizes with comparatively low accuracy, a new methodology for investigating the fitting accuracy of dental bridges was developed based on the SolidWorks CAD software. The newly developed method allows the study of the marginal and internal adaptation in unlimited directions and high accuracy. Investigation the marginal fit and internal adaptation of Co-Cr four-part dental bridges by the two methods show that the technological process strongly influences the fitting accuracy of dental restorations. The fitting accuracy of the bridges, cast with 3D printed patterns, is the highest, followed by the SLM and conventionally cast bridges. The marginal fit of the three groups of bridges is in the clinically acceptable range. The internal gap values vary in different regions – it is highest on the occlusal surfaces, followed by that in the marginal and axial areas. The higher fitting accuracy of the bridges, manufactured by casting with 3D printed patterns and SLM, compared to the conventionally cast bridges is a good precondition for their successful implementation in the dental offices and laboratories.

  17. High-accuracy contouring using projection moiré

    Science.gov (United States)

    Sciammarella, Cesar A.; Lamberti, Luciano; Sciammarella, Federico M.

    2005-09-01

    Shadow and projection moiré are the oldest forms of moiré to be used in actual technical applications. In spite of this fact and the extensive number of papers that have been published on this topic, the use of shadow moiré as an accurate tool that can compete with alternative devices poses very many problems that go to the very essence of the mathematical models used to obtain contour information from fringe pattern data. In this paper some recent developments on the projection moiré method are presented. Comparisons between the results obtained with the projection method and the results obtained by mechanical devices that operate with contact probes are presented. These results show that the use of projection moiré makes it possible to achieve the same accuracy that current mechanical touch probe devices can provide.

  18. Diagnostic accuracy of MRCP in choledocholithiasis

    International Nuclear Information System (INIS)

    Guarise, Alessandro; Mainardi, Paride; Baltieri, Susanna; Faccioli, Niccolo'

    2005-01-01

    Purpose: To evaluate the accuracy of MRCP in diagnosing choledocholithiasis considering Endoscopic Retrograde Cholangiopancreatography (ERCP) as the gold standard. To compare the results achieved during the first two years of use (1999-2000) of Magnetic Resonance Cholangiopancreatography (MRCP) in patients with suspected choledocholithiasis with those achieved during the following two years (2001-2002) in order to establish the repeatability and objectivity of MRCP results. Materials and methods: One hundred and seventy consecutive patients underwent MRCP followed by ERCP within 72 h. In 22/170 (13%) patients ERCP was unsuccessful for different reasons. MRCP was performed using a 1.5 T magnet with both multi-slice HASTE sequences and thick-slice projection technique. Choledocholithiasis was diagnosed in the presence of signal void images in the dependent portion of the duct surrounded by hyperintense bile and detected at least in two projections. The MRCP results, read independently from the ERCP results, were compared in two different and subsequent periods. Results: ERCP confirmed choledocholithiasis in 87 patients. In these cases the results of MRCP were the following: 78 true positives, 53 true negatives, 7 false positives, and 9 false negatives. The sensitivity, specificity and accuracy were 90%, 88% and 89%, respectively. After the exclusion of stones with diameters smaller than 6 mm, the sensitivity, specificity and accuracy were 100%, 99% and 99%, respectively. MRCP accuracy was related to the size of the stones. There was no significant statistical difference between the results obtained in the first two-year period and those obtained in the second period. Conclusions: MRCP i sufficiently accurate to replace ERCP in patients with suspected choledocholithiasis. The results are related to the size of stones. The use of well-defined radiological signs allows good diagnostic accuracy independent of the learning curve [it

  19. High-accuracy Subdaily ERPs from the IGS

    Science.gov (United States)

    Ray, J. R.; Griffiths, J.

    2012-04-01

    Since November 2000 the International GNSS Service (IGS) has published Ultra-rapid (IGU) products for near real-time (RT) and true real-time applications. They include satellite orbits and clocks, as well as Earth rotation parameters (ERPs) for a sliding 48-hr period. The first day of each update is based on the most recent GPS and GLONASS observational data from the IGS hourly tracking network. At the time of release, these observed products have an initial latency of 3 hr. The second day of each update consists of predictions. So the predictions between about 3 and 9 hr into the second half are relevant for true RT uses. Originally updated twice daily, the IGU products since April 2004 have been issued every 6 hr, at 3, 9, 15, and 21 UTC. Up to seven Analysis Centers (ACs) contribute to the IGU combinations. Two sets of ERPs are published with each IGU update, observed values at the middle epoch of the first half and predicted values at the middle epoch of the second half. The latency of the near RT ERPs is 15 hr while the predicted ERPs, based on projections of each AC's most recent determinations, are issued 9 hr ahead of their reference epoch. While IGU ERPs are issued every 6 hr, each set represents an integrated estimate over the surrounding 24 hr. So successive values are temporally correlated with about 75% of the data being common; this fact should be taken into account in user assimilations. To evaluate the accuracy of these near RT and predicted ERPs, they have been compared to the IGS Final ERPs, available about 11 to 17 d after data collection. The IGU products improved dramatically in the earlier years but since about 2008.0 the performance has been stable and excellent. During the last three years, RMS differences for the observed IGU ERPs have been about 0.036 mas and 0.0101 ms for each polar motion component and LOD respectively. (The internal precision of the reference IGS ERPs over the same period is about 0.016 mas for polar motion and 0

  20. High accuracy amplitude and phase measurements based on a double heterodyne architecture

    International Nuclear Information System (INIS)

    Zhao Danyang; Wang Guangwei; Pan Weimin

    2015-01-01

    In the digital low level RF (LLRF) system of a circular (particle) accelerator, the RF field signal is usually down converted to a fixed intermediate frequency (IF). The ratio of IF and sampling frequency determines the processing required, and differs in various LLRF systems. It is generally desirable to design a universally compatible architecture for different IFs with no change to the sampling frequency and algorithm. A new RF detection method based on a double heterodyne architecture for wide IF range has been developed, which achieves the high accuracy requirement of modern LLRF. In this paper, the relation of IF and phase error is systematically analyzed for the first time and verified by experiments. The effects of temperature drift for 16 h IF detection are inhibited by the amplitude and phase calibrations. (authors)

  1. Diagnostic accuracy of post mortem MRI for abdominal abnormalities in foetuses and children

    Energy Technology Data Exchange (ETDEWEB)

    Arthurs, Owen J., E-mail: owen.arthurs@gosh.nhs.uk [Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); Institute of Child Health, UCL, London (United Kingdom); Thayyil, Sudhin, E-mail: s.thayyil@imperial.ac.uk [Perinatal Neurology and Neonatology, Imperial College London, London (United Kingdom); Owens, Catherine M., E-mail: Catherine.owens@gosh.nhs.uk [Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, London (United Kingdom); Cardiorespiratory Division, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); Olsen, Oystein E., E-mail: oystein.olsen@gosh.nhs.uk [Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); Institute of Child Health, UCL, London (United Kingdom); Wade, Angie, E-mail: a.wade@ucl.ac.uk [Clinical Epidemiology, Nutrition and Biostatistics Section, UCL Institute of Child health, London (United Kingdom); Addison, Shea, E-mail: shea.addison@imperial.ac.uk [Perinatal Neurology and Neonatology, Imperial College London, London (United Kingdom); Jones, Rod, E-mail: rod.jones@gosh.nhs.uk [Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, London (United Kingdom); Cardiorespiratory Division, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); Norman, Wendy, E-mail: wendy.norman@gosh.nhs.uk [Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, London (United Kingdom); Cardiorespiratory Division, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); Scott, Rosemary J., E-mail: rosemary.scott@uclh.nhs.uk [Department of Histopathology, University College London Hospital NHS Trust, London (United Kingdom); and others

    2015-03-15

    Highlights: •Postmortem MR imaging (PMMR) has high overall accuracy for abdominal pathology in foetuses, newborns and children. •PMMR is particularly good at detecting renal abnormalities, and relatively poor at detecting intestinal abnormalities. •In clinical practice, PMMR may be a useful alternative or adjunct to conventional autopsy in foetuses and children for detecting abdominal abnormalities. -- Abstract: Background: To compare the diagnostic accuracy of post-mortem magnetic resonance imaging (PMMR) specifically for abdominal pathology in foetuses and children, compared to conventional autopsy. Methods: Institutional ethics approval and parental consent was obtained. 400 unselected foetuses and children underwent PMMR using a 1.5 T Siemens Avanto MR scanner before conventional autopsy. PMMR images and autopsy findings were reported blinded to the other data respectively. Results: Abdominal abnormalities were found in 70/400 (12%) autopsies. Overall sensitivity and specificity (95% confidence interval) of PMMR for abdominal pathology was 72.5% (61.0, 81.6) and 90.8% (87.0, 93.6), with positive (PPV) and negative predictive values (NPV) of 64.1% (53.0, 73.9) and 93.6% (90.2, 95.8) respectively. PMMR was good at detecting renal abnormalities (sensitivity 80%), particularly in foetuses, and relatively poor at detecting intestinal abnormalities (sensitivity 50%). Overall accuracy was 87.4% (83.6, 90.4). Conclusions: PMMR has high overall accuracy for abdominal pathology in foetuses, newborns and children. PMMR is particularly good at detecting renal abnormalities, and relatively poor at detecting intestinal abnormalities. In clinical practice, PMMR may be a useful alternative or adjunct to conventional autopsy in foetuses and children for detecting abdominal abnormalities.

  2. Diagnostic accuracy of post mortem MRI for abdominal abnormalities in foetuses and children

    International Nuclear Information System (INIS)

    Arthurs, Owen J.; Thayyil, Sudhin; Owens, Catherine M.; Olsen, Oystein E.; Wade, Angie; Addison, Shea; Jones, Rod; Norman, Wendy; Scott, Rosemary J.

    2015-01-01

    Highlights: •Postmortem MR imaging (PMMR) has high overall accuracy for abdominal pathology in foetuses, newborns and children. •PMMR is particularly good at detecting renal abnormalities, and relatively poor at detecting intestinal abnormalities. •In clinical practice, PMMR may be a useful alternative or adjunct to conventional autopsy in foetuses and children for detecting abdominal abnormalities. -- Abstract: Background: To compare the diagnostic accuracy of post-mortem magnetic resonance imaging (PMMR) specifically for abdominal pathology in foetuses and children, compared to conventional autopsy. Methods: Institutional ethics approval and parental consent was obtained. 400 unselected foetuses and children underwent PMMR using a 1.5 T Siemens Avanto MR scanner before conventional autopsy. PMMR images and autopsy findings were reported blinded to the other data respectively. Results: Abdominal abnormalities were found in 70/400 (12%) autopsies. Overall sensitivity and specificity (95% confidence interval) of PMMR for abdominal pathology was 72.5% (61.0, 81.6) and 90.8% (87.0, 93.6), with positive (PPV) and negative predictive values (NPV) of 64.1% (53.0, 73.9) and 93.6% (90.2, 95.8) respectively. PMMR was good at detecting renal abnormalities (sensitivity 80%), particularly in foetuses, and relatively poor at detecting intestinal abnormalities (sensitivity 50%). Overall accuracy was 87.4% (83.6, 90.4). Conclusions: PMMR has high overall accuracy for abdominal pathology in foetuses, newborns and children. PMMR is particularly good at detecting renal abnormalities, and relatively poor at detecting intestinal abnormalities. In clinical practice, PMMR may be a useful alternative or adjunct to conventional autopsy in foetuses and children for detecting abdominal abnormalities

  3. Accuracy of thick-walled hollows during piercing on three-high mill

    International Nuclear Information System (INIS)

    Potapov, I.N.; Romantsev, B.A.; Shamanaev, V.I.; Popov, V.A.; Kharitonov, E.A.

    1975-01-01

    The results of investigations are presented concerning the accuracy of geometrical dimensions of thick-walled sleeves produced by piercing on a 100-ton trio screw rolling mill MISiS with three schemes of fixing and centering the rod. The use of a spherical thrust journal for the rod and of a long centering bushing makes it possible to diminish the non-uniformity of the wall thickness of the sleeves by 30-50%. It is established that thick-walled sleeves with accurate geometrical dimensions (nonuniformity of the wall thickness being less than 10%) can be produced if the system sleeve - mandrel - rod is highly rigid and the rod has a two- or three-fold stability margin over the length equal to that of the sleeve being pierced. The process of piercing is expedient to be carried out with increased angles of feed (14-16 deg). Blanks have been made from steel 12Kh1MF

  4. High construal level can help negotiators to reach integrative agreements: The role of information exchange and judgement accuracy.

    Science.gov (United States)

    Wening, Stefanie; Keith, Nina; Abele, Andrea E

    2016-06-01

    In negotiations, a focus on interests (why negotiators want something) is key to integrative agreements. Yet, many negotiators spontaneously focus on positions (what they want), with suboptimal outcomes. Our research applies construal-level theory to negotiations and proposes that a high construal level instigates a focus on interests during negotiations which, in turn, positively affects outcomes. In particular, we tested the notion that the effect of construal level on outcomes was mediated by information exchange and judgement accuracy. Finally, we expected the mere mode of presentation of task material to affect construal levels and manipulated construal levels using concrete versus abstract negotiation tasks. In two experiments, participants negotiated in dyads in either a high- or low-construal-level condition. In Study 1, high-construal-level dyads outperformed dyads in the low-construal-level condition; this main effect was mediated by information exchange. Study 2 replicated both the main and mediation effects using judgement accuracy as mediator and additionally yielded a positive effect of a high construal level on a second, more complex negotiation task. These results not only provide empirical evidence for the theoretically proposed link between construal levels and negotiation outcomes but also shed light on the processes underlying this effect. © 2015 The British Psychological Society.

  5. Experimental study of sector and linear array ultrasound accuracy and the influence of navigated 3D-reconstruction as compared to MRI in a brain tumor model.

    Science.gov (United States)

    Siekmann, Max; Lothes, Thomas; König, Ralph; Wirtz, Christian Rainer; Coburger, Jan

    2018-03-01

    Currently, intraoperative ultrasound in brain tumor surgery is a rapidly propagating option in imaging technology. We examined the accuracy and resolution limits of different ultrasound probes and the influence of 3D-reconstruction in a phantom and compared these results to MRI in an intraoperative setting (iMRI). An agarose gel phantom with predefined gel targets was examined with iMRI, a sector (SUS) and a linear (LUS) array probe with two-dimensional images. Additionally, 3D-reconstructed sweeps in perpendicular directions were made of every target with both probes, resulting in 392 measurements. Statistical calculations were performed, and comparative boxplots were generated. Every measurement of iMRI and LUS was more precise than SUS, while there was no apparent difference in height of iMRI and 3D-reconstructed LUS. Measurements with 3D-reconstructed LUS were always more accurate than in 2D-LUS, while 3D-reconstruction of SUS showed nearly no differences to 2D-SUS in some measurements. We found correlations of 3D-reconstructed SUS and LUS length and width measurements with 2D results in the same image orientation. LUS provides an accuracy and resolution comparable to iMRI, while SUS is less exact than LUS and iMRI. 3D-reconstruction showed the potential to distinctly improve accuracy and resolution of ultrasound images, although there is a strong correlation with the sweep direction during data acquisition.

  6. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    International Nuclear Information System (INIS)

    Burkhard, Boeckem

    1999-01-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle Δβ, is to first approximation proportional to the refraction angle: β IR ν(β blue - β IR ) = ν Δβ, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of the in [1] proposed conception of the dual

  7. Finish line distinctness and accuracy in 7 intraoral scanners versus conventional impression: an in vitro descriptive comparison.

    Science.gov (United States)

    Nedelcu, Robert; Olsson, Pontus; Nyström, Ingela; Thor, Andreas

    2018-02-23

    Several studies have evaluated accuracy of intraoral scanners (IOS), but data is lacking regarding variations between IOS systems in the depiction of the critical finish line and the finish line accuracy. The aim of this study was to analyze the level of finish line distinctness (FLD), and finish line accuracy (FLA), in 7 intraoral scanners (IOS) and one conventional impression (IMPR). Furthermore, to assess parameters of resolution, tessellation, topography, and color. A dental model with a crown preparation including supra and subgingival finish line was reference-scanned with an industrial scanner (ATOS), and scanned with seven IOS: 3M, CS3500 and CS3600, DWIO, Omnicam, Planscan and Trios. An IMPR was taken and poured, and the model was scanned with a laboratory scanner. The ATOS scan was cropped at finish line and best-fit aligned for 3D Compare Analysis (Geomagic). Accuracy was visualized, and descriptive analysis was performed. All IOS, except Planscan, had comparable overall accuracy, however, FLD and FLA varied substantially. Trios presented the highest FLD, and with CS3600, the highest FLA. 3M, and DWIO had low overall FLD and low FLA in subgingival areas, whilst Planscan had overall low FLD and FLA, as well as lower general accuracy. IMPR presented high FLD, except in subgingival areas, and high FLA. Trios had the highest resolution by factor 1.6 to 3.1 among IOS, followed by IMPR, DWIO, Omnicam, CS3500, 3M, CS3600 and Planscan. Tessellation was found to be non-uniform except in 3M and DWIO. Topographic variation was found for 3M and Trios, with deviations below +/- 25 μm for Trios. Inclusion of color enhanced the identification of the finish line in Trios, Omnicam and CS3600, but not in Planscan. There were sizeable variations between IOS with both higher and lower FLD and FLA than IMPR. High FLD was more related to high localized finish line resolution and non-uniform tessellation, than to high overall resolution. Topography variations were low

  8. What do we mean by accuracy in geomagnetic measurements?

    Science.gov (United States)

    Green, A.W.

    1990-01-01

    High accuracy is what distinguishes measurements made at the world's magnetic observatories from other types of geomagnetic measurements. High accuracy in determining the absolute values of the components of the Earth's magnetic field is essential to studying geomagnetic secular variation and processes at the core mantle boundary, as well as some magnetospheric processes. In some applications of geomagnetic data, precision (or resolution) of measurements may also be important. In addition to accuracy and resolution in the amplitude domain, it is necessary to consider these same quantities in the frequency and space domains. New developments in geomagnetic instruments and communications make real-time, high accuracy, global geomagnetic observatory data sets a real possibility. There is a growing realization in the scientific community of the unique relevance of geomagnetic observatory data to the principal contemporary problems in solid Earth and space physics. Together, these factors provide the promise of a 'renaissance' of the world's geomagnetic observatory system. ?? 1990.

  9. Accuracy and Efficiency of Recording Pediatric Early Warning Scores Using an Electronic Physiological Surveillance System Compared With Traditional Paper-Based Documentation.

    Science.gov (United States)

    Sefton, Gerri; Lane, Steven; Killen, Roger; Black, Stuart; Lyon, Max; Ampah, Pearl; Sproule, Cathryn; Loren-Gosling, Dominic; Richards, Caitlin; Spinty, Jean; Holloway, Colette; Davies, Coral; Wilson, April; Chean, Chung Shen; Carter, Bernie; Carrol, E D

    2017-05-01

    Pediatric Early Warning Scores are advocated to assist health professionals to identify early signs of serious illness or deterioration in hospitalized children. Scores are derived from the weighting applied to recorded vital signs and clinical observations reflecting deviation from a predetermined "norm." Higher aggregate scores trigger an escalation in care aimed at preventing critical deterioration. Process errors made while recording these data, including plotting or calculation errors, have the potential to impede the reliability of the score. To test this hypothesis, we conducted a controlled study of documentation using five clinical vignettes. We measured the accuracy of vital sign recording, score calculation, and time taken to complete documentation using a handheld electronic physiological surveillance system, VitalPAC Pediatric, compared with traditional paper-based charts. We explored the user acceptability of both methods using a Web-based survey. Twenty-three staff participated in the controlled study. The electronic physiological surveillance system improved the accuracy of vital sign recording, 98.5% versus 85.6%, P < .02, Pediatric Early Warning Score calculation, 94.6% versus 55.7%, P < .02, and saved time, 68 versus 98 seconds, compared with paper-based documentation, P < .002. Twenty-nine staff completed the Web-based survey. They perceived that the electronic physiological surveillance system offered safety benefits by reducing human error while providing instant visibility of recorded data to the entire clinical team.

  10. "Dilute-and-inject" multi-target screening assay for highly polar doping agents using hydrophilic interaction liquid chromatography high resolution/high accuracy mass spectrometry for sports drug testing.

    Science.gov (United States)

    Görgens, Christian; Guddat, Sven; Orlovius, Anne-Katrin; Sigmund, Gerd; Thomas, Andreas; Thevis, Mario; Schänzer, Wilhelm

    2015-07-01

    In the field of LC-MS, reversed phase liquid chromatography is the predominant method of choice for the separation of prohibited substances from various classes in sports drug testing. However, highly polar and charged compounds still represent a challenging task in liquid chromatography due to their difficult chromatographic behavior using reversed phase materials. A very promising approach for the separation of hydrophilic compounds is hydrophilic interaction liquid chromatography (HILIC). Despite its great potential and versatile advantages for the separation of highly polar compounds, HILIC is up to now not very common in doping analysis, although most manufacturers offer a variety of HILIC columns in their portfolio. In this study, a novel multi-target approach based on HILIC high resolution/high accuracy mass spectrometry is presented to screen for various polar stimulants, stimulant sulfo-conjugates, glycerol, AICAR, ethyl glucuronide, morphine-3-glucuronide, and myo-inositol trispyrophosphate after direct injection of diluted urine specimens. The usage of an effective online sample cleanup and a zwitterionic HILIC analytical column in combination with a new generation Hybrid Quadrupol-Orbitrap® mass spectrometer enabled the detection of highly polar analytes without any time-consuming hydrolysis or further purification steps, far below the required detection limits. The methodology was fully validated for qualitative and quantitative (AICAR, glycerol) purposes considering the parameters specificity; robustness (rRT  0.99); intra- and inter-day precision at low, medium, and high concentration levels (CV < 20%); limit of detection (stimulants and stimulant sulfo-conjugates < 10 ng/mL; norfenefrine; octopamine < 30 ng/mL; AICAR < 10 ng/mL; glycerol 100 μg/mL; ETG < 100 ng/mL); accuracy (AICAR 103.8-105.5%, glycerol 85.1-98.3% at three concentration levels) and ion suppression/enhancement effects.

  11. Target Price Accuracy

    Directory of Open Access Journals (Sweden)

    Alexander G. Kerl

    2011-04-01

    Full Text Available This study analyzes the accuracy of forecasted target prices within analysts’ reports. We compute a measure for target price forecast accuracy that evaluates the ability of analysts to exactly forecast the ex-ante (unknown 12-month stock price. Furthermore, we determine factors that explain this accuracy. Target price accuracy is negatively related to analyst-specific optimism and stock-specific risk (measured by volatility and price-to-book ratio. However, target price accuracy is positively related to the level of detail of each report, company size and the reputation of the investment bank. The potential conflicts of interests between an analyst and a covered company do not bias forecast accuracy.

  12. New perspectives for high accuracy SLR with second generation geodesic satellites

    Science.gov (United States)

    Lund, Glenn

    1993-01-01

    This paper reports on the accuracy limitations imposed by geodesic satellite signatures, and on the potential for achieving millimetric performances by means of alternative satellite concepts and an optimized 2-color system tradeoff. Long distance laser ranging, when performed between a ground (emitter/receiver) station and a distant geodesic satellite, is now reputed to enable short arc trajectory determinations to be achieved with an accuracy of 1 to 2 centimeters. This state-of-the-art accuracy is limited principally by the uncertainties inherent to single-color atmospheric path length correction. Motivated by the study of phenomena such as postglacial rebound, and the detailed analysis of small-scale volcanic and strain deformations, the drive towards millimetric accuracies will inevitably be felt. With the advent of short pulse (less than 50 ps) dual wavelength ranging, combined with adequate detection equipment (such as a fast-scanning streak camera or ultra-fast solid-state detectors) the atmospheric uncertainty could potentially be reduced to the level of a few millimeters, thus, exposing other less significant error contributions, of which by far the most significant will then be the morphology of the retroreflector satellites themselves. Existing geodesic satellites are simply dense spheres, several 10's of cm in diameter, encrusted with a large number (426 in the case of LAGEOS) of small cube-corner reflectors. A single incident pulse, thus, results in a significant number of randomly phased, quasi-simultaneous return pulses. These combine coherently at the receiver to produce a convolved interference waveform which cannot, on a shot to shot basis, be accurately and unambiguously correlated to the satellite center of mass. This paper proposes alternative geodesic satellite concepts, based on the use of a very small number of cube-corner retroreflectors, in which the above difficulties are eliminated while ensuring, for a given emitted pulse, the return

  13. Accuracy and feasibility of frameless stereotactic and robot-assisted CT-based puncture in interventional radiology. A comparative phantom study

    International Nuclear Information System (INIS)

    Stoffner, R.; Widmann, G.; Bale, R.; Augschoell, C.; Boehler, D.

    2009-01-01

    Purpose: To compare the accuracy of frameless stereotactic and robot-assisted puncture in vitro based on computed tomography (CT) imaging with a slice thickness of 1, 3, and 5 mm. Materials and Methods: 300 punctures were carried out with help of the Atlas aiming device guided by the optical navigation system Stealth Station TREONplus and 150 punctures were guided by the robotic assistance system Innomotion. Conically shaped rods were punctured with Kirschner wires. The accuracy was evaluated on the basis of control CTs by measuring the Euclidean distance between the wire tip and target and the normal distance between the target and wire. Results: With the Stealth Station a mean Euclidean distance of 1.94±0.912, 2.2±1.136, and 2.74±1.166 mm at a slice thickness of 1, 3 and 5 mm, respectively, was reached. The mean normal distance was 1.64±0.919, 1.84±1.189, and 2.48±1.196 mm, respectively. The Innomotion system resulted in a mean Euclidean distance of 1.69±0.772, 1.91±0.673, and 2.30±0.881 mm, respectively, while the mean normal distance was (1.42±0.78), 1.60±0.733, and 1.98±1.002 mm, respectively. A statistical significance between accuracies with both systems with 1 mm and 3 mm slices could not be detected (p > 0.05). At a slice thickness of 5 mm, the robot was significantly more accurate, but not as accurate as when using thinner slices (p < 0.05). The procedure time is longer for the Innomotion system (∝30 vs. ∝18 min), and the practicability is higher with the Stealth Station. (orig.)

  14. High-accuracy and high-sensitivity spectroscopic measurement of dinitrogen pentoxide (N2O5) in an atmospheric simulation chamber using a quantum cascade laser.

    Science.gov (United States)

    Yi, Hongming; Wu, Tao; Lauraguais, Amélie; Semenov, Vladimir; Coeur, Cecile; Cassez, Andy; Fertein, Eric; Gao, Xiaoming; Chen, Weidong

    2017-12-04

    A spectroscopic instrument based on a mid-infrared external cavity quantum cascade laser (EC-QCL) was developed for high-accuracy measurements of dinitrogen pentoxide (N 2 O 5 ) at the ppbv-level. A specific concentration retrieval algorithm was developed to remove, from the broadband absorption spectrum of N 2 O 5 , both etalon fringes resulting from the EC-QCL intrinsic structure and spectral interference lines of H 2 O vapour absorption, which led to a significant improvement in measurement accuracy and detection sensitivity (by a factor of 10), compared to using a traditional algorithm for gas concentration retrieval. The developed EC-QCL-based N 2 O 5 sensing platform was evaluated by real-time tracking N 2 O 5 concentration in its most important nocturnal tropospheric chemical reaction of NO 3 + NO 2 ↔ N 2 O 5 in an atmospheric simulation chamber. Based on an optical absorption path-length of L eff = 70 m, a minimum detection limit of 15 ppbv was achieved with a 25 s integration time and it was down to 3 ppbv in 400 s. The equilibrium rate constant K eq involved in the above chemical reaction was determined with direct concentration measurements using the developed EC-QCL sensing platform, which was in good agreement with the theoretical value deduced from a referenced empirical formula under well controlled experimental conditions. The present work demonstrates the potential and the unique advantage of the use of a modern external cavity quantum cascade laser for applications in direct quantitative measurement of broadband absorption of key molecular species involved in chemical kinetic and climate-change related tropospheric chemistry.

  15. Integral equation models for image restoration: high accuracy methods and fast algorithms

    International Nuclear Information System (INIS)

    Lu, Yao; Shen, Lixin; Xu, Yuesheng

    2010-01-01

    Discrete models are consistently used as practical models for image restoration. They are piecewise constant approximations of true physical (continuous) models, and hence, inevitably impose bottleneck model errors. We propose to work directly with continuous models for image restoration aiming at suppressing the model errors caused by the discrete models. A systematic study is conducted in this paper for the continuous out-of-focus image models which can be formulated as an integral equation of the first kind. The resulting integral equation is regularized by the Lavrentiev method and the Tikhonov method. We develop fast multiscale algorithms having high accuracy to solve the regularized integral equations of the second kind. Numerical experiments show that the methods based on the continuous model perform much better than those based on discrete models, in terms of PSNR values and visual quality of the reconstructed images

  16. Comparative evaluation of the accuracy of linear measurements between cone beam computed tomography and 3D microtomography

    Directory of Open Access Journals (Sweden)

    Francesca Mangione

    2013-09-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the influence of artifacts on the accuracy of linear measurements estimated with a common cone beam computed tomography (CBCT system used in dental clinical practice, by comparing it with microCT system as standard reference. MATERIALS AND METHODS: Ten bovine bone cylindrical samples containing one implant each, able to provide both points of reference and image quality degradation, have been scanned by CBCT and microCT systems. Thanks to the software of the two systems, for each cylindrical sample, two diameters taken at different levels, by using implants different points as references, have been measured. Results have been analyzed by ANOVA and a significant statistically difference has been found. RESULTS AND DISCUSSION: Due to the obtained results, in this work it is possible to say that the measurements made with the two different instruments are still not statistically comparable, although in some samples were obtained similar performances and therefore not statistically significant. CONCLUSION: With the improvement of the hardware and software of CBCT systems, in the near future the two instruments will be able to provide similar performances.

  17. High-accuracy dosimetry study for intensity-modulated radiation therapy(IMRT) commissioning

    International Nuclear Information System (INIS)

    Jeong, Hae Sun

    2010-02-01

    .5 cm 2 ). In addition, a method using a pixel-based unfolding curve was developed and applied to correct the non-uniform response of flat-bed type scanners for a radiochromic film. Also, the accuracy of the method was finally evaluated by comparing the results with those of an ion chamber, Monte Carlo simulation, and CF-based conventional method. For individual dose, the dosimetric error of using conventional method and using the pixel-based unfolding curve was reduced to less than 3%, and 1%, respectively. In case of step-wise doses, the average difference of 16% with MC calculation was reduced up to 1% by using the correction method in this study. Consequently, the accuracy of dose computation algorithms in TPS can be evaluated by the developed LEGO-type solid phantom, small filed dosimetry, the correction method for non-uniform response of scanners. It is also recognized that the developed hardware and software which are possible to be used for QA procedure are very reliable and they could be used for reference study of other radiation therapies

  18. A comparative study of the accuracy between plastic and metal impression transfer copings for implant restorations.

    Science.gov (United States)

    Fernandez, Monica A; Paez de Mendoza, Carmen Y; Platt, Jeffrey A; Levon, John A; Hovijitra, Suteera T; Nimmo, Arthur

    2013-07-01

    A precise transfer of the position and orientation of the antirotational mechanism of an implant to the working cast is particularly important to achieve optimal fit of the final restoration. This study evaluated and compared the accuracy of metal and plastic impression copings for use in a full-arch mandibular edentulous simulation with four implants. Metal and plastic impression transfer copings for two implant systems, Nobel Biocare™ Replace and Straumann SynOcta®, were assessed on a laboratory model to simulate clinical practice. The accuracy of producing stone casts using these plastic and metal impression transfer copings was measured against a standard prosthetic framework consisting of a cast gold bar. A total of 20 casts from the four combinations were obtained. The fit of the framework on the cast was tested by a noncontact surface profilometer, the Proscan 3D 2000 A, using the one-screw test. The effects of implant/system and impression/coping material on gap measurements were analyzed using repeated measures ANOVA. The findings of this in vitro study were as follows: plastic copings demonstrated significantly larger average gaps than metal for Straumann (p = 0.001). Plastic and metal copings were not significantly different for Nobel (p = 0.302). Nobel had significantly larger average gaps than Straumann for metal copings (p = 0.003). Nobel had marginally smaller average gaps than Straumann (p = 0.096) for plastic copings. The system-by-screw location interaction was significant as well (p impression copings were more accurate than plastic copings when using the Straumann system, and there was no difference between metal and plastic copings for the Nobel Replace system. The system-by-screw location was not conclusive, showing no correlation within each system. © 2013 by the American College of Prosthodontists.

  19. Achieving Climate Change Absolute Accuracy in Orbit

    Science.gov (United States)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  20. Accuracy of non-invasive 13C-urea breath test compared to invasive tests for helicobacter pylori detection

    International Nuclear Information System (INIS)

    Bilal, R.; Khaar, B.; Omar, M.; Qureshi, T.Z.; Ahmed, T.; Latif, Z.; Jaffery, I.; Omar, M.

    2007-01-01

    To compare the sensitivity, specificity and Positive Predictive Value (PPV) of histology, Campylobacter-Like Organism (CLO) test, culture and 13C-Urea Breath Test (UBT) for the diagnosis of Helicobacter pylori infection. District Headquarter Hospital, Rawalpindi, Military Hospital, Rawalpindi and Pakistan Institute of Science and Technology (PINSTECH), Nilore, Islamabad from June 2002 to 2003. Three mucosal biopsy specimens were obtained during endoscopy of 90 symptomatic patients. Histology, CLO test and culture were performed on these specimens. Breath samples for 13C-UBT were collected and sent to RIAD, PINSTECH on the same day for isotope ratio mass spectrometry. For analysis purpose, each of the tests was fixed as the gold standard in turn and the others were then compared against it. In addition, any two as well as any three positive tests were then set as the gold standard and the other tests compared against them to calculate the sensitivity, specificity, accuracy and PPV of other tests. Urea breath test had the highest sensitivity, ranging from 95 to 100%, against all the gold standards with specificity ranging from 55 to 100%, whereas the sensitivity of histological examination was around 98% but it had comparatively lower specificity (49-89%). The CLO test had a sensitivity range of 86-100% and specificity of 67-100%. Culture had the minimum sensitivity (59-70%) but had highest specificity (96-100%) against all the gold standards. Age and gender had no effect on p-value of each test or in combination. The urea breath test has shown the highest ability to detect the organism with 95-100% sensitivity in symptomatic individuals and specificity, which is comparable to other tests. (author)

  1. Medication adherence assessment: high accuracy of the new Ingestible Sensor System in kidney transplants.

    Science.gov (United States)

    Eisenberger, Ute; Wüthrich, Rudolf P; Bock, Andreas; Ambühl, Patrice; Steiger, Jürg; Intondi, Allison; Kuranoff, Susan; Maier, Thomas; Green, Damian; DiCarlo, Lorenzo; Feutren, Gilles; De Geest, Sabina

    2013-08-15

    This open-label single-arm exploratory study evaluated the accuracy of the Ingestible Sensor System (ISS), a novel technology for directly assessing the ingestion of oral medications and treatment adherence. ISS consists of an ingestible event marker (IEM), a microsensor that becomes activated in gastric fluid, and an adhesive personal monitor (APM) that detects IEM activation. In this study, the IEM was combined to enteric-coated mycophenolate sodium (ECMPS). Twenty stable adult kidney transplants received IEM-ECMPS for a mean of 9.2 weeks totaling 1227 cumulative days. Eight patients prematurely discontinued treatment due to ECMPS gastrointestinal symptoms (n=2), skin intolerance to APM (n=2), and insufficient system usability (n=4). Rash or erythema due to APM was reported in 7 (37%) patients, all during the first month of use. No serious or severe adverse events and no rejection episode were reported. IEM detection accuracy was 100% over 34 directly observed ingestions; Taking Adherence was 99.4% over a total of 2824 prescribed IEM-ECMPS ingestions. ISS could detect accurately the ingestion of two IEM-ECMPS capsules taken at the same time (detection rate of 99.3%, n=2376). ISS is a promising new technology that provides highly reliable measurements of intake and timing of intake of drugs that are combined with the IEM.

  2. High-accuracy single-pass InSAR DEM for large-scale flood hazard applications

    Science.gov (United States)

    Schumann, G.; Faherty, D.; Moller, D.

    2017-12-01

    In this study, we used a unique opportunity of the GLISTIN-A (NASA airborne mission designed to characterizing the cryosphere) track to Greenland to acquire a high-resolution InSAR DEM of a large area in the Red River of the North Basin (north of Grand Forks, ND, USA), which is a very flood-vulnerable valley, particularly in spring time due to increased soil moisture content near state of saturation and/or, typical for this region, snowmelt. Having an InSAR DEM that meets flood inundation modeling and mapping requirements comparable to LiDAR, would demonstrate great application potential of new radar technology for national agencies with an operational flood forecasting mandate and also local state governments active in flood event prediction, disaster response and mitigation. Specifically, we derived a bare-earth DEM in SAR geometry by first removing the inherent far range bias related to airborne operation, which at the more typical large-scale DEM resolution of 30 m has a sensor accuracy of plus or minus 2.5 cm. Subsequently, an intelligent classifier based on informed relationships between InSAR height, intensity and correlation was used to distinguish between bare-earth, roads or embankments, buildings and tall vegetation in order to facilitate the creation of a bare-earth DEM that would meet the requirements for accurate floodplain inundation mapping. Using state-of-the-art LiDAR terrain data, we demonstrate that capability by achieving a root mean squared error of approximately 25 cm and further illustrating its applicability to flood modeling.

  3. Audit of accuracy of clinical coding in oral surgery.

    Science.gov (United States)

    Naran, S; Hudovsky, A; Antscherl, J; Howells, S; Nouraei, S A R

    2014-10-01

    We aimed to study the accuracy of clinical coding within oral surgery and to identify ways in which it can be improved. We undertook did a multidisciplinary audit of a sample of 646 day case patients who had had oral surgery procedures between 2011 and 2012. We compared the codes given with their case notes and amended any discrepancies. The accuracy of coding was assessed for primary and secondary diagnoses and procedures, and for health resource groupings (HRGs). The financial impact of coding Subjectivity, Variability and Error (SVE) was assessed by reference to national tariffs. The audit resulted in 122 (19%) changes to primary diagnoses. The codes for primary procedures changed in 224 (35%) cases; 310 (48%) morbidities and complications had been missed, and 266 (41%) secondary procedures had been missed or were incorrect. This led to at least one change of coding in 496 (77%) patients, and to the HRG changes in 348 (54%) patients. The financial impact of this was £114 in lost revenue per patient. There is a high incidence of coding errors in oral surgery because of the large number of day cases, a lack of awareness by clinicians of coding issues, and because clinical coders are not always familiar with the large number of highly specialised abbreviations used. Accuracy of coding can be improved through the use of a well-designed proforma, and standards can be maintained by the use of an ongoing data quality assurance programme. Copyright © 2014. Published by Elsevier Ltd.

  4. Towards Building Reliable, High-Accuracy Solar Irradiance Database For Arid Climates

    Science.gov (United States)

    Munawwar, S.; Ghedira, H.

    2012-12-01

    Middle East's growing interest in renewable energy has led to increased activity in solar technology development with the recent commissioning of several utility-scale solar power projects and many other commercial installations across the Arabian Peninsula. The region, lying in a virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2, is also one of the most promising candidates for solar energy deployment. However, it is not the availability of resource, but its characterization and reasonably accurate assessment that determines the application potential. Solar irradiance, magnitude and variability inclusive, is the key input in assessing the economic feasibility of a solar system. The accuracy of such data is of critical importance for realistic on-site performance estimates. This contribution aims to identify the key stages in developing a robust solar database for desert climate by focusing on the challenges that an arid environment presents to parameterization of solar irradiance attenuating factors. Adjustments are proposed based on the currently available resource assessment tools to produce high quality data for assessing bankability. Establishing and maintaining ground solar irradiance measurements is an expensive affair and fairly limited in time (recently operational) and space (fewer sites) in the Gulf region. Developers within solar technology industry, therefore, rely on solar radiation models and satellite-derived data for prompt resource assessment needs. It is imperative that such estimation tools are as accurate as possible. While purely empirical models have been widely researched and validated in the Arabian Peninsula's solar modeling history, they are known to be intrinsically site-specific. A primal step to modeling is an in-depth understanding of the region's climate, identifying the key players attenuating radiation and their appropriate characterization to determine solar irradiance. Physical approach

  5. Dr Google: The readability and accuracy of patient education websites for Graves' disease treatment.

    Science.gov (United States)

    Purdy, Amanda C; Idriss, Almoatazbellah; Ahern, Susan; Lin, Elizabeth; Elfenbein, Dawn M

    2017-11-01

    National guidelines emphasize the importance of incorporating patient preferences into the recommendations for the treatment of Graves' disease. Many patients use the Internet to obtain health information, and search results can affect their treatment decisions. This study compares the readability and accuracy of patient-oriented online resources for the treatment of Graves' disease by website affiliation and treatment modality. A systematic Internet search was used to identify the top websites discussing the treatment of Graves' disease. Readability was measured using 5 standardized tests. Accuracy was assessed by a blinded, expert panel, which scored the accuracy of sites on a scale of 1 to 5. Mean readability and accuracy scores were compared among website affiliations and treatment modalities. We identified 13 unique websites, including 2 academic, 2 government, 5 nonprofit, and 4 private sites. There was a difference in both readability (mean 13.2, range 9.1-15.7, P = .003) and accuracy (mean 4.04, range 2.75-4.50, P = .019) based on website affiliation. Government sites (mean readability 11.1) were easier to read than academic (14.3, P < .01), nonprofit (13.9, P < .01), and private sites (13.5, P < .05). Academic sites (mean accuracy 4.50) were more accurate than private sites (3.56, P < .05). Online patient resources for the treatment of Graves' disease are written at an inappropriately high reading level. Academic sites contain both the most accurate and the most difficult to read information. Private sites represented the majority of our top results but contained the least accurate information. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Accuracy of endoscopic ultrasonography for diagnosing ulcerative early gastric cancers

    Science.gov (United States)

    Park, Jin-Seok; Kim, Hyungkil; Bang, Byongwook; Kwon, Kyesook; Shin, Youngwoon

    2016-01-01

    Abstract Although endoscopic ultrasonography (EUS) is the first-choice imaging modality for predicting the invasion depth of early gastric cancer (EGC), the prediction accuracy of EUS is significantly decreased when EGC is combined with ulceration. The aim of present study was to compare the accuracy of EUS and conventional endoscopy (CE) for determining the depth of EGC. In addition, the various clinic-pathologic factors affecting the diagnostic accuracy of EUS, with a particular focus on endoscopic ulcer shapes, were evaluated. We retrospectively reviewed data from 236 consecutive patients with ulcerative EGC. All patients underwent EUS for estimating tumor invasion depth, followed by either curative surgery or endoscopic treatment. The diagnostic accuracy of EUS and CE was evaluated by comparing the final histologic result of resected specimen. The correlation between accuracy of EUS and characteristics of EGC (tumor size, histology, location in stomach, tumor invasion depth, and endoscopic ulcer shapes) was analyzed. Endoscopic ulcer shapes were classified into 3 groups: definite ulcer, superficial ulcer, and ill-defined ulcer. The overall accuracy of EUS and CE for predicting the invasion depth in ulcerative EGC was 68.6% and 55.5%, respectively. Of the 236 patients, 36 patients were classified as definite ulcers, 98 were superficial ulcers, and 102 were ill-defined ulcers, In univariate analysis, EUS accuracy was associated with invasion depth (P = 0.023), tumor size (P = 0.034), and endoscopic ulcer shapes (P = 0.001). In multivariate analysis, there is a significant association between superficial ulcer in CE and EUS accuracy (odds ratio: 2.977; 95% confidence interval: 1.255–7.064; P = 0.013). The accuracy of EUS for determining tumor invasion depth in ulcerative EGC was superior to that of CE. In addition, ulcer shape was an important factor that affected EUS accuracy. PMID:27472672

  7. SU-F-T-441: Dose Calculation Accuracy in CT Images Reconstructed with Artifact Reduction Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C; Chan, S; Lee, F; Ngan, R [Queen Elizabeth Hospital (Hong Kong); Lee, V [University of Hong Kong, Hong Kong, HK (Hong Kong)

    2016-06-15

    Purpose: Accuracy of radiotherapy dose calculation in patients with surgical implants is complicated by two factors. First is the accuracy of CT number, second is the dose calculation accuracy. We compared measured dose with dose calculated on CT images reconstructed with FBP and an artifact reduction algorithm (OMAR, Philips) for a phantom with high density inserts. Dose calculation were done with Varian AAA and AcurosXB. Methods: A phantom was constructed with solid water in which 2 titanium or stainless steel rods could be inserted. The phantom was scanned with the Philips Brillance Big Bore CT. Image reconstruction was done with FBP and OMAR. Two 6 MV single field photon plans were constructed for each phantom. Radiochromic films were placed at different locations to measure the dose deposited. One plan has normal incidence on the titanium/steel rods. In the second plan, the beam is at almost glancing incidence on the metal rods. Measurements were then compared with dose calculated with AAA and AcurosXB. Results: The use of OMAR images slightly improved the dose calculation accuracy. The agreement between measured and calculated dose was best with AXB and image reconstructed with OMAR. Dose calculated on titanium phantom has better agreement with measurement. Large discrepancies were seen at points directly above and below the high density inserts. Both AAA and AXB underestimated the dose directly above the metal surface, while overestimated the dose below the metal surface. Doses measured downstream of metal were all within 3% of calculated values. Conclusion: When doing treatment planning for patients with metal implants, care must be taken to acquire correct CT images to improve dose calculation accuracy. Moreover, great discrepancies in measured and calculated dose were observed at metal/tissue interface. Care must be taken in estimating the dose in critical structures that come into contact with metals.

  8. In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions.

    Science.gov (United States)

    Ender, Andreas; Mehl, Albert

    2015-01-01

    To investigate the accuracy of conventional and digital impression methods used to obtain full-arch impressions by using an in-vitro reference model. Eight different conventional (polyether, POE; vinylsiloxanether, VSE; direct scannable vinylsiloxanether, VSES; and irreversible hydrocolloid, ALG) and digital (CEREC Bluecam, CER; CEREC Omnicam, OC; Cadent iTero, ITE; and Lava COS, LAV) full-arch impressions were obtained from a reference model with a known morphology, using a highly accurate reference scanner. The impressions obtained were then compared with the original geometry of the reference model and within each test group. A point-to-point measurement of the surface of the model using the signed nearest neighbour method resulted in a mean (10%-90%)/2 percentile value for the difference between the impression and original model (trueness) as well as the difference between impressions within a test group (precision). Trueness values ranged from 11.5 μm (VSE) to 60.2 μm (POE), and precision ranged from 12.3 μm (VSE) to 66.7 μm (POE). Among the test groups, VSE, VSES, and CER showed the highest trueness and precision. The deviation pattern varied with the impression method. Conventional impressions showed high accuracy across the full dental arch in all groups, except POE and ALG. Conventional and digital impression methods show differences regarding full-arch accuracy. Digital impression systems reveal higher local deviations of the full-arch model. Digital intraoral impression systems do not show superior accuracy compared to highly accurate conventional impression techniques. However, they provide excellent clinical results within their indications applying the correct scanning technique.

  9. Accuracy and precision of oscillometric blood pressure in standing conscious horses

    DEFF Research Database (Denmark)

    Olsen, Emil; Pedersen, Tilde Louise Skovgaard; Robinson, Rebecca

    2016-01-01

    from a teaching and research herd. HYPOTHESIS/OBJECTIVE: To evaluate the accuracy and precision of systolic arterial pressure (SAP), diastolic arterial pressure (DAP), and mean arterial pressure (MAP) in conscious horses obtained with an oscillometric NIBP device when compared to invasively measured...... administration. Agreement analysis with replicate measures was utilized to calculate bias (accuracy) and standard deviation (SD) of bias (precision). RESULTS: A total of 252 pairs of invasive arterial BP and NIBP measurements were analyzed. Compared to the direct BP measures, the NIBP MAP had an accuracy of -4...... mm Hg and precision of 10 mm Hg. SAP had an accuracy of -8 mm Hg and a precision of 17 mm Hg and DAP had an accuracy of -7 mm Hg and a precision of 14 mm Hg. CONCLUSIONS AND CLINICAL RELEVANCE: MAP from the evaluated NIBP monitor is accurate and precise in the adult horse across a range of BP...

  10. Social class, contextualism, and empathic accuracy.

    Science.gov (United States)

    Kraus, Michael W; Côté, Stéphane; Keltner, Dacher

    2010-11-01

    Recent research suggests that lower-class individuals favor explanations of personal and political outcomes that are oriented to features of the external environment. We extended this work by testing the hypothesis that, as a result, individuals of a lower social class are more empathically accurate in judging the emotions of other people. In three studies, lower-class individuals (compared with upper-class individuals) received higher scores on a test of empathic accuracy (Study 1), judged the emotions of an interaction partner more accurately (Study 2), and made more accurate inferences about emotion from static images of muscle movements in the eyes (Study 3). Moreover, the association between social class and empathic accuracy was explained by the tendency for lower-class individuals to explain social events in terms of features of the external environment. The implications of class-based patterns in empathic accuracy for well-being and relationship outcomes are discussed.

  11. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    Science.gov (United States)

    Wu, T.-H.; Liang, C.-H.; Wu, J.-K.; Lien, C.-Y.; Yang, B.-H.; Huang, Y.-H.; Lee, J. J. S.

    2009-07-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18F-fluorodeoxyglucose (18F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  12. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    International Nuclear Information System (INIS)

    Wu, T-H; Liang, C-H; Wu, J-K; Lien, C-Y; Yang, B-H; Lee, J J S; Huang, Y-H

    2009-01-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18 F-fluorodeoxyglucose ( 18 F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  13. High-accuracy biodistribution analysis of adeno-associated virus variants by double barcode sequencing.

    Science.gov (United States)

    Marsic, Damien; Méndez-Gómez, Héctor R; Zolotukhin, Sergei

    2015-01-01

    Biodistribution analysis is a key step in the evaluation of adeno-associated virus (AAV) capsid variants, whether natural isolates or produced by rational design or directed evolution. Indeed, when screening candidate vectors, accurate knowledge about which tissues are infected and how efficiently is essential. We describe the design, validation, and application of a new vector, pTR-UF50-BC, encoding a bioluminescent protein, a fluorescent protein and a DNA barcode, which can be used to visualize localization of transduction at the organism, organ, tissue, or cellular levels. In addition, by linking capsid variants to different barcoded versions of the vector and amplifying the barcode region from various tissue samples using barcoded primers, biodistribution of viral genomes can be analyzed with high accuracy and efficiency.

  14. Compact Intraoperative MRI: Stereotactic Accuracy and Future Directions.

    Science.gov (United States)

    Markowitz, Daniel; Lin, Dishen; Salas, Sussan; Kohn, Nina; Schulder, Michael

    2017-01-01

    Intraoperative imaging must supply data that can be used for accurate stereotactic navigation. This information should be at least as accurate as that acquired from diagnostic imagers. The aim of this study was to compare the stereotactic accuracy of an updated compact intraoperative MRI (iMRI) device based on a 0.15-T magnet to standard surgical navigation on a 1.5-T diagnostic scan MRI and to navigation with an earlier model of the same system. The accuracy of each system was assessed using a water-filled phantom model of the brain. Data collected with the new system were compared to those obtained in a previous study assessing the older system. The accuracy of the new iMRI was measured against standard surgical navigation on a 1.5-T MRI using T1-weighted (W) images. The mean error with the iMRI using T1W images was lower than that based on images from the 1.5-T scan (1.24 vs. 2.43 mm). T2W images from the newer iMRI yielded a lower navigation error than those acquired with the prior model (1.28 vs. 3.15 mm). Improvements in magnet design can yield progressive increases in accuracy, validating the concept of compact, low-field iMRI. Avoiding the need for registration between image and surgical space increases navigation accuracy. © 2017 S. Karger AG, Basel.

  15. Image quality, radiation dose and diagnostic accuracy of 70 kVp whole brain volumetric CT perfusion imaging: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiao Kun; Ni, Qian Qian; Zhou, Chang Sheng; Chen, Guo Zhong; Luo, Song; Zhang, Long Jiang; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Schoepf, U.J. [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Medical University of South Carolina, Ashley River Tower, Division of Cardiovascular Imaging, Charleston, SC (United States); Fuller, Stephen R.; De Cecco, Carlo N. [Medical University of South Carolina, Ashley River Tower, Division of Cardiovascular Imaging, Charleston, SC (United States)

    2016-11-15

    To evaluate image quality and diagnostic accuracy for acute infarct detection and radiation dose of 70 kVp whole brain CT perfusion (CTP) and CT angiography (CTA) reconstructed from CTP source data. Patients were divided into three groups (n = 50 each): group A, 80 kVp, 21 scanning time points; groups B, 70 kVp, 21 scanning time points; group C, 70 kVp, 17 scanning time points. Objective and subjective image quality of CTP and CTA were compared. Diagnostic accuracy for detecting acute infarct and cerebral artery stenosis ≥ 50 % was calculated for CTP and CTA with diffusion weighted imaging and digital subtraction angiography as reference standards. Effective radiation dose was compared. There were no differences in any perfusion parameter value between three groups (P > 0.05). No difference was found in subjective image quality between three groups (P > 0.05). Diagnostic accuracy for detecting acute infarct and vascular stenosis showed no difference between three groups (P > 0.05). Compared with group A, radiation doses of groups B and C were decreased by 28 % and 37 % (both P < 0.001), respectively. Compared with 80 kVp protocol, 70 kVp brain CTP allows comparable vascular and perfusion assessment and lower radiation dose while maintaining high diagnostic accuracy in detecting acute infarct. (orig.)

  16. Diagnostic accuracy of tests to detect hepatitis B surface antigen: a systematic review of the literature and meta-analysis

    Directory of Open Access Journals (Sweden)

    Ali Amini

    2017-11-01

    Full Text Available Abstract Background Chronic Hepatitis B Virus (HBV infection is characterised by the persistence of hepatitis B surface antigen (HBsAg. Expanding HBV diagnosis and treatment programmes into low resource settings will require high quality but inexpensive rapid diagnostic tests (RDTs in addition to laboratory-based enzyme immunoassays (EIAs to detect HBsAg. The purpose of this review is to assess the clinical accuracy of available diagnostic tests to detect HBsAg to inform recommendations on testing strategies in 2017 WHO hepatitis testing guidelines. Methods The systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA guidelines using 9 databases. Two reviewers independently extracted data according to a pre-specified plan and evaluated study quality. Meta-analysis was performed. HBsAg diagnostic accuracy of rapid diagnostic tests (RDTs was compared to enzyme immunoassay (EIA and nucleic-acid test (NAT reference standards. Subanalyses were performed to determine accuracy among brands, HIV-status and specimen type. Results Of the 40 studies that met the inclusion criteria, 33 compared RDTs and/or EIAs against EIAs and 7 against NATs as reference standards. Thirty studies assessed diagnostic accuracy of 33 brands of RDTs in 23,716 individuals from 23 countries using EIA as the reference standard. The pooled sensitivity and specificity were 90.0% (95% CI: 89.1, 90.8 and 99.5% (95% CI: 99.4, 99.5 respectively, but accuracy varied widely among brands. Accuracy did not differ significantly whether serum, plasma, venous or capillary whole blood was used. Pooled sensitivity of RDTs in 5 studies of HIV-positive persons was lower at 72.3% (95% CI: 67.9, 76.4 compared to that in HIV-negative persons, but specificity remained high. Five studies evaluated 8 EIAs against a chemiluminescence immunoassay reference standard with a pooled sensitivity and specificity of 88.9% (95% CI: 87.0, 90.6 and

  17. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device. © 2011 IEEE

  18. Accuracy Evaluation of a Stereolithographic Surgical Template for Dental Implant Insertion Using 3D Superimposition Protocol

    Directory of Open Access Journals (Sweden)

    Corina Marilena Cristache

    2017-01-01

    Full Text Available The aim of this study was to evaluate the accuracy of a stereolithographic template, with sleeve structure incorporated into the design, for computer-guided dental implant insertion in partially edentulous patients. Materials and Methods. Sixty-five implants were placed in twenty-five consecutive patients with a stereolithographic surgical template. After surgery, digital impression was taken and 3D inaccuracy of implants position at entry point, apex, and angle deviation was measured using an inspection tool software. Mann–Whitney U test was used to compare accuracy between maxillary and mandibular surgical guides. A p value < .05 was considered significant. Results. Mean (and standard deviation of 3D error at the entry point was 0.798 mm (±0.52, at the implant apex it was 1.17 mm (±0.63, and mean angular deviation was 2.34 (±0.85. A statistically significant reduced 3D error was observed at entry point p=.037, at implant apex p=.008, and also in angular deviation p=.030 in mandible when comparing to maxilla. Conclusions. The surgical template used has proved high accuracy for implant insertion. Within the limitations of the present study, the protocol for comparing a digital file (treatment plan with postinsertion digital impression may be considered a useful procedure for assessing surgical template accuracy, avoiding radiation exposure, during postoperative CBCT scanning.

  19. A Comparative Study of Data Mining Algorithms for High Detection Rate in Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Nabeela Ashraf

    2018-01-01

    Full Text Available Due to the fast growth and tradition of the internet over the last decades, the network security problems are increasing vigorously. Humans can not handle the speed of processes and the huge amount of data required to handle network anomalies. Therefore, it needs substantial automation in both speed and accuracy. Intrusion Detection System is one of the approaches to recognize illegal access and rare attacks to secure networks. In this proposed paper, Naive Bayes, J48 and Random Forest classifiers are compared to compute the detection rate and accuracy of IDS. For experiments, the KDD_NSL dataset is used.

  20. A variational nodal diffusion method of high accuracy; Varijaciona nodalna difuziona metoda visoke tachnosti

    Energy Technology Data Exchange (ETDEWEB)

    Tomasevic, Dj; Altiparmarkov, D [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1988-07-01

    A variational nodal diffusion method with accurate treatment of transverse leakage shape is developed and presented in this paper. Using Legendre expansion in transverse coordinates higher order quasi-one-dimensional nodal equations are formulated. Numerical solution has been carried out using analytical solutions in alternating directions assuming Legendre expansion of the RHS term. The method has been tested against 2D and 3D IAEA benchmark problem, as well as 2D CANDU benchmark problem. The results are highly accurate. The first order approximation yields to the same order of accuracy as the standard nodal methods with quadratic leakage approximation, while the second order reaches reference solution. (author)

  1. Evaluating the Quality, Accuracy, and Readability of Online Resources Pertaining to Hallux Valgus.

    Science.gov (United States)

    Tartaglione, Jason P; Rosenbaum, Andrew J; Abousayed, Mostafa; Hushmendy, Shazaan F; DiPreta, John A

    2016-02-01

    The Internet is one of the most widely utilized resources for health-related information. Evaluation of the medical literature suggests that the quality and accuracy of these resources are poor and written at inappropriately high reading levels. The purpose of our study was to evaluate the quality, accuracy, and readability of online resources pertaining to hallux valgus. Two search terms ("hallux valgus" and "bunion") were entered into Google, Yahoo, and Bing. With the use of scoring criteria specific to hallux valgus, the quality and accuracy of online information related to hallux valgus was evaluated by 3 reviewers. The Flesch-Kincaid score was used to determine readability. Statistical analysis was performed with t tests and significance was determined by P values hallux valgus" (P = .045). Quality and accuracy were significantly higher in resources authored by physicians as compared to nonphysicians (quality, P = .04; accuracy, P hallux valgus is poor and written at inappropriate reading levels. Furthermore, the search term used, authorship, and presence of commercial bias influence the value of these materials. It is important for orthopaedic surgeons to become familiar with patient education materials, so that appropriate recommendations can be made regarding valuable resources. Level IV. © 2015 The Author(s).

  2. A retrospective study comparing the accuracy of prehistology diagnosis and surgical excision of malignant melanomas by general practitioners and hospital specialists.

    Science.gov (United States)

    Bakhai, M; Hopster, D; Wakeel, R

    2010-01-01

    A retrospective study was carried out to compare the overall standard of surgical excision of malignant melanomas (MMs) between general practitioners (GPs) and hospital specialists before and after the introduction of the UK melanoma guidelines between 1989 and 2006. In total, 213 melanoma excision reports were examined and surgical excision margins recorded. The results showed a significant difference in the rate of adequate surgical excision margins (at all levels of Breslow thickness) between GPs and hospital specialists, with hospital specialists excising melanomas with safe surgical excision margins at a significantly higher rate compared with GPs. Since the introduction of the guidelines in 2002, GPs showed a significant improvement in the completeness of melanoma excision but remained poor at prehistology diagnosis and in particular at taking adequate excision margins. Implementation of the guidelines has not produced significant improvements in adequacy of excision margins in both primary and secondary care. The results show that hospital specialists maintained a high standard of prehistological diagnosis and completeness of excision throughout the time of the study, performing at a significantly higher standard compared with GPs. Our conclusions concur with the UK melanoma guidelines and the National Institute for Health and Clinical Excellence guidelines, which suggest that lesions suspicious for melanoma should be urgently referred to a dermatologist or plastic surgeon for surgical excision and should not be surgically excised in primary care, particularly if lesions have a Breslow thickness > 2 mm. We suggest that the new guidelines need to be more aggressively implemented in primary care and guidance introduced to improve the accuracy of diagnosis, with better training provided for GPs.

  3. Bias associated with delayed verification in test accuracy studies: accuracy of tests for endometrial hyperplasia may be much higher than we think!

    Directory of Open Access Journals (Sweden)

    Coomarasamy Aravinthan

    2004-05-01

    Full Text Available Abstract Background To empirically evaluate bias in estimation of accuracy associated with delay in verification of diagnosis among studies evaluating tests for predicting endometrial hyperplasia. Methods Systematic reviews of all published research on accuracy of miniature endometrial biopsy and endometr ial ultrasonography for diagnosing endometrial hyperplasia identified 27 test accuracy studies (2,982 subjects. Of these, 16 had immediate histological verification of diagnosis while 11 had verification delayed > 24 hrs after testing. The effect of delay in verification of diagnosis on estimates of accuracy was evaluated using meta-regression with diagnostic odds ratio (dOR as the accuracy measure. This analysis was adjusted for study quality and type of test (miniature endometrial biopsy or endometrial ultrasound. Results Compared to studies with immediate verification of diagnosis (dOR 67.2, 95% CI 21.7–208.8, those with delayed verification (dOR 16.2, 95% CI 8.6–30.5 underestimated the diagnostic accuracy by 74% (95% CI 7%–99%; P value = 0.048. Conclusion Among studies of miniature endometrial biopsy and endometrial ultrasound, diagnostic accuracy is considerably underestimated if there is a delay in histological verification of diagnosis.

  4. On the convergence and accuracy of the FDTD method for nanoplasmonics.

    Science.gov (United States)

    Lesina, Antonino Calà; Vaccari, Alessandro; Berini, Pierre; Ramunno, Lora

    2015-04-20

    Use of the Finite-Difference Time-Domain (FDTD) method to model nanoplasmonic structures continues to rise - more than 2700 papers have been published in 2014 on FDTD simulations of surface plasmons. However, a comprehensive study on the convergence and accuracy of the method for nanoplasmonic structures has yet to be reported. Although the method may be well-established in other areas of electromagnetics, the peculiarities of nanoplasmonic problems are such that a targeted study on convergence and accuracy is required. The availability of a high-performance computing system (a massively parallel IBM Blue Gene/Q) allows us to do this for the first time. We consider gold and silver at optical wavelengths along with three "standard" nanoplasmonic structures: a metal sphere, a metal dipole antenna and a metal bowtie antenna - for the first structure comparisons with the analytical extinction, scattering, and absorption coefficients based on Mie theory are possible. We consider different ways to set-up the simulation domain, we vary the mesh size to very small dimensions, we compare the simple Drude model with the Drude model augmented with two critical points correction, we compare single-precision to double-precision arithmetic, and we compare two staircase meshing techniques, per-component and uniform. We find that the Drude model with two critical points correction (at least) must be used in general. Double-precision arithmetic is needed to avoid round-off errors if highly converged results are sought. Per-component meshing increases the accuracy when complex geometries are modeled, but the uniform mesh works better for structures completely fillable by the Yee cell (e.g., rectangular structures). Generally, a mesh size of 0.25 nm is required to achieve convergence of results to ∼ 1%. We determine how to optimally setup the simulation domain, and in so doing we find that performing scattering calculations within the near-field does not necessarily produces large

  5. High-accuracy measurements of snow Bidirectional Reflectance Distribution Function at visible and NIR wavelengths – comparison with modelling results

    Directory of Open Access Journals (Sweden)

    M. Dumont

    2010-03-01

    Full Text Available High-accuracy measurements of snow Bidirectional Reflectance Distribution Function (BRDF were performed for four natural snow samples with a spectrogonio-radiometer in the 500–2600 nm wavelength range. These measurements are one of the first sets of direct snow BRDF values over a wide range of lighting and viewing geometry. They were compared to BRDF calculated with two optical models. Variations of the snow anisotropy factor with lighting geometry, wavelength and snow physical properties were investigated. Results show that at wavelengths with small penetration depth, scattering mainly occurs in the very top layers and the anisotropy factor is controlled by the phase function. In this condition, forward scattering peak or double scattering peak is observed. In contrast at shorter wavelengths, the penetration of the radiation is much deeper and the number of scattering events increases. The anisotropy factor is thus nearly constant and decreases at grazing observation angles. The whole dataset is available on demand from the corresponding author.

  6. Improving coding accuracy in an academic practice.

    Science.gov (United States)

    Nguyen, Dana; O'Mara, Heather; Powell, Robert

    2017-01-01

    Practice management has become an increasingly important component of graduate medical education. This applies to every practice environment; private, academic, and military. One of the most critical aspects of practice management is documentation and coding for physician services, as they directly affect the financial success of any practice. Our quality improvement project aimed to implement a new and innovative method for teaching billing and coding in a longitudinal fashion in a family medicine residency. We hypothesized that implementation of a new teaching strategy would increase coding accuracy rates among residents and faculty. Design: single group, pretest-posttest. military family medicine residency clinic. Study populations: 7 faculty physicians and 18 resident physicians participated as learners in the project. Educational intervention: monthly structured coding learning sessions in the academic curriculum that involved learner-presented cases, small group case review, and large group discussion. overall coding accuracy (compliance) percentage and coding accuracy per year group for the subjects that were able to participate longitudinally. Statistical tests used: average coding accuracy for population; paired t test to assess improvement between 2 intervention periods, both aggregate and by year group. Overall coding accuracy rates remained stable over the course of time regardless of the modality of the educational intervention. A paired t test was conducted to compare coding accuracy rates at baseline (mean (M)=26.4%, SD=10%) to accuracy rates after all educational interventions were complete (M=26.8%, SD=12%); t24=-0.127, P=.90. Didactic teaching and small group discussion sessions did not improve overall coding accuracy in a residency practice. Future interventions could focus on educating providers at the individual level.

  7. High Accuracy Ground-based near-Earth-asteroid Astrometry using Synthetic Tracking

    Science.gov (United States)

    Zhai, Chengxing; Shao, Michael; Saini, Navtej; Sandhu, Jagmit; Werne, Thomas; Choi, Philip; Ely, Todd A.; Jacobs, Chirstopher S.; Lazio, Joseph; Martin-Mur, Tomas J.; Owen, William M.; Preston, Robert; Turyshev, Slava; Michell, Adam; Nazli, Kutay; Cui, Isaac; Monchama, Rachel

    2018-01-01

    Accurate astrometry is crucial for determining the orbits of near-Earth-asteroids (NEAs). Further, the future of deep space high data rate communications is likely to be optical communications, such as the Deep Space Optical Communications package that is part of the baseline payload for the planned Psyche Discovery mission to the Psyche asteroid. We have recently upgraded our instrument on the Pomona College 1 m telescope, at JPL's Table Mountain Facility, for conducting synthetic tracking by taking many short exposure images. These images can be then combined in post-processing to track both asteroid and reference stars to yield accurate astrometry. Utilizing the precision of the current and future Gaia data releases, the JPL-Pomona College effort is now demonstrating precision astrometry on NEAs, which is likely to be of considerable value for cataloging NEAs. Further, treating NEAs as proxies of future spacecraft that carry optical communication lasers, our results serve as a measure of the astrometric accuracy that could be achieved for future plane-of-sky optical navigation.

  8. Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision

    Science.gov (United States)

    Yang, Bingwei; Xie, Xinhao; Li, Duan

    2018-01-01

    Time of flight (TOF) based light detection and ranging (LiDAR) is a technology for calculating distance between start/stop signals of time of flight. In lab-built LiDAR, two ranging systems for measuring flying time between start/stop signals include time-to-digital converter (TDC) that counts time between trigger signals and analog-to-digital converter (ADC) that processes the sampled start/stop pulses waveform for time estimation. We study the influence of waveform characteristics on range accuracy and precision of two kinds of ranging system. Comparing waveform based ranging (WR) with analog discrete return system based ranging (AR), a peak detection method (WR-PK) shows the best ranging performance because of less execution time, high ranging accuracy, and stable precision. Based on a novel statistic mathematical method maximal information coefficient (MIC), WR-PK precision has a high linear relationship with the received pulse width standard deviation. Thus keeping the received pulse width of measuring a constant distance as stable as possible can improve ranging precision. PMID:29642639

  9. Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2018-04-01

    Full Text Available Time of flight (TOF based light detection and ranging (LiDAR is a technology for calculating distance between start/stop signals of time of flight. In lab-built LiDAR, two ranging systems for measuring flying time between start/stop signals include time-to-digital converter (TDC that counts time between trigger signals and analog-to-digital converter (ADC that processes the sampled start/stop pulses waveform for time estimation. We study the influence of waveform characteristics on range accuracy and precision of two kinds of ranging system. Comparing waveform based ranging (WR with analog discrete return system based ranging (AR, a peak detection method (WR-PK shows the best ranging performance because of less execution time, high ranging accuracy, and stable precision. Based on a novel statistic mathematical method maximal information coefficient (MIC, WR-PK precision has a high linear relationship with the received pulse width standard deviation. Thus keeping the received pulse width of measuring a constant distance as stable as possible can improve ranging precision.

  10. High-Accuracy Measurements of Total Column Water Vapor From the Orbiting Carbon Observatory-2

    Science.gov (United States)

    Nelson, Robert R.; Crisp, David; Ott, Lesley E.; O'Dell, Christopher W.

    2016-01-01

    Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution [1.3 x 2.3 km(exp. 2)] and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products.

  11. Coorientational Accuracy and Differentiation in the Management of Conflict.

    Science.gov (United States)

    Papa, Michael J.; Pood, Elliott A.

    1988-01-01

    Investigates the relationship between coorientational accuracy and differentiation time and two dimensions of conflict (interaction satisfaction and assertiveness of influence strategies). Suggests that entering a conflict with high coorientational accuracy leads to less differentiation and fewer assertive strategies during the confrontation and…

  12. Three-dimensional repositioning accuracy of semiadjustable articulator cast mounting systems.

    Science.gov (United States)

    Tan, Ming Yi; Ung, Justina Youlin; Low, Ada Hui Yin; Tan, En En; Tan, Keson Beng Choon

    2014-10-01

    In spite of its importance in prosthesis precision and quality, the 3-dimensional repositioning accuracy of cast mounting systems has not been reported in detail. The purpose of this study was to quantify the 3-dimensional repositioning accuracy of 6 selected cast mounting systems. Five magnetic mounting systems were compared with a conventional screw-on system. Six systems on 3 semiadjustable articulators were evaluated: Denar Mark II with conventional screw-on mounting plates (DENSCR) and magnetic mounting system with converter plates (DENCON); Denar Mark 330 with in-built magnetic mounting system (DENMAG) and disposable mounting plates; and Artex CP with blue (ARTBLU), white (ARTWHI), and black (ARTBLA) magnetic mounting plates. Test casts with 3 high-precision ceramic ball bearings at the mandibular central incisor (Point I) and the right and left second molar (Point R; Point L) positions were mounted on 5 mounting plates (n=5) for all 6 systems. Each cast was repositioned 10 times by 4 operators in random order. Nine linear (Ix, Iy, Iz; Rx, Ry, Rz; Lx, Ly, Lz) and 3 angular (anteroposterior, mediolateral, twisting) displacements were measured with a coordinate measuring machine. The mean standard deviations of the linear and angular displacements defined repositioning accuracy. Anteroposterior linear repositioning accuracy ranged from 23.8 ±3.7 μm (DENCON) to 4.9 ±3.2 μm (DENSCR). Mediolateral linear repositioning accuracy ranged from 46.0 ±8.0 μm (DENCON) to 3.7 ±1.5 μm (ARTBLU), and vertical linear repositioning accuracy ranged from 7.2 ±9.6 μm (DENMAG) to 1.5 ±0.9 μm (ARTBLU). Anteroposterior angular repositioning accuracy ranged from 0.0084 ±0.0080 degrees (DENCON) to 0.0020 ±0.0006 degrees (ARTBLU), and mediolateral angular repositioning accuracy ranged from 0.0120 ±0.0111 degrees (ARTWHI) to 0.0027 ±0.0008 degrees (ARTBLU). Twisting angular repositioning accuracy ranged from 0.0419 ±0.0176 degrees (DENCON) to 0.0042 ±0.0038 degrees

  13. A content analysis of the quantity and accuracy of dietary supplement information found in magazines with high adolescent readership.

    Science.gov (United States)

    Shaw, Patricia; Zhang, Vivien; Metallinos-Katsaras, Elizabeth

    2009-02-01

    The objective of this study was to examine the quantity and accuracy of dietary supplement (DS) information through magazines with high adolescent readership. Eight (8) magazines (3 teen and 5 adult with high teen readership) were selected. A content analysis for DS was conducted on advertisements and editorials (i.e., articles, advice columns, and bulletins). Noted claims/cautions regarding DS were evaluated for accuracy using Medlineplus.gov and Naturaldatabase.com. Claims for dietary supplements with three or more types of ingredients and those in advertisements were not evaluated. Advertisements were evaluated with respect to size, referenced research, testimonials, and Dietary Supplement Health and Education Act of 1994 (DSHEA) warning visibility. Eighty-eight (88) issues from eight magazines yielded 238 DS references. Fifty (50) issues from five magazines contained no DS reference. Among teen magazines, seven DS references were found: five in the editorials and two in advertisements. In adult magazines, 231 DS references were found: 139 in editorials and 92 in advertisements. Of the 88 claims evaluated, 15% were accurate, 23% were inconclusive, 3% were inaccurate, 5% were partially accurate, and 55% were unsubstantiated (i.e., not listed in reference databases). Of the 94 DS evaluated in advertisements, 43% were full page or more, 79% did not have a DSHEA warning visible, 46% referred to research, and 32% used testimonials. Teen magazines contain few references to DS, none accurate. Adult magazines that have a high teen readership contain a substantial amount of DS information with questionable accuracy, raising concerns that this information may increase the chances of inappropriate DS use by adolescents, thereby increasing the potential for unexpected effects or possible harm.

  14. Accuracy of Topcon CM-1000 videokeratoscope on spherical test surfaces.

    Science.gov (United States)

    Pérez-Yern, E; Fimia-Gil, A; Mateos, F; Carretero, L

    1997-01-01

    Many videokeratoscopes use mathematical formulas to calculate corneal radii; calculations depend on slope, curvature, coordinate position, or focal properties of the surface. Accuracy of each type of videokeratoscope must be evaluated. A controversy exists about whether axial or tangential methods best provide a precise description of corneal shape; therefore results with the Topcon CM-1000 using both methods were evaluated. Measurements were done on black polymethylmethacrylate (PMMA) spherical calibrated surfaces. Lenses were first aligned and measured and then misaligned in different directions and measured. Results for each position were compared with the zero or alignment position. Accuracy of the CM-1000 was high even under extreme misalignment conditions. Tolerance to misalignment was high (about 300 mm). Misalignment-induced variations in the output results were small (usually less than 0.05 mm). However, important variations (more than 1.00 diopter [D]) were found for the lowest measured radius (6 mm). In some cases, small differences between axial and tangential radii for the same point could be found. With the exception of extremely low radii of curvature, the CM-1000 was accurate for measuring spherical surfaces. Further investigation remains to be done on aspheric surfaces and in clinical practice.

  15. Metric Accuracy Evaluation of Dense Matching Algorithms in Archeological Applications

    Directory of Open Access Journals (Sweden)

    C. Re

    2011-12-01

    Full Text Available In the cultural heritage field the recording and documentation of small and medium size objects with very detailed Digital Surface Models (DSM is readily possible by through the use of high resolution and high precision triangulation laser scanners. 3D surface recording of archaeological objects can be easily achieved in museums; however, this type of record can be quite expensive. In many cases photogrammetry can provide a viable alternative for the generation of DSMs. The photogrammetric procedure has some benefits with respect to laser survey. The research described in this paper sets out to verify the reconstruction accuracy of DSMs of some archaeological artifacts obtained by photogrammetric survey. The experimentation has been carried out on some objects preserved in the Petrie Museum of Egyptian Archaeology at University College London (UCL. DSMs produced by two photogrammetric software packages are compared with the digital 3D model obtained by a state of the art triangulation color laser scanner. Intercomparison between the generated DSM has allowed an evaluation of metric accuracy of the photogrammetric approach applied to archaeological documentation and of precision performances of the two software packages.

  16. Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method

    Science.gov (United States)

    Brovelli, Maria Antonia; Crespi, Mattia; Fratarcangeli, Francesca; Giannone, Francesca; Realini, Eugenio

    Interest in high-resolution satellite imagery (HRSI) is spreading in several application fields, at both scientific and commercial levels. Fundamental and critical goals for the geometric use of this kind of imagery are their orientation and orthorectification, processes able to georeference the imagery and correct the geometric deformations they undergo during acquisition. In order to exploit the actual potentialities of orthorectified imagery in Geomatics applications, the definition of a methodology to assess the spatial accuracy achievable from oriented imagery is a crucial topic. In this paper we want to propose a new method for accuracy assessment based on the Leave-One-Out Cross-Validation (LOOCV), a model validation method already applied in different fields such as machine learning, bioinformatics and generally in any other field requiring an evaluation of the performance of a learning algorithm (e.g. in geostatistics), but never applied to HRSI orientation accuracy assessment. The proposed method exhibits interesting features which are able to overcome the most remarkable drawbacks involved by the commonly used method (Hold-Out Validation — HOV), based on the partitioning of the known ground points in two sets: the first is used in the orientation-orthorectification model (GCPs — Ground Control Points) and the second is used to validate the model itself (CPs — Check Points). In fact the HOV is generally not reliable and it is not applicable when a low number of ground points is available. To test the proposed method we implemented a new routine that performs the LOOCV in the software SISAR, developed by the Geodesy and Geomatics Team at the Sapienza University of Rome to perform the rigorous orientation of HRSI; this routine was tested on some EROS-A and QuickBird images. Moreover, these images were also oriented using the world recognized commercial software OrthoEngine v. 10 (included in the Geomatica suite by PCI), manually performing the LOOCV

  17. Determining the Accuracy of Paleomagnetic Remanence and High-Resolution Chronostratigraphy for Sedimentary Rocks using Rock Magnetics

    Science.gov (United States)

    Kodama, K. P.

    2017-12-01

    The talk will consider two broad topics in rock magnetism and paleomagnetism: the accuracy of paleomagnetic remanence and the use of rock magnetics to measure geologic time in sedimentary sequences. The accuracy of the inclination recorded by sedimentary rocks is crucial to paleogeographic reconstructions. Laboratory compaction experiments show that inclination shallows on the order of 10˚-15˚. Corrections to the inclination can be made using the effects of compaction on the directional distribution of secular variation recorded by sediments or the anisotropy of the magnetic grains carrying the ancient remanence. A summary of all the compaction correction studies as of 2012 shows that 85% of sedimentary rocks studied have enjoyed some amount of inclination shallowing. Future work should also consider the effect of grain-scale strain on paleomagnetic remanence. High resolution chronostratigraphy can be assigned to a sedimentary sequence using rock magnetics to detect astronomically-forced climate cycles. The power of the technique is relatively quick, non-destructive measurements, the objective identification of the cycles compared to facies interpretations, and the sensitivity of rock magnetics to subtle changes in sedimentary source. An example of this technique comes from using rock magnetics to identify astronomically-forced climate cycles in three globally distributed occurrences of the Shuram carbon isotope excursion. The Shuram excursion may record the oxidation of the world ocean in the Ediacaran, just before the Cambrian explosion of metazoans. Using rock magnetic cyclostratigraphy, the excursion is shown to have the same duration (8-9 Myr) in southern California, south China and south Australia. Magnetostratigraphy of the rocks carrying the excursion in California and Australia shows a reversed to normal geomagnetic field polarity transition at the excursion's nadir, thus supporting the synchroneity of the excursion globally. Both results point to a

  18. Accuracy of a separating foil impression using a novel polyolefin foil compared to a custom tray and a stock tray technique

    Science.gov (United States)

    Pastoret, Marie-Hélène; Bühler, Julia; Weiger, Roland

    2017-01-01

    PURPOSE To compare the dimensional accuracy of three impression techniques- a separating foil impression, a custom tray impression, and a stock tray impression. MATERIALS AND METHODS A machined mandibular complete-arch metal model with special modifications served as a master cast. Three different impression techniques (n = 6 in each group) were performed with addition-cured silicon materials: i) putty-wash technique with a prefabricated metal tray (MET) using putty and regular body, ii) single-phase impression with custom tray (CUS) using regular body material, and iii) two-stage technique with stock metal tray (SEP) using putty with a separating foil and regular body material. All impressions were poured with epoxy resin. Six different distances (four intra-abutment and two inter-abutment distances) were gauged on the metal master model and on the casts with a microscope in combination with calibrated measuring software. The differences of the evaluated distances between the reference and the three test groups were calculated and expressed as mean (± SD). Additionally, the 95% confidence intervals were calculated and significant differences between the experimental groups were assumed when confidence intervals did not overlap. RESULTS Dimensional changes compared to reference values varied between -74.01 and 32.57 µm (MET), -78.86 and 30.84 (CUS), and between -92.20 and 30.98 (SEP). For the intra-abutment distances, no significant differences among the experimental groups were detected. CUS showed a significantly higher dimensional accuracy for the inter-abutment distances with -0.02 and -0.08 percentage deviation compared to MET and SEP. CONCLUSION The separation foil technique is a simple alternative to the custom tray technique for single tooth restorations, while limitations may exist for extended restorations with multiple abutment teeth. PMID:28874996

  19. Probe-level linear model fitting and mixture modeling results in high accuracy detection of differential gene expression

    Directory of Open Access Journals (Sweden)

    Lemieux Sébastien

    2006-08-01

    Full Text Available Abstract Background The identification of differentially expressed genes (DEGs from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. Results On a wholly defined dataset, the PL-LM method was able to identify 75% of the differentially expressed genes within 10% of false positives. This accuracy was achieved both using the three replicates per conditions available in the dataset and using only one replicate per condition. Conclusion The method achieves, on this dataset, a higher accuracy than the best set of tools identified by the authors of the dataset, and does so using only one replicate per condition.

  20. Accuracy Rates of Ancestry Estimation by Forensic Anthropologists Using Identified Forensic Cases.

    Science.gov (United States)

    Thomas, Richard M; Parks, Connie L; Richard, Adam H

    2017-07-01

    A common task in forensic anthropology involves the estimation of the ancestry of a decedent by comparing their skeletal morphology and measurements to skeletons of individuals from known geographic groups. However, the accuracy rates of ancestry estimation methods in actual forensic casework have rarely been studied. This article uses 99 forensic cases with identified skeletal remains to develop accuracy rates for ancestry estimations conducted by forensic anthropologists. The overall rate of correct ancestry estimation from these cases is 90.9%, which is comparable to most research-derived rates and those reported by individual practitioners. Statistical tests showed no significant difference in accuracy rates depending on examiner education level or on the estimated or identified ancestry. More recent cases showed a significantly higher accuracy rate. The incorporation of metric analyses into the ancestry estimate in these cases led to a higher accuracy rate. © 2017 American Academy of Forensic Sciences.

  1. Social power facilitates the effect of prosocial orientation on empathic accuracy.

    Science.gov (United States)

    Côté, Stéphane; Kraus, Michael W; Cheng, Bonnie Hayden; Oveis, Christopher; van der Löwe, Ilmo; Lian, Hua; Keltner, Dacher

    2011-08-01

    Power increases the tendency to behave in a goal-congruent fashion. Guided by this theoretical notion, we hypothesized that elevated power would strengthen the positive association between prosocial orientation and empathic accuracy. In 3 studies with university and adult samples, prosocial orientation was more strongly associated with empathic accuracy when distinct forms of power were high than when power was low. In Study 1, a physiological indicator of prosocial orientation, respiratory sinus arrhythmia, exhibited a stronger positive association with empathic accuracy in a face-to-face interaction among dispositionally high-power individuals. In Study 2, experimentally induced prosocial orientation increased the ability to accurately judge the emotions of a stranger but only for individuals induced to feel powerful. In Study 3, a trait measure of prosocial orientation was more strongly related to scores on a standard test of empathic accuracy among employees who occupied high-power positions within an organization. Study 3 further showed a mediated relationship between prosocial orientation and career satisfaction through empathic accuracy among employees in high-power positions but not among employees in lower power positions. Discussion concentrates upon the implications of these findings for studies of prosociality, power, and social behavior.

  2. A comparative evaluation of the marginal accuracy of crowns fabricated from four commercially available provisional materials: An in vitro study

    Science.gov (United States)

    Amin, Bhavya Mohandas; Aras, Meena Ajay; Chitre, Vidya

    2015-01-01

    Purpose: The purpose of this in vitro study was to evaluate and compare the primary marginal accuracy of four commercially available provisional materials (Protemp 4, Luxatemp Star, Visalys Temp and DPI tooth moulding powder and liquid) at 2 time intervals (10 and 30 min). Materials and Methods: A customized stainless steel master model containing two interchangeable dies was used for fabrication of provisional crowns. Forty crowns (n = 10) were fabricated, and each crown was evaluated under a stereomicroscope. Vertical marginal discrepancies were noted and compared at 10 min since the start of mixing and then at 30 min. Observations and Results: Protemp 4 showed the least vertical marginal discrepancy (71.59 μ), followed by Luxatemp Star (91.93 μ) at 10 min. DPI showed a marginal discrepancy of 95.94 μ while Visalys Temp crowns had vertical marginal discrepancy of 106.81 μ. There was a significant difference in the marginal discrepancy values of Protemp 4 and Visalys Temp. At 30 min, there was a significant difference between the marginal discrepancy of Protemp 4 crowns (83.11 μ) and Visalys Temp crowns (128.97 μ) and between Protemp 4 and DPI (118.88 μ). No significant differences were observed between Protemp 4 and Luxatemp Star. Conclusion: The vertical marginal discrepancy of temporary crowns fabricated from the four commercially available provisional materials ranged from 71 to 106 μ immediately after fabrication (at 10 min from the start of mix) to 83–128 μ (30 min from the start of mix). The time elapsed after mixing had a significant influence on the marginal accuracy of the crowns. PMID:26097348

  3. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared with Manual Techniques.

    Science.gov (United States)

    Hampp, Emily L; Chughtai, Morad; Scholl, Laura Y; Sodhi, Nipun; Bhowmik-Stoker, Manoshi; Jacofsky, David J; Mont, Michael A

    2018-05-01

    This study determined if robotic-arm assisted total knee arthroplasty (RATKA) allows for more accurate and precise bone cuts and component position to plan compared with manual total knee arthroplasty (MTKA). Specifically, we assessed the following: (1) final bone cuts, (2) final component position, and (3) a potential learning curve for RATKA. On six cadaver specimens (12 knees), a MTKA and RATKA were performed on the left and right knees, respectively. Bone-cut and final-component positioning errors relative to preoperative plans were compared. Median errors and standard deviations (SDs) in the sagittal, coronal, and axial planes were compared. Median values of the absolute deviation from plan defined the accuracy to plan. SDs described the precision to plan. RATKA bone cuts were as or more accurate to plan based on nominal median values in 11 out of 12 measurements. RATKA bone cuts were more precise to plan in 8 out of 12 measurements ( p  ≤ 0.05). RATKA final component positions were as or more accurate to plan based on median values in five out of five measurements. RATKA final component positions were more precise to plan in four out of five measurements ( p  ≤ 0.05). Stacked error results from all cuts and implant positions for each specimen in procedural order showed that RATKA error was less than MTKA error. Although this study analyzed a small number of cadaver specimens, there were clear differences that separated these two groups. When compared with MTKA, RATKA demonstrated more accurate and precise bone cuts and implant positioning to plan. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. High-accuracy dosimetry study for intensity-modulated radiation therapy(IMRT) commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun

    2010-02-15

    % to 7% (0.5 x 0.5 cm{sup 2}). In addition, a method using a pixel-based unfolding curve was developed and applied to correct the non-uniform response of flat-bed type scanners for a radiochromic film. Also, the accuracy of the method was finally evaluated by comparing the results with those of an ion chamber, Monte Carlo simulation, and CF-based conventional method. For individual dose, the dosimetric error of using conventional method and using the pixel-based unfolding curve was reduced to less than 3%, and 1%, respectively. In case of step-wise doses, the average difference of 16% with MC calculation was reduced up to 1% by using the correction method in this study. Consequently, the accuracy of dose computation algorithms in TPS can be evaluated by the developed LEGO-type solid phantom, small filed dosimetry, the correction method for non-uniform response of scanners. It is also recognized that the developed hardware and software which are possible to be used for QA procedure are very reliable and they could be used for reference study of other radiation therapies

  5. Accuracy of repeated kidney size estimation by ultrasonography and urography in children

    International Nuclear Information System (INIS)

    Hederstroem, E.; Forsberg, L.

    1985-01-01

    The accuracy of repeated sonographic and urographic kidney length measurements in kidney size evaluation was investigated in 80 children 0 to 14 years of age, mean age 4.5 years. At sonography 250 kidney lengths were compared. A difference of 0 to 1.0 cm in repeated length measurement was considered to be good accuracy and 94 per cent of right and 96 per cent of left kidney length were found within this interval-a better result than for urography with 76 per cent of repeated right kidney and 79 per cent of kidney lengths within the same interval (94 lengths). Both methods display a variation of kidney lengths which may lead to under- and overestimation of kidney size and growth. The investigation thus indicates good accuracy for repeated sonographic kidney size assessment which should be repeated often enough to estabilish a growth chart displaying the trend rather than rely too much on single measurements. Sonography can be highly recommended as a convenient and harmless alternative to urography. (orig.)

  6. On the Accuracy of Language Trees

    Science.gov (United States)

    Pompei, Simone; Loreto, Vittorio; Tria, Francesca

    2011-01-01

    Historical linguistics aims at inferring the most likely language phylogenetic tree starting from information concerning the evolutionary relatedness of languages. The available information are typically lists of homologous (lexical, phonological, syntactic) features or characters for many different languages: a set of parallel corpora whose compilation represents a paramount achievement in linguistics. From this perspective the reconstruction of language trees is an example of inverse problems: starting from present, incomplete and often noisy, information, one aims at inferring the most likely past evolutionary history. A fundamental issue in inverse problems is the evaluation of the inference made. A standard way of dealing with this question is to generate data with artificial models in order to have full access to the evolutionary process one is going to infer. This procedure presents an intrinsic limitation: when dealing with real data sets, one typically does not know which model of evolution is the most suitable for them. A possible way out is to compare algorithmic inference with expert classifications. This is the point of view we take here by conducting a thorough survey of the accuracy of reconstruction methods as compared with the Ethnologue expert classifications. We focus in particular on state-of-the-art distance-based methods for phylogeny reconstruction using worldwide linguistic databases. In order to assess the accuracy of the inferred trees we introduce and characterize two generalizations of standard definitions of distances between trees. Based on these scores we quantify the relative performances of the distance-based algorithms considered. Further we quantify how the completeness and the coverage of the available databases affect the accuracy of the reconstruction. Finally we draw some conclusions about where the accuracy of the reconstructions in historical linguistics stands and about the leading directions to improve it. PMID:21674034

  7. On the accuracy of language trees.

    Directory of Open Access Journals (Sweden)

    Simone Pompei

    Full Text Available Historical linguistics aims at inferring the most likely language phylogenetic tree starting from information concerning the evolutionary relatedness of languages. The available information are typically lists of homologous (lexical, phonological, syntactic features or characters for many different languages: a set of parallel corpora whose compilation represents a paramount achievement in linguistics. From this perspective the reconstruction of language trees is an example of inverse problems: starting from present, incomplete and often noisy, information, one aims at inferring the most likely past evolutionary history. A fundamental issue in inverse problems is the evaluation of the inference made. A standard way of dealing with this question is to generate data with artificial models in order to have full access to the evolutionary process one is going to infer. This procedure presents an intrinsic limitation: when dealing with real data sets, one typically does not know which model of evolution is the most suitable for them. A possible way out is to compare algorithmic inference with expert classifications. This is the point of view we take here by conducting a thorough survey of the accuracy of reconstruction methods as compared with the Ethnologue expert classifications. We focus in particular on state-of-the-art distance-based methods for phylogeny reconstruction using worldwide linguistic databases. In order to assess the accuracy of the inferred trees we introduce and characterize two generalizations of standard definitions of distances between trees. Based on these scores we quantify the relative performances of the distance-based algorithms considered. Further we quantify how the completeness and the coverage of the available databases affect the accuracy of the reconstruction. Finally we draw some conclusions about where the accuracy of the reconstructions in historical linguistics stands and about the leading directions to improve

  8. Improving Accuracy of Intrusion Detection Model Using PCA and optimized SVM

    Directory of Open Access Journals (Sweden)

    Sumaiya Thaseen Ikram

    2016-06-01

    Full Text Available Intrusion detection is very essential for providing security to different network domains and is mostly used for locating and tracing the intruders. There are many problems with traditional intrusion detection models (IDS such as low detection capability against unknown network attack, high false alarm rate and insufficient analysis capability. Hence the major scope of the research in this domain is to develop an intrusion detection model with improved accuracy and reduced training time. This paper proposes a hybrid intrusiondetection model by integrating the principal component analysis (PCA and support vector machine (SVM. The novelty of the paper is the optimization of kernel parameters of the SVM classifier using automatic parameter selection technique. This technique optimizes the punishment factor (C and kernel parameter gamma (γ, thereby improving the accuracy of the classifier and reducing the training and testing time. The experimental results obtained on the NSL KDD and gurekddcup dataset show that the proposed technique performs better with higher accuracy, faster convergence speed and better generalization. Minimum resources are consumed as the classifier input requires reduced feature set for optimum classification. A comparative analysis of hybrid models with the proposed model is also performed.

  9. Using function approximation to determine neural network accuracy

    International Nuclear Information System (INIS)

    Wichman, R.F.; Alexander, J.

    2013-01-01

    Many, if not most, control processes demonstrate nonlinear behavior in some portion of their operating range and the ability of neural networks to model non-linear dynamics makes them very appealing for control. Control of high reliability safety systems, and autonomous control in process or robotic applications, however, require accurate and consistent control and neural networks are only approximators of various functions so their degree of approximation becomes important. In this paper, the factors affecting the ability of a feed-forward back-propagation neural network to accurately approximate a non-linear function are explored. Compared to pattern recognition using a neural network for function approximation provides an easy and accurate method for determining the network's accuracy. In contrast to other techniques, we show that errors arising in function approximation or curve fitting are caused by the neural network itself rather than scatter in the data. A method is proposed that provides improvements in the accuracy achieved during training and resulting ability of the network to generalize after training. Binary input vectors provided a more accurate model than with scalar inputs and retraining using a small number of the outlier x,y pairs improved generalization. (author)

  10. Determination of fuel irradiation parameters. Required accuracies and available methods

    International Nuclear Information System (INIS)

    Mas, P.

    1977-01-01

    This paper reports on the present point of some main methods to determine the nuclear parameters of fuel irradiation in testing reactors (nuclear power, burn up, ...) The different methods (theoretical or experimental) are reviewed: neutron measurements and calculations, gamma scanning, heat balance, ... . The required accuracies are reviewed: they are of 3-5 % on flux, fluences, nuclear power, burn-up, conversion factor. These required accuracies are compared with the real accuracies available which are the present time of order of 5-20 % on these parameters

  11. Determination of material irradiation parameters. Required accuracies and available methods

    International Nuclear Information System (INIS)

    Cerles, J.M.; Mas, P.

    1978-01-01

    In this paper, the author reports some main methods to determine the nuclear parameters of material irradiation in testing reactor (nuclear power, burn-up, fluxes, fluences, ...). The different methods (theoretical or experimental) are reviewed: neutronics measurements and calculations, gamma scanning, thermal balance, ... The required accuracies are reviewed: they are of 3-5% on flux, fluences, nuclear power, burn-up, conversion factor, ... These required accuracies are compared with the real accuracies available which are at the present time of order of 5-20% on these parameters

  12. Accuracy optimization with wavelength tunability in overlay imaging technology

    Science.gov (United States)

    Lee, Honggoo; Kang, Yoonshik; Han, Sangjoon; Shim, Kyuchan; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, Dongyoung; Oh, Eungryong; Choi, Ahlin; Kim, Youngsik; Marciano, Tal; Klein, Dana; Hajaj, Eitan M.; Aharon, Sharon; Ben-Dov, Guy; Lilach, Saltoun; Serero, Dan; Golotsvan, Anna

    2018-03-01

    As semiconductor manufacturing technology progresses and the dimensions of integrated circuit elements shrink, overlay budget is accordingly being reduced. Overlay budget closely approaches the scale of measurement inaccuracies due to both optical imperfections of the measurement system and the interaction of light with geometrical asymmetries of the measured targets. Measurement inaccuracies can no longer be ignored due to their significant effect on the resulting device yield. In this paper we investigate a new approach for imaging based overlay (IBO) measurements by optimizing accuracy rather than contrast precision, including its effect over the total target performance, using wavelength tunable overlay imaging metrology. We present new accuracy metrics based on theoretical development and present their quality in identifying the measurement accuracy when compared to CD-SEM overlay measurements. The paper presents the theoretical considerations and simulation work, as well as measurement data, for which tunability combined with the new accuracy metrics is shown to improve accuracy performance.

  13. Testing an Automated Accuracy Assessment Method on Bibliographic Data

    Directory of Open Access Journals (Sweden)

    Marlies Olensky

    2014-12-01

    Full Text Available This study investigates automated data accuracy assessment as described in data quality literature for its suitability to assess bibliographic data. The data samples comprise the publications of two Nobel Prize winners in the field of Chemistry for a 10-year-publication period retrieved from the two bibliometric data sources, Web of Science and Scopus. The bibliographic records are assessed against the original publication (gold standard and an automatic assessment method is compared to a manual one. The results show that the manual assessment method reflects truer accuracy scores. The automated assessment method would need to be extended by additional rules that reflect specific characteristics of bibliographic data. Both data sources had higher accuracy scores per field than accumulated per record. This study contributes to the research on finding a standardized assessment method of bibliographic data accuracy as well as defining the impact of data accuracy on the citation matching process.

  14. Diagnostic accuracy of low-dose CT compared with abdominal radiography in non-traumatic acute abdominal pain: prospective study and systematic review

    International Nuclear Information System (INIS)

    Alshamari, Muhammed; Geijer, Haakan; Norrman, Eva; Geijer, Mats; Jansson, Kjell

    2016-01-01

    Abdominal radiography is frequently used in acute abdominal non-traumatic pain despite the availability of more advanced diagnostic modalities. This study evaluates the diagnostic accuracy of low-dose CT compared with abdominal radiography, at similar radiation dose levels. Fifty-eight patients were imaged with both methods and were reviewed independently by three radiologists. The reference standard was obtained from the diagnosis in medical records. Sensitivity and specificity were calculated. A systematic review was performed after a literature search, finding a total of six relevant studies including the present. Overall sensitivity with 95 % CI for CT was 75 % (66-83 %) and 46 % (37-56 %) for radiography. Specificity was 87 % (77-94 %) for both methods. In the systematic review the overall sensitivity for CT varied between 75 and 96 % with specificity from 83 to 95 % while the overall sensitivity for abdominal radiography varied between 30 and 77 % with specificity 75 to 88 %. Based on the current study and available evidence, low-dose CT has higher diagnostic accuracy than abdominal radiography and it should, where logistically possible, replace abdominal radiography in the workup of adult patients with acute non-traumatic abdominal pain. (orig.)

  15. Diagnostic accuracy of low-dose CT compared with abdominal radiography in non-traumatic acute abdominal pain: prospective study and systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Alshamari, Muhammed; Geijer, Haakan [Oerebro University, Department of Radiology, Faculty of Medicine and Health, Oerebro (Sweden); Norrman, Eva [Oerebro University, Department of Medical Physics, Faculty of Medicine and Health, Oerebro (Sweden); Geijer, Mats [Lund University and Skaane University Hospital, Department of Medical Imaging and Physiology, Lund (Sweden); Jansson, Kjell [Oerebro University, Department of Surgery, Faculty of Medicine and Health, Oerebro (Sweden)

    2016-06-15

    Abdominal radiography is frequently used in acute abdominal non-traumatic pain despite the availability of more advanced diagnostic modalities. This study evaluates the diagnostic accuracy of low-dose CT compared with abdominal radiography, at similar radiation dose levels. Fifty-eight patients were imaged with both methods and were reviewed independently by three radiologists. The reference standard was obtained from the diagnosis in medical records. Sensitivity and specificity were calculated. A systematic review was performed after a literature search, finding a total of six relevant studies including the present. Overall sensitivity with 95 % CI for CT was 75 % (66-83 %) and 46 % (37-56 %) for radiography. Specificity was 87 % (77-94 %) for both methods. In the systematic review the overall sensitivity for CT varied between 75 and 96 % with specificity from 83 to 95 % while the overall sensitivity for abdominal radiography varied between 30 and 77 % with specificity 75 to 88 %. Based on the current study and available evidence, low-dose CT has higher diagnostic accuracy than abdominal radiography and it should, where logistically possible, replace abdominal radiography in the workup of adult patients with acute non-traumatic abdominal pain. (orig.)

  16. Analysis of the plasmodium falciparum proteome by high-accuracy mass spectrometry

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Ishihama, Yasushi; Andersen, Jens S

    2002-01-01

    -accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last...

  17. Estimating the accuracy of geographical imputation

    Directory of Open Access Journals (Sweden)

    Boscoe Francis P

    2008-01-01

    Full Text Available Abstract Background To reduce the number of non-geocoded cases researchers and organizations sometimes include cases geocoded to postal code centroids along with cases geocoded with the greater precision of a full street address. Some analysts then use the postal code to assign information to the cases from finer-level geographies such as a census tract. Assignment is commonly completed using either a postal centroid or by a geographical imputation method which assigns a location by using both the demographic characteristics of the case and the population characteristics of the postal delivery area. To date no systematic evaluation of geographical imputation methods ("geo-imputation" has been completed. The objective of this study was to determine the accuracy of census tract assignment using geo-imputation. Methods Using a large dataset of breast, prostate and colorectal cancer cases reported to the New Jersey Cancer Registry, we determined how often cases were assigned to the correct census tract using alternate strategies of demographic based geo-imputation, and using assignments obtained from postal code centroids. Assignment accuracy was measured by comparing the tract assigned with the tract originally identified from the full street address. Results Assigning cases to census tracts using the race/ethnicity population distribution within a postal code resulted in more correctly assigned cases than when using postal code centroids. The addition of age characteristics increased the match rates even further. Match rates were highly dependent on both the geographic distribution of race/ethnicity groups and population density. Conclusion Geo-imputation appears to offer some advantages and no serious drawbacks as compared with the alternative of assigning cases to census tracts based on postal code centroids. For a specific analysis, researchers will still need to consider the potential impact of geocoding quality on their results and evaluate

  18. Accuracy of Demirjian′s 8 teeth method for age prediction in South Indian children: A comparative study

    Directory of Open Access Journals (Sweden)

    Rezwana Begum Mohammed

    2015-01-01

    Full Text Available Introduction: Demirjian′s method of tooth development is most commonly used to assess age in individuals with emerging teeth. However, its application on numerous populations has resulted in wide variations in age estimates and consequent suggestions for the method′s adaptation to the local sample. Original Demirjian′s method utilized seven mandibular teeth, to which recently third molar is added so that the method can be applied on a wider age group. Furthermore, the revised method developed regression formulas for assessing age. In Indians, as these formulas resulted in underestimation, India-specific regression formulas were developed recently. The purpose of this cross-sectional study was to evaluate the accuracy and applicability of original regression formulas (Chaillet and Demirjian 2004 and India-specific regression formulas (Acharya 2010 using Demirjian′s 8 teeth method in South Indian children of age groups 9-20 years. Methods: The present study consisted of 660 randomly selected subjects (330 males and 330 females were in the aged ranging from 9 to 20 years divided into 11 groups according to their age. Demirjian′s 8 teeth method was used for staging of teeth. Results: Demirjian′s method underestimated the dental age (DA by 1.66 years for boys and 1.55 years for girls and 1.61 years in total. Acharya′s method over estimated DA by 0.21 years for boys and 0.85 years for girls and 0.53 years in total. The absolute accuracy was better for Acharya′s method compared with Demirjian method. Conclusion: This study concluded that both the Demirjian and Indian regression formulas were reliable in assessing age making Demirjian′s 8 teeth method applicable for South Indians.

  19. Predictive accuracy of backpropagation neural network ...

    Indian Academy of Sciences (India)

    incorporated into the BP model for high accuracy management purpose of irrigation water, which relies on accurate values of ET ... as seen from the recent food crisis demonstra- tion in most .... layers by using Geographical Information System.

  20. EVALUATION OF RELATIVE GEOMETRIC ACCURACY OF TERRASAR-X BY PIXEL MATCHING METHODOLOGY

    Directory of Open Access Journals (Sweden)

    T. Nonaka

    2016-06-01

    Full Text Available Recently, high-resolution commercial SAR satellites with several meters of resolutions are widely utilized for various applications and disaster monitoring is one of the commonly applied areas. The information about the flooding situation and ground displacement was rapidly announced to the public after the Great East Japan Earthquake 2011. One of the studies reported the displacement in Tohoku region by the pixel matching methodology using both pre- and post- event TerraSAR-X data, and the validated accuracy was about 30 cm at the GEONET reference points. In order to discuss the spatial distribution of the displacement, we need to evaluate the relative accuracy of the displacement in addition to the absolute accuracy. In the previous studies, our study team evaluated the absolute 2D geo-location accuracy of the TerraSAR-X ortho-rectified EEC product for both flat and mountain areas. Therefore, the purpose of the current study was to evaluate the spatial and temporal relative geo-location accuracies of the product by considering the displacement of the fixed point as the relative geo-location accuracy. Firstly, by utilizing TerraSAR-X StripMap dataset, the pixel matching method for estimating the displacement with sub-pixel level was developed. Secondly, the validity of the method was confirmed by comparing with GEONET data. We confirmed that the accuracy of the displacement for X and Y direction was in agreement with the previous studies. Subsequently, the methodology was applied to 20 pairs of data set for areas of Tokyo Ota-ku and Kawasaki-shi, and the displacement of each pair was evaluated. It was revealed that the time series displacement rate had the seasonal trend and seemed to be related to atmospheric delay.

  1. Evaluation of Relative Geometric Accuracy of Terrasar-X by Pixel Matching Methodology

    Science.gov (United States)

    Nonaka, T.; Asaka, T.; Iwashita, K.

    2016-06-01

    Recently, high-resolution commercial SAR satellites with several meters of resolutions are widely utilized for various applications and disaster monitoring is one of the commonly applied areas. The information about the flooding situation and ground displacement was rapidly announced to the public after the Great East Japan Earthquake 2011. One of the studies reported the displacement in Tohoku region by the pixel matching methodology using both pre- and post- event TerraSAR-X data, and the validated accuracy was about 30 cm at the GEONET reference points. In order to discuss the spatial distribution of the displacement, we need to evaluate the relative accuracy of the displacement in addition to the absolute accuracy. In the previous studies, our study team evaluated the absolute 2D geo-location accuracy of the TerraSAR-X ortho-rectified EEC product for both flat and mountain areas. Therefore, the purpose of the current study was to evaluate the spatial and temporal relative geo-location accuracies of the product by considering the displacement of the fixed point as the relative geo-location accuracy. Firstly, by utilizing TerraSAR-X StripMap dataset, the pixel matching method for estimating the displacement with sub-pixel level was developed. Secondly, the validity of the method was confirmed by comparing with GEONET data. We confirmed that the accuracy of the displacement for X and Y direction was in agreement with the previous studies. Subsequently, the methodology was applied to 20 pairs of data set for areas of Tokyo Ota-ku and Kawasaki-shi, and the displacement of each pair was evaluated. It was revealed that the time series displacement rate had the seasonal trend and seemed to be related to atmospheric delay.

  2. Diagnostic accuracy of insight intraoral film on dental caries

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Young Nam; Lee, Byung Do [Wonkwang University College of Medicine, Iksan (Korea, Republic of); Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2004-03-15

    To compare the diagnostic accuracy of Kodak Insight film with other intra-oral films in the detection of dental caries. Periapical radiographs of 99 extracted human teeth with sound proximal surfaces and interproximal artificial cavities were made on Kodak Ultra speed, Ektaspeed, Agfa Ektaspeed and Kodak Insight films and automatically processed. Six dentists examined the presence of dental caries using a five-point confidence rating scale and compared the diagnostic accuracy by ROC (Receiver Operating Characteristic) analysis and ANOVA test. The sensitivity of Kodak Ultra speed, Ektaspeed, Agfa Ektaspeed and Insight film were 0.84, 0.77, 0.75 and 0.79 respectively. The specificity of Kodak Ultra speed, Ektaspeed, Agfa Ektaspeed and Insight film were 0.97, 0.95, 0.96 and 0.94 respectively. The mean ROC areas (Az) of Kodak Ultra speed, Ektaspeed, Agfa Ektaspeed and Insight film were 0.917, 0.910, 0.894, 0.909 respectively. There was no significant differences between Az of Insight film and other films (p = 0.178). Theses results suggested that Kodak Insight film have the comparative diagnostic accuracy of dental caries with Ultraspeed and Ektaspeed films. (77)

  3. Diagnostic accuracy of insight intraoral film on dental caries

    International Nuclear Information System (INIS)

    Yoon, Young Nam; Lee, Byung Do; Lee, Sang Rae

    2004-01-01

    To compare the diagnostic accuracy of Kodak Insight film with other intra-oral films in the detection of dental caries. Periapical radiographs of 99 extracted human teeth with sound proximal surfaces and interproximal artificial cavities were made on Kodak Ultra speed, Ektaspeed, Agfa Ektaspeed and Kodak Insight films and automatically processed. Six dentists examined the presence of dental caries using a five-point confidence rating scale and compared the diagnostic accuracy by ROC (Receiver Operating Characteristic) analysis and ANOVA test. The sensitivity of Kodak Ultra speed, Ektaspeed, Agfa Ektaspeed and Insight film were 0.84, 0.77, 0.75 and 0.79 respectively. The specificity of Kodak Ultra speed, Ektaspeed, Agfa Ektaspeed and Insight film were 0.97, 0.95, 0.96 and 0.94 respectively. The mean ROC areas (Az) of Kodak Ultra speed, Ektaspeed, Agfa Ektaspeed and Insight film were 0.917, 0.910, 0.894, 0.909 respectively. There was no significant differences between Az of Insight film and other films (p = 0.178). Theses results suggested that Kodak Insight film have the comparative diagnostic accuracy of dental caries with Ultraspeed and Ektaspeed films. (77)

  4. Accuracy of a Wrist-Worn Heart Rate Sensing Device during Elective Pediatric Surgical Procedures

    Directory of Open Access Journals (Sweden)

    Gloria Pelizzo

    2018-03-01

    Full Text Available The reliability of wearable photoplethysmography (PPG sensors to measure heart rate (HR in hospitalized patients has only been demonstrated in adults. We evaluated the accuracy of HR monitoring with a personal fitness tracker (PFT in children undergoing surgery. HR monitoring was performed using a wrist-worn PFT (Fitbit Charge HR in 30 children (8.21 ± 3.09 years undergoing laparoscopy (n = 8 or open surgery (n = 22. HR values were analyzed preoperatively and during surgery. The accuracy of HR recordings was compared with measurements recorded during continuous electrocardiographic (cECG monitoring; HRs derived from continuous monitoring with pulse oximetry (SpO2R were used as a positive control. PFT-derived HR values were in agreement with those recorded during cECG (r = 0.99 and SpO2R (r = 0.99 monitoring. PFT performance remained high in children < 8 years (r = 0.99, with a weight < 30 kg (r = 0.99 and when the HR was < 70 beats per minute (bpm (r = 0.91 or > 140 bpm (r = 0.99. PFT accuracy was similar during laparoscopy and open surgery, as well as preoperatively and during the intervention (r > 0.9. PFT–derived HR showed excellent accuracy compared with HRs measured by cECG and SpO2R during pediatric surgical procedures. Further clinical evaluation is needed to define whether PFTs can be used in different health care settings.

  5. Recent high-accuracy measurements of the 1S0 neutron-neutron scattering length

    International Nuclear Information System (INIS)

    Howell, C.R.; Chen, Q.; Gonzalez Trotter, D.E.; Salinas, F.; Crowell, A.S.; Roper, C.D.; Tornow, W.; Walter, R.L.; Carman, T.S.; Hussein, A.; Gibbs, W.R.; Gibson, B.F.; Morris, C.; Obst, A.; Sterbenz, S.; Whitton, M.; Mertens, G.; Moore, C.F.; Whiteley, C.R.; Pasyuk, E.; Slaus, I.; Tang, H.; Zhou, Z.; Gloeckle, W.; Witala, H.

    2000-01-01

    This paper reports two recent high-accuracy determinations of the 1 S 0 neutron-neutron scattering length, a nn . One was done at the Los Alamos National Laboratory using the π - d capture reaction to produce two neutrons with low relative momentum. The neutron-deuteron (nd) breakup reaction was used in other measurement, which was conducted at the Triangle Universities Nuclear Laboratory. The results from the two determinations were consistent with each other and with previous values obtained using the π - d capture reaction. The value obtained from the nd breakup measurements is a nn = -18.7 ± 0.1 (statistical) ± 0.6 (systematic) fm, and the value from the π - d capture experiment is a nn = -18.50 ± 0.05 ± 0.53 fm. The recommended value is a nn = -18.5 ± 0.3 fm. (author)

  6. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    Directory of Open Access Journals (Sweden)

    Mingjun Deng

    2017-12-01

    Full Text Available The Chinese Gaofen-3 (GF-3 mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method.

  7. An assessment of the accuracy of contrast enema for the diagnosis ...

    African Journals Online (AJOL)

    Diagnostic accuracy levels were calculated by comparing radiological results with histology results, which is the gold standard. Results: Diagnostic accuracy of contrast enema was 78%, sensitivity was 94.4% and the negative predictive value was 95.7%. Specificity (68.8%) and positive predictive values (63%) were ...

  8. Overinterpretation and misreporting of diagnostic accuracy studies: evidence of "spin".

    Science.gov (United States)

    Ochodo, Eleanor A; de Haan, Margriet C; Reitsma, Johannes B; Hooft, Lotty; Bossuyt, Patrick M; Leeflang, Mariska M G

    2013-05-01

    To estimate the frequency of distorted presentation and overinterpretation of results in diagnostic accuracy studies. MEDLINE was searched for diagnostic accuracy studies published between January and June 2010 in journals with an impact factor of 4 or higher. Articles included were primary studies of the accuracy of one or more tests in which the results were compared with a clinical reference standard. Two authors scored each article independently by using a pretested data-extraction form to identify actual overinterpretation and practices that facilitate overinterpretation, such as incomplete reporting of study methods or the use of inappropriate methods (potential overinterpretation). The frequency of overinterpretation was estimated in all studies and in a subgroup of imaging studies. Of the 126 articles, 39 (31%; 95% confidence interval [CI]: 23, 39) contained a form of actual overinterpretation, including 29 (23%; 95% CI: 16, 30) with an overly optimistic abstract, 10 (8%; 96% CI: 3%, 13%) with a discrepancy between the study aim and conclusion, and eight with conclusions based on selected subgroups. In our analysis of potential overinterpretation, authors of 89% (95% CI: 83%, 94%) of the studies did not include a sample size calculation, 88% (95% CI: 82%, 94%) did not state a test hypothesis, and 57% (95% CI: 48%, 66%) did not report CIs of accuracy measurements. In 43% (95% CI: 34%, 52%) of studies, authors were unclear about the intended role of the test, and in 3% (95% CI: 0%, 6%) they used inappropriate statistical tests. A subgroup analysis of imaging studies showed 16 (30%; 95% CI: 17%, 43%) and 53 (100%; 95% CI: 92%, 100%) contained forms of actual and potential overinterpretation, respectively. Overinterpretation and misreporting of results in diagnostic accuracy studies is frequent in journals with high impact factors. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120527/-/DC1. © RSNA, 2013.

  9. An Evaluation of the Diagnostic Accuracy of the Grade of Preoperative Biopsy Compared to Surgical Excision in Chondrosarcoma of the Long Bones

    Directory of Open Access Journals (Sweden)

    Robert Jennings

    2010-01-01

    Full Text Available Chondrosarcoma is the second most common primary malignant bone tumour. Distinguishing between grades is not necessarily straightforward and may alter the disease management. We evaluated the correlation between histological grading of the preoperative image-guided needle biopsy and the resection specimen of 78 consecutive cases of chondrosarcoma of the femur, humerus, and tibia. In 11 instances, there was a discrepancy in histological grade between the biopsy and surgical specimen. Therefore, there was an 85.9% (67/78 accuracy rate for pre-operative histological grading of chondrosarcoma, based on needle biopsy. However, the accuracy of the diagnostic biopsy to distinguish low-grade from high-grade chondrosarcoma was 93.6% (73/78. We conclude that accurate image-guided biopsy is a very useful adjunct in determining histological grade of chondrosarcoma and the subsequent treatment plan. At present, a multidisciplinary approach, comprising experienced orthopaedic surgeons, radiologists, and pathologists, offers the most reliable means of accurately diagnosing and grading of chondrosarcoma of long bones.

  10. Studies on MRI diagnostic accuracy of invasion to body muscular layer and cervix of endometrial cancer

    International Nuclear Information System (INIS)

    Takemoto, Yumi; Fujiyoshi, Keizou; Takemoto, Shuji; Kawano, Kouichirou; Ohta, Shunichirou; Murakami, Fumihiro; Komai, Kan; Ushijima, Kimio; Kamura, Toshiharu

    2008-01-01

    This study was conducted to know usefulness of preoperative MRI to detect invasions of endometrial cancer to uterine body muscular layer and cervix. Subjects were 132 patients (median age of 57 y, pre- and post-menopause, 11.2 and 78.8%, respectively) with the cancer at stage I (66 cases) and >II in authors' facility, who had undergone the preoperative MRI with 1.5T Siemens machine by imaging with T1 and T2 weighted, Gd-enhanced T1 weighted, dynamic study and STIR. Imaging findings were compared with histopathological ones to assess the accuracy of imaging diagnosis. Positive predictive accuracy for muscular invasion was found to be as high as 95.5% and negative one, as low as 29.5%: especially, in pre-menopause group, tendency of underestimation for the invasion was thought notable. In contrast, negative accuracy was found low for cervical invasion and positive one, high: overestimation was possibly occurring. Thus, MRI diagnosis of those invasions should be seriously judged with careful consideration of menopause state. (R.T.)

  11. Cut Based Method for Comparing Complex Networks.

    Science.gov (United States)

    Liu, Qun; Dong, Zhishan; Wang, En

    2018-03-23

    Revealing the underlying similarity of various complex networks has become both a popular and interdisciplinary topic, with a plethora of relevant application domains. The essence of the similarity here is that network features of the same network type are highly similar, while the features of different kinds of networks present low similarity. In this paper, we introduce and explore a new method for comparing various complex networks based on the cut distance. We show correspondence between the cut distance and the similarity of two networks. This correspondence allows us to consider a broad range of complex networks and explicitly compare various networks with high accuracy. Various machine learning technologies such as genetic algorithms, nearest neighbor classification, and model selection are employed during the comparison process. Our cut method is shown to be suited for comparisons of undirected networks and directed networks, as well as weighted networks. In the model selection process, the results demonstrate that our approach outperforms other state-of-the-art methods with respect to accuracy.

  12. Affine-Invariant Geometric Constraints-Based High Accuracy Simultaneous Localization and Mapping

    Directory of Open Access Journals (Sweden)

    Gangchen Hua

    2017-01-01

    Full Text Available In this study we describe a new appearance-based loop-closure detection method for online incremental simultaneous localization and mapping (SLAM using affine-invariant-based geometric constraints. Unlike other pure bag-of-words-based approaches, our proposed method uses geometric constraints as a supplement to improve accuracy. By establishing an affine-invariant hypothesis, the proposed method excludes incorrect visual words and calculates the dispersion of correctly matched visual words to improve the accuracy of the likelihood calculation. In addition, camera’s intrinsic parameters and distortion coefficients are adequate for this method. 3D measuring is not necessary. We use the mechanism of Long-Term Memory and Working Memory (WM to manage the memory. Only a limited size of the WM is used for loop-closure detection; therefore the proposed method is suitable for large-scale real-time SLAM. We tested our method using the CityCenter and Lip6Indoor datasets. Our proposed method results can effectively correct the typical false-positive localization of previous methods, thus gaining better recall ratios and better precision.

  13. The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years.

    Science.gov (United States)

    Wang, Yu; Mette, Michael Florian; Miedaner, Thomas; Gottwald, Marlen; Wilde, Peer; Reif, Jochen C; Zhao, Yusheng

    2014-07-04

    Marker-assisted selection (MAS) and genomic selection (GS) based on genome-wide marker data provide powerful tools to predict the genotypic value of selection material in plant breeding. However, case-to-case optimization of these approaches is required to achieve maximum accuracy of prediction with reasonable input. Based on extended field evaluation data for grain yield, plant height, starch content and total pentosan content of elite hybrid rye derived from testcrosses involving two bi-parental populations that were genotyped with 1048 molecular markers, we compared the accuracy of prediction of MAS and GS in a cross-validation approach. MAS delivered generally lower and in addition potentially over-estimated accuracies of prediction than GS by ridge regression best linear unbiased prediction (RR-BLUP). The grade of relatedness of the plant material included in the estimation and test sets clearly affected the accuracy of prediction of GS. Within each of the two bi-parental populations, accuracies differed depending on the relatedness of the respective parental lines. Across populations, accuracy increased when both populations contributed to estimation and test set. In contrast, accuracy of prediction based on an estimation set from one population to a test set from the other population was low despite that the two bi-parental segregating populations under scrutiny shared one parental line. Limiting the number of locations or years in field testing reduced the accuracy of prediction of GS equally, supporting the view that to establish robust GS calibration models a sufficient number of test locations is of similar importance as extended testing for more than one year. In hybrid rye, genomic selection is superior to marker-assisted selection. However, it achieves high accuracies of prediction only for selection candidates closely related to the plant material evaluated in field trials, resulting in a rather pessimistic prognosis for distantly related material

  14. A high-accuracy extraction of the isoscalar πN scattering length from pionic deuterium data

    International Nuclear Information System (INIS)

    Phillips, Daniel R.; Baru, Vadim; Hanhart, Christoph; Nogga, Andreas; Hoferichter, Martin; Kubis, Bastian

    2010-01-01

    We present a high-accuracy calculation of the π(bar sign)d scattering length using chiral perturbation theory up to order (M π /m p ) 7/2 . For the first time isospin-violating corrections are included consistently. The resulting value of a π -bar d has a theoretical uncertainty of a few percent. We use it, together with data on pionic deuterium and pionic hydrogen atoms, to extract the isoscalar and isovector pion-nucleon scattering lengths from a combined analysis, and obtain a + (7.9±3.2)·10 -3 M π -1 and a-bar (86.3±1.0)·10 -3 M π -1 .

  15. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dijken, Bart R.J. van [University of Groningen, University Medical Center Groningen Department of Radiology, Groningen (Netherlands); Laar, Peter Jan van; Hoorn, Anouk van der [University of Groningen, University Medical Center Groningen Department of Radiology, Groningen (Netherlands); University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Groningen (Netherlands); Holtman, Gea A. [University of Groningen, University Medical Center Groningen, Department of General Practice, Groningen (Netherlands)

    2017-10-15

    Treatment response assessment in high-grade gliomas uses contrast enhanced T1-weighted MRI, but is unreliable. Novel advanced MRI techniques have been studied, but the accuracy is not well known. Therefore, we performed a systematic meta-analysis to assess the diagnostic accuracy of anatomical and advanced MRI for treatment response in high-grade gliomas. Databases were searched systematically. Study selection and data extraction were done by two authors independently. Meta-analysis was performed using a bivariate random effects model when ≥5 studies were included. Anatomical MRI (five studies, 166 patients) showed a pooled sensitivity and specificity of 68% (95%CI 51-81) and 77% (45-93), respectively. Pooled apparent diffusion coefficients (seven studies, 204 patients) demonstrated a sensitivity of 71% (60-80) and specificity of 87% (77-93). DSC-perfusion (18 studies, 708 patients) sensitivity was 87% (82-91) with a specificity of 86% (77-91). DCE-perfusion (five studies, 207 patients) sensitivity was 92% (73-98) and specificity was 85% (76-92). The sensitivity of spectroscopy (nine studies, 203 patients) was 91% (79-97) and specificity was 95% (65-99). Advanced techniques showed higher diagnostic accuracy than anatomical MRI, the highest for spectroscopy, supporting the use in treatment response assessment in high-grade gliomas. (orig.)

  16. Grading evidence from test accuracy studies: what makes it challenging compared with the grading of effectiveness studies?

    Science.gov (United States)

    Rogozińska, Ewelina; Khan, Khalid

    2017-06-01

    Guideline panels need to process a sizeable amount of information to issue a decision on whether to recommend a health technology or not. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) is being frequently applied in guideline development to facilitate this task, typically for the synthesis of effectiveness research. Questions regarding the accuracy of medical tests are ubiquitous, and they temporally precede questions about therapy. However, literature summarising the experience of applying GRADE approach to accuracy evaluations is not as rich as one for effectiveness evidence. Type of study design (cross-sectional), two-dimensional nature of the performance measures (sensitivity and specificity), propensity towards a higher level of between-study heterogeneity, poor reporting of quality features and uncertainty about how best to assess for publication bias among other features make this task challenging. This article presents solutions adopted to addresses above challenges for judicious estimation of the strength of test accuracy evidence used to inform evidence syntheses for guideline development. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Accuracy and reproducibility of IOLMaster versus contact ultrasound biometry

    Directory of Open Access Journals (Sweden)

    Quan-Hao Bai

    2015-06-01

    Full Text Available AIM: To compare biometry results of IOLMaster and contact ultrasound(USanterior segment parameters, and to evaluate the calculation accuracy and repeatability of intraocular lens power in both.METHODS: Preoperative measurement of anterior segment parameters were prospectively obtained in 137 eyes of 121 subjects with the IOLMaster compared with the US. Postoperative best corrected visual acuity(BCVAand the actual diopter were measured.RESULTS: There was an excellent correlation between IOLMaster and US measurements for the ACD(r=0.823, Pr=0.996, PPCONCLUSION: Partial coherence biometry using the IOLMaster provides the more accurate and reliable anterior segment parameters measurement values. A high degree of agreement between US and IOLMaster is noted. The IOLMaster not only has the advantage of performing noncontact examinations, but also produces various additional data simultaneously and may thus obviate the need for multiple examinations.

  18. Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder

    DEFF Research Database (Denmark)

    Maier, Robert; Moser, Gerhard; Chen, Guo-Bo

    2015-01-01

    Genetic risk prediction has several potential applications in medical research and clinical practice and could be used, for example, to stratify a heterogeneous population of patients by their predicted genetic risk. However, for polygenic traits, such as psychiatric disorders, the accuracy of risk...... number of GWAS datasets of correlated traits, it is a flexible and powerful tool to maximize prediction accuracy. With current sample size, risk predictors are not useful in a clinical setting but already are a valuable research tool, for example in experimental designs comparing cases with high and low...

  19. Accuracy of episodic autobiographical memory in children with early thyroid hormone deficiency using a staged event

    Directory of Open Access Journals (Sweden)

    Karen A. Willoughby

    2014-07-01

    Full Text Available Autobiographical memory (AM is a highly constructive cognitive process that often contains memory errors. No study has specifically examined AM accuracy in children with abnormal development of the hippocampus, a crucial brain region for AM retrieval. Thus, the present study investigated AM accuracy in 68 typically and atypically developing children using a staged autobiographical event, the Children's Autobiographical Interview, and structural magnetic resonance imaging. The atypically developing group consisted of 17 children (HYPO exposed during gestation to insufficient maternal thyroid hormone (TH, a critical substrate for hippocampal development, and 25 children with congenital hypothyroidism (CH, who were compared to 26 controls. Groups differed significantly in the number of accurate episodic details recalled and proportion accuracy scores, with controls having more accurate recollections of the staged event than both TH-deficient groups. Total hippocampal volumes and anterior hippocampal volumes were positively correlated with proportion accuracy scores, but not total accurate episodic details, in HYPO and CH. In addition, greater severity of TH deficiency predicted lower proportion accuracy scores in both HYPO and CH. Overall, these results indicate that children with early TH deficiency have deficits in AM accuracy and that the anterior hippocampus may play a particularly important role in accurate AM retrieval.

  20. Accuracy of noninvasive multiwave pulse oximetry compared with carboxyhemoglobin from blood gas analysis in unselected emergency department patients.

    Science.gov (United States)

    Roth, Dominik; Herkner, Harald; Schreiber, Wolfgang; Hubmann, Nina; Gamper, Gunnar; Laggner, Anton N; Havel, Christof

    2011-07-01

    Accurate and timely diagnosis of carbon monoxide (CO) poisoning is difficult because of nonspecific symptoms. Multiwave pulse oximetry might facilitate the screening for occult poisoning by noninvasive measurement of carboxyhemoglobin (COHb), but its reliability is still unknown. We assess bias and precision of COHb oximetry compared with the criterion standard blood gas analysis. This was a prospective diagnostic accuracy study according to STARD (Standards for the Reporting of Diagnostic accuracy studies) criteria, performed at a tertiary care hospital emergency department. We included all patients for whom both invasive and noninvasive measurement within 60 minutes was available, regardless of their complaints, during a 1-year period. One thousand five hundred seventy-eight subjects were studied, of whom 17 (1.1%) received a diagnosis of CO poisoning. In accordance with this limited patient cohort, we found a bias of 2.99% COHb (1.50% for smokers, 4.33% for nonsmokers) and a precision of 3.27% COHb (2.90% for smokers, 2.98% for nonsmokers), limits of agreement from -3.55% to 9.53% COHb (-4.30% to 7.30% for smokers, -1.63% to 10.29% for nonsmokers). Upper limit of normal cutoff of 6.6% COHb had the highest sensitivity in screening for CO poisoning. Smoking status and COHb level had the most influence on the deviation between measurements. Multiwave pulse oximetry was found to measure COHb with an acceptable bias and precision. These results suggest it can be used to screen large numbers of patients for occult CO poisoning. Copyright © 2011 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  1. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  2. Investigation of accuracy of CORINE 2006 land cover data used in watershed studies

    Directory of Open Access Journals (Sweden)

    Ayhan Ateşoğlu

    2016-01-01

    Full Text Available There have been many studies concerning the use of sustainable natural resources. The planning concerning the results of watershed-based studies is made for the future. The issue to be considered in these studies, is obtaining accurate data. The most important data of the studies in the watershed basin is obtaining land cover/use data. Land cover / land classification done by using remote sensing and GIS and monitoring the change periodically are both easy and economical. To this end, CORINE (Coordination of Information on the Environment land cover program was initiated by The European Commission (CEC. The accuracy of CORINE 2006 land cover data was evaluated using high resolution Google Earth data in two separate test areas located in the Black Sea and Central Anatolia region. Random 5000 points for each test area were assigned to classes according to the CORINE classification method using Google Earth and were compared with the CORINE 2006 data. The accuracy of first test area in Black Sea region was calculated as 51.80% the accuracy of second test area in Central Anatolia region was calculated as 55.32%. For each test area, CORINE 2006 data has not been found to be up to date and has been detected to have low accuracy.

  3. Effect of Lamina Thickness of Prepreg on the Surface Accuracy of Carbon Fiber Composite Space Mirrors

    Science.gov (United States)

    Yang, Zhiyong; Tang, Zhanwen; Xie, Yongjie; Shi, Hanqiao; Zhang, Boming; Guo, Hongjun

    2018-02-01

    Composite space mirror can completely replicate the high-precision surface of mould by replication process, but the actual surface accuracy of the replication composite mirror always decreases. Lamina thickness of prepreg affects the layers and layup sequence of composite space mirror, and which would affect surface accuracy of space mirror. In our research, two groups of contrasting cases through finite element analyses (FEA) and comparative experiments were studied; the effect of different lamina thicknesses of prepreg and corresponding lay-up sequences was focused as well. We describe a special analysis model, validated process and result analysis. The simulated and measured surface figures both get the same conclusion. Reducing lamina thickness of prepreg used in replicating composite space mirror is propitious to optimal design of layup sequence for fabricating composite mirror, and could improve its surface accuracy.

  4. Linear Discriminant Analysis achieves high classification accuracy for the BOLD fMRI response to naturalistic movie stimuli.

    Directory of Open Access Journals (Sweden)

    Hendrik eMandelkow

    2016-03-01

    Full Text Available Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI. However, conventional fMRI analysis based on statistical parametric mapping (SPM and the general linear model (GLM is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA, have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbour (NN, Gaussian Naïve Bayes (GNB, and (regularised Linear Discriminant Analysis (LDA in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie.Results show that LDA regularised by principal component analysis (PCA achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2s apart during a 300s movie (chance level 0.7% = 2s/300s. The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  5. Accuracy Improvement of Boron Meter Adopting New Fitting Function and Multi-Detector

    Directory of Open Access Journals (Sweden)

    Chidong Kong

    2016-12-01

    Full Text Available This paper introduces a boron meter with improved accuracy compared with other commercially available boron meters. Its design includes a new fitting function and a multi-detector. In pressurized water reactors (PWRs in Korea, many boron meters have been used to continuously monitor boron concentration in reactor coolant. However, it is difficult to use the boron meters in practice because the measurement uncertainty is high. For this reason, there has been a strong demand for improvement in their accuracy. In this work, a boron meter evaluation model was developed, and two approaches were considered to improve the boron meter accuracy: the first approach uses a new fitting function and the second approach uses a multi-detector. With the new fitting function, the boron concentration error was decreased from 3.30 ppm to 0.73 ppm. With the multi-detector, the count signals were contaminated with noise such as field measurement data, and analyses were repeated 1,000 times to obtain average and standard deviations of the boron concentration errors. Finally, using the new fitting formulation and multi-detector together, the average error was decreased from 5.95 ppm to 1.83 ppm and its standard deviation was decreased from 0.64 ppm to 0.26 ppm. This result represents a great improvement of the boron meter accuracy.

  6. Accuracy improvement of boron meter adopting new fitting function and multi-detector

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chidong; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); KIm, Si Hwan; Lyou, Seok Jean [Users Incorporated Company, Hansin S-MECA, Daejeon (Korea, Republic of)

    2016-12-15

    This paper introduces a boron meter with improved accuracy compared with other commercially available boron meters. Its design includes a new fitting function and a multi-detector. In pressurized water reactors (PWRs) in Korea, many boron meters have been used to continuously monitor boron concentration in reactor coolant. However, it is difficult to use the boron meters in practice because the measurement uncertainty is high. For this reason, there has been a strong demand for improvement in their accuracy. In this work, a boron meter evaluation model was developed, and two approaches were considered to improve the boron meter accuracy: the first approach uses a new fitting function and the second approach uses a multi-detector. With the new fitting function, the boron concentration error was decreased from 3.30 ppm to 0.73 ppm. With the multi-detector, the count signals were contaminated with noise such as field measurement data, and analyses were repeated 1,000 times to obtain average and standard deviations of the boron concentration errors. Finally, using the new fitting formulation and multi-detector together, the average error was decreased from 5.95 ppm to 1.83 ppm and its standard deviation was decreased from 0.64 ppm to 0.26 ppm. This result represents a great improvement of the boron meter accuracy.

  7. High accuracy results for the energy levels of the molecular ions H+2, D+2 and HD+, up to J = 2

    International Nuclear Information System (INIS)

    Karr, J Ph; Hilico, L

    2006-01-01

    We present a nonrelativistic calculation of the rotation-vibration levels of the molecular ions H + 2 , D + 2 and HD + , relying on the diagonalization of the exact three-body Hamiltonian in a variational basis. The J = 2 levels are obtained with a very high accuracy of 10 -14 au (for most levels) representing an improvement by five orders of magnitude over previous calculations. The accuracy is also improved for the J = 1 levels of H + 2 and D + 2 with respect to earlier works. Moreover, we have computed the sensitivities of the energy levels with respect to the mass ratios, allowing these levels to be used for metrological purposes

  8. High-accuracy interferometric measurements of flatness and parallelism of a step gauge

    CSIR Research Space (South Africa)

    Kruger, OA

    2001-01-01

    Full Text Available The most commonly used method in the calibration of step gauges is the coordinate measuring machine (CMM), equipped with a laser interferometer for the highest accuracy. This paper describes a modification to a length-bar measuring machine...

  9. Training readers to improve their accuracy in grading Crohn's disease activity on MRI

    International Nuclear Information System (INIS)

    Tielbeek, Jeroen A.W.; Bipat, Shandra; Boellaard, Thierry N.; Nio, C.Y.; Stoker, Jaap

    2014-01-01

    To prospectively evaluate if training with direct feedback improves grading accuracy of inexperienced readers for Crohn's disease activity on magnetic resonance imaging (MRI). Thirty-one inexperienced readers assessed 25 cases as a baseline set. Subsequently, all readers received training and assessed 100 cases with direct feedback per case, randomly assigned to four sets of 25 cases. The cases in set 4 were identical to the baseline set. Grading accuracy, understaging, overstaging, mean reading times and confidence scores (scale 0-10) were compared between baseline and set 4, and between the four consecutive sets with feedback. Proportions of grading accuracy, understaging and overstaging per set were compared using logistic regression analyses. Mean reading times and confidence scores were compared by t-tests. Grading accuracy increased from 66 % (95 % CI, 56-74 %) at baseline to 75 % (95 % CI, 66-81 %) in set 4 (P = 0.003). Understaging decreased from 15 % (95 % CI, 9-23 %) to 7 % (95 % CI, 3-14 %) (P < 0.001). Overstaging did not change significantly (20 % vs 19 %). Mean reading time decreased from 6 min 37 s to 4 min 35 s (P < 0.001). Mean confidence increased from 6.90 to 7.65 (P < 0.001). During training, overall grading accuracy, understaging, mean reading times and confidence scores improved gradually. Inexperienced readers need training with at least 100 cases to achieve the literature reported grading accuracy of 75 %. (orig.)

  10. Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment.

    Science.gov (United States)

    Lorenz, Aaron J

    2013-03-01

    Allocating resources between population size and replication affects both genetic gain through phenotypic selection and quantitative trait loci detection power and effect estimation accuracy for marker-assisted selection (MAS). It is well known that because alleles are replicated across individuals in quantitative trait loci mapping and MAS, more resources should be allocated to increasing population size compared with phenotypic selection. Genomic selection is a form of MAS using all marker information simultaneously to predict individual genetic values for complex traits and has widely been found superior to MAS. No studies have explicitly investigated how resource allocation decisions affect success of genomic selection. My objective was to study the effect of resource allocation on response to MAS and genomic selection in a single biparental population of doubled haploid lines by using computer simulation. Simulation results were compared with previously derived formulas for the calculation of prediction accuracy under different levels of heritability and population size. Response of prediction accuracy to resource allocation strategies differed between genomic selection models (ridge regression best linear unbiased prediction [RR-BLUP], BayesCπ) and multiple linear regression using ordinary least-squares estimation (OLS), leading to different optimal resource allocation choices between OLS and RR-BLUP. For OLS, it was always advantageous to maximize population size at the expense of replication, but a high degree of flexibility was observed for RR-BLUP. Prediction accuracy of doubled haploid lines included in the training set was much greater than of those excluded from the training set, so there was little benefit to phenotyping only a subset of the lines genotyped. Finally, observed prediction accuracies in the simulation compared well to calculated prediction accuracies, indicating these theoretical formulas are useful for making resource allocation

  11. The effect of search term on the quality and accuracy of online information regarding distal radius fractures.

    Science.gov (United States)

    Dy, Christopher J; Taylor, Samuel A; Patel, Ronak M; Kitay, Alison; Roberts, Timothy R; Daluiski, Aaron

    2012-09-01

    Recent emphasis on shared decision making and patient-centered research has increased the importance of patient education and health literacy. The internet is rapidly growing as a source of self-education for patients. However, concern exists over the quality, accuracy, and readability of the information. Our objective was to determine whether the quality, accuracy, and readability of information online about distal radius fractures vary with the search term. This was a prospective evaluation of 3 search engines using 3 different search terms of varying sophistication ("distal radius fracture," "wrist fracture," and "broken wrist"). We evaluated 70 unique Web sites for quality, accuracy, and readability. We used comparative statistics to determine whether the search term affected the quality, accuracy, and readability of the Web sites found. Three orthopedic surgeons independently gauged quality and accuracy of information using a set of predetermined scoring criteria. We evaluated the readability of the Web site using the Fleisch-Kincaid score for reading grade level. There were significant differences in the quality, accuracy, and readability of information found, depending on the search term. We found higher quality and accuracy resulted from the search term "distal radius fracture," particularly compared with Web sites resulting from the term "broken wrist." The reading level was higher than recommended in 65 of the 70 Web sites and was significantly higher when searching with "distal radius fracture" than "wrist fracture" or "broken wrist." There was no correlation between Web site reading level and quality or accuracy. The readability of information about distal radius fractures in most Web sites was higher than the recommended reading level for the general public. The quality and accuracy of the information found significantly varied with the sophistication of the search term used. Physicians, professional societies, and search engines should consider

  12. Accuracy of Cartosat-1 DEM and its derived attribute at multiple ...

    Indian Academy of Sciences (India)

    and information content was compared using mean elevation, variance and entropy statistics. Various ... required, but for local studies large scale represen- tation is ... been made to examine the effect of DEM accuracy ... accuracy of DEM is evaluated with respect to grid .... that loss of entropy is a measure of DEM quality or.

  13. The gluon Green's function in the BFKL approach at next-to-leading logarithmic accuracy

    International Nuclear Information System (INIS)

    Andersen, Jeppe R.; Sabio Vera, Agustin

    2004-01-01

    We investigate the gluon Green's function in the high energy limit of QCD using a recently proposed iterative solution of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation at next-to-leading logarithmic (NLL) accuracy. To establish the applicability of this method in the NLL approximation we solve the BFKL equation as originally written by Fadin and Lipatov, and compare the results with previous studies in the leading logarithmic (LL) approximation

  14. Diagnostic accuracy of organ electrodermal diagnostics | Szopinski ...

    African Journals Online (AJOL)

    Objective. To estimate the diagnostic accuracy as well as the scope of utilisation of a new bio-electronic method of organ diagnostics. Design. Double-blind comparative study of the diagnostic results obtained by means of organ electrodermal diagnostics (OED) and clinical diagnoses, as a criterion standard. Setting.

  15. Accuracy of non-arthrographic 3T MR imaging in evaluation of intra-articular pathology of the hip in femoroacetabular impingement

    Energy Technology Data Exchange (ETDEWEB)

    Linda, Dorota D. [University of Toronto, Department of Medical Imaging, Joint Department of Medical Imaging, Division of Musculoskeletal Imaging, Toronto (Canada); Mount Sinai Hospital, Toronto, ON (Canada); Naraghi, Ali; White, Lawrence M. [University of Toronto, Department of Medical Imaging, Joint Department of Medical Imaging, Division of Musculoskeletal Imaging, Toronto (Canada); Murnaghan, Lucas; Whelan, Daniel [University of Toronto, Department of Surgery, Division of Orthopedics, Toronto (Canada)

    2017-03-15

    To investigate the accuracy of non-arthrographic 3-T MRI compared to hip arthroscopy in the assessment of labral and cartilaginous pathology in patients with suspected FAI. Following IRB approval and waived consent, 42 consecutive cases of suspected FAI with non-arthrographic 3-T MRI and arthroscopy of the hip were reviewed. High-resolution TSE MR imaging was evaluated in consensus by two musculoskeletal radiologists, blinded to arthroscopic findings, for the presence of labral tears and articular cartilage lesions. Acetabular cartilage was categorized as normal, degeneration/fissuring, delamination, or denudation. MRI findings were compared to arthroscopy. Sensitivity, specificity, accuracy, and predictive values for MRI were calculated using arthroscopy as the standard of reference. Forty-two hips in 38 patients with a mean age of 29 (range 13-45 years) were assessed. Mean interval between MRI and arthroscopy was 154 days (range 27-472 days). MRI depicted 41 cases with labral tears (sensitivity 100%, specificity 50%, accuracy 98%, PPV 98%, NPV 100%), 11 cases with femoral cartilage abnormalities (sensitivity 85%, specificity 100%, accuracy 95%, PPV 100%, NPV 94%), and 36 cases with acetabular cartilage lesions (sensitivity 94% specificity 67%, accuracy 90%, PPV 94%, NPV 67%). Of the 36 cases with acetabular cartilage lesions on MRI, 7 were characterized as degeneration/fissuring, 26 as delamination, and 3 as denudation, with discordant results between MRI and arthroscopy for grading of articular cartilage in ten cases. Non-arthrographic 3-T MR imaging is a highly accurate technique for evaluation of the labrum and cartilage in patients with clinically suspected FAI. (orig.)

  16. Accuracy of non-arthrographic 3T MR imaging in evaluation of intra-articular pathology of the hip in femoroacetabular impingement

    International Nuclear Information System (INIS)

    Linda, Dorota D.; Naraghi, Ali; White, Lawrence M.; Murnaghan, Lucas; Whelan, Daniel

    2017-01-01

    To investigate the accuracy of non-arthrographic 3-T MRI compared to hip arthroscopy in the assessment of labral and cartilaginous pathology in patients with suspected FAI. Following IRB approval and waived consent, 42 consecutive cases of suspected FAI with non-arthrographic 3-T MRI and arthroscopy of the hip were reviewed. High-resolution TSE MR imaging was evaluated in consensus by two musculoskeletal radiologists, blinded to arthroscopic findings, for the presence of labral tears and articular cartilage lesions. Acetabular cartilage was categorized as normal, degeneration/fissuring, delamination, or denudation. MRI findings were compared to arthroscopy. Sensitivity, specificity, accuracy, and predictive values for MRI were calculated using arthroscopy as the standard of reference. Forty-two hips in 38 patients with a mean age of 29 (range 13-45 years) were assessed. Mean interval between MRI and arthroscopy was 154 days (range 27-472 days). MRI depicted 41 cases with labral tears (sensitivity 100%, specificity 50%, accuracy 98%, PPV 98%, NPV 100%), 11 cases with femoral cartilage abnormalities (sensitivity 85%, specificity 100%, accuracy 95%, PPV 100%, NPV 94%), and 36 cases with acetabular cartilage lesions (sensitivity 94% specificity 67%, accuracy 90%, PPV 94%, NPV 67%). Of the 36 cases with acetabular cartilage lesions on MRI, 7 were characterized as degeneration/fissuring, 26 as delamination, and 3 as denudation, with discordant results between MRI and arthroscopy for grading of articular cartilage in ten cases. Non-arthrographic 3-T MR imaging is a highly accurate technique for evaluation of the labrum and cartilage in patients with clinically suspected FAI. (orig.)

  17. A Systematic Review and Meta-analysis of the Diagnostic Accuracy of Prostate Health Index and 4-Kallikrein Panel Score in Predicting Overall and High-grade Prostate Cancer.

    Science.gov (United States)

    Russo, Giorgio Ivan; Regis, Federica; Castelli, Tommaso; Favilla, Vincenzo; Privitera, Salvatore; Giardina, Raimondo; Cimino, Sebastiano; Morgia, Giuseppe

    2017-08-01

    Markers for prostate cancer (PCa) have progressed over recent years. In particular, the prostate health index (PHI) and the 4-kallikrein (4K) panel have been demonstrated to improve the diagnosis of PCa. We aimed to review the diagnostic accuracy of PHI and the 4K panel for PCa detection. We performed a systematic literature search of PubMed, EMBASE, Cochrane, and Academic One File databases until July 2016. We included diagnostic accuracy studies that used PHI or 4K panel for the diagnosis of PCa or high-grade PCa. The methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Twenty-eight studies including 16,762 patients have been included for the analysis. The pooled data showed a sensitivity of 0.89 and 0.74 for PHI and 4K panel, respectively, for PCa detection and a pooled specificity of 0.34 and 0.60 for PHI and 4K panel, respectively. The derived area under the curve (AUC) from the hierarchical summary receiver operating characteristic (HSROC) showed an accuracy of 0.76 and 0.72 for PHI and 4K panel respectively. For high-grade PCa detection, the pooled sensitivity was 0.93 and 0.87 for PHI and 4K panel, respectively, whereas the pooled specificity was 0.34 and 0.61 for PHI and 4K panel, respectively. The derived AUC from the HSROC showed an accuracy of 0.82 and 0.81 for PHI and 4K panel, respectively. Both PHI and the 4K panel provided good diagnostic accuracy in detecting overall and high-grade PCa. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) during BARCA

    Science.gov (United States)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2009-12-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  19. Combined Scintigraphy and Tumor Marker Analysis Predicts Unfavorable Histopathology of Neuroblastic Tumors with High Accuracy.

    Directory of Open Access Journals (Sweden)

    Wolfgang Peter Fendler

    Full Text Available Our aim was to improve the prediction of unfavorable histopathology (UH in neuroblastic tumors through combined imaging and biochemical parameters.123I-MIBG SPECT and MRI was performed before surgical resection or biopsy in 47 consecutive pediatric patients with neuroblastic tumor. Semi-quantitative tumor-to-liver count-rate ratio (TLCRR, MRI tumor size and margins, urine catecholamine and NSE blood levels of neuron specific enolase (NSE were recorded. Accuracy of single and combined variables for prediction of UH was tested by ROC analysis with Bonferroni correction.34 of 47 patients had UH based on the International Neuroblastoma Pathology Classification (INPC. TLCRR and serum NSE both predicted UH with moderate accuracy. Optimal cut-off for TLCRR was 2.0, resulting in 68% sensitivity and 100% specificity (AUC-ROC 0.86, p < 0.001. Optimal cut-off for NSE was 25.8 ng/ml, resulting in 74% sensitivity and 85% specificity (AUC-ROC 0.81, p = 0.001. Combination of TLCRR/NSE criteria reduced false negative findings from 11/9 to only five, with improved sensitivity and specificity of 85% (AUC-ROC 0.85, p < 0.001.Strong 123I-MIBG uptake and high serum level of NSE were each predictive of UH. Combined analysis of both parameters improved the prediction of UH in patients with neuroblastic tumor. MRI parameters and urine catecholamine levels did not predict UH.

  20. A Study on Accuracy Improvement of Dual Micro Patterns Using Magnetic Abrasive Deburring

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Dong-Hyun; Kwak, Jae-Seob [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2016-11-15

    In recent times, the requirement of a micro pattern on the surface of products has been increasing, and high precision in the fabrication of the pattern is required. Hence, in this study, dual micro patterns were fabricated on a cylindrical workpiece, and deburring was performed by magnetic abrasive deburring (MAD) process. A prediction model was developed, and the MAD process was optimized using the response surface method. When the predicted values were compared with the experimental results, the average prediction error was found to be approximately 7%. Experimental verification shows fabrication of high accuracy dual micro pattern and reliability of prediction model.

  1. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel.

    Science.gov (United States)

    Mitt, Mario; Kals, Mart; Pärn, Kalle; Gabriel, Stacey B; Lander, Eric S; Palotie, Aarno; Ripatti, Samuli; Morris, Andrew P; Metspalu, Andres; Esko, Tõnu; Mägi, Reedik; Palta, Priit

    2017-06-01

    Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies. Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele frequency (MAF)≥5% and low-frequency variants (0.5≤MAF<5%) across diverse populations, but the imputation of rare variation (MAF<0.5%) is still rather limited. In the current study, we evaluate imputation accuracy achieved with reference panels from diverse populations with a population-specific high-coverage (30 ×) whole-genome sequencing (WGS) based reference panel, comprising of 2244 Estonian individuals (0.25% of adult Estonians). Although the Estonian-specific panel contains fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-frequency and rare variants was significantly higher. The results indicate the utility of population-specific reference panels for human genetic studies.

  2. Comparison of Accuracy of Contrast Enhanced Computed Tomography with Accuracy of Non-Contrast Magnetic Resonance Imaging in Evaluation of Local Extension of Base of Tongue Malignancies

    Directory of Open Access Journals (Sweden)

    Ketan Rathod

    2018-01-01

    Full Text Available Diagnosis of base of tongue malignancy can be obtained through clinical examination and biopsy. Magnetic Resonance Imaging (MRI and Computed Tomography (CT are used to detect its local extension, nodal spread and distant metastases. The main aim of study was to compare the accuracy of MRI and contrast enhanced CT in determining the local extent of base of tongue malignancy. Twenty five patients, biopsy proven cases of squamous cell carcinoma of base of tongue were taken. 1.5 Tesla Magnetic Resonance Unit with T2 weighted axial, coronal image; T1 weighted axial, coronal image; and STIR (Short tau inversion recovery axial and coronal images were used. 16 slice Computed Tomography unit with non-contrast and contrast enhanced images were used. Accuracy of CT to detect midline crossing: 50%; accuracy of MRI to detect midline crossing: 100%; accuracy of CT to detect anterior extension: 92%; accuracy of MRI to detect anterior extension: 100%; accuracy of CT to detect tonsillar fossa invasion: 83%; accuracy of MRI to detect tonsillar fossa invasion: 100%; accuracy of CT to detect oro pharyngeal spread: 83%; accuracy of MRI to detect oro pharyngeal spread: 100%; accuracy of CT to detect bone involvement: 20%; accuracy of MRI to detect bone involvement: 100%. MRI proved to be a better investigation than CT, in terms of evaluation of depth of invasion, presence of bony involvement, extension to opposite side, anterior half of tongue, tonsillar fossa, floor of mouth or oropharynx.

  3. An accuracy measurement method for star trackers based on direct astronomic observation.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-03-07

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.

  4. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique

    NARCIS (Netherlands)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; Van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2010-01-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balancao Atmosferico Regional de Carbono na Amazonia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This

  5. Diagnostic accuracy of sonography for pleural effusion: systematic review

    Directory of Open Access Journals (Sweden)

    Alexandre Grimberg

    Full Text Available CONTEXT AND OBJECTIVE: The initial method for evaluating the presence of pleural effusion was chest radiography. Isolated studies have shown that sonography has greater accuracy than radiography for this diagnosis; however, no systematic reviews on this matter are available in the literature. Thus, the aim of this study was to evaluate the accuracy of sonography in detecting pleural effusion, by means of a systematic review of the literature. DESIGN AND SETTING: This was a systematic review with meta-analysis on accuracy studies. This study was conducted in the Department of Diagnostic Imaging and in the Brazilian Cochrane Center, Discipline of Emergency Medicine and Evidence-Based Medicine, Department of Medicine, Universidade Federal de São Paulo (Unifesp, São Paulo, Brazil. METHOD: The following databases were searched: Cochrane Library, Medline, Web of Science, Embase and Literatura Latino-Americana e do Caribe em Ciências da Saúde (Lilacs. The references of relevant studies were also screened for additional citations of interest. Studies in which the accuracy of sonography for detecting pleural effusion was tested, with an acceptable reference standard (computed tomography or thoracic drainage, were included. RESULTS: Four studies were included. All of them showed that sonography had high sensitivity, specificity and accuracy for detecting pleural effusions. The mean sensitivity was 93% (95% confidence interval, CI: 89% to 96%, and specificity was 96% (95% CI: 95% to 98%. CONCLUSIONS: In different populations and clinical settings, sonography showed consistently high sensitivity, specificity and accuracy for detecting fluid in the pleural space.

  6. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution.

    Science.gov (United States)

    Trakoolwilaiwan, Thanawin; Behboodi, Bahareh; Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong

    2018-01-01

    The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.

  7. ACCURACY ASSESSMENT OF MOBILE MAPPING POINT CLOUDS USING THE EXISTING ENVIRONMENT AS TERRESTRIAL REFERENCE

    Directory of Open Access Journals (Sweden)

    S. Hofmann

    2016-06-01

    Full Text Available Mobile mapping data is widely used in various applications, what makes it especially important for data users to get a statistically verified quality statement on the geometric accuracy of the acquired point clouds or its processed products. The accuracy of point clouds can be divided into an absolute and a relative quality, where the absolute quality describes the position of the point cloud in a world coordinate system such as WGS84 or UTM, whereas the relative accuracy describes the accuracy within the point cloud itself. Furthermore, the quality of processed products such as segmented features depends on the global accuracy of the point cloud but mainly on the quality of the processing steps. Several data sources with different characteristics and quality can be thought of as potential reference data, such as cadastral maps, orthophoto, artificial control objects or terrestrial surveys using a total station. In this work a test field in a selected residential area was acquired as reference data in a terrestrial survey using a total station. In order to reach high accuracy the stationing of the total station was based on a newly made geodetic network with a local accuracy of less than 3 mm. The global position of the network was determined using a long time GNSS survey reaching an accuracy of 8 mm. Based on this geodetic network a 3D test field with facades and street profiles was measured with a total station, each point with a two-dimensional position and altitude. In addition, the surface of poles of street lights, traffic signs and trees was acquired using the scanning mode of the total station. Comparing this reference data to the acquired mobile mapping point clouds of several measurement campaigns a detailed quality statement on the accuracy of the point cloud data is made. Additionally, the advantages and disadvantages of the described reference data source concerning availability, cost, accuracy and applicability are discussed.

  8. A design of optical modulation system with pixel-level modulation accuracy

    Science.gov (United States)

    Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu

    2018-01-01

    Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.

  9. ACCURACY ANALYSIS OF A LOW-COST PLATFORM FOR POSITIONING AND NAVIGATION

    Directory of Open Access Journals (Sweden)

    S. Hofmann

    2012-07-01

    Full Text Available This paper presents an accuracy analysis of a platform based on low-cost components for landmark-based navigation intended for research and teaching purposes. The proposed platform includes a LEGO MINDSTORMS NXT 2.0 kit, an Android-based Smartphone as well as a compact laser scanner Hokuyo URG-04LX. The robot is used in a small indoor environment, where GNSS is not available. Therefore, a landmark map was produced in advance, with the landmark positions provided to the robot. All steps of procedure to set up the platform are shown. The main focus of this paper is the reachable positioning accuracy, which was analyzed in this type of scenario depending on the accuracy of the reference landmarks and the directional and distance measuring accuracy of the laser scanner. Several experiments were carried out, demonstrating the practically achievable positioning accuracy. To evaluate the accuracy, ground truth was acquired using a total station. These results are compared to the theoretically achievable accuracies and the laser scanner’s characteristics.

  10. Analysis on Dynamic Transmission Accuracy for RV Reducer

    Directory of Open Access Journals (Sweden)

    Zhang Fengshou

    2017-01-01

    Full Text Available By taking rotate vector (RV reducer as the research object, the factors affecting the transmission accuracy are studied, including the machining errors of the main parts, assembly errors, clearance, micro-displacement, gear mesh stiffness and damping, bearing stiffness. Based on Newton second law, the transmission error mathematical model of RV reducer is set up. Then, the RV reducer transmission error curve is achieved by solving the mathematical model using the Runge-Kutta methods under the combined action of various error factors. Through the analysis of RV reducer transmission test, it can be found that there are similar variation trend and frequency components compared the theoretical research and experimental result. The presented method is useful to the research on dynamic transmission accuracy of RV reducer, and also applies to research the transmission accuracy of other cycloid drive systems.

  11. High-resolution lattice-spacing comparator using SR

    International Nuclear Information System (INIS)

    Zhang, Xiaowei; Sugiyama, Hiroshi; Ando, Masami

    2004-01-01

    A novel lattice spacing measurement using a high-resolution self-reference d-spacing comparator has been described. Self selection of monochromatic synchrotron x-rays by a monolithic double channel-cut-crystal monochromator (MDCM) comprising silicon 2,6,4 and 6,2,4 reflections may lead to a stable, highly-collimated and narrow bandwidth beam. Also if utilizing 2,6,4 and 6,2,4 Bragg planes of a silicon sample, the interval between two associated Bragg peaks for the X-rays with wavelength of 0.13438 nm can be extremely small, so that the diffraction angle can be determined with high precision and the traveling time from one peak to the other can be marvelously reduced by the order of at least three compared to the established classical methods such as the Bond method. Thus this so-called self-reference comparator method can dramatically save measurement time and provide an absolute measurement on the basis of the x-ray wavelength of the MDCM, therefore a lattice spacing measurement with uncertainty of 10 -8 , for the 1mm 2 area on a silicon crystal within measurement time of a few ten seconds and has been achieved. (author)

  12. Development and validation of an automated and marker-free CT-based spatial analysis method (CTSA) for assessment of femoral hip implant migration: In vitro accuracy and precision comparable to that of radiostereometric analysis (RSA).

    Science.gov (United States)

    Scheerlinck, Thierry; Polfliet, Mathias; Deklerck, Rudi; Van Gompel, Gert; Buls, Nico; Vandemeulebroucke, Jef

    2016-01-01

    We developed a marker-free automated CT-based spatial analysis (CTSA) method to detect stem-bone migration in consecutive CT datasets and assessed the accuracy and precision in vitro. Our aim was to demonstrate that in vitro accuracy and precision of CTSA is comparable to that of radiostereometric analysis (RSA). Stem and bone were segmented in 2 CT datasets and both were registered pairwise. The resulting rigid transformations were compared and transferred to an anatomically sound coordinate system, taking the stem as reference. This resulted in 3 translation parameters and 3 rotation parameters describing the relative amount of stem-bone displacement, and it allowed calculation of the point of maximal stem migration. Accuracy was evaluated in 39 comparisons by imposing known stem migration on a stem-bone model. Precision was estimated in 20 comparisons based on a zero-migration model, and in 5 patients without stem loosening. Limits of the 95% tolerance intervals (TIs) for accuracy did not exceed 0.28 mm for translations and 0.20° for rotations (largest standard deviation of the signed error (SD(SE)): 0.081 mm and 0.057°). In vitro, limits of the 95% TI for precision in a clinically relevant setting (8 comparisons) were below 0.09 mm and 0.14° (largest SD(SE): 0.012 mm and 0.020°). In patients, the precision was lower, but acceptable, and dependent on CT scan resolution. CTSA allows detection of stem-bone migration with an accuracy and precision comparable to that of RSA. It could be valuable for evaluation of subtle stem loosening in clinical practice.

  13. Culture and Probability Judgment Accuracy: The Influence of Holistic Reasoning.

    Science.gov (United States)

    Lechuga, Julia; Wiebe, John S

    2011-08-01

    A well-established phenomenon in the judgment and decision-making tradition is the overconfidence one places in the amount of knowledge that one possesses. Overconfidence or probability judgment accuracy varies not only individually but also across cultures. However, research efforts to explain cross-cultural variations in the overconfidence phenomenon have seldom been made. In Study 1, the authors compared the probability judgment accuracy of U.S. Americans (N = 108) and Mexican participants (N = 100). In Study 2, they experimentally primed culture by randomly assigning English/Spanish bilingual Mexican Americans (N = 195) to response language. Results of both studies replicated the cross-cultural variation of probability judgment accuracy previously observed in other cultural groups. U.S. Americans displayed less overconfidence when compared to Mexicans. These results were then replicated in bilingual participants, when culture was experimentally manipulated with language priming. Holistic reasoning did not account for the cross-cultural variation of overconfidence. Suggestions for future studies are discussed.

  14. Effects of accuracy constraints on reach-to-grasp movements in cerebellar patients.

    Science.gov (United States)

    Rand, M K; Shimansky, Y; Stelmach, G E; Bracha, V; Bloedel, J R

    2000-11-01

    Reach-to-grasp movements of patients with pathology restricted to the cerebellum were compared with those of normal controls. Two types of paradigms with different accuracy constraints were used to examine whether cerebellar impairment disrupts the stereotypic relationship between arm transport and grip aperture and whether the variability of this relationship is altered when greater accuracy is required. The movements were made to either a vertical dowel or to a cross bar of a small cross. All subjects were asked to reach for either target at a fast but comfortable speed, grasp the object between the index finger and thumb, and lift it a short distance off the table. In terms of the relationship between arm transport and grip aperture, the control subjects showed a high consistency in grip aperture and wrist velocity profiles from trial to trial for movements to both the dowel and the cross. The relationship between the maximum velocity of the wrist and the time at which grip aperture was maximal during the reach was highly consistent throughout the experiment. In contrast, the time of maximum grip aperture and maximum wrist velocity of the cerebellar patients was quite variable from trial to trial, and the relationship of these measurements also varied considerably. These abnormalities were present regardless of the accuracy requirement. In addition, the cerebellar patients required a significantly longer time to grasp and lift the objects than the control subjects. Furthermore, the patients exhibited a greater grip aperture during reach than the controls. These data indicate that the cerebellum contributes substantially to the coordination of movements required to perform reach-to-grasp movements. Specifically, the cerebellum is critical for executing this behavior with a consistent, well-timed relationship between the transport and grasp components. This contribution is apparent even when accuracy demands are minimal.

  15. Using inferred probabilities to measure the accuracy of imprecise forecasts

    Directory of Open Access Journals (Sweden)

    Paul Lehner

    2012-11-01

    Full Text Available Research on forecasting is effectively limited to forecasts that are expressed with clarity; which is to say that the forecasted event must be sufficiently well-defined so that it can be clearly resolved whether or not the event occurred and forecasts certainties are expressed as quantitative probabilities. When forecasts are expressed with clarity, then quantitative measures (scoring rules, calibration, discrimination, etc. can be used to measure forecast accuracy, which in turn can be used to measure the comparative accuracy of different forecasting methods. Unfortunately most real world forecasts are not expressed clearly. This lack of clarity extends to both the description of the forecast event and to the use of vague language to express forecast certainty. It is thus difficult to assess the accuracy of most real world forecasts, and consequently the accuracy the methods used to generate real world forecasts. This paper addresses this deficiency by presenting an approach to measuring the accuracy of imprecise real world forecasts using the same quantitative metrics routinely used to measure the accuracy of well-defined forecasts. To demonstrate applicability, the Inferred Probability Method is applied to measure the accuracy of forecasts in fourteen documents examining complex political domains. Key words: inferred probability, imputed probability, judgment-based forecasting, forecast accuracy, imprecise forecasts, political forecasting, verbal probability, probability calibration.

  16. Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Seely, J. F., E-mail: seelyjf@gmail.com; Feldman, U. [Artep Inc., 2922 Excelsior Springs Court, Ellicott City, Maryland 21042 (United States); Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Pereira, N. [Ecopulse Inc., P. O. Box 528, Springfield, Virginia 22152 (United States); Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, Hui; Williams, G. J.; Park, J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2014-11-15

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10–60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 μm in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10–60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  17. Evaluating the accuracy of the XVI dual registration tool compared with manual soft tissue matching to localise tumour volumes for post-prostatectomy patients receiving radiotherapy

    International Nuclear Information System (INIS)

    Campbell, Amelia; Brown, Elizabeth; Pryor, David; Lehman, Margot; Owen, Rebecca; Bernard, Anne

    2015-01-01

    Cone beam computerised tomography (CBCT) enables soft tissue visualisation to optimise matching in the post-prostatectomy setting, but is associated with inter-observer variability. This study assessed the accuracy and consistency of automated soft tissue localisation using XVI's dual registration tool (DRT). Sixty CBCT images from ten post-prostatectomy patients were matched using: (i) the DRT and (ii) manual soft tissue registration by six radiation therapists (RTs). Shifts in the three Cartesian planes were recorded. The accuracy of the match was determined by comparing shifts to matches performed by two genitourinary radiation oncologists (ROs). A Bland–Altman method was used to assess the 95% levels of agreement (LoA). A clinical threshold of 3 mm was used to define equivalence between methods of matching. The 95% LoA between DRT-ROs in the superior/inferior, left/right and anterior/posterior directions were −2.21 to +3.18 mm, −0.77 to +0.84 mm, and −1.52 to +4.12 mm, respectively. The 95% LoA between RTs-ROs in the superior/inferior, left/right and anterior/posterior directions were −1.89 to +1.86 mm, −0.71 to +0.62 mm and −2.8 to +3.43 mm, respectively. Five DRT CBCT matches (8.33%) were outside the 3-mm threshold, all in the setting of bladder underfilling or rectal gas. The mean time for manual matching was 82 versus 65 s for DRT. XVI's DRT is comparable with RTs manually matching soft tissue on CBCT. The DRT can minimise RT inter-observer variability; however, involuntary bladder and rectal filling can influence the tools accuracy, highlighting the need for RT evaluation of the DRT match.

  18. Accuracy improvement techniques in Precise Point Positioning method using multiple GNSS constellations

    Science.gov (United States)

    Vasileios Psychas, Dimitrios; Delikaraoglou, Demitris

    2016-04-01

    time in PPP static and kinematic solutions compared to GPS-only PPP solutions for various observational session durations. However, this is mostly observed when the visibility of Galileo and BeiDou satellites is substantially long within an observational session. In GPS-only cases dealing with data from high elevation cut-off angles, the number of GPS satellites decreases dramatically, leading to a position accuracy and convergence time deviating from satisfactory geodetic thresholds. By contrast, respective multi-GNSS PPP solutions not only show improvement, but also lead to geodetic level accuracies even in 30° elevation cut-off. Finally, the GPS ambiguity resolution in PPP processing is investigated using the GPS satellite wide-lane fractional cycle biases, which are included in the clock products by CNES. It is shown that their addition shortens the convergence time and increases the position accuracy of PPP solutions, especially in kinematic mode. Analogous improvement is obtained in respective multi-GNSS solutions, even though the GLONASS, Galileo and BeiDou ambiguities remain float, since information about them is not provided in the clock products available to date.

  19. Diagnostic accuracy of the iCare rebound tonometer compared to the Perkins applanation tonometer in assessing intraocular pressure in rural patients.

    Science.gov (United States)

    Li, Yifan; Carpenter, Christopher R; Nicholson, Kathryn; Milne, William Ken

    2015-12-01

    Vision health is recognized as a critical unmet need in North America. The ocular morbidity associated with glaucoma results from increased intraocular pressure (IOP) and early detection is crucial for the management of glaucoma. Our objective was to find a diagnostically accurate screening tool for intraocular hypertension that can be used in rural communities. We sought to validate the diagnostic accuracy of the iCare rebound tonometer against the gold standard Perkins applanation tonometer (PAT) in measuring IOP. Patients from two rural communities in Ontario, Canada visiting their optometrists for routine appointments had their IOP measured by a non-contact tonometer (NCT), an iCare rebound tonometer, and a Perkins applanation tonometer (PAT). Values of sensitivity, specificity, and likelihood ratios for a positive and negative result were calculated for the iCare and the NCT. Complete data was collected from 209 patients. Overall, the iCare tonometer had high levels of validity, as compared to the gold standard PAT. The iCare tonometer displayed excellent sensitivity of 98.3% (90-99%, 95% CI) and excellent negative likelihood ratio of 0.024 (0.0088-0.066, 95% CI) which is useful for ruling out intraocular hypertension. The iCare tonometer is a reasonably valid tool for detecting elevated IOP. Its ease of use, simplicity, and accessibility makes it a good screening tool to improve eye health in rural areas.

  20. Characterization of ANFO explosive by high accuracy ESI(±)-FTMS with forensic identification on real samples by EASI(-)-MS.

    Science.gov (United States)

    Hernandes, Vinicius Veri; Franco, Marcos Fernado; Santos, Jandyson Machado; Melendez-Perez, Jose J; de Morais, Damila Rodrigues; Rocha, Werickson Fortunato de Carvalho; Borges, Rodrigo; de Souza, Wanderley; Zacca, Jorge Jardim; Logrado, Lucio Paulo Lima; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2015-04-01

    Ammonium nitrate fuel oil (ANFO) is an explosive used in many civil applications. In Brazil, ANFO has unfortunately also been used in criminal attacks, mainly in automated teller machine (ATM) explosions. In this paper, we describe a detailed characterization of the ANFO composition and its two main constituents (diesel and a nitrate explosive) using high resolution and accuracy mass spectrometry performed on an FT-ICR-mass spectrometer with electrospray ionization (ESI(±)-FTMS) in both the positive and negative ion modes. Via ESI(-)-MS, an ion marker for ANFO was characterized. Using a direct and simple ambient desorption/ionization technique, i.e., easy ambient sonic-spray ionization mass spectrometry (EASI-MS), in a simpler, lower accuracy but robust single quadrupole mass spectrometer, the ANFO ion marker was directly detected from the surface of banknotes collected from ATM explosion theft. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. A comparative evaluation of accuracy of Mclaughlin Bennet Trevisi prescription of six commercially available orthodontic metal brackets: An in vitro study

    Directory of Open Access Journals (Sweden)

    Prateek Navratan Daga

    2017-01-01

    Full Text Available Introduction: While using preadjusted edgewise mechanics, tooth positioning relies on the accuracy of bracket prescription for correct expression of tip and torque when using full-size archwire, thus making accuracy of bracket prescription vital in its overall performance. This study aimed to investigate the precision offered in bracket prescription: slot dimensions, tip, and torque values. Materials and Methods: MBT prescriptions of upper left central incisor brackets manufactured by six different commercial houses were evaluated to assess the aforementioned accuracy of bracket slot dimensions as well as tip and torque values. Rapid-I Precision Measuring System was used to accurately determine slot dimensions as well as tip and torque values. Results: Results obtained in a descending order of accuracy were as follows: American Orthodontics, Ortho Organizers, 3M Unitek, Forestadent, Modern Orthodontics and JJ Orthodontics. The obtained results were evaluated statistically using one-way ANOVA test. P< 0.05 was considered statistically significant. Conclusion: This study helps us to note the accuracy level of the inherent prescription values offered in various commercial houses and the likely effect the same may have on our expectation of a prescription finish while using attachments from any of them.

  2. Comparison of marginal accuracy of castings fabricated by conventional casting technique and accelerated casting technique: an in vitro study.

    Science.gov (United States)

    Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar

    2013-01-01

    Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.

  3. High-accuracy vibration sensor based on a Fabry-Perot interferometer with active phase-tracking technology.

    Science.gov (United States)

    Xia, Wei; Li, Chuncheng; Hao, Hui; Wang, Yiping; Ni, Xiaoqi; Guo, Dongmei; Wang, Ming

    2018-02-01

    A novel position-sensitive Fabry-Perot interferometer was constructed with direct phase modulation by a built-in electro-optic modulator. Pure sinusoidal phase modulation of the light was produced, and the first harmonic of the interference signal was extracted to dynamically maintain the interferometer phase to the most sensitive point of the interferogram. Therefore, the minute vibration of the object was coded on the variation of the interference signal and could be directly retrieved by the output voltage of a photodetector. The operating principle and the signal processing method for active feedback control of the interference phase have been demonstrated in detail. The developed vibration sensor was calibrated through a high-precision piezo-electric transducer and tested by a nano-positioning stage under a vibration magnitude of 60 nm and a frequency of 300 Hz. The active phase-tracking method of the system provides high immunity against environmental disturbances. Experimental results show that the proposed interferometer can effectively reconstruct tiny vibration waveforms with subnanometer resolution, paving the way for high-accuracy vibration sensing, especially for micro-electro-mechanical systems/nano-electro-mechanical systems and ultrasonic devices.

  4. Vision-based algorithms for high-accuracy measurements in an industrial bakery

    Science.gov (United States)

    Heleno, Paulo; Davies, Roger; Correia, Bento A. B.; Dinis, Joao

    2002-02-01

    This paper describes the machine vision algorithms developed for VIP3D, a measuring system used in an industrial bakery to monitor the dimensions and weight of loaves of bread (baguettes). The length and perimeter of more than 70 different varieties of baguette are measured with 1-mm accuracy, quickly, reliably and automatically. VIP3D uses a laser triangulation technique to measure the perimeter. The shape of the loaves is approximately cylindrical and the perimeter is defined as the convex hull of a cross-section perpendicular to the baguette axis at mid-length. A camera, mounted obliquely to the measuring plane, captures an image of a laser line projected onto the upper surface of the baguette. Three cameras are used to measure the baguette length, a solution adopted in order to minimize perspective-induced measurement errors. The paper describes in detail the machine vision algorithms developed to perform segmentation of the laser line and subsequent calculation of the perimeter of the baguette. The algorithms used to segment and measure the position of the ends of the baguette, to sub-pixel accuracy, are also described, as are the algorithms used to calibrate the measuring system and compensate for camera-induced image distortion.

  5. Non-invasive fetal RHD genotyping for RhD negative women stratified into RHD gene deletion or variant groups: comparative accuracy using two blood collection tube types.

    Science.gov (United States)

    Hyland, Catherine A; Millard, Glenda M; O'Brien, Helen; Schoeman, Elizna M; Lopez, Genghis H; McGowan, Eunike C; Tremellen, Anne; Puddephatt, Rachel; Gaerty, Kirsten; Flower, Robert L; Hyett, Jonathan A; Gardener, Glenn J

    2017-12-01

    Non-invasive fetal RHD genotyping in Australia to reduce anti-D usage will need to accommodate both prolonged sample transport times and a diverse population demographic harbouring a range of RHD blood group gene variants. We compared RHD genotyping accuracy using two blood sample collection tube types for RhD negative women stratified into deleted RHD gene haplotype and RHD gene variant cohorts. Maternal blood samples were collected into EDTA and cell-free (cf)DNA stabilising (BCT) tubes from two sites, one interstate. Automated DNA extraction and polymerase chain reaction (PCR) were used to amplify RHD exons 5 and 10 and CCR5. Automated analysis flagged maternal RHD variants, which were classified by genotyping. Time between sample collection and processing ranged from 2.9 to 187.5 hours. cfDNA levels increased with time for EDTA (range 0.03-138 ng/μL) but not BCT samples (0.01-3.24 ng/μL). For the 'deleted' cohort (n=647) all fetal RHD genotyping outcomes were concordant, excepting for one unexplained false negative EDTA sample. Matched against cord RhD serology, negative predictive values using BCT and EDTA tubes were 100% and 99.6%, respectively. Positive predictive values were 99.7% for both types. Overall 37.2% of subjects carried an RhD negative baby. The 'variant' cohort (n=15) included one novel RHD and eight hybrid or African pseudogene variants. Review for fetal RHD specific signals, based on one exon, showed three EDTA samples discordant to BCT, attributed to high maternal cfDNA levels arising from prolonged transport times. For the deleted haplotype cohort, fetal RHD genotyping accuracy was comparable for samples collected in EDTA and BCT tubes despite higher cfDNA levels in the EDTA tubes. Capacity to predict fetal RHD genotype for maternal carriers of hybrid or pseudogene RHD variants requires stringent control of cfDNA levels. We conclude that fetal RHD genotyping is feasible in the Australian environment to avoid unnecessary anti

  6. 1991 comparative analysis of tritium in water

    International Nuclear Information System (INIS)

    Krause, W.J.; Mundschenk, H.

    1992-06-01

    For environmental monitoring of radioactive materials, the competent authorities of the States and Federal Government of Germany continuously perform measurements and make their results accessible to the public in an appropriate way. In order to guarantee the comparability of measured values and a high degree of reliability of the applied methods, the authorities in charge of carrying out such tasks are obliged to take part in the comparative analyses (ring tests) organized by the central offices of the Federal Government. Therefore, the aim of this comparative analysis performed by order of the Federal Ministry of the Environment, Nature Protection and Reactor Safety consists mainly in providing the measuring offices in charge of monitoring waters, with samples with known tritium contents in order to get an overview of the accuracy of currently used processes; check the accuracy of the determinations performed, and, if necessary, detect and eliminate systematic errors; check, in particular by means of the samples T2 and T3, the calibration of the measuring devices and, if necessary, make corrections. To this effect, the comparative analysis fulfills the function of quality control of the processes used in environmental monitoring. (orig./BBR) [de

  7. Computed tomography angiogram. Accuracy in renal surgery

    International Nuclear Information System (INIS)

    Rabah, Danny M.; Al-Hathal, Naif; Al-Fuhaid, Turki; Raza, Sayed; Al-Yami, Fahad; Al-Taweel, Waleed; Alomar, Mohamed; Al-Nagshabandi, Nizar

    2009-01-01

    The objective of this study was to determine the sensitivity and specificity of computed tomography angiogram (CTA) in detecting number and location of renal arteries and veins as well as crossing vessels causing uretero-pelvic junction obstruction (UPJO), and to determine if this can be used in decision-making algorithms for treatment of UPJO. A prospective study was carried out in patients undergoing open, laparoscopic and robotic renal surgery from April 2005 until October 2006. All patients were imaged using CTA with 1.25 collimation of arterial and venous phases. Each multi-detector CTA was then read by one radiologist and his results were compared prospectively with the actual intra-operative findings. Overall, 118 patients were included. CTA had 93% sensitivity, 77% specificity and 90% overall accuracy for detecting a single renal artery, and 76% sensitivity, 92% specificity and 90% overall accuracy for detecting two or more renal arteries (Pearson χ 2 =0.001). There was 95% sensitivity, 84% specificity and 85% overall accuracy for detecting the number of renal veins. CTA had 100% overall accuracy in detecting early dividing renal artery (defined as less than 1.5 cm branching from origin), and 83.3% sensitivity, specificity and overall accuracy in detecting crossing vessels at UPJ. The percentage of surgeons stating CTA to be helpful as pre-operative diagnostic tool was 85%. Computed tomography angiogram is simple, quick and can provide an accurate pre-operative renal vascular anatomy in terms of number and location of renal vessels, early dividing renal arteries and crossing vessels at UPJ. (author)

  8. Accuracy and completeness of drug information in Wikipedia medication monographs.

    Science.gov (United States)

    Reilly, Timothy; Jackson, William; Berger, Victoria; Candelario, Danielle

    The primary objective of this study was to determine the accuracy and completeness of drug information on Wikipedia and Micromedex compared with U.S. Food and Drug Administration-approved U.S. product inserts. The top 10 brand and top 10 generic medications from the 2012 Institute for Health Informatics' list of top 200 drugs were selected for evaluation. Wikipedia medication information was evaluated and compared with Micromedex in 7 sections of drug information; the U.S. product inserts were used as the standard comparator. Wikipedia demonstrated significantly lower completeness and accuracy scores compared with Micromedex (mean composite scores 18.55 vs. 38.4, respectively; P <0.01). No difference was found between the mean composite scores for brand versus generic drugs in either reference (17.8 vs. 19.3, respectively [P = 0.62], for Wikipedia; 39.2 vs. 37.6, [P = 0.06] for Micromedex). Limitations to these results include the speed with which information is edited on Wikipedia, that there was no evaluation of off-label information, and the limited number of drugs that were evaluated. Wikipedia lacks the accuracy and completeness of standard clinical references and should not be a routine part of clinical decision making. More research should be conducted to evaluate the rationale for health care providers' use of Wikipedia. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration.

    Science.gov (United States)

    Matsuba, Shinji; Tabuchi, Hitoshi; Ohsugi, Hideharu; Enno, Hiroki; Ishitobi, Naofumi; Masumoto, Hiroki; Kiuchi, Yoshiaki

    2018-05-09

    To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system. First, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times. DCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%. A combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine.

  10. Laser measuring scanners and their accuracy limits

    Science.gov (United States)

    Jablonski, Ryszard

    1993-09-01

    Scanning methods have gained the greater importance for some years now due to a short measuring time and wide range of application in flexible manufacturing processes. This paper is a summing up of the autho?s creative scientific work in the field of measuring scanners. The research conducted allowed to elaborate the optimal configurations of measuring systems based on the scanning method. An important part of the work was the analysis of a measuring scanner - as a transducer of an angle rotation into the linear displacement which resulted in obtaining its much higher accuracy and finally in working out a measuring scanner eliminating the use of an additional reference standard. The completion of the work is an attempt to determine an attainable accuracy limit of scanning measurement of both length and angle. Using a high stability deflector and a corrected scanning lens one can obtain the angle determination over 30 (or 2 mm) to an accuracy 0 (or 0 tm) when the measuring rate is 1000 Hz or the range d60 (4 mm) with accuracy 0 " (0 jim) and measurement frequency 6 Hz.

  11. Genomic Prediction Accuracy for Resistance Against Piscirickettsia salmonis in Farmed Rainbow Trout

    Directory of Open Access Journals (Sweden)

    Grazyella M. Yoshida

    2018-02-01

    Full Text Available Salmonid rickettsial syndrome (SRS, caused by the intracellular bacterium Piscirickettsia salmonis, is one of the main diseases affecting rainbow trout (Oncorhynchus mykiss farming. To accelerate genetic progress, genomic selection methods can be used as an effective approach to control the disease. The aims of this study were: (i to compare the accuracy of estimated breeding values using pedigree-based best linear unbiased prediction (PBLUP with genomic BLUP (GBLUP, single-step GBLUP (ssGBLUP, Bayes C, and Bayesian Lasso (LASSO; and (ii to test the accuracy of genomic prediction and PBLUP using different marker densities (0.5, 3, 10, 20, and 27 K for resistance against P. salmonis in rainbow trout. Phenotypes were recorded as number of days to death (DD and binary survival (BS from 2416 fish challenged with P. salmonis. A total of 1934 fish were genotyped using a 57 K single-nucleotide polymorphism (SNP array. All genomic prediction methods achieved higher accuracies than PBLUP. The relative increase in accuracy for different genomic models ranged from 28 to 41% for both DD and BS at 27 K SNP. Between different genomic models, the highest relative increase in accuracy was obtained with Bayes C (∼40%, where 3 K SNP was enough to achieve a similar accuracy to that of the 27 K SNP for both traits. For resistance against P. salmonis in rainbow trout, we showed that genomic predictions using GBLUP, ssGBLUP, Bayes C, and LASSO can increase accuracy compared with PBLUP. Moreover, it is possible to use relatively low-density SNP panels for genomic prediction without compromising accuracy predictions for resistance against P. salmonis in rainbow trout.

  12. Accuracy assessment of seven global land cover datasets over China

    Science.gov (United States)

    Yang, Yongke; Xiao, Pengfeng; Feng, Xuezhi; Li, Haixing

    2017-03-01

    Land cover (LC) is the vital foundation to Earth science. Up to now, several global LC datasets have arisen with efforts of many scientific communities. To provide guidelines for data usage over China, nine LC maps from seven global LC datasets (IGBP DISCover, UMD, GLC, MCD12Q1, GLCNMO, CCI-LC, and GlobeLand30) were evaluated in this study. First, we compared their similarities and discrepancies in both area and spatial patterns, and analysed their inherent relations to data sources and classification schemes and methods. Next, five sets of validation sample units (VSUs) were collected to calculate their accuracy quantitatively. Further, we built a spatial analysis model and depicted their spatial variation in accuracy based on the five sets of VSUs. The results show that, there are evident discrepancies among these LC maps in both area and spatial patterns. For LC maps produced by different institutes, GLC 2000 and CCI-LC 2000 have the highest overall spatial agreement (53.8%). For LC maps produced by same institutes, overall spatial agreement of CCI-LC 2000 and 2010, and MCD12Q1 2001 and 2010 reach up to 99.8% and 73.2%, respectively; while more efforts are still needed if we hope to use these LC maps as time series data for model inputting, since both CCI-LC and MCD12Q1 fail to represent the rapid changing trend of several key LC classes in the early 21st century, in particular urban and built-up, snow and ice, water bodies, and permanent wetlands. With the highest spatial resolution, the overall accuracy of GlobeLand30 2010 is 82.39%. For the other six LC datasets with coarse resolution, CCI-LC 2010/2000 has the highest overall accuracy, and following are MCD12Q1 2010/2001, GLC 2000, GLCNMO 2008, IGBP DISCover, and UMD in turn. Beside that all maps exhibit high accuracy in homogeneous regions; local accuracies in other regions are quite different, particularly in Farming-Pastoral Zone of North China, mountains in Northeast China, and Southeast Hills. Special

  13. Accounting comparability and the accuracy of peer-based valuation models

    NARCIS (Netherlands)

    Young, S.; Zeng, Y.

    2015-01-01

    We examine the link between enhanced accounting comparability and the valuation performance of pricing multiples. Using the warranted multiple method proposed by Bhojraj and Lee (2002, Journal of Accounting Research), we demonstrate how enhanced accounting comparability leads to better peer-based

  14. Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with conventional contrast-enhanced MR angiography for the assessment of thoracic aortic diseases

    International Nuclear Information System (INIS)

    Krishnam, Mayil S.; Tomasian, Anderanik; Malik, Sachin; Ruehm, Stefan G.; Desphande, Vibhas; Laub, Gerhard

    2010-01-01

    The purpose of this study was to determine the image quality and diagnostic accuracy of three-dimensional (3D) unenhanced steady state free precession (SSFP) magnetic resonance angiography (MRA) for the evaluation of thoracic aortic diseases. Fifty consecutive patients with known or suspected thoracic aortic disease underwent free-breathing ECG-gated unenhanced SSFP MRA with non-selective radiofrequency excitation and contrast-enhanced (CE) MRA of the thorax at 1.5 T. Two readers independently evaluated the two datasets for image quality in the aortic root, ascending aorta, aortic arch, descending aorta, and origins of supra-aortic arteries, and for abnormal findings. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were determined for both datasets. Sensitivity, specificity, and diagnostic accuracy of unenhanced SSFP MRA for the diagnosis of aortic abnormalities were determined. Abnormal aortic findings, including aneurysm (n = 47), coarctation (n = 14), dissection (n = 12), aortic graft (n = 6), intramural hematoma (n = 11), mural thrombus in the aortic arch (n = 1), and penetrating aortic ulcer (n = 9), were confidently detected on both datasets. Sensitivity, specificity, and diagnostic accuracy of SSFP MRA for the detection of aortic disease were 100% with CE-MRA serving as a reference standard. Image quality of the aortic root was significantly higher on SSFP MRA (P 0.05). SNR and CNR values were higher for all segments on SSFP MRA (P < 0.01). Our results suggest that free-breathing navigator-gated 3D SSFP MRA with non-selective radiofrequency excitation is a promising technique that provides high image quality and diagnostic accuracy for the assessment of thoracic aortic disease without the need for intravenous contrast material. (orig.)

  15. Quantitative accuracy of serotonergic neurotransmission imaging with high-resolution 123I SPECT

    International Nuclear Information System (INIS)

    Kuikka, J.T.

    2004-01-01

    Aim: Serotonin transporter (SERT) imaging can be used to study the role of regional abnormalities of neurotransmitter release in various mental disorders and to study the mechanism of action of therapeutic drugs or drugs' abuse. We examine the quantitative accuracy and reproducibility that can be achieved with high-resolution SPECT of serotonergic neurotransmission. Method: Binding potential (BP) of 123 I labeled tracer specific for midbrain SERT was assessed in 20 healthy persons. The effects of scatter, attenuation, partial volume, misregistration and statistical noise were estimated using phantom and human studies. Results: Without any correction, BP was underestimated by 73%. The partial volume error was the major component in this underestimation whereas the most critical error for the reproducibility was misplacement of region of interest (ROI). Conclusion: The proper ROI registration, the use of the multiple head gamma camera with transmission based scatter correction introduce more relevant results. However, due to the small dimensions of the midbrain SERT structures and poor spatial resolution of SPECT, the improvement without the partial volume correction is not great enough to restore the estimate of BP to that of the true one. (orig.) [de

  16. Accuracy of stereolithographic models of human anatomy

    International Nuclear Information System (INIS)

    Barker, T.M.; Earwaker, W.J.S.; Lisle, D.A.

    1994-01-01

    A study was undertaken to determine the dimensional accuracy of anatomical replicas derived from X-ray 3D computed tomography (CT) images and produced using the rapid prototyping technique of stereolithography (SLA). A dry bone skull and geometric phantom were scanned, and replicas were produced. Distance measurements were obtained to compare the original objects and the resulting replicas. Repeated measurements between anatomical landmarks were used for comparison of the original skull and replica. Results for the geometric phantom demonstrate a mean difference of +0.47mm, representing an accuracy of 97.7-99.12%. Measurements of the skull produced a range of absolute differences (maximum +4.62mm, minimum +0.1mm, mean +0.85mm). These results support the use of SLA models of human anatomical structures in such areas as pre-operative planning of complex surgical procedures. For applications where higher accuracy is required, improvements can be expected by utilizing smaller pixel resolution in the CT images. Stereolithographic models can now be confidently employed as accurate, three-dimensional replicas of complex, anatomical structures. 14 refs., 2 tabs., 8 figs

  17. ArcticDEM Validation and Accuracy Assessment

    Science.gov (United States)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2017-12-01

    ArcticDEM comprises a growing inventory Digital Elevation Models (DEMs) covering all land above 60°N. As of August, 2017, ArcticDEM had openly released 2-m resolution, individual DEM covering over 51 million km2, which includes areas of repeat coverage for change detection, as well as over 15 million km2 of 5-m resolution seamless mosaics. By the end of the project, over 80 million km2 of 2-m DEMs will be produced, averaging four repeats of the 20 million km2 Arctic landmass. ArcticDEM is produced from sub-meter resolution, stereoscopic imagery using open source software (SETSM) on the NCSA Blue Waters supercomputer. These DEMs have known biases of several meters due to errors in the sensor models generated from satellite positioning. These systematic errors are removed through three-dimensional registration to high-precision Lidar or other control datasets. ArcticDEM is registered to seasonally-subsetted ICESat elevations due its global coverage and high report accuracy ( 10 cm). The vertical accuracy of ArcticDEM is then obtained from the statistics of the fit to the ICESat point cloud, which averages -0.01 m ± 0.07 m. ICESat, however, has a relatively coarse measurement footprint ( 70 m) which may impact the precision of the registration. Further, the ICESat data predates the ArcticDEM imagery by a decade, so that temporal changes in the surface may also impact the registration. Finally, biases may exist between different the different sensors in the ArcticDEM constellation. Here we assess the accuracy of ArcticDEM and the ICESat registration through comparison to multiple high-resolution airborne lidar datasets that were acquired within one year of the imagery used in ArcticDEM. We find the ICESat dataset is performing as anticipated, introducing no systematic bias during the coregistration process, and reducing vertical errors to within the uncertainty of the airborne Lidars. Preliminary sensor comparisons show no significant difference post coregistration

  18. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network.

    Science.gov (United States)

    Qi, Jun; Liu, Guo-Ping

    2017-11-06

    This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS). The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN) node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF) module, which is only used for time synchronization between different nodes, with accuracy up to 1 μ s. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF) for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM). The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS) signal.

  19. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jun Qi

    2017-11-01

    Full Text Available This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS. The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF module, which is only used for time synchronization between different nodes, with accuracy up to 1 μs. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM. The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS signal.

  20. Accuracy improvement of irradiation data by combining ground and satellite measurements

    Energy Technology Data Exchange (ETDEWEB)

    Betcke, J. [Energy and Semiconductor Research Laboratory, Carl von Ossietzky University, Oldenburg (Germany); Beyer, H.G. [Department of Electrical Engineering, University of Applied Science (F.H.) Magdeburg-Stendal, Magdeburg (Germany)

    2004-07-01

    Accurate and site-specific irradiation data are essential input for optimal planning, monitoring and operation of solar energy technologies. A concrete example is the performance check of grid connected PV systems with the PVSAT-2 procedure. This procedure detects system faults in an early stage by a daily comparison of an individual reference yield with the actual yield. Calculation of the reference yield requires hourly irradiation data with a known accuracy. A field test of the predecessing PVSAT-1 procedure showed that the accuracy of the irradiation input is the determining factor for the overall accuracy of the yield calculation. In this paper we will investigate if it is possible to improve the accuracy of sitespeci.c irradiation data by combining accurate localised pyranometer data with semi-continuous satellite data.We will therefore introduce the ''Kriging of Differences'' data fusion method. Kriging of Differences also offers the possibility to estimate it's own accuracy. The obtainable accuracy gain and the effectiveness of the accuracy prediction will be investigated by validation on monthly and daily irradiation datasets. Results will be compared with the Heliosat method and interpolation of ground data. (orig.)

  1. CT coronary angiography: Influence of different cardiac reconstruction intervals on image quality and diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Department of Radiology, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany)], E-mail: marc.dewey@charite.de; Teige, Florian [Department of Radiology, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany); Rutsch, Wolfgang [Department of Cardiology, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany)], E-mail: wolfgang.rutsch@charite.de; Schink, Tania [Department of Medical Biometry, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany)], E-mail: peter.martus@charite.de; Hamm, Bernd [Department of Radiology, Charite Medical School, Humboldt-Universitaet zu Berlin (Germany)

    2008-07-15

    Purpose: To prospectively analyze image quality and diagnostic accuracy of different reconstruction intervals of coronary angiography using multislice computed tomography (MSCT). Materials and methods: For each of 47 patients, 10 ECG-gated MSCT reconstructions were generated throughout the RR interval from 0 to 90%, resulting in altogether 470 datasets. These datasets were randomly analyzed for image quality and accuracy and compared with conventional angiography. Statistical comparison of intervals was performed using nonparametric analysis for repeated measurements to account for clustering of arteries within patients. Results: Image reconstruction intervals centered at 80, 70, and 40% of the RR interval resulted (in that order) in the best overall image quality for all four main coronary vessels. Eighty percent reconstructions also yielded the highest diagnostic accuracy of all intervals. The combination of the three best intervals (80, 70, and 40%) significantly reduced the nondiagnostic rate as compared with 80% alone (p = 0.005). However, the optimal reconstruction interval combination achieved significantly improved specificities and nondiagnostic rates (p < 0.05). The optimal combination consisted of 1.7 {+-} 0.9 reconstruction intervals on average. In approximately half of the patients (49%, 23/47) a single reconstruction was optimal. In 18 (38%), 3 (6%), and 3 (6%) patients one, two, and three additional reconstruction intervals were required, respectively, to achieve optimal quality. In 28% of the patients the optimal combination consisted of reconstructions other than the three best intervals (80, 70, and 40%). Conclusion: Multiple image reconstruction intervals are essential to ensure high image quality and accuracy of CT coronary angiography.

  2. The accuracy of chest sonography in the diagnosis of small pleural effusion

    International Nuclear Information System (INIS)

    Kocijancic, I.

    2003-01-01

    Background. The aim of the study was to evaluate the accuracy of chest sonography in the radiological diagnosis of small pleural effusions. Patients and methods. Patients referred for abdominal and/or chest sonographies for various reasons were examined for sonographic features of pleural effusion. From January 1997 till January 2000, 69 patients were included into the study. Fifty-two patients were found to have pleural effusion not exceeding 15 mm in depth, the rest of them served as controls. Subsequently erect posteroanterior and expiratory lateral decubitus projections were done in all patients. Results. Compared to radiological examination chest sonography had a positive predictive value of 92% in the diagnosis of small pleural effusions in our study population. The mean thickness of fluid was 9.2 mm on ultrasonography and 7.6 mm on expiratory lateral decubitus views (P<0.01). Conclusions. Chest sonography showed a high degree of accuracy for demonstrating small pleural effusions and could replace lateral decubitus chest radiographs adequately. (author)

  3. Accuracy of References in Five Entomology Journals.

    Science.gov (United States)

    Kristof, Cynthia

    ln this paper, the bibliographical references in five core entomology journals are examined for citation accuracy in order to determine if the error rates are similar. Every reference printed in each journal's first issue of 1992 was examined, and these were compared to the original (cited) publications, if possible, in order to determine the…

  4. High accuracy prediction of beta-turns and their types using propensities and multiple alignments.

    Science.gov (United States)

    Fuchs, Patrick F J; Alix, Alain J P

    2005-06-01

    We have developed a method that predicts both the presence and the type of beta-turns, using a straightforward approach based on propensities and multiple alignments. The propensities were calculated classically, but the way to use them for prediction was completely new: starting from a tetrapeptide sequence on which one wants to evaluate the presence of a beta-turn, the propensity for a given residue is modified by taking into account all the residues present in the multiple alignment at this position. The evaluation of a score is then done by weighting these propensities by the use of Position-specific score matrices generated by PSI-BLAST. The introduction of secondary structure information predicted by PSIPRED or SSPRO2 as well as taking into account the flanking residues around the tetrapeptide improved the accuracy greatly. This latter evaluated on a database of 426 reference proteins (previously used on other studies) by a sevenfold crossvalidation gave very good results with a Matthews Correlation Coefficient (MCC) of 0.42 and an overall prediction accuracy of 74.8%; this places our method among the best ones. A jackknife test was also done, which gave results within the same range. This shows that it is possible to reach neural networks accuracy with considerably less computional cost and complexity. Furthermore, propensities remain excellent descriptors of amino acid tendencies to belong to beta-turns, which can be useful for peptide or protein engineering and design. For beta-turn type prediction, we reached the best accuracy ever published in terms of MCC (except for the irregular type IV) in the range of 0.25-0.30 for types I, II, and I' and 0.13-0.15 for types VIII, II', and IV. To our knowledge, our method is the only one available on the Web that predicts types I' and II'. The accuracy evaluated on two larger databases of 547 and 823 proteins was not improved significantly. All of this was implemented into a Web server called COUDES (French acronym

  5. Fiscal 1998 development report on the high-accuracy quantitative analysis technique of catalyst surfaces by electron spectroscopy; 1998 nendo denshi bunkoho ni yoru shokubai hyomen koseido teiryo bunseki gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project aims at development of the high-accuracy quantitative analysis technique by electron spectroscopy for surface analysis of catalysts and semiconductors. Since conventional analysis technique using an energy-fixed X-ray excitation source is inadequate to obtain satisfactory surface sensitivity and quantitative accuracy for catalysts, for development of the titled technique, this project makes experiment using energy-variable synchrotron radiation to modify the parameter on motion of low-speed electrons in solids which is obtained by Monte Carlo calculation. For establishment of the high-accuracy quantitative analysis technique of surface compositions of materials such as catalyst of which performance is dominated by utmost surface, the project studies the attenuation length of electrons in solids by electron spectroscopy using soft X-rays from synchrotron radiation. In this fiscal year, the project established the equipment and technique for high-accuracy quantitative analysis of the thickness and electron attenuation length of silicon oxide films on silicon wafers by electron spectroscopy. (NEDO)

  6. Accuracy in Optical Information Processing

    Science.gov (United States)

    Timucin, Dogan Aslan

    Low computational accuracy is an important obstacle for optical processors which blocks their way to becoming a practical reality and a serious challenger for classical computing paradigms. This research presents a comprehensive solution approach to the problem of accuracy enhancement in discrete analog optical information processing systems. Statistical analysis of a generic three-plane optical processor is carried out first, taking into account the effects of diffraction, interchannel crosstalk, and background radiation. Noise sources included in the analysis are photon, excitation, and emission fluctuations in the source array, transmission and polarization fluctuations in the modulator, and photoelectron, gain, dark, shot, and thermal noise in the detector array. Means and mutual coherence and probability density functions are derived for both optical and electrical output signals. Next, statistical models for a number of popular optoelectronic devices are studied. Specific devices considered here are light-emitting and laser diode sources, an ideal noiseless modulator and a Gaussian random-amplitude-transmittance modulator, p-i-n and avalanche photodiode detectors followed by electronic postprocessing, and ideal free-space geometrical -optics propagation and single-lens imaging systems. Output signal statistics are determined for various interesting device combinations by inserting these models into the general formalism. Finally, based on these special-case output statistics, results on accuracy limitations and enhancement in optical processors are presented. Here, starting with the formulation of the accuracy enhancement problem as (1) an optimal detection problem and (2) as a parameter estimation problem, the potential accuracy improvements achievable via the classical multiple-hypothesis -testing and maximum likelihood and Bayesian parameter estimation methods are demonstrated. Merits of using proper normalizing transforms which can potentially stabilize

  7. Accuracy of Blood Loss Measurement during Cesarean Delivery

    OpenAIRE

    Doctorvaladan, Sahar V.; Jelks, Andrea T.; Hsieh, Eric W.; Thurer, Robert L.; Zakowski, Mark I.; Lagrew, David C.

    2017-01-01

    Objective?This study aims to compare the accuracy of visual, quantitative gravimetric, and colorimetric methods used to determine blood loss during cesarean delivery procedures employing a hemoglobin extraction assay as the reference standard. Study Design?In 50 patients having cesarean deliveries blood loss determined by assays of hemoglobin content on surgical sponges and in suction canisters was compared with obstetricians' visual estimates, a quantitative gravimetric method, and the blood...

  8. The diagnostic accuracy of integrated positron emission tomography ...

    African Journals Online (AJOL)

    The PET-CT findings, including maximum standardised uptake value (SUVmax), were compared with the gold standard (tissue or microbiological diagnosis). The sensitivity, specificity, positive and negative predictive values and diagnostic accuracy for malignant disease were calculated according to the SUVmax cut-off of ...

  9. Comparative accuracy of different techniques in planning radiation therapy of breast cancer

    International Nuclear Information System (INIS)

    Bignardi, M.; Frata, P.; Barbera, F.; Moretti, R.

    1991-01-01

    The authors report the results of the analysis of several factors contributing to the accuracy of treatment planning in the radiation therapy of breast cancer. Different techniques (non-radiological vs CT-based) were used for the acquisition of patients' data; different methods (manual vs computerized) were employed for dose calculation. As for geometric parameters describing the external outline and target volume, mean differences were lower than 4%. Switching from a completely manual method to a CT-based one with computerized calculation, a 3.56% mean decrease in the value of reference isodose (p<0.01) was observed, togheter with a 3.87% mean increase in the estimated inhomogeneity (p<0.001). The non-CT-based outline of target volume exhibited geographic missing of inner portions of the target in 8/16 patients. Our results demonstarte that treatment planning procedures can be a significant source of clinically relevant inaccuracy, which may affect treatment outcome and tumor control

  10. Dimensional accuracy of 3D printed vertebra

    Science.gov (United States)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  11. Volumetric accuracy of cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol Woo; Kim, Jin Ho; Seo, Yu Kyeong; Lee, Sae Rom; Kang, Ju Hee; Oh, Song Hee; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan [Dept. of Oral and Maxillofacial Radiology, Graduate School, Kyung Hee University, Seoul (Korea, Republic of)

    2017-09-15

    This study was performed to investigate the influence of object shape and distance from the center of the image on the volumetric accuracy of cone-beam computed tomography (CBCT) scans, according to different parameters of tube voltage and current. Four geometric objects (cylinder, cube, pyramid, and hexagon) with predefined dimensions were fabricated. The objects consisted of Teflon-perfluoroalkoxy embedded in a hydrocolloid matrix (Dupli-Coe-Loid TM; GC America Inc., Alsip, IL, USA), encased in an acrylic resin cylinder assembly. An Alphard Vega Dental CT system (Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan) was used to acquire CBCT images. OnDemand 3D (CyberMed Inc., Seoul, Korea) software was used for object segmentation and image analysis. The accuracy was expressed by the volume error (VE). The VE was calculated under 3 different exposure settings. The measured volumes of the objects were compared to the true volumes for statistical analysis. The mean VE ranged from −4.47% to 2.35%. There was no significant relationship between an object's shape and the VE. A significant correlation was found between the distance of the object to the center of the image and the VE. Tube voltage affected the volume measurements and the VE, but tube current did not. The evaluated CBCT device provided satisfactory volume measurements. To assess volume measurements, it might be sufficient to use serial scans with a high resolution, but a low dose. This information may provide useful guidance for assessing volume measurements.

  12. Volumetric accuracy of cone-beam computed tomography

    International Nuclear Information System (INIS)

    Park, Cheol Woo; Kim, Jin Ho; Seo, Yu Kyeong; Lee, Sae Rom; Kang, Ju Hee; Oh, Song Hee; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan

    2017-01-01

    This study was performed to investigate the influence of object shape and distance from the center of the image on the volumetric accuracy of cone-beam computed tomography (CBCT) scans, according to different parameters of tube voltage and current. Four geometric objects (cylinder, cube, pyramid, and hexagon) with predefined dimensions were fabricated. The objects consisted of Teflon-perfluoroalkoxy embedded in a hydrocolloid matrix (Dupli-Coe-Loid TM; GC America Inc., Alsip, IL, USA), encased in an acrylic resin cylinder assembly. An Alphard Vega Dental CT system (Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan) was used to acquire CBCT images. OnDemand 3D (CyberMed Inc., Seoul, Korea) software was used for object segmentation and image analysis. The accuracy was expressed by the volume error (VE). The VE was calculated under 3 different exposure settings. The measured volumes of the objects were compared to the true volumes for statistical analysis. The mean VE ranged from −4.47% to 2.35%. There was no significant relationship between an object's shape and the VE. A significant correlation was found between the distance of the object to the center of the image and the VE. Tube voltage affected the volume measurements and the VE, but tube current did not. The evaluated CBCT device provided satisfactory volume measurements. To assess volume measurements, it might be sufficient to use serial scans with a high resolution, but a low dose. This information may provide useful guidance for assessing volume measurements

  13. Study on Accuracy of Judgments by Chinese Fingerprint Examiners

    Directory of Open Access Journals (Sweden)

    Shiquan Liu

    2015-01-01

    Full Text Available The interpretation of fingerprint evidence depends on the judgments of fingerprint examiners. This study assessed the accuracy of different judgments made by fingerprint examiners following the Analysis, Comparison, and Evaluation (ACE process. Each examiner was given five marks for analysis, comparison, and evaluation. We compared the experts′ judgments against the ground truth and used an annotation platform to evaluate how Chinese fingerprint examiners document their comparisons during the identification process. The results showed that different examiners demonstrated different accuracy of judgments and different mechanisms to reach them.

  14. A High-Accuracy Linear Conservative Difference Scheme for Rosenau-RLW Equation

    Directory of Open Access Journals (Sweden)

    Jinsong Hu

    2013-01-01

    Full Text Available We study the initial-boundary value problem for Rosenau-RLW equation. We propose a three-level linear finite difference scheme, which has the theoretical accuracy of Oτ2+h4. The scheme simulates two conservative properties of original problem well. The existence, uniqueness of difference solution, and a priori estimates in infinite norm are obtained. Furthermore, we analyze the convergence and stability of the scheme by energy method. At last, numerical experiments demonstrate the theoretical results.

  15. Thermal Stability of Magnetic Compass Sensor for High Accuracy Positioning Applications

    OpenAIRE

    Van-Tang PHAM; Dinh-Chinh NGUYEN; Quang-Huy TRAN; Duc-Trinh CHU; Duc-Tan TRAN

    2015-01-01

    Using magnetic compass sensors in angle measurements have a wide area of application such as positioning, robot, landslide, etc. However, one of the most phenomenal that affects to the accuracy of the magnetic compass sensor is the temperature. This paper presents two thermal stability schemes for improving performance of a magnetic compass sensor. The first scheme uses the feedforward structure to adjust the angle output of the compass sensor adapt to the variation of the temperature. The se...

  16. Precision and accuracy of ST-EDXRF performance for As determination comparing with ICP-MS and evaluation of As deviation in the soil media.

    Science.gov (United States)

    Akbulut, Songul; Cevik, Ugur; Van, Aydın Ali; De Wael, Karolien; Van Grieken, Rene

    2014-02-01

    The present study was conducted to (i) determine the precision and accuracy of arsenic measurement in soil samples using ST-EDXRF by comparison with the results of ICP-MS analyses and (ii) identify the relationship of As concentration with soil characteristics. For the analysis of samples, inductively coupled plasma mass spectrometry (ICP-MS) and energy dispersive X-ray fluorescence spectrometry (EDXRF) were performed. According to the results found in the soil samples, the addition of HCl to HNO3, used for the digestion gave significant variations in the recovery of As. However, spectral interferences between peaks for As and Pb can affect detection limits and accuracy for XRF analysis. When comparing the XRF and ICP-MS results a correlation was observed with R(2)=0.8414. This means that using a ST-EDXRF spectrometer, it is possible to achieve accurate and precise analysis by the calibration of certified reference materials and choosing an appropriate secondary target. On the other hand, with regard to soil characteristics analyses, the study highlighted that As is mostly anthropogenically enriched in the studied area. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. High-resolution CT of nontuberculous mycobacterium infection in adult CF patients: diagnostic accuracy

    International Nuclear Information System (INIS)

    McEvoy, Sinead; Lavelle, Lisa; Kilcoyne, Aoife; McCarthy, Colin; Dodd, Jonathan D.; DeJong, Pim A.; Loeve, Martine; Tiddens, Harm A.W.M.; McKone, Edward; Gallagher, Charles G.

    2012-01-01

    To determine the diagnostic accuracy of high-resolution computed tomography (HRCT) for the detection of nontuberculous mycobacterium infection (NTM) in adult cystic fibrosis (CF) patients. Twenty-seven CF patients with sputum-culture-proven NTM (NTM+) underwent HRCT. An age, gender and spirometrically matched group of 27 CF patients without NTM (NTM-) was included as controls. Images were randomly and blindly analysed by two readers in consensus and scored using a modified Bhalla scoring system. Significant differences were seen between NTM (+) and NTM (-) patients in the severity of the bronchiectasis subscore [45 % (1.8/4) vs. 35 % (1.4/4), P = 0.029], collapse/consolidation subscore [33 % (1.3/3) vs. 15 % (0.6/3)], tree-in-bud/centrilobular nodules subscore [43 % (1.7/3) vs. 25 % (1.0/3), P = 0.002] and the total CT score [56 % (18.4/33) vs. 46 % (15.2/33), P = 0.002]. Binary logistic regression revealed BMI, peribronchial thickening, collapse/consolidation and tree-in-bud/centrilobular nodules to be predictors of NTM status (R 2 = 0.43). Receiver-operator curve analysis of the regression model showed an area under the curve of 0.89, P < 0.0001. In adults with CF, seven or more bronchopulmonary segments showing tree-in-bud/centrilobular nodules on HRCT is highly suggestive of NTM colonisation. (orig.)

  18. High-resolution CT of nontuberculous mycobacterium infection in adult CF patients: diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, Sinead; Lavelle, Lisa; Kilcoyne, Aoife; McCarthy, Colin; Dodd, Jonathan D. [St. Vincent' s University Hospital, Department of Radiology, Dublin (Ireland); DeJong, Pim A. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Loeve, Martine; Tiddens, Harm A.W.M. [Erasmus MC-Sophia Children' s Hospital, Department of Radiology, Department of Pediatric Pulmonology and Allergology, Rotterdam (Netherlands); McKone, Edward; Gallagher, Charles G. [St. Vincent' s University Hospital, Department of Respiratory Medicine and National Referral Centre for Adult Cystic Fibrosis, Dublin (Ireland)

    2012-12-15

    To determine the diagnostic accuracy of high-resolution computed tomography (HRCT) for the detection of nontuberculous mycobacterium infection (NTM) in adult cystic fibrosis (CF) patients. Twenty-seven CF patients with sputum-culture-proven NTM (NTM+) underwent HRCT. An age, gender and spirometrically matched group of 27 CF patients without NTM (NTM-) was included as controls. Images were randomly and blindly analysed by two readers in consensus and scored using a modified Bhalla scoring system. Significant differences were seen between NTM (+) and NTM (-) patients in the severity of the bronchiectasis subscore [45 % (1.8/4) vs. 35 % (1.4/4), P = 0.029], collapse/consolidation subscore [33 % (1.3/3) vs. 15 % (0.6/3)], tree-in-bud/centrilobular nodules subscore [43 % (1.7/3) vs. 25 % (1.0/3), P = 0.002] and the total CT score [56 % (18.4/33) vs. 46 % (15.2/33), P = 0.002]. Binary logistic regression revealed BMI, peribronchial thickening, collapse/consolidation and tree-in-bud/centrilobular nodules to be predictors of NTM status (R{sup 2} = 0.43). Receiver-operator curve analysis of the regression model showed an area under the curve of 0.89, P < 0.0001. In adults with CF, seven or more bronchopulmonary segments showing tree-in-bud/centrilobular nodules on HRCT is highly suggestive of NTM colonisation. (orig.)

  19. Evaluating strength at ultra-high temperatures-Methods and results

    International Nuclear Information System (INIS)

    Voelkl, Rainer; Fischer, Bernd; Beschliesser, Manuel; Glatzel, Uwe

    2008-01-01

    Proprietary equipment for mechanical testing at ultra-high temperatures by ohmic heating is outlined. Strain is measured with a video extensometer with an accuracy of up to Δε-bar∼±0.00025%. Stability and accuracy of the test system are evaluated on Pt- and refractory alloys. These specially designed and built test facilities are compared to commercially available high-vacuum test chambers with tungsten heater

  20. Automatic J–A Model Parameter Tuning Algorithm for High Accuracy Inrush Current Simulation

    Directory of Open Access Journals (Sweden)

    Xishan Wen

    2017-04-01

    Full Text Available Inrush current simulation plays an important role in many tasks of the power system, such as power transformer protection. However, the accuracy of the inrush current simulation can hardly be ensured. In this paper, a Jiles–Atherton (J–A theory based model is proposed to simulate the inrush current of power transformers. The characteristics of the inrush current curve are analyzed and results show that the entire inrush current curve can be well featured by the crest value of the first two cycles. With comprehensive consideration of both of the features of the inrush current curve and the J–A parameters, an automatic J–A parameter estimation algorithm is proposed. The proposed algorithm can obtain more reasonable J–A parameters, which improve the accuracy of simulation. Experimental results have verified the efficiency of the proposed algorithm.