WorldWideScience

Sample records for high accuracy compared

  1. Comparative analysis of the processing accuracy of high strength metal sheets by AWJ, laser and plasma

    Science.gov (United States)

    Radu, M. C.; Schnakovszky, C.; Herghelegiu, E.; Tampu, N. C.; Zichil, V.

    2016-08-01

    Experimental tests were carried out on two high-strength steel materials (Ramor 400 and Ramor 550). Quantification of the dimensional accuracy was achieved by measuring the deviations from some geometric parameters of part (two lengths and two radii). It was found that in case of Ramor 400 steel, at the jet inlet, the deviations from the part radii are quite small for all the three analysed processes. Instead for the linear dimensions, the deviations are small only in case of laser cutting. At the jet outlet, the deviations raised in small amount compared to those obtained at the jet inlet for both materials as well as for all the three processes. Related to Ramor 550 steel, at the jet inlet the deviations from the part radii are very small in case of AWJ and laser cutting but larger in case of plasma cutting. At the jet outlet, the deviations from the part radii are very small for all processes; in case of linear dimensions, there was obtained very small deviations only in the case of laser processing, the other two processes leading to very large deviations.

  2. High accuracy flexural hinge development

    Science.gov (United States)

    Santos, I.; Ortiz de Zárate, I.; Migliorero, G.

    2005-07-01

    This document provides a synthesis of the technical results obtained in the frame of the HAFHA (High Accuracy Flexural Hinge Assembly) development performed by SENER (in charge of design, development, manufacturing and testing at component and mechanism levels) with EADS Astrium as subcontractor (in charge of doing an inventory of candidate applications among existing and emerging projects, establishing the requirements and perform system level testing) under ESA contract. The purpose of this project has been to develop a competitive technology for a flexural pivot, usuable in highly accurate and dynamic pointing/scanning mechanisms. Compared with other solutions (e.g. magnetic or ball bearing technologies) flexural hinges are the appropriate technology for guiding with accuracy a mobile payload over a limited angular ranges around one rotation axes.

  3. Equations of State for Mixtures: Results from DFT Simulations of Xenon/Ethane Mixtures Compared to High Accuracy Validation Experiments on Z

    Science.gov (United States)

    Magyar, Rudolph

    2013-06-01

    We report a computational and validation study of equation of state (EOS) properties of liquid / dense plasma mixtures of xenon and ethane to explore and to illustrate the physics of the molecular scale mixing of light elements with heavy elements. Accurate EOS models are crucial to achieve high-fidelity hydrodynamics simulations of many high-energy-density phenomena such as inertial confinement fusion and strong shock waves. While the EOS is often tabulated for separate species, the equation of state for arbitrary mixtures is generally not available, requiring properties of the mixture to be approximated by combining physical properties of the pure systems. The main goal of this study is to access how accurate this approximation is under shock conditions. Density functional theory molecular dynamics (DFT-MD) at elevated-temperature and pressure is used to assess the thermodynamics of the xenon-ethane mixture. The simulations are unbiased as to elemental species and therefore provide comparable accuracy when describing total energies, pressures, and other physical properties of mixtures as they do for pure systems. In addition, we have performed shock compression experiments using the Sandia Z-accelerator on pure xenon, ethane, and various mixture ratios thereof. The Hugoniot results are compared to the DFT-MD results and the predictions of different rules for combing EOS tables. The DFT-based simulation results compare well with the experimental points, and it is found that a mixing rule based on pressure equilibration performs reliably well for the mixtures considered. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Comparative diagnostic accuracy in virtual dermatopathology

    DEFF Research Database (Denmark)

    Mooney, E.; Hood, A.F.; Lampros, J.

    2011-01-01

    their impressions about the virtual images. Descriptive data analysis and comparison of groups using Fisher's exact test were performed. Objective: To compare the diagnostic ability of dermatopathologists and pathologists in two image formats: the traditional (glass) microscopic slides, and whole mount digitized...

  5. High-sensitivity epidermal growth factor receptor immunostaining for colorectal carcinomas, compared with EGFR PharmDx™: a study of diagnostic accuracy.

    Science.gov (United States)

    Shiogama, Kazuya; Wongsiri, Trai; Mizutani, Yasuyoshi; Inada, Ken-ichi; Tsutsumi, Yutaka

    2013-01-01

    Immunostaining for epidermal growth factor receptor (EGFR) is important in the contemporary therapeutic strategy of colorectal carcinomas. We tried to increase detection sensitivity, and compared the high-sensitivity EGFR immunostaining with a worldwide standard, EGFR PharmDx™ (Dako). In order to pursue high-sensitivity EGFR detection, deparaffinized sections were pressure-cooked in 1 mM EDTA solution, pH 8.0. Two mouse monoclonal antibodies against EGFR, clone EGFR2.5 and DAK-H1-WT, and six kinds of secondary detection reagents, including biotin-free catalyzed signal amplification (CSA II), Simple Stain MAX-PO, PolyVue, Novolink, EnVision™ FLEX+, and MACH3, were evaluated to compare the results with those with EGFR PharmDx™, employing a combination of 2-18-C9 as the primary monoclonal antibody and EnVision™ as the secondary reagent. Furthermore, we replaced EnVision™ in the EGFR PharmDx™ kit with CSAII. EGFR detection sensitivity was higher with DAK-H1-WT than with EGFR2.5, and among the secondary reagents, the strongest signals were observed with Novolink. All 30 colorectal carcinomas showed distinct expression of EGFR with our high-sensitivity EGFR immunostaining, while only 16 (53%) gave focal positivity with EGFR PharmDx™. When EnVision™ in EGFR PharmDx™ was replaced by CSA II, strong signals were seen in all cases, and the expression pattern was comparable with our sequence. Non-neoplastic crypt epithelial cells often showed weakly signal with the standard EGFR PharmDx™, but consistently revealed strong membrane staining in the two high-sensitivity sequences. EGFR PharmDx™ frequently gave false negativity. Importantly, EGFR was consistently and sensitively detected when the secondary polymer in the EGFR PharmDx™ kit was simply replaced by CSA II.

  6. High Accuracy Imaging Polarimetry with NICMOS

    CERN Document Server

    Batcheldor, D; Hines, D C; Schmidt, G D; Axon, D J; Robinson, A; Sparks, W; Tadhunter, C

    2008-01-01

    The ability of NICMOS to perform high accuracy polarimetry is currently hampered by an uncalibrated residual instrumental polarization at a level of 1.2-1.5%. To better quantify and characterize this residual we obtained observations of three polarimetric standard stars at three separate space-craft roll angles. Combined with archival data, these observations were used to characterize the residual instrumental polarization to enable NICMOS to reach its full polarimetric potential. Using these data, we calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetric standards. The uncertainties associated with the parallel transmission coefficients, a result of the photometric repeatability of the observations, dominate the accuracy of p and theta. However, the new coefficients now enable imaging polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15 degrees.

  7. High accuracy FIONA-AFM hybrid imaging.

    Science.gov (United States)

    Fronczek, D N; Quammen, C; Wang, H; Kisker, C; Superfine, R; Taylor, R; Erie, D A; Tessmer, I

    2011-04-01

    Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish different proteins from one another. Here, we combine high resolution fluorescence microscopy and AFM (FIONA-AFM) to allow the identification of different proteins in such complexes. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, we are able to align fluorescence and AFM information to ≥8nm accuracy. This accuracy is sufficient to identify individual fluorescently labeled proteins in most multi-protein complexes. We investigate the limitations of localization precision and accuracy in fluorescence and AFM images separately and their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two orthogonal techniques (FIONA and AFM) opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10nm) information about the conformational properties of multi-protein complexes and the fluorescence can indicate spatial relationships of the proteins in the complexes.

  8. High Accuracy Transistor Compact Model Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hembree, Charles E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mar, Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  9. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...

  10. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    Science.gov (United States)

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  11. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Qingzhong Cai

    2016-06-01

    Full Text Available An inertial navigation system (INS has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs using common turntables, has a great application potential in future atomic gyro INSs.

  12. Computing High Accuracy Power Spectra with Pico

    CERN Document Server

    Fendt, William A

    2007-01-01

    This paper presents the second release of Pico (Parameters for the Impatient COsmologist). Pico is a general purpose machine learning code which we have applied to computing the CMB power spectra and the WMAP likelihood. For this release, we have made improvements to the algorithm as well as the data sets used to train Pico, leading to a significant improvement in accuracy. For the 9 parameter nonflat case presented here Pico can on average compute the TT, TE and EE spectra to better than 1% of cosmic standard deviation for nearly all $\\ell$ values over a large region of parameter space. Performing a cosmological parameter analysis of current CMB and large scale structure data, we show that these power spectra give very accurate 1 and 2 dimensional parameter posteriors. We have extended Pico to allow computation of the tensor power spectrum and the matter transfer function. Pico runs about 1500 times faster than CAMB at the default accuracy and about 250,000 times faster at high accuracy. Training Pico can be...

  13. Fast and High Accuracy Wire Scanner

    CERN Document Server

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  14. Electromyography (EMG) accuracy compared to muscle biopsy in childhood.

    Science.gov (United States)

    Rabie, Malcolm; Jossiphov, Joseph; Nevo, Yoram

    2007-07-01

    Reports show wide variability of electromyography (EMG) in detecting pediatric neuromuscular disorders. The study's aim was to determine EMG/nerve conduction study accuracy compared to muscle biopsy and final clinical diagnosis, and sensitivity for myopathic motor unit potential detection in childhood. Of 550 EMG/nerve conduction studies performed by the same examiner from a pediatric neuromuscular service, 27 children (ages 6 days to 16 years [10 boys; M:F, 1:1.7]) with muscle biopsies and final clinical diagnoses were compared retrospectively. Final clinical diagnoses were congenital myopathies (5 of 27,18%), nonspecific myopathies (biopsy myopathic, final diagnosis uncertain; 6 of 27, 22%), congenital myasthenic syndrome (3 of 27, 11%), juvenile myasthenia gravis (1 of 27, 4%), arthrogryposis multiplex congenita (2 of 27, 7%), hereditary motor and sensory neuropathy (1 of 27, 4%), bilateral peroneal neuropathies (1 of 27, 4%), and normal (8 of 27, 30%). There were no muscular dystrophy or spinal muscular atrophy patients. EMG/nerve conduction studies had a 74% agreement with final clinical diagnoses and 100% agreement in neurogenic, neuromuscular junction, and normal categories. Muscle biopsies concurred with final diagnoses in 87%, and 100% in myopathic and normal categories. In congenital myasthenic syndrome, muscle biopsies showed mild variation in fiber size in 2 of 3 children and were normal in 1 of 3. EMG sensitivity for detecting myopathic motor unit potentials in myopathies was 4 of 11 (36%), greater over 2 years of age (3 of 4, 75%), compared to infants less than 2 years (1 of 7, 14%), not statistically significant (P = .0879). EMGs false-negative for myopathy in infants EMG detected myopathic motor unit potentials in 40%, with false-negative results neurogenic (20%) or normal (40%). Because our study has no additional tests for active myopathies, for example Duchenne muscular dystrophy genetic testing, our sensitivity for myopathies is lower than if we

  15. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...... shutter is controlled in steps of 100 ps. Camera delay is controlled in steps of 100 ps. Each laser pulse triggers the camera delay and shutter. A 3-D image is constructed from a sequence of 50-100 2-D reflectivity images, where each frame integrates about 700 laser pulses on the CCD. In 50 Hz video mode...

  16. Methodology for high accuracy contact angle measurement.

    Science.gov (United States)

    Kalantarian, A; David, R; Neumann, A W

    2009-12-15

    A new version of axisymmetric drop shape analysis (ADSA) called ADSA-NA (ADSA-no apex) was developed for measuring interfacial properties for drop configurations without an apex. ADSA-NA facilitates contact angle measurements on drops with a capillary protruding into the drop. Thus a much simpler experimental setup, not involving formation of a complete drop from below through a hole in the test surface, may be used. The contact angles of long-chained alkanes on a commercial fluoropolymer, Teflon AF 1600, were measured using the new method. A new numerical scheme was incorporated into the image processing to improve the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. The images acquired in the experiments were also analyzed by a different drop shape technique called theoretical image fitting analysis-axisymmetric interfaces (TIFA-AI). The results were compared with literature values obtained by means of the standard ADSA for sessile drops with the apex. Comparison of the results from ADSA-NA with those from TIFA-AI and ADSA reveals that, with different numerical strategies and experimental setups, contact angles can be measured with an accuracy of less than 0.2 degrees. Contact angles and surface tensions measured from drops with no apex, i.e., by means of ADSA-NA and TIFA-AI, were considerably less scattered than those from complete drops with apex. ADSA-NA was also used to explore sources of improvement in contact angle resolution. It was found that using an accurate value of surface tension as an input enhances the accuracy of contact angle measurements.

  17. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    Science.gov (United States)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  18. Comparative accuracy of radiostereometric and optical tracking systems.

    Science.gov (United States)

    Kedgley, Angela E; Birmingham, Trevor; Jenkyn, Thomas R

    2009-06-19

    This study aims to quantify and compare the accuracy of traditional radiostereometric analysis (RSA), fluoroscopic RSA (fRSA), and optical tracking systems. Three phantoms were constructed, each having three stainless steel spheres and three reflective markers. One phantom was mounted to the base of a precision cross-slide table, one to the base of a precision rotation table, and the third was mounted to each moveable tabletop. Two dial-gauges, rigidly mounted to the cross-slide table and rotation table, quantified translations and rotations. Two fluoroscopy units placed orthogonally tracked the steel spheres while a four-camera optical motion capture system tracked the reflective markers in three-dimensional space. RSA was performed with both digital radiography and fluoroscopy. Three axes of translation were tested: parallel to one fluoroscopy image, parallel to the other fluoroscopy image, and at approximately 45 degrees to each image. One axis of rotation was tested. Intraclass correlation coefficients indicated excellent agreement between the actual (dial-gauge) and measured translations for all modalities (ICCs>0.99) and excellent agreement between actual and measured rotations for RSA and fRSA (ICCs>0.99). Standard errors of measurement ranged from 0.032 mm and 0.121 degrees for RSA, to 0.040 mm and 0.229 degrees for fRSA, and to 0.109 mm and 0.613 degrees for optical tracking. Differences between actual and measured translations along the 45 degrees axis were significantly smaller than the two parallel axes. These findings suggest that under ideal conditions, accuracy of fRSA is comparable to traditional RSA, and superior to optical tracking. Accuracy is highest when measured at 45 degrees to the fluoroscopy units.

  19. A SINGLE STEP SCHEME WITH HIGH ACCURACY FOR PARABOLIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    陈传淼; 胡志刚

    2001-01-01

    A single step scheme with high accuracy for solving parabolic problem is proposed. It is shown that this scheme possesses good stability and fourth order accuracy with respect to both time and space variables, which are superconvergent.

  20. Accuracy of stereolithographically printed digital models compared to plaster models.

    Science.gov (United States)

    Camardella, Leonardo Tavares; Vilella, Oswaldo V; van Hezel, Marleen M; Breuning, Karel H

    2017-03-30

    This study compared the accuracy of plaster models from alginate impressions and printed models from intraoral scanning. A total of 28 volunteers were selected and alginate impressions and intraoral scans were used to make plaster models and digital models of their dentition, respectively. The digital models were printed using a stereolithographic (SLA) 3D printer with a horseshoe-shaped design. Two calibrated examiners measured distances on the plaster and printed models with a digital caliper. The paired t test was used to determine intraobserver error and compare the measurements. The Pearson correlation coefficient was used to evaluate the reliability of measurements for each model type. The measurements on plaster models and printed models show some significant differences in tooth dimensions and interarch parameters, but these differences were not clinically relevant, except for the transversal measurements. The upper and lower intermolar distances on the printed models were statistically significant and clinically relevant smaller. Printed digital models with the SLA 3D printer studied, with a horseshoe-shaped base made from intraoral scans cannot replace conventional plaster models from alginate impressions in orthodontics for diagnosis and treatment planning because of their clinically relevant transversal contraction.

  1. High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.

    Science.gov (United States)

    Song, Shiyu; Chandraker, Manmohan; Guest, Clark C

    2016-04-01

    We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.

  2. High accuracy GNSS based navigation in GEO

    Science.gov (United States)

    Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André

    2017-07-01

    Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.

  3. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase II proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  4. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  5. High accuracy and visibility-consistent dense multiview stereo.

    Science.gov (United States)

    Vu, Hoang-Hiep; Labatut, Patrick; Pons, Jean-Philippe; Keriven, Renaud

    2012-05-01

    Since the initial comparison of Seitz et al., the accuracy of dense multiview stereovision methods has been increasing steadily. A number of limitations, however, make most of these methods not suitable to outdoor scenes taken under uncontrolled imaging conditions. The present work consists of a complete dense multiview stereo pipeline which circumvents these limitations, being able to handle large-scale scenes without sacrificing accuracy. Highly detailed reconstructions are produced within very reasonable time thanks to two key stages in our pipeline: a minimum s-t cut optimization over an adaptive domain that robustly and efficiently filters a quasidense point cloud from outliers and reconstructs an initial surface by integrating visibility constraints, followed by a mesh-based variational refinement that captures small details, smartly handling photo-consistency, regularization, and adaptive resolution. The pipeline has been tested over a wide range of scenes: from classic compact objects taken in a laboratory setting, to outdoor architectural scenes, landscapes, and cultural heritage sites. The accuracy of its reconstructions has also been measured on the dense multiview benchmark proposed by Strecha et al., showing the results to compare more than favorably with the current state-of-the-art methods.

  6. High speed high dynamic range high accuracy measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Deibele, Craig E.; Curry, Douglas E.; Dickson, Richard W.; Xie, Zaipeng

    2016-11-29

    A measuring system includes an input that emulates a bandpass filter with no signal reflections. A directional coupler connected to the input passes the filtered input to electrically isolated measuring circuits. Each of the measuring circuits includes an amplifier that amplifies the signal through logarithmic functions. The output of the measuring system is an accurate high dynamic range measurement.

  7. Secure Fingerprint Identification of High Accuracy

    Science.gov (United States)

    2014-01-01

    collections of biometric data in use today include, for example, fingerprint , face, and iris images collected by the US Department of Homeland Security...like to know whether the fingerprints they possess correspond to the same individual. In the above formulation, this is the problem of biometric ...solution using a homomorphic encryption scheme. FingerCodes use texture information from a fingerprint to compare two biometrics . The algo- rithm is

  8. High accuracy in silico sulfotransferase models.

    Science.gov (United States)

    Cook, Ian; Wang, Ting; Falany, Charles N; Leyh, Thomas S

    2013-11-29

    Predicting enzymatic behavior in silico is an integral part of our efforts to understand biology. Hundreds of millions of compounds lie in targeted in silico libraries waiting for their metabolic potential to be discovered. In silico "enzymes" capable of accurately determining whether compounds can inhibit or react is often the missing piece in this endeavor. This problem has now been solved for the cytosolic sulfotransferases (SULTs). SULTs regulate the bioactivities of thousands of compounds--endogenous metabolites, drugs and other xenobiotics--by transferring the sulfuryl moiety (SO3) from 3'-phosphoadenosine 5'-phosphosulfate to the hydroxyls and primary amines of these acceptors. SULT1A1 and 2A1 catalyze the majority of sulfation that occurs during human Phase II metabolism. Here, recent insights into the structure and dynamics of SULT binding and reactivity are incorporated into in silico models of 1A1 and 2A1 that are used to identify substrates and inhibitors in a structurally diverse set of 1,455 high value compounds: the FDA-approved small molecule drugs. The SULT1A1 models predict 76 substrates. Of these, 53 were known substrates. Of the remaining 23, 21 were tested, and all were sulfated. The SULT2A1 models predict 22 substrates, 14 of which are known substrates. Of the remaining 8, 4 were tested, and all are substrates. The models proved to be 100% accurate in identifying substrates and made no false predictions at Kd thresholds of 100 μM. In total, 23 "new" drug substrates were identified, and new linkages to drug inhibitors are predicted. It now appears to be possible to accurately predict Phase II sulfonation in silico.

  9. High accuracy & long timescale light curves

    Directory of Open Access Journals (Sweden)

    Hodgkin S.

    2013-04-01

    Full Text Available We present a theoretical analysis of the optical light curves (LCs for short-period high-mass transiting extrasolar planet systems. Our method considers the primary transit, the secondary eclipse, and the overall phase shape of the LC between the occultations. Phase variations arise from (i reflected and thermally emitted light by the planet, (ii the ellipsoidal shape of the star due to the gravitational pull of the planet, and (iii the Doppler shift of the stellar light as the star orbits the center of mass of the system. Our full model of the out-of-eclipse variations contains information about the planetary mass, orbital eccentricity, the orientation of periastron and the planet's albedo. For a range of hypothetical systems we demonstrate that the ellipsoidal variations (ii. can be large enough to be distinguished from the remaining components and that this effect can be used to constrain the planet's mass. As an example we presend KOI-13b (candidate exoplanet system included in the September 2011 Kepler data release. The Kepler light curve shows both primary and secondary eclipses, as well as significant out-of-eclipse light curve variations. We model the relative contributions from (i thermal emission from the companion, (ii planetary reflected light, (iii doppler beaming, and (iv ellipsoidal variations in the host-star arising from the tidal distortion of the host star by its companion. Our analysis, based on the light curve alone, enables us to constrain the mass of the KOI-13.01 companion to be MC = 8.3 ± 1.25 MJ and thus demonstrates that the transiting companion is a planet. The teqnique is useful for current and future space missions such as Kepler and PLATO.

  10. Researches on High Accuracy Prediction Methods of Earth Orientation Parameters

    Science.gov (United States)

    Xu, X. Q.

    2015-09-01

    The Earth rotation reflects the coupling process among the solid Earth, atmosphere, oceans, mantle, and core of the Earth on multiple spatial and temporal scales. The Earth rotation can be described by the Earth's orientation parameters, which are abbreviated as EOP (mainly including two polar motion components PM_X and PM_Y, and variation in the length of day ΔLOD). The EOP is crucial in the transformation between the terrestrial and celestial reference systems, and has important applications in many areas such as the deep space exploration, satellite precise orbit determination, and astrogeodynamics. However, the EOP products obtained by the space geodetic technologies generally delay by several days to two weeks. The growing demands for modern space navigation make high-accuracy EOP prediction be a worthy topic. This thesis is composed of the following three aspects, for the purpose of improving the EOP forecast accuracy. (1) We analyze the relation between the length of the basic data series and the EOP forecast accuracy, and compare the EOP prediction accuracy for the linear autoregressive (AR) model and the nonlinear artificial neural network (ANN) method by performing the least squares (LS) extrapolations. The results show that the high precision forecast of EOP can be realized by appropriate selection of the basic data series length according to the required time span of EOP prediction: for short-term prediction, the basic data series should be shorter, while for the long-term prediction, the series should be longer. The analysis also showed that the LS+AR model is more suitable for the short-term forecasts, while the LS+ANN model shows the advantages in the medium- and long-term forecasts. (2) We develop for the first time a new method which combines the autoregressive model and Kalman filter (AR+Kalman) in short-term EOP prediction. The equations of observation and state are established using the EOP series and the autoregressive coefficients

  11. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  12. Antibiotic Resistome: Improving Detection and Quantification Accuracy for Comparative Metagenomics.

    Science.gov (United States)

    Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania

    2016-04-01

    The unprecedented rise of life-threatening antibiotic resistance (AR), combined with the unparalleled advances in DNA sequencing of genomes and metagenomes, has pushed the need for in silico detection of the resistance potential of clinical and environmental metagenomic samples through the quantification of AR genes (i.e., genes conferring antibiotic resistance). Therefore, determining an optimal methodology to quantitatively and accurately assess AR genes in a given environment is pivotal. Here, we optimized and improved existing AR detection methodologies from metagenomic datasets to properly consider AR-generating mutations in antibiotic target genes. Through comparative metagenomic analysis of previously published AR gene abundance in three publicly available metagenomes, we illustrate how mutation-generated resistance genes are either falsely assigned or neglected, which alters the detection and quantitation of the antibiotic resistome. In addition, we inspected factors influencing the outcome of AR gene quantification using metagenome simulation experiments, and identified that genome size, AR gene length, total number of metagenomics reads and selected sequencing platforms had pronounced effects on the level of detected AR. In conclusion, our proposed improvements in the current methodologies for accurate AR detection and resistome assessment show reliable results when tested on real and simulated metagenomic datasets.

  13. High Accuracy Wavelength Calibration For A Scanning Visible Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Filippo Scotti and Ronald Bell

    2010-07-29

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤ 0.2Â. An automated calibration for a scanning spectrometer has been developed to achieve a high wavelength accuracy overr the visible spectrum, stable over time and environmental conditions, without the need to recalibrate after each grating movement. The method fits all relevant spectrometer paraameters using multiple calibration spectra. With a steping-motor controlled sine-drive, accuracies of ~0.025 Â have been demonstrated. With the addition of high resolution (0.075 aresec) optical encoder on the grading stage, greater precision (~0.005 Â) is possible, allowing absolute velocity measurements with ~0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  14. A high-accuracy DCO with hybrid architecture

    Science.gov (United States)

    Sun, Yapeng; Zhao, Huidong; Qiao, Shushan; Hei, Yong; Zhang, Fuhai

    2017-07-01

    In this paper, a novel hybrid digital-controlled oscillator (DCO) is proposed, which is used to improve the accuracy of the all-digital clock generator without reference source. The DCO with hybrid architecture consists of two parts: DCO_high and DCO_low. The DCO_high decides the coarse output frequency of DCO, and adopts the cascade structure to decrease the area. The DCO_low adopts the chain structure with three-state buffer, and decides the fine output frequency of DCO. Compared with traditional cascade DCO, the proposed hybrid DCO features higher precision with less inherent delay. Therefore the clock generator can tolerate process, voltage and temperature (PVT) variation and meet the needs of different conditions. The DCO is designed in SMIC 180 nm CMOS process with 0.021 mm2 chip area. The output frequency is adjusted from 15-120 MHz. The frequency error is less than 0.83% at 25 MHz with 1.6-1.8 V supply voltage and 0-80 °C temperature variations in TT, FF, SS corners. Project supported by the National Natural Science Foundation of China (Nos. 61306025, 61474135).

  15. Influence of spatial temperature distribution on high accuracy interferometric metrology

    Science.gov (United States)

    Gu, Yongqiang; Miao, Erlong; Yan, Feng; Zhang, Jian; Yang, Huaijiang

    2010-10-01

    We calculate the influence of temperature change on the refractive index of air, establish a model of air temperature distribution and analyze the effect of different temperature distribution on the high accuracy interferometric metrology. First, a revised Edlen formula is employed to acquire the relation between temperature and refractive index of air, followed by introducing the fixed temperature gradient distribution among the spatial grid within the optical cavity between the reference flat and the test flat of the Fizeau interferometer, accompanied by a temperature change random function within each grid. Finally, all the rays through the air layer with different incident angles are traced by Matlab program in order to obtain the final output position, angle and OPD for each ray. The influence of different temperature distribution and the length of the optical cavity in on the testing accuracy can be analyzed through the RMS value that results from repeatable rays tracing. As a result, the horizontal distribution (vertical to optical axis) has a large effect on the testing accuracy. Thus, to realize the high accuracy figure metrology, the horizontal distribution of temperature must be rigorously controlled as well as to shorten the length of the optical cavity to a large extent. The results from our simulation are of great significant for the accuracy analysis of interferometric testing and the research of manufacturing a interferometer.

  16. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1998-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with realtime information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate flight

  17. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1999-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with real-time information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate lligh

  18. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1999-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with real-time information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate lligh

  19. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1998-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with realtime information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate flight

  20. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1999-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with real-time information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate

  1. Comparative accuracy of CT perfusion in diagnosing acute ischemic stroke: A systematic review of 27 trials.

    Science.gov (United States)

    Shen, Jiantong; Li, Xianglian; Li, Youping; Wu, Bing

    2017-01-01

    To systematically evaluate and compare the diagnostic accuracy of CT perfusion (CTP), non-enhanced computed tomography (NCCT) and computed tomography angiography (CTA) in detecting acute ischemic stroke. We searched seven databases and screened the reference lists of the included studies. The risk of bias in the study quality was assessed using QUADASII. We produced paired forest plots in RevMan to show the variation of the sensitivity and specificity estimates together with their 95% CI. We used a hierarchical summary ROC model to summarize the sensitivity and specificity of CTP in detecting ischemic stroke. We identified 27 studies with a total of 2168 patients. The pooled sensitivity of CTP for acute ischemic stroke was 82% (95% CI 75-88%), and the specificity was 96% (95% CI 89-99%). CTP was more sensitive than NCCT and had a similar accuracy with CTA. There were no statistically significant differences in the sensitivity and specificity between patients who underwent CTP within 6 hours of symptom onset and beyond 6 hours after symptom onset. No adverse events were reported in the included studies. CTP is more accurate than NCCT and has similar accuracy to CTA in detecting acute ischemic stroke. However, the evidence is not strong. There is potential benefit of using CTP to select stroke patients for treatment, but more high-quality evidence is needed to confirm this result.

  2. Comparing position and orientation accuracy of different electromagnetic sensors for tracking during interventions

    NARCIS (Netherlands)

    Nijkamp, Jasper; Schermers, Bram; Schmitz, Sander; Jong, de Sofieke; Kuhlmann, Koert; Heijden, van der Ferdi; Sonke, Jan-Jakob; Ruers, Theo

    2016-01-01

    Purpose To compare the position and orientation accuracy between using one 6-degree of freedom (DOF) electromagnetic (EM) sensor, or the position information of three 5DOF sensors within the scope of tumor tracking. Methods The position accuracy of Northern Digital Inc Aurora 5DOF and 6DOF sensors

  3. Compensation of motion error in a high accuracy AFM

    Science.gov (United States)

    Cui, Yuguo; Arai, Yoshikazu; He, Gaofa; Asai, Takemi; Gao, Wei

    2008-10-01

    An atomic force microscope (AFM) system is used for large-area measurement with a spiral scanning strategy, which is composed of an air slide, an air spindle and a probe unit. The motion error which is brought from the air slide and the air spindle will increase with the increasing of the measurement area. Then the measurement accuracy will decrease. In order to achieve a high speed and high accuracy measurement, the probe scans along X-direction with constant height mode driven by the air slide, and at the same time, based on the change way of the motion error, it moves along Zdirection conducted by piezoactuator. According to the above method of error compensation, the profile measurement experiment of a micro-structured surface has been carried out. The experimental result shows that this method is effective for eliminating motion error, and it can achieve high speed and precision measurement of micro-structured surface.

  4. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    Science.gov (United States)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  5. Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis

    Directory of Open Access Journals (Sweden)

    Michael Korenberg

    2012-08-01

    Full Text Available In both military and civilian applications, the inertial navigation system (INS and the global positioning system (GPS are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.

  6. Why is a high accuracy needed in dosimetry. [Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lanzl, L.H.

    1976-01-01

    Dose and exposure intercomparisons on a national or international basis have become an important component of quality assurance in the practice of good radiotherapy. A high degree of accuracy of ..gamma.. and x radiation dosimetry is essential in our international society, where medical information is so readily exchanged and used. The value of accurate dosimetry lies mainly in the avoidance of complications in normal tissue and an optimal degree of tumor control.

  7. Navigation message designing with high accuracy for NAV

    Institute of Scientific and Technical Information of China (English)

    Wang Luxiao; Huang Zhigang; Zhao Yun

    2014-01-01

    Navigation message designing with high accuracy guarantee is the key to efficient navi-gation message distribution in the global navigation satellite system (GNSS). Developing high accu-racy-aware navigation message designing algorithms is an important topic. This paper investigates the high-accuracy navigation message designing problem with the message structure unchanged. The contributions made in this paper include a heuristic that employs the concept of the estimated range deviation (ERD) to improve the existing well-known navigation message on L1 frequency (NAV) of global positioning system (GPS) for good accuracy service; a numerical analysis approximation method (NAAM) to evaluate the range error due to truncation (RET) of different navigation messages; and a basic positioning parameters designing algorithm in the limited space allocation. Based on the predicted ultra-rapid data from the ultra-rapid data from the international GPS service for geodynamic (IGU), ERDs are generated in real time for error correction. Simulations show that the algorithms developed in this paper are general and flexible, and thus are applicable to NAV improvement and other navigation message designs.

  8. Accuracy of the WASCA aberrometer refraction compared to manifest refraction in myopia.

    Science.gov (United States)

    Reinstein, Dan Z; Archer, Timothy J; Couch, Darren

    2006-03-01

    To evaluate the accuracy of myopic refraction by a single measurement using the Wavefront Supported Custom Ablation (WASCA) aberrometer (Carl Zeiss Meditec AG, Jena, Germany). We retrospectively compared the refractive errors obtained by manifest refraction and wavefront refraction (WASCA) in 50 eyes of 25 consecutive myopic patients undergoing laser refractive surgery. The sphere ranged from -1.00 to -8.25 diopters (D) and cylinder from 0 to -3.75 D. WASCA measurements under cycloplegia were made and WASCA refractions calculated for a 6-mm analysis zone using the Seidel method within the WASCA. We used the manifest refraction as our best estimate of the true refractive error, therefore accuracy was defined as the difference between manifest refraction and that of the WASCA. Correlation coefficients and mean vector errors between manifest and WASCA refraction were calculated. High correlation was shown between manifest and WASCA refractions, with correlation coefficients (R2) of 0.97, 0.85, and 0.79 for M, J180, and J45, respectively. Mean power vector error (standard deviation) was 0.22 D (0.39), +0.03 D (0.21), and +0.03 D (0.13) for M, J180, and J45, respectively. Total dioptric power vector error was 0.43 D with 74% eyes within 0.50 D. When measuring normal myopic eyes, the concordance between manifest and WASCA refractions was found on average to be high; however, outlier measurements occurred.

  9. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  10. High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures

    Science.gov (United States)

    Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max

    2003-01-01

    A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  11. Novel method for high accuracy figure measurement of optical flat

    Science.gov (United States)

    E, Kewei; Li, Dahai; Yang, Lijie; Guo, Guangrao; Li, Mengyang; Wang, Xuemin; Zhang, Tao; Xiong, Zhao

    2017-01-01

    Phase Measuring Deflectometry (PMD) is a non-contact, high dynamic-range and full-field metrology which becomes a serious competitor to interferometry. However, the accuracy of deflectometry metrology is strongly influenced by the level of the calibrations, including test geometry, imaging pin-hole camera and digital display. In this paper, we propose a novel method that can measure optical flat surface figure to a high accuracy. We first calibrate the camera using a checker pattern shown on a LCD display at six different orientations, and the last orientation is aligned at the same position as the test optical flat. By using this method, lens distortions and the mapping relationship between the CCD pixels and the subaperture coordinates on the test optical flat can be determined at the same time. To further reduce the influence of the calibration errors on measurements, a reference optical flat with a high quality surface is measured, and then the system errors in our PMD setup can be eliminated by subtracting the figure of the reference flat from the figure of the test flat. Although any expensive coordinates measuring machine, such as laser tracker and coordinates measuring machine are not applied in our measurement, our experimental results of optical flat figure from low to high order aberrations still show a good agreement with that from the Fizeau interferometer.

  12. High Accuracy Near-infrared Imaging Polarimetry with NICMOS

    CERN Document Server

    Batcheldor, D; Hines, D C; Schmidt, G D; Axon, D J; Robinson, A; Sparks, W; Tadhunter, C

    2008-01-01

    The findings of a nine orbit calibration plan carried out during HST Cycle 15, to fully determine the NICMOS camera 2 (2.0 micron) polarization calibration to high accuracy, are reported. Recently Ueta et al. and Batcheldor et al. have suggested that NICMOS possesses a residual instrumental polarization at a level of 1.2-1.5%. This would completely inhibit the data reduction in a number of GO programs, and hamper the ability of the instrument to perform high accuracy polarimetry. We obtained polarimetric calibration observations of three polarimetric standards at three spacecraft roll angles separated by ~60deg. Combined with archival data, these observations were used to characterize the residual instrumental polarization in order for NICMOS to reach its full potential of accurate imaging polarimetry at p~1%. Using these data, we place an 0.6% upper limit on the instrumental polarization and calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetri...

  13. High-accuracy mass spectrometry for fundamental studies.

    Science.gov (United States)

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  14. Inertial measures of motion for clinical biomechanics: comparative assessment of accuracy under controlled conditions - changes in accuracy over time.

    Directory of Open Access Journals (Sweden)

    Karina Lebel

    Full Text Available Interest in 3D inertial motion tracking devices (AHRS has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven't been extensively documented. The objectives of this study are: 1 to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2 to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time.This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT and 12 minutes multiple dynamic phases motion trials (12MDP. Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials.Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase.The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame.Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their full potential in capturing clinical outcomes.

  15. Researching the technology of high-accuracy camshaft measurement

    Science.gov (United States)

    Chen, Wei; Chen, Yong-Le; Wang, Hong; Liao, Hai-Yang

    1996-10-01

    This paper states the cam's data processing algorithm in detail in high accurate camshaft measurement system. It contains: 1) using minimum error of curve symmetry to seek the center position of the key slot; 2) Calculating the minimum error by cam's curve in theory to search top area; 3) According to cam's tolerance E(i) function and minimum angle error at cam top, seeking the best position of cam top and getting the best angle value and error curve. The algorithm is suitable for measuring all kinds of symmetry or asymmetry cam, and plain push-rod or spherical push-rod cam, for example, bus camshaft, car camshaft, motor camshaft, etc. Using the algorithm, high accuracy measurement can be achieved.

  16. Read-only high accuracy volume holographic optical correlator

    Science.gov (United States)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  17. Spatial augmented reality based high accuracy human face projection

    Science.gov (United States)

    Li, Dong; Xie, Jinghui; Li, Yufeng; Weng, Dongdong; Liu, Yue

    2015-08-01

    This paper discusses the imaging principles and the technical difficulties of spatial augmented reality based human face projection. A novel geometry correction method is proposed to realize fast, high-accuracy face model projection. Using a depth camera to reconstruct the projected object, the relative position from the rendered model to the projector can be accessed and the initial projection image is generated. Then the projected image is distorted by using Bezier interpolation to guarantee that the projected texture matches with the object surface. The proposed method is under a simple process flow and can achieve high perception registration of virtual and real object. In addition, this method has a good performance in the condition that the reconstructed model is not exactly same with the rendered virtual model which extends its application area in the spatial augmented reality based human face projection.

  18. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks

    CERN Document Server

    Chou, C -W; Koelemeij, J C J; Wineland, D J; Rosenband, T

    2009-01-01

    We have constructed an optical clock with a fractional frequency inaccuracy of 8.6e-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser-cool the Al+ ion and detect its quantum state. The frequency of the 1S0->3P0 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0e-18. The two clocks exhibit a relative stability of 2.8e-15/ sqrt(tau), and a fractional frequency difference of -1.8e-17, consistent with the accuracy limit of the older clock.

  19. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks

    Science.gov (United States)

    Chou, C. W.; Hume, D. B.; Koelemeij, J. C. J.; Wineland, D. J.; Rosenband, T.

    2010-02-01

    We have constructed an optical clock with a fractional frequency inaccuracy of 8.6×10-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser cool the Al+ ion and detect its quantum state. The frequency of the S01↔P03 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0×10-18. The two clocks exhibit a relative stability of 2.8×10-15τ-1/2, and a fractional frequency difference of -1.8×10-17, consistent with the accuracy limit of the older clock.

  20. Discriminative accuracy of genomic profiling comparing multiplicative and additive risk models.

    Science.gov (United States)

    Moonesinghe, Ramal; Khoury, Muin J; Liu, Tiebin; Janssens, A Cecile J W

    2011-02-01

    Genetic prediction of common diseases is based on testing multiple genetic variants with weak effect sizes. Standard logistic regression and Cox Proportional Hazard models that assess the combined effect of multiple variants on disease risk assume multiplicative joint effects of the variants, but this assumption may not be correct. The risk model chosen may affect the predictive accuracy of genomic profiling. We investigated the discriminative accuracy of genomic profiling by comparing additive and multiplicative risk models. We examined genomic profiles of 40 variants with genotype frequencies varying from 0.1 to 0.4 and relative risks varying from 1.1 to 1.5 in separate scenarios assuming a disease risk of 10%. The discriminative accuracy was evaluated by the area under the receiver operating characteristic curve. Predicted risks were more extreme at the lower and higher risks for the multiplicative risk model compared with the additive model. The discriminative accuracy was consistently higher for multiplicative risk models than for additive risk models. The differences in discriminative accuracy were negligible when the effect sizes were small (risk genotypes were common or when they had stronger effects. Unraveling the exact mode of biological interaction is important when effect sizes of genetic variants are moderate at the least, to prevent the incorrect estimation of risks.

  1. Comparing the Accuracy of Copula-Based Multivariate Density Forecasts in Selected Regions of Support

    NARCIS (Netherlands)

    C.G.H. Diks (Cees); V. Panchenko (Valentyn); O. Sokolinskiy (Oleg); D.J.C. van Dijk (Dick)

    2013-01-01

    textabstractThis paper develops a testing framework for comparing the predictive accuracy of copula-based multivariate density forecasts, focusing on a specific part of the joint distribution. The test is framed in the context of the Kullback-Leibler Information Criterion, but using (out-of-sample)

  2. Comparing the accuracy of copula-based multivariate density forecasts in selected regions of support

    NARCIS (Netherlands)

    Diks, C.; Panchenko, V.; Sokolinskiy, O.; van Dijk, D.

    2013-01-01

    This paper develops a testing framework for comparing the predictive accuracy of copula-based multivariate density forecasts, focusing on a specific part of the joint distribution. The test is framed in the context of the Kullback-Leibler Information Criterion, but using (out-of-sample) conditional

  3. A High-Throughput, High-Accuracy System-Level Simulation Framework for System on Chips

    Directory of Open Access Journals (Sweden)

    Guanyi Sun

    2011-01-01

    Full Text Available Today's System-on-Chips (SoCs design is extremely challenging because it involves complicated design tradeoffs and heterogeneous design expertise. To explore the large solution space, system architects have to rely on system-level simulators to identify an optimized SoC architecture. In this paper, we propose a system-level simulation framework, System Performance Simulation Implementation Mechanism, or SPSIM. Based on SystemC TLM2.0, the framework consists of an executable SoC model, a simulation tool chain, and a modeling methodology. Compared with the large body of existing research in this area, this work is aimed at delivering a high simulation throughput and, at the same time, guaranteeing a high accuracy on real industrial applications. Integrating the leading TLM techniques, our simulator can attain a simulation speed that is not slower than that of the hardware execution by a factor of 35 on a set of real-world applications. SPSIM incorporates effective timing models, which can achieve a high accuracy after hardware-based calibration. Experimental results on a set of mobile applications proved that the difference between the simulated and measured results of timing performance is within 10%, which in the past can only be attained by cycle-accurate models.

  4. Accuracy of laser-scanned models compared to plaster models and cone-beam computed tomography.

    Science.gov (United States)

    Kim, Jooseong; Heo, Giseon; Lagravère, Manuel O

    2014-05-01

    To compare the accuracy of measurements obtained from the three-dimensional (3D) laser scans to those taken from the cone-beam computed tomography (CBCT) scans and those obtained from plaster models. Eighteen different measurements, encompassing mesiodistal width of teeth and both maxillary and mandibular arch length and width, were selected using various landmarks. CBCT scans and plaster models were prepared from 60 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner, and the selected landmarks were measured using its software. CBCT scans were imported and analyzed using the Avizo software, and the 26 landmarks corresponding to the selected measurements were located and recorded. The plaster models were also measured using a digital caliper. Descriptive statistics and intraclass correlation coefficient (ICC) were used to analyze the data. The ICC result showed that the values obtained by the three different methods were highly correlated in all measurements, all having correlations>0.808. When checking the differences between values and methods, the largest mean difference found was 0.59 mm±0.38 mm. In conclusion, plaster models, CBCT models, and laser-scanned models are three different diagnostic records, each with its own advantages and disadvantages. The present results showed that the laser-scanned models are highly accurate to plaster models and CBCT scans. This gives general clinicians an alternative to take into consideration the advantages of laser-scanned models over plaster models and CBCT reconstructions.

  5. K{sub 0}-INAA method accuracy using Zn as comparator

    Energy Technology Data Exchange (ETDEWEB)

    Bedregal, P., E-mail: pbedregal@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN), Av. Canada 1470, Sn. Borja 1470, Lima 41 (Peru); Mendoza, P.; Ubillus, M. [Instituto Peruano de Energia Nuclear (IPEN), Av. Canada 1470, Sn. Borja 1470, Lima 41 (Peru); Montoya, E., E-mail: emontoya@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN), Av. Canada 1470, Sn. Borja 1470, Lima 41 (Peru)

    2010-10-11

    An evaluation of the accuracy in the application of the k{sub 0}-INAA method using Zn foil as comparator is presented. A good agreement was found in the precision within analysts and between them, as well as in the assessment of trueness for most elements. The determination of important experimental parameters like gamma peak counting efficiency, {gamma}-{gamma} true coincidence, comparator preparation and quality assurance/quality control is also described and discussed.

  6. A COMPARATIVE ANALYSIS OF MACROECONOMIC FORECASTS ACCURACY IN SPAIN AND ROMANIA

    Directory of Open Access Journals (Sweden)

    Mihaela Simionescu

    2015-06-01

    Full Text Available In this study a comparative analysis of the forecasts accuracy for Spain (developed country and Romania (developing country was developed for the crisis period (2009–2013. The providers are national forecasters: Bank of Spain and FUNCAS (Spanish Savings Banks Foundation for Spain and two anonymous experts for Romania (E1 and E2. Only for the unemployment rate the Spanish institutes provided more accurate forecasts, for the rest of the variables (inflation rate, private consumption and GDP growth the Romanian institutes giving more accurate predictions. However, the results are contradictory for the accuracy assessment in each country, the U1 Theil’s statistic and the accuracy tests (Diebold-Mariano test and Wilcoxon’s signed rank test indicating different hierarchies. All in all, for inflation rate, unemployment rate and GDP growth in Romania, E2 provided more accurate forecasts. In Spain, FUNCAS offered better forecasts for GDP growth and private consumption during 2009–2013.

  7. High accuracy mantle convection simulation through modern numerical methods

    KAUST Repository

    Kronbichler, Martin

    2012-08-21

    Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.

  8. Monitoring techniques for high accuracy interference fit assembly processes

    Science.gov (United States)

    Liuti, A.; Vedugo, F. Rodriguez; Paone, N.; Ungaro, C.

    2016-06-01

    In the automotive industry, there are many assembly processes that require a high geometric accuracy, in the micrometer range; generally open-loop controllers cannot meet these requirements. This results in an increased defect rate and high production costs. This paper presents an experimental study of interference fit process, aimed to evaluate the aspects which have the most impact on the uncertainty in the final positioning. The press-fitting process considered, consists in a press machine operating with a piezoelectric actuator to press a plug into a sleeve. Plug and sleeve are designed and machined to obtain a known interference fit. Differential displacement and velocity measurements of the plug with respect to the sleeve are measured by a fiber optic differential laser Doppler vibrometer. Different driving signals of the piezo actuator allow to have an insight into the differences between a linear and a pulsating press action. The paper highlights how the press-fit assembly process is characterized by two main phases: the first is an elastic deformation of the plug and sleeve, which produces a reversible displacement, the second is a sliding of the plug with respect to the sleeve, which results in an irreversible displacement and finally realizes the assembly. The simultaneous measurements of the displacement and the force have permitted to define characteristic features in the signal useful to identify the start of the irreversible movement. These indicators could be used to develop a control logic in a press assembly process.

  9. The comparative accuracy of the ROSA stereotactic robot across a wide range of clinical applications and registration techniques.

    Science.gov (United States)

    Brandmeir, Nicholas J; Savaliya, Sandip; Rohatgi, Pratik; Sather, Michael

    2017-05-08

    Robot-assisted stereotactic neurosurgery is an emerging technology with a growing range of applications. The ROSA system is a robotic stereotactic system that has been shown to be accurate in laboratory studies and large case series. The goal of this study was to examine the accuracy of the ROSA across different registration methods as well as different clinical applications. Sixteen patients with one hundred and seventeen stereotactic trajectories were examined. Accuracy was compared by measuring the distance between the trajectory target and the actual termination of the device as determined by imaging. Entry error and angular deviation were also measured. Variables included bone fiducials vs. laser facial scanning, the clinical indication for stereotactic surgery, and the effect of lead deflection on accuracy. Bone fiducials did not offer an accuracy benefit over laser facial scanning (mean target error 4.5-3.9 mm, p = 0.34) in these clinical scenarios. Laser interstitial thermal therapy, responsive neurostimulation, and stereo electroencephalography were equally accurate when placed by the ROSA (mean target error 4.4-4.3-4.0 mm, respectively, p = 0.69). Deflection did not affect lead accuracy (mean target error 4.4-3.9 mm, p = 0.11). Similar results are seen for entry error and angular deviation. ROSA is a highly accurate stereotactic system. Laser facial scanning provides the same accuracy as bone fiducials in these stereotactic applications. The ROSA is equally accurate across a wide spectrum of applications. The ROSA is effective at limiting lead deflection, and when it does occur, it does not impact target accuracy in a significant way.

  10. INTRODUCING NEW PARAMETERS TO COMPARE THE ACCURACY AND RELIABILITY OF MEAN-SHIFT BASED TRACKING ALGORITHMS

    Directory of Open Access Journals (Sweden)

    S.A. Mohammadi

    2011-10-01

    Full Text Available Mean shift algorithms are among the most functional tracking methods which are accurate and havealmost simple computation. Different versions of this algorithm are developed which are differ in templateupdating and their window sizes. To measure the reliability and accuracy of these methods one shouldnormally rely on visual results or number of iteration. In this paper we introduce two new parameterswhich can be used to compare the algorithms especially when their results are close to each other.

  11. Determination of UAV position using high accuracy navigation platform

    Directory of Open Access Journals (Sweden)

    Ireneusz Kubicki

    2016-07-01

    Full Text Available The choice of navigation system for mini UAV is very important because of its application and exploitation, particularly when the installed on it a synthetic aperture radar requires highly precise information about an object’s position. The presented exemplary solution of such a system draws attention to the possible problems associated with the use of appropriate technology, sensors, and devices or with a complete navigation system. The position and spatial orientation errors of the measurement platform influence on the obtained SAR imaging. Both, turbulences and maneuvers performed during flight cause the changes in the position of the airborne object resulting in deterioration or lack of images from SAR. Consequently, it is necessary to perform operations for reducing or eliminating the impact of the sensors’ errors on the UAV position accuracy. You need to look for compromise solutions between newer better technologies and in the field of software. Keywords: navigation systems, unmanned aerial vehicles, sensors integration

  12. Surgical accuracy in high tibial osteotomy: coronal equivalence of computer navigation and gap measurement.

    Science.gov (United States)

    Schröter, S; Ihle, C; Elson, D W; Döbele, S; Stöckle, U; Ateschrang, A

    2016-11-01

    Medial opening wedge high tibial osteotomy (MOW HTO) is now a successful operation with a range of indications, requiring an individualised approach to the choice of intended correction. This manuscript introduces the concept of surgical accuracy as the absolute deviation of the achieved correction from the intended correction, where small values represent greater accuracy. Surgical accuracy is compared in a randomised controlled trial (RCT) between gap measurement and computer navigation groups. This was a prospective RCT conducted over 3 years of 120 consecutive patients with varus malalignment and medial compartment osteoarthritis, who underwent MOW HTO. All procedures were planned with digital software. Patients were randomly assigned into gap measurement or computer navigation groups. Coronal plane alignment was judged using the mechanical tibiofemoral angle (mTFA), before and after surgery. Absolute (positive) values were calculated for surgical accuracy in each individual case. There was no significant difference in the mean intended correction between groups. The achieved mTFA revealed a small under-correction in both groups. This was attributed to a failure to account for saw blade thickness (gap measurement) and over-compensation for weight bearing (computer navigation). Surgical accuracy was 1.7° ± 1.2° (gap measurement) compared to 2.1° ± 1.4° (computer navigation) without statistical significance. The difference in tibial slope increases of 2.7° ± 3.9° (gap measurement) and 2.1° ± 3.9° (computer navigation) had statistical significance (P osteotomy for individual cases. This work is clinically relevant because coronal surgical accuracy was not superior in either group. Therefore, the increased expense and surgical time associated with navigated MOW HTO is not supported, because meticulously conducted gap measurement yields equivalent surgical accuracy. I.

  13. A Comparative Study of Precise Point Positioning (PPP Accuracy Using Online Services

    Directory of Open Access Journals (Sweden)

    Malinowski Marcin

    2016-12-01

    Full Text Available Precise Point Positioning (PPP is a technique used to determine the position of receiver antenna without communication with the reference station. It may be an alternative solution to differential measurements, where maintaining a connection with a single RTK station or a regional network of reference stations RTN is necessary. This situation is especially common in areas with poorly developed infrastructure of ground stations. A lot of research conducted so far on the use of the PPP technique has been concerned about the development of entire day observation sessions. However, this paper presents the results of a comparative analysis of accuracy of absolute determination of position from observations which last between 1 to 7 hours with the use of four permanent services which execute calculations with PPP technique such as: Automatic Precise Positioning Service (APPS, Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP, GNSS Analysis and Positioning Software (GAPS and magicPPP - Precise Point Positioning Solution (magicGNSS. On the basis of acquired results of measurements, it can be concluded that at least two-hour long measurements allow acquiring an absolute position with an accuracy of 2-4 cm. An evaluation of the impact on the accuracy of simultaneous positioning of three points test network on the change of the horizontal distance and the relative height difference between measured triangle vertices was also conducted. Distances and relative height differences between points of the triangular test network measured with a laser station Leica TDRA6000 were adopted as references. The analyses of results show that at least two hours long measurement sessions can be used to determine the horizontal distance or the difference in height with an accuracy of 1-2 cm. Rapid products employed in calculations conducted with PPP technique reached the accuracy of determining coordinates on a close level as in elaborations which employ

  14. A Comparative Study of Precise Point Positioning (PPP) Accuracy Using Online Services

    Science.gov (United States)

    Malinowski, Marcin; Kwiecień, Janusz

    2016-12-01

    Precise Point Positioning (PPP) is a technique used to determine the position of receiver antenna without communication with the reference station. It may be an alternative solution to differential measurements, where maintaining a connection with a single RTK station or a regional network of reference stations RTN is necessary. This situation is especially common in areas with poorly developed infrastructure of ground stations. A lot of research conducted so far on the use of the PPP technique has been concerned about the development of entire day observation sessions. However, this paper presents the results of a comparative analysis of accuracy of absolute determination of position from observations which last between 1 to 7 hours with the use of four permanent services which execute calculations with PPP technique such as: Automatic Precise Positioning Service (APPS), Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP), GNSS Analysis and Positioning Software (GAPS) and magicPPP - Precise Point Positioning Solution (magicGNSS). On the basis of acquired results of measurements, it can be concluded that at least two-hour long measurements allow acquiring an absolute position with an accuracy of 2-4 cm. An evaluation of the impact on the accuracy of simultaneous positioning of three points test network on the change of the horizontal distance and the relative height difference between measured triangle vertices was also conducted. Distances and relative height differences between points of the triangular test network measured with a laser station Leica TDRA6000 were adopted as references. The analyses of results show that at least two hours long measurement sessions can be used to determine the horizontal distance or the difference in height with an accuracy of 1-2 cm. Rapid products employed in calculations conducted with PPP technique reached the accuracy of determining coordinates on a close level as in elaborations which employ Final products.

  15. A comparative analysis of young tennis player target accuracy when using balls inflated under different pressures

    Directory of Open Access Journals (Sweden)

    Dmytro Krylov

    2017-06-01

    Full Text Available Purpose: make a comparative analysis of the target accuracy of ten-year tennis players in performing test exercises with balls with a pressure of 75% of the standard and balls with standard pressure. Material & Methods: in the study participated 8 tennis players of ten years of age, the group 5 years of training. In the course of the research, the following methods were used: analysis and generalization of literature sources, analysis of documentary materials, testing, method of expert evaluations. Results: replacing balls with a pressure of 75% of the standard for standard leads to a deterioration in the target accuracy of ten-year tennis players, which is a consequence of distortion of the technical characteristics of movements. Conclusion: results of the study indicate the need for correction of the technique of players of this age in the transition from balls with a pressure of 75% from the standard to standard.

  16. Horizontal Positional Accuracy of Google Earth's High-Resolution Imagery Archive.

    Science.gov (United States)

    Potere, David

    2008-12-08

    Google Earth now hosts high-resolution imagery that spans twenty percent of the Earth's landmass and more than a third of the human population. This contemporary highresolution archive represents a significant, rapidly expanding, cost-free and largely unexploited resource for scientific inquiry. To increase the scientific utility of this archive, we address horizontal positional accuracy (georegistration) by comparing Google Earth with Landsat GeoCover scenes over a global sample of 436 control points located in 109 cities worldwide. Landsat GeoCover is an orthorectified product with known absolute positional accuracy of less than 50 meters root-mean-squared error (RMSE). Relative to Landsat GeoCover, the 436 Google Earth control points have a positional accuracy of 39.7 meters RMSE (error magnitudes range from 0.4 to 171.6 meters). The control points derived from satellite imagery have an accuracy of 22.8 meters RMSE, which is significantly more accurate than the 48 control-points based on aerial photography (41.3 meters RMSE; t-test p-value Google Earth highresolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world's peri-urban areas.

  17. Comparing Diagnostic Accuracy of Cognitive Screening Instruments: A Weighted Comparison Approach

    Directory of Open Access Journals (Sweden)

    A.J. Larner

    2013-03-01

    Full Text Available Background/Aims: There are many cognitive screening instruments available to clinicians when assessing patients' cognitive function, but the best way to compare the diagnostic utility of these tests is uncertain. One method is to undertake a weighted comparison which takes into account the difference in sensitivity and specificity of two tests, the relative clinical misclassification costs of true- and false-positive diagnosis, and also disease prevalence. Methods: Data were examined from four pragmatic diagnostic accuracy studies from one clinic which compared the Mini-Mental State Examination (MMSE with the Addenbrooke's Cognitive Examination-Revised (ACE-R, the Montreal Cognitive Assessment (MoCA, the Test Your Memory (TYM test, and the Mini-Mental Parkinson (MMP, respectively. Results: Weighted comparison calculations suggested a net benefit for ACE-R, MoCA, and MMP compared to MMSE, but a net loss for TYM test compared to MMSE. Conclusion: Routine incorporation of weighted comparison or other similar net benefit measures into diagnostic accuracy studies merits consideration to better inform clinicians of the relative value of cognitive screening instruments.

  18. Comparative Diagnostic Accuracy of the ACE-III, MIS, MMSE, MoCA, and RUDAS for Screening of Alzheimer Disease.

    Science.gov (United States)

    Matías-Guiu, Jordi A; Valles-Salgado, María; Rognoni, Teresa; Hamre-Gil, Frank; Moreno-Ramos, Teresa; Matías-Guiu, Jorge

    2017-01-01

    Our aim was to evaluate and compare the diagnostic properties of 5 screening tests for the diagnosis of mild Alzheimer disease (AD). We conducted a prospective and cross-sectional study of 92 patients with mild AD and of 68 healthy controls from our Department of Neurology. The diagnostic properties of the following tests were compared: Mini-Mental State Examination (MMSE), Addenbrooke's Cognitive Examination III (ACE-III), Memory Impairment Screen (MIS), Montreal Cognitive Assessment (MoCA), and Rowland Universal Dementia Assessment Scale (RUDAS). All tests yielded high diagnostic accuracy, with the ACE-III achieving the best diagnostic properties. The area under the curve was 0.897 for the ACE-III, 0.889 for the RUDAS, 0.874 for the MMSE, 0.866 for the MIS, and 0.856 for the MoCA. The Mini-ACE score from the ACE-III showed the highest diagnostic capacity (area under the curve 0.939). Memory scores of the ACE-III and of the RUDAS showed a better diagnostic accuracy than those of the MMSE and of the MoCA. All tests, especially the ACE-III, conveyed a higher diagnostic accuracy in patients with full primary education than in the less educated group. Implementing normative data improved the diagnostic accuracy of the ACE-III but not that of the other tests. The ACE-III achieved the highest diagnostic accuracy. This better discrimination was more evident in the more educated group. © 2017 S. Karger AG, Basel.

  19. Key technologies for high-accuracy large mesh antenna reflectors

    Science.gov (United States)

    Meguro, Akira; Harada, Satoshi; Watanabe, Mitsunobu

    2003-12-01

    Nippon Telephone and Telegram Corporation (NTT) continues to develop the modular mesh-type deployable antenna. Antenna diameter can be changed from 5 m to about 20 m by changing the number of modules used with surface accuracy better than 2.4 mm RMS (including all error factors) with sufficient deployment reliability. Key technologies are the antenna's structural design, the deployment mechanism, the design tool, the analysis tool, and modularized testing/evaluation methods. This paper describes our beam steering mechanism. Tests show that it yields a beam pointing accuracy of better than 0.1°. Based on the S-band modular mesh antenna reflector, the surface accuracy degradation factors that must be considered in designing the new antenna are partially identified. The influence of modular connection errors on surface accuracy is quantitatively estimated. Our analysis tool SPADE is extended to include the addition of joint gaps. The addition of gaps allows non-linear vibration characteristics due to gapping in deployment hinges to be calculated. We intend to design a new type of mesh antenna reflector. Our new goal is an antenna for Ku or Ka band satellite communication. For this mission, the surface shape must be 5 times more accurate than is required for an S-band antenna.

  20. Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis

    OpenAIRE

    Ladan Jamshidy; Hamid Reza Mozaffari; Payam Faraji; Roohollah Sharifi

    2016-01-01

    Introduction. One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods. A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with ...

  1. High-accuracy Subdaily ERPs from the IGS

    Science.gov (United States)

    Ray, J. R.; Griffiths, J.

    2012-04-01

    Since November 2000 the International GNSS Service (IGS) has published Ultra-rapid (IGU) products for near real-time (RT) and true real-time applications. They include satellite orbits and clocks, as well as Earth rotation parameters (ERPs) for a sliding 48-hr period. The first day of each update is based on the most recent GPS and GLONASS observational data from the IGS hourly tracking network. At the time of release, these observed products have an initial latency of 3 hr. The second day of each update consists of predictions. So the predictions between about 3 and 9 hr into the second half are relevant for true RT uses. Originally updated twice daily, the IGU products since April 2004 have been issued every 6 hr, at 3, 9, 15, and 21 UTC. Up to seven Analysis Centers (ACs) contribute to the IGU combinations. Two sets of ERPs are published with each IGU update, observed values at the middle epoch of the first half and predicted values at the middle epoch of the second half. The latency of the near RT ERPs is 15 hr while the predicted ERPs, based on projections of each AC's most recent determinations, are issued 9 hr ahead of their reference epoch. While IGU ERPs are issued every 6 hr, each set represents an integrated estimate over the surrounding 24 hr. So successive values are temporally correlated with about 75% of the data being common; this fact should be taken into account in user assimilations. To evaluate the accuracy of these near RT and predicted ERPs, they have been compared to the IGS Final ERPs, available about 11 to 17 d after data collection. The IGU products improved dramatically in the earlier years but since about 2008.0 the performance has been stable and excellent. During the last three years, RMS differences for the observed IGU ERPs have been about 0.036 mas and 0.0101 ms for each polar motion component and LOD respectively. (The internal precision of the reference IGS ERPs over the same period is about 0.016 mas for polar motion and 0

  2. Sample size re-estimation in paired comparative diagnostic accuracy studies with a binary response.

    Science.gov (United States)

    McCray, Gareth P J; Titman, Andrew C; Ghaneh, Paula; Lancaster, Gillian A

    2017-07-14

    The sample size required to power a study to a nominal level in a paired comparative diagnostic accuracy study, i.e. studies in which the diagnostic accuracy of two testing procedures is compared relative to a gold standard, depends on the conditional dependence between the two tests - the lower the dependence the greater the sample size required. A priori, we usually do not know the dependence between the two tests and thus cannot determine the exact sample size required. One option is to use the implied sample size for the maximal negative dependence, giving the largest possible sample size. However, this is potentially wasteful of resources and unnecessarily burdensome on study participants as the study is likely to be overpowered. A more accurate estimate of the sample size can be determined at a planned interim analysis point where the sample size is re-estimated. This paper discusses a sample size estimation and re-estimation method based on the maximum likelihood estimates, under an implied multinomial model, of the observed values of conditional dependence between the two tests and, if required, prevalence, at a planned interim. The method is illustrated by comparing the accuracy of two procedures for the detection of pancreatic cancer, one procedure using the standard battery of tests, and the other using the standard battery with the addition of a PET/CT scan all relative to the gold standard of a cell biopsy. Simulation of the proposed method illustrates its robustness under various conditions. The results show that the type I error rate of the overall experiment is stable using our suggested method and that the type II error rate is close to or above nominal. Furthermore, the instances in which the type II error rate is above nominal are in the situations where the lowest sample size is required, meaning a lower impact on the actual number of participants recruited. We recommend multinomial model maximum likelihood estimation of the conditional

  3. High Accuracy and Real-Time Gated Viewing Laser Radar

    Institute of Scientific and Technical Information of China (English)

    Dong Li; Hua-Jun Yang; Shan-Pei Zhou

    2011-01-01

    A gated viewing laser radar has an excellent performance in underwater low light level imaging,and it also provides a viable solution to inhibit backscattering.In this paper,a gated viewing imaging system according to the demand for real-time imaging is presented,and then the simulation is used to analyze the performance of the real-time gated viewing system.The range accuracy performance is limited by the slice number,the width of gate,the delay time step,the initial delay time,as well as the system noise and atmospheric turbulence.The simulation results indicate that the highest range accuracy can be achieved when the system works with the optimal parameters.Finally,how to choose the optimal parameters has been researched.

  4. Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.; McNitt-Gray, Michael F. [Departments of Biomedical Physics and Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90024 (United States); Mueller, Jonathon W. [United States Air Force, Keesler Air Force Base, Biloxi, Mississippi 39534 (United States); Cody, Dianna D. [University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); DeMarco, John J. [Departments of Biomedical Physics and Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90024 (United States)

    2015-02-15

    Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.

  5. Quantification of the accuracy of MRI generated 3D models of long bones compared to CT generated 3D models.

    Science.gov (United States)

    Rathnayaka, Kanchana; Momot, Konstantin I; Noser, Hansrudi; Volp, Andrew; Schuetz, Michael A; Sahama, Tony; Schmutz, Beat

    2012-04-01

    Orthopaedic fracture fixation implants are increasingly being designed using accurate 3D models of long bones based on computer tomography (CT). Unlike CT, magnetic resonance imaging (MRI) does not involve ionising radiation and is therefore a desirable alternative to CT. This study aims to quantify the accuracy of MRI-based 3D models compared to CT-based 3D models of long bones. The femora of five intact cadaver ovine limbs were scanned using a 1.5 T MRI and a CT scanner. Image segmentation of CT and MRI data was performed using a multi-threshold segmentation method. Reference models were generated by digitising the bone surfaces free of soft tissue with a mechanical contact scanner. The MRI- and CT-derived models were validated against the reference models. The results demonstrated that the CT-based models contained an average error of 0.15 mm while the MRI-based models contained an average error of 0.23 mm. Statistical validation shows that there are no significant differences between 3D models based on CT and MRI data. These results indicate that the geometric accuracy of MRI based 3D models was comparable to that of CT-based models and therefore MRI is a potential alternative to CT for generation of 3D models with high geometric accuracy.

  6. Power calculation for comparing diagnostic accuracies in a multi-reader, multi-test design.

    Science.gov (United States)

    Kim, Eunhee; Zhang, Zheng; Wang, Youdan; Zeng, Donglin

    2014-12-01

    Receiver operating characteristic (ROC) analysis is widely used to evaluate the performance of diagnostic tests with continuous or ordinal responses. A popular study design for assessing the accuracy of diagnostic tests involves multiple readers interpreting multiple diagnostic test results, called the multi-reader, multi-test design. Although several different approaches to analyzing data from this design exist, few methods have discussed the sample size and power issues. In this article, we develop a power formula to compare the correlated areas under the ROC curves (AUC) in a multi-reader, multi-test design. We present a nonparametric approach to estimate and compare the correlated AUCs by extending DeLong et al.'s (1988, Biometrics 44, 837-845) approach. A power formula is derived based on the asymptotic distribution of the nonparametric AUCs. Simulation studies are conducted to demonstrate the performance of the proposed power formula and an example is provided to illustrate the proposed procedure.

  7. Optimal two-phase sampling design for comparing accuracies of two binary classification rules.

    Science.gov (United States)

    Xu, Huiping; Hui, Siu L; Grannis, Shaun

    2014-02-10

    In this paper, we consider the design for comparing the performance of two binary classification rules, for example, two record linkage algorithms or two screening tests. Statistical methods are well developed for comparing these accuracy measures when the gold standard is available for every unit in the sample, or in a two-phase study when the gold standard is ascertained only in the second phase in a subsample using a fixed sampling scheme. However, these methods do not attempt to optimize the sampling scheme to minimize the variance of the estimators of interest. In comparing the performance of two classification rules, the parameters of primary interest are the difference in sensitivities, specificities, and positive predictive values. We derived the analytic variance formulas for these parameter estimates and used them to obtain the optimal sampling design. The efficiency of the optimal sampling design is evaluated through an empirical investigation that compares the optimal sampling with simple random sampling and with proportional allocation. Results of the empirical study show that the optimal sampling design is similar for estimating the difference in sensitivities and in specificities, and both achieve a substantial amount of variance reduction with an over-sample of subjects with discordant results and under-sample of subjects with concordant results. A heuristic rule is recommended when there is no prior knowledge of individual sensitivities and specificities, or the prevalence of the true positive findings in the study population. The optimal sampling is applied to a real-world example in record linkage to evaluate the difference in classification accuracy of two matching algorithms. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Swing arm profilometer: high accuracy testing for large reaction-bonded silicon carbide optics with a capacitive probe

    Science.gov (United States)

    Xiong, Ling; Luo, Xiao; Hu, Hai-xiang; Zhang, Zhi-yu; Zhang, Feng; Zheng, Li-gong; Zhang, Xue-jun

    2017-08-01

    A feasible way to improve the manufacturing efficiency of large reaction-bonded silicon carbide optics is to increase the processing accuracy in the ground stage before polishing, which requires high accuracy metrology. A swing arm profilometer (SAP) has been used to measure large optics during the ground stage. A method has been developed for improving the measurement accuracy of SAP using a capacitive probe and implementing calibrations. The experimental result compared with the interferometer test shows the accuracy of 0.068 μm in root-mean-square (RMS) and maps in 37 low-order Zernike terms show accuracy of 0.048 μm RMS, which shows a powerful capability to provide a major input in high-precision grinding.

  9. A Worldwide Competition to Compare the Speed and Chemotactic Accuracy of Neutrophil-Like Cells.

    Directory of Open Access Journals (Sweden)

    Monica Skoge

    Full Text Available Chemotaxis is the ability to migrate towards the source of chemical gradients. It underlies the ability of neutrophils and other immune cells to hone in on their targets and defend against invading pathogens. Given the importance of neutrophil migration to health and disease, it is crucial to understand the basic mechanisms controlling chemotaxis so that strategies can be developed to modulate cell migration in clinical settings. Because of the complexity of human genetics, Dictyostelium and HL60 cells have long served as models system for studying chemotaxis. Since many of our current insights into chemotaxis have been gained from these two model systems, we decided to compare them side by side in a set of winner-take-all races, the Dicty World Races. These worldwide competitions challenge researchers to genetically engineer and pharmacologically enhance the model systems to compete in microfluidic racecourses. These races bring together technological innovations in genetic engineering and precision measurement of cell motility. Fourteen teams participated in the inaugural Dicty World Race 2014 and contributed cell lines, which they tuned for enhanced speed and chemotactic accuracy. The race enabled large-scale analyses of chemotaxis in complex environments and revealed an intriguing balance of speed and accuracy of the model cell lines. The successes of the first race validated the concept of using fun-spirited competition to gain insights into the complex mechanisms controlling chemotaxis, while the challenges of the first race will guide further technological development and planning of future events.

  10. Comparing Simulation Output Accuracy of Discrete Event and Agent Based Models: A Quantitive Approach

    CERN Document Server

    Majid, Mazlina Abdul; Siebers, Peer-Olaf

    2010-01-01

    In our research we investigate the output accuracy of discrete event simulation models and agent based simulation models when studying human centric complex systems. In this paper we focus on human reactive behaviour as it is possible in both modelling approaches to implement human reactive behaviour in the model by using standard methods. As a case study we have chosen the retail sector, and here in particular the operations of the fitting room in the women wear department of a large UK department store. In our case study we looked at ways of determining the efficiency of implementing new management policies for the fitting room operation through modelling the reactive behaviour of staff and customers of the department. First, we have carried out a validation experiment in which we compared the results from our models to the performance of the real system. This experiment also allowed us to establish differences in output accuracy between the two modelling methids. In a second step a multi-scenario experimen...

  11. Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Ladan Jamshidy

    2016-01-01

    Full Text Available Introduction. One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods. A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with two-stage technique using an appropriate tray. To measure the marginal gap, the distance between the restoration margin and preparation finish line of plaster dies was vertically determined in mid mesial, distal, buccal, and lingual (MDBL regions by a stereomicroscope using a standard method. Results. The results of independent test showed that the mean value of the marginal gap obtained by one-stage impression technique was higher than that of two-stage impression technique. Further, there was no significant difference between one- and two-stage impression techniques in mid buccal region, but a significant difference was reported between the two impression techniques in MDL regions and in general. Conclusion. The findings of the present study indicated higher accuracy for two-stage impression technique than for the one-stage impression technique.

  12. Accuracy of GPS devices for measuring high-intensity running in field-based team sports.

    Science.gov (United States)

    Rampinini, E; Alberti, G; Fiorenza, M; Riggio, M; Sassi, R; Borges, T O; Coutts, A J

    2015-01-01

    We compared the accuracy of 2 GPS systems with different sampling rates for the determination of distances covered at high-speed and metabolic power derived from a combination of running speed and acceleration. 8 participants performed 56 bouts of shuttle intermittent running wearing 2 portable GPS devices (SPI-Pro, GPS-5 Hz and MinimaxX, GPS-10 Hz). The GPS systems were compared with a radar system as a criterion measure. The variables investigated were: total distance (TD), high-speed distance (HSR>4.17 m·s(-1)), very high-speed distance (VHSR>5.56 m·s(-1)), mean power (Pmean), high metabolic power (HMP>20 W·kg(-1)) and very high metabolic power (VHMP>25 W·kg(-1)). GPS-5 Hz had low error for TD (2.8%) and Pmean (4.5%), while the errors for the other variables ranged from moderate to high (7.5-23.2%). GPS-10 Hz demonstrated a low error for TD (1.9%), HSR (4.7%), Pmean (2.4%) and HMP (4.5%), whereas the errors for VHSR (10.5%) and VHMP (6.2%) were moderate. In general, GPS accuracy increased with a higher sampling rate, but decreased with increasing speed of movement. Both systems could be used for calculating TD and Pmean, but they cannot be used interchangeably. Only GPS-10 Hz demonstrated a sufficient level of accuracy for quantifying distance covered at higher speeds or time spent at very high power. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Design of a high linearity and high gain accuracy analog baseband circuit for DAB receiver

    Science.gov (United States)

    Li, Ma; Zhigong, Wang; Jian, Xu; Yiqiang, Wu; Junliang, Wang; Mi, Tian; Jianping, Chen

    2015-02-01

    An analog baseband circuit of high linearity and high gain accuracy for a digital audio broadcasting receiver is implemented in a 0.18-μm RFCMOS process. The circuit comprises a 3rd-order active-RC complex filter (CF) and a programmable gain amplifier (PGA). An automatic tuning circuit is also designed to tune the CF's pass band. Instead of the class-A fully differential operational amplifier (FDOPA) adopted in the conventional CF and PGA design, a class-AB FDOPA is specially employed in this circuit to achieve a higher linearity and gain accuracy for its large current swing capability with lower static current consumption. In the PGA circuit, a novel DC offset cancellation technique based on the MOS resistor is introduced to reduce the settling time significantly. A reformative switching network is proposed, which can eliminate the switch resistor's influence on the gain accuracy of the PGA. The measurement result shows the gain range of the circuit is 10-50 dB with a 1-dB step size, and the gain accuracy is less than ±0.3 dB. The OIP3 is 23.3 dBm at the gain of 10 dB. Simulation results show that the settling time is reduced from 100 to 1 ms. The image band rejection is about 40 dB. It only draws 4.5 mA current from a 1.8 V supply voltage.

  14. A comparative accuracy of Google Earth height with MyGeoid, EGM96 and MSL

    Science.gov (United States)

    Rusli, Noradila; Faiz Pa'suya, Muhammad; Talib, Noorfatekah

    2016-06-01

    This study aims to provide understanding on the accuracy of height derived from Google Earth (HGoogleEarth) as compared to height obtained from Malaysian Geoid Model (HMyGeoid), Mean Sea Level (HMSL) and Earth Geoid Model 96 (HEGM96). Total of 50 established points with height acquired from HMyGeoid and HMSL were measured within UiTM (Universiti Teknologi MARA) Arau Campus. These points were also used to extract height from Google Earth and EGM96. Statistical results showed a good range of R2 between HGoogleEarth-HMyGeoid, HGoogleEarth-HMSL and HGoogleEarth-HEGM96 i.e. 0.823, 0.843 and 0.824 respectively. It shows HGoogleEarth strongly correlated with Hmsl.

  15. Accuracy of reading liquid based cytology slides using the ThinPrep Imager compared with conventional cytology: prospective study

    Science.gov (United States)

    d'Assuncao, Jefferson; Irwig, Les; Macaskill, Petra; Chan, Siew F; Richards, Adele; Farnsworth, Annabelle

    2007-01-01

    Objective To compare the accuracy of liquid based cytology using the computerised ThinPrep Imager with that of manually read conventional cytology. Design Prospective study. Setting Pathology laboratory in Sydney, Australia. Participants 55 164 split sample pairs (liquid based sample collected after conventional sample from one collection) from consecutive samples of women choosing both types of cytology and whose specimens were examined between August 2004 and June 2005. Main outcome measures Primary outcome was accuracy of slides for detecting squamous lesions. Secondary outcomes were rate of unsatisfactory slides, distribution of squamous cytological classifications, and accuracy of detecting glandular lesions. Results Fewer unsatisfactory slides were found for imager read cytology than for conventional cytology (1.8% v 3.1%; Pcytology (7.4% v 6.0% overall and 2.8% v 2.2% for cervical intraepithelial neoplasia of grade 1 or higher). Among 550 patients in whom imager read cytology was cervical intraepithelial neoplasia grade 1 or higher and conventional cytology was less severe than grade 1, 133 of 380 biopsy samples taken were high grade histology. Among 294 patients in whom imager read cytology was less severe than cervical intraepithelial neoplasia grade 1 and conventional cytology was grade 1 or higher, 62 of 210 biopsy samples taken were high grade histology. Imager read cytology therefore detected 71 more cases of high grade histology than did conventional cytology, resulting from 170 more biopsies. Similar results were found when one pathologist reread the slides, masked to cytology results. Conclusion The ThinPrep Imager detects 1.29 more cases of histological high grade squamous disease per 1000 women screened than conventional cytology, with cervical intraepithelial neoplasia grade 1 as the threshold for referral to colposcopy. More imager read slides than conventional slides were satisfactory for examination and more contained low grade cytological

  16. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    Directory of Open Access Journals (Sweden)

    Guanwu Zhou

    2014-07-01

    Full Text Available Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system’s performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

  17. Intraoperative accuracy of a point-of-care glucose meter compared with simultaneous central laboratory measurements.

    Science.gov (United States)

    Mraovic, Boris; Schwenk, Eric S; Epstein, Richard H

    2012-05-01

    Concerns have been raised about the use of point-of-care (POC) glucose meters in the hospital setting. Accuracy has been questioned especially in critically ill patients. Although commonly used in intensive care units and operating rooms, POC meters were not approved by the Food and Drug Administration for such use. Data on POC glucose meter performance during anesthesia are lacking. We evaluated accuracy of a POC meter in the intraoperative setting. We retrospectively reviewed 4,333 intraoperative records in which at least one intraoperative glucose was measured using electronic medical records at a large academic hospital. We evaluated the accuracy of a POC glucose meter (ACCU-CHEK® Inform, Roche Pharmaceuticals) based on the 176 simultaneous central laboratory (CL) blood glucose (BG) measurements that were found (i.e., documented collection times within 5 minutes). Point-of-care and central lab BG differences were analyzed by Bland-Altman and revised error grid analysis (rEGA). Mean POC BG was 163.4 ± 64.7 mg/dl [minimum (min) 48 mg/dl, maximum (max) 537 mg/dl] and mean CL BG was 162.6 ± 65.1 mg/dl (min 44 mg/dl, max 502 mg/dl). Mean absolute difference between POC and CL BG was 24.3 mg/dl. Mean absolute relative difference was 16.5% with standard deviation 26.4%. Point-of-care measurements showed a bias of 0.8 relative to the corresponding CL value, with a precision of 39.0 mg/dl. Forty (23%) POC BG values fell outside the Clinical and Laboratory Standards Institute guideline and 3.4% POC measurements fell in zones C and D of the rEGA plot. The tested POC glucose meter performed poorly compared to a CL analyzer intraoperatively. Perioperative clinicians should be aware of limitations of specific POC glucose meters, and routine use of POC glucose meters as sole measurement devices in the intraoperative period should be carefully considered. © 2012 Diabetes Technology Society.

  18. Sensitivity analysis for high accuracy proximity effect correction

    Science.gov (United States)

    Thrun, Xaver; Browning, Clyde; Choi, Kang-Hoon; Figueiro, Thiago; Hohle, Christoph; Saib, Mohamed; Schiavone, Patrick; Bartha, Johann W.

    2015-10-01

    A sensitivity analysis (SA) algorithm was developed and tested to comprehend the influences of different test pattern sets on the calibration of a point spread function (PSF) model with complementary approaches. Variance-based SA is the method of choice. It allows attributing the variance of the output of a model to the sum of variance of each input of the model and their correlated factors.1 The objective of this development is increasing the accuracy of the resolved PSF model in the complementary technique through the optimization of test pattern sets. Inscale® from Aselta Nanographics is used to prepare the various pattern sets and to check the consequences of development. Fraunhofer IPMS-CNT exposed the prepared data and observed those to visualize the link of sensitivities between the PSF parameters and the test pattern. First, the SA can assess the influence of test pattern sets for the determination of PSF parameters, such as which PSF parameter is affected on the employments of certain pattern. Secondly, throughout the evaluation, the SA enhances the precision of PSF through the optimization of test patterns. Finally, the developed algorithm is able to appraise what ranges of proximity effect correction is crucial on which portion of a real application pattern in the electron beam exposure.

  19. Accuracy of Plantar Electrodes Compared with Hand and Foot Electrodes in Fat-free-mass Measurement

    Directory of Open Access Journals (Sweden)

    Michel Y. Jaffrin

    2014-01-01

    Full Text Available This paper investigates the measurement of fat-free mass (FFM by bioimpedance using foot-to-foot impedancemeters (FFI with plantar electrodes measuring the foot-to-foot resistance R34 and hand-to-foot medical impedancemeters. FFM measurements were compared with corresponding data using Dual X-ray absorptiometry (DXA. Equations giving FFM were established using linear multiple regression on DXA data in a first group of 170 subjects. For validation, these equations were used on a second group of 86 subjects, and FFM were compared with DXA data; no significant difference was observed. The same protocol was repeated, but using electrodes on the right hand and foot in standing position to measure the hand to-foot resistance R13. Mean differences with DXA were higher for R13 than for R34. Effect of electrode size and feet position on resistance was also investigated. R34 decreased when electrode area increased or if feet were moved forward. It decreased if feet were moved backward. A proper configuration of contact electrodes can improve measurement accuracy and reproducibility of FFI.

  20. Accuracy and reliability of Tzanck test compared to histopathology for diagnosis of basal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Dey

    2015-01-01

    Full Text Available Background: Histopathology is considered the gold standard for diagnosis of basal cell carcinoma (BCC but is time consuming and needs expertise to make a correct diagnosis. On the other hand, Tzanck test is a simple, easy, inexpensive and rapid test which uses exfoliative cytology to make a diagnosis. Objective: To compare the results of Tzanck test with histopathology in the diagnosis of BCC and to evaluate the diagnostic reliability and accuracy of Tzanck test in BCC. Materials and Method: Twenty-six patients with clinical suspicion of BCC were recruited. Samples for Tzanck test and histopathology were taken and diagnoses made independently. Results of Tzanck test were compared with histopathology. Results: Twenty-three cases were histopathologically proved to be BCC. Tzanck test correlated in 12 cases of BCC and could exclude all three non-BCC lesions. In 11 cases it failed to diagnose BCC. The sensitivity and specificity of Tzanck test were 52.2% and 100%, respectively, and positive and negative predictive values were 100% and 21.4%. Conclusion: Tzanck test can be recommended for initial, rapid evaluation of a clinically diagnosed case of BCC. Under experienced hands, it reliably confirms BCC. The limitation is low negative predictive value. Since it does not give information about subtypes of BCC which is of great value in therapeutic planning, histopathological confirmation is mandatory.

  1. Cardiac Output Measurements in Septic Patients: Comparing the Accuracy of USCOM to PiCCO

    Directory of Open Access Journals (Sweden)

    Sophia Horster

    2012-01-01

    Full Text Available USCOM is an ultrasound-based method which has been accepted for noninvasive hemodynamic monitoring in various clinical conditions (USCOM, Ultrasonic cardiac output monitoring. The present study aimed at comparing the accuracy of the USCOM device with that of the thermodilution technique in patients with septicemia. We conducted a prospective observational study in a medical but noncardiological ICU of a university hospital. Septic adult patients (median age 55 years, median SAPS-II-Score 43 points on mechanical ventilation and catecholamine support were monitored with USCOM and PiCCO (=70. Seventy paired left-sided CO measurements (transaortic access = COUS-A were obtained. The mean COUS-A were 6.55 l/min (±2.19 versus COPiCCO 6.5 l/min (±2.18. The correlation coefficient was =0.89. Comparison by Bland-Altman analysis revealed a bias of −0.36 l/min (±0.99 l/min leading to a mean percentage error of 29%. USCOM is a feasible and rapid method to evaluate CO in septic patients. USCOM does reliably represent CO values as compared to the reference technique based on thermodilution (PiCCO. It seems to be appropriate in situations where CO measurements are most pertinent to patient management.

  2. Accuracy of the Clinical Diagnosis of Vaginitis Compared to a DNA Probe Laboratory Standard

    Science.gov (United States)

    Lowe, Nancy K.; Neal, Jeremy L.; Ryan-Wenger, Nancy A.

    2009-01-01

    Objective To estimate the accuracy of the clinical diagnosis of the three most common causes of acute vulvovaginal symptoms (bacterial vaginosis, candidiasis vaginitis, and trichomoniasis vaginalis) using a traditional, standardized clinical diagnostic protocol compared to a DNA probe laboratory standard. Methods This prospective clinical comparative study had a sample of 535 active duty United States military women presenting with vulovaginal symptoms. Clinical diagnoses were made by research staff using a standardized protocol of history, physical examination including pelvic examination, determination of vaginal pH, vaginal fluid amines test, and wet-prep microscopy. Vaginal fluid samples were obtained for DNA analysis. The research clinicians were blinded to the DNA results. Results The participants described a presenting symptom of abnormal discharge (50%), itching/irritation (33%), malodor (10%), burning (4%), or others such as vulvar pain and vaginal discomfort. According to laboratory standard, there were 225 cases (42%) of bacterial vaginosis 76 cases (14%) of candidiasis vaginitis, 8 cases (1.5%) of trichomoniasis vaginalis, 87 cases of mixed infections (16%), and 139 negative cases (26%). For each single infection, the clinical diagnosis had a sensitivity and specificity of 80.8% and 70.0% for bacterial vaginosis; 83.8% and 84.8% for candidiasis vaginitis; and 84.6% and 99.6% for trichomoniasis vaginalis when compared to the DNA probe standard. Conclusion Compared to a DNA probe standard, clinical diagnosis is 81-85% sensitive and 70- 99% specific for bacterial vaginosis, candida vaginitis, and trichomoniasis. Even under research conditions that provided clinicians with sufficient time and materials to conduct a thorough and standardized clinical evaluation, the diagnosis and therefore, subsequent treatment of these common vaginal problems remains difficult. PMID:19104364

  3. Distributed High Accuracy Peer-to-Peer Localization in Mobile Multipath Environments

    CERN Document Server

    Ekambaram, Venkatesan

    2010-01-01

    In this paper we consider the problem of high accuracy localization of mobile nodes in a multipath-rich environment where sub-meter accuracies are required. We employ a peer to peer framework where the vehicles/nodes can get pairwise multipath-degraded ranging estimates in local neighborhoods together with a fixed number of anchor nodes. The challenge is to overcome the multipath-barrier with redundancy in order to provide the desired accuracies especially under severe multipath conditions when the fraction of received signals corrupted by multipath is dominating. We invoke a message passing analytical framework based on particle filtering and reveal its high accuracy localization promise through simulations.

  4. A Comparative Accuracy Analysis of Classification Methods in Determination of Cultivated Lands with Spot 5 Satellite Imagery

    Science.gov (United States)

    kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2013-12-01

    A Comparative Accuracy Analysis of Classification Methods in Determination of Cultivated Lands with Spot 5 Satellite Imagery Ugur ALGANCI1, Sinasi KAYA1,2, Elif SERTEL1,2,Berk USTUNDAG3 1 ITU, Center for Satellite Communication and Remote Sensing, 34469, Maslak-Istanbul,Turkey 2 ITU, Department of Geomatics, 34469, Maslak-Istanbul, Turkey 3 ITU, Agricultural and Environmental Informatics Research Center,34469, Maslak-Istanbul,Turkey alganci@itu.edu.tr, kayasina@itu.edu.tr, sertele@itu.edu.tr, berk@berk.tc ABSTRACT Cultivated land determination and their area estimation are important tasks for agricultural management. Derived information is mostly used in agricultural policies and precision agriculture, in specifically; yield estimation, irrigation and fertilization management and farmers declaration verification etc. The use of satellite image in crop type identification and area estimate is common for two decades due to its capability of monitoring large areas, rapid data acquisition and spectral response to crop properties. With launch of high and very high spatial resolution optical satellites in the last decade, such kind of analysis have gained importance as they provide information at big scale. With increasing spatial resolution of satellite images, image classification methods to derive the information form them have become important with increase of the spectral heterogeneity within land objects. In this research, pixel based classification with maximum likelihood algorithm and object based classification with nearest neighbor algorithm were applied to 2012 dated 2.5 m resolution SPOT 5 satellite images in order to investigate the accuracy of these methods in determination of cotton and corn planted lands and their area estimation. Study area was selected in Sanliurfa Province located on Southeastern Turkey that contributes to Turkey's agricultural production in a major way. Classification results were compared in terms of crop type identification using

  5. Usability and accuracy of high-resolution detectors for daily quality assurance for robotic radiosurgery

    Directory of Open Access Journals (Sweden)

    Loutfi-Krauss Britta

    2017-09-01

    Full Text Available For daily CyberKnife QA a Winston-Lutz-Test (Automated-Quality-Assurance, AQA is used to determine sub-millimeter deviations in beam delivery accuracy. This test is performed using gafchromic film, an extensive and user-dependent method requiring the use of disposables. We therefore analyzed the usability and accuracy of high-resolution detector arrays. We analyzed a liquid-filled ionization-chamber array (Octavius 1000SRS, PTW, Germany, which has a central resolution of 2.5mm. To test sufficient sensitivity, beam profiles with robot shifts of 0.1mm along the arrays' axes were measured. The detected deviation between the shifted and central profile were compared to the real robot's position. We then compared the results to the SRS-Profiler (SunNuclear, USA with 4.0mm resolution and to the Nonius (QUART, Germany, a single-line diode detector with 2.8mm resolution. Finally, AQA variance and usability were analyzed performing a number of AQA tests over time, which required the use of specially designed fixtures for each array, and the results were compared to film. Concerning sensitivity, the 1000SRS detected the beam profile shifts with a maximum difference of 0.11mm (mean deviation = 0.03mm compared to the actual robot shift. The Nonius and SRS-Profiler showed differences of up to 0.15mm and 0.69mm with mean deviation of 0.05mm and 0.18mm, respectively. Analyzing the variation of AQA results over time, the 1000SRS showed a comparable standard deviation to film (0.26mm vs. 0.18mm. The SRS-Profiler and the Nonius showed a standard deviation of 0.16mm and 0.24mm, respectively. The 1000SRS seems to provide equivalent accuracy and sensitivity to the gold standard film when performing daily AQA tests. Compared to other detectors in our study the sensitivity as well as the accuracy of the 1000SRS appears to be superior and more user-friendly. Furthermore, no significant modification of the standard AQA procedure is required when introducing 1000SRS for

  6. Achieving High Accuracy in Calculations of NMR Parameters

    DEFF Research Database (Denmark)

    Faber, Rasmus

    , the (aug-)pcJ-n, n=1,2,3 and the (aug-)ccJpVXZ, X=D,T,Q,5, have been compared for systems where both contact and non-contact contributions to the SSCC are important. It was found that the triple zeta basis sets with diffuse functions, i.e. aug-ccJ-pVTZ or augpcJ- 2, can provide well converged results...... calculations is split amongst errors in the molecular force-field parameters and errors in the shielding surface. Finally, accurate vibrational corrections to the nuclear shielding calculations of noble-gas dimers are presented. While these corrections are small compared to the total shielding, they have...

  7. Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model

    CERN Document Server

    Fan, Shimao; Seibold, Benjamin

    2013-01-01

    The Aw-Rascle-Zhang (ARZ) model can be interpreted as a generalization of the Lighthill-Whitham-Richards (LWR) model, possessing a family of fundamental diagram curves, each of which represents a class of drivers with a different empty road velocity. A weakness of this approach is that different drivers possess vastly different densities at which traffic flow stagnates. This drawback can be overcome by modifying the pressure relation in the ARZ model, leading to the generalized Aw-Rascle-Zhang (GARZ) model. We present an approach to determine the parameter functions of the GARZ model from fundamental diagram measurement data. The predictive accuracy of the resulting data-fitted GARZ model is compared to other traffic models by means of a three-detector test setup, employing two types of data: vehicle trajectory data, and sensor data. This work also considers the extension of the ARZ and the GARZ models to models with a relaxation term, and conducts an investigation of the optimal relaxation time.

  8. Accuracy Assessment for PPP by Comparing Various Online PPP Service Solutions with Bernese 5.2 Network Solution

    Science.gov (United States)

    Ozgur Uygur, Sureyya; Aydin, Cuneyt; Demir, Deniz Oz; Cetin, Seda; Dogan, Ugur

    2016-04-01

    GNSS precise point positioning (PPP) technique is frequently used for geodetic applications such as monitoring of reference stations and estimation of tropospheric parameters. This technique uses the undifferenced GNSS observations along with the IGS products to reach high level positioning accuracy. The accuracy level depends on the GNSS data quality as well as the length of the observation duration and the quality of the external data products. It is possible to reach the desired positioning accuracy in the reference frame of satellite coordinates by using a single receiver GNSS data applying PPP technique. PPP technique is provided to users by scientific GNSS processing software packages (like GIPSY of NASA-JPL and Bernese Processing Software of AIUB) as well as several online PPP services. The related services are Auto-GIPSY provided by JPL California Institute of Technology, CSRS-PPP provided by Natural Resources Canada, GAPS provided by the University of New Brunswick and Magic-PPP provided by GMV. In this study, we assess the accuracy of PPP by comparing the solutions from the online PPP services with Bernese 5.2 network solutions. Seven days (DoY 256-262 in 2015) of GNSS observations with 24 hours session duration on the CORS-TR network in Turkey collected on a set of 14 stations were processed in static mode using the above-mentioned PPP services. The average of daily coordinates from Bernese 5.2 static network solution related to 12 IGS stations were taken as the true coordinates. Our results indicate that the distributions of the north, east and up daily position differences are characterized by means and RMS of 1.9±0.5, 2.1±0.7, 4.7±2.1 mm for CSRS, 1.6±0.6, 1.4±0.8, 5.5±3.9 mm for Auto-GIPSY, 3.0±0.8, 3.0±1.2, 6.0±3.2 mm for Magic GNSS, 2.1±1.3, 2.8±1.7, 5.0±2.3 mm for GAPS, with respect to Bernese 5.2 network solution. Keywords: PPP, Online GNSS Service, Bernese, Accuracy

  9. A study for high accuracy real-time 3D ultrasonic location system.

    Science.gov (United States)

    Zhou, Ping; Ha, Zhang; Zhou, Kangyuan

    2006-12-22

    We discussed a high accuracy real-time 3D ultrasonic location system in this article. The signal received was sampled after it passed the TGC and the logarithmic amplifier. Inside the DSP, we used the dynamic threshold tracing technique to improve the accuracy. The result was processed with Weighted Arithmetic Average. By testing the 40 kHz 3D location system, we have arrived at the accuracy of 1 cm.

  10. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior st

  11. Development of high accuracy and resolution geoid and gravity maps

    Science.gov (United States)

    Gaposchkin, E. M.

    1986-01-01

    Precision satellite to satellite tracking can be used to obtain high precision and resolution maps of the geoid. A method is demonstrated to use data in a limited region to map the geopotential at the satellite altitude. An inverse method is used to downward continue the potential to the Earth surface. The method is designed for both satellites in the same low orbit.

  12. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Guy Jean-Pierre Schumann

    2016-01-01

    Full Text Available Digital elevation models (DEMs are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  13. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Science.gov (United States)

    Schumann, Guy; Moller, Delwyn; Mentgen, Felix

    2015-12-01

    Digital elevation models (DEMs) are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  14. High Speed, Low Power Current Comparators with Hysteresis

    Directory of Open Access Journals (Sweden)

    Neeraj K. Chasta

    2012-02-01

    Full Text Available This paper, presents a novel idea for analog current comparison which compares input signal current and reference currents with high speed, low power and well controlled hysteresis. Proposed circuit is based on current mirror and voltage latching techniques which produces rail to rail output voltage as a result of current comparison. The same design can be extended to a simple current comparator without hysteresis (or very less hysteresis, where comparator gives high accuracy (less than 50nA and speed at the cost of moderate power consumption. The comparators are designed optimally and studied at 180 nm CMOS process technology for a supply voltage of 3V.

  15. High Speed, Low Power Current Comparators with Hysteresis

    Directory of Open Access Journals (Sweden)

    Neeraj K. Chasta

    2012-03-01

    Full Text Available This paper, presents a novel idea for analog current comparison which compares input signal current and reference currents with high speed, low power and well controlled hysteresis. Proposed circuit is based on current mirror and voltage latching techniques which produces rail to rail output voltage as a result of current comparison. The same design can be extended to a simple current comparator without hysteresis (or very less hysteresis, where comparator gives high accuracy (less than 50nA and speed at the cost of moderate power consumption. The comparators are designed optimally and studied at 180nm CMOS process technology for a supply voltage of 3V.

  16. High Speed, Low Power Current Comparators with Hysteresis

    CERN Document Server

    Chasta, Neeraj K

    2012-01-01

    This paper, presents a novel idea for analog current comparison which compares input signal current and reference currents with high speed, low power and well controlled hysteresis. Proposed circuit is based on current mirror and voltage latching techniques which produces rail to rail output voltage as a result of current comparison. The same design can be extended to a simple current comparator without hysteresis (or very less hysteresis), where comparator gives high accuracy (less than 50nA) and speed at the cost of moderate power consumption. The comparators are designed optimally and studied at 180nm CMOS process technology for a supply voltage of 3V.

  17. General Theory versus ENA Theory: Comparing Their Predictive Accuracy and Scope.

    Science.gov (United States)

    Ellis, Lee; Hoskin, Anthony; Hartley, Richard; Walsh, Anthony; Widmayer, Alan; Ratnasingam, Malini

    2015-12-01

    General theory attributes criminal behavior primarily to low self-control, whereas evolutionary neuroandrogenic (ENA) theory envisions criminality as being a crude form of status-striving promoted by high brain exposure to androgens. General theory predicts that self-control will be negatively correlated with risk-taking, while ENA theory implies that these two variables should actually be positively correlated. According to ENA theory, traits such as pain tolerance and muscularity will be positively associated with risk-taking and criminality while general theory makes no predictions concerning these relationships. Data from Malaysia and the United States are used to test 10 hypotheses derived from one or both of these theories. As predicted by both theories, risk-taking was positively correlated with criminality in both countries. However, contrary to general theory and consistent with ENA theory, the correlation between self-control and risk-taking was positive in both countries. General theory's prediction of an inverse correlation between low self-control and criminality was largely supported by the U.S. data but only weakly supported by the Malaysian data. ENA theory's predictions of positive correlations between pain tolerance, muscularity, and offending were largely confirmed. For the 10 hypotheses tested, ENA theory surpassed general theory in predictive scope and accuracy.

  18. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    Science.gov (United States)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  19. High-Accuracy and Fast-Response Flywheel Torque Control

    Directory of Open Access Journals (Sweden)

    Xinxiu Zhou

    2014-01-01

    Full Text Available Compared with current mode flywheel torque controller, speed mode torque controller has superior disturbance rejection capability. However, the speed loop delay reduces system dynamic response speed. To solve this problem, a two-degrees-of-freedom controller (2DOFC which consists of a feedback controller (FBC and a command feedforward controller (FFC is proposed. The transfer function of FFC is found based on the inverse model of motor drive system, whose parameters are identified by recursive least squares (RLS algorithm in real-time. Upon this, Kalman filter with softening factor is introduced for the improved parameters identification and torque control performances. Finally, the validity and the superiority of the proposed control scheme are verified through experiments with magnetically suspended flywheel (MSFW motor.

  20. High accuracy magnetic field sensors with wide operation temperature range

    Science.gov (United States)

    Vasil'evskii, I. S.; Vinichenko, A. N.; Rubakin, D. I.; Bolshakova, I. A.; Kargin, N. I.

    2016-10-01

    n+InAs(Si) epitaxial thin films heavily doped by silicon and Hall effect magnetic field sensors based on this structures have been fabricated and studied. We have demonstrated the successful formation of highly doped InAs thin films (∼100 nm) with the different intermediate layer arrangement and appropriate electron mobility values. Hall sensors performance parameters have been measured in wide temperature range. Obtained sensitivity varied from 1 to 40 Ω/T, while the best linearity and lower temperature coefficient have been found in the higher doped samples with lower electron mobility. We attribute this to the electron system degeneracy and decreased phonon contribution to electron mobility and resistance.

  1. A High Accuracy Method for Semi-supervised Information Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Tratz, Stephen C.; Sanfilippo, Antonio P.

    2007-04-22

    Customization to specific domains of dis-course and/or user requirements is one of the greatest challenges for today’s Information Extraction (IE) systems. While demonstrably effective, both rule-based and supervised machine learning approaches to IE customization pose too high a burden on the user. Semi-supervised learning approaches may in principle offer a more resource effective solution but are still insufficiently accurate to grant realistic application. We demonstrate that this limitation can be overcome by integrating fully-supervised learning techniques within a semi-supervised IE approach, without increasing resource requirements.

  2. Comparing the accuracy of experimental estimates to guessing: a new perspective on replication and the "Crisis of Confidence" in psychology.

    Science.gov (United States)

    Davis-Stober, Clintin P; Dana, Jason

    2014-03-01

    We develop a general measure of estimation accuracy for fundamental research designs, called v. The v measure compares the estimation accuracy of the ubiquitous ordinary least squares (OLS) estimator, which includes sample means as a special case, with a benchmark estimator that randomizes the direction of treatment effects. For sample and effect sizes common to experimental psychology, v suggests that OLS produces estimates that are insufficiently accurate for the type of hypotheses being tested. We demonstrate how v can be used to determine sample sizes to obtain minimum acceptable estimation accuracy. Software for calculating v is included as online supplemental material (R Core Team, 2012).

  3. Traffic Sign Recognition with High Accuracy Using Mixture of Experts

    Directory of Open Access Journals (Sweden)

    Reza Azad

    2014-06-01

    Full Text Available Traffic signs provide the driver various information for safe and efficient navigation. Automatic recognition of traffic signs is, therefore, important for automated driving or driver assistance systems.In this paper, a new and efficient traffic sign recognition system based on extracting diverse feature set, and applying mixture of experts'architecture on the extracted featuresis proposed.In the result part, the proposed approach is evaluated on the German traffic sign recognition and Grigorescu traffic signsbenchmark and high recognition rate is achieved.Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in traffic sign recognition that is the recognition rate of 99.94% for the training set and 98.50% for the test set.In addition, experimental results have demonstrated our method robust in successful recognition of traffic signs even with variant lighting.

  4. Gated viewing and high-accuracy three-dimensional laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a fast and high-accuracy three-dimensional (3-D) imaging laser radar that can achieve better than 1 mm range accuracy for half a million pixels in less than 1 s. Our technique is based on range-gating segmentation. We combine the advantages of gated viewing with our new fast...

  5. Gated viewing and high-accuracy three-dimensional laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a fast and high-accuracy three-dimensional (3-D) imaging laser radar that can achieve better than 1 mm range accuracy for half a million pixels in less than 1 s. Our technique is based on range-gating segmentation. We combine the advantages of gated viewing with our new fast...

  6. Comparative Accuracy of the InBios Scrub Typhus Detect IgM Rapid Test for the Detection of IgM Antibodies by Using Conventional Serology

    Science.gov (United States)

    Kingston, Hugh W. F.; Blacksell, Stuart D.; Tanganuchitcharnchai, Ampai; Laongnualpanich, Achara; Basnyat, Buddha; Day, Nicholas P. J.

    2015-01-01

    This study investigated the comparative accuracy of a recombinant 56-kDa type-specific antigen-based rapid diagnostic test (RDT) for scrub typhus for the detection of IgM antibodies by using conventional serology in well-characterized serum samples from undifferentiated febrile illness patients. The RDT showed high specificity and promising comparative accuracy, with 82% sensitivity and 98% specificity for samples defined positive at an IgM indirect immunofluorescence assay positivity cutoff titer of ≥1:1,600 versus 92% and 95% at ≥1:6,400, respectively. PMID:26291089

  7. The accuracy of QCD perturbation theory at high energies

    CERN Document Server

    Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2016-01-01

    We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  8. Methodology of High Accuracy and Resolution 3D Geological Model Generation and Application

    Institute of Scientific and Technical Information of China (English)

    吴键; 曹代勇; 邓爱居; 李东津; 蒋涛; 翟光华

    2004-01-01

    By generating a high accuracy and high resolution geological model in Liuchu oil field, the technique of geological modeling is expanded and involved in primary geological study, making the sand bodies and reservoir be easily described in detail. The 3D visualization and 3D interactive editing of geological structure model are the key for modeling procedure. And a high accuracy and resolution geological model has been well applied in optimizing the production scheme.

  9. High Accuracy Liquid Propellant Slosh Predictions Using an Integrated CFD and Controls Analysis Interface

    Science.gov (United States)

    Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  10. Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions

    Science.gov (United States)

    Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  11. High-speed, high-accuracy large range 3D measurement

    Science.gov (United States)

    An, Yatong; Zhang, Song

    2017-05-01

    This paper presents such a high-speed, high-accuracy structured light technique that could achieve large range 3D shape measurement. The enabling method is our recently proposed system calibration that splits the calibration process into two stages. Specifically, we calibrate the intrinsic parameters at a near position with a regular size yet precisely fabricated calibration target, and then calibrate the extrinsic parameters with the assistance of an additional large range yet low accuracy low cost 3D scanner (i.e., Kinect). We developed a system that achieved 500 Hz with a resolution 2304 × 1400. The field of view (FOV) of our structured light system is 0.9 m(W) × 1.4 m(H) × 0.8 m(D). Our experimental data demonstrated that such a large range structured light system can achieve an mean error of 0.13 mm with a standard deviation of 1.18 mm by measuring a 304.8 mm diameter sphere. We further experimentally demonstrated that proposed method can simultaneously measure multiple objects or large dynamically changing objects.

  12. State of the art in high accuracy high detail DTMs derived from ALS

    Science.gov (United States)

    Pfeifer, N.; Briese, C.; Mandlburger, G.; Höfle, B.; Ressl, C.

    2009-04-01

    High-resolution Digital Terrain Models (DTMs) representing the bare Earth are a fundamental input for various applications in geomorphology. Airborne laser scanning (ALS) is established as a standard tool for deriving DTMs over large areas with unprecedented accuracy. Due to advances in sensor technology and in processing algorithms in the recent years the obtainable accuracy is still increasing. Accuracy is understood as the deviation from the elevation at one specified point to its true value. These advances may lead to a more efficient data acquisition, if reduced accuracy is targeted, but also allow data acquisition schemes with more detail becoming visible, i.e. small features of the relief. For the latter a high internal precision, i.e. repeatability, is necessary. The essential advances in the technologies are improvements in ranging through the introduction of full-waveform (FWF) laser scanning and rigorous models of strip adjustment. In FWF laser scanning the time-dependent strength of the backscattered signal is recorded. This is opposed to the analogue processing of the incoming energy and storage of one arrival time of discrete-return systems. In a simple one-echo situation, the arrival time corresponds to the maximum of the waveform. By applying a decomposition of the full waveform into single echoes, which are transformed copies of the emitted signal, it is possible to retrieve more echoes per shot. Additionally, if echoes of individual scatterers are overlapping, FWF sensors might be able to separate them, whereas discrete return systems might rather only be able to derive one collective arrival time. Finally, the overlay of two echoes does not have the maxima at the same positions as the individual echoes. Additionally, the pulse repetition rate of laser scanners has increased, which allows higher point densities and therefore higher richness of detail. These advances in data acquisition increase the precision within one ALS strip. Deficiencies in

  13. High-accuracy determination for optical indicatrix rotation in ferroelectric DTGS

    OpenAIRE

    O.S.Kushnir; O.A.Bevz; O.G.Vlokh

    2000-01-01

    Optical indicatrix rotation in deuterated ferroelectric triglycine sulphate is studied with the high-accuracy null-polarimetric technique. The behaviour of the effect in ferroelectric phase is referred to quadratic spontaneous electrooptics.

  14. High-accuracy interferometric measurements of flatness and parallelism of a step gauge

    CSIR Research Space (South Africa)

    Kruger, OA

    2001-01-01

    Full Text Available for the calibration of step gauges to a high accuracy. A system was also developed for interferometric measurements of the flatness and parallelism of gauge block faces for use in uncertainty calculations....

  15. High Accuracy Reference Network (HARN), Points generated from coordinates supplied by NGS, Published in 1993, MARIS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This High Accuracy Reference Network (HARN) dataset, was produced all or in part from Field Survey/GPS information as of 1993. It is described as 'Points generated...

  16. A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts

    Directory of Open Access Journals (Sweden)

    Hossein Hassani

    2015-08-01

    Full Text Available This paper introduces a complement statistical test for distinguishing between the predictive accuracy of two sets of forecasts. We propose a non-parametric test founded upon the principles of the Kolmogorov-Smirnov (KS test, referred to as the KS Predictive Accuracy (KSPA test. The KSPA test is able to serve two distinct purposes. Initially, the test seeks to determine whether there exists a statistically significant difference between the distribution of forecast errors, and secondly it exploits the principles of stochastic dominance to determine whether the forecasts with the lower error also reports a stochastically smaller error than forecasts from a competing model, and thereby enables distinguishing between the predictive accuracy of forecasts. We perform a simulation study for the size and power of the proposed test and report the results for different noise distributions, sample sizes and forecasting horizons. The simulation results indicate that the KSPA test is correctly sized, and robust in the face of varying forecasting horizons and sample sizes along with significant accuracy gains reported especially in the case of small sample sizes. Real world applications are also considered to illustrate the applicability of the proposed KSPA test in practice.

  17. Data supporting the high-accuracy haplotype imputation using unphased genotype data as the references

    Directory of Open Access Journals (Sweden)

    Wenzhi Li

    2016-09-01

    Full Text Available The data presented in this article is related to the research article entitled “High-accuracy haplotype imputation using unphased genotype data as the references” which reports the unphased genotype data can be used as reference for haplotyping imputation [1]. This article reports different implementation generation pipeline, the results of performance comparison between different implementations (A, B, and C and between HiFi and three major imputation software tools. Our data showed that the performances of these three implementations are similar on accuracy, in which the accuracy of implementation-B is slightly but consistently higher than A and C. HiFi performed better on haplotype imputation accuracy and three other software performed slightly better on genotype imputation accuracy. These data may provide a strategy for choosing optimal phasing pipeline and software for different studies.

  18. A Prospective Multi-Center Clinical Trial to Compare Efficiency, Accuracy and Safety Of the VisionScope Imaging System Compared to MRI and Diagnostic Arthroscopy

    Science.gov (United States)

    Xerogeanes, John W.; Safran, Marc R.; Huber, Bryan; Mandelbaum, Bert R.; Robertson, William; Gambardella, Ralph A.

    2014-01-01

    Objectives: Until now, arthroscopic surgery has been the gold standard for the diagnosis of intra-articular pathology. When a patient presents with ongoing pain and/or disability despite non-operative care, MRI is commonly used as a diagnostic modality. To date, there is not a minimally-invasive option that can provide detailed information about the intra-articular pathology of a joint. VisionScope Imaging (VSI) is an office-based diagnostic modality that provides comprehensive real-time images and video of a joint with higher accuracy and reliability compared to static MR images. The purpose of this study was to compare the efficacy, accuracy and safety of VSI compared to MRI and surgical diagnostic arthroscopy. Methods: A prospective, blinded, multi-centered study was performed of all patients who had a routine surgical arthroscopy at one of the six participating clinical sites between July 2012 and May 2013. Patients were consented by the physician investigator at each site. Study inclusion criteria consisted of: suspected meniscal tears or articular cartilage damage. Patients were excluded from the study if they had (1) acute traumatic hemarthoses, (2) concomitant ligament injury, (3) active systemic infection, (4) allergy to silicone or any medication used during the procedure,. All patients had a MRI and a comprehensive physical exam prior to their surgical arthroscopy. Each patient underwent a MRI, VSI exam and surgical diagnostic arthroscopy. The attending physician completed standard forms comparing the VSI exam findings to the diagnostic arthroscopy findings on each patient. Two blinded experts unaffiliated with the study reviewed the VSI and MRI images. The arthroscopy served as the “control” comparison between the VSI and MRI findings. Results: There were 110 patients included in this study. The accuracy, sensitivity and specificity of VSI was equivalent to surgical diagnostic arthroscopy and more accurate than MRI (Table 1). When comparing VSI to

  19. A High-Performance Operational Amplifier for High-Speed High-Accuracy Switch-Capacitor Cells

    Institute of Scientific and Technical Information of China (English)

    Qi Fan; Ning Ning; Qi Yu; Da Chen

    2007-01-01

    A highspeed highaccuracy fully differenttial operational amplifier (opamp) is realized based on noMillercapacitor feedforward (NMCF) compensation scheme. In order to achieve a good phase margin, the NMCF compensation scheme uses the positive phase shift of lefthalfplane (LHP) zero caused by the feedforward path to counteract the negative phase shift of the nondominant pole. Compared to traditional Miller compensation method, the opamp obtains high gain and wide band synchronously without the polesplitting effect while saves significant chip area due to the absence of the Miller capacitor. Simulated by the 0.35 μm CMOS RF technology, the result shows that the openloop gain of the opamp is 118 dB with the unity gainbandwidth (UGBW)of 1 GHz, and the phase margin is 61°while the settling time is 5.8 ns when achieving 0.01% accuracy. The opamp is especially suitable for the frontend sample/hold (S/H)cell and the multiplying D/A converter(MDAC) module of the highspeed highresolution pipelined A/D converters(ADCs).

  20. Accuracy of the high-throughput amplicon sequencing to identify species within the genus Aspergillus.

    Science.gov (United States)

    Lee, Seungeun; Yamamoto, Naomichi

    2015-12-01

    This study characterized the accuracy of high-throughput amplicon sequencing to identify species within the genus Aspergillus. To this end, we sequenced the internal transcribed spacer 1 (ITS1), β-tubulin (BenA), and calmodulin (CaM) gene encoding sequences as DNA markers from eight reference Aspergillus strains with known identities using 300-bp sequencing on the Illumina MiSeq platform, and compared them with the BLASTn outputs. The identifications with the sequences longer than 250 bp were accurate at the section rank, with some ambiguities observed at the species rank due to mostly cross detection of sibling species. Additionally, in silico analysis was performed to predict the identification accuracy for all species in the genus Aspergillus, where 107, 210, and 187 species were predicted to be identifiable down to the species rank based on ITS1, BenA, and CaM, respectively. Finally, air filter samples were analysed to quantify the relative abundances of Aspergillus species in outdoor air. The results were reproducible across biological duplicates both at the species and section ranks, but not strongly correlated between ITS1 and BenA, suggesting the Aspergillus detection can be taxonomically biased depending on the selection of the DNA markers and/or primers.

  1. High-accuracy same-beam VLBI observations using Shanghai and Urumqi telescopes

    Institute of Scientific and Technical Information of China (English)

    KIKUCHI; Fuyuhiko; KAMATA; Shun’ichi; MATSUMOTO; Koji; HANADA; Hideo

    2009-01-01

    The same-beam VLBI observations of Rstar and Vstar,which were two small satellites of Japanese lunar mission,SELENE,were successfully performed by using Shanghai and Urumqi 25-m telescopes. When the separation angle between Rstar and Vstar was less than 0.1 deg,the differential phase delay of the X-band signals between Rstar and Vstar on Shanghai-Urumqi baseline was obtained with a very small error of 0.15 mm rms,which was reduced by 1-2 order compared with the former VLBI results. When the separation angle was less than 0.56 deg,the differential phase delay of the S-band signals was also obtained with a very small error of several mm rms. The orbit determination for Rstar and Vstar was performed,and the accuracy was improved to a level of several meters by using VLBI and Doppler data. The high-accuracy same-beam differential VLBI technique is very useful in orbit determination for a spacecraft,and will be used in orbit determination for Mars missions of China Yinghuo-1 and Russia Phobos-grunt.

  2. High-accuracy same-beam VLBI observations using Shanghai and Urumqi telescopes

    Institute of Scientific and Technical Information of China (English)

    LIU QingHui; PING JingSong; FAN QingYuan; XIA Bo; AN Tao; QIAN ZhiHan; YANG WenJun; ZHANG Hua; WANG Zhen; WANG Na; SHI Xian; KIKUCHI Fuyuhiko; HUANG Qian; KAMATA Shun'ichi; MATSUMOTO Koji; HANADA Hideo; HONG XiaoYu; YU AiLi

    2009-01-01

    The same-beam VLBI observations of Rstar and Vstar, which were two small satellites of Japanese lunar mission, SELENE, were successfully performed by using Shanghai and Urumqi 25-m telescopes.When the separation angle between Rstar and Vstar was less than 0.1 deg, the differential phase delay of the X-band signals between Rstar and Vstar on Shanghai-Urumqi baseline was obtained with a very small error of 0.15 mm rms, which was reduced by 1-2 order compared with the former VLBI results.When the separation angle was less than 0.56 deg, the differential phase delay of the S-band signals was also obtained with a very small error of several mm rms. The orbit determination for Rstar and Vstar was performed, and the accuracy was improved to a level of several meters by using VLBI and Doppler data. The high-accuracy same-beam differential VLBI technique is very useful in orbit determination for a spacecraft, and will be used in orbit determination for Mars missions of China Yinghuo-1 and Russia Phobos-grunt.

  3. Reducing Systematic Centroid Errors Induced by Fiber Optic Faceplates in Intensified High-Accuracy Star Trackers

    Science.gov (United States)

    Xiong, Kun; Jiang, Jie

    2015-01-01

    Compared with traditional star trackers, intensified high-accuracy star trackers equipped with an image intensifier exhibit overwhelmingly superior dynamic performance. However, the multiple-fiber-optic faceplate structure in the image intensifier complicates the optoelectronic detecting system of star trackers and may cause considerable systematic centroid errors and poor attitude accuracy. All the sources of systematic centroid errors related to fiber optic faceplates (FOFPs) throughout the detection process of the optoelectronic system were analyzed. Based on the general expression of the systematic centroid error deduced in the frequency domain and the FOFP modulation transfer function, an accurate expression that described the systematic centroid error of FOFPs was obtained. Furthermore, reduction of the systematic error between the optical lens and the input FOFP of the intensifier, the one among multiple FOFPs and the one between the output FOFP of the intensifier and the imaging chip of the detecting system were discussed. Two important parametric constraints were acquired from the analysis. The correctness of the analysis on the optoelectronic detecting system was demonstrated through simulation and experiment. PMID:26016920

  4. High-Order Kinetic Relaxation Schemes as High-Accuracy Poisson Solvers

    CERN Document Server

    Mendoza, M; Herrmann, H J

    2015-01-01

    We present a new approach to find accurate solutions to the Poisson equation, as obtained from the steady-state limit of a diffusion equation with strong source terms. For this purpose, we start from Boltzmann's kinetic theory and investigate the influence of higher order terms on the resulting macroscopic equations. By performing an appropriate expansion of the equilibrium distribution, we provide a method to remove the unnecessary terms up to a desired order and show that it is possible to find, with high level of accuracy, the steady-state solution of the diffusion equation for sizeable Knudsen numbers. In order to test our kinetic approach, we discretise the Boltzmann equation and solve the Poisson equation, spending up to six order of magnitude less computational time for a given precision than standard lattice Boltzmann methods.

  5. Comparative adaptation accuracy of acrylic denture bases evaluated by two different methods.

    Science.gov (United States)

    Lee, Chung-Jae; Bok, Sung-Bem; Bae, Ji-Young; Lee, Hae-Hyoung

    2010-08-01

    This study examined the adaptation accuracy of acrylic denture base processed using fluid-resin (PERform), injection-moldings (SR-Ivocap, Success, Mak Press), and two compression-molding techniques. The adaptation accuracy was measured primarily by the posterior border gaps at the mid-palatal area using a microscope and subsequently by weighing of the weight of the impression material between the denture base and master cast using hand-mixed and automixed silicone. The correlation between the data measured using these two test methods was examined. The PERform and Mak Press produced significantly smaller maximum palatal gap dimensions than the other groups (psilicone material than the other groups (psilicone impression materials was affected by either the material or mixing variables.

  6. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy.

    Science.gov (United States)

    Derevianko, Andrei; Dzuba, V A; Flambaum, V V

    2012-11-02

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f(12) ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks.

  7. [Diagnostic accuracy of the immersion high-frequency B-scan ultrasonography in chemical injured eyes].

    Science.gov (United States)

    Yang, Qinghua; Chen, Bing; Wang, Liqiang; Li, Zhaohui; Huang, Yifei

    2014-08-01

    To investigate the diagnostic accuracy of the immersion high-frequency B-scan ultrasonography, a noninvasive preoperative diagnosis method, in observing the anterior segment in chemical injured eyes. It was a retrospective study. Sixty-three ocular chemical injury patients (63 eyes), who accepted the keratoplasty or the artificial cornea transplant in PLA General Hospital from May 2011 to May 2013, were included in this study. All the injured eyes were examined by ultrasound bio-microscopy (UBM) and immersion high-frequency B-scan ultrasonography, respectively. The images were analyzed and the results were compared with the intraoperative findings. The observation of lens was the main parameter. All the 63 patients were examined with the UBM and the immersion high-frequency B-scan ultrasonography before the surgery. The findings of the cornea, anterior chamber angle, iris from UBM were consistent with those from the immersion high-frequency B-scan ultrasonography. As for the lens observation, in 32 eyes in which the lens were not detected by UBM, the lens were not detected in only 16 eyes, while 3 eyes with normal lens and 13 eyes with lens pacifications (1 eye with pyknotic lens) by immersion high-frequency B-scan ultrasonography. In 17 eyes in which the lens were found normal by UBM, there were only 14 eyes with normal lens and the rest 3 eyes' lens were found intumescent by immersion high-frequency B-scan ultrasonography. In 6 eyes in which lens were detected with suspicious by UBM, 2 eyes' lens were pyknotic and 4 eyes' lens were intumescent or clouded by immersion high-frequency B-scan ultrasonography. The findings of immersion high-frequency B-scan ultrasonography were highly consistent with the intraoperative findings. The lens could be observed accurately by immersion high-frequency B-scan ultrasonography in chemical injured eyes.

  8. Accuracy Assessment of a Canal-Tunnel 3d Model by Comparing Photogrammetry and Laserscanning Recording Techniques

    Science.gov (United States)

    Charbonnier, P.; Chavant, P.; Foucher, P.; Muzet, V.; Prybyla, D.; Perrin, T.; Grussenmeyer, P.; Guillemin, S.

    2013-07-01

    With recent developments in the field of technology and computer science, conventional methods are being supplanted by laser scanning and digital photogrammetry. These two different surveying techniques generate 3-D models of real world objects or structures. In this paper, we consider the application of terrestrial Laser scanning (TLS) and photogrammetry to the surveying of canal tunnels. The inspection of such structures requires time, safe access, specific processing and professional operators. Therefore, a French partnership proposes to develop a dedicated equipment based on image processing for visual inspection of canal tunnels. A 3D model of the vault and side walls of the tunnel is constructed from images recorded onboard a boat moving inside the tunnel. To assess the accuracy of this photogrammetric model (PM), a reference model is build using static TLS. We here address the problem comparing the resulting point clouds. Difficulties arise because of the highly differentiated acquisition processes, which result in very different point densities. We propose a new tool, designed to compare differences between pairs of point cloud or surfaces (triangulated meshes). Moreover, dealing with huge datasets requires the implementation of appropriate structures and algorithms. Several techniques are presented : point-to-point, cloud-to-cloud and cloud-to-mesh. In addition farthest point resampling, octree structure and Hausdorff distance are adopted and described. Experimental results are shown for a 475 m long canal tunnel located in France.

  9. The effect of pattern overlap on the accuracy of high resolution electron backscatter diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Vivian, E-mail: v.tong13@imperial.ac.uk [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Jiang, Jun [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Britton, T. Ben [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-15

    High resolution, cross-correlation-based, electron backscatter diffraction (EBSD) measures the variation of elastic strains and lattice rotations from a reference state. Regions near grain boundaries are often of interest but overlap of patterns from the two grains could reduce accuracy of the cross-correlation analysis. To explore this concern, patterns from the interior of two grains have been mixed to simulate the interaction volume crossing a grain boundary so that the effect on the accuracy of the cross correlation results can be tested. It was found that the accuracy of HR-EBSD strain measurements performed in a FEG-SEM on zirconium remains good until the incident beam is less than 18 nm from a grain boundary. A simulated microstructure was used to measure how often pattern overlap occurs at any given EBSD step size, and a simple relation was found linking the probability of overlap with step size. - Highlights: • Pattern overlap occurs at grain boundaries and reduces HR-EBSD accuracy. • A test is devised to measure the accuracy of HR-EBSD in the presence of overlap. • High pass filters can sometimes, but not generally, improve HR-EBSD measurements. • Accuracy of HR-EBSD remains high until the reference pattern intensity is <72%. • 9% of points near a grain boundary will have significant error for 200nm step size in Zircaloy-4.

  10. Accuracy of hydro-multidetector row CT in the local T staging of oesophageal cancer compared to postoperative histopathological results

    Energy Technology Data Exchange (ETDEWEB)

    Ba-Ssalamah, Ahmed; Matzek, Wolfgang; Baroud, Susanne; Bastati, Nina; Weber, Michael; Herold, Christian J. [Medical University of Vienna, Department of Radiology, Vienna (Austria); Zacherl, Johannes; Schoppmann, Sebastian F. [Medical University of Vienna, Department of Radiology, Vienna (Austria); Medical University of Vienna, Department of Surgery, Vienna (Austria); Hejna, Michael [Medical University of Vienna, Department of Radiology, Vienna (Austria); Medical University of Vienna, Department of Oncology, Vienna (Austria); Wrba, Fritz [Medical University of Vienna, Department of Radiology, Vienna (Austria); Medical University of Vienna, Department of Pathology, Vienna (Austria); Gore, Richard M. [University of Chicago Pritzker School of Medicine, Department of Radiology, Chicago, IL (United States)

    2011-11-15

    To evaluate the accuracy of multidetector computed tomography with water filling (Hydro-MDCT) in the T-staging of patients with oesophageal cancer. There were 131 consecutive patients who were preoperatively and prospectively examined in the prone position on arterial phase contrast-enhanced MDCT, after ingestion of 1,000-1,500 ml tap water and effervescent granules. Two readers staged the local tumour growth (T-staging) independently. They assessed tumour location, size, presence of stenosis, and morphology of the outer border of the oesophageal wall and perioesophageal fat planes on CT. CT findings were compared with histopathological results from resected specimens. Data were analyzed using the SPSS statistical package. Both readers obtained a high sensitivity of 95% and a high positive predictive value of 96%. Accurate local staging was achieved in 76.3% and 68.7% for readers 1 and 2, respectively. Inter-reader agreement was excellent (weighted {kappa} value of 0.93 and un-weighted {kappa} of 0.89). Using the hydro-technique and applying specific assessment criteria, MDCT appears to be an accurate, non-invasive diagnostic tool for local tumour staging of oesophageal cancer. (orig.)

  11. COMPARATIVE ACCURACY EVALUATION OF FINE-SCALE GLOBAL AND LOCAL DIGITAL SURFACE MODELS: THE TSHWANE CASE STUDY I

    Directory of Open Access Journals (Sweden)

    A. Breytenbach

    2016-10-01

    Full Text Available Conducted in the City of Tshwane, South Africa, this study set about to test the accuracy of DSMs derived from different remotely sensed data locally. VHR digital mapping camera stereo-pairs, tri-stereo imagery collected by a Pléiades satellite and data detected from the Tandem-X InSAR satellite configuration were fundamental in the construction of seamless DSM products at different postings, namely 2 m, 4 m and 12 m. The three DSMs were sampled against independent control points originating from validated airborne LiDAR data. The reference surfaces were derived from the same dense point cloud at grid resolutions corresponding to those of the samples. The absolute and relative positional accuracies were computed using well-known DEM error metrics and accuracy statistics. Overall vertical accuracies were also assessed and compared across seven slope classes and nine primary land cover classes. Although all three DSMs displayed significantly more vertical errors where solid waterbodies, dense natural and/or alien woody vegetation and, in a lesser degree, urban residential areas with significant canopy cover were encountered, all three surpassed their expected positional accuracies overall.

  12. Comparative Accuracy Evaluation of Fine-Scale Global and Local Digital Surface Models: The Tshwane Case Study I

    Science.gov (United States)

    Breytenbach, A.

    2016-10-01

    Conducted in the City of Tshwane, South Africa, this study set about to test the accuracy of DSMs derived from different remotely sensed data locally. VHR digital mapping camera stereo-pairs, tri-stereo imagery collected by a Pléiades satellite and data detected from the Tandem-X InSAR satellite configuration were fundamental in the construction of seamless DSM products at different postings, namely 2 m, 4 m and 12 m. The three DSMs were sampled against independent control points originating from validated airborne LiDAR data. The reference surfaces were derived from the same dense point cloud at grid resolutions corresponding to those of the samples. The absolute and relative positional accuracies were computed using well-known DEM error metrics and accuracy statistics. Overall vertical accuracies were also assessed and compared across seven slope classes and nine primary land cover classes. Although all three DSMs displayed significantly more vertical errors where solid waterbodies, dense natural and/or alien woody vegetation and, in a lesser degree, urban residential areas with significant canopy cover were encountered, all three surpassed their expected positional accuracies overall.

  13. Development of an automatic calibration device for high-accuracy low temperature thermometers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the analysis and investigation of calibration systems for high-accuracy low temperature thermometers,a new facility for automatic calibration of high-accuracy low temperature thermometers was developed.Continuous calibration for multiple points can be made automatically with this device.According to the thermophysical characteristics of the constant-temperature block in this device,segmented Fuzzy-PID (proportional-integral-differential) algorithm was applied.The experimental results showed that the temperature fluctuation was smaller than ±0.005 K in 30 min.Therefore,this new device can fully meet the calibration requirement of high-precision low temperature thermometers.

  14. The effect of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players.

    Science.gov (United States)

    Lyons, Mark; Al-Nakeeb, Yahya; Hankey, Joanne; Nevill, Alan

    2013-01-01

    Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female) and 17 non-expert (13 male, 4 female) tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70%) and high-intensities (90%) set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test). Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA's revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player's achievement goal indicators. Future research is required to explore the effects of fatigue on performance in tennis

  15. Accuracy of Intraocular Lens Power Calculation Formulas for Highly Myopic Eyes

    Science.gov (United States)

    Zhang, Yichi; Liang, Xiao Ying; Liu, Shu; Lee, Jacky W. Y.; Bhaskar, Srinivasan; Lam, Dennis S. C.

    2016-01-01

    Purpose. To evaluate and compare the accuracy of different intraocular lens (IOL) power calculation formulas for eyes with an axial length (AL) greater than 26.00 mm. Methods. This study reviewed 407 eyes of 219 patients with AL longer than 26.0 mm. The refractive prediction errors of IOL power calculation formulas (SRK/T, Haigis, Holladay, Hoffer Q, and Barrett Universal II) using User Group for Laser Interference Biometry (ULIB) constants were evaluated and compared. Results. One hundred seventy-one eyes were enrolled. The Barrett Universal II formula had the lowest mean absolute error (MAE) and SRK/T and Haigis had similar MAE, and the statistical highest MAE were seen with the Holladay and Hoffer Q formulas. The interquartile range of the Barrett Universal II formula was also the lowest among all the formulas. The Barrett Universal II formulas yielded the highest percentage of eyes within ±1.0 D and ±0.5 D of the target refraction in this study (97.24% and 79.56%, resp.). Conclusions. Barrett Universal II formula produced the lowest predictive error and the least variable predictive error compared with the SRK/T, Haigis, Holladay, and Hoffer Q formulas. For high myopic eyes, the Barrett Universal II formula may be a more suitable choice. PMID:27119018

  16. Accuracy of Intraocular Lens Power Calculation Formulas for Highly Myopic Eyes

    Directory of Open Access Journals (Sweden)

    Yichi Zhang

    2016-01-01

    Full Text Available Purpose. To evaluate and compare the accuracy of different intraocular lens (IOL power calculation formulas for eyes with an axial length (AL greater than 26.00 mm. Methods. This study reviewed 407 eyes of 219 patients with AL longer than 26.0 mm. The refractive prediction errors of IOL power calculation formulas (SRK/T, Haigis, Holladay, Hoffer Q, and Barrett Universal II using User Group for Laser Interference Biometry (ULIB constants were evaluated and compared. Results. One hundred seventy-one eyes were enrolled. The Barrett Universal II formula had the lowest mean absolute error (MAE and SRK/T and Haigis had similar MAE, and the statistical highest MAE were seen with the Holladay and Hoffer Q formulas. The interquartile range of the Barrett Universal II formula was also the lowest among all the formulas. The Barrett Universal II formulas yielded the highest percentage of eyes within ±1.0 D and ±0.5 D of the target refraction in this study (97.24% and 79.56%, resp.. Conclusions. Barrett Universal II formula produced the lowest predictive error and the least variable predictive error compared with the SRK/T, Haigis, Holladay, and Hoffer Q formulas. For high myopic eyes, the Barrett Universal II formula may be a more suitable choice.

  17. Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping

    Directory of Open Access Journals (Sweden)

    Johannes eStelzer

    2014-04-01

    Full Text Available Although ultra-high-field fMRI at field strengths of 7T or above provides substantial gains in BOLD contrast-to-noise ratio, when very high-resolution fMRI is required such gains are inevitably reduced. The improvement in sensitivity provided by multivariate analysis techniques, as compared with univariate methods, then becomes especially welcome. Information mapping approaches are commonly used, such as the searchlight technique, which take into account the spatially distributed patterns of activation in order to predict stimulus conditions. However, the popular searchlight decoding technique, in particular, has been found to be prone to spatial inaccuracies. For instance, the spatial extent of informative areas is generally exaggerated, and their spatial configuration is distorted. We propose the combination of a nonparametric and permutation-based statistical framework with linear classifiers. We term this new combined method Feature Weight Mapping (FWM. The main goal of the proposed method is to map the specific contribution of each voxel to the classification decision while including a correction for the multiple comparisons problem. Next, we compare this new method to the searchlight approach using a simulation and ultra-high-field 7T experimental data. We found that the searchlight method led to spatial inaccuracies that are especially noticeable in high-resolution fMRI data. In contrast, FWM was more spatially precise, revealing both informative anatomical structures as well as the direction by which voxels contribute to the classification. By maximizing the spatial accuracy of ultra-high-field fMRI results, global multivariate methods provide a substantial improvement for characterizing structure-function relationships.

  18. Study on High Accuracy Topographic Mapping via UAV-based Images

    Science.gov (United States)

    Chi, Yun-Yao; Lee, Ya-Fen; Tsai, Shang-En

    2016-10-01

    Unmanned aerial vehicle (UAV) provides a promising tool for the acquisition of such multi-temporal aerial stereo photos and high-resolution digital surface models. Recently, the flight of UAVs operates with high degrees of autonomy by the global position system and onboard digit camera and computer. The UAV-based mapping can be obtained faster and cheaper, but its accuracy is anxious. This paper aims to identify the integration ability of high accuracy topographic map via the image of quad-rotors UAV and ground control points (GCPs). The living survey data is collected in the Errn river basins area in Tainan, Taiwan. The high accuracy UAV-based topographic in the study area is calibrated by the local coordinate of GCPs using the total station with the accuracy less than 1/2000. The comparison results show the accuracy of UAV-based topographic is accepted by overlapping. The results can be a reference for the practice works of mapping survey in earth.

  19. A Comparative Analysis of Diagnostic Accuracy of Focused Assessment With Sonography for Trauma Performed by Emergency Medicine and Radiology Residents

    Science.gov (United States)

    Zamani, Majid; Masoumi, Babak; Esmailian, Mehrdad; Habibi, Amin; Khazaei, Mehdi; Mohammadi Esfahani, Mohammad

    2015-01-01

    Background: Focused assessment with sonography in trauma (FAST) is a method for prompt detection of the abdominal free fluid in patients with abdominal trauma. Objectives: This study was conducted to compare the diagnostic accuracy of FAST performed by emergency medicine residents (EMR) and radiology residents (RRs) in detecting peritoneal free fluids. Patients and Methods: Patients triaged in the emergency department with blunt abdominal trauma, high energy trauma, and multiple traumas underwent a FAST examination by EMRs and RRs with the same techniques to obtain the standard views. Ultrasound findings for free fluid in peritoneal cavity for each patient (positive/negative) were compared with the results of computed tomography, operative exploration, or observation as the final outcome. Results: A total of 138 patients were included in the final analysis. Good diagnostic agreement was noted between the results of FAST scans performed by EMRs and RRs (κ = 0.701, P < 0.001), also between the results of EMRs-performed FAST and the final outcome (κ = 0.830, P < 0.0010), and finally between the results of RRs-performed FAST and final outcome (κ = 0.795, P < 0.001). No significant differences were noted between EMRs- and RRs-performed FASTs regarding sensitivity (84.6% vs 84.6%), specificity (98.4% vs 97.6%), positive predictive value (84.6% vs 84.6%), and negative predictive value (98.4% vs 98.4%). Conclusions: Trained EMRs like their fellow RRs have the ability to perform FAST scan with high diagnostic value in patients with blunt abdominal trauma. PMID:26756009

  20. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions.

    Science.gov (United States)

    Anderson, Will; Kozak, Darby; Coleman, Victoria A; Jämting, Åsa K; Trau, Matt

    2013-09-01

    The particle size distribution (PSD) of a polydisperse or multimodal system can often be difficult to obtain due to the inherent limitations in established measurement techniques. For this reason, the resolution, accuracy and precision of three new and one established, commercially available and fundamentally different particle size analysis platforms were compared by measuring both individual and a mixed sample of monodisperse, sub-micron (220, 330, and 410 nm - nominal modal size) polystyrene particles. The platforms compared were the qNano Tunable Resistive Pulse Sensor, Nanosight LM10 Particle Tracking Analysis System, the CPS Instruments's UHR24000 Disc Centrifuge, and the routinely used Malvern Zetasizer Nano ZS Dynamic Light Scattering system. All measurements were subjected to a peak detection algorithm so that the detected particle populations could be compared to 'reference' Transmission Electron Microscope measurements of the individual particle samples. Only the Tunable Resistive Pulse Sensor and Disc Centrifuge platforms provided the resolution required to resolve all three particle populations present in the mixed 'multimodal' particle sample. In contrast, the light scattering based Particle Tracking Analysis and Dynamic Light Scattering platforms were only able to detect a single population of particles corresponding to either the largest (410 nm) or smallest (220 nm) particles in the multimodal sample, respectively. When the particle sets were measured separately (monomodal) each platform was able to resolve and accurately obtain a mean particle size within 10% of the Transmission Electron Microscope reference values. However, the broadness of the PSD measured in the monomodal samples deviated greatly, with coefficients of variation being ~2-6-fold larger than the TEM measurements across all four platforms. The large variation in the PSDs obtained from these four, fundamentally different platforms, indicates that great care must still be taken in

  1. Direct Georeferencing : a New Standard in Photogrammetry for High Accuracy Mapping

    Science.gov (United States)

    Rizaldy, A.; Firdaus, W.

    2012-07-01

    Direct georeferencing is a new method in photogrammetry, especially in the digital camera era. Theoretically, this method does not require ground control points (GCP) and the Aerial Triangulation (AT), to process aerial photography into ground coordinates. Compared with the old method, this method has three main advantages: faster data processing, simple workflow and less expensive project, at the same accuracy. Direct georeferencing using two devices, GPS and IMU. GPS recording the camera coordinates (X, Y, Z), and IMU recording the camera orientation (omega, phi, kappa). Both parameters merged into Exterior Orientation (EO) parameter. This parameters required for next steps in the photogrammetric projects, such as stereocompilation, DSM generation, orthorectification and mosaic. Accuracy of this method was tested on topographic map project in Medan, Indonesia. Large-format digital camera Ultracam X from Vexcel is used, while the GPS / IMU is IGI AeroControl. 19 Independent Check Point (ICP) were used to determine the accuracy. Horizontal accuracy is 0.356 meters and vertical accuracy is 0.483 meters. Data with this accuracy can be used for 1:2.500 map scale project.

  2. Comparing the accuracy of different smell identification tests in Parkinson's disease: relevance of cultural aspects.

    Science.gov (United States)

    Rodríguez-Violante, Mayela; Gonzalez-Latapi, Paulina; Camacho-Ordoñez, Azyadeh; Martínez-Ramírez, Daniel; Morales-Briceño, Hugo; Cervantes-Arriaga, Amin

    2014-08-01

    The aim of this study is to determine the usefulness of the University of Pennsylvania smell identification test (UPSIT), sniffin sticks (SS-16) and brief smell identification test (B-SIT) to assess smell identification in the Mexican population and its accuracy in discriminating subjects with Parkinson's disease (PD). We included 199 nondemented PD subjects and 199 control subjects matched by gender. Smell identification was tested using the UPSIT and SS-16. Our group obtained B-SIT data from a previous report. The mean number of UPSIT items correctly identified by controls was 27.3±6; the PD group had a mean score of 19.4±6. UPSIT had a sensitivity of 82% with a specificity of 66% for a cut-off score of ≤25 for detection of PD. The mean number of SS-16 items correctly identified by controls was 10.3±2.2, while the PD group had 7.4±2.8 correct answers. For SS-16, sensitivity was 77.8% and specificity of 71.2% when using a cut-off value of ≤9. Lemon, turpentine and rose had an identification rate below the 25th percentile for all three tests. Odors with an identification rate above the 75th percentile include banana for all three tests, and gasoline, onion and chocolate for UPSIT and B-SIT. The sensitivity and specificity of the smell tests that were evaluated were lower in comparison to other published reports. Cultural biases and smell familiarity may influence the test results. The development of a true cross-culturally adapted smell identification test is warranted may improve test accuracy. Copyright © 2014. Published by Elsevier B.V.

  3. THE EFFECT OF MODERATE AND HIGH-INTENSITY FATIGUE ON GROUNDSTROKE ACCURACY IN EXPERT AND NON-EXPERT TENNIS PLAYERS

    Directory of Open Access Journals (Sweden)

    Mark Lyons

    2013-06-01

    Full Text Available Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female and 17 non-expert (13 male, 4 female tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70% and high-intensities (90% set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test. Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA's revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player's achievement goal indicators. Future research is required to explore the effects of fatigue on

  4. Very high-accuracy calibration of radiation pattern and gain of a near-field probe

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2014-01-01

    In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission of the Europ......In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission...

  5. Model Accuracy Comparison for High Resolution Insar Coherence Statistics Over Urban Areas

    Science.gov (United States)

    Zhang, Yue; Fu, Kun; Sun, Xian; Xu, Guangluan; Wang, Hongqi

    2016-06-01

    The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR) images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR) coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  6. Accuracy of High-Resolution MRI with Lumen Distention in Rectal Cancer Staging and Circumferential Margin Involvement Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Iannicelli, Elsa; Di Renzo, Sara [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ferri, Mario [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Pilozzi, Emanuela [Department of Clinical and Molecular Sciences, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Di Girolamo, Marco; Sapori, Alessandra [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ziparo, Vincenzo [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); David, Vincenzo [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy)

    2014-07-01

    To evaluate the accuracy of magnetic resonance imaging (MRI) with lumen distention for rectal cancer staging and circumferential resection margin (CRM) involvement prediction. Seventy-three patients with primary rectal cancer underwent high-resolution MRI with a phased-array coil performed using 60-80 mL room air rectal distention, 1-3 weeks before surgery. MRI results were compared to postoperative histopathological findings. The overall MRI T staging accuracy was calculated. CRM involvement prediction and the N staging, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were assessed for each T stage. The agreement between MRI and histological results was assessed using weighted-kappa statistics. The overall MRI accuracy for T staging was 93.6% (k = 0.85). The accuracy, sensitivity, specificity, PPV and NPV for each T stage were as follows: 91.8%, 86.2%, 95.5%, 92.6% and 91.3% for the group ≤ T2; 90.4%, 94.6%, 86.1%, 87.5% and 94% for T3; 98,6%, 85.7%, 100%, 100% and 98.5% for T4, respectively. The predictive CRM accuracy was 94.5% (k = 0.86); the sensitivity, specificity, PPV and NPV were 89.5%, 96.3%, 89.5%, and 96.3% respectively. The N staging accuracy was 68.49% (k = 0.4). MRI performed with rectal lumen distention has proved to be an effective technique both for rectal cancer staging and involved CRM predicting.

  7. Fast-type high-accuracy universal polarimeter using charge-coupled device spectrometer

    Directory of Open Access Journals (Sweden)

    Akifumi Takanabe

    2017-02-01

    Full Text Available A fast, high-accuracy universal polarimeter was developed using a charge-coupled device (CCD spectrometer (CCD-HAUP, to carry out simultaneous optical anisotropic (linear birefringence, LB; linear dichroism, LD and chiroptical (circular birefringence, CB; circular dichroism, CD measurements on single crystals without any pretreatment, in the visible region between 400–680 nm. The principle of the HAUP method is to measure the intensities of emergent light passing through a polarizer, a crystal sample, and then an analyzer, as the azimuth angles of the polarizer and analyzer are independently altered. The CCD-HAUP has the unique feature that white transmitted light intensity can be measured using a CCD spectrometer, compared with the generalized HAUP (G-HAUP system in which monochromatic transmitted light is measured using a photomultiplier. The CCD-HAUP measurements across the entire wavelength region are completed within the G-HAUP measurement time for a single wavelength. The CCD-HAUP drastically reduces the measurement time for a dataset to only 1.5 h, from the 24 h required for the G-HAUP system. LB, LD, CB, and CD measurements of single crystals of α-quartz and enantiomeric photomechanical salicylidenephenylethylamines before, during, and after ultraviolet light irradiation show results comparable to those obtained using the G-HAUP system. The newly developed system is very effective for samples susceptible to degradation induced by external stimuli, such as light and heat.

  8. Accounting comparability and the accuracy of peer-based valuation models

    NARCIS (Netherlands)

    Young, S.; Zeng, Y.

    2015-01-01

    We examine the link between enhanced accounting comparability and the valuation performance of pricing multiples. Using the warranted multiple method proposed by Bhojraj and Lee (2002, Journal of Accounting Research), we demonstrate how enhanced accounting comparability leads to better peer-based va

  9. Accounting comparability and the accuracy of peer-based valuation models

    NARCIS (Netherlands)

    Young, S.; Zeng, Y.

    2015-01-01

    We examine the link between enhanced accounting comparability and the valuation performance of pricing multiples. Using the warranted multiple method proposed by Bhojraj and Lee (2002, Journal of Accounting Research), we demonstrate how enhanced accounting comparability leads to better peer-based va

  10. [Study on high accuracy detection of multi-component gas in oil-immerse power transformer].

    Science.gov (United States)

    Fan, Jie; Chen, Xiao; Huang, Qi-Feng; Zhou, Yu; Chen, Gang

    2013-12-01

    In order to solve the problem of low accuracy and mutual interference in multi-component gas detection, a kind of multi-component gas detection network with high accuracy was designed. A semiconductor laser with narrow bandwidth was utilized as light source and a novel long-path gas cell was also used in this system. By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM) and time division multiplexing (TDM) technique, the detection of multi-component gas was achieved. The experiments indicate that the linearity relevance coefficient is 0. 99 and the measurement relative error is less than 4%. The system dynamic response time is less than 15 s, by filling a volume of multi-component gas into the gas cell gradually. The system has advantages of high accuracy and quick response, which can be used in the fault gas on-line monitoring for power transformers in real time.

  11. Integrative fitting of absorption line profiles with high accuracy, robustness, and speed

    Science.gov (United States)

    Skrotzki, Julian; Habig, Jan Christoph; Ebert, Volker

    2014-08-01

    The principle of the integrative evaluation of absorption line profiles relies on the numeric integration of absorption line signals to retrieve absorber concentrations, e.g., of trace gases. Thus, it is a fast and robust technique. However, previous implementations of the integrative evaluation principle showed shortcomings in terms of accuracy and the lack of a fit quality indicator. This has motivated the development of an advanced integrative (AI) fitting algorithm. The AI fitting algorithm retains the advantages of previous integrative implementations—robustness and speed—and is able to achieve high accuracy by introduction of a novel iterative fitting process. A comparison of the AI fitting algorithm with the widely used Levenberg-Marquardt (LM) fitting algorithm indicates that the AI algorithm has advantages in terms of robustness due to its independence from appropriately chosen start values for the initialization of the fitting process. In addition, the AI fitting algorithm shows speed advantages typically resulting in a factor of three to four shorter computational times on a standard personal computer. The LM algorithm on the other hand retains advantages in terms of a much higher flexibility, as the AI fitting algorithm is restricted to the evaluation of single absorption lines with precomputed line width. Comparing both fitting algorithms for the specific application of in situ laser hygrometry at 1,370 nm using direct tunable diode laser absorption spectroscopy (TDLAS) suggests that the accuracy of the AI algorithm is equivalent to that of the LM algorithm. For example, a signal-to-noise ratio of 80 and better typically yields a deviation of TDLAS hygrometry at the aerosol and cloud chamber aerosol interactions and dynamics in the atmosphere (AIDA)—a unique large-scale facility to study atmospheric processes. The robustness of the AI fitting algorithm has been validated for typical AIDA conditions encompassing strong transmission fluctuations

  12. Improved photomask accuracy with a high-productivity DUV laser pattern generator

    Science.gov (United States)

    Öström, Thomas; Måhlén, Jonas; Karawajczyk, Andrzej; Rosling, Mats; Carlqvist, Per; Askebjer, Per; Karlin, Tord; Sallander, Jesper; Österberg, Anders

    2006-10-01

    A strategy for sub-100 nm technology nodes is to maximize the use of high-speed deep-UV laser pattern generators, reserving e-beam tools for the most critical photomask layers. With a 248 nm excimer laser and 0.82 NA projection optics, the Sigma7500 increases the application space of laser pattern generators. A programmable spatial light modulator (SLM) is imaged with partially coherent optics to compose the photomask pattern. Image profiles are enhanced with phase shifting in the pattern generator, and features below 200 nm are reliably printed. The Sigma7500 extends the SLM-based architecture with improvements to CD uniformity and placement accuracy, resulting from an error budget-based methodology. Among these improvements is a stiffer focus stage design with digital servos, resulting in improved focus stability. Tighter climate controls and improved dose control reduce drift during mask patterning. As a result, global composite CD uniformity below 5 nm (3σ) has been demonstrated, with placement accuracy below 10 nm (3σ) across the mask. Self-calibration methods are used to optimize and monitor system performance, reducing the need to print test plates. The SLM calibration camera views programmed test patterns, making it possible to evaluate image metrics such as CD uniformity and line edge roughness. The camera is also used to characterize image placement over the optical field. A feature called ProcessEqualizer TM has been developed to correct long-range CD errors arising from process effects on production photomasks. Mask data is sized in real time to compensate for pattern-dependent errors related to local pattern density, as well as for systematic pattern-independent errors such as radial CD signatures. Corrections are made in the pixel domain in the advanced adjustments processor, which also performs global biasing, stamp distortion compensation, and corner enhancement. In the Sigma7500, the mask pattern is imaged with full edge addressability in each

  13. A comparative study of the diagnostic accuracy on Waters view with CT scan in detecting midface fractures

    OpenAIRE

    Panjnoush M.; Shirani Gh.; Jozghanbari P.

    2006-01-01

    Background and Aim: In recent years, CT scan has become available as an alternative to conventional radiography. To date, the utility of Waters view in detecting midface fractures has been rarely evaluated. The aim of this study was to compare the diagnostic accuracy and reliability of Waters radiography with CT scan in detecting midface fractures. Materials and Methods: In this tests evaluation study, waters view and CT scan were performed for 42 patients with midface fracture admitted to ma...

  14. Rigorous Training of Dogs Leads to High Accuracy in Human Scent Matching-To-Sample Performance.

    Directory of Open Access Journals (Sweden)

    Sophie Marchal

    Full Text Available Human scent identification is based on a matching-to-sample task in which trained dogs are required to compare a scent sample collected from an object found at a crime scene to that of a suspect. Based on dogs' greater olfactory ability to detect and process odours, this method has been used in forensic investigations to identify the odour of a suspect at a crime scene. The excellent reliability and reproducibility of the method largely depend on rigor in dog training. The present study describes the various steps of training that lead to high sensitivity scores, with dogs matching samples with 90% efficiency when the complexity of the scents presented during the task in the sample is similar to that presented in the in lineups, and specificity reaching a ceiling, with no false alarms in human scent matching-to-sample tasks. This high level of accuracy ensures reliable results in judicial human scent identification tests. Also, our data should convince law enforcement authorities to use these results as official forensic evidence when dogs are trained appropriately.

  15. Analysis of Accuracy of a High-speed Mobile Platform Control System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The efficient manufacture technique involves a high-speed control of platform mobile system. A linear acutor is presented in this paper. The linear acutor is constructed as a linear stepper motor. However, to sustain both high accuracy and high speed for the position and speed control, A single-stack computer system is constructed and a special control algorithm is prescribed to controled the linear actuator continuously. In this paper, the nonlinear errors resulted from the magnetic saturation and the h...

  16. High-accuracy C-14 measurements for atmospheric CO2 samples by AMS

    NARCIS (Netherlands)

    Meijer, H.A.J.; Pertuisot, M.H.; van der Plicht, J.

    2006-01-01

    In this paper, we investigate how to achieve high-accuracy radiocarbon measurements by accelerator mass spectrometry (ANIS) and present measurement series (performed on archived CO2) of (CO2)-C-14 between 1985 and 1991 for Point Barrow (Alaska) and the South Pole. We report in detail the measurement

  17. Further results on the operation of high-accuracy drift chambers

    NARCIS (Netherlands)

    Breskin, A.; Charpak, G.; Gabioud, B.; Sauli, F.; Trautner, N.

    Optimization of the working parameters in the drift chambers with adjustable electric fields permits stable operation and high accuracies. Full saturation of the drift velocity leads to remarkable improvements, namely a very linear space-time correlation for perpendicular tracks, and simple

  18. From journal to headline: the accuracy of climate science news in Danish high quality newspapers

    DEFF Research Database (Denmark)

    Vestergård, Gunver Lystbæk

    2011-01-01

    analysis to examine the accuracy of Danish high quality newspapers in quoting scientific publications from 1997 to 2009. Out of 88 articles, 46 contained inaccuracies though the majority was found to be insignificant and random. The study concludes that Danish broadsheet newspapers are ‘moderately...

  19. A 1-V 15 μW High-Accuracy Temperature Switch

    NARCIS (Netherlands)

    Schinkel, D.; Boer, de R.P.; Annema, A.J.; Tuijl, van A.J.M.

    2004-01-01

    A CMOS temperature switch with uncalibrated high accuracy is presented. The circuit is based on the classical CMOS bandgap reference structure, using parasitic PNPs and a PTAT multiplier. The circuit was designed in a standard digital 0.18 m CMOS process. The temperature switch has an in-designed hy

  20. From journal to headline: the accuracy of climate science news in Danish high quality newspapers

    DEFF Research Database (Denmark)

    Vestergård, Gunver Lystbæk

    2011-01-01

    analysis to examine the accuracy of Danish high quality newspapers in quoting scientific publications from 1997 to 2009. Out of 88 articles, 46 contained inaccuracies though the majority was found to be insignificant and random. The study concludes that Danish broadsheet newspapers are ‘moderately...

  1. Comparing the accuracy of video-oculography and the scleral search coil system in human eye movement analysis.

    Science.gov (United States)

    Imai, Takao; Sekine, Kazunori; Hattori, Kousuke; Takeda, Noriaki; Koizuka, Izumi; Nakamae, Koji; Miura, Katsuyoshi; Fujioka, Hiromu; Kubo, Takeshi

    2005-03-01

    The measurement of eye movements in three dimensions is an important tool to investigate the human vestibular and oculomotor system. The primary methods for three dimensional eye movement measurement are the scleral search coil system (SSCS) and video-oculography (VOG). In the present study, we compare the accuracy of VOG with that of SSCS using an artificial eye. We then analyzed the Y (pitch) and Z (yaw) component of human eye movements during saccades, smooth pursuit and optokinetic nystagmus, and the X (roll) component of human eye movement during the torsional vestibulo-ocular reflex induced by rotation in normal subjects, using simultaneous VOG and SSCS measures. The coefficients of the linear relationship between the angle of a simulated eyeball and the angle measured by both VOG and SSCS was almost unity with y-intercepts close to zero for torsional (X), vertical (Y) and horizontal (Z) movements, indicating that the in vitro accuracy of VOG was similar to that of SSCS. The average difference between VOG and SSCS was 0.56 degrees , 0.78 degrees and 0.18 degrees for the X, Y and Z components of human eye movements, respectively. Both the in vitro and in vivo comparisons demonstrate that VOG has accuracy comparable to SSCS, and is a reliable method for measurement of three dimensions (3D) human eye movements.

  2. A high-accuracy surgical augmented reality system using enhanced integral videography image overlay.

    Science.gov (United States)

    Zhang, Xinran; Chen, Guowen; Liao, Hongen

    2015-01-01

    Image guided surgery has been used in clinic to improve the surgery safety and accuracy. Augmented reality (AR) technique, which can provide intuitive image guidance, has been greatly evolved these years. As one promising approach of surgical AR systems, integral videography (IV) autostereoscopic image overlay has achieved accurate fusion of full parallax guidance into surgical scene. This paper describes an image enhanced high-accuracy IV overlay system. A flexible optical image enhancement system (IES) is designed to increase the resolution and quality of IV image. Furthermore, we introduce a novel IV rendering algorithm to promote the spatial accuracy with the consideration of distortion introduced by micro lens array. Preliminary experiments validated that the image accuracy and resolution are improved with the proposed methods. The resolution of the IV image could be promoted to 1 mm for a micro lens array with pitch of 2.32 mm and IES magnification value of 0.5. The relative deviation of accuracy in depth and lateral directions are -4.68 ± 0.83% and -9.01 ± 0.42%.

  3. Determining dynamical parameters of the Milky Way Galaxy based on high-accuracy radio astrometry

    Science.gov (United States)

    Honma, Mareki; Nagayama, Takumi; Sakai, Nobuyuki

    2015-08-01

    In this paper we evaluate how the dynamical structure of the Galaxy can be constrained by high-accuracy VLBI (Very Long Baseline Interferometry) astrometry such as VERA (VLBI Exploration of Radio Astrometry). We generate simulated samples of maser sources which follow the gas motion caused by a spiral or bar potential, with their distribution similar to those currently observed with VERA and VLBA (Very Long Baseline Array). We apply the Markov chain Monte Carlo analyses to the simulated sample sources to determine the dynamical parameter of the models. We show that one can successfully determine the initial model parameters if astrometric results are obtained for a few hundred sources with currently achieved astrometric accuracy. If astrometric data are available from 500 sources, the expected accuracy of R0 and Θ0 is ˜ 1% or higher, and parameters related to the spiral structure can be constrained by an error of 10% or with higher accuracy. We also show that the parameter determination accuracy is basically independent of the locations of resonances such as corotation and/or inner/outer Lindblad resonances. We also discuss the possibility of model selection based on the Bayesian information criterion (BIC), and demonstrate that BIC can be used to discriminate different dynamical models of the Galaxy.

  4. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack

    2013-09-18

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  5. Comparing the Accuracy of AMSRE, AMSR2, SSMI and SSMIS Satellite Radiometer Ice Concentration Products with One-Meter Resolution Visible Imagery in the Arctic

    Science.gov (United States)

    Peterson, E. R.; Stanton, T. P.

    2016-12-01

    Determining ice concentration in the Arctic is necessary to track significant changes in sea ice edge extent. Sea ice concentrations are also needed to interpret data collected by in-situ instruments like buoys, as the amount of ice versus water in a given area determines local solar heating. Ice concentration products are now routinely derived from satellite radiometers including the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Special Sensor Microwave Imager (SSMI), and the Special Sensor Microwave Imager/Sounder (SSMIS). While these radiometers are viewed as reliable to monitor long-term changes in sea ice extent, their accuracy should be analyzed, and compared to determine which radiometer performs best over smaller features such as melt ponds, and how seasonal conditions affect accuracy. Knowledge of the accuracy of radiometers at high resolution can help future researchers determine which radiometer to use, and be aware of radiometer shortcomings in different ice conditions. This will be especially useful when interpreting data from in-situ instruments which deal with small scale measurements. In order to compare these passive microwave radiometers, selected high spatial resolution one-meter resolution Medea images, archived at the Unites States Geological Survey, are used for ground truth comparison. Sea ice concentrations are derived from these images in an interactive process, although estimates are not perfect ground truth due to exposure of images, shadowing and cloud cover. 68 images are retrieved from the USGS website and compared with 9 useable, collocated SSMI, 33 SSMIS, 36 AMSRE, and 14 AMSR2 ice concentrations in the Arctic Ocean. We analyze and compare the accuracy of radiometer instrumentation in differing ice conditions.

  6. Two-step Structural Design of Mesh Antennas for High Beam Pointing Accuracy

    Science.gov (United States)

    Zhang, Shuxin; Du, Jingli; Wang, Wei; Zhang, Xinghua; Zong, Yali

    2017-05-01

    A well-designed reflector surface with high beam pointing accuracy in electromagnetic performance is of practical significance to the space application of cable mesh reflector antennas. As for space requirements, circular polarizations are widely used in spaceborne antennas, which usually lead to a beam shift for offset reflectors and influence the beam pointing accuracy. A two-step structural design procedure is proposed to overcome the beam squint phenomenon for high beam pointing accuracy design of circularly polarized offset cable mesh reflectors. A simple structural optimal design and an integrated structural electromagnetic optimization are combined to alleviate the beam squint effect of circular polarizations. It is implemented by cable pretension design and adjustment to shape the offset cable mesh surface. Besides, in order to increase the efficiency of integrated optimization, an update Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian matrix is employed in the optimization iteration with sequential quadratic programming. A circularly polarized offset cable mesh reflector is utilized to show the feasibility and effectiveness of the proposed procedure. A high beam pointing accuracy in order of 0.0001º of electromagnetic performance is achieved.

  7. Structural linear measurements in the newborn brain: accuracy of cranial ultrasound compared to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Leijser, Lara M. [Hammersmith Hospital, Imperial College, Department of Paediatrics, London (United Kingdom); Srinivasan, Latha; Cowan, Frances M. [Hammersmith Hospital, Imperial College, Department of Paediatrics, London (United Kingdom); Hammersmith Hospital, Imperial College, Department of Imaging Sciences, London (United Kingdom); Rutherford, Mary A.; Counsell, Serena J.; Allsop, Joanna M. [Hammersmith Hospital, Imperial College, Department of Imaging Sciences, London (United Kingdom)

    2007-07-15

    Structural size in the neonatal brain is of clinical importance. Cranial ultrasonography (cUS) is the primary method used for evaluating the neonatal brain and it is important to know whether linear measurements made using this technique are accurate. To compare linear measurements of different cerebral structures made from neonatal cUS and contemporaneous MRI. Preterm and term infants studies with cUS and MRI on the same day were studied. Linear measurements made using both techniques from many cerebral structures were compared using a paired t-test. A total of 44 sets of scans from 26 preterm and 8 term infants were assessed. Small but significant differences between the cUS and MRI measurements (P<0.05) were found for the ventricular index, the posterior horn depth of the lateral ventricle, the extracerebral space and interhemispheric fissure, and the cortex of the cingulate gyrus. No significant differences were found for any other measurements. Linear measurements from cUS are accurate for most neonatal cerebral structures. Significant differences compared to MRI were found for a few structures, but only for the cortex were the absolute differences marked and possibly of clinical importance. (orig.)

  8. Statistical downscaling of precipitation using local regression and high accuracy surface modeling method

    Science.gov (United States)

    Zhao, Na; Yue, Tianxiang; Zhou, Xun; Zhao, Mingwei; Liu, Yu; Du, Zhengping; Zhang, Lili

    2017-07-01

    Downscaling precipitation is required in local scale climate impact studies. In this paper, a statistical downscaling scheme was presented with a combination of geographically weighted regression (GWR) model and a recently developed method, high accuracy surface modeling method (HASM). This proposed method was compared with another downscaling method using the Coupled Model Intercomparison Project Phase 5 (CMIP5) database and ground-based data from 732 stations across China for the period 1976-2005. The residual which was produced by GWR was modified by comparing different interpolators including HASM, Kriging, inverse distance weighted method (IDW), and Spline. The spatial downscaling from 1° to 1-km grids for period 1976-2005 and future scenarios was achieved by using the proposed downscaling method. The prediction accuracy was assessed at two separate validation sites throughout China and Jiangxi Province on both annual and seasonal scales, with the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE). The results indicate that the developed model in this study outperforms the method that builds transfer function using the gauge values. There is a large improvement in the results when using a residual correction with meteorological station observations. In comparison with other three classical interpolators, HASM shows better performance in modifying the residual produced by local regression method. The success of the developed technique lies in the effective use of the datasets and the modification process of the residual by using HASM. The results from the future climate scenarios show that precipitation exhibits overall increasing trend from T1 (2011-2040) to T2 (2041-2070) and T2 to T3 (2071-2100) in RCP2.6, RCP4.5, and RCP8.5 emission scenarios. The most significant increase occurs in RCP8.5 from T2 to T3, while the lowest increase is found in RCP2.6 from T2 to T3, increased by 47.11 and 2.12 mm, respectively.

  9. Statistical downscaling of precipitation using local regression and high accuracy surface modeling method

    Science.gov (United States)

    Zhao, Na; Yue, Tianxiang; Zhou, Xun; Zhao, Mingwei; Liu, Yu; Du, Zhengping; Zhang, Lili

    2016-03-01

    Downscaling precipitation is required in local scale climate impact studies. In this paper, a statistical downscaling scheme was presented with a combination of geographically weighted regression (GWR) model and a recently developed method, high accuracy surface modeling method (HASM). This proposed method was compared with another downscaling method using the Coupled Model Intercomparison Project Phase 5 (CMIP5) database and ground-based data from 732 stations across China for the period 1976-2005. The residual which was produced by GWR was modified by comparing different interpolators including HASM, Kriging, inverse distance weighted method (IDW), and Spline. The spatial downscaling from 1° to 1-km grids for period 1976-2005 and future scenarios was achieved by using the proposed downscaling method. The prediction accuracy was assessed at two separate validation sites throughout China and Jiangxi Province on both annual and seasonal scales, with the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE). The results indicate that the developed model in this study outperforms the method that builds transfer function using the gauge values. There is a large improvement in the results when using a residual correction with meteorological station observations. In comparison with other three classical interpolators, HASM shows better performance in modifying the residual produced by local regression method. The success of the developed technique lies in the effective use of the datasets and the modification process of the residual by using HASM. The results from the future climate scenarios show that precipitation exhibits overall increasing trend from T1 (2011-2040) to T2 (2041-2070) and T2 to T3 (2071-2100) in RCP2.6, RCP4.5, and RCP8.5 emission scenarios. The most significant increase occurs in RCP8.5 from T2 to T3, while the lowest increase is found in RCP2.6 from T2 to T3, increased by 47.11 and 2.12 mm, respectively.

  10. Comparative analysis ex vivo of the accuracy of three apex locators: Root ZX, Bingo 1020 and Ipex

    Directory of Open Access Journals (Sweden)

    Roberta HEIDEMANN

    2009-03-01

    Full Text Available Introduction and objective: The objective of this study was to evaluate ex vivo the reading accuracy of three electronic apex locators – Root ZX, Bingo 1020 and Ipex –, in respect to the real measure of the teeth.Material and methods: Fifty single root premolar teeth extracted were selected. After coronary access, the length tooth (LT measurement was directly realized by the insertion of a K#10 file in the canal until its tip was observed in the apical foramen with the help of a magnifying glass (8X. After removing the file, its length was recorded with accuracy of 0.01 mm using digital caliper. Then, the teeth were electronically measured (LE whit the three apex locators until achieving the zero mark on the display of each unit. The electronically measures obtained were compared with the LT and the differences were analyzed by the Kruskal-Wallis Test and by the test of proportions (α = 0.05. Results: It was found that the Root ZX system was statistically different from the Ipex (p 0.05. Within the limit of tolerance of ± 1.0 mm, the results demonstrated an accuracy of 100% for ZX Root, 94% for Bingo and 90% for Ipex when compared to the LT values. However, in the limits of ± 0.5 mm the accuracy achieved was 90% for Root ZX, 68% for Bingo and 52% for the Ipex. Conclusion: It was concluded that all electronic devices tested were able in determining the precise tooth length when considered a variation of 1 mm from the position of apical foramen. Nevertheless, when considered a variation of 0.5 mm, only the unit Root ZX proved to be accurate.

  11. Accuracy of magnetic resonance cholangiography compared to operative endoscopy in detecting biliary stones, a single center experience and review of literature

    OpenAIRE

    Polistina, Francesco A.; Frego, Mauro; Bisello, Marco; Manzi, Emy; Vardanega, Antonella; Perin, Bortolo

    2015-01-01

    AIM: To compare diagnostic sensitivity, specificity and accuracy of magnetic resonance cholangiopancreatography (MRCP) without contrast medium and endoscopic ultrasound (EUS)/endoscopic retrograde cholangiopancreatography (ERCP) for biliary calculi.

  12. Accuracy of the serological ELISA test compared with the polymerase chain reaction for the diagnosis of cytomegalovirus infection in pregnancy

    Directory of Open Access Journals (Sweden)

    Silvana Varella Parmigiani

    Full Text Available CONTEXT: The most frequently used methods for detecting antibodies are the indirect immunofluorescence test and the enzymatic immunoassay (ELISA. The polymerase chain reaction is a molecular biology technique in which the production of large amounts of specific DNA fragments is induced from very low concentrations of complex substrates aloowing the detection of very low amounts of viral particles. OBJECTIVE: To assess the accuracy of serological/ELISA tests in comparison with the polymerase chain reaction in maternal blood to diagnose cytomegalovirus infection. DESIGN: A descriptive study was performed. SETTING: High-risk outpatient clinic of Campinas University (Unicamp. PARTICIPANTS: We selected 243 pregnant women. All of them had been indicated for blood sampling because of suspicions of cytomegalovirus infection and also because of other infections. MAIN MEASUREMENTS: The group was tested for cytomegalovirus. Serological tests were run and compared to the polymerase chain reaction, which was considered to be the gold standard. Status analyses were done using Fisher's exact test, via the SAS software. RESULTS: The previous cytomegalovirus infection rate was 94.6%. The main reasons for inclusion in the study were fetal nervous system malformation (25.5%, maternal toxoplasmosis (25.5% and Rh isoimmunization (14.8%. Only two women were included because of positive serological immunoglobulin M test for cytomegalovirus. The sensitivity and specificity of the serological tests were 94% and 6% for immunoglobulin G. CONCLUSION: Serological tests had lower sensitivity in comparison with the polymerase chain reaction test when diagnosing cytomegalovirus infection. The consequences of positive polymerase chain reaction and negative immunoglobulin M in women remain unknown.

  13. Horizontal Positional Accuracy of Google Earth’s High-Resolution Imagery Archive

    Directory of Open Access Journals (Sweden)

    David Potere

    2008-12-01

    Full Text Available Google Earth now hosts high-resolution imagery that spans twenty percent of the Earth’s landmass and more than a third of the human population. This contemporary highresolution archive represents a significant, rapidly expanding, cost-free and largely unexploited resource for scientific inquiry. To increase the scientific utility of this archive, we address horizontal positional accuracy (georegistration by comparing Google Earth with Landsat GeoCover scenes over a global sample of 436 control points located in 109 cities worldwide. Landsat GeoCover is an orthorectified product with known absolute positional accuracy of less than 50 meters root-mean-squared error (RMSE. Relative to Landsat GeoCover, the 436 Google Earth control points have a positional accuracy of 39.7 meters RMSE (error magnitudes range from 0.4 to 171.6 meters. The control points derived from satellite imagery have an accuracy of 22.8 meters RMSE, which is significantly more accurate than the 48 control-points based on aerial photography (41.3 meters RMSE; t-test p-value < 0.01. The accuracy of control points in more-developed countries is 24.1 meters RMSE, which is significantly more accurate than the control points in developing countries (44.4 meters RMSE; t-test p-value < 0.01. These findings indicate that Google Earth highresolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world’s peri-urban areas.

  14. The Impact of Ionospheric Disturbances on High Accuracy Positioning in Brazil

    Science.gov (United States)

    Yang, L.; Park, J.; Susnik, A.; Aquino, M. H.; Dodson, A.

    2013-12-01

    High positioning accuracy is a key requirement to a number of applications with a high economic impact, such as precision agriculture, surveying, geodesy, land management, off-shore operations. Global Navigation Satellite Systems (GNSS) carrier phase measurement based techniques, such as Real Time Kinematic (RTK), Network-RTK (NRTK) and Precise Point Positioning (PPP), have played an important role in providing centimetre-level positioning accuracy, and become the core of the above applications. However these techniques are especially sensitive to ionospheric perturbations, in particular scintillation. Brazil sits in one of the most affected regions of the Earth and can be regarded as a test-bed for scenarios of the severe ionospheric condition. Over the Brazilian territory, the ionosphere behaves in a considerably unpredictable way and scintillation activity is very prominent, occurring especially after sunset hours. NRTK services may not be able to provide satisfactory accuracy, or even continuous positioning during strong scintillation periods. CALIBRA (Countering GNSS high Accuracy applications Limitations due to Ionospheric disturbances in BRAzil) started in late 2012 and is a project funded by the GSA (European GNSS Agency) and the European Commission under the Framework Program 7 to deliver improvements on carrier phase based high accuracy algorithms and their implementation in GNSS receivers, aiming to counter the adverse ionospheric effects over Brazil. As the first stage of this project, the ionospheric disturbances, which affect the applications of RTK, NRTK or PPP, are characterized. Typical problems include degraded positioning accuracy, difficulties in ambiguity fixing, NRTK network interpolation errors, long PPP convergence time etc. It will identify how GNSS observables and existing algorithms are degraded by ionosphere related phenomena, evaluating the impact on positioning techniques in terms of accuracy, integrity and availability. Through the

  15. Hybrid head-tracker being examined for the high-accuracy attack rotorcraft market

    Science.gov (United States)

    Blanton, Buddy

    2002-08-01

    The need for the helmet-mounted display (HMD) to present flight, navigation, and weapon information in the pilot's line-of-sight has continued to rise as helicopter missions increase in complexity. To obtain spatial correlation of the direction of the head line-of-sight and pilotage imagery generated from helicopter-mounted sensors, it is necessary to slave the sensors to the head motion. To accomplish this task, a head-tracking system (HTS) must be incorporated into the HMD. There are a variety of techniques that could be applied for locating the position and attitude of a helmet-mounted display. Regardless of the technology, an HTS must provide defined measurements of accuracy. System parameters include motion box size, angular range, pointing angle accuracy, pointing angle resolution, update rate, and slew rate. This paper focuses on a hybrid tracker implementation in which a combination of optical and inertial tracking using strap-down gyros is preferred. Specifically, this tracker implementation is being examined for the high-accuracy attack rotorcraft market which requires a high degree of accuracy. The performance and resultant cost of the tracker components are determined by the specific needs of the intended application. The paper will also indicate how the various requirements drive the cost, configuration, and performance of the resultant hybrid head-tracker.

  16. Literature survey of high-impact journals revealed reporting weaknesses in abstracts of diagnostic accuracy studies.

    Science.gov (United States)

    Korevaar, Daniël A; Cohen, Jérémie F; Hooft, Lotty; Bossuyt, Patrick M M

    2015-06-01

    Informative journal abstracts are crucial for the identification and initial appraisal of studies. We aimed to evaluate the informativeness of abstracts of diagnostic accuracy studies. PubMed was searched for reports of studies that had evaluated the diagnostic accuracy of a test against a clinical reference standard, published in 12 high-impact journals in 2012. Two reviewers independently evaluated the information contained in included abstracts using 21 items deemed important based on published guidance for adequate reporting and study quality assessment. We included 103 abstracts. Crucial information on study population, setting, patient sampling, and blinding as well as confidence intervals around accuracy estimates were reported in items per abstract was 10.1 of 21 (standard deviation 2.2). The mean number of reported items was significantly lower for multiple-gate (case-control type) studies, in reports in specialty journals, and for studies with smaller sample sizes and lower abstract word counts. No significant differences were found between studies evaluating different types of tests. Many abstracts of diagnostic accuracy study reports in high-impact journals are insufficiently informative. Developing guidelines for such abstracts could help the transparency and completeness of reporting. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. About accuracy of the discrimination parameter estimation for the dual high-energy method

    Science.gov (United States)

    Osipov, S. P.; Chakhlov, S. V.; Osipov, O. S.; Shtein, A. M.; Strugovtsev, D. V.

    2015-04-01

    A set of the mathematical formulas to estimate the accuracy of discrimination parameters for two implementations of the dual high energy method - by the effective atomic number and by the level lines is given. The hardware parameters which influenced on the accuracy of the discrimination parameters are stated. The recommendations to form the structure of the high energy X-ray radiation impulses are formulated. To prove the applicability of the proposed procedure there were calculated the statistical errors of the discrimination parameters for the cargo inspection system of the Tomsk polytechnic university on base of the portable betatron MIB-9. The comparison of the experimental estimations and the theoretical ones of the discrimination parameter errors was carried out. It proved the practical applicability of the algorithm to estimate the discrimination parameter errors for the dual high energy method.

  18. High accuracy digital aging monitor based on PLL-VCO circuit

    Science.gov (United States)

    Yuejun, Zhang; Zhidi, Jiang; Pengjun, Wang; Xuelong, Zhang

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm2. After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%.

  19. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  20. Comparative evaluation of the accuracy of pick up transfer impressions performed with two different types of trays

    Directory of Open Access Journals (Sweden)

    Aline Treml

    2013-06-01

    Full Text Available Introduction: The success of implant-supported prostheses is related to the passive union between the prostheses’ connections and the implants, so it is necessary to obtain an accurate working cast. Objective: To evaluate the accuracy of the transfer impressions of implants performed with individual acrylic resin trays and conventional trays using polyvinyl siloxane. Material and methods: To carry out the transfer impressions, a master cast with four external hexagon implants parallel to each other was used. Five impressions were made with individual acrylic resin trays and five other impressions with modified conventional trays, opened in the region of the implants. The linear measurements between the implants were made with a digital caliper with an accuracy of 0.01 mm and the results were statistically evaluated (alpha = 5%. Results: For the points AB and BC, the measurements obtained with the individual trays were statistically similar to the master cast. For the points CD and DA no statistical differences among the three groups were observed. Conclusion: Given the obtained results and the methodology used, it can be concluded that the impressions performed with individual trays presented higher accuracy compared to the ones obtained with conventional trays.

  1. High Impedance Comparator for Monitoring Water Resistivity.

    Science.gov (United States)

    Holewinski, Paul K.

    1984-01-01

    A high-impedance comparator suitable for monitoring the resistivity of a deionized or distilled water line supplying water in the 50 Kohm/cm-2 Mohm/cm range is described. Includes information on required circuits (with diagrams), sensor probe assembly, and calibration techniques. (JN)

  2. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    CERN Document Server

    Smith, Donald F; Leach, Franklin E; Robinson, Errol W; Paša-Tolić, Ljiljana; Heeren, Ron M A

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissu...

  3. Results of error correction techniques applied on two high accuracy coordinate measuring machines

    Energy Technology Data Exchange (ETDEWEB)

    Pace, C.; Doiron, T.; Stieren, D.; Borchardt, B.; Veale, R. (Sandia National Labs., Albuquerque, NM (USA); National Inst. of Standards and Technology, Gaithersburg, MD (USA))

    1990-01-01

    The Primary Standards Laboratory at Sandia National Laboratories (SNL) and the Precision Engineering Division at the National Institute of Standards and Technology (NIST) are in the process of implementing software error correction on two nearly identical high-accuracy coordinate measuring machines (CMMs). Both machines are Moore Special Tool Company M-48 CMMs which are fitted with laser positioning transducers. Although both machines were manufactured to high tolerance levels, the overall volumetric accuracy was insufficient for calibrating standards to the levels both laboratories require. The error mapping procedure was developed at NIST in the mid 1970's on an earlier but similar model. The error mapping procedure was originally very complicated and did not make any assumptions about the rigidness of the machine as it moved, each of the possible error motions was measured at each point of the error map independently. A simpler mapping procedure was developed during the early 1980's which assumed rigid body motion of the machine. This method has been used to calibrate lower accuracy machines with a high degree of success and similar software correction schemes have been implemented by many CMM manufacturers. The rigid body model has not yet been used on highly repeatable CMMs such as the M48. In this report we present early mapping data for the two M48 CMMs. The SNL CMM was manufactured in 1985 and has been in service for approximately four years, whereas the NIST CMM was delivered in early 1989. 4 refs., 5 figs.

  4. RNA secondary structure modeling at consistent high accuracy using differential SHAPE.

    Science.gov (United States)

    Rice, Greggory M; Leonard, Christopher W; Weeks, Kevin M

    2014-06-01

    RNA secondary structure modeling is a challenging problem, and recent successes have raised the standards for accuracy, consistency, and tractability. Large increases in accuracy have been achieved by including data on reactivity toward chemical probes: Incorporation of 1M7 SHAPE reactivity data into an mfold-class algorithm results in median accuracies for base pair prediction that exceed 90%. However, a few RNA structures are modeled with significantly lower accuracy. Here, we show that incorporating differential reactivities from the NMIA and 1M6 reagents--which detect noncanonical and tertiary interactions--into prediction algorithms results in highly accurate secondary structure models for RNAs that were previously shown to be difficult to model. For these RNAs, 93% of accepted canonical base pairs were recovered in SHAPE-directed models. Discrepancies between accepted and modeled structures were small and appear to reflect genuine structural differences. Three-reagent SHAPE-directed modeling scales concisely to structurally complex RNAs to resolve the in-solution secondary structure analysis problem for many classes of RNA.

  5. A fast and high accuracy numerical simulation algorithm of the polymer spherulite at the mesoscale Level

    Science.gov (United States)

    Liu, Yongzhi; Geng, Tie; (Tom Turng, Lih-Sheng; Liu, Chuntai; Cao, Wei; Shen, Changyu

    2017-09-01

    In the multiscale numerical simulation of polymer crystallization during the processing period, flow and temperature of the polymer melt are simulated on the macroscale level, while nucleation and growth of the spherulite are simulated at the mesoscale level. As a part of the multiscale simulation, the meso-simulation requires a fast solving speed because the meso-simulation software must be run several times in every macro-element at each macro-step. Meanwhile, the accuracy of the calculation results is also very important. It is known that the simulation geometry of crystallization includes planar (2D) and three-dimensional space (3D). The 3D calculations are more accurate but more expensive because of the long CPU time consumed. On the contrary, 2D calculations are always much faster but lower in accuracy. To reach the desirable speed and high accuracy at the same time, an algorithm is presented, in which the Delesse law coupled with the Monte Carlo method and pixel method are employed to simulate the nucleation, growth, and impingement of the polymer spherulite at the mesoscale level. Based on this algorithm, a software is developed with the Visual C++ language, and its numerical examples’ results prove that the solving speed of this algorithm is as fast as the 2D classical simulation and the calculation accuracy is at the same level as the 3D simulation.

  6. High Accuracy Gravitational Waveforms from Black Hole Binary Inspirals Using OpenCL

    CERN Document Server

    McKennon, Justin; Khanna, Gaurav

    2012-01-01

    There is a strong need for high-accuracy and efficient modeling of extreme-mass-ratio binary black hole systems because these are strong sources of gravitational waves that would be detected by future observatories. In this article, we present sample results from our Teukolsky EMRI code: a time-domain Teukolsky equation solver (a linear, hyperbolic, partial differential equation solver using finite-differencing), that takes advantage of several mathematical and computational enhancements to efficiently generate long-duration and high-accuracy EMRI waveforms. We emphasize here the computational advances made in the context of this code. Currently there is considerable interest in making use of many-core processor architectures, such as Nvidia and AMD graphics processing units (GPUs) for scientific computing. Our code uses the Open Computing Language (OpenCL) for taking advantage of the massive parallelism offered by modern GPU architectures. We present the performance of our Teukolsky EMRI code on multiple mod...

  7. Cavity ring-down technique for measurement of reflectivity of high reflectivity mirrors with high accuracy

    Indian Academy of Sciences (India)

    G Sridhar; Sandeep K Agarwalla; Sunita Singh; L M Gantayet

    2010-12-01

    A simple, accurate and reliable method for measuring the reflectivity of laser-grade mirrors ( > 99.5 %) based on cavity ring-down (CRD) technique has been success-fully demonstrated in our laboratory using a pulsed Nd:YAG laser. A fast photomultiplier tube with an oscilloscope was used to detect and analyse the CRD signal. The cavity decay times were measured for three cavities formed by a combination of three mirror pairs. The absolute reflectivities 1, 2, 3 were determined to be 99.94%, 99.63%, 99.52% at normal incidence. The reflectivity of mirrors is measured to an accuracy of 0.01%.

  8. Reported Energy Intake Accuracy Compared to Doubly Labeled Water and Usability of the Mobile Food Record among Community Dwelling Adults

    Science.gov (United States)

    Boushey, Carol J.; Spoden, Melissa; Delp, Edward J.; Zhu, Fengqing; Bosch, Marc; Ahmad, Ziad; Shvetsov, Yurii B.; DeLany, James P.; Kerr, Deborah A.

    2017-01-01

    The mobile Food Record (mFR) is an image-based dietary assessment method for mobile devices. The study primary aim was to test the accuracy of the mFR by comparing reported energy intake (rEI) to total energy expenditure (TEE) using the doubly labeled water (DLW) method. Usability of the mFR was assessed by questionnaires before and after the study. Participants were 45 community dwelling men and women, 21–65 years. They were provided pack-out meals and snacks and encouraged to supplement with usual foods and beverages not provided. After being dosed with DLW, participants were instructed to record all eating occasions over a 7.5 days period using the mFR. Three trained analysts estimated rEI from the images sent to a secure server. rEI and TEE correlated significantly (Spearman correlation coefficient of 0.58, p < 0.0001). The mean percentage of underreporting below the lower 95% confidence interval of the ratio of rEI to TEE was 12% for men (standard deviation (SD) ± 11%) and 10% for women (SD ± 10%). The results demonstrate the accuracy of the mFR is comparable to traditional dietary records and other image-based methods. No systematic biases could be found. The mFR was received well by the participants and usability was rated as easy. PMID:28327502

  9. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation

    Directory of Open Access Journals (Sweden)

    Euiho Kim

    2017-09-01

    Full Text Available In the Federal Aviation Administration’s (FAA performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0–77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment.

  10. Friction compensation design based on state observer and adaptive law for high-accuracy positioning system

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Friction is one of the main factors that affect the positioning accuracy of motion system. Friction compensation based on friction model is usually adopted to eliminate the nonlinear effect of friction. This paper presents a proportional-plus-derivative (PD) feedback controller with a friction compensator based on LuGre friction model. We also design a state observer to observe the unknown state of LuGre friction model, and adopt a parameter adaptive law and off-line approximation to estimate the parameters of LuGre friction model. Comparative experiments are carried out among our proposed controller, PD controller with friction compensation based on classical friction model, and PD controller without friction compensation. Experimental results demonstrate that our proposed controller can achieve better performance, especially higher positioning accuracy.

  11. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Donald F.; Kiss, Andras; Leach, Franklin E.; Robinson, Errol W.; Pasa-Tolic, Ljiljana; Heeren, Ronald M.

    2013-07-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for exact mass elemental formula assignment. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (m/Δm50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m/Δm50% > 3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.

  12. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  13. High accuracy solution of bi-directional wave propagation in continuum mechanics

    Science.gov (United States)

    Mulloth, Akhil; Sawant, Nilesh; Haider, Ijlal; Sharma, Nidhi; Sengupta, Tapan K.

    2015-10-01

    Solution of partial differential equations by numerical method is strongly affected due to numerical errors, which are caused mainly by deviation of numerical dispersion relation from the physical dispersion relation. To quantify and control such errors and obtain high accuracy solutions, we consider a class of problems which involve second derivative of unknowns with respect to time. Here, we analyse numerical metrics such as the numerical group velocity, numerical phase speed and the numerical amplification factor for different methods in solving the model bi-directional wave equation (BDWE). Such equations can be solved directly, for example, by Runge-Kutta-Nyström (RKN) method. Alternatively, the governing equation can be converted to a set of first order in time equations and then using four-stage fourth order Runge-Kutta (RK4) method for time integration. Spatial discretisation considered are the classical second and fourth order central difference schemes, along with Lele's central compact scheme for evaluating second derivatives. In another version, we have used Lele's scheme for evaluating first derivatives twice to obtain the second derivative. As BDWE represents non-dissipative, non-dispersive dynamics, we also consider the canonical problem of linearised rotating shallow water equation (LRSWE) in a new formulation involving second order derivative in time, which represents dispersive waves along with a stationary mode. The computations of LRSWE with RK4 and RKN methods for temporal discretisation and Lele's compact schemes for spatial discretisation are compared with computations performed with RK4 method for time discretisation and staggered compact scheme (SCS) for spatial discretisation by treating it as a set of three equations as reported in Rajpoot et al. (2012) [1].

  14. Making high-accuracy null depth measurements for the LBTI exozodi survey

    Science.gov (United States)

    Mennesson, Bertrand; Defrère, Denis; Nowak, Matthias; Hinz, Philip; Millan-Gabet, Rafael; Absil, Olivier; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William; Kennedy, Grant M.; Marion, Lindsay; Roberge, Aki; Serabyn, Eugene; Skemer, Andy J.; Stapelfeldt, Karl; Weinberger, Alycia J.; Wyatt, Mark

    2016-08-01

    The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of 12 zodis per star, for a representative ensemble of 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 σ measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation ("null") levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.

  15. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    Directory of Open Access Journals (Sweden)

    Zheng You

    2013-04-01

    Full Text Available The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  16. High Accuracy Attitude Control System Design for Satellite with Flexible Appendages

    Directory of Open Access Journals (Sweden)

    Wenya Zhou

    2014-01-01

    Full Text Available In order to realize the high accuracy attitude control of satellite with flexible appendages, attitude control system consisting of the controller and structural filter was designed. When the low order vibration frequency of flexible appendages is approximating the bandwidth of attitude control system, the vibration signal will enter the control system through measurement device to bring impact on the accuracy or even the stability. In order to reduce the impact of vibration of appendages on the attitude control system, the structural filter is designed in terms of rejecting the vibration of flexible appendages. Considering the potential problem of in-orbit frequency variation of the flexible appendages, the design method for the adaptive notch filter is proposed based on the in-orbit identification technology. Finally, the simulation results are given to demonstrate the feasibility and effectiveness of the proposed design techniques.

  17. High-accuracy determination of the neutron flux at n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V. [Sezione di Bari, INFN, Bari (Italy); Guerrero, C.; Andriamonje, S.; Boccone, V.; Brugger, M.; Calviani, M.; Cerutti, F.; Chin, M.; Ferrari, A.; Kadi, Y.; Losito, R.; Versaci, R.; Vlachoudis, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA), Athens (Greece); Tarrio, D.; Duran, I.; Leal-Cidoncha, E.; Paradela, C. [Universidade de Santiago de Compostela, Santiago (Spain); Altstadt, S.; Goebel, K.; Langer, C.; Reifarth, R.; Schmidt, S.; Weigand, M. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (Germany); Andrzejewski, J.; Marganiec, J.; Perkowski, J. [Uniwersytet Lodzki, Lodz (Poland); Audouin, L.; Leong, L.S.; Tassan-Got, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Becares, V.; Cano-Ott, D.; Garcia, A.R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S. [Charles University, Prague (Czech Republic); Belloni, F.; Fraval, K.; Gunsing, F.; Lampoudis, C.; Papaevangelou, T. [Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E.; Chiaveri, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Billowes, J.; Ware, T.; Wright, T. [University of Manchester, Manchester (United Kingdom); Bosnar, D.; Zugec, P. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Calvino, F.; Cortes, G.; Gomez-Hornillos, M.B.; Riego, A. [Universitat Politecnica de Catalunya, Barcelona (Spain); Carrapico, C.; Goncalves, I.F.; Sarmento, R.; Vaz, P. [Universidade Tecnica de Lisboa, Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Lisboa (Portugal); Cortes-Giraldo, M.A.; Praena, J.; Quesada, J.M.; Sabate-Gilarte, M. [Universidad de Sevilla, Sevilla (Spain); Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R. [National Technical University of Athens (NTUA), Athens (Greece); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Dressler, R.; Kivel, N.; Schumann, D.; Steinegger, P. [Paul Scherrer Institut, Villigen PSI (Switzerland); Dzysiuk, N.; Mastinu, P.F. [Laboratori Nazionali di Legnaro, INFN, Rome (Italy); Eleftheriadis, C.; Manousos, A. [Aristotle University of Thessaloniki, Thessaloniki (Greece); Ganesan, S.; Gurusamy, P.; Saxena, A. [Bhabha Atomic Research Centre (BARC), Mumbai (IN); Griesmayer, E.; Jericha, E.; Leeb, H. [Technische Universitaet Wien, Atominstitut, Wien (AT); Hernandez-Prieto, A. [European Organization for Nuclear Research (CERN), Geneva (CH); Universitat Politecnica de Catalunya, Barcelona (ES); Jenkins, D.G.; Vermeulen, M.J. [University of York, Heslington, York (GB); Kaeppeler, F. [Institut fuer Kernphysik, Karlsruhe Institute of Technology, Campus Nord, Karlsruhe (DE); Koehler, P. [Oak Ridge National Laboratory (ORNL), Oak Ridge (US); Lederer, C. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE); University of Vienna, Faculty of Physics, Vienna (AT); Massimi, C.; Mingrone, F.; Vannini, G. [Universita di Bologna (IT); INFN, Sezione di Bologna, Dipartimento di Fisica, Bologna (IT); Mengoni, A.; Ventura, A. [Agenzia nazionale per le nuove tecnologie, l' energia e lo sviluppo economico sostenibile (ENEA), Bologna (IT); Milazzo, P.M. [Sezione di Trieste, INFN, Trieste (IT); Mirea, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Mondalaers, W.; Plompen, A.; Schillebeeckx, P. [Institute for Reference Materials and Measurements, European Commission JRC, Geel (BE); Pavlik, A.; Wallner, A. [University of Vienna, Faculty of Physics, Vienna (AT); Rauscher, T. [University of Basel, Department of Physics and Astronomy, Basel (CH); Roman, F. [European Organization for Nuclear Research (CERN), Geneva (CH); Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Rubbia, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Laboratori Nazionali del Gran Sasso dell' INFN, Assergi (AQ) (IT); Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE)

    2013-12-15

    The neutron flux of the n{sub T}OF facility at CERN was measured, after installation of the new spallation target, with four different systems based on three neutron-converting reactions, which represent accepted cross sections standards in different energy regions. A careful comparison and combination of the different measurements allowed us to reach an unprecedented accuracy on the energy dependence of the neutron flux in the very wide range (thermal to 1 GeV) that characterizes the n{sub T}OF neutron beam. This is a pre-requisite for the high accuracy of cross section measurements at n{sub T}OF. An unexpected anomaly in the neutron-induced fission cross section of {sup 235}U is observed in the energy region between 10 and 30keV, hinting at a possible overestimation of this important cross section, well above currently assigned uncertainties. (orig.)

  18. Navigation Facility for High Accuracy Offline Trajectory and Attitude Estimation in Airborne Applications

    Directory of Open Access Journals (Sweden)

    A. Renga

    2013-01-01

    Full Text Available The paper focuses on a navigation facility, relying on commercial-off-the-shelf (COTS technology, developed to generate high-accuracy attitude and trajectory measurements in postprocessing. Target performance is cm-level positioning with tenth of degree attitude accuracy. The facility is based on the concept of GPS-aided inertial navigation but comprises carrier-phase differential GPS (CDGPS processing and attitude estimation based on multiantenna GPS configurations. Expected applications of the system include: (a performance assessment of integrated navigation systems, developed for general aviation aircraft and medium size unmanned aircraft systems (UAS; (b generation of reference measurements to evaluate the flight performance of airborne sensors (e.g., radar or laser; and (c generation of reference trajectory and attitude for improving imaging quality of airborne remote sensing data. The paper describes system architecture, selected algorithms for data processing and integration, and theoretical performance evaluation. Experimental results are also presented confirming the effectiveness of the implemented approach.

  19. Will it Blend? Visualization and Accuracy Evaluation of High-Resolution Fuzzy Vegetation Maps

    Science.gov (United States)

    Zlinszky, A.; Kania, A.

    2016-06-01

    Instead of assigning every map pixel to a single class, fuzzy classification includes information on the class assigned to each pixel but also the certainty of this class and the alternative possible classes based on fuzzy set theory. The advantages of fuzzy classification for vegetation mapping are well recognized, but the accuracy and uncertainty of fuzzy maps cannot be directly quantified with indices developed for hard-boundary categorizations. The rich information in such a map is impossible to convey with a single map product or accuracy figure. Here we introduce a suite of evaluation indices and visualization products for fuzzy maps generated with ensemble classifiers. We also propose a way of evaluating classwise prediction certainty with "dominance profiles" visualizing the number of pixels in bins according to the probability of the dominant class, also showing the probability of all the other classes. Together, these data products allow a quantitative understanding of the rich information in a fuzzy raster map both for individual classes and in terms of variability in space, and also establish the connection between spatially explicit class certainty and traditional accuracy metrics. These map products are directly comparable to widely used hard boundary evaluation procedures, support active learning-based iterative classification and can be applied for operational use.

  20. A comparative study of the quantitative accuracy of three-dimensional reconstructions of spinal cord from serial histological sections.

    Science.gov (United States)

    Duerstock, B S; Bajaj, C L; Borgens, R B

    2003-05-01

    We evaluated the accuracy of estimating the volume of biological soft tissues from their three-dimensional (3D) computer wireframe models, reconstructed from histological data sets obtained from guinea-pig spinal cords. We compared quantification from two methods of three-dimensional surface reconstruction to standard quantitative techniques, Cavalieri method employing planimetry and point counting and Geometric Best-Fitting. This involved measuring a group of spinal cord segments and test objects to evaluate the accuracy of our novel quantification approaches. Once a quantitative methodology was standardized there was no statistical difference in volume measurement of spinal segments between quantification methods. We found that our 3D surface reconstructions' ability to model precisely actual soft tissues provided an accurate volume quantification of complex anatomical structures as standard approaches of Cavalieri estimation and Geometric Best-Fitting. Additionally, 3D reconstruction quantitatively interrogates and three-dimensionally images spinal cord segments and obscured internal pathological features with approximately the same effort required for standard quantification alone.

  1. Diagnostic accuracy of DXA compared to conventional spine radiographs for the detection of vertebral fractures in children

    Energy Technology Data Exchange (ETDEWEB)

    Adiotomre, E. [Sheffield Teaching Hospitals NHS Foundation Trust, Radiology Department, Sheffield, South Yorkshire (United Kingdom); Sheffield Children' s Hospital NHS Foundation Trust, Radiology Department, Sheffield, South Yorkshire (United Kingdom); Summers, L.; Digby, M. [University of Sheffield, Sheffield Medical School, Sheffield, South Yorkshire (United Kingdom); Allison, A.; Walters, S.J. [University of Sheffield, School of Health and Related Research, Sheffield, South Yorkshire (United Kingdom); Broadley, P.; Lang, I. [Sheffield Children' s Hospital NHS Foundation Trust, Radiology Department, Sheffield, South Yorkshire (United Kingdom); Morrison, G. [Sheffield Teaching Hospitals NHS Foundation Trust, Medical Physics, Sheffield, South Yorkshire (United Kingdom); Bishop, N.; Arundel, P. [University of Sheffield, Academic Unit of Child Health, Sheffield, South Yorkshire (United Kingdom); Offiah, A.C. [Sheffield Children' s Hospital NHS Foundation Trust, Radiology Department, Sheffield, South Yorkshire (United Kingdom); University of Sheffield, Academic Unit of Child Health, Sheffield, South Yorkshire (United Kingdom)

    2017-05-15

    In children, radiography is performed to diagnose vertebral fractures and dual energy x-ray absorptiometry (DXA) to assess bone density. In adults, DXA assesses both. We aimed to establish whether DXA can replace spine radiographs in assessment of paediatric vertebral fractures. Prospectively, lateral spine radiographs and lateral spine DXA of 250 children performed on the same day were independently scored by three radiologists using the simplified algorithm-based qualitative technique and blinded to results of the other modality. Consensus radiograph read and second read of 100 random images were performed. Diagnostic accuracy, inter/intraobserver and intermodality agreements, patient/carer experience and radiation dose were assessed. Average sensitivity and specificity (95 % confidence interval) in diagnosing one or more vertebral fractures requiring treatment was 70 % (58-82 %) and 97 % (94-100 %) respectively for DXA and 74 % (55-93 %) and 96 % (95-98 %) for radiographs. Fleiss' kappa for interobserver and average kappa for intraobserver reliability were 0.371 and 0.631 respectively for DXA and 0.418 and 0.621 for radiographs. Average effective dose was 41.9 μSv for DXA and 232.7 μSv for radiographs. Image quality was similar. Given comparable image quality and non-inferior diagnostic accuracy, lateral spine DXA should replace conventional radiographs for assessment of vertebral fractures in children. (orig.)

  2. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    Science.gov (United States)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air

  3. A High-accuracy Approach to Pronunciation Prediction for Out-of-vocabulary English Word

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; CHEN Gui-lin; XU Liang-xian

    2005-01-01

    Letter-to-Sound conversion is one of the fundamental issues in text-to-speech synthesis. In this paper, we address an approach to automatic prediction of word pronunciation. This approach combines example-based learning and dynamic-programming searching to predict sub-word pronunciation. Word pronunciation is formed by concatenating sub-word pronunciations. We conducted comparative experiments over a large-scale English dictionary. Experimental results show that this approach can achieve accuracy of 70.1%, which outperforms those published results.

  4. High-accuracy mass determination of unstable cesium and barium isotopes

    CERN Document Server

    Ames, F; Beck, D; Bollen, G; De Saint-Simon, M; Jertz, R; Kluge, H J; Kohl, A; König, M; Lunney, M D; Martel, I; Moore, R B; Otto, T; Patyk, Z; Raimbault-Hartmann, H; Rouleau, G; Savard, G; Schark, E; Schwarz, S; Schweikhard, L; Stolzenberg, H; Szerypo, J

    1999-01-01

    Direct mass measurements of short-lived Cs and Ba isotopes have been performed with the tandem Penning trap mass spectrometer ISOLTRAP installed at the on-line isotope separator ISOLDE at CERN. Typically, a mass resolving power of 600 000 and an accuracy of $\\delta \\mbox{m} \\approx 13$ keV have been obtained. The masses of $^{123,124,126}$Ba and $^{122m}$Cs were measured for the first time. A least-squares adjustment has been performed and the experimental masses are compared with theoretical ones, particularly in the frame of a macroscopic-microscopic model.

  5. SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy

    Science.gov (United States)

    Samango-Sprouse, Carole; Banjevic, Milena; Ryan, Allison; Sigurjonsson, Styrmir; Zimmermann, Bernhard; Hill, Matthew; Hall, Megan P.; Westemeyer, Margaret; Saucier, Jennifer; Demko, Zachary; Rabinowitz, Matthew

    2013-01-01

    Objective To develop a single nucleotide polymorphism- and informatics-based non-invasive prenatal test that detects sex chromosome aneuploidies early in pregnancy. Methods Fifteen aneuploid samples, including thirteen 45,X, two 47,XXY, and one 47,XYY, along with 185 euploid controls, were analyzed. Cell-free DNA was isolated from maternal plasma, amplified in a single multiplex PCR assay that targeted 19,488 polymorphic loci covering chromosomes 13, 18, 21, X, and Y, and sequenced. Sequencing results were analyzed using a Bayesian-based maximum likelihood statistical method to determine copy number of interrogated chromosomes, calculating sample-specific accuracies. Results Of the samples that passed a stringent quality control metric (93%), the algorithm correctly identified copy number at all five chromosomes in all 187 samples, for 934/935 correct calls as early as 9.4 weeks of gestation. We detected 45,X with 91.7% sensitivity (CI: 61.5-99.8%) and 100% specificity (CI: 97.9-100%), and 47,XXY and 47,XYY. The average calculated accuracy was 99.78%. Conclusion This method non-invasively detected 45,X, 47,XXY, and 47,XYY fetuses from cfDNA isolated from maternal plasma with high calculated accuracies, and thus offers a non-invasive method with the potential to function as a routine screen allowing for early prenatal detection of rarely diagnosed yet commonly occurring sex aneuploidies. PMID:23712453

  6. High-accuracy defect sizing for nozzle attachment welds using asymmetric TOFD

    Energy Technology Data Exchange (ETDEWEB)

    Bloodworth, T. [AEA Technology, Risley (United Kingdom)

    1999-09-01

    Inspection procedures for the detection, characterisation and high-accuracy sizing of defects in nozzle attachment welds in a Swedish BWR have been developed. These welds are set-on nozzle-to-pipe attachment welds between the main recirculation pipe and related piping systems. The nozzles and the main recirculation pipe are made of ferritic steel with austenitic stainless steel cladding on the inner surface. The overall wall thickness of the nozzle is 30 mm. The inspection uses an automated pulse-echo technique for the detection and length sizing of defects. Software for the display of complex geometry ultrasonic data is used to assist in data analysis. An unorthodox automated ultrasonic TOFD technique is used to measure the through-wall height of defects. This technique deploys probes on both the nozzle and main pipe surfaces. The TOFD data for this complex geometry are analysed using the CGTOFD software, to locate the origin of defect edge signals. The Qualification detection criterion for this inspection is the detection of defects 6 mm x 18 mm (height x length) or greater. The required length measurement accuracy is {+-}14 mm and the required through-wall height measurement accuracy is {+-}2.3 mm. This last requirement is very demanding. The inspection procedures for detection and sizing passed Procedure Qualification when measured against the above criteria on an `open` test specimen. Data collection and analysis personnel have subsequently passed Personnel Qualification using `blind` specimens. (Author)

  7. Uncertainty and target accuracy studies for the very high temperature reactor(VHTR) physics parameters.

    Energy Technology Data Exchange (ETDEWEB)

    Taiwo, T. A.; Palmiotti, G.; Aliberti, G.; Salvatores, M.; Kim, T.K.

    2005-09-16

    The potential impact of nuclear data uncertainties on a number of performance parameters (core and fuel cycle) of the prismatic block-type Very High Temperature Reactor (VHTR) has been evaluated and results are presented in this report. An uncertainty analysis has been performed, based on sensitivity theory, which underlines what cross-sections, what energy range and what isotopes are responsible for the most significant uncertainties. In order to give guidelines on priorities for new evaluations or validation experiments, required accuracies on specific nuclear data have been derived, accounting for target accuracies on major design parameters. Results of an extensive analysis indicate only a limited number of relevant parameters do not meet the target accuracies assumed in this work; this does not imply that the existing nuclear cross-section data cannot be used for the feasibility and pre-conceptual assessments of the VHTR. However, the results obtained depend on the uncertainty data used, and it is suggested to focus some future evaluation work on the production of consistent, as far as possible complete and user oriented covariance data.

  8. High accuracy measurements of magnetic field integrals for the european XFEL undulator systems

    Science.gov (United States)

    Wolff-Fabris, Frederik; Viehweger, Marc; Li, Yuhui; Pflüger, Joachim

    2016-10-01

    Two high accuracy moving wire (MW) measurement systems based on stretched wire technique were built for the European XFEL (XFEL.EU). They were dedicated to monitor, tune and improve the magnetic field integrals properties during the serial production of the undulator segments, phase shifters and air coil correctors for XFEL.EU. For the magnetic tuning of phase shifters and the calibration of the air coils correctors a short portable MW measurement bench was built to measure first field integrals in short devices with magnetic length of less than about 300 mm and with an ultimate accuracy much better than 1 G cm (0.001 T mm). A long MW measurement setup was dedicated to obtain the total first and second field integrals on the 5-meters long undulator segments with accuracy of about 4 G cm (0.004 T mm) and 2000 G cm2 (20 T mm2) for the 1st and 2nd field integrals, respectively. Using these data a method was developed to compute the proper corrections for the air coils correctors used at both extremities so that zero first and second field integrals for an undulator segment are obtained. It is demonstrated that charging air coils correctors with these corrections results in near zero effect to the electron trajectory in the undulator systems and consequently no negative impact on the self-amplified spontaneous emission (SASE) process should occur.

  9. COMPARATIVE ASSESSMENT OF VERY HIGH RESOLUTION SATELLITE AND AERIAL ORTHOIMAGERY

    Directory of Open Access Journals (Sweden)

    P. Agrafiotis

    2015-03-01

    Full Text Available This paper aims to assess the accuracy and radiometric quality of orthorectified high resolution satellite imagery from Pleiades-1B satellites through a comparative evaluation of their quantitative and qualitative properties. A Pleiades-B1 stereopair of high resolution images taken in 2013, two adjacent GeoEye-1 stereopairs from 2011 and aerial orthomosaic (LSO provided by NCMA S.A (Hellenic Cadastre from 2007 have been used for the comparison tests. As control dataset orthomosaic from aerial imagery provided also by NCMA S.A (0.25m GSD from 2012 was selected. The process for DSM and orthoimage production was performed using commercial digital photogrammetric workstations. The two resulting orthoimages and the aerial orthomosaic (LSO were relatively and absolutely evaluated for their quantitative and qualitative properties. Test measurements were performed using the same check points in order to establish their accuracy both as far as the single point coordinates as well as their distances are concerned. Check points were distributed according to JRC Guidelines for Best Practice and Quality Checking of Ortho Imagery and NSSDA standards while areas with different terrain relief and land cover were also included. The tests performed were based also on JRC and NSSDA accuracy standards. Finally, tests were carried out in order to assess the radiometric quality of the orthoimagery. The results are presented with a statistical analysis and they are evaluated in order to present the merits and demerits of the imaging sensors involved for orthoimage production. The results also serve for a critical approach for the usability and cost efficiency of satellite imagery for the production of Large Scale Orthophotos.

  10. Comparative Assessment of Very High Resolution Satellite and Aerial Orthoimagery

    Science.gov (United States)

    Agrafiotis, P.; Georgopoulos, A.

    2015-03-01

    This paper aims to assess the accuracy and radiometric quality of orthorectified high resolution satellite imagery from Pleiades-1B satellites through a comparative evaluation of their quantitative and qualitative properties. A Pleiades-B1 stereopair of high resolution images taken in 2013, two adjacent GeoEye-1 stereopairs from 2011 and aerial orthomosaic (LSO) provided by NCMA S.A (Hellenic Cadastre) from 2007 have been used for the comparison tests. As control dataset orthomosaic from aerial imagery provided also by NCMA S.A (0.25m GSD) from 2012 was selected. The process for DSM and orthoimage production was performed using commercial digital photogrammetric workstations. The two resulting orthoimages and the aerial orthomosaic (LSO) were relatively and absolutely evaluated for their quantitative and qualitative properties. Test measurements were performed using the same check points in order to establish their accuracy both as far as the single point coordinates as well as their distances are concerned. Check points were distributed according to JRC Guidelines for Best Practice and Quality Checking of Ortho Imagery and NSSDA standards while areas with different terrain relief and land cover were also included. The tests performed were based also on JRC and NSSDA accuracy standards. Finally, tests were carried out in order to assess the radiometric quality of the orthoimagery. The results are presented with a statistical analysis and they are evaluated in order to present the merits and demerits of the imaging sensors involved for orthoimage production. The results also serve for a critical approach for the usability and cost efficiency of satellite imagery for the production of Large Scale Orthophotos.

  11. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs.

    Directory of Open Access Journals (Sweden)

    Alexander T Dilthey

    2016-10-01

    Full Text Available Genetic variation at the Human Leucocyte Antigen (HLA genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG framework. First, we construct a PRG for 46 (mostly HLA genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1 and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data. Of 158 alleles tested, we correctly infer 157 alleles (99.4%. We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30-250 CPU hours per sample remain a

  12. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs.

    Science.gov (United States)

    Dilthey, Alexander T; Gourraud, Pierre-Antoine; Mentzer, Alexander J; Cereb, Nezih; Iqbal, Zamin; McVean, Gil

    2016-10-01

    Genetic variation at the Human Leucocyte Antigen (HLA) genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing) as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG) framework. First, we construct a PRG for 46 (mostly HLA) genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1) and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data). Of 158 alleles tested, we correctly infer 157 alleles (99.4%). We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30-250 CPU hours per sample) remain a significant

  13. Comparative accuracy of anal and cervical cytology in screening for moderate to severe dysplasia by magnification guided punch biopsy: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Wm Christopher Mathews

    Full Text Available BACKGROUND: The accuracy of screening for anal cancer precursors relative to screening for cervical cancer precursors has not been systematically examined. The aim of the current meta-analysis was to compare the relative accuracy of anal cytology to cervical cytology in discriminating between histopathologic high grade and lesser grades of dysplasia when the reference standard biopsy is obtained using colposcope magnification. METHODS AND FINDINGS: The outcome metric of discrimination was the receiver operating characteristic (ROC curve area. Random effects meta-analysis of eligible studies was performed with examination of sources of heterogeneity that included QUADAS criteria and selected covariates, in meta-regression models. Thirty three cervical and eleven anal screening studies were found to be eligible. The primary meta-analytic comparison suggested that anal cytologic screening is somewhat less discriminating than cervical cytologic screening (ROC area [95% confidence interval (C.I.]: 0.834 [0.809-0.859] vs. 0.700 [0.664-0.735] for cervical and anal screening, respectively. This finding was robust when examined in meta-regression models of covariates differentially distributed by screening setting (anal, cervical. CONCLUSIONS: Anal cytologic screening is somewhat less discriminating than cervical cytologic screening. Heterogeneity of estimates within each screening setting suggests that other factors influence estimates of screening accuracy. Among these are sampling and interpretation errors involving both cytology and biopsy as well as operator skill and experience.

  14. A comparative evaluation of the marginal accuracy of crowns fabricated from four commercially available provisional materials: An in vitrostudy

    Directory of Open Access Journals (Sweden)

    Bhavya Mohandas Amin

    2015-01-01

    Full Text Available Purpose: The purpose of this in vitro study was to evaluate and compare the primary marginal accuracy of four commercially available provisional materials (Protemp 4, Luxatemp Star, Visalys Temp and DPI tooth moulding powder and liquid at 2 time intervals (10 and 30 min. Materials and Methods: A customized stainless steel master model containing two interchangeable dies was used for fabrication of provisional crowns. Forty crowns (n = 10 were fabricated, and each crown was evaluated under a stereomicroscope. Vertical marginal discrepancies were noted and compared at 10 min since the start of mixing and then at 30 min. Observations and Results: Protemp 4 showed the least vertical marginal discrepancy (71.59 μ, followed by Luxatemp Star (91.93 μ at 10 min. DPI showed a marginal discrepancy of 95.94 μ while Visalys Temp crowns had vertical marginal discrepancy of 106.81 μ. There was a significant difference in the marginal discrepancy values of Protemp 4 and Visalys Temp. At 30 min, there was a significant difference between the marginal discrepancy of Protemp 4 crowns (83.11 μ and Visalys Temp crowns (128.97 μ and between Protemp 4 and DPI (118.88 μ. No significant differences were observed between Protemp 4 and Luxatemp Star. Conclusion: The vertical marginal discrepancy of temporary crowns fabricated from the four commercially available provisional materials ranged from 71 to 106 μ immediately after fabrication (at 10 min from the start of mix to 83-128 μ (30 min from the start of mix. The time elapsed after mixing had a significant influence on the marginal accuracy of the crowns.

  15. An in vivo comparative evaluation to determine the accuracy of working length between radiographic and electronic apex locators

    Directory of Open Access Journals (Sweden)

    S Vijay Singh

    2012-01-01

    Full Text Available Background: An in vivo comparative evaluation to determine the accuracy of working length between radiographic and electronic apex locators. Aim: The study was aimed at evaluating the accuracy of electronic apex locator, to determine the working length of root canal, and to compare it with the radiographic method of working length determination. Materials and Methods: A total of 20 teeth selected for the study had to go for extraction because of periodontal or orthodontic reasons. Access cavity was prepared and the clinical estimated working length (CEWL was determined with 10-25 no. K-file. A radiograph was then taken for determining the radiographic estimated working length (REWL. For electronic measurement of root canal, a 10 no. K-file was advanced toward the apex until it reached a 0.5 mm short of apex as shown by the apex locator. After fixing the file with a light cured composite, the tooth was extracted, the tooth surface was then longitudinally grounded using straight fissure diamond bur until the root canal and the tip of the file were visible. The distance of file from the minor constriction was measured with help of stereomicroscope. Statistical analysis : The chi-square test was used for statistical analysis for this study. Results: The chi-square test where χ2 = 21.034 with P = 0.000 indicated that a significant difference exists among the groups. The electronic method showed highest number of cases with the working length at the minor constrictor. Conclusion: The electronic method for determining the working length of root canal was found to be more accurate than the radiographic method.

  16. Accuracy of a New Patch Pump Based on a Microelectromechanical System (MEMS) Compared to Other Commercially Available Insulin Pumps

    Science.gov (United States)

    Borot, Sophie; Franc, Sylvia; Cristante, Justine; Penfornis, Alfred; Benhamou, Pierre-Yves; Guerci, Bruno; Hanaire, Hélène; Renard, Eric; Reznik, Yves; Simon, Chantal

    2014-01-01

    The JewelPUMP™ (JP) is a new patch pump based on a microelectromechanical system that operates without any plunger. The study aimed to evaluate the infusion accuracy of the JP in vitro and in vivo. For the in vitro studies, commercially available pumps meeting the ISO standard were compared to the JP: the MiniMed® Paradigm® 712 (MP), Accu-Chek® Combo (AC), OmniPod® (OP), Animas® Vibe™ (AN). Pump accuracy was measured over 24 hours using a continuous microweighing method, at 0.1 and 1 IU/h basal rates. The occlusion alarm threshold was measured after a catheter occlusion. The JP, filled with physiological serum, was then tested in 13 patients with type 1 diabetes simultaneously with their own pump for 2 days. The weight difference was used to calculate the infused insulin volume. The JP showed reduced absolute median error rate in vitro over a 15-minute observation window compared to other pumps (1 IU/h): ±1.02% (JP) vs ±1.60% (AN), ±1.66% (AC), ±2.22% (MP), and ±4.63% (OP), P pumps: 21 (19; 25) minutes vs 90 (85; 95), 58 (42; 74), and 143 (132; 218) minutes (AN, AC, MP), P pumps (–2.2 ± 5.6% vs –0.37 ± 4.0%, P = .25). The JP was found to be easier to wear than conventional pumps. The JP is more precise over a short time period, more sensitive to catheter occlusion, well accepted by patients, and consequently, of potential interest for a closed-loop insulin delivery system. PMID:25079676

  17. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  18. High Accuracy, Two-Dimensional Read-Out in Multiwire Proportional Chambers

    Science.gov (United States)

    Charpak, G.; Sauli, F.

    1973-02-14

    In most applications of proportional chambers, especially in high-energy physics, separate chambers are used for measuring different coordinates. In general one coordinate is obtained by recording the pulses from the anode wires around which avalanches have grown. Several methods have been imagined for obtaining the position of an avalanche along a wire. In this article a method is proposed which leads to the same range of accuracies and may be preferred in some cases. The problem of accurate measurements for large-size chamber is also discussed.

  19. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-20

    In a modified Twyman-Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  20. A small and high accuracy gyro stabilization electro-optical platform

    Science.gov (United States)

    Qiu, Haitao; Han, Yonggen; Lv, Yanhong

    2008-10-01

    A high accuracy line-of-sight (LOS) Stabilization system based on digital control technology was designed. The current feedback closed-loop system was introduced which uses the CCD graphic and resolver to constitute the position closed-loop and uses the optic fiber gyro to constitute the rate closed-loop. In order to realize zero steady-state error of angular output in counteracting disturbance from carrier, a PII2 (proportional-integral-double integral) control scheme is proposed. The hardware configuration and software system is presented. Experimental results show that the system has perfect dynamic and static performance and the technical requirements were satisfied.

  1. High Accuracy Three-dimensional Simulation of Micro Injection Moulded Parts

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F. S.; Hansen, Hans Nørgaard

    2011-01-01

    Micro injection moulding (μIM) is the key replication technology for high precision manufacturing of polymer micro products. Data analysis and simulations on micro-moulding experiments have been conducted during the present validation study. Detailed information about the μIM process was gathered...... and used to establish a reliable simulation methodology suitable for μIM parts. Various Simulation set-up parameters that have been considered in order to improve the simulation accuracy: injection speed profile, melt and mould temperatures, 3D mesh, material rheology, inertia effect and shrinkage...

  2. High-accuracy mass determination of unstable nuclei with a Penning trap mass spectrometer

    CERN Multimedia

    2002-01-01

    The mass of a nucleus is its most fundamental property. A systematic study of nuclear masses as a function of neutron and proton number allows the observation of collective and single-particle effects in nuclear structure. Accurate mass data are the most basic test of nuclear models and are essential for their improvement. This is especially important for the astrophysical study of nuclear synthesis. In order to achieve the required high accuracy, the mass of ions captured in a Penning trap is determined via their cyclotron frequency $ \

  3. An angle encoder for super-high resolution and super-high accuracy using SelfA

    Science.gov (United States)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  4. High-accuracy current sensing circuit with current compensation technique for buck-boost converter

    Science.gov (United States)

    Rao, Yuan; Deng, Wan-Ling; Huang, Jun-Kai

    2015-03-01

    A novel on-chip current sensing circuit with current compensation technique suitable for buck-boost converter is presented in this article. The proposed technique can sense the full-range inductor current with high accuracy and high speed. It is mainly based on matched current mirror and does not require a large proportion of aspect ratio between the powerFET and the senseFET, thus it reduces the complexity of circuit design and the layout mismatch issue without decreasing the power efficiency. The circuit is fabricated with TSMC 0.25 µm 2P5M mixed-signal process. Simulation results show that the buck-boost converter can be operated at 200 kHz to 4 MHz switching frequency with an input voltage from 2.8 to 4.7 V. The output voltage is 3.6 V, and the maximum accuracy for both high and low side sensing current reaches 99% within the load current ranging from 200 to 600 mA.

  5. Simple high-accuracy resolution program for convective modelling of discontinuities

    Science.gov (United States)

    Leonard, B. P.

    1988-01-01

    For steady multidimensional convection, the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme has several attractive properties. However, for highly convective simulation of step profiles, QUICK produces unphysical overshoots and a few oscillations, and this may cause serious problems in nonlinear flows. Fortunately, it is possible to modify the convective flux by writing the normalized convected control-volume face value as a function of the normalized adjacent upstream node value, developing criteria for monotonic resolution without sacrificing formal accuracy. This results in a nonlinear functional relationship between the normalized variables, whereas standard methods are all linear in this sense. The resulting Simple High Accuracy Resolution Program (SHARP) can be applied to steady multidimensional flows containing thin shear or mixing layers, shock waves, and other frontal phenomena. This represents a significant advance in modeling highly convective flows of engineering and geophysical importance. SHARP is based on an explicit, conservative, control-volume flux formation, equally applicable to one, two, or three dimensional elliptic, parabolic, hyperbolic, or mixed-flow regimes. Results are given for the bench-mark purely convective first-order results and the nonmonotonic predictions of second- and third-order upwinding.

  6. High-accuracy optimal finite-thrust trajectories for Moon escape

    Science.gov (United States)

    Shen, Hong-Xin; Casalino, Lorenzo

    2017-02-01

    The optimization problem of fuel-optimal trajectories from a low circular Moon orbit to a target hyperbolic excess velocity vector using finite-thrust propulsion is solved. The ability to obtain the most accurate satisfaction of necessary optimality conditions in a high-accuracy dynamic model is the main motivation of the current study. The solutions allow attaining anytime-return Earth-interface conditions from a low lunar orbit. Gravitational effects of the Sun, Earth, and Moon are included throughout the entire trajectory. Severe constraints on the fuel budget combined with high-accuracy demands on the endpoint conditions necessitate a high-fidelity solution to the trajectory optimization problem and JPL DE405 ephemeris model is used to determine the perturbing bodies' positions. The optimization problem is solved using an indirect method. The optimality of the solution is verified by an application of Pontryagin's maximum principle. More accurate and fuel-efficient trajectories are found for the same mission objectives and constraints published in other research, emphasizing the advantages of this technique. It is also shown that the thrust structure consists of three finite burns. In contrast to previous research, no singular arc is required in the optimal solutions, and all the controls appear bang-bang.

  7. Emergency positioning system accuracy with infrared LEDs in high-security facilities

    Science.gov (United States)

    Knoch, Sierra N.; Nelson, Charles; Walker, Owens

    2017-05-01

    Instantaneous personnel location presents a challenge in Department of Defense applications where high levels of security restrict real-time tracking of crew members. During emergency situations, command and control requires immediate accountability of all personnel. Current radio frequency (RF) based indoor positioning systems can be unsuitable due to RF leakage and electromagnetic interference with sensitively calibrated machinery on variable platforms like ships, submarines and high-security facilities. Infrared light provide a possible solution to this problem. This paper proposes and evaluates an indoor line-of-sight positioning system that is comprised of IR and high-sensitivity CMOS camera receivers. In this system the movement of the LEDs is captured by the camera, uploaded and analyzed; the highest point of power is located and plotted to create a blueprint of crewmember location. Results provided evaluate accuracy as a function of both wavelength and environmental conditions. Research will further evaluate the accuracy of the LED transmitter and CMOS camera receiver system. Transmissions in both the 780 and 850nm IR are analyzed.

  8. Accuracy assessment on the analysis of unbound drug in plasma by comparing traditional centrifugal ultrafiltration with hollow fiber centrifugal ultrafiltration and application in pharmacokinetic study.

    Science.gov (United States)

    Zhang, Lin; Zhang, Zhi-Qing; Dong, Wei-Chong; Jing, Shao-Jun; Zhang, Jin-Feng; Jiang, Ye

    2013-11-29

    In present study, accuracy assessment on the analysis of unbound drug in plasma was made by comparing traditional centrifugal ultrafiltration (CF-UF) with hollow fiber centrifugal ultrafiltration (HFCF-UF). We used metformin (MET) as a model drug and studied the influence of centrifugal time, plasma condition and freeze-thaw circle times on the ultrafiltrate volume and related effect on the measurement of MET. Our results demonstrated that ultrafiltrate volume was a crucial factor which influenced measurement accuracy of unbound drug in plasma. For traditional CF-UF, the ultrafiltrate volume cannot be well-controlled due to a series of factors. Compared with traditional CF-UF, the ultrafiltrate volume by HFCF-UF can be easily controlled by the inner capacity of the U-shaped hollow fiber inserted into the sample under enough centrifugal force and centrifugal time, which contributes to a more accurate measurement. Moreover, the developed HFCF-UF method achieved a successful application in real plasma samples and exhibited several advantages including high precision, extremely low detection limit and perfect recovery. The HFCF-UF method offers the advantage of highly satisfactory performance in addition to being simple and fast in pretreatment, with these characteristics being consistent with the practicability requirements in current scientific research.

  9. Comparing the accuracy of terrestrial laser scanner in measuring forest inventory variables to enhance better decision making for potential fire hazards

    Science.gov (United States)

    Ghimire, Suman; Xystrakis, Fotios; Koutsias, Nikos

    2017-04-01

    Forest inventory variables are essential in accessing the potential of wildfire hazard, obtaining above ground biomass and carbon sequestration which helps developing strategies for sustainable management of forests. Effective management of forest resources relies on the accuracy of such inventory variables. This study aims to compare the accuracy in obtaining the forest inventory variables like diameter at breast height (DBH) and tree height from Terrestrial Laser Scanner (Faro Focus 3D X 330) with that from the traditional forest inventory techniques in the Mediterranean forests of Greece. The data acquisition was carried out on an area of 9,539.8 m2 with six plots each of radius 6 m. Computree algorithm was applied for automatic detection of DBH from terrestrial laser scanner data. Similarly, tree height was estimated manually using CloudCompare software for the terrestrial laser scanner data. The field estimates of DBH and tree height was carried out using calipers and Nikon Forestry 550 Laser Rangefinder. The comparison of DBH measured between field estimates and Terrestrial Laser Scanner (TLS), resulted in R squared values ranging from 0.75 to 0.96 at the plot level. An average R2 and RMSE value of 0.80 and 1.07 m respectively was obtained when comparing the tree height between TLS and field data. Our results confirm that terrestrial laser scanner can provide nondestructive, high-resolution, and precise determination of forest inventory for better decision making in sustainable forest management and assessing potential of forest fire hazards.

  10. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xin, E-mail: Xin.Liang@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); College of Stomatology, Dalian Medical University (China); Lambrichts, Ivo, E-mail: Ivo.Lambrichts@uhasselt.b [Department of Basic Medical Sciences, Histology and Electron Microscopy, Faculty of Medicine, University of Hasselt, Diepenbeek (Belgium); Sun Yi, E-mail: Sunyihello@hotmail.co [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Denis, Kathleen, E-mail: kathleen.denis@groept.b [Department of Industrial Sciences and Techology-Engineering (IWT), XIOS Hogeschool Limburg, Hasselt (Belgium); Hassan, Bassam, E-mail: b.hassan@acta.n [Department of Oral Radiology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam (Netherlands); Li Limin, E-mail: Limin.Li@uz.kuleuven.b [Department of Paediatric Dentistry and Special Dental Care, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Pauwels, Ruben, E-mail: Ruben.Pauwels@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Jacobs, Reinhilde, E-mail: Reinhilde.Jacobs@uz.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium)

    2010-08-15

    Aim: The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: A dry human mandible was scanned with five CBCT systems (NewTom 3G, Accuitomo 3D, i-CAT, Galileos, Scanora 3D) and one MSCT scanner (Somatom Sensation 16). A 3D surface bone model was created from the six systems. The reference (gold standard) 3D model was obtained with a high resolution laser surface scanner. The 3D models from the five systems were compared with the gold standard using a point-based rigid registration algorithm. Results: The mean deviation from the gold standard for MSCT was 0.137 mm and for CBCT were 0.282, 0.225, 0.165, 0.386 and 0.206 mm for the i-CAT, Accuitomo, NewTom, Scanora and Galileos, respectively. Conclusion: The results show that the accuracy of CBCT 3D surface model reconstructions is somewhat lower but acceptable comparing to MSCT from the gold standard.

  11. Influence of measuring algorithm on shape accuracy in the compensating turning of high gradient thin-wall parts

    Science.gov (United States)

    Wang, Tao; Wang, Guilin; Zhu, Dengchao; Li, Shengyi

    2015-02-01

    In order to meet the requirement of aerodynamics, the infrared domes or windows with conformal and thin-wall structure becomes the development trend of high-speed aircrafts in the future. But these parts usually have low stiffness, the cutting force will change along with the axial position, and it is very difficult to meet the requirement of shape accuracy by single machining. Therefore, on-machine measurement and compensating turning are used to control the shape errors caused by the fluctuation of cutting force and the change of stiffness. In this paper, on the basis of ultra precision diamond lathe, a contact measuring system with five DOFs is developed to achieve on-machine measurement of conformal thin-wall parts with high accuracy. According to high gradient surface, the optimizing algorithm is designed on the distribution of measuring points by using the data screening method. The influence rule of sampling frequency is analyzed on measuring errors, the best sampling frequency is found out based on planning algorithm, the effect of environmental factors and the fitting errors are controlled within lower range, and the measuring accuracy of conformal dome is greatly improved in the process of on-machine measurement. According to MgF2 conformal dome with high gradient, the compensating turning is implemented by using the designed on-machine measuring algorithm. The shape error is less than PV 0.8μm, greatly superior compared with PV 3μm before compensating turning, which verifies the correctness of measuring algorithm.

  12. High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay

    Directory of Open Access Journals (Sweden)

    Du Yuefen

    2003-05-01

    Full Text Available Abstract Background Rolling circle amplification of ligated probes is a simple and sensitive means for genotyping directly from genomic DNA. SNPs and mutations are interrogated with open circle probes (OCP that can be circularized by DNA ligase when the probe matches the genotype. An amplified detection signal is generated by exponential rolling circle amplification (ERCA of the circularized probe. The low cost and scalability of ligation/ERCA genotyping makes it ideally suited for automated, high throughput methods. Results A retrospective study using human genomic DNA samples of known genotype was performed for four different clinically relevant mutations: Factor V Leiden, Factor II prothrombin, and two hemochromatosis mutations, C282Y and H63D. Greater than 99% accuracy was obtained genotyping genomic DNA samples from hundreds of different individuals. The combined process of ligation/ERCA was performed in a single tube and produced fluorescent signal directly from genomic DNA in less than an hour. In each assay, the probes for both normal and mutant alleles were combined in a single reaction. Multiple ERCA primers combined with a quenched-peptide nucleic acid (Q-PNA fluorescent detection system greatly accellerated the appearance of signal. Probes designed with hairpin structures reduced misamplification. Genotyping accuracy was identical from either purified genomic DNA or genomic DNA generated using whole genome amplification (WGA. Fluorescent signal output was measured in real time and as an end point. Conclusions Combining the optimal elements for ligation/ERCA genotyping has resulted in a highly accurate single tube assay for genotyping directly from genomic DNA samples. Accuracy exceeded 99 % for four probe sets targeting clinically relevant mutations. No genotypes were called incorrectly using either genomic DNA or whole genome amplified sample.

  13. Discovery and validation of urine markers of acute pediatric appendicitis using high accuracy mass spectrometry

    Science.gov (United States)

    Kentsis, Alex; Lin, Yin Yin; Kurek, Kyle; Calicchio, Monica; Wang, Yan Yan; Monigatti, Flavio; Campagne, Fabien; Lee, Richard; Horwitz, Bruce; Steen, Hanno; Bachur, Richard

    2015-01-01

    Study Objective Molecular definition of disease has been changing all aspects of medical practice, from diagnosis and screening to understanding and treatment. Acute appendicitis is among many human conditions that are complicated by the heterogeneity of clinical presentation and shortage of diagnostic markers. Here, we sought to profile the urine of patients with appendicitis with the goal of identifying new diagnostic markers. Methods Candidate markers were identified from the urine of children with histologically proven appendicitis by using high accuracy mass spectrometry proteome profiling. These systemic and local markers were used to assess the probability of appendicitis in a blinded, prospective study of children being evaluated for acute abdominal pain in our emergency department. Tests of performance of the markers were evaluated against the pathologic diagnosis and histologic grade of appendicitis. Results Test performance of 57 identified candidate markers was studied in 67 patients, with median age of 11 years, 37% of whom had appendicitis. Several exhibited favorable diagnostic performance, including calgranulin A (S100-A8), α-1-acid glycoprotein 1 (orosomucoid), and leucine-rich α-2-glycoprotein (LRG), with the ROC AUC and values of 0.84 (95 % CI 0.72-0.95), 0.84 (0.72-0.95), and 0.97 (0.93-1.0), respectively. LRG was enriched in diseased appendices and its abundance correlated with severity of appendicitis. Conclusions High accuracy mass spectrometry urine proteome profiling allowed identification of diagnostic markers of acute appendicitis. Usage of LRG and other identified biomarkers may improve the diagnostic accuracy of clinical evaluations of appendicitis. PMID:19556024

  14. SpaceNav - A high accuracy navigation system for space applications

    Science.gov (United States)

    Evers, H.-H.

    The technology of the SpaceNav-system is based on research performed by the Institute of Flight Guidance and Control at the Technical University of Braunschweig, Germany. In 1989 this institute gave the worlds first public demonstration of a fully automatic landing of an aircraft, using inertial and satellite informations exclusively. The SpaceNav device components are: Acceleration-/Gyro Sensor Package; Global Positioning System (GPS) Receiver/optional more than one; Time Reference Unit; CPU; Telemetry (optional); and Differential GPS (DGPS) Receiver (optional). The coupling of GPS receivers with inertial sensors provides an extremely accurate navigation data set in real time applications even in phases with high dynamic conditions. The update rate of this navigation information is up to 100 Hz with the same accuracy in 3D-position, velocity, acceleration, attitude and time. SpaceNav is an integrated navigation system, which operates according to the principle of combining the longterm stability and accuracy of GPS, and the high level of dynamic precision of conventional inertial navigation system (INS) strapdown systems. The system's design allows other aiding sensors e.g. GLONASS satellite navigation system, distance measuring equipment (DME), altimeter (radar and/or barometric), flux valve etc. to be connected, in order to increase the redundancy of the system. The advantage of such an upgraded system is the availability of more sensor information than necessary for a navigation solution. The resulting redundancy in range measurement allows real-time detection and identification of sensor signals that are incompatible with the other information. As a result you get Receiver Autonomous Integrity Monitoring (RAIM) as described in 'A Multi-Sensor Approach to Assuring GPS Integrity', presented by Alison Brown in the March/April 1990 issue of 'GPS World'. In this paper the author presents information about the principles of the Satellite Navigation System GPS, and

  15. High-accuracy real-time automatic thresholding for centroid tracker

    Science.gov (United States)

    Zhang, Ye; Wang, Yanjie

    2006-01-01

    Many of the video image trackers today use the centroid as the tracking point. In engineering, a target's centroid is computed from a binary image to reduce the processing time. Hence thresholding of gray level image to binary image is a decisive step in centroid tracking. How to choose the feat thresholds in clutter is still an intractability problem unsolved today. This paper introduces a high-accuracy real-time automatic thresholding method for centroid tracker. It works well for variety types of target tracking in clutter. The core of this method is to get the entire information contained in the histogram, such as the number of the peaks, their height, position and other properties in the histogram. Combine with this histogram analysis; we can get several key pairs of peaks which can include the target and the background around it and use the method of Otsu to get intensity thresholds from them. According to the thresholds, we can gain the binary image and get the centroid from it. To track the target, the paper also suggests subjoining an eyeshot-window, just like our eyes focus on a target, we will not miss it unless it is out of our eyeshot, the impression will help us to extract the target in clutter and track it and we will wait its emergence since it has been covered. To obtain the impression, the paper offers a idea comes from the method of Snakes; it give a great help for us to get a glancing size, so that we can compare the size of the object in the current frame with the former. If the change is little, we consider the object has been tracked well. Otherwise, if the change is bigger than usual, we should analyze the inflection in the histogram to find out what happened to the object. In general, what we have to do is turning the analysis into codes for the tracker to determine a feat threshold. The paper will show the steps in detail. The paper also discusses the hardware architecture which can meet the speed requirement.

  16. Accuracy of self-reports of mental health care utilization and calculated costs compared to hospital records.

    Science.gov (United States)

    Heinrich, Sven; Deister, Arno; Birker, Thomas; Hierholzer, Cornelia; Weigelt, Ina; Zeichner, Dirk; Angermeyer, Matthias C; Roick, Christiane; König, Hans-Helmut

    2011-01-30

    Assessments of service utilization is often based on self-reports. Concerns regarding the accuracy of self-reports are raised especially in mental health care. The purpose of this study was to analyze the accuracy of self-reports and calculated costs of mental health services. In a prospective cohort study in Germany, self-reports regarding psychiatric inpatient and day-care use collected by telephone interviews based on the Client Socio-Demographic and Service Receipt Inventory (CSSRI) as well as calculated costs were compared to computerized hospital records. The sample consisted of patients with mental and behavioral disorders resulting from alcohol (ICD-10 F10, n=84), schizophrenia, schizophrenic and delusional disturbances (F2, n=122) and affective disorders (F3, n=124). Agreement was assessed using the concordance correlation coefficient (CCC), mean difference (95% confidence intervals (CI)) and the 95% limits of agreement. Predictors for disagreement were derived. Overall agreement of mean total costs was excellent (CCC=0.8432). Costs calculated based on self-reports were higher than costs calculated based on hospital records (15 EUR (95% CI -434 to 405)). Overall agreement of total costs for F2 patients was CCC=0.8651, for F3 CCC=0.7850 and for F10 CCC=0.6180. Depending on type of service, measure of service utilization and costs agreement ranged from excellent to poor and varied substantially between individuals. The number of admissions documented in hospital records was significantly associated with disagreement. Telephone interviews can be an accurate data collection method for calculating mean total costs in mental health care. In the future more standardization is needed.

  17. Accuracy of Demirjian′s 8 teeth method for age prediction in South Indian children: A comparative study

    Directory of Open Access Journals (Sweden)

    Rezwana Begum Mohammed

    2015-01-01

    Full Text Available Introduction: Demirjian′s method of tooth development is most commonly used to assess age in individuals with emerging teeth. However, its application on numerous populations has resulted in wide variations in age estimates and consequent suggestions for the method′s adaptation to the local sample. Original Demirjian′s method utilized seven mandibular teeth, to which recently third molar is added so that the method can be applied on a wider age group. Furthermore, the revised method developed regression formulas for assessing age. In Indians, as these formulas resulted in underestimation, India-specific regression formulas were developed recently. The purpose of this cross-sectional study was to evaluate the accuracy and applicability of original regression formulas (Chaillet and Demirjian 2004 and India-specific regression formulas (Acharya 2010 using Demirjian′s 8 teeth method in South Indian children of age groups 9-20 years. Methods: The present study consisted of 660 randomly selected subjects (330 males and 330 females were in the aged ranging from 9 to 20 years divided into 11 groups according to their age. Demirjian′s 8 teeth method was used for staging of teeth. Results: Demirjian′s method underestimated the dental age (DA by 1.66 years for boys and 1.55 years for girls and 1.61 years in total. Acharya′s method over estimated DA by 0.21 years for boys and 0.85 years for girls and 0.53 years in total. The absolute accuracy was better for Acharya′s method compared with Demirjian method. Conclusion: This study concluded that both the Demirjian and Indian regression formulas were reliable in assessing age making Demirjian′s 8 teeth method applicable for South Indians.

  18. Error correction algorithm for high accuracy bio-impedance measurement in wearable healthcare applications.

    Science.gov (United States)

    Kubendran, Rajkumar; Lee, Seulki; Mitra, Srinjoy; Yazicioglu, Refet Firat

    2014-04-01

    Implantable and ambulatory measurement of physiological signals such as Bio-impedance using miniature biomedical devices needs careful tradeoff between limited power budget, measurement accuracy and complexity of implementation. This paper addresses this tradeoff through an extensive analysis of different stimulation and demodulation techniques for accurate Bio-impedance measurement. Three cases are considered for rigorous analysis of a generic impedance model, with multiple poles, which is stimulated using a square/sinusoidal current and demodulated using square/sinusoidal clock. For each case, the error in determining pole parameters (resistance and capacitance) is derived and compared. An error correction algorithm is proposed for square wave demodulation which reduces the peak estimation error from 9.3% to 1.3% for a simple tissue model. Simulation results in Matlab using ideal RC values show an average accuracy of for single pole and for two pole RC networks. Measurements using ideal components for a single pole model gives an overall and readings from saline phantom solution (primarily resistive) gives an . A Figure of Merit is derived based on ability to accurately resolve multiple poles in unknown impedance with minimal measurement points per decade, for given frequency range and supply current budget. This analysis is used to arrive at an optimal tradeoff between accuracy and power. Results indicate that the algorithm is generic and can be used for any application that involves resolving poles of an unknown impedance. It can be implemented as a post-processing technique for error correction or even incorporated into wearable signal monitoring ICs.

  19. TO COMPARE THE ACCURACY OF PREDICTED BIRTH WEIGHT BY ULTRASONOGRAPHIC MEASUREMENTS OBTAINED JUST BEFORE AND AT TERM

    Directory of Open Access Journals (Sweden)

    Debraj

    2015-03-01

    Full Text Available BACKGROUND: Fetal weight measurement by ultrasonographic methods can be considered as an important modality for antenatal prediction of fetal weight (preferable single USG should be done at 34 - 36.9wks to rule out various complications of pregnancy such as macrosomia, IUGR etc which enable us to be prepared for the delivery of the baby and prevent any further dreaded complications resulting out of these conditions including shoulder dystocia, severely compromised baby AIM: To compare the accuracy of predicted birth weight by ultrasonographic measurements obtained just before and at term. METHOD: The study was performed in a tertiary care Hospital in West Bengal between 1st July 2012 to 30th June 2013 on 100 Pregnant women attending Antenatal Clinic (34 - 36.9 wks with a live singleton pregnancy, all women underwent ultrasound examination twice( 37 weeks. The estimated fetal weight calculated using Hadlock’s formula. D ata were then compared for each pair of sonograms from the same patient using a paired t test. P value of <0.05 was considered statistically significant. RESULTS: The study included 100 patients undergoing 200 sonograms. The mean absolute error of the predicted birth weight was smaller for period 1 (34 - 36.9 wks than for period 2 (≥ 37 wks (152 ± 125g compared with 193.5 ± 121g, P=0.0001. The overall mean absolute percent errors in predicting birth weight were 5.6 ± 4.7 (Period 1 & 7.6 ± 4.3 (Period 2 for IUGR and 5.4 ± 3.9 (Period 1 & 6 ± 3 (Period 2 for Macrosomia. Averaging data from both gestational periods did not improve the prediction of birth weight. Our study did not show any correlation between latency and the accuracy of birth weight predictions. CONCLUSION: This study indicates that serial sonograms in the late third trimester do not improve the ability to predict birth weight, even in abnormally grown fetuses. So, a single sonogram between 34 and 37 weeks’ gestation is recommended for prediction of birth

  20. Comparative evaluation of the accuracy of linear measurements between cone beam computed tomography and 3D microtomography

    Directory of Open Access Journals (Sweden)

    Francesca Mangione

    2013-09-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the influence of artifacts on the accuracy of linear measurements estimated with a common cone beam computed tomography (CBCT system used in dental clinical practice, by comparing it with microCT system as standard reference. MATERIALS AND METHODS: Ten bovine bone cylindrical samples containing one implant each, able to provide both points of reference and image quality degradation, have been scanned by CBCT and microCT systems. Thanks to the software of the two systems, for each cylindrical sample, two diameters taken at different levels, by using implants different points as references, have been measured. Results have been analyzed by ANOVA and a significant statistically difference has been found. RESULTS AND DISCUSSION: Due to the obtained results, in this work it is possible to say that the measurements made with the two different instruments are still not statistically comparable, although in some samples were obtained similar performances and therefore not statistically significant. CONCLUSION: With the improvement of the hardware and software of CBCT systems, in the near future the two instruments will be able to provide similar performances.

  1. Comparative evaluation of accuracy of two electronic apex locators in the presence of various irrigants: An in vitro study

    Science.gov (United States)

    Jain, Saru; Kapur, Ravi

    2012-01-01

    Context: The establishment of appropriate working length is one of the most critical steps in endodontic therapy. Electronic apex locators have been introduced to determine the working length. The development of electronic apex locators has helped make the assessment of the working length more accurate and predictable, along with reduction in treatment time and radiation dose. Objectives: The aim of this study was to compare the efficacy of electronic apex locators after cleansing and shaping of the root canals and whether there was any alteration in accuracy when used in the presence of irrigants. Materials and Methods: Seventy extracted human permanent molars with mature apices were selected. Equal number of maxillary and mandibular permanent molars (35 each) were sectioned at the cemento-enamel junction. Access opening was done and only the mesiobuccal root canal was studied for the purpose of standardization. Electronic working length measurements were taken before and after preparation of the mesiobuccal canal with Root ZX and ProPex II using various irrigants. Statistical Analysis Used: The data were statistically analyzed using a paired t-test at 0.05 level of significance. Results: P-values for actual and final canal lengths for Root ZX employing NaoCl(0.001), CHX(0.006), LA(0.020) and for ProPex II was (0.001) respectively. When the data were compared, results were statistically significant (P locator and CHX as irrigant matched more precisely with the actual canal length measurements. PMID:23230349

  2. Axis-Exchanged Compensation and Gait Parameters Analysis for High Accuracy Indoor Pedestrian Dead Reckoning

    Directory of Open Access Journals (Sweden)

    Honghui Zhang

    2015-01-01

    Full Text Available Pedestrian dead reckoning (PDR is an effective way for navigation coupled with GNSS (Global Navigation Satellite System or weak GNSS signal environment like indoor scenario. However, indoor location with an accuracy of 1 to 2 meters determined by PDR based on MEMS-IMU is still very challenging. For one thing, heading estimation is an important problem in PDR because of the singularities. For another thing, walking distance estimation is also a critical problem for pedestrian walking with randomness. Based on the above two problems, this paper proposed axis-exchanged compensation and gait parameters analysis algorithm to improve the navigation accuracy. In detail, an axis-exchanged compensation factored quaternion algorithm is put forward first to overcome the singularities in heading estimation without increasing the amount of computation. Besides, real-time heading is updated by R-adaptive Kalman filter. Moreover, gait parameters analysis algorithm can be divided into two steps: cadence detection and step length estimation. Thus, a method of cadence classification and interval symmetry is proposed to detect the cadence accurately. Furthermore, a step length model adjusted by cadence is established for step length estimation. Compared to the traditional PDR navigation, experimental results showed that the error of navigation reduces 32.6%.

  3. High accuracy of family history of melanoma in Danish melanoma cases

    DEFF Research Database (Denmark)

    Wadt, Karin A W; Drzewiecki, Krzysztof T; Gerdes, Anne-Marie

    2015-01-01

    The incidence of melanoma in Denmark has immensely increased over the last 10 years making Denmark a high risk country for melanoma. In the last two decades multiple public campaigns have sought to increase the awareness of melanoma. Family history of melanoma is a known major risk factor...... but previous studies have shown that self-reported family history of melanoma is highly inaccurate. These studies are 15 years old and we wanted to examine if a higher awareness of melanoma has increased the accuracy of self-reported family history of melanoma. We examined the family history of 181 melanoma...... probands who reported 199 cases of melanoma in relatives, of which 135 cases where in first degree relatives. We confirmed the diagnosis of melanoma in 77% of all relatives, and in 83% of first degree relatives. In 181 probands we validated the negative family history of melanoma in 748 first degree...

  4. High Accuracy mass Measurement of the very Short-Lived Halo Nuclide $^{11}$Li

    CERN Multimedia

    Le scornet, G

    2002-01-01

    The archetypal halo nuclide $^{11}$Li has now attracted a wealth of experimental and theoretical attention. The most outstanding property of this nuclide, its extended radius that makes it as big as $^{48}$Ca, is highly dependent on the binding energy of the two neutrons forming the halo. New generation experiments using radioactive beams with elastic proton scattering, knock-out and transfer reactions, together with $\\textit{ab initio}$ calculations require the tightening of the constraint on the binding energy. Good metrology also requires confirmation of the sole existing precision result to guard against a possible systematic deviation (or mistake). We propose a high accuracy mass determintation of $^{11}$Li, a particularly challenging task due to its very short half-life of 8.6 ms, but one perfectly suiting the MISTRAL spectrometer, now commissioned at ISOLDE. We request 15 shifts of beam time.

  5. Arithmetic Accuracy in Children From High- and Low-Income Schools

    Directory of Open Access Journals (Sweden)

    Elida V. Laski

    2016-04-01

    Full Text Available This study investigated income group differences in kindergartners’ and first graders’ (N = 161 arithmetic by examining the link between accuracy and strategy use on simple and complex addition problems. Low-income children were substantially less accurate than high-income children, in terms of both percentage of correctly solved problems and the magnitude of errors, with low-income first graders being less accurate than high-income kindergartners. Higher-income children were more likely to use sophisticated mental strategies than their lower-income peers, who used predominantly inefficient counting or inappropriate strategies. Importantly, this difference in strategies mediated the relation between income group and addition. Examining underlying strategies has implications for understanding income group differences in arithmetic and potential means of remedying it via instruction.

  6. Using Mobile Laser Scanning Data for Features Extraction of High Accuracy Driving Maps

    Science.gov (United States)

    Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Dong, Zhen

    2016-06-01

    High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.

  7. Fundamental M-dwarf parameters from high-resolution spectra using PHOENIX ACES models: I. Parameter accuracy and benchmark stars

    CERN Document Server

    Passegger, Vera Maria; Reiners, Ansgar

    2016-01-01

    M-dwarf stars are the most numerous stars in the Universe; they span a wide range in mass and are in the focus of ongoing and planned exoplanet surveys. To investigate and understand their physical nature, detailed spectral information and accurate stellar models are needed. We use a new synthetic atmosphere model generation and compare model spectra to observations. To test the model accuracy, we compared the models to four benchmark stars with atmospheric parameters for which independent information from interferometric radius measurements is available. We used $\\chi^2$ -based methods to determine parameters from high-resolution spectroscopic observations. Our synthetic spectra are based on the new PHOENIX grid that uses the ACES description for the equation of state. This is a model generation expected to be especially suitable for the low-temperature atmospheres. We identified suitable spectral tracers of atmospheric parameters and determined the uncertainties in $T_{\\rm eff}$, $\\log{g}$, and [Fe/H] resul...

  8. Initial development of high-accuracy CFRP panel for DATE5 antenna

    Science.gov (United States)

    Qian, Yuan; Lou, Zheng; Hao, Xufeng; Zhu, Jing; Cheng, Jingquan; Wang, Hairen; Zuo, Yingxi; Yang, Ji

    2016-07-01

    DATE5 antenna, which is a 5m telescope for terahertz exploration, will be sited at Dome A, Antarctica. It is necessary to keep high surface accuracy of the primary reflector panels so that high observing efficiency can be achieved. In antenna field, carbon fiber reinforced composite (CFRP) sandwich panels are widely used as these panels are light in weight, high in strength, low in thermal expansion, and cheap in mass fabrication. In DATE5 project, CFRP panels are important panel candidates. In the design study phase, a CFRP prototype panel of 1-meter size is initially developed for the verification purpose. This paper introduces the material arrangement in the sandwich panel, measured performance of this testing sandwich structure samples, and together with the panel forming process. For anti-icing in the South Pole region, a special CFRP heating film is embedded in the front skin of sandwich panel. The properties of some types of basic building materials are tested. Base on the results, the deformation of prototype panel with different sandwich structures and skin layers are simulated and a best structural concept is selected. The panel mold used is a high accuracy one with a surface rms error of 1.4 μm. Prototype panels are replicated from the mold. Room temperature curing resin is used to reduce the thermal deformation in the resin transfer process. In the curing, vacuum negative pressure technology is also used to increase the volume content of carbon fiber. After the measurement of the three coordinate measure machine (CMM), a prototype CFRP panel of 5.1 μm rms surface error is developed initially.

  9. Diagnostic accuracy of contrast-enhanced MR angiography and unenhanced proton MR imaging compared with CT pulmonary angiography in chronic thromboembolic pulmonary hypertension.

    Science.gov (United States)

    Rajaram, Smitha; Swift, Andrew J; Capener, David; Telfer, Adam; Davies, Christine; Hill, Catherine; Condliffe, Robin; Elliot, Charles; Hurdman, Judith; Kiely, David G; Wild, Jim M

    2012-02-01

    To evaluate the diagnostic accuracy of contrast-enhanced MR angiography (CE-MRA) and the added benefit of unenhanced proton MR angiography compared with CT pulmonary angiography (CTPA) in patients with chronic thromboembolic disease (CTE). A 2 year retrospective study of 53 patients with chronic thromboembolic pulmonary hypertension who underwent CTPA and MRI for suspected pulmonary hypertension and a control group of 36 patients with no CT evidence of pulmonary embolism. The MRI was evaluated for CTE and the combined diagnostic accuracy of ce-MRA and unenhanced proton MRA was determined. CE-MRA generated lung perfusion maps were also assessed. The overall sensitivity and specificity of CE-MRA in diagnosing proximal and distal CTE were 98% and 94%, respectively. The sensitivity improved from 50% to 88% for central vessel disease when CE-MRA images were analysed with unenhanced proton MRA. The CE-MRA identified more stenoses (29/18), post-stenosis dilatation (23/7) and occlusions (37/29) compared with CTPA. The CE-MRA perfusion images showed a sensitivity of 92% for diagnosing CTE. CE-MRA has high sensitivity and specificity for diagnosing CTE. The sensitivity of CE-MRA for visualisation of adherent central and lobar thrombus significantly improves with the addition of unenhanced proton MRA which delineates the vessel wall.

  10. Diagnostic accuracy of contrast-enhanced MR angiography and unenhanced proton MR imaging compared with CT pulmonary angiography in chronic thromboembolic pulmonary hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Rajaram, Smitha [Unit of Academic Radiology, University of Sheffield, Sheffield (United Kingdom); Academic Unit of Radiology, C Floor, Royal Hallamshire Hospital, Sheffield (United Kingdom); Swift, Andrew J.; Wild, Jim M. [Unit of Academic Radiology, University of Sheffield, Sheffield (United Kingdom); Sheffield Cardiovascular Biomedical Research Unit, Sheffield (United Kingdom); Capener, David; Telfer, Adam [Unit of Academic Radiology, University of Sheffield, Sheffield (United Kingdom); Davies, Christine; Hill, Catherine [Sheffield Teaching Hospitals Trust, Department of Radiology, Sheffield (United Kingdom); Condliffe, Robin; Elliot, Charles; Kiely, David G. [Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield (United Kingdom); Sheffield Cardiovascular Biomedical Research Unit, Sheffield (United Kingdom); Hurdman, Judith [Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield (United Kingdom)

    2012-02-15

    To evaluate the diagnostic accuracy of contrast-enhanced MR angiography (CE-MRA) and the added benefit of unenhanced proton MR angiography compared with CT pulmonary angiography (CTPA) in patients with chronic thromboembolic disease (CTE). A 2 year retrospective study of 53 patients with chronic thromboembolic pulmonary hypertension who underwent CTPA and MRI for suspected pulmonary hypertension and a control group of 36 patients with no CT evidence of pulmonary embolism. The MRI was evaluated for CTE and the combined diagnostic accuracy of ce-MRA and unenhanced proton MRA was determined. CE-MRA generated lung perfusion maps were also assessed. The overall sensitivity and specificity of CE-MRA in diagnosing proximal and distal CTE were 98% and 94%, respectively. The sensitivity improved from 50% to 88% for central vessel disease when CE-MRA images were analysed with unenhanced proton MRA. The CE-MRA identified more stenoses (29/18), post-stenosis dilatation (23/7) and occlusions (37/29) compared with CTPA. The CE-MRA perfusion images showed a sensitivity of 92% for diagnosing CTE. CE-MRA has high sensitivity and specificity for diagnosing CTE. The sensitivity of CE-MRA for visualisation of adherent central and lobar thrombus significantly improves with the addition of unenhanced proton MRA which delineates the vessel wall. (orig.)

  11. Comparative Evaluation of Dimensional Accuracy of Elastomeric Impression Materials when Treated with Autoclave, Microwave, and Chemical Disinfection

    OpenAIRE

    Kamble, Suresh S.; Khandeparker, Rakshit Vijay; P.Somasundaram; Raghav, Shweta; Babaji, Rashmi P; Varghese, T Joju

    2015-01-01

    Background: Impression materials during impression procedure often get infected with various infectious diseases. Hence, disinfection of impression materials with various disinfectants is advised to protect the dental team. Disinfection can alter the dimensional accuracy of impression materials. The present study was aimed to evaluate the dimensional accuracy of elastomeric impression materials when treated with different disinfectants; autoclave, chemical, and microwave method. Materials and...

  12. PACMAN Project: A New Solution for the High-accuracy Alignment of Accelerator Components

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalán Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon; Modena, Michele; Novotny, Peter; Russenschuck, Stephan; Sanz, Claude; Severino, Giordana; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia

    2016-01-01

    The beam alignment requirements for the next generation of lepton colliders have become increasingly challenging. As an example, the alignment requirements for the three major collider components of the CLIC linear collider are as follows. Before the first beam circulates, the Beam Position Monitors (BPM), Accelerating Structures (AS)and quadrupoles will have to be aligned up to 10 μm w.r.t. a straight line over 200 m long segments, along the 20 km of linacs. PACMAN is a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale. It is an Innovative Doctoral Program, funded by the EU and hosted by CERN, providing high quality training to 10 Early Stage Researchers working towards a PhD thesis. The technical aim of the project is to improve the alignment accuracy of the CLIC components by developing new methods and tools addressing several steps of alignment simultaneously, to gain time and accuracy. The tools and methods developed will be validated on a test bench. This paper pr...

  13. An output amplitude configurable wideband automatic gain control with high gain step accuracy

    Institute of Scientific and Technical Information of China (English)

    何晓丰; 莫太山; 马成炎; 叶甜春

    2012-01-01

    An output amplitude configurable wideband automatic gain control (AGC) with high gain step accuracy for the GNSS receiver is presented.The amplitude of an AGC is configurable in order to cooperate with baseband chips to achieve interference suppression and be compatible with different full range ADCs.And what's more,the gain-boosting technology is introduced and the circuit is improved to increase the step accuracy.A zero,which is composed by the source feedback resistance and the source capacity,is introduced to compensate for the pole.The AGC is fabricated in a 0.18 μm CMOS process.The AGC shows a 62 dB gain control range by 1 dB each step with a gain error of less than 0.2 dB.The AGC provides 3 dB bandwidth larger than 80 MHz and the overall power consumption is less than 1.8 mA,and the die area is 800 × 300μm2.

  14. Real-Time and High-Accuracy Arctangent Computation Using CORDIC and Fast Magnitude Estimation

    Directory of Open Access Journals (Sweden)

    Luca Pilato

    2017-03-01

    Full Text Available This paper presents an improved VLSI (Very Large Scale of Integration architecture for real-time and high-accuracy computation of trigonometric functions with fixed-point arithmetic, particularly arctangent using CORDIC (Coordinate Rotation Digital Computer and fast magnitude estimation. The standard CORDIC implementation suffers of a loss of accuracy when the magnitude of the input vector becomes small. Using a fast magnitude estimator before running the standard algorithm, a pre-processing magnification is implemented, shifting the input coordinates by a proper factor. The entire architecture does not use a multiplier, it uses only shift and add primitives as the original CORDIC, and it does not change the data path precision of the CORDIC core. A bit-true case study is presented showing a reduction of the maximum phase error from 414 LSB (angle error of 0.6355 rad to 4 LSB (angle error of 0.0061 rad, with small overheads of complexity and speed. Implementation of the new architecture in 0.18 µm CMOS technology allows for real-time and low-power processing of CORDIC and arctangent, which are key functions in many embedded DSP systems. The proposed macrocell has been verified by integration in a system-on-chip, called SENSASIP (Sensor Application Specific Instruction-set Processor, for position sensor signal processing in automotive measurement applications.

  15. High Accuracy Mass Measurement of the Dripline Nuclides $^{12,14}$Be

    CERN Multimedia

    2002-01-01

    State-of-the art, three-body nuclear models that describe halo nuclides require the binding energy of the halo neutron(s) as a critical input parameter. In the case of $^{14}$Be, the uncertainty of this quantity is currently far too large (130 keV), inhibiting efforts at detailed theoretical description. A high accuracy, direct mass deterlnination of $^{14}$Be (as well as $^{12}$Be to obtain the two-neutron separation energy) is therefore required. The measurement can be performed with the MISTRAL spectrometer, which is presently the only possible solution due to required accuracy (10 keV) and short half-life (4.5 ms). Having achieved a 5 keV uncertainty for the mass of $^{11}$Li (8.6 ms), MISTRAL has proved the feasibility of such measurements. Since the current ISOLDE production rate of $^{14}$Be is only about 10/s, the installation of a beam cooler is underway in order to improve MISTRAL transmission. The projected improvement of an order of magnitude (in each transverse direction) will make this measureme...

  16. Combined Scintigraphy and Tumor Marker Analysis Predicts Unfavorable Histopathology of Neuroblastic Tumors with High Accuracy.

    Directory of Open Access Journals (Sweden)

    Wolfgang Peter Fendler

    Full Text Available Our aim was to improve the prediction of unfavorable histopathology (UH in neuroblastic tumors through combined imaging and biochemical parameters.123I-MIBG SPECT and MRI was performed before surgical resection or biopsy in 47 consecutive pediatric patients with neuroblastic tumor. Semi-quantitative tumor-to-liver count-rate ratio (TLCRR, MRI tumor size and margins, urine catecholamine and NSE blood levels of neuron specific enolase (NSE were recorded. Accuracy of single and combined variables for prediction of UH was tested by ROC analysis with Bonferroni correction.34 of 47 patients had UH based on the International Neuroblastoma Pathology Classification (INPC. TLCRR and serum NSE both predicted UH with moderate accuracy. Optimal cut-off for TLCRR was 2.0, resulting in 68% sensitivity and 100% specificity (AUC-ROC 0.86, p < 0.001. Optimal cut-off for NSE was 25.8 ng/ml, resulting in 74% sensitivity and 85% specificity (AUC-ROC 0.81, p = 0.001. Combination of TLCRR/NSE criteria reduced false negative findings from 11/9 to only five, with improved sensitivity and specificity of 85% (AUC-ROC 0.85, p < 0.001.Strong 123I-MIBG uptake and high serum level of NSE were each predictive of UH. Combined analysis of both parameters improved the prediction of UH in patients with neuroblastic tumor. MRI parameters and urine catecholamine levels did not predict UH.

  17. Indexing Large Visual Vocabulary by Randomized Dimensions Hashing for High Quantization Accuracy: Improving the Object Retrieval Quality

    Science.gov (United States)

    Yang, Heng; Wang, Qing; He, Zhoucan

    The bag-of-visual-words approach, inspired by text retrieval methods, has proven successful in achieving high performance in object retrieval on large-scale databases. A key step of these methods is the quantization stage which maps the high-dimensional image feature vectors to discriminatory visual words. In this paper, we consider the quantization step as the nearest neighbor search in large visual vocabulary, and thus proposed a randomized dimensions hashing (RDH) algorithm to efficiently index and search the large visual vocabulary. The experimental results have demonstrated that the proposed algorithm can effectively increase the quantization accuracy compared to the vocabulary tree based methods which represent the state-of-the-art. Consequently, the object retrieval performance can be significantly improved by our method in the large-scale database.

  18. Analysis of bromotryptophan and hydroxyproline modifications by high-resolution, high-accuracy precursor ion scanning utilizing fragment ions with mass-deficient mass tags.

    Science.gov (United States)

    Steen, Hanno; Mann, Matthias

    2002-12-15

    Protein modifications are often detected by precursor ion scanning. When quadrupole TOF mass spectrometers are used for precursor ion scanning with high-resolution, high-accuracy fragment ion selection, "reporter" ions are required to have a unique mass within +/-0.04 Da or less instead of +/-0.5 Da on triple quadrupole mass spectrometers, the traditional instrument used for precursor ion scanning. Thus, characteristic fragment ions can be utilized even if other fragment ions have the same nominal mass as long as the characteristic fragment ions are slightly mass deficient as compared to the other fragments, i.e., when they have an inherent mass-deficient mass tag. Here, the immonium ions of bromotryptophan and hydroxyproline are described as two fragment ions characteristic for tryptophan-brominated and proline-hydroxylated peptides, respectively. The "reporter" ion of trytophan-brominated peptides is highly mass deficient due to the presence of bromine, thereby allowing the selective detection of these species and the distinction from other dipeptidic a-, b-, and y-fragment ions by high-resolution, high-accuracy precursor ion scanning. This strategy also enables the differentiation between precursors giving rise to the oxygen-containing immonium ion of hydroxyproline and precursors of the immonium ions of near-ubiquitous leucine/isoleucine. Both immonium ions have the same nominal mass of 86 Da, but the exact masses differ by less than 0.04 Da. High-resolution, high-accuracy precursor ion scanning enabled the identification of proline-hydroxylated and tryptophan-brominated species and the directed analysis of species carrying these modifications in a highly complex Conus textile conotoxin mixture. This lead to the characterization of one novel C. textile conotoxin containing a bromotryptophan residue and one novel C. textile conotoxin carrying two hydroxyproline residues.

  19. High accuracy calculation of the hydrogen negative ion in strong magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Zhao Ji-Jun; Wang Xiao-Feng; Qiao Hao-Xue

    2011-01-01

    Using a full configuration-interaction method with Hylleraas-Gaussian basis function, this paper investigates the 110+, 11(-1)+ and l1(-2)+ states of the hydrogen negative ion in strong magnetic fields. The total energies, electron detachment energies and derivatives of the total energy with respect to the magnetic field are presented as functions of magnetic field over a wide range of field strengths. Compared with the available theoretical data, the accuracy for the energies is enhanced significantly. The field regimes 3 <γ< 4 and 0.02 < 7< 0.05, in which the l1(-l)+ and l1(-2)+states start to become bound, respectively, are also determined based on the calculated electron detachment energies.

  20. Interethnic differences in the accuracy of anthropometric indicators of obesity in screening for high risk of coronary heart disease

    Science.gov (United States)

    Herrera, VM; Casas, JP; Miranda, JJ; Perel, P; Pichardo, R; González, A; Sanchez, JR; Ferreccio, C; Aguilera, X; Silva, E; Oróstegui, M; Gómez, LF; Chirinos, JA; Medina-Lezama, J; Pérez, CM; Suárez, E; Ortiz, AP; Rosero, L; Schapochnik, N; Ortiz, Z; Ferrante, D; Diaz, M; Bautista, LE

    2009-01-01

    Background Cut points for defining obesity have been derived from mortality data among Whites from Europe and the United States and their accuracy to screen for high risk of coronary heart disease (CHD) in other ethnic groups has been questioned. Objective To compare the accuracy and to define ethnic and gender-specific optimal cut points for body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) when they are used in screening for high risk of CHD in the Latin-American and the US populations. Methods We estimated the accuracy and optimal cut points for BMI, WC and WHR to screen for CHD risk in Latin Americans (n=18 976), non-Hispanic Whites (Whites; n=8956), non-Hispanic Blacks (Blacks; n=5205) and Hispanics (n=5803). High risk of CHD was defined as a 10-year risk ≥20% (Framingham equation). The area under the receiver operator characteristic curve (AUC) and the misclassification-cost term were used to assess accuracy and to identify optimal cut points. Results WHR had the highest AUC in all ethnic groups (from 0.75 to 0.82) and BMI had the lowest (from 0.50 to 0.59). Optimal cut point for BMI was similar across ethnic/gender groups (27 kg/m2). In women, cut points for WC (94 cm) and WHR (0.91) were consistent by ethnicity. In men, cut points for WC and WHR varied significantly with ethnicity: from 91 cm in Latin Americans to 102 cm in Whites, and from 0.94 in Latin Americans to 0.99 in Hispanics, respectively. Conclusion WHR is the most accurate anthropometric indicator to screen for high risk of CHD, whereas BMI is almost uninformative. The same BMI cut point should be used in all men and women. Unique cut points for WC and WHR should be used in all women, but ethnic-specific cut points seem warranted among men. PMID:19238159

  1. High-accuracy infra-red thermography method using reflective marker arrays

    Science.gov (United States)

    Kirollos, Benjamin; Povey, Thomas

    2017-09-01

    In this paper, we describe a new method for high-accuracy infra-red (IR) thermography measurements in situations with significant spatial variation in reflected radiation from the surroundings, or significant spatial variation in surface emissivity due to viewing angle non-uniformity across the field of view. The method employs a reflective marker array (RMA) on the target surface—typically, high emissivity circular dots—and an integrated image analysis algorithm designed to require minimal human input. The new technique has two particular advantages which make it suited to high-accuracy measurements in demanding environments: (i) it allows the reflected radiation component to be calculated directly, in situ, and as a function of position, overcoming a key problem in measurement environments with non-uniform and unsteady stray radiation from the surroundings; (ii) using image analysis of the marker array (via apparent aspect ratio of the circular reflective markers), the local viewing angle of the target surface can be estimated, allowing corrections for angular variation of local emissivity to be performed without prior knowledge of the geometry. A third advantage of the technique is that allows for simple focus-stacking algorithms due to increased image entropy. The reflective marker array method is demonstrated for an isothermal, hemispherical object exposed to an external IR source arranged to give a significant non-uniform reflected radiation term. This is an example of a challenging environment, both because of the significant non-uniform reflected radiation term, and also the significant variation in target emissivity due to surface angle variation. We demonstrate that the new RMA IR technique leads to significantly lower error in evaluated surface temperature than conventional IR techniques. The method is applicable to any complex radiative environment.

  2. Design and calibration of a high-sensitivity and high-accuracy polarimeter based on liquid crystal variable retarders

    Science.gov (United States)

    Guo, Jing; Ren, De-Qing; Liu, Cheng-Chao; Zhu, Yong-Tian; Dou, Jiang-Pei; Zhang, Xi; Beck, Christian

    2017-01-01

    Polarimetry plays an important role in the measurement of solar magnetic fields. We developed a high-sensitivity and high-accuracy polarimeter (HHP) based on nematic liquid crystal variable retarders (LCVRs), which has a compact setup and no mechanical moving parts. The system design and calibration methods are discussed in detail. The azimuth error of the transmission axis of the polarizer as well as the fast axes of the two LCVRs and the quarter-wave plate were determined using dedicated procedures. Linearly and circularly polarized light were employed to evaluate the performance of the HHP. The experimental results indicate that a polarimetric sensitivity of better than \\[5.7 × {10 - 3}\\] can be achieved by using a single short-exposure image, while an accuracy on the order of 10‑5 can be reached by using a large number of short-exposure images. This makes the HHP a high-performance system that can be used with a ground-based solar telescope for high-precision solar magnetic field investigations.

  3. FLOTAC for the diagnosis of Hymenolepis spp. infection: proof-of-concept and comparing diagnostic accuracy with other methods.

    Science.gov (United States)

    Steinmann, Peter; Cringoli, Giuseppe; Bruschi, Fabrizio; Matthys, Barbara; Lohourignon, Laurent K; Castagna, Barbara; Maurelli, Maria P; Morgoglione, Maria E; Utzinger, Jürg; Rinaldi, Laura

    2012-08-01

    Hymenolepis nana is the most common cestode parasitizing humans, yet it is under-diagnosed. We determined the optimal flotation solution (FS) for the diagnosis of this intestinal parasite with the FLOTAC method, and compared its diagnostic accuracy with an ether-concentration technique and the Kato-Katz method. Zinc sulphate (specific gravity 1.20) proved to be the best-performing FS. Using this FS, we detected 65 H. nana infections among 234 fixed fecal samples from Tajik and Sahrawi children (prevalence 27.8 %). The ether-concentration technique detected 40 infections (prevalence 17.1 %) in the same samples. Considering the combined results as a reference, the sensitivities of FLOTAC and ether-concentration were 95.6 % and 58.8 %, respectively. The Kato-Katz method resulted in a prevalence of only 8.7 %. In terms of eggs per gram of stool, a significantly (P Hymenolepis diminuta infections in 302 fecal samples, whereas five samples were found positive with the Kato-Katz technique. We conclude that FLOTAC is an accurate coprodiagnostic technique for H. nana and H. diminuta, two species which join a growing list of intestinal parasites that can be reliably diagnosed by this technique.

  4. THE PRECISION AND ACCURACY OF EARLY EPOCH OF REIONIZATION FOREGROUND MODELS: COMPARING MWA AND PAPER 32-ANTENNA SOURCE CATALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Daniel C.; Bowman, Judd [School of Space and Earth Exploration, Arizona State University, Tempe, AZ (United States); Aguirre, James E., E-mail: daniel.c.jacobs@asu.edu [Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, PA (United States)

    2013-05-20

    As observations of the Epoch of Reionization (EoR) in redshifted 21 cm emission begin, we assess the accuracy of the early catalog results from the Precision Array for Probing the Epoch of Reionization (PAPER) and the Murchison Wide-field Array (MWA). The MWA EoR approach derives much of its sensitivity from subtracting foregrounds to <1% precision, while the PAPER approach relies on the stability and symmetry of the primary beam. Both require an accurate flux calibration to set the amplitude of the measured power spectrum. The two instruments are very similar in resolution, sensitivity, sky coverage, and spectral range and have produced catalogs from nearly contemporaneous data. We use a Bayesian Markov Chain Monte Carlo fitting method to estimate that the two instruments are on the same flux scale to within 20% and find that the images are mostly in good agreement. We then investigate the source of the errors by comparing two overlapping MWA facets where we find that the differences are primarily related to an inaccurate model of the primary beam but also correlated errors in bright sources due to CLEAN. We conclude with suggestions for mitigating and better characterizing these effects.

  5. ACCURACY ANALYSIS OF WRIGHT'S CAPABILITY INDEX "CS" AND MODELLING NON-NORMAL DATA USING STATISTICAL SOFTWARE-A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Yerriswamy Wooluru

    2015-06-01

    Full Text Available Process Capability Indices (PCI has been widely used as a means of summarizing process performance relative to set of specification limits. The proper use of process capability indices are based on some assumptions which may not be true always. Therefore, sometime whether the process capability indices can truly reflect the performance of a process is questionable. Most of PCIs, including Cp, Cpk, Cpm and Cpmk, neglect the changes in the shape of the distribution, which is an important indicator of problems in skewness-prone processes. Wright proposed a process capability index 'Cs' to detect shape changes in a process due to skewness by incorporating a penalty for skewness. In this paper, the effect of skewness on assessment of accuracy of Wright's capability index Cs is studied and comparison is made with Cp, Cpk, Cpm and Cpmk indices when the distribution of the quality characteristic (spring force considered is skewed slightly. This paper also discusses how modelling the non normal data using statistical software and results were compared with other methods.

  6. Very Low Power, Low Voltage, High Accuracy, and High Performance Current Mirror

    Institute of Scientific and Technical Information of China (English)

    Hassan Faraji Baghtash; Khalil Monfaredi; Ahmad Ayatollahi

    2011-01-01

    A novel low power and low voltage current mirror with a very low current copy error is presented and the principle of its operation is discussed.In this circuit,the gain boosting regulated cascode scheme is used to improve the output resistance,while using inverter as an amplifier.The simulation results with HSPICE in TSMC 0.18 μm CMOS technology are given,which verify the high performance of the proposed structure.Simulation results show an input resistance of 0.014 Ω and an output resistance of 3 GΩ.The current copy error is favorable as low as 0.002% together with an input (the minimum input voltage of vin,min~ 0.24 V) and an output (the minimum output voltage of vout,min~ 0.16 V) compliances while working with the 1 V power supply and the 50 μA input current.The current copy error is near zero at the input current of 27 μA.It consumes only 76 μW and introduces a very low output offset current of 50 pA.

  7. ADFE METHOD WITH HIGH ACCURACY FOR NONLINEAR PARABOLIC INTEGRO-DIFFERENTIAL SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    崔霞

    2002-01-01

    Alternating direction finite element (ADFE) scheme for d-dimensional nonlinear system of parabolic integro-differential equations is studied. By using a local approximation based on patches of finite elements to treat the capacity term qi(u), decomposition of the coefficient matrix is realized; by using alternating direction, the multi-dimensional problem is reduced to a family of single space variable problems, calculation work is simplified; by using finite element method, high accuracy for space variant is kept; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity of the coefficients and boundary conditions is treated; by introducing Ritz-Volterra projection, the difficulty coming from the memory term is solved. Finally, by using various techniques for priori estimate for differential equations, the unique resolvability and convergence properties for both FE and ADFE schemes are rigorously demonstrated, and optimal H1 and L2norm space estimates and O((△t)2) estimate for time variant are obtained.

  8. SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space

    Science.gov (United States)

    Coppo, P.; Ricciarelli, B.; Brandani, F.; Delderfield, J.; Ferlet, M.; Mutlow, C.; Munro, G.; Nightingale, T.; Smith, D.; Bianchi, S.; Nicol, P.; Kirschstein, S.; Hennig, T.; Engel, W.; Frerick, J.; Nieke, J.

    2010-10-01

    SLSTR is a high accuracy infrared radiometer which will be embarked in the Earth low-orbit Sentinel 3 operational GMES mission. SLSTR is an improved version of the previous AATSR and ATSR-1/2 instruments which have flown respectively on Envisat and ERS-1/2 ESA missions. SLSTR will provide data continuity with respect to these previous missions but with a substantial improvement due to its higher swaths (750 km in dual view and 1400 km in single view) which should permit global coverage of SST and LST measurements (at 1 km of spatial resolution in IR channels) with daily revisit time, useful for climatological and meteorological applications. Two more SWIR channels and a higher spatial resolution in the VIS/SWIR channels (0.5 km) are also implemented for a better clouds/aerosols screening. Two further additional channels for global scale fire monitoring are present at the same time as the other nominal channels.

  9. Study on Calibration System for Electronic Transformers Based on High-Accuracy PCI Card

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhang

    2013-03-01

    Full Text Available With preliminary applying of Electronic Transformer (ET based on IEC 61850 standards in power grid, the calibrations of tested transformers have attracted extensive research attention. This study proposes a novel Calibration System of ET (CSET based on high-accuracy card. Data acquisition of ET and Standard Trans-former (ST is gotten by optic Ethernet and PCI-4462 data acquisition card, respectively. Meanwhile, the synchronized sampling between ET and ST is completed on the optic/electronic pulse signal of PCI synchronization card. The signals processing and human interface are realized by Labview software. The system proposed in the study is feasible for calibrating Electronic Voltage/Current Transformers (EVT/ECT of different voltage classes. System tests show that the precision of the system can get to 0.2°.

  10. Study on Calibration System for Electronic Transformers Based on High-Accuracy PCI Card

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhang

    2013-05-01

    Full Text Available With preliminary applying of Electronic Transformer (ET based on IEC 61850 standards in power grid, the calibration of tested transformers has attracted extensive research attention. This study proposes a novel Calibration System of ET (CSET based on high-accuracy card. Data acquisition of ET and standard trans-former (ST is gotten by optic Ethernet and PCI-4462 data acquisition card, respectively. Meanwhile, the synchronized sampling between ET and ST is completed on the optic/electronic pulse signal of PCI synchronization card. The signals processing and human interface are realized by Lab view software. The system proposed in the study is feasible for calibrating Electronic Voltage/Current Transformers (EVT/ECT of different voltage classes. System tests show that the precision of the system can get to 0.2°.

  11. High-Accuracy Programmable Timing Generator with Wide-Range Tuning Capability

    Directory of Open Access Journals (Sweden)

    Ting-Li Chu

    2013-01-01

    Full Text Available In this paper, a high-accuracy programmable timing generator with wide-range tuning capability is proposed. With the aid of dual delay-locked loop (DLL, both of the coarse- and fine-tuning mechanisms are operated in precise closed-loop scheme to lessen the effects of the ambient variations. The timing generator can provide sub-gate resolution and instantaneous switching capability. The circuit is implemented and simulated in TSMC 0.18 μm 1P6M technology. The test chip area occupies 1.9 mm2. The reference clock cycle can be divided into 128 bins by interpolation to obtain 14 ps resolution with the clock rate at 550 MHz. The INL and DNL are within −0.21~+0.78 and −0.27~+0.43 LSB, respectively.

  12. Well-posedness of the difference schemes of the high order of accuracy for elliptic equations

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available It is well known the differential equation − u ″ ( t +Au( t =f( t ( −∞high order of accuracy two-step difference schemes generated by an exact difference scheme or by Taylor's decomposition on three points for the approximate solutions of this differential equation. The well-posedness of these difference schemes in the difference analogy of the smooth functions is obtained. The exact almost coercive inequality for solutions in C( τ,E of these difference schemes is established.

  13. High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogenlike carbon.

    Science.gov (United States)

    Häffner, H; Beier, T; Hermanspahn, N; Kluge, H J; Quint, W; Stahl, S; Verdú, J; Werth, G

    2000-12-18

    We present a new experimental value for the magnetic moment of the electron bound in hydrogenlike carbon (12C5+): g(exp) = 2.001 041 596 (5). This is the most precise determination of an atomic g(J) factor so far. The experiment was carried out on a single 12C5+ ion stored in a Penning trap. The high accuracy was made possible by spatially separating the induction of spin flips and the analysis of the spin direction. The current theoretical value amounts to g(th) = 2.001 041 591 (7). Together experiment and theory test the bound-state QED contributions to the g(J) factor of a bound electron to a precision of 1%.

  14. Computer-aided diagnosis of breast MRI with high accuracy optical flow estimation

    Science.gov (United States)

    Meyer-Baese, Anke; Barbu, Adrian; Lobbes, Marc; Hoffmann, Sebastian; Burgeth, Bernhard; Kleefeld, Andreas; Meyer-Bäse, Uwe

    2015-05-01

    Non-mass enhancing lesions represent a challenge for the radiological reading. They are not well-defined in both morphology (geometric shape) and kinetics (temporal enhancement) and pose a problem to lesion detection and classification. To enhance the discriminative properties of an automated radiological workflow, the correct preprocessing steps need to be taken. In an usual computer-aided diagnosis (CAD) system, motion compensation plays an important role. To this end, we employ a new high accuracy optical flow based motion compensation algorithm with robustification variants. An automated computer-aided diagnosis system evaluates the atypical behavior of these lesions, and additionally considers the impact of non-rigid motion compensation on a correct diagnosis.

  15. High Accuracy Speed-fed Grating Angular Acceleration Measurement System Based on FPGA

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2012-09-01

    Full Text Available Shaft angular acceleration is one of the most important parameter of rotary machines, the error of angular acceleration increased when the shaft speed up. For this problem, a new high accuracy angular acceleration measurement system is presented, the principle of measurement is self-regulating the period of speed sampling signal according to the proportion of the shaft speed up. This measurement system combined FPGA and SCM, the speed of shaft is received by the timer of SCM responding the interrupts of FPGA, and then set the parameter of frequency divider in FPGA, so as to make the period of speed sampling consistent with the proportion of the speed up. This measurement system could overcome the error when system speed up according to the experiment.

  16. Comparative evaluation of accuracy of two electronic apex locators in the presence of various irrigants: An in vitro study

    Directory of Open Access Journals (Sweden)

    Saru Jain

    2012-01-01

    Full Text Available Context: The establishment of appropriate working length is one of the most critical steps in endodontic therapy. Electronic apex locators have been introduced to determine the working length. The development of electronic apex locators has helped make the assessment of the working length more accurate and predictable, along with reduction in treatment time and radiation dose. Objectives: The aim of this study was to compare the efficacy of electronic apex locators after cleansing and shaping of the root canals and whether there was any alteration in accuracy when used in the presence of irrigants. Materials and Methods: Seventy extracted human permanent molars with mature apices were selected. Equal number of maxillary and mandibular permanent molars (35 each were sectioned at the cemento-enamel junction. Access opening was done and only the mesiobuccal root canal was studied for the purpose of standardization. Electronic working length measurements were taken before and after preparation of the mesiobuccal canal with Root ZX and ProPex II using various irrigants. Statistical Analysis Used: The data were statistically analyzed using a paired t-test at 0.05 level of significance. Results: P-values for actual and final canal lengths for Root ZX employing NaoCl(0.001, CHX(0.006, LA(0.020 and for ProPex II was (0.001 respectively. When the data were compared, results were statistically significant (P < 0.05. Conclusion: Within the limitations of this study Root ZX can be considered to be an accurate electronic apex locator and CHX as irrigant matched more precisely with the actual canal length measurements.

  17. Transcutaneous bilirubin--comparing the accuracy of BiliChek(R) and JM 103(R) in a regional postnatal unit.

    LENUS (Irish Health Repository)

    Qualter, Yvonne M

    2012-01-31

    OBJECTIVE: Transcutaneous bilirubin (TcB) has the potential to reduce serum bilirubin sampling. During a recent survey on the use of TcB in postnatal units in the Republic of Ireland, we identified that only 58% of the 19 units were using TcB and that only two devices were in use, the BiliChek(R) and JM 103(R). We aimed to evaluate and compare these two devices in a regional postnatal unit. METHODS: To evaluate and compare the accuracy of the BiliChek(R) and JM 103(R), we studied simultaneous TcB and total serum bilirubin (TSB) measurements from a population of jaundiced term and near term infants. We evaluated each device with regard to correlation with TSB and potential to safely reduce serum bilirubin testing. RESULTS: Both TcB devices strongly correlated with TSB (r = 0.88 for BiliChek(R) and r = 0.70 for JM 103(R). The BiliChek(R) and JM 103(R) were accurate up to cut-off values of 200 mumol\\/L and 180 mumol\\/L, respectively. Using Bhutani\\'s nomogram, 100% sensitivity was achieved using the 75th percentile for BiliChek(R) and the 40th percentile for JM 103(R). CONCLUSION: Both TcB devices correlated closely with moderately increased TSB levels and are suitable screening tools to identify jaundiced infants that require a serum bilirubin, with upper limit cut-off values. Both devices reduced the need for TSB levels. We found the BiliChek(R) slightly more accurate than the JM 103(R) for our study population. TcB however, is not in widespread use.

  18. Pulmonary Artery Catheter (PAC Accuracy and Efficacy Compared with Flow Probe and Transcutaneous Doppler (USCOM: An Ovine Cardiac Output Validation

    Directory of Open Access Journals (Sweden)

    Robert A. Phillips

    2012-01-01

    Full Text Available Background. The pulmonary artery catheter (PAC is an accepted clinical method of measuring cardiac output (CO despite no prior validation. The ultrasonic cardiac output monitor (USCOM is a noninvasive alternative to PAC using Doppler ultrasound (CW. We compared PAC and USCOM CO measurements against a gold standard, the aortic flow probe (FP, in sheep at varying outputs. Methods. Ten conscious sheep, with implanted FPs, had measurements of CO by FP, USCOM, and PAC, at rest and during intervention with inotropes and vasopressors. Results. CO measurements by FP, PAC, and USCOM were 4.0±1.2 L/min, 4.8±1.5 L/min, and 4.0±1.4 L/min, respectively, (=280, range 1.9 L/min to 11.7 L/min. Percentage bias and precision between FP and PAC, and FP and USCOM was −17 and 47%, and 1 and 36%, respectively. PAC under-measured Dobutamine-induced CO changes by 20% (relative 66% compared with FP, while USCOM measures varied from FP by 3% (relative 10%. PAC reliably detected −30% but not +40% CO changes, as measured by receiver operating characteristic area under the curve (AUC, while USCOM reliably detected ±5% changes in CO (AUC>0.70. Conclusions. PAC demonstrated poor accuracy and sensitivity as a measure of CO. USCOM provided equivalent measurements to FP across a sixfold range of outputs, reliably detecting ±5% changes.

  19. High Accuracy Reference Network (HARN), Published in 2000, 1:600 (1in=50ft) scale, Brown County, WI.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This High Accuracy Reference Network (HARN) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from Field Survey/GPS information as of 2000....

  20. High-accuracy approximation of high-rank derivatives: isotropic finite differences based on lattice-Boltzmann stencils.

    Science.gov (United States)

    Mattila, Keijo Kalervo; Hegele Júnior, Luiz Adolfo; Philippi, Paulo Cesar

    2014-01-01

    We propose isotropic finite differences for high-accuracy approximation of high-rank derivatives. These finite differences are based on direct application of lattice-Boltzmann stencils. The presented finite-difference expressions are valid in any dimension, particularly in two and three dimensions, and any lattice-Boltzmann stencil isotropic enough can be utilized. A theoretical basis for the proposed utilization of lattice-Boltzmann stencils in the approximation of high-rank derivatives is established. In particular, the isotropy and accuracy properties of the proposed approximations are derived directly from this basis. Furthermore, in this formal development, we extend the theory of Hermite polynomial tensors in the case of discrete spaces and present expressions for the discrete inner products between monomials and Hermite polynomial tensors. In addition, we prove an equivalency between two approaches for constructing lattice-Boltzmann stencils. For the numerical verification of the presented finite differences, we introduce 5th-, 6th-, and 8th-order two-dimensional lattice-Boltzmann stencils.

  1. Study of high-altitude radar altimeter model accuracy and SITAN performance using HAAFT data

    Energy Technology Data Exchange (ETDEWEB)

    Shieves, T.C.; Callahan, M.W.

    1979-07-01

    Radar altimetry data, inertial navigation data, and scoring data were collected under the HAAFT program by Martin Marietta Corporation for the United States Air Force over several areas in the western United States at altitudes ranging from 3 to 20 km. The study reported here uses the HAAFT data in conjunction with Defense Mapping Agency (DMA) topographic data to evaluate the accuracy of a high-altitude pulsed-radar altimeter model and the resulting performance of the terrain-aided guidance concept SITAN. Previous SITAN flight tests at low altitudes (less than 1500 m AGL) have demonstrated 6-20 m CEP. The high-altitude flight test data analyzed herein show a SITAN CEP of 120 m. The radar altimeter model was required to achieve this performance includes the effects of the internal track loop, AGC loop, antenna beamwidth, and the terrain radar cross section and provided a factor of 6 improvement over simple nadir ground clearance for rough terrain. It is postulated that high-altitude CEP could be reduced to 50 m or less if an altimeter were designed specifically for high-altitude terrain sensing.

  2. TECHNOLOGICAL PROVISION OF ACCURACY AND QUALITY PARAMETERS OF INTRICATE PROFILE PARTS AT HIGH-SPEED MULTI-COORDINATE MACHINING

    Directory of Open Access Journals (Sweden)

    V. K. Sheleg

    2009-01-01

    Full Text Available The paper considers requirements to CAM-systems for provision of high-speed multi-coordinate milling, principles of generation and recommendations on trajectory programming for high-speed machining, influence of vibration and balancing of the technological system on parameters of  the machining accuracy, characteristics of a cutting tool, types of tool coatings that is rather actual for improvement of accuracy and quality of intricate profile parts.

  3. Location accuracy evaluation of lightning location systems using natural lightning flashes recorded by a network of high-speed cameras

    Science.gov (United States)

    Alves, J.; Saraiva, A. C. V.; Campos, L. Z. D. S.; Pinto, O., Jr.; Antunes, L.

    2014-12-01

    This work presents a method for the evaluation of location accuracy of all Lightning Location System (LLS) in operation in southeastern Brazil, using natural cloud-to-ground (CG) lightning flashes. This can be done through a multiple high-speed cameras network (RAMMER network) installed in the Paraiba Valley region - SP - Brazil. The RAMMER network (Automated Multi-camera Network for Monitoring and Study of Lightning) is composed by four high-speed cameras operating at 2,500 frames per second. Three stationary black-and-white (B&W) cameras were situated in the cities of São José dos Campos and Caçapava. A fourth color camera was mobile (installed in a car), but operated in a fixed location during the observation period, within the city of São José dos Campos. The average distance among cameras was 13 kilometers. Each RAMMER sensor position was determined so that the network can observe the same lightning flash from different angles and all recorded videos were GPS (Global Position System) time stamped, allowing comparisons of events between cameras and the LLS. The RAMMER sensor is basically composed by a computer, a Phantom high-speed camera version 9.1 and a GPS unit. The lightning cases analyzed in the present work were observed by at least two cameras, their position was visually triangulated and the results compared with BrasilDAT network, during the summer seasons of 2011/2012 and 2012/2013. The visual triangulation method is presented in details. The calibration procedure showed an accuracy of 9 meters between the accurate GPS position of the object triangulated and the result from the visual triangulation method. Lightning return stroke positions, estimated with the visual triangulation method, were compared with LLS locations. Differences between solutions were not greater than 1.8 km.

  4. Operational accuracy and comparative persistent antigenicity of HRP2 rapid diagnostic tests for Plasmodium falciparum malaria in a hyperendemic region of Uganda

    Directory of Open Access Journals (Sweden)

    Odong George W

    2008-10-01

    Full Text Available Abstract Background Parasite-based diagnosis of malaria by microscopy requires laboratory skills that are generally unavailable at peripheral health facilities. Rapid diagnostic tests (RDTs require less expertise, but accuracy under operational conditions has not been fully evaluated in Uganda. There are also concerns about RDTs that use the antigen histidine-rich protein 2 (HRP2 to detect Plasmodium falciparum, because this antigen can persist after effective treatment, giving false positive test results in the absence of infection. An assessment of the accuracy of Malaria Pf™ immuno-chromatographic test (ICT and description of persistent antigenicity of HRP2 RDTs was undertaken in a hyperendemic area of Uganda. Methods Using a cross-sectional design, a total of 357 febrile patients of all ages were tested using ICT, and compared to microscopy as the gold standard reference. Two independent RDT readings were used to assess accuracy and inter-observer reliability. With a longitudinal design to describe persistent antigenicity of ICT and Paracheck, 224 children aged 6–59 months were followed up at 7-day intervals until the HRP2 antigens where undetectable by the RDTs. Results Of the 357 patients tested during the cross-sectional component, 40% (139 had positive blood smears for asexual forms of P. falciparum. ICT had an overall sensitivity of 98%, a specificity of 72%, a negative predictive value (NPV of 98% and a positive predictive value (PPV of 69%. ICT showed a high inter-observer reliability under operational conditions, with 95% of readings having assigned the same results (kappa statistics 0.921, p In children followed up after successful antimalaria treatment, the mean duration of persistent antigenicity was 32 days, and this duration varied significantly depending on pre-treatment parasitaemia. In patients with parasite density >50,000/μl, the mean duration of persistent antigenicity was 37 days compared to 26 days for parasitaemia

  5. Symptom-dependent cut-offs of urine metanephrines improve diagnostic accuracy for detecting pheochromocytomas in two separate cohorts, compared to symptom-independent cut-offs.

    Science.gov (United States)

    Cho, Yoon Young; Song, Kee-Ho; Kim, Young Nam; Ahn, Seong Hee; Kim, Hyeonmok; Park, Sooyoun; Suh, Sunghwan; Kim, Beom-Jun; Lee, Soo-Youn; Chun, Sail; Koh, Jung-Min; Lee, Seung Hun; Kim, Jae Hyeon

    2016-10-01

    The development of advanced imaging techniques has increased the detection of subclinical pheochromocytomas. Because of the substantial proportions of subclinical pheochromocytomas, measurement of urine metanephrine concentrations is crucial due to detect or exclude pheochromocytoma. Although urine metanephrines are elevated in symptomatic subjects, diagnostic cut-offs according to the presence of adrenergic symptoms have not been studied. Pheochromocytomas patients who underwent adrenalectomy at Samsung Medical Center and a control group were compared to determine cut-off concentrations of urine metanephrines. An independent population was analyzed for urine metanephrines with different kits to validate the improvement in diagnostic accuracy using adjusted cut-offs. Symptom-dependent cut-offs of urine metanephrines were higher for symptomatic patients (307 μg/day in males, 235 μg/day in females for urine metanephrine, and 1,045 μg/day in males and 457 μg/day in females for urine normetanephrine) than for asymptomatic patients (206 μg/day in males, 199 μg/day in females for urine metanephrine, and 489 μg/day in males and 442 μg/day in females for urine normetanephrine). Symptom-dependent cut-offs of urine metanephrines improved a specificity from 92.7 % to 96.3 % and a high sensitivity of 97.8 % was maintained. Using the Symptom-dependent cut-offs raised diagnostic accuracy by 5.5 % (p <0.001). Similar trend was also observed in an independent population using different hormone kits. Using symptom-dependent cut-offs of urine metanephrines in symptomatic patients for pheochromocytomas resulted in a significant improvement in diagnostic accuracy in two separate cohorts.

  6. A new device for liver cancer biomarker detection with high accuracy

    Directory of Open Access Journals (Sweden)

    Shuaipeng Wang

    2015-06-01

    Full Text Available A novel cantilever array-based bio-sensor was batch-fabricated with IC compatible MEMS technology for precise liver cancer bio-marker detection. A micro-cavity was designed in the free end of the cantilever for local antibody-immobilization, thus adsorption of the cancer biomarker is localized in the micro-cavity, and the adsorption-induced k variation can be dramatically reduced with comparison to that caused by adsorption of the whole lever. The cantilever is pizeoelectrically driven into vibration which is pizeoresistively sensed by Wheatstone bridge. These structural features offer several advantages: high sensitivity, high throughput, high mass detection accuracy, and small volume. In addition, an analytical model has been established to eliminate the effect of adsorption-induced lever stiffness change and has been applied to precise mass detection of cancer biomarker AFP, the detected AFP antigen mass (7.6 pg/ml is quite close to the calculated one (5.5 pg/ml, two orders of magnitude better than the value by the fully antibody-immobilized cantilever sensor. These approaches will promote real application of the cantilever sensors in early diagnosis of cancer.

  7. High Accuracy Decoding of Dynamical Motion from a Large Retinal Population.

    Directory of Open Access Journals (Sweden)

    Olivier Marre

    2015-07-01

    Full Text Available Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.

  8. A comparative study of the diagnostic accuracy on Waters view with CT scan in detecting midface fractures

    Directory of Open Access Journals (Sweden)

    Panjnoush M.

    2006-08-01

    Full Text Available Background and Aim: In recent years, CT scan has become available as an alternative to conventional radiography. To date, the utility of Waters view in detecting midface fractures has been rarely evaluated. The aim of this study was to compare the diagnostic accuracy and reliability of Waters radiography with CT scan in detecting midface fractures. Materials and Methods: In this tests evaluation study, waters view and CT scan were performed for 42 patients with midface fracture admitted to maxillofacial surgery department of Shariati hospital. All images were observed and interpreted by an oral and maxillofacial radiologist and an oral and maxillofacial surgeon. Sensitivity, specificity and reliability for Waters view in detecting midface fractures were assessed by Cohen’s kappa test. Results: Sensitivity and specificity for Waters view in detection of midface fratures by the radiologist were 31.79% and 95.35% and by the surgeon were 29.59% and 93.75% respectively. The highest reliability in CT scan and Waters view (in nasal fractures by the radiologist was 66.67% and was 58.33% by the surgeon in buttress of zygoma. The highest agreement rate between the radiologist and the surgeon for CT scan was in zygomatic arch (78.95% and for Waters view was in nasal fracture (62.5%. Conclusion: Based on the results of this study, the specificity of Waters view is sufficient to diagnose fractures of lateral orbital wall, infraorbital rim, orbital floor, zygomatic arch, frontozygomatic suture, lateral wall of maxillary sinus and Lefort II fracture. The specificity is not sufficient to diagnose fractures of medial orbital wall and anterior, posterior and medial wall of maxillary sinus. Detection of these midface fractures needs other conventional radiographies or CT scan.

  9. A new TEC interpolation method based on the least squares collocation for high accuracy regional ionospheric maps

    Science.gov (United States)

    Krypiak-Gregorczyk, Anna; Wielgosz, Paweł; Jarmołowski, Wojciech

    2017-04-01

    The ionosphere plays a crucial role in space weather that affects satellite navigation as the ionospheric delay is one of the major errors in GNSS. On the other hand, GNSS observations are widely used to determine the amount of ionospheric total electron content (TEC). An important aspect in the electron content estimation at regional and global scale is adopting the appropriate interpolation strategy. In this paper we propose and validate a new method for regional TEC modeling based on least squares collocation (LSC) with noise variance estimation. This method allows for providing accurate TEC maps with high spatial and temporal resolution. Such maps may be used to support precise GNSS positioning and navigation, e.g. in RTK mode and also in the ionosphere studies. To test applicability of new TEC maps to positioning, double-difference ionospheric corrections were derived from the maps and their accuracy was analyzed. In addition, the corrections were applied to GNSS positioning and validated in ambiguity resolution domain. The tests were carried out during a strong ionospheric storm when the ionosphere is particularly difficult to model. The performance of the new approach was compared to IGS and UPC global, and CODE regional TEC maps. The results showed an advantage of our solution with resulting accuracy of the relative ionospheric corrections usually better than 10 cm, even during the ionospheric disturbances. This proves suitability of our regional TEC maps for, e.g. supporting fast ambiguity resolution in kinematic GNSS positioning.

  10. High-accuracy measurements of snow Bidirectional Reflectance Distribution Function at visible and NIR wavelengths – comparison with modelling results

    Directory of Open Access Journals (Sweden)

    Y. Arnaud

    2009-09-01

    Full Text Available High-accuracy measurements of snow Bidirectional Reflectance Distribution Function (BRDF were performed for four natural snow samples with a spectrogonio-radiometer in the 500–2600 nm wavelength range. These measurements are one of the first set of direct snow BRDF values over a wide range of lighting and viewing geometry. They were compared to BRDF calculated with two optical models. Variations of the snow anisotropy factor with lighting geometry, wavelength and snow physical properties were investigated. Results show that at wavelengths with small penetration depth, scattering mainly occurs in the very top layers and the anisotropy factor is controlled by the phase function. In this condition, forward scattering peak or double scattering peak is observed. In constrast at shorter wavelengths, the penetration of the radiation is much deeper and the number of scattering events increases. The anisotropy factor is thus nearly constant and decreases at grazing observation angles.

  11. High-accuracy measurements of snow Bidirectional Reflectance Distribution Function at visible and NIR wavelengths - comparison with modelling results

    Science.gov (United States)

    Dumont, M.; Brissaud, O.; Picard, G.; Schmitt, B.; Gallet, J.-C.; Arnaud, Y.

    2010-03-01

    High-accuracy measurements of snow Bidirectional Reflectance Distribution Function (BRDF) were performed for four natural snow samples with a spectrogonio-radiometer in the 500-2600 nm wavelength range. These measurements are one of the first sets of direct snow BRDF values over a wide range of lighting and viewing geometry. They were compared to BRDF calculated with two optical models. Variations of the snow anisotropy factor with lighting geometry, wavelength and snow physical properties were investigated. Results show that at wavelengths with small penetration depth, scattering mainly occurs in the very top layers and the anisotropy factor is controlled by the phase function. In this condition, forward scattering peak or double scattering peak is observed. In contrast at shorter wavelengths, the penetration of the radiation is much deeper and the number of scattering events increases. The anisotropy factor is thus nearly constant and decreases at grazing observation angles. The whole dataset is available on demand from the corresponding author.

  12. High-resolution CT of nontuberculous mycobacterium infection in adult CF patients: diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, Sinead; Lavelle, Lisa; Kilcoyne, Aoife; McCarthy, Colin; Dodd, Jonathan D. [St. Vincent' s University Hospital, Department of Radiology, Dublin (Ireland); DeJong, Pim A. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Loeve, Martine; Tiddens, Harm A.W.M. [Erasmus MC-Sophia Children' s Hospital, Department of Radiology, Department of Pediatric Pulmonology and Allergology, Rotterdam (Netherlands); McKone, Edward; Gallagher, Charles G. [St. Vincent' s University Hospital, Department of Respiratory Medicine and National Referral Centre for Adult Cystic Fibrosis, Dublin (Ireland)

    2012-12-15

    To determine the diagnostic accuracy of high-resolution computed tomography (HRCT) for the detection of nontuberculous mycobacterium infection (NTM) in adult cystic fibrosis (CF) patients. Twenty-seven CF patients with sputum-culture-proven NTM (NTM+) underwent HRCT. An age, gender and spirometrically matched group of 27 CF patients without NTM (NTM-) was included as controls. Images were randomly and blindly analysed by two readers in consensus and scored using a modified Bhalla scoring system. Significant differences were seen between NTM (+) and NTM (-) patients in the severity of the bronchiectasis subscore [45 % (1.8/4) vs. 35 % (1.4/4), P = 0.029], collapse/consolidation subscore [33 % (1.3/3) vs. 15 % (0.6/3)], tree-in-bud/centrilobular nodules subscore [43 % (1.7/3) vs. 25 % (1.0/3), P = 0.002] and the total CT score [56 % (18.4/33) vs. 46 % (15.2/33), P = 0.002]. Binary logistic regression revealed BMI, peribronchial thickening, collapse/consolidation and tree-in-bud/centrilobular nodules to be predictors of NTM status (R{sup 2} = 0.43). Receiver-operator curve analysis of the regression model showed an area under the curve of 0.89, P < 0.0001. In adults with CF, seven or more bronchopulmonary segments showing tree-in-bud/centrilobular nodules on HRCT is highly suggestive of NTM colonisation. (orig.)

  13. High accuracy jog CD control on OPC pattern by advanced laser writer Sigma7500

    Science.gov (United States)

    Chin, Tomas; Wu, Wen-Bin; Shih, Chiang-Lin

    2008-10-01

    With the progress of mask writer technology, 50 KV electron beam writers always perform with better pattern fidelity and critical dimension (CD) control than traditional laser raster-scan writers because laser spot size is confined by the laser longer wavelength relative to electron beam. As far as Optical Proximity Correction (OPC) pattern fidelity is concerned, critical masks with OPC process have to choose Variable-Shape-Beam (VSB) electron beam writer presently. However, the over-aggressive OPC fragmentation induces data volume abrupt explosion, longer writing time, higher mask cost and even mask quality degradation 1. Micronic Sigma7500 laser writer introduces a novel imaging system combining partial coherent light and DUV spatial light modulation (SLM) to generate a high-quality pattern image 2. The benefit of raster-scan laser writer is high throughput with consistent writing time regardless of pattern geometry, complexity and data size. However, pattern CD accuracy still needs improvement. This study is to evaluate jog CD control capability of Sigma7500 on OPC typical line-and-space test patterns with different orientations of 0°, 90°, 45° and 135°. In addition, mask CD uniformity and OPC jog height linearity will also be demonstrated.

  14. High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects

    Science.gov (United States)

    Beverini, N.; Di Virgilio, A.; Belfi, J.; Ortolan, A.; Schreiber, K. U.; Gebauer, A.; Klügel, T.

    2016-06-01

    The Gross Ring G is a square ring laser gyroscope, built as a monolithic Zerodur structure with 4 m length on all sides. It has demonstrated that a large ring laser provides a sensitivity high enough to measure the rotational rate of the Earth with a high precision of ΔΩE GINGER project is intending to take this level of sensitivity further and to improve the accuracy and the long-term stability. A monolithic structure similar to the G ring laser is not available for GINGER. Therefore the preliminary goal is the demonstration of the feasibility of a larger gyroscope structure, where the mechanical stability is obtained through an active control of the geometry. A prototype moderate size gyroscope (GP-2) has been set up in Pisa in order to test this active control of the ring geometry, while a second structure (GINGERino) has been installed inside the Gran Sasso underground laboratory in order to investigate the properties of a deep underground laboratory in view of an installation of a future GINGER apparatus. The preliminary data on these two latter instruments are presented.

  15. High accuracy and transferability of a neural network potential through charge equilibration for calcium fluoride

    Science.gov (United States)

    Faraji, Somayeh; Ghasemi, S. Alireza; Rostami, Samare; Rasoulkhani, Robabe; Schaefer, Bastian; Goedecker, Stefan; Amsler, Maximilian

    2017-03-01

    We investigate the accuracy and transferability of a recently developed high-dimensional neural network (NN) method for calcium fluoride, fitted to a database of ab initio density functional theory (DFT) calculations based on the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional. We call the method charge equilibration via neural network technique (CENT). Although the fitting database contains only clusters (i.e., nonperiodic structures), the NN scheme accurately describes a variety of bulk properties. In contrast to other available empirical methods the CENT potential has a much simpler functional form, nevertheless it correctly reproduces the PBE energetics of various crystalline phases both at ambient and high pressure. Surface energies and structures as well as dynamical properties derived from phonon calculations are also in good agreement with PBE results. Overall, the difference between the values obtained by the CENT potential and the PBE reference values is less than or equal to the difference between the values of local density approximation (LDA) and Born-Mayer-Huggins (BMH) with those calculated by the PBE exchange correlation functional.

  16. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device.

  17. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Jong-Seok Kim

    2016-01-01

    Full Text Available The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart.

  18. Assessing the Accuracy of Sentinel-3 SLSTR Sea-Surface Temperature Retrievals Using High Accuracy Infrared Radiiometers on Ships of Opportunity

    Science.gov (United States)

    Minnett, P. J.; Izaguirre, M. A.; Szcszodrak, M.; Williams, E.; Reynolds, R. M.

    2015-12-01

    The assessment of errors and uncertainties in satellite-derived SSTs can be achieved by comparisons with independent measurements of skin SST of high accuracy. Such validation measurements are provided by well-calibrated infrared radiometers mounted on ships. The second generation of Marine-Atmospheric Emitted Radiance Interferometers (M-AERIs) have recently been developed and two are now deployed on cruise ships of Royal Caribbean Cruise Lines that operate in the Caribbean Sea, North Atlantic and Mediterranean Sea. In addition, two Infrared SST Autonomous Radiometers (ISARs) are mounted alternately on a vehicle transporter of NYK Lines that crosses the Pacific Ocean between Japan and the USA. Both M-AERIs and ISARs are self-calibrating radiometers having two internal blackbody cavities to provide at-sea calibration of the measured radiances, and the accuracy of the internal calibration is periodically determined by measurements of a NIST-traceable blackbody cavity in the laboratory. This provides SI-traceability for the at-sea measurements. It is anticipated that these sensors will be deployed during the next several years and will be available for the validation of the SLSTRs on Sentinel-3a and -3b.

  19. Accuracy of the field triage protocol in selecting severely injured patients after high energy trauma.

    Science.gov (United States)

    van Laarhoven, J J E M; Lansink, K W W; van Heijl, M; Lichtveld, R A; Leenen, L P H

    2014-05-01

    For optimal treatment of trauma patients it is of great importance to identify patients who are at risk for severe injuries. The Dutch field triage protocol for trauma patients, the LPA (National Protocol of Ambulance Services), is designed to get the right patient, in the right time, to the right hospital. Purpose of this study was to determine diagnostic accuracy and compliance of this triage protocol. Triage criteria were categorised into physiological condition (P), mechanism of trauma (M) and injury type (I). A retrospective analysis of prospectively collected data of all high-energy trauma patients from 2008 to 2011 in the region Central Netherlands is performed. Diagnostic parameters (sensitivity, specificity, negative predictive value, positive predictive value) of the field triage protocol for selecting severely injured patients were calculated including rates of under- and overtriage. Undertriage was defined as the proportion of severely injured patients (Injury Severity Score (ISS)≥16) who were transported to a level two or three trauma care centre. Overtriage was defined as the proportion of non-severely injured patients (ISSprotocol was 89.1% (95% confidence interval (CI) 84.4-92.6) and 60.5% (95% CI 57.9-63.1), respectively. The overall rate of undertriage was 10.9% (95%CI 7.4-15.7) and the overall rate of overtriage was 39.5% (95%CI 36.9-42.1). These rates were 16.5% and 37.7%, respectively for patients with M+I-P-. Compliance to the triage protocol for patients with M+I-P- was 78.7%. Furthermore, compliance in patients with either a positive I+ or positive P+ was 91.2%. The overall rate of undertriage (10.8%) was mainly influenced by a high rate of undertriage in the group of patients with only a positive mechanism criterion, therefore showing low diagnostic accuracy in selecting severely injured patients. As a consequence these patients with severe injury are undetected using the current triage protocol. As it has been shown that severely injured

  20. Expression of CRM1 and CDK5 shows high prognostic accuracy for gastric cancer

    Science.gov (United States)

    Sun, Yu-Qin; Xie, Jian-Wei; Xie, Hong-Teng; Chen, Peng-Chen; Zhang, Xiu-Li; Zheng, Chao-Hui; Li, Ping; Wang, Jia-Bin; Lin, Jian-Xian; Cao, Long-Long; Huang, Chang-Ming; Lin, Yao

    2017-01-01

    AIM To evaluate the predictive value of the expression of chromosomal maintenance (CRM)1 and cyclin-dependent kinase (CDK)5 in gastric cancer (GC) patients after gastrectomy. METHODS A total of 240 GC patients who received standard gastrectomy were enrolled in the study. The expression level of CRM1 and CDK5 was detected by immunohistochemistry. The correlations between CRM1 and CDK5 expression and clinicopathological factors were explored. Univariate and multivariate survival analyses were used to identify prognostic factors for GC. Receiver operating characteristic analysis was used to compare the accuracy of the prediction of clinical outcome by the parameters. RESULTS The expression of CRM1 was significantly related to size of primary tumor (P = 0.005), Borrmann type (P = 0.006), degree of differentiation (P = 0.004), depth of invasion (P = 0.008), lymph node metastasis (P = 0.013), TNM stage (P = 0.002) and distant metastasis (P = 0.015). The expression of CDK5 was significantly related to sex (P = 0.048) and Lauren’s classification (P = 0.011). Multivariate Cox regression analysis identified that CRM1 and CDK5 co-expression status was an independent prognostic factor for overall survival (OS) of patients with GC. Integration of CRM1 and CDK5 expression could provide additional prognostic value for OS compared with CRM1 or CDK5 expression alone (P = 0.001). CONCLUSION CRM1 and CDK5 co-expression was an independent prognostic factors for GC. Combined CRM1 and CDK5 expression could provide a prognostic model for OS of GC. PMID:28373767

  1. Comparative accuracy evaluation of fine-scale global and local digital surface models: The Tshwane Case Study I

    CSIR Research Space (South Africa)

    Breytenbach, Andre

    2016-10-01

    Full Text Available Conducted in the City of Tshwane, South Africa, this study set about to test the accuracy of DSMs derived from different remotely sensed data locally. VHR digital mapping camera stereo-pairs, tri-stereo imagery collected by a Pléiades satellite...

  2. A Comparative Study of the Variables Used to Measure Syntactic Complexity and Accuracy in Task-Based Research

    Science.gov (United States)

    Inoue, Chihiro

    2016-01-01

    The constructs of complexity, accuracy and fluency (CAF) have been used extensively to investigate learner performance on second language tasks. However, a serious concern is that the variables used to measure these constructs are sometimes used conventionally without any empirical justification. It is crucial for researchers to understand how…

  3. Rapid, high-accuracy detection of strabismus and amblyopia using the pediatric vision scanner.

    Science.gov (United States)

    Loudon, Sjoukje E; Rook, Caitlin A; Nassif, Deborah S; Piskun, Nadya V; Hunter, David G

    2011-07-07

    Purpose. The Pediatric Vision Scanner (PVS) detects strabismus by identifying ocular fixation in both eyes simultaneously. This study was undertaken to assess the ability of the PVS to identify patients with amblyopia or strabismus, particularly anisometropic amblyopia with no measurable strabismus. Methods. The PVS test, administered from 40 cm and requiring 2.5 seconds of attention, generated a binocularity score (BIN, 0%-100%). We tested 154 patients and 48 controls between the ages of 2 and 18 years. BIN scores of amblyopic children and controls were measured, and 21 children received sequential PVS measurements to detect any changes in BIN resulting from amblyopia treatment. Results. With the pass/refer threshold set at BIN 60%, sensitivity and specificity were 96% for the detection of amblyopia or strabismus. Assuming a 5% prevalence of amblyopia or strabismus, the inferred positive and negative predictive values of the PVS were 56% and 100%, respectively. Fixation accuracy was significantly reduced in amblyopic eyes. In anisometropic amblyopia patients treated successfully, the BIN improved to 100%. Conclusions. The PVS identified children with amblyopia or strabismus with high sensitivity and specificity, while successful treatment restored normal BIN scores in amblyopic patients without strabismus. The results support the hypothesis that the PVS detects strabismus and amblyopia directly. Future strategies for screening by nonspecialists may thus be based on diagnostic detection of amblyopia and strabismus rather than the estimation of risk factors, allowing for rapid, accurate identification of children with amblyopia early in life when it is most amenable to treatment.

  4. A high accuracy broadband measurement system for time resolved complex bioimpedance measurements.

    Science.gov (United States)

    Kaufmann, S; Malhotra, A; Ardelt, G; Ryschka, M

    2014-06-01

    Bioimpedance measurements are useful tools in biomedical engineering and life science. Bioimpedance is the electrical impedance of living tissue and can be used in the analysis of various physiological parameters. Bioimpedance is commonly measured by injecting a small well known alternating current via surface electrodes into an object under test and measuring the resultant surface voltages. It is non-invasive, painless and has no known hazards. This work presents a field programmable gate array based high accuracy broadband bioimpedance measurement system for time resolved bioimpedance measurements. The system is able to measure magnitude and phase of complex impedances under test in a frequency range of about 10-500 kHz with excitation currents from 10 µA to 5 mA. The overall measurement uncertainties stay below 1% for the impedance magnitude and below 0.5° for the phase in most measurement ranges. Furthermore, the described system has a sample rate of up to 3840 impedance spectra per second. The performance of the bioimpedance measurement system is demonstrated with a resistor based system calibration and with measurements on biological samples.

  5. GRACE Data-based High Accuracy Global Static Earth's Gravity Field Model

    Directory of Open Access Journals (Sweden)

    CHEN Qiujie

    2016-04-01

    Full Text Available To recover the highly accurate static earth's gravity field by using GRACE satellite data is one of the hot topics in geodesy. Since linearization errors of dynamic approach quickly increase when extending satellite arc length, we established a modified dynamic approach for processing GRACE orbit and range-rate measurements in this paper, which treated orbit observations of the twin GRACE satellites as approximate values for linearization. Using the GRACE data spanning the period Jan. 2003 to Dec. 2010, containing satellite attitudes, orbits, range-rate, and non-conservative forces, we developed two global static gravity field models. One is the unconstrained solution called Tongji-Dyn01s complete to degree and order 180; the other one is the Tongji-Dyn01k model computed by using Kaula constraint. The comparisons between our models and those latest GRACE-only models (including the AIUB-GRACE03, the GGM05S, the ITSG-Grace2014k and the Tongji-GRACE01 published by different international groups, and the external validations with marine gravity anomalies from DTU13 product and height anomalies from GPS/levelling data, were performed in this study. The results demonstrate that the Tongji-Dyn01s has the same accuracy level with those of the latest GRACE-only models, while the Tongji-Dyn01k model is closer to the EIGEN6C2 than the other GRACE-only models as a whole.

  6. High Accuracy Extraction of Respiratory Sinus Arrhythmia with Statistical Processing using Normal Distribution

    Science.gov (United States)

    Numata, Takashi; Ogawa, Yutaro; Yoshida, Lui; Kotani, Kiyoshi; Jimbo, Yasuhiko

    The autonomic nervous system is important in maintaining homeostasis by mediating the opposing effects of the sympathetic and parasympathetic nervous activity on organs. Although it is known that the amplitude of RSA (Respiratory Sinus Arrhythmia) is an index of parasympathetic nervous activity, it is difficult to estimate that activity in real-time in everyday situations. It is partly caused by body motions and extrasystoles. Also, automatic recognition of the R-wave on electrocardiograms is required for real-time analysis of RSA amplitude, there is an unresolved problem of false recognition of the R-wave. In this paper, we propose a method to evaluate the amplitude of RSA accurately using statistical processing with probabilistic models. Then, we estimate parasympathetic nervous activity during body motion and isometric exercise to examine the validity of the method. As a result, using the proposed method, we demonstrate that the amplitude of RSA can be extracted with false recognition of the R-wave. In addition, an appropriate threshold for the estimate is one or five percent because waveforms of RSA amplitude do not follow the abrupt changes of the parasympathetic nervous activity evoked by isometric exercise with the threshold at ten percent. Furthermore, the method using normal distribution is found to be more appropriate than that of chi-square distribution for statistical processing. Therefore, we expect that the proposed method can evaluate parasympathetic nervous activity with high accuracy in everyday situations.

  7. Raman spectroscopic determination of the molecular constants of the hydrogen isotopologues with high accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Krasch, Bennet; Mirz, Sebastian; Groessle, Robin [Karlsruhe Institute of Technology KIT (Germany). Institute for Technical Physics (ITEP), Tritium Laboratory Karlsruhe (TLK); Collaboration: KATRIN-Collaboration

    2016-07-01

    The interest in the thermodynamic properties of gases as the chemical equilibrium is faced by the challenge of time-consuming and technical extensive experimental setups. One possible solution is the derivation of these properties from the molecular constants. The rotational and vibrational movement of diatomic molecules, as the hydrogen isotopologues, is described by the concept of the rotational anharmonic oscillator. The molecular constants are the free parameters of this concept. Molecular constants themselves can be determined by measuring the line position of rotational and/or rotational transitions e.g. with Raman spectroscopy for hydrogen as it has been done since several years. In this contribution a Raman method was development to measure the molecular constant of the hydrogen isotopologues with high accuracy to obtain reliable results. But not only the method was development but also a complete measurement uncertainty budget was set up. The uncertainty budget contains all possible sources for uncertainties from the measurement period or the analysis process as well the contribution of each single uncertainty. The method and the uncertainty budget were exemplary tested on Deuterium.

  8. Geometric Accuracy Investigations of SEVIRI High Resolution Visible (HRV) Level 1.5 Imagery

    National Research Council Canada - National Science Library

    Sultan Kocaman Aksakal

    2013-01-01

    .... In a joint project between the Swiss GCOS Office and ETH Zurich, geometric accuracy and temporal stability of 1-km resolution HRV channel imagery of SEVIRI have been evaluated over Switzerland...

  9. The regulatory benefits of high levels of affect perception accuracy: a process analysis of reactions to stressors in daily life.

    Science.gov (United States)

    Robinson, Michael D; Moeller, Sara K; Buchholz, Maria M; Boyd, Ryan L; Troop-Gordon, Wendy

    2012-08-01

    Individuals attuned to affective signals from the environment may possess an advantage in the emotion-regulation realm. In two studies (total n = 151), individual differences in affective perception accuracy were assessed in an objective, performance-based manner. Subsequently, the same individuals completed daily diary protocols in which daily stressor levels were reported as well as problematic states shown to be stress-reactive in previous studies. In both studies, individual differences in affect perception accuracy interacted with daily stressor levels to predict the problematic outcomes. Daily stressors precipitated problematic reactions--whether depressive feelings (study 1) or somatic symptoms (study 2)--at low levels of affect perception accuracy, but did not do so at high levels of affect perception accuracy. The findings support a regulatory view of such perceptual abilities. Implications for understanding emotion regulation processes, emotional intelligence, and individual differences in reactivity are discussed.

  10. [Accuracy of liquid-based cytology in diagnosis of high-grade squamous cervical intraepithelial neoplasia].

    Science.gov (United States)

    Li, Min; Mei, Ping; Luo, Dong-lan; Wang, Xiao-bing; Liu, Yan-hui

    2012-04-01

    To investigate factors affecting the diagnostic accuracy of cervical liquid-based cytology for high-grade squamous intraepithelial lesion (HSIL). A retrospective evaluation of cytological and histological slides was performed in 415 patients who had cytological HSIL between 2007 and 2010. Among 42 209 cases screened by ThinPrep liquid-based cytology, 415 cases (1.0%) of HSIL were eventually identified. The mean age of HSIL patients was 41.6 years, and 30-49 years were the most common age group. Among 415 cases, 325 patients had available histological diagnosis as follows: 23 (7.1%) negative, 22 (6.8%) CIN1/HPV, 223 (68.6%) CIN2/CIN3, and 57 (17.5%) squamous cell carcinoma (SCC). The positive predictive values of HSIL to predict CIN2 (or higher grade of dysplasia) and CIN1 were 86.2% (280/325) and 92.9% (302/325), respectively. Inadequate biopsy, reactive glandular cells, islet atrophy, chemo/radiotherapy and others were responsible for the cytologically false-positive diagnosis. Fifty-seven (17.5%) cases of HSIL had a histological diagnosis of SCC. The possible causes of misdiagnosis were social factors, under-recognized cytological features of poorly-differentiated SCC and absence of typical diagnostic features in cytology slides. Cytology of HSIL has a high positive predictive value for the presence of CIN2/CIN3 and SCC. Cytologists and gynecologists should be aware of the diagnostic pitfalls that may lead to the discrepancy between cytology and histology.

  11. HIGH ACCURACY FINITE VOLUME ELEMENT METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    王同科

    2002-01-01

    In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs fromthe high order generalized difference methods. It is proved that the method has optimal order er-ror estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.

  12. Numerical simulation for accuracy of velocity analysis in small-scale high-resolution marine multichannel seismic technology

    Science.gov (United States)

    Luo, Di; Cai, Feng; Wu, Zhiqiang

    2017-06-01

    When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates (Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.

  13. Towards Building Reliable, High-Accuracy Solar Irradiance Database For Arid Climates

    Science.gov (United States)

    Munawwar, S.; Ghedira, H.

    2012-12-01

    Middle East's growing interest in renewable energy has led to increased activity in solar technology development with the recent commissioning of several utility-scale solar power projects and many other commercial installations across the Arabian Peninsula. The region, lying in a virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2, is also one of the most promising candidates for solar energy deployment. However, it is not the availability of resource, but its characterization and reasonably accurate assessment that determines the application potential. Solar irradiance, magnitude and variability inclusive, is the key input in assessing the economic feasibility of a solar system. The accuracy of such data is of critical importance for realistic on-site performance estimates. This contribution aims to identify the key stages in developing a robust solar database for desert climate by focusing on the challenges that an arid environment presents to parameterization of solar irradiance attenuating factors. Adjustments are proposed based on the currently available resource assessment tools to produce high quality data for assessing bankability. Establishing and maintaining ground solar irradiance measurements is an expensive affair and fairly limited in time (recently operational) and space (fewer sites) in the Gulf region. Developers within solar technology industry, therefore, rely on solar radiation models and satellite-derived data for prompt resource assessment needs. It is imperative that such estimation tools are as accurate as possible. While purely empirical models have been widely researched and validated in the Arabian Peninsula's solar modeling history, they are known to be intrinsically site-specific. A primal step to modeling is an in-depth understanding of the region's climate, identifying the key players attenuating radiation and their appropriate characterization to determine solar irradiance. Physical approach

  14. Finite-element solution of the coupled-channel Schrödinger equation using high-order accuracy approximations

    Science.gov (United States)

    Abrashkevich, A. G.; Abrashkevich, D. G.; Kaschiev, M. S.; Puzynin, I. V.

    1995-01-01

    The finite element method (FEM) is applied to solve the bound state (Sturm-Liouville) problem for systems of ordinary linear second-order differential equations. The convergence, accuracy and the range of applicability of the high-order FEM approximations (up to tenth order) are studied systematically on the basis of numerical experiments for a wide set of quantum-mechanical problems. The analytical and tabular forms of giving the coefficients of differential equations are considered. The Dirichlet and Neumann boundary conditions are discussed. It is shown that the use of the FEM high-order accuracy approximations considerably increases the accuracy of the FE solutions with substantial reduction of the requirements on the computational resources. The results of the FEM calculations for various quantum-mechanical problems dealing with different types of potentials used in atomic and molecular calculations (including the hydrogen atom in a homogeneous magnetic field) are shown to be well converged and highly accurate.

  15. Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach.

    Directory of Open Access Journals (Sweden)

    Andre F Marquand

    Full Text Available Progressive supranuclear palsy (PSP, multiple system atrophy (MSA and idiopathic Parkinson's disease (IPD can be clinically indistinguishable, especially in the early stages, despite distinct patterns of molecular pathology. Structural neuroimaging holds promise for providing objective biomarkers for discriminating these diseases at the single subject level but all studies to date have reported incomplete separation of disease groups. In this study, we employed multi-class pattern recognition to assess the value of anatomical patterns derived from a widely available structural neuroimaging sequence for automated classification of these disorders. To achieve this, 17 patients with PSP, 14 with IPD and 19 with MSA were scanned using structural MRI along with 19 healthy controls (HCs. An advanced probabilistic pattern recognition approach was employed to evaluate the diagnostic value of several pre-defined anatomical patterns for discriminating the disorders, including: (i a subcortical motor network; (ii each of its component regions and (iii the whole brain. All disease groups could be discriminated simultaneously with high accuracy using the subcortical motor network. The region providing the most accurate predictions overall was the midbrain/brainstem, which discriminated all disease groups from one another and from HCs. The subcortical network also produced more accurate predictions than the whole brain and all of its constituent regions. PSP was accurately predicted from the midbrain/brainstem, cerebellum and all basal ganglia compartments; MSA from the midbrain/brainstem and cerebellum and IPD from the midbrain/brainstem only. This study demonstrates that automated analysis of structural MRI can accurately predict diagnosis in individual patients with Parkinsonian disorders, and identifies distinct patterns of regional atrophy particularly useful for this process.

  16. Autotaxin activity has a high accuracy to diagnose intrahepatic cholestasis of pregnancy.

    Science.gov (United States)

    Kremer, Andreas E; Bolier, Ruth; Dixon, Peter H; Geenes, Victoria; Chambers, Jenny; Tolenaars, Dagmar; Ris-Stalpers, Carrie; Kaess, Bernhard M; Rust, Christian; van der Post, Joris A; Williamson, Catherine; Beuers, Ulrich; Oude Elferink, Ronald P J

    2015-04-01

    Intrahepatic cholestasis of pregnancy (ICP) is defined by pruritus, elevated total fasting serum bile salts (TBS) and transaminases, and an increased risk of adverse fetal outcome. An accurate diagnostic marker is needed. Increased serum autotaxin correlates with cholestasis-associated pruritus. We aimed at unraveling the diagnostic accuracy of autotaxin in ICP. Serum samples and placental tissue were collected from 44 women with uncomplicated pregnancies and 105 with pruritus and/or elevated serum transaminases. Autotaxin serum levels were quantified enzymatically and by Western blotting, autotaxin gene expression by quantitative PCR. Serum autotaxin was increased in ICP (mean ± SD: 43.5 ± 18.2 nmol ml(-1)min(-1), n=55, ppregnancy (16.8 ± 6.7 nmol ml(-1)min(-1), n=33), pre-eclampsia complicated by HELLP-syndrome (16.8 ± 8.9 nmol ml(-1)min(-1), n=17), and pregnant controls (19.6 ± 5.7 nmol ml(-1)min(-1), n=44). Longitudinal analysis during pregnancy revealed a marked rise in serum autotaxin with onset of ICP-related pruritus. Serum autotaxin was increased in women taking oral contraceptives. Increased serum autotaxin during ICP was not associated with increased autotaxin mRNA in placenta. With a cut-off value of 27.0 nmol ml(-1)min(-1), autotaxin had an excellent sensitivity and specificity in distinguishing ICP from other pruritic disorders or pre-eclampsia/HELLP-syndrome. Serum autotaxin displayed no circadian rhythm and was not influenced by food intake. Increased serum autotaxin activity represents a highly sensitive, specific and robust diagnostic marker of ICP, distinguishing ICP from other pruritic disorders of pregnancy and pregnancy-related liver diseases. Pregnancy and oral contraception increase serum autotaxin to a much lesser extent than ICP. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  17. In-depth, high-accuracy proteomics of sea urchin tooth organic matrix

    Directory of Open Access Journals (Sweden)

    Mann Matthias

    2008-12-01

    Full Text Available Abstract Background The organic matrix contained in biominerals plays an important role in regulating mineralization and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin tooth, which is an important model for developmental biology and biomineralization, only few matrix components have been identified. The recent publication of the Strongylocentrotus purpuratus genome sequence rendered possible not only the identification of genes potentially coding for matrix proteins, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy proteomic analysis. Results We identified 138 proteins in the matrix of tooth powder. Only 56 of these proteins were previously identified in the matrices of test (shell and spine. Among the novel components was an interesting group of five proteins containing alanine- and proline-rich neutral or basic motifs separated by acidic glycine-rich motifs. In addition, four of the five proteins contained either one or two predicted Kazal protease inhibitor domains. The major components of tooth matrix were however largely identical to the set of spicule matrix proteins and MSP130-related proteins identified in test (shell and spine matrix. Comparison of the matrices of crushed teeth to intact teeth revealed a marked dilution of known intracrystalline matrix proteins and a concomitant increase in some intracellular proteins. Conclusion This report presents the most comprehensive list of sea urchin tooth matrix proteins available at present. The complex mixture of proteins identified may reflect many different aspects of the mineralization process. A comparison between intact tooth matrix, presumably containing odontoblast remnants, and crushed tooth matrix served to differentiate between matrix components and possible contributions of cellular remnants. Because LC-MS/MS-based methods directly

  18. High accuracy of arterial spin labeling perfusion imaging in differentiation of pilomyxoid from pilocytic astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, S.A.; Assadsangabi, R.; Hajmomenian, M.; Vossough, A. [Perelman School of Medicine of the University of Pennsylvania, Department of Radiology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Santi, M. [Perelman School of Medicine of the University of Pennsylvania, Department of Pathology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States)

    2015-05-01

    Pilomyxoid astrocytoma (PMA) is a relatively new tumor entity which has been added to the 2007 WHO Classification of tumors of the central nervous system. The goal of this study is to utilize arterial spin labeling (ASL) perfusion imaging to differentiate PMA from pilocytic astrocytoma (PA). Pulsed ASL and conventional MRI sequences of patients with PMA and PA in the past 5 years were retrospectively evaluated. Patients with history of radiation or treatment with anti-angiogenic drugs were excluded. A total of 24 patients (9 PMA, 15 PA) were included. There were statistically significant differences between PMA and PA in mean tumor/gray matter (GM) cerebral blood flow (CBF) ratios (1.3 vs 0.4, p < 0.001) and maximum tumor/GM CBF ratio (2.3 vs 1, p < 0.001). Area under the receiver operating characteristic (ROC) curves for differentiation of PMA from PA was 0.91 using mean tumor CBF, 0.95 using mean tumor/GM CBF ratios, and 0.89 using maximum tumor/GM CBF. Using a threshold value of 0.91, the mean tumor/GM CBF ratio was able to diagnose PMA with 77 % sensitivity, 100 % specificity, and a threshold value of 0.7, provided 88 % sensitivity and 86 % specificity. There was no statistically significant difference between the two tumors in enhancement pattern (p = 0.33), internal architecture (p = 0.15), or apparent diffusion coefficient (ADC) values (p = 0.07). ASL imaging has high accuracy in differentiating PMA from PA. The result of this study may have important applications in prognostication and treatment planning especially in patients with less accessible tumors such as hypothalamic-chiasmatic gliomas. (orig.)

  19. High Resolution Ice Surface of the Ross Ice Shelf: Accuracy and Links to Basal Processes

    Science.gov (United States)

    Starke, S. E.

    2015-12-01

    We use airborne laser altimetry data from IcePod and IceBridge to map the surface across the Ross Ice Shelf in Antarctica. Laser altimetry and radar data is analyzed from the IcePod 2014 and 2015 field campaigns as well as IceBridge 2013. Icepod is a multi sensor suite that includes ice penetrating radars, a swath scanning laser, visible and IR cameras as well as GPS mounted on a LC-130. Using shallow ice radar data from both IcePod and IceBridge we identify the base of the ice shelf. Across the shelf we observe distinct areas of high reflectivity in the radar data suggesting basal crevassing. In some regions, the basal reflector is not well defined. Laser altimetry profiles correlate surface morphology with features at the base including basal crevasses and marine ice formed by freezing on to the base of the ice shelf. Building Digital Elevation Models (DEMs) from the laser altimetry data, we investigate the relationship between the surface expressions of these ice shelf dynamics including thickness changes, potential sites of marine ice at the base and basal morphology in regions where a well defined basal reflector does not exist in the radar profiles. We present accuracy of the IcePod laser altimetry dataset using ground control points and GPS grids from Greenland and Antarctica as well as Photogrammetric DEMs. Our laser altimetry analysis resolves sub-meter surface features which, combined with coincident radar, provides a link between basal processes and their surface expressions.

  20. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    Science.gov (United States)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  1. Accuracy of Prediction Equations to Assess Percentage of Body Fat in Children and Adolescents with Down Syndrome Compared to Air Displacement Plethysmography

    Science.gov (United States)

    Gonzalez-Aguero, A.; Vicente-Rodriguez, G.; Ara, I.; Moreno, L. A.; Casajus, J. A.

    2011-01-01

    To determine the accuracy of the published percentage body fat (%BF) prediction equations (Durnin et al., Johnston et al., Brook and Slaughter et al.) from skinfold thickness compared to air displacement plethysmography (ADP) in children and adolescents with Down syndrome (DS). Twenty-eight children and adolescents with DS (10-20 years old; 12…

  2. Reproducibility and accuracy of linear measurements on dental models derived from cone-beam computed tomography compared with digital dental casts

    NARCIS (Netherlands)

    Waard, O. de; Rangel, F.A.; Fudalej, P.S.; Bronkhorst, E.M.; Kuijpers-Jagtman, A.M.; Breuning, K.H.

    2014-01-01

    INTRODUCTION: The aim of this study was to determine the reproducibility and accuracy of linear measurements on 2 types of dental models derived from cone-beam computed tomography (CBCT) scans: CBCT images, and Anatomodels (InVivoDental, San Jose, Calif); these were compared with digital models gene

  3. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy

    NARCIS (Netherlands)

    Liang, X.; Lambrichts, I.; Sun, Y.; Denis, K.; Hassan, B.; Li, L.; Pauwels, R.; Jacobs, R.

    2010-01-01

    Aim: The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: A dry human mandible was scanned with five CBCT systems (NewTom 3G,

  4. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture.

    Science.gov (United States)

    Vallejo, Roger L; Leeds, Timothy D; Gao, Guangtu; Parsons, James E; Martin, Kyle E; Evenhuis, Jason P; Fragomeni, Breno O; Wiens, Gregory D; Palti, Yniv

    2017-02-01

    Previously, we have shown that bacterial cold water disease (BCWD) resistance in rainbow trout can be improved using traditional family-based selection, but progress has been limited to exploiting only between-family genetic variation. Genomic selection (GS) is a new alternative that enables exploitation of within-family genetic variation. We compared three GS models [single-step genomic best linear unbiased prediction (ssGBLUP), weighted ssGBLUP (wssGBLUP), and BayesB] to predict genomic-enabled breeding values (GEBV) for BCWD resistance in a commercial rainbow trout population, and compared the accuracy of GEBV to traditional estimates of breeding values (EBV) from a pedigree-based BLUP (P-BLUP) model. We also assessed the impact of sampling design on the accuracy of GEBV predictions. For these comparisons, we used BCWD survival phenotypes recorded on 7893 fish from 102 families, of which 1473 fish from 50 families had genotypes [57 K single nucleotide polymorphism (SNP) array]. Naïve siblings of the training fish (n = 930 testing fish) were genotyped to predict their GEBV and mated to produce 138 progeny testing families. In the following generation, 9968 progeny were phenotyped to empirically assess the accuracy of GEBV predictions made on their non-phenotyped parents. The accuracy of GEBV from all tested GS models were substantially higher than the P-BLUP model EBV. The highest increase in accuracy relative to the P-BLUP model was achieved with BayesB (97.2 to 108.8%), followed by wssGBLUP at iteration 2 (94.4 to 97.1%) and 3 (88.9 to 91.2%) and ssGBLUP (83.3 to 85.3%). Reducing the training sample size to n = ~1000 had no negative impact on the accuracy (0.67 to 0.72), but with n = ~500 the accuracy dropped to 0.53 to 0.61 if the training and testing fish were full-sibs, and even substantially lower, to 0.22 to 0.25, when they were not full-sibs. Using progeny performance data, we showed that the accuracy of genomic predictions is substantially higher

  5. Accuracy of Bolton analysis measured in laser scanned digital models compared with plaster models (gold standard) and cone-beam computer tomography images.

    Science.gov (United States)

    Kim, Jooseong; Lagravére, Manuel O

    2016-01-01

    The aim of this study was to compare the accuracy of Bolton analysis obtained from digital models scanned with the Ortho Insight three-dimensional (3D) laser scanner system to those obtained from cone-beam computed tomography (CBCT) images and traditional plaster models. CBCT scans and plaster models were obtained from 50 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner; Bolton ratios were calculated with its software. CBCT scans were imported and analyzed using AVIZO software. Plaster models were measured with a digital caliper. Data were analyzed with descriptive statistics and the intraclass correlation coefficient (ICC). Anterior and overall Bolton ratios obtained by the three different modalities exhibited excellent agreement (> 0.970). The mean differences between the scanned digital models and physical models and between the CBCT images and scanned digital models for overall Bolton ratios were 0.41 ± 0.305% and 0.45 ± 0.456%, respectively; for anterior Bolton ratios, 0.59 ± 0.520% and 1.01 ± 0.780%, respectively. ICC results showed that intraexaminer error reliability was generally excellent (> 0.858 for all three diagnostic modalities), with < 1.45% discrepancy in the Bolton analysis. Laser scanned digital models are highly accurate compared to physical models and CBCT scans for assessing the spatial relationships of dental arches for orthodontic diagnosis.

  6. Accuracy of routinely recorded ethnic group information compared with self-reported ethnicity: evidence from the English Cancer Patient Experience survey

    Science.gov (United States)

    Saunders, C L; Abel, G A; El Turabi, A; Ahmed, F; Lyratzopoulos, G

    2013-01-01

    Objective To describe the accuracy of ethnicity coding in contemporary National Health Service (NHS) hospital records compared with the ‘gold standard’ of self-reported ethnicity. Design Secondary analysis of data from a cross-sectional survey (2011). Setting All NHS hospitals in England providing cancer treatment. Participants 58 721 patients with cancer for whom ethnicity information (Office for National Statistics 2001 16-group classification) was available from self-reports (considered to represent the ‘gold standard’) and their hospital record. Methods We calculated the sensitivity and positive predictive value (PPV) of hospital record ethnicity. Further, we used a logistic regression model to explore independent predictors of discordance between recorded and self-reported ethnicity. Results Overall, 4.9% (4.7–5.1%) of people had their self-reported ethnic group incorrectly recorded in their hospital records. Recorded White British ethnicity had high sensitivity (97.8% (97.7–98.0%)) and PPV (98.1% (98.0–98.2%)) for self-reported White British ethnicity. Recorded ethnicity information for the 15 other ethnic groups was substantially less accurate with 41.2% (39.7–42.7%) incorrect. Recorded ‘Mixed’ ethnicity had low sensitivity (12–31%) and PPVs (12–42%). Recorded ‘Indian’, ‘Chinese’, ‘Black-Caribbean’ and ‘Black African’ ethnic groups had intermediate levels of sensitivity (65–80%) and PPV (80–89%, respectively). In multivariable analysis, belonging to an ethnic minority group was the only independent predictor of discordant ethnicity information. There was strong evidence that the degree of discordance of ethnicity information varied substantially between different hospitals (p<0.0001). Discussion Current levels of accuracy of ethnicity information in NHS hospital records support valid profiling of White/non-White ethnic differences. However, profiling of ethnic differences in process or outcome measures for

  7. Millimeter-Wave Airborne Interferometry for High-accuracy Topography Mapping

    Science.gov (United States)

    Moller, D.; Hensley, S.; Wu, X.; Rodriguez, E.

    2011-12-01

    sensor geometry, bandwidth and number of channels needed for SWOT cal/val cannot be met within the framework of GLISTIN-A or a similar interface to UAVSAR. To address SWOT's cal/val requirements, the Ka-band SWOT Phenomenology Airborne Radar (KaSPAR) builds upon GLISTIN-A heritage and is the primary payload of the AirSWOT program. KaSPAR is a unique system with multiple temporal and cross-track baselines to fully characterize the scattering and statistics expected from SWOT, provide data for developing classification algorithms, and understanding instrument performance over the vast variety of scenes that SWOT will encounter. Furthermore a >5km swath high-accuracy WSE mapping capability provides the framework to translate traditional point or profile measurements to the spatial framework that SWOT will measure. Specific measurements from the integrated AirSWOT assembly are 1) WSE maps over a 5km swath with <3cm mean error at 100m x 100m postings (for ocean surface at 6m/s wind speed), 2) 2-D slope maps derived from WSE maps and 3) shoreline delineation at 10m resolution. These measurements will be made at resolutions exceeding that of SWOT to better characterize corrections for the spaceborne sensor.

  8. HIGH-ACCURACY BAND TO BAND REGISTRATION METHOD FOR MULTI-SPECTRAL IMAGES OF HJ-1A/B

    Institute of Scientific and Technical Information of China (English)

    Lu Hao; Liu Tuanjie; Zhao Haiqing

    2012-01-01

    Band-to-band registration accuracy is an important parameter of multispectral data.A novel band-to-band registration approach with high precision is proposed for the multi-spectral images of HJ-1A/B.Firstly,the main causes resulted in misregistration are analyzed,and a high-order polynomial model is proposed.Secondly,a phase fringe filtering technique is employed to Phase Correlation Method based on Singular Value Decomposition (SVD-PCM) for reducing the noise in phase difference matrix.Then,experiments are carried out to build nonlinear registration models,and images of green band and red band are aligned to blue band with an accuracy of 0.1 pixels,while near infrared band with an accuracy of 0.2 pixels.

  9. Accuracy analysis of continuous deformation monitoring using BeiDou Navigation Satellite System at middle and high latitudes in China

    Science.gov (United States)

    Jiang, Weiping; Xi, Ruijie; Chen, Hua; Xiao, Yugang

    2017-02-01

    As BeiDou Navigation Satellite System (BDS) has been operational in the whole Asia-Pacific region, it means a new GNSS system with a different satellite orbit structure will become available for deformation monitoring in the future. Conversely, GNSS deformation monitoring data are always processed with a regular interval to form displacement time series for deformation analysis, where the interval can neither be too long from the time perspective nor too short from the precision of determined displacements angle. In this paper, two experimental platforms were designed, with one being at mid-latitude and another at higher latitude in China. BDS data processing software was also developed for investigating the accuracy of continuous deformation monitoring using current in-orbit BDS satellites. Data over 20 days at both platforms were obtained and were processed every 2, 4 and 6 h to generate 3 displacement time series for comparison. The results show that with the current in-orbit BDS satellites, in the mid-latitude area it is easy to achieve accuracy of 1 mm in horizontal component and 2-3 mm in vertical component; the accuracy could be further improved to approximately 1 mm in both horizontal and vertical directions when combined BDS/GPS measurements are employed. At higher latitude, however, the results are not as good as expected due to poor satellite geometry, even the 6 h solutions could only achieve accuracy of 4-6 and 6-10 mm in horizontal and vertical components, respectively, which implies that it may not be applicable to very high-precision deformation monitoring at high latitude using the current BDS. With the integration of BDS and GPS observations, however, in 4-h session, the accuracy can achieve 2 mm in horizontal component and 4 mm in vertical component, which would be an optimal choice for high-accuracy structural deformation monitoring at high latitude.

  10. Comparing the predictive accuracy of frailty, comorbidity, and disability for mortality: a 1-year follow-up in patients hospitalized in geriatric wards

    Science.gov (United States)

    Ritt, Martin; Ritt, Julia Isabel; Sieber, Cornel Christian; Gaßmann, Karl-Günter

    2017-01-01

    Background Studies evaluating and comparing the power of frailty, comorbidity, and disability instruments, together and in parallel, for predicting mortality are limited. Objective This study aimed to evaluate and compare the measures of frailty, comorbidity, and disability in predicting 1-year mortality in geriatric inpatients. Design Prospective cohort study. Patients and setting A total of 307 inpatients aged ≥65 years in geriatric wards of a general hospital participated in the study. Measurements The patients were evaluated in relation to different frailty, comorbidity, and disability instruments during their hospital stays. These included three frailty (the seven-category Clinical Frailty Scale [CFS-7], a 41-item frailty index [FI], and the FRAIL scale), two comorbidity (the Cumulative Illness Rating Scale for Geriatrics [CIRS-G] and the comorbidity domain of the FI [Comorbidity-D-FI]), and two disability instruments (disability in basic activities of daily living [ADL-Katz] and the instrumental and basic activities of daily living domains of the FI [IADL/ADL-D-FI]). The patients were followed-up over 1 year. Results Using FI, CIRS-G, Comorbidity-D-FI, and ADL-Katz, this study identified a patient group with a high (≥50%) 1-year mortality rate in all of the patients and the two patient subgroups (ie, patients aged 65–82 years and ≥83 years). The CFS-7, FI, FRAIL scale, CIRS-G, Comorbidity-D-FI, and IADL/ADL-D-FI (analyzed as full scales) revealed useful discriminative accuracy for 1-year mortality (ie, an area under the curve >0.7) in all the patients and the two patient subgroups (all P<0.001). Thereby, CFS-7 (in all patients and the two patient subgroups) and FI (in the subgroup of patients aged ≥83 years) showed greater discriminative accuracy for 1-year mortality compared to other instruments (all P<0.05). Conclusion All the different instruments emerged as suitable tools for risk stratification in geriatric inpatients. Among them, CFS-7, and in

  11. Two-dimensional DOA Estimation with High Accuracy for MIMO Radar Using Cross Array

    Directory of Open Access Journals (Sweden)

    Liang Hao

    2016-06-01

    Full Text Available In this study, we investigate the estimation of the Two-Dimensional (2D Direction Of Arrival (DOA in monostatic multiple-input–multiple-output radar with cross array and propose a novel, highly accurate DOA estimation method based on unitary transformation. First, we design a new unitary matrix using the central symmetry of a cross array at transmit and receive sites. Then, the rotational invariance relationships of these arrays with long and short baselines can be transformed into a real-value field via unitary transformation. In addition, non-ambiguous and highly accurate 2D DOA estimations can be obtained using a unitary dual-resolution ESPRIT algorithm. Simulations show that the proposed method can estimate 2D highly accurate spatial angles using automatic pairing without incurring the expense of array aperture and peak searching. Compared with traditional unitary transformation, the steering vectors of transmit and receive arrays can be transformed into real-value fields via the unitary matrix and the transformation method of our scheme, respectively. This effectively overcomes the problem of shift invariance factors in real-value fields that cannot be extracted using traditional algorithms. Therefore, the proposed method can absolutely compute eigenvalue decomposition and estimate parameters in a real-value field, resulting in lower computational complexity compared with traditional methods. Simulation results verify both the correctness of our theoretical analysis and the effectiveness of the proposed algorithm.

  12. Comparative Evaluation of Dimensional Accuracy of Elastomeric Impression Materials when Treated with Autoclave, Microwave, and Chemical Disinfection.

    Science.gov (United States)

    Kamble, Suresh S; Khandeparker, Rakshit Vijay; Somasundaram, P; Raghav, Shweta; Babaji, Rashmi P; Varghese, T Joju

    2015-09-01

    Impression materials during impression procedure often get infected with various infectious diseases. Hence, disinfection of impression materials with various disinfectants is advised to protect the dental team. Disinfection can alter the dimensional accuracy of impression materials. The present study was aimed to evaluate the dimensional accuracy of elastomeric impression materials when treated with different disinfectants; autoclave, chemical, and microwave method. The impression materials used for the study were, dentsply aquasil (addition silicone polyvinylsiloxane syringe and putty), zetaplus (condensation silicone putty and light body), and impregum penta soft (polyether). All impressions were made according to manufacturer's instructions. Dimensional changes were measured before and after different disinfection procedures. Dentsply aquasil showed smallest dimensional change (-0.0046%) and impregum penta soft highest linear dimensional changes (-0.026%). All the tested elastomeric impression materials showed some degree of dimensional changes. The present study showed that all the disinfection procedures produce minor dimensional changes of impression material. However, it was within American Dental Association specification. Hence, steam autoclaving and microwave method can be used as an alternative method to chemical sterilization as an effective method.

  13. Spectroscopy of H3+ based on a new high-accuracy global potential energy surface.

    Science.gov (United States)

    Polyansky, Oleg L; Alijah, Alexander; Zobov, Nikolai F; Mizus, Irina I; Ovsyannikov, Roman I; Tennyson, Jonathan; Lodi, Lorenzo; Szidarovszky, Tamás; Császár, Attila G

    2012-11-13

    The molecular ion H(3)(+) is the simplest polyatomic and poly-electronic molecular system, and its spectrum constitutes an important benchmark for which precise answers can be obtained ab initio from the equations of quantum mechanics. Significant progress in the computation of the ro-vibrational spectrum of H(3)(+) is discussed. A new, global potential energy surface (PES) based on ab initio points computed with an average accuracy of 0.01 cm(-1) relative to the non-relativistic limit has recently been constructed. An analytical representation of these points is provided, exhibiting a standard deviation of 0.097 cm(-1). Problems with earlier fits are discussed. The new PES is used for the computation of transition frequencies. Recently measured lines at visible wavelengths combined with previously determined infrared ro-vibrational data show that an accuracy of the order of 0.1 cm(-1) is achieved by these computations. In order to achieve this degree of accuracy, relativistic, adiabatic and non-adiabatic effects must be properly accounted for. The accuracy of these calculations facilitates the reassignment of some measured lines, further reducing the standard deviation between experiment and theory.

  14. Analysis of the plasmodium falciparum proteome by high-accuracy mass spectrometry

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Ishihama, Yasushi; Andersen, Jens S;

    2002-01-01

    -accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last...

  15. Literature survey of high-impact journals revealed reporting weaknesses in abstracts of diagnostic accuracy studies

    NARCIS (Netherlands)

    Korevaar, Daniël A; Cohen, Jérémie F; Hooft, Lotty; Bossuyt, Patrick M M

    2015-01-01

    OBJECTIVES: Informative journal abstracts are crucial for the identification and initial appraisal of studies. We aimed to evaluate the informativeness of abstracts of diagnostic accuracy studies. STUDY DESIGN AND SETTING: PubMed was searched for reports of studies that had evaluated the diagnostic

  16. High-accuracy reference standards for two-photon absorption in the 680-1050 nm wavelength range.

    Science.gov (United States)

    de Reguardati, Sophie; Pahapill, Juri; Mikhailov, Alexander; Stepanenko, Yuriy; Rebane, Aleksander

    2016-04-18

    Degenerate two-photon absorption (2PA) of a series of organic fluorophores is measured using femtosecond fluorescence excitation method in the wavelength range, λ2PA = 680-1050 nm, and ~100 MHz pulse repetition rate. The function of relative 2PA spectral shape is obtained with estimated accuracy 5%, and the absolute 2PA cross section is measured at selected wavelengths with the accuracy 8%. Significant improvement of the accuracy is achieved by means of rigorous evaluation of the quadratic dependence of the fluorescence signal on the incident photon flux in the whole wavelength range, by comparing results obtained from two independent experiments, as well as due to meticulous evaluation of critical experimental parameters, including the excitation spatial- and temporal pulse shape, laser power and sample geometry. Application of the reference standards in nonlinear transmittance measurements is discussed.

  17. Energy-preserving numerical schemes of high accuracy for one-dimensional Hamiltonian systems

    CERN Document Server

    Cieśliński, Jan L

    2011-01-01

    We present a class of non-standard numerical schemes which are modifications of the discrete gradient method. They preserve the energy integral exactly (up to the round-off error). The considered class contains locally exact discrete gradient schemes and integrators of arbitrary high order. In numerical experiments we compare our integrators with some other numerical schemes, including the standard discrete gradient method, the leap-frog scheme and a symplectic scheme of 4th order. We study the error accumulation for very long time and the conservation of the energy integral.

  18. High-accuracy, high-resolution gravity profiles from 2 years of the Geosat Exact Repeat Mission

    Science.gov (United States)

    Sandwell, David T.; Mcadoo, David C.

    1990-01-01

    Satellite altimeter data from the first 44 repeat cycles (2 years) of the Geosat Exact Repeat Mission (EWRM) were averaged to improve accuracy, resolution and coverage of the marine gravity field. Individual 17-day repeat cycles were first edited and differentiated, resulting in the along-track vertical deflection (i.e., gravity disturbance). To increase the signal-to-noise ratio, 44 of these cycles were then averaged to form a single highly accurate vertical deflection profile. The largest contribution to the vertical deflection error is short-wavelength altimeter noise and longer-wavelength oceanographic variability; the combined noise level is typically 6 microrad. Both types of noise are reduced by averaging many repeat cycles. Over most ocean areas the uncertainty of the average profile is less than 1 microrad which corresponds to 1 mgal of along-track gravity disturbance. However, in areas of seasonal ice coverage, its uncertainty can exceed 5 microrad. To assess the resolution of individual and average Geosat gravity profiles, the cross-spectral analysis technique was applied to repeat profiles. Individual Geosat repeat cycles are coherent (greater than 0.5) for wavelengths greater than about 30 km and become increasingly incoherent at shorter wavelengths.

  19. The Effects of Individual or Group Guidelines on the Calibration Accuracy and Achievement of High School Biology Students

    Science.gov (United States)

    Bol, Linda; Hacker, Douglas J.; Walck, Camilla C.; Nunnery, John A.

    2012-01-01

    A 2 x 2 factorial design was employed in a quasi-experiment to investigate the effects of guidelines in group or individual settings on the calibration accuracy and achievement of 82 high school biology students. Significant main effects indicated that calibration practice with guidelines and practice in group settings increased prediction and…

  20. The Osteoporosis Self-Assessment Tool versus alternative tests for selecting postmenopausal women for bone mineral density assessment: a comparative systematic review of accuracy

    DEFF Research Database (Denmark)

    Rud, B; Hilden, J; Hyldstrup, L

    2008-01-01

    We performed a systematic review of studies comparing the Osteoporosis Self-Assessment Tool (OST) and other tests used to select women for bone mineral density (BMD) assessment. In comparative meta-analyses, we found that the accuracy of OST was similar to other tests that are based on information...... postmenopausal women for bone mineral density (BMD) assessment by dual-energy X-ray absorptiometry. Previous studies suggest that OST, based on age and weight only, may be as accurate as more complex triage tests. We systematically compare the accuracy of OST and alternative triage tests in postmenopausal women....... RESULTS: Summary estimates of DOR for OST and the clinical decision rules Simple Calculated Osteoporosis Risk Estimation (SCORE) and Osteoporosis Risk Assessment Instrument (ORAI) did not differ significantly in white women (relative sDOR: 0.57-1.17, all p >/= 0.11). By contrast, sDOR was higher...

  1. Real-time displacement measurement with large range and high accuracy using sinusoidal phase modulating laser diode interferometer

    Institute of Scientific and Technical Information of China (English)

    Guotian He; Xiangzhao Wang; Aijun Zeng; Feng Tang; Bingjie Huang

    2007-01-01

    To resolve the conflict of large measurement range and high accuracy in the existing real-time displacement measurement laser diode (LD) interferometers, a novel real-time displacement measurement LD interferometry is proposed and its measurement principle is analyzed. By use of a new phase demodulation algorithm and a new phase compensation lgorithm of real-time phase unwrapping, the measurement accuracy is improved, and the measurement range is enlarged to a few wavelengths. In experiments, the peak-to-peak amplitude of the speaker vibration was 2361.7 nm, and the repeatability was 2.56 nm. The measurement time was less than 26μs.

  2. International normalised ratio (INR) measured on the CoaguChek S and XS compared with the laboratory for determination of precision and accuracy.

    Science.gov (United States)

    Christensen, Thomas D; Larsen, Torben B; Jensen, Claus; Maegaard, Marianne; Sørensen, Benny

    2009-03-01

    Oral anticoagulation therapy is monitored by the use of international normalised ratio (INR). Patients performing self-management estimate INR using a coagulometer, but studies have been partly flawed regarding the estimated precision and accuracy. The objective was to estimate the imprecision and accuracy for two different coagulometers (CoaguChek S and XS). Twenty-four patients treated with coumarin were prospectively followed for six weeks. INR's were analyzed weekly in duplicates on both coagulometers, and compared with results from the hospital laboratory. Statistical analysis included Bland-Altman plot, 95% limits of agreement, coefficient of variance (CV), and an analysis of variance using a mixed effect model. Comparing 141 duplicate measurements (a total of 564 measurements) of INR, we found that the CoaguChek S and CoaguChek XS had a precision (CV) of 3.4% and 2.3%, respectively. Regarding analytical accuracy, the INR measurements tended to be lower on the coagulometers, and regarding diagnostic accuracy the CoaguChek S and CoaguChek XS deviated more than 15% from the laboratory measurements in 40% and 43% of the measurements, respectively. In conclusion, the precision of the coagulometers was found to be good, but only the CoaguChek XS had a precision within the predefined limit of 3%. Regarding analytical accuracy, the INR measurements tended to be lower on the coagulometers, compared to the laboratory. A large proportion of measurement of the coagulometers deviated more than 15% from the laboratory measurements. Whether this will have a clinical impact awaits further studies.

  3. High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification

    Science.gov (United States)

    Bomble, Yannick J.; Vázquez, Juana; Kállay, Mihály; Michauk, Christine; Szalay, Péter G.; Császár, Attila G.; Gauss, Jürgen; Stanton, John F.

    2006-08-01

    The recently developed high-accuracy extrapolated ab initio thermochemistry method for theoretical thermochemistry, which is intimately related to other high-precision protocols such as the Weizmann-3 and focal-point approaches, is revisited. Some minor improvements in theoretical rigor are introduced which do not lead to any significant additional computational overhead, but are shown to have a negligible overall effect on the accuracy. In addition, the method is extended to completely treat electron correlation effects up to pentuple excitations. The use of an approximate treatment of quadruple and pentuple excitations is suggested; the former as a pragmatic approximation for standard cases and the latter when extremely high accuracy is required. For a test suite of molecules that have rather precisely known enthalpies of formation {as taken from the active thermochemical tables of Ruscic and co-workers [Lecture Notes in Computer Science, edited by M. Parashar (Springer, Berlin, 2002), Vol. 2536, pp. 25-38; J. Phys. Chem. A 108, 9979 (2004)]}, the largest deviations between theory and experiment are 0.52, -0.70, and 0.51kJmol-1 for the latter three methods, respectively. Some perspective is provided on this level of accuracy, and sources of remaining systematic deficiencies in the approaches are discussed.

  4. Accuracies of the empirical theories of the escape probability based on Eigen model and Braun model compared with the exact extension of Onsager theory.

    Science.gov (United States)

    Wojcik, Mariusz; Tachiya, M

    2009-03-14

    This paper deals with the exact extension of the original Onsager theory of the escape probability to the case of finite recombination rate at nonzero reaction radius. The empirical theories based on the Eigen model and the Braun model, which are applicable in the absence and presence of an external electric field, respectively, are based on a wrong assumption that both recombination and separation processes in geminate recombination follow exponential kinetics. The accuracies of the empirical theories are examined against the exact extension of the Onsager theory. The Eigen model gives the escape probability in the absence of an electric field, which is different by a factor of 3 from the exact one. We have shown that this difference can be removed by operationally redefining the volume occupied by the dissociating partner before dissociation, which appears in the Eigen model as a parameter. The Braun model gives the escape probability in the presence of an electric field, which is significantly different from the exact one over the whole range of electric fields. Appropriate modification of the original Braun model removes the discrepancy at zero or low electric fields, but it does not affect the discrepancy at high electric fields. In all the above theories it is assumed that recombination takes place only at the reaction radius. The escape probability in the case when recombination takes place over a range of distances is also calculated and compared with that in the case of recombination only at the reaction radius.

  5. Accuracy of navigation-guided socket drilling before implant installation compared to the conventional free-hand method in a synthetic edentulous lower jaw model.

    Science.gov (United States)

    Hoffmann, Jürgen; Westendorff, Carsten; Gomez-Roman, German; Reinert, Siegmar

    2005-10-01

    In this study, the three-dimensional (3D) accuracy of navigation-guided (NG) socket drilling before implant installation was compared to the conventional free-hand (CF) method in a synthetic edentulous lower jaw model. The drillings were performed by two surgeons with different years of working experience. The inter-individual outcome was assessed. NG drillings were performed using an optical computerized tomography (CT)-based navigation system. CF drillings were performed using a surgical template. The coordinates of the drilled sockets were determined on the basis of CT scans. A total of n=224 drillings was evaluated. Inter-individual differences in terms of the surgeons' years of work experience were without statistical significance. The mean deviation of the CF drilled sockets (n=112) on the vestibulo-oral and mesio-distal direction was 11.2+/-5.6 degrees (range: 4.1-25.3 degrees ). With respect to the NG drilled sockets (n=112), the mean deviation was 4.2+/-1.8 degrees (range: 2.3-11.5). The mean distance to the mandibular canal was 1.1+/-0.6 mm (range: 0.1-2.3 mm) for CF-drilled sockets and 0.7+/-0.5 mm (range: 0.1-1.8 mm) for NG drilled sockets. The differences between the two methods were highly significant (P<0.01). A potential benefit from image-data-based navigation in implant surgery is discussed against the background of cost-effectiveness.

  6. Accuracy of an Immunochromatographic Diagnostic Test (ICT Malaria Combo Cassette Test Compared to Microscopy among under Five-Year-Old Children when Diagnosing Malaria in Equatorial Guinea

    Directory of Open Access Journals (Sweden)

    José-Luis Portero

    2010-01-01

    Full Text Available Conventional malaria diagnosis based on microscopy raises serious difficulties in weak health systems. Cost-effective and sensitive rapid diagnostic tests have been recently proposed as alternatives to microscopy. In Equatorial Guinea, a study was conducted to assess the reliability of a rapid diagnostic test compared to microscopy. The study was designed in accordance with the directives of the Standards for Reporting Diagnostic Accuracy Initiative (STARD. Peripheral thick and thin films for the microscopy diagnosis and a rapid immunochromatographic test (ICT Malaria Combo Cassette Test were performed on under five-year-old children with malaria suspicion. The ICT test detected Plasmodium spp. infection with a sensitivity of 81.5% and a specificity of 81.9% while P. falciparum diagnosis occurred with a sensitivity of 69.7% and a specificity of 73.7%. The sensitivity of the ICT test increased with higher parasitemias. The general results showed little concordance between the ICT test and microscopy (kappa = 0.28, se: 0.04. In Equatorial Guinea, the ICT Malaria Combo Cassette Test has proven to be an acceptable test to detect high P. falciparum parasitemias. However, the decrease of sensitivity at medium and low parasitemias hampers that ICT can replace properly performed microscopy at present in the diagnosis of malaria in children.

  7. Accuracy of an Immunochromatographic Diagnostic Test (ICT Malaria Combo Cassette Test) Compared to Microscopy among under Five-Year-Old Children when Diagnosing Malaria in Equatorial Guinea.

    Science.gov (United States)

    Portero, José-Luis; Rubio-Yuste, Maria; Descalzo, Miguel Angel; Raso, Jose; Lwanga, Magdalena; Obono, Jaquelina; Nseng, Gloria; Benito, Agustin; Cano, Jorge

    2010-01-01

    Conventional malaria diagnosis based on microscopy raises serious difficulties in weak health systems. Cost-effective and sensitive rapid diagnostic tests have been recently proposed as alternatives to microscopy. In Equatorial Guinea, a study was conducted to assess the reliability of a rapid diagnostic test compared to microscopy. The study was designed in accordance with the directives of the Standards for Reporting Diagnostic Accuracy Initiative (STARD). Peripheral thick and thin films for the microscopy diagnosis and a rapid immunochromatographic test (ICT Malaria Combo Cassette Test) were performed on under five-year-old children with malaria suspicion. The ICT test detected Plasmodium spp. infection with a sensitivity of 81.5% and a specificity of 81.9% while P. falciparum diagnosis occurred with a sensitivity of 69.7% and a specificity of 73.7%. The sensitivity of the ICT test increased with higher parasitemias. The general results showed little concordance between the ICT test and microscopy (kappa = 0.28, se: 0.04). In Equatorial Guinea, the ICT Malaria Combo Cassette Test has proven to be an acceptable test to detect high P. falciparum parasitemias. However, the decrease of sensitivity at medium and low parasitemias hampers that ICT can replace properly performed microscopy at present in the diagnosis of malaria in children.

  8. Ways to help Chinese Students in Senior High School improve language accuracy in writing

    Institute of Scientific and Technical Information of China (English)

    潘惠红

    2015-01-01

    <正>Introduction In Chinese ELT(English language teaching),as in other countries,both fluency and accuracy are considered important either in the teaching or assessment of writing.In this respect,the last decade has seen reforms in the College Entrance Examination in Guangdong Province.With two writing tasks being set as assessment,task one requires students to summarise Chinese language information into five English sentences while the

  9. A High-Accuracy Linear Conservative Difference Scheme for Rosenau-RLW Equation

    Directory of Open Access Journals (Sweden)

    Jinsong Hu

    2013-01-01

    Full Text Available We study the initial-boundary value problem for Rosenau-RLW equation. We propose a three-level linear finite difference scheme, which has the theoretical accuracy of Oτ2+h4. The scheme simulates two conservative properties of original problem well. The existence, uniqueness of difference solution, and a priori estimates in infinite norm are obtained. Furthermore, we analyze the convergence and stability of the scheme by energy method. At last, numerical experiments demonstrate the theoretical results.

  10. High-accuracy current measurement with low-cost shunts by means of dynamic error correction

    OpenAIRE

    Weßkamp, Patrick; Melbert, Joachim

    2016-01-01

    Measurement of electrical current is often performed by using shunt resistors. Thermal effects due to self-heating and ambient temperature variation limit the achievable accuracy, especially if low-cost shunt resistors with increased temperature coefficients are utilized. In this work, a compensation method is presented which takes static and dynamic temperature drift effects into account and provides a significant reduction of measurement error. A thermal model of the shunt...

  11. A high-accuracy optical linear algebra processor for finite element applications

    Science.gov (United States)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  12. High accuracy integrated global positioning system/inertial navigation system LDRD: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Owen, T.E.; Meindl, M.A.; Fellerhoff, J.R.

    1997-03-01

    This report contains the results of a Sandia National Laboratories Directed Research and Development (LDRD) program to investigate the integration of Global Positioning System (GPS) and inertial navigation system (INS) technologies toward the goal of optimizing the navigational accuracy of the combined GPSANS system. The approach undertaken is to integrate the data from an INS, which has long term drifts, but excellent short term accuracy, with GPS carrier phase signal information, which is accurate to the sub-centimeter level, but requires continuous tracking of the GPS signals. The goal is to maintain a sub-meter accurate navigation solution while the vehicle is in motion by using the GPS measurements to estimate the INS navigation errors and then using the refined INS data to aid the GPS carrier phase cycle slip detection and correction and bridge dropouts in the GPS data. The work was expanded to look at GPS-based attitude determination, using multiple GPS receivers and antennas on a single platform, as a possible navigation aid. Efforts included not only the development of data processing algorithms and software, but also the collection and analysis of GPS and INS flight data aboard a Twin Otter aircraft. Finally, the application of improved navigation system accuracy to synthetic aperture radar (SAR) target location is examined.

  13. High-accuracy diagnostic tool for electron cloud observation in the LHC based on synchronous phase measurements

    Science.gov (United States)

    Esteban Müller, J. F.; Baudrenghien, P.; Mastoridis, T.; Shaposhnikova, E.; Valuch, D.

    2015-11-01

    Electron cloud effects, which include heat load in the cryogenic system, pressure rise, and beam instabilities, are among the main intensity limitations for the LHC operation with 25 ns spaced bunches. A new observation tool was proposed and developed to monitor the e-cloud activity and it has already been used successfully during the LHC run 1 (2010-2012) and it is being intensively used in operation during the start of the LHC run 2 (2015-2018). It is based on the fact that the power loss of each bunch due to e-cloud can be estimated using bunch-by-bunch measurement of the synchronous phase. The measurements were done using the existing beam phase module of the low-level rf control system. In order to achieve the very high accuracy required, corrections for reflection in the cables and for systematic errors need to be applied followed by a post-processing of the measurements. Results clearly show the e-cloud buildup along the bunch trains and its time evolution during each LHC fill as well as from fill to fill. Measurements during the 2012 LHC scrubbing run reveal a progressive reduction in the e-cloud activity and therefore a decrease in the secondary electron yield. The total beam power loss can be computed as a sum of the contributions from all bunches and compared with the heat load deposited in the cryogenic system.

  14. High-accuracy measurements of snow Bidirectional Reflectance Distribution Function at visible and NIR wavelengths – comparison with modelling results

    Directory of Open Access Journals (Sweden)

    M. Dumont

    2010-03-01

    Full Text Available High-accuracy measurements of snow Bidirectional Reflectance Distribution Function (BRDF were performed for four natural snow samples with a spectrogonio-radiometer in the 500–2600 nm wavelength range. These measurements are one of the first sets of direct snow BRDF values over a wide range of lighting and viewing geometry. They were compared to BRDF calculated with two optical models. Variations of the snow anisotropy factor with lighting geometry, wavelength and snow physical properties were investigated. Results show that at wavelengths with small penetration depth, scattering mainly occurs in the very top layers and the anisotropy factor is controlled by the phase function. In this condition, forward scattering peak or double scattering peak is observed. In contrast at shorter wavelengths, the penetration of the radiation is much deeper and the number of scattering events increases. The anisotropy factor is thus nearly constant and decreases at grazing observation angles. The whole dataset is available on demand from the corresponding author.

  15. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (˜100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ˜0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  16. Ultraviolet Raman lidar for high-accuracy profiling of aerosol extinction coefficient

    Institute of Scientific and Technical Information of China (English)

    Fei Gao; Xiaoquan Song; Yufeng Wang; Yi Zhou; Dengxin Hua

    2009-01-01

    An ultraviolet (UV) Raman lidar system at 354.7 nm has been developed for accurately measuring the aerosol extinction profiles. A spectroscopic filter combining a high-spectral-resolution grating with two narrowband mirrors is used to separate the vibrational Raman scattering signal of N2 at a central wave-length of 386.7 nm and the elastic scattering signal at 354.7 nm. The aerosol extinction is derived from the Raman scattering of N2 and the elastic scattering by the use of Raman method and Klett method, respectively. The derived results of aerosol extinction are used to compare the difference of two retrieval methods, and the preliminary experiment shows that the Raman lidar system operated in analog detection mode has the capability of measuring aerosol profiles up to a height of 3 km with a laser energy of 250 mJ and an integration time of 8 min.

  17. Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks

    DEFF Research Database (Denmark)

    Blanche, Paul; Proust-Lima, Cécile; Loubère, Lucie

    2015-01-01

    's health profile grows with time. We focus in this work on statistical methods for quantifying and comparing dynamic predictive accuracy of this kind of prognostic models, accounting for right censoring and possibly competing events. Dynamic area under the ROC curve (AUC) and Brier Score (BS) are used......Thanks to the growing interest in personalized medicine, joint modeling of longitudinal marker and time-to-event data has recently started to be used to derive dynamic individual risk predictions. Individual predictions are called dynamic because they are updated when information on the subject...... psychometric tests to predict dementia in the elderly, accounting for the competing risk of death. Models are estimated on the French Paquid cohort and predictive accuracies are evaluated and compared on the French Three-City cohort....

  18. Accuracy of Percutaneous Pedicle Screw Insertion Technique with Conventional Dual Fluoroscopy Units and a Retrospective Comparative Study Based on Surgeon Experience.

    Science.gov (United States)

    Nakahara, Masayuki; Yasuhara, Takao; Inoue, Takafumi; Takahashi, Yuichi; Kumamoto, Shinji; Hijikata, Yasukazu; Kusumegi, Akira; Sakamoto, Yushi; Ogawa, Koichi; Nishida, Kenki

    2016-06-01

    Study Design Retrospective comparative study. Objective To evaluate the accuracy of percutaneous pedicle screw (PPS) placement and intraoperative imaging time using dual fluoroscopy units and their differences between surgeons with more versus less experience. Methods One hundred sixty-one patients who underwent lumbar fusion surgery were divided into two groups, A (n = 74) and B (n = 87), based on the performing surgeon's experience. The accuracy of PPS placement and radiation time for PPS insertion were compared. PPSs were inserted with classic technique under the assistance of dual fluoroscopy units placed in two planes. The breach definition of PPS misplacement was based on postoperative computed tomography (grade I: no breach; grade II: experience.

  19. The Effects of Copy, Cover, and Compare with and without Additional Error Drill on Multiplication Fact Fluency and Accuracy

    Science.gov (United States)

    Becker, Angela; McLaughlin, Thomas; Weber, Kimberly P.; Gower, Jan

    2009-01-01

    Introduction: The use of copy, cover and compare has been suggested as an effective class-room intervention procedure. The present case report examined the use of copy, cover, and compare with math facts for an elementary student with learning disabilities. Objectives: The purpose of this research was to increase the correct rate and decrease the…

  20. Diagnostic accuracy of {sup 18}F-FDG PET/CT compared with that of contrast-enhanced MRI of the breast at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Magometschnigg, Heinrich F.; Baltzer, Pascal A.; Fueger, Barbara; Helbich, Thomas H.; Weber, Michael [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Vienna (Austria); Karanikas, Georgios [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Vienna (Austria); Dubsky, Peter [Medical University of Vienna, Department of Surgery, Vienna (Austria); Rudas, Margaretha [Medical University of Vienna, Department of Pathology, Vienna (Austria); Pinker, Katja [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Vienna (Austria); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York (United States)

    2015-10-15

    To compare the diagnostic accuracy of prone {sup 18}F-FDG PET/CT with that of contrast-enhanced MRI (CE-MRI) at 3 T in suspicious breast lesions. To evaluate the influence of tumour size on diagnostic accuracy and the use of maximum standardized uptake value (SUV{sub MAX}) thresholds to differentiate malignant from benign breast lesions. A total of 172 consecutive patients with an imaging abnormality were included in this IRB-approved prospective study. All patients underwent {sup 18}F-FDG PET/CT and CE-MRI of the breast at 3 T in the prone position. Two reader teams independently evaluated the likelihood of malignancy as determined by {sup 18}F-FDG PET/CT and CE-MRI independently. {sup 18}F-FDG PET/CT data were qualitatively evaluated by visual interpretation. Quantitative assessment was performed by calculation of SUV{sub MAX}. Sensitivity, specificity, diagnostic accuracy, area under the curve and interreader agreement were calculated for all lesions and for lesions <10 mm. Histopathology was used as the standard of reference. There were 132 malignant and 40 benign lesions; 23 lesions (13.4 %) were <10 mm. Both {sup 18}F-FDG PET/CT and CE-MRI achieved an overall diagnostic accuracy of 93 %. There were no significant differences in sensitivity (p = 0.125), specificity (p = 0.344) or diagnostic accuracy (p = 1). For lesions <10 mm, diagnostic accuracy deteriorated to 91 % with both {sup 18}F-FDG PET/CT and CE-MRI. Although no significant difference was found for lesions <10 mm, CE-MRI at 3 T seemed to be more sensitive but less specific than {sup 18}F-FDG PET/CT. Interreader agreement was excellent (κ = 0.85 and κ = 0.92). SUV{sub MAX} threshold was not helpful in differentiating benign from malignant lesions. {sup 18}F-FDG PET/CT and CE-MRI at 3 T showed equal diagnostic accuracies in breast cancer diagnosis. For lesions <10 mm, diagnostic accuracy deteriorated, but was equal for {sup 18}F-FDG PET/CT and CE-MRI at 3 T. For lesions <10 mm, CE-MRI at 3 T seemed

  1. High accuracy wavelength locking of a DFB laser using tunable polarization interference filter

    Institute of Scientific and Technical Information of China (English)

    Xiyao Chen(陈曦曜); Jianping Xie(谢建平); Tianpeng Zhao(赵天鹏); Hai Ming(明海); Anting Wang(王安廷); Wencai Huang(黄文财); Liang Lü(吕亮); Lixin Xu(许立新)

    2003-01-01

    A temperature-tunable polarization interference filter (PIF) made of YVO4 crystal has been presented and applied for wavelength locking of a distributed feedback (DFB) semiconductor laser in dense wavelength-division-multiplexing (DWDM) optical communication systems. This new design offers a flexible way to monitor and then lock an operating wavelength of DFB laser to any preselected point without dead spots.The results show that the laser wavelength can be locked with accuracy better than ±0.01 nm with much relaxed requirement on temperature stability of the filter.

  2. High-accuracy mass determination of neutron-rich rubidium and strontiumiIsotopes

    CERN Document Server

    Raimbault-Hartmann, H; Beck, D; Bollen, G; De Saint-Simon, M; Kluge, H J; König, M; Moore, R B; Schwarz, S; Savard, G; Szerypo, J

    2002-01-01

    The penning-trap mass spectrometer ISOLTRAP, installed at the on-line isotope separator ISOLDE at CERN, has been used to measure atomic masses of $^{88,89,90m,91,92,93,94}$Rb and $^{91- 95}$Sr. Using a resolving power of R $\\!\\scriptstyle\\approx$1 million a mass accuracy of typically 10 keV was achieved for all nuclides. Discrepancies with older data are analyzed and discussed, leading to corrections to those data. Together with the present ISOLTRAP data these corrected data have been used in the general mass adjustment.

  3. High-Accuracy Measurements of the Centre of Gravity of Avalanches in Proportional Chambers

    Science.gov (United States)

    Charpak, G.; Jeavons, A.; Sauli, F.; Stubbs, R.

    1973-09-24

    In a multiwire proportional chamber the avalanches occur close to the anode wires. The motion of the positive ions in the large electric fields at the vicinity of the wires induces fast-rising positive pulses on the surrounding electrodes. Different methods have been developed in order to determine the position of the centre of the avalanches. In the method we describe, the centre of gravity of the pulse distribution is measured directly. It seems to lead to an accuracy which is limited only by the stability of the spatial distribution of the avalanches generated by the process being measured.

  4. High-Accuracy Tracking Control of Robot Manipulators Using Time Delay Estimation and Terminal Sliding Mode

    Directory of Open Access Journals (Sweden)

    Maolin Jin

    2011-09-01

    Full Text Available A time delay estimation based general framework for trajectory tracking control of robot manipulators is presented. The controller consists of three elements: a time‐delay‐estimation element that cancels continuous nonlinearities of robot dynamics, an injecting element that endows desired error dynamics, and a correcting element that suppresses residual time delay estimation error caused by discontinuous nonlinearities. Terminal sliding mode is used for the correcting element to pursue fast convergence of the time delay estimation error. Implementation of proposed control is easy because calculation of robot dynamics including friction is not required. Experimental results verify high‐accuracy trajectory tracking of industrial robot manipulators.

  5. High-Accuracy Tracking Using Ultrawideband Signals for Enhanced Safety of Cyclists

    Directory of Open Access Journals (Sweden)

    Davide Dardari

    2017-01-01

    Full Text Available In this paper, an ultrawideband localization system to improve the cyclists’ safety is presented. The architectural solutions proposed consist of tags placed on bikes, whose positions have to be estimated, and anchors, acting as reference nodes, located at intersections and/or on vehicles. The peculiarities of the localization system in terms of accuracy and cost enable its adoption with enhanced risk assessment units situated on the infrastructure/vehicle, depending on the architecture chosen, as well as real-time warning to the road users. Experimental results reveal that the localization error, in both static and dynamic conditions, is below 50 cm in most of the cases.

  6. Strategies for achieving high sequencing accuracy for low diversity samples and avoiding sample bleeding using illumina platform.

    Directory of Open Access Journals (Sweden)

    Abhishek Mitra

    Full Text Available Sequencing microRNA, reduced representation sequencing, Hi-C technology and any method requiring the use of in-house barcodes result in sequencing libraries with low initial sequence diversity. Sequencing such data on the Illumina platform typically produces low quality data due to the limitations of the Illumina cluster calling algorithm. Moreover, even in the case of diverse samples, these limitations are causing substantial inaccuracies in multiplexed sample assignment (sample bleeding. Such inaccuracies are unacceptable in clinical applications, and in some other fields (e.g. detection of rare variants. Here, we discuss how both problems with quality of low-diversity samples and sample bleeding are caused by incorrect detection of clusters on the flowcell during initial sequencing cycles. We propose simple software modifications (Long Template Protocol that overcome this problem. We present experimental results showing that our Long Template Protocol remarkably increases data quality for low diversity samples, as compared with the standard analysis protocol; it also substantially reduces sample bleeding for all samples. For comprehensiveness, we also discuss and compare experimental results from alternative approaches to sequencing low diversity samples. First, we discuss how the low diversity problem, if caused by barcodes, can be avoided altogether at the barcode design stage. Second and third, we present modified guidelines, which are more stringent than the manufacturer's, for mixing low diversity samples with diverse samples and lowering cluster density, which in our experience consistently produces high quality data from low diversity samples. Fourth and fifth, we present rescue strategies that can be applied when sequencing results in low quality data and when there is no more biological material available. In such cases, we propose that the flowcell be re-hybridized and sequenced again using our Long Template Protocol. Alternatively

  7. Affine-Invariant Geometric Constraints-Based High Accuracy Simultaneous Localization and Mapping

    Directory of Open Access Journals (Sweden)

    Gangchen Hua

    2017-01-01

    Full Text Available In this study we describe a new appearance-based loop-closure detection method for online incremental simultaneous localization and mapping (SLAM using affine-invariant-based geometric constraints. Unlike other pure bag-of-words-based approaches, our proposed method uses geometric constraints as a supplement to improve accuracy. By establishing an affine-invariant hypothesis, the proposed method excludes incorrect visual words and calculates the dispersion of correctly matched visual words to improve the accuracy of the likelihood calculation. In addition, camera’s intrinsic parameters and distortion coefficients are adequate for this method. 3D measuring is not necessary. We use the mechanism of Long-Term Memory and Working Memory (WM to manage the memory. Only a limited size of the WM is used for loop-closure detection; therefore the proposed method is suitable for large-scale real-time SLAM. We tested our method using the CityCenter and Lip6Indoor datasets. Our proposed method results can effectively correct the typical false-positive localization of previous methods, thus gaining better recall ratios and better precision.

  8. High-accuracy 3-D modeling of cultural heritage: the digitizing of Donatello's "Maddalena".

    Science.gov (United States)

    Guidi, Gabriele; Beraldin, J Angelo; Atzeni, Carlo

    2004-03-01

    Three-dimensional digital modeling of Heritage works of art through optical scanners, has been demonstrated in recent years with results of exceptional interest. However, the routine application of three-dimensional (3-D) modeling to Heritage conservation still requires the systematic investigation of a number of technical problems. In this paper, the acquisition process of the 3-D digital model of the Maddalena by Donatello, a wooden statue representing one of the major masterpieces of the Italian Renaissance which was swept away by the Florence flood of 1966 and successively restored, is described. The paper reports all the steps of the acquisition procedure, from the project planning to the solution of the various problems due to range camera calibration and to material non optically cooperative. Since the scientific focus is centered on the 3-D model overall dimensional accuracy, a methodology for its quality control is described. Such control has demonstrated how, in some situations, the ICP-based alignment can lead to incorrect results. To circumvent this difficulty we propose an alignment technique based on the fusion of ICP with close-range digital photogrammetry and a non-invasive procedure in order to generate a final accurate model. In the end detailed results are presented, demonstrating the improvement of the final model, and how the proposed sensor fusion ensure a pre-specified level of accuracy.

  9. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air

    Directory of Open Access Journals (Sweden)

    C. W. Rella

    2012-08-01

    Full Text Available Traditional techniques for measuring the mole fractions of greenhouse gas in the well-mixed atmosphere have required extremely dry sample gas streams (dew point < −25 °C to achieve the inter-laboratory compatibility goals set forth by the Global Atmospheric Watch program of the World Meteorological Organization (WMO/GAW for carbon dioxide (±0.1 ppm and methane (±2 ppb. Drying the sample gas to low levels of water vapor can be expensive, time-consuming, and/or problematic, especially at remote sites where access is difficult. Recent advances in optical measurement techniques, in particular Cavity Ring Down Spectroscopy (CRDS, have led to the development of highly stable and precise greenhouse gas analyzers capable of highly accurate measurements of carbon dioxide, methane, and water vapor. Unlike many older technologies, which can suffer from significant uncorrected interference from water vapor, these instruments permit for the first time accurate and precise greenhouse gas measurements that can meet the WMO/GAW inter-laboratory compatibility goals without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapor correction factors, and we summarize a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterized dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to at least 1% water vapor. By determining the correction factors for individual instruments once at the start of life, this range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended above 4%.

  10. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications.......A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing...... a two-stage frequency measurement cooperating with digital signal processing. In the experiment, 10GHz measurement range is guaranteed and the average uncertainty of estimated microwave frequency is 5.4MHz, which verifies the measurement accuracy is significantly improved by achieving an unprecedented...

  11. High-accuracy local positioning network for the alignment of the Mu2e experiment.

    Energy Technology Data Exchange (ETDEWEB)

    Hejdukova, Jana B. [Czech Technical Univ., Prague (Czech Republic)

    2017-06-01

    This Diploma thesis describes the establishment of a high-precision local positioning network and accelerator alignment for the Mu2e physics experiment. The process of establishing new network consists of few steps: design of the network, pre-analysis, installation works, measurements of the network and making adjustments. Adjustments were performed using two approaches. First is a geodetic approach of taking into account the Earth’s curvature and the metrological approach of a pure 3D Cartesian system on the other side. The comparison of those two approaches is performed and evaluated in the results and compared with expected differences. The effect of the Earth’s curvature was found to be significant for this kind of network and should not be neglected. The measurements were obtained with Absolute Tracker AT401, leveling instrument Leica DNA03 and gyrotheodolite DMT Gyromat 2000. The coordinates of the points of the reference network were determined by the Least Square Meth od and the overall view is attached as Annexes.

  12. Brief Report: Face Configuration Accuracy and Processing Speed Among Adults with High-Functioning Autism Spectrum Disorders

    OpenAIRE

    Faja, Susan; Webb, Sara Jane; Merkle, Kristen; Aylward, Elizabeth; Dawson, Geraldine

    2008-01-01

    The present study investigates the accuracy and speed of face processing employed by high-functioning adults with autism spectrum disorders (ASDs). Two behavioral experiments measured sensitivity to distances between features and face recognition when performance depended on holistic versus featural information. Results suggest adults with ASD were less accurate, but responded as quickly as controls for both tasks. In contrast to previous findings with children, adults with ASD demonstrated a...

  13. The Effect of Moderate and High-Intensity Fatigue on Groundstroke Accuracy in Expert and Non-Expert Tennis Players

    OpenAIRE

    Mark Lyons; Yahya Al-Nakeeb; Joanne Hankey; Alan Nevill

    2013-01-01

    peer-reviewed Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female) and 17 non-expe...

  14. A High Accuracy Pedestrian Detection System Combining a Cascade AdaBoost Detector and Random Vector Functional-Link Net

    OpenAIRE

    Zhihui Wang; Sook Yoon; Shan Juan Xie; Yu Lu; Dong Sun Park

    2014-01-01

    In pedestrian detection methods, their high accuracy detection rates are always obtained at the cost of a large amount of false pedestrians. In order to overcome this problem, the authors propose an accurate pedestrian detection system based on two machine learning methods: cascade AdaBoost detector and random vector functional-link net. During the offline training phase, the parameters of a cascade AdaBoost detector and random vector functional-link net are trained by standard dataset. These...

  15. Towards a magnetic field stabilization at ISOLTRAP for high-accuracy mass measurements on exotic nuclides

    CERN Document Server

    Marie-Jeanne, M; Blaum, K; Djekic, S; Dworschak, M; Hager, U; Herlert, A; Nagy, S; Savreux, R; Schweikhard, L; Stahl, S; Yazidjian, C

    2008-01-01

    The field stability of a mass spectrometer plays a crucial role in the accuracy of mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of fluctuations are temperature variations in the vicinity of the trap and pressure changes in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the temperature and pressure fluctuations by at least an order of magnitude down to and has been achieved, which corresponds to a relative magnetic field change of ΔB/B=2.7×10-9 and 1.1×10-10, respectively.

  16. Hyperbolic Method for Dispersive PDEs: Same High-Order of Accuracy for Solution, Gradient, and Hessian

    Science.gov (United States)

    Mazaheri, Alireza; Ricchiuto, Mario; Nishikawa, Hiroaki

    2016-01-01

    In this paper, we introduce a new hyperbolic first-order system for general dispersive partial differential equations (PDEs). We then extend the proposed system to general advection-diffusion-dispersion PDEs. We apply the fourth-order RD scheme of Ref. 1 to the proposed hyperbolic system, and solve time-dependent dispersive equations, including the classical two-soliton KdV and a dispersive shock case. We demonstrate that the predicted results, including the gradient and Hessian (second derivative), are in a very good agreement with the exact solutions. We then show that the RD scheme applied to the proposed system accurately captures dispersive shocks without numerical oscillations. We also verify that the solution, gradient and Hessian are predicted with equal order of accuracy.

  17. Evaluation of Heart Rate Assessment Timing, Communication, Accuracy, and Clinical Decision-Making during High Fidelity Simulation of Neonatal Resuscitation

    Directory of Open Access Journals (Sweden)

    Win Boon

    2014-01-01

    Full Text Available Objective. Accurate heart rate (HR determination during neonatal resuscitation (NR informs subsequent NR actions. This study’s objective was to evaluate HR determination timeliness, communication, and accuracy during high fidelity NR simulations that house officers completed during neonatal intensive care unit (NICU rotations. Methods. In 2010, house officers in NICU rotations completed high fidelity NR simulation. We reviewed 80 house officers’ videotaped performance on their initial high fidelity simulation session, prior to training and performance debriefing. We calculated the proportion of cases congruent with NR guidelines, using chi square analysis to evaluate performance across HR ranges relevant to NR decision-making: <60, 60–99, and ≥100 beats per minute (bpm. Results. 87% used umbilical cord palpation, 57% initiated HR assessment within 30 seconds, 70% were accurate, and 74% were communicated appropriately. HR determination accuracy varied significantly across HR ranges, with 87%, 57%, and 68% for HR <60, 60–99, and ≥100 bpm, respectively (P<0.001. Conclusions. Timeliness, communication, and accuracy of house officers’ HR determination are suboptimal, particularly for HR 60–100 bpm, which might lead to inappropriate decision-making and NR care. Training implications include emphasizing more accurate HR determination methods, better communication, and improved HR interpretation during NR.

  18. Recognition of actinic keratosis. A retrospective biopsy study of the clinical diagnostic accuracy by primary care physicians compared with dermatologists. Experience in Mexico

    Directory of Open Access Journals (Sweden)

    Andrés Tirado-Sánchez

    2011-10-01

    Full Text Available Background. Actinic keratoses (AK are dysplastic keratinocytic lesions confined to the epidermis. Currently, the standard screening method for detecting AK is performed by a health professional. Objectives. We seek to determine if were differences in diagnosis of AK by dermatologists (DL and primary care physicians (PCP in Mexico. Material and Methods. The clinical diagnoses of PCP and DL were correlated with histopathologic diagnoses. In total, 285 cases were analyzed. Results. DL diagnosed 90% (256/285 of the cases compared with 36% (102/285 of PCP (P= .001. Primary care physicians were the group with the lowest diagnostic accuracy rate. Conclusion: Primary care physician needs to acquire sufficient knowledge of basic dermatology as well as dermatopathology. The overall accuracy of the clinical diagnosis, mainly in hyperplastic AK, depends on the clinicopathologic correlation.

  19. Comparing the predictive accuracy of frailty, comorbidity, and disability for mortality: a 1-year follow-up in patients hospitalized in geriatric wards

    Directory of Open Access Journals (Sweden)

    Ritt M

    2017-02-01

    Full Text Available Martin Ritt,1,2 Julia Isabel Ritt,2 Cornel Christian Sieber,1,3 Karl-Günter Gaßmann1,2 1Institute for Biomedicine of Ageing (IBA, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU, Nürnberg, 2Department of Internal Medicine III (Medicine of Ageing, Geriatrics Centre Erlangen, Hospital of the Congregation of St Francis Sisters of Vierzehnheiligen, Erlangen, 3Department of Internal Medicine and Geriatrics, Hospital of the Order of St John of God, Regensburg, Germany Background: Studies evaluating and comparing the power of frailty, comorbidity, and disability instruments, together and in parallel, for predicting mortality are limited.Objective: This study aimed to evaluate and compare the measures of frailty, comorbidity, and disability in predicting 1-year mortality in geriatric inpatients.Design: Prospective cohort study.Patients and setting: A total of 307 inpatients aged ≥65 years in geriatric wards of a general hospital participated in the study.Measurements: The patients were evaluated in relation to different frailty, comorbidity, and disability instruments during their hospital stays. These included three frailty (the seven-category Clinical Frailty Scale [CFS-7], a 41-item frailty index [FI], and the FRAIL scale, two comorbidity (the Cumulative Illness Rating Scale for Geriatrics [CIRS-G] and the comorbidity domain of the FI [Comorbidity-D-FI], and two disability instruments (disability in basic activities of daily living [ADL-Katz] and the instrumental and basic activities of daily living domains of the FI [IADL/ADL-D-FI]. The patients were followed-up over 1 year.Results: Using FI, CIRS-G, Comorbidity-D-FI, and ADL-Katz, this study identified a patient group with a high (≥50% 1-year mortality rate in all of the patients and the two patient subgroups (ie, patients aged 65–82 years and ≥83 years. The CFS-7, FI, FRAIL scale, CIRS-G, Comorbidity-D-FI, and IADL/ADL-D-FI (analyzed as full scales revealed useful

  20. Design Of High Performance CMOS Dynamic Latch Comparator

    Directory of Open Access Journals (Sweden)

    G.Saroja

    2016-10-01

    Full Text Available High performance analog to digital converters (ADC, memory sense amplifiers, and Radio Frequency identification applications, data receivers with less area and power efficient designs has attracted a broad range of dynamic comparators. This paper presents an ameliorate design for a dynamic latch based comparator in attaining high performance. The comparators accuracyis mainly defined by two factors they are speed and power consumption. The latch based comparator has two different stages encompassing of a dynamic differential input gain stage and an output latch.The output node in the differential gain stage of proposed comparator requires lesser time to regain higher charge potential. The proposed comparator hasbeen designed and simulated using 130nm CMOS 1P2M technology by using mentor graphics tools with a supply voltage of 1V. Proposed dynamic latch comparator iscompared with existing conventional dynamic latch comparator and with other comparators and the results are discussed in detail.

  1. High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-07-15

    Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are

  2. Comparing Accuracy of Airborne Laser Scanning and TerraSAR-X Radar Images in the Estimation of Plot-Level Forest Variables

    Directory of Open Access Journals (Sweden)

    Juha Hyyppä

    2010-01-01

    Full Text Available In this study we compared the accuracy of low-pulse airborne laser scanning (ALS data, multi-temporal high-resolution noninterferometric TerraSAR-X radar data and a combined feature set derived from these data in the estimation of forest variables at plot level. The TerraSAR-X data set consisted of seven dual-polarized (HH/HV or VH/VV Stripmap mode images from all seasons of the year. We were especially interested in distinguishing between the tree species. The dependent variables estimated included mean volume, basal area, mean height, mean diameter and tree species-specific mean volumes. Selection of best possible feature set was based on a genetic algorithm (GA. The nonparametric k-nearest neighbour (k-NN algorithm was applied to the estimation. The research material consisted of 124 circular plots measured at tree level and located in the vicinity of Espoo, Finland. There are large variations in the elevation and forest structure in the study area, making it demanding for image interpretation. The best feature set contained 12 features, nine of them originating from the ALS data and three from the TerraSAR-X data. The relative RMSEs for the best performing feature set were 34.7% (mean volume, 28.1% (basal area, 14.3% (mean height, 21.4% (mean diameter, 99.9% (mean volume of Scots pine, 61.6% (mean volume of Norway spruce and 91.6% (mean volume of deciduous tree species. The combined feature set outperformed an ALS-based feature set marginally; in fact, the latter was better in the case of species-specific volumes. Features from TerraSAR-X alone performed poorly. However, due to favorable temporal resolution, satellite-borne radar imaging is a promising data source for updating large-area forest inventories based on low-pulse ALS.

  3. Comparing efficiency and accuracy of the kinoform and the helical axicon as Bessel-Gauss beam generators.

    Science.gov (United States)

    Arrizón, Victor; Ruiz, Ulises; Aguirre-Olivas, Dilia; Sánchez-de-la-Llave, David; Ostrovsky, Andrey S

    2014-03-01

    We compare two phase optical elements that are employed to generate approximate Bessel-Gauss beams of arbitrary order. These elements are the helical axicon (HA) and the kinoform of the desired Bessel-Gauss beam. The HA generates a Bessel beam (BB) by free propagation, and the kinoform is employed in a Fourier spatial filtering optical setup. As the main result, it is obtained that the error in the BBs generated with the kinoform is smaller than the error in the beams obtained with the HA. On the other hand, it is obtained that the efficiencies of the methods are approximately 1.0 (HA) and 0.7 (kinoform).

  4. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Ho; Oh, Yu Whan; Ham, Soo Youn [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Kang, Eun Young [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, Ki Yeol [Dept. of Radiology, Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2015-06-15

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 +/- 0.9%, and 1.7 +/- 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 +/- 7.4%) was significantly greater (p < 0.01) than that in the CPM (18.4 +/- 5.3%), with an IVV of 13.1 +/- 6.6%. However, the IVVs were in an acceptable range (< 25%), regardless of nodule size. The accuracy of 3D volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  5. The Accuracy of Prostate Cancer Localization Diagnosed on Transrectal Ultrasound-Guided Biopsy Compared to 3-Dimensional Transperineal Approach

    Directory of Open Access Journals (Sweden)

    Kevin Krughoff

    2013-01-01

    Full Text Available Background. Prostate cancer is often understaged following 12-core transrectal ultrasound- (TRUS- guided biopsies. Our goal is to understand where cancers are typically missed by this method. Methods. Transperineal 3-dimensional mapping biopsy (3DMB provides a more accurate depiction of disease status than transrectal ultrasound- (TRUS- guided biopsy. We compared 3DMB findings in men with prior TRUS-guided biopsies to determine grade and location of missed cancer. Results were evaluated for 161 men with low-risk organ confined prostate cancer. Results. The number of cancer-positive biopsy zones per patient with TRUS was 1.38 ± 1.21 compared to 3.33 ± 4.06 with 3DMB, with most newly discovered cancers originating from the middle lobe and apex. Approximately half of all newly discovered cancerous zones resulted from anterior 3DMB sampling. Gleason upgrade was recognized in 56 patients using 3DMB. When both biopsy methods found positive cores in a given zone, Gleason upgrades occurred most frequently in the middle left and right zones. TRUS cancer-positive zones not confirmed by 3DMB were most often the basal zones. Conclusion. Most cancer upgrades and cancers missed from TRUS biopsy originated in the middle left zone of the prostate, specifically in anterior regions. Anterior sampling may lead to more accurate diagnosis and appropriate followup.

  6. Influenza detection and prediction algorithms: comparative accuracy trial in Östergötland county, Sweden, 2008-2012.

    Science.gov (United States)

    Spreco, A; Eriksson, O; Dahlström, Ö; Timpka, T

    2017-07-01

    Methods for the detection of influenza epidemics and prediction of their progress have seldom been comparatively evaluated using prospective designs. This study aimed to perform a prospective comparative trial of algorithms for the detection and prediction of increased local influenza activity. Data on clinical influenza diagnoses recorded by physicians and syndromic data from a telenursing service were used. Five detection and three prediction algorithms previously evaluated in public health settings were calibrated and then evaluated over 3 years. When applied on diagnostic data, only detection using the Serfling regression method and prediction using the non-adaptive log-linear regression method showed acceptable performances during winter influenza seasons. For the syndromic data, none of the detection algorithms displayed a satisfactory performance, while non-adaptive log-linear regression was the best performing prediction method. We conclude that evidence was found for that available algorithms for influenza detection and prediction display satisfactory performance when applied on local diagnostic data during winter influenza seasons. When applied on local syndromic data, the evaluated algorithms did not display consistent performance. Further evaluations and research on combination of methods of these types in public health information infrastructures for 'nowcasting' (integrated detection and prediction) of influenza activity are warranted.

  7. Eruptions of the last 2200 years at Vulcano and Vulcanello (Aeolian Islands, Italy) dated by high-accuracy archeomagnetism

    Science.gov (United States)

    Arrighi, Simone; Tanguy, Jean-Claude; Rosi, Mauro

    2006-12-01

    The recent eruptive history of the Vulcano island (Southern Italy) was investigated through the high-accuracy "large sample" archeomagnetic method (Tanguy, J.C., Le Goff, M., Principe, C., Arrighi, S., Chillemi, V., Paiotti, A., La Delfa, S., Patanè, G., 2003. Archeomagnetic dating of Mediterranean volcanics of the last 2100 years: validity and limits. Earth Planet. Sci. Lett. 211, 111-124; Tanguy, J.C., Principe, C., Arrighi, S., 2005. Comment on "Historical measurements of the Earth's magnetic field compared with remanence directions from lava flows in Italy over the last four centuries" by R. Lanza, A. Meloni, and E. Tema. Phys. Earth Planet. Interiors 152, 116-120; Arrighi, S., 2004. The large sample archeomagnetic method applied to Neapolitan volcanoes and Aeolian Islands. PhD Thesis. University of Pisa, Italy, pp. 1-186). Age determination is based upon directional geomagnetic variation reconstructed from historically dated lavas in Southern Italy, and from archeological sites in Western Europe (Gallet, Y., Genevey, A., Le Goff, M., 2002. Three millennia of directional variation of the Earth's magnetic field in Western Europe as revealed by archeological artefacts. Phys. Earth Planet. Interiors 131, 81-89) relocated to Sicily. Results in the present paper were obtained on 12 sites including 185 samples weighing 0.5-1 kg, distributed over the Vulcanello platform lavas and pyroclastic cones, and on the lava flows from the Fossa cone. It is shown that the Vulcanello platform was built by nearly continuous activity between AD 1000 and 1250, which is more than a millennium younger than believed until now from questionable interpretation of imprecise historical accounts. Most of the lavas from the Fossa cone, whose ages were rather hypothetical or known with a large uncertainty, have erupted within the same period. However, the last "Pietre Cotte" obsidian flow is confirmed to date from 1720 ± 30, in agreement with historical data (1739).

  8. Radiometric inter-sensor cross-calibration uncertainty using a traceable high accuracy reference hyperspectral imager

    Science.gov (United States)

    Gorroño, Javier; Banks, Andrew C.; Fox, Nigel P.; Underwood, Craig

    2017-08-01

    Optical earth observation (EO) satellite sensors generally suffer from drifts and biases relative to their pre-launch calibration, caused by launch and/or time in the space environment. This places a severe limitation on the fundamental reliability and accuracy that can be assigned to satellite derived information, and is particularly critical for long time base studies for climate change and enabling interoperability and Analysis Ready Data. The proposed TRUTHS (Traceable Radiometry Underpinning Terrestrial and Helio-Studies) mission is explicitly designed to address this issue through re-calibrating itself directly to a primary standard of the international system of units (SI) in-orbit and then through the extension of this SI-traceability to other sensors through in-flight cross-calibration using a selection of Committee on Earth Observation Satellites (CEOS) recommended test sites. Where the characteristics of the sensor under test allows, this will result in a significant improvement in accuracy. This paper describes a set of tools, algorithms and methodologies that have been developed and used in order to estimate the radiometric uncertainty achievable for an indicative target sensor through in-flight cross-calibration using a well-calibrated hyperspectral SI-traceable reference sensor with observational characteristics such as TRUTHS. In this study, Multi-Spectral Imager (MSI) of Sentinel-2 and Landsat-8 Operational Land Imager (OLI) is evaluated as an example, however the analysis is readily translatable to larger-footprint sensors such as Sentinel-3 Ocean and Land Colour Instrument (OLCI) and Visible Infrared Imaging Radiometer Suite (VIIRS). This study considers the criticality of the instrumental and observational characteristics on pixel level reflectance factors, within a defined spatial region of interest (ROI) within the target site. It quantifies the main uncertainty contributors in the spectral, spatial, and temporal domains. The resultant tool

  9. Adaptive switching frequency buck DC—DC converter with high-accuracy on-chip current sensor

    Science.gov (United States)

    Jinguang, Jiang; Fei, Huang; Zhihui, Xiong

    2015-05-01

    A current-mode PWM buck DC—DC converter is proposed. With the high-accuracy on-chip current sensor, the switching frequency can be selected automatically according to load requirements. This method improves efficiency and obtains an excellent transient response. The high accuracy of the current sensor is achieved by a simple switch technique without an amplifier. This has the direct benefit of reducing power dissipation and die size. Additionally, a novel soft-start circuit is presented to avoid the inrush current at the starting up state. Finally, this DC—DC converter is fabricated with the 0.5 μm standard CMOS process. The chip occupies 3.38 mm2. The accuracy of the proposed current sensor can achieve 99.5% @ 200 mA. Experimental results show that the peak efficiency is 91.8%. The input voltage ranges from 5 to 18 V, while a 2 A load current can be obtained. Project supported by the National Natural Science Foundation of China (No. 41274047), the Natural Science Foundation of Jiangsu Province (No. BK2012639), the Science and Technology Enterprises in Jiangsu Province Technology Innovation Fund (No. BC2012121), and the Changzhou Science and Technology Support (Industrial) Project (No. CE20120074).

  10. Magnetic resonance imaging for preoperative staging of rectal cancer in clinical practice: high accuracy in predicting circumferential margin with clinical benefit.

    Science.gov (United States)

    Videhult, P; Smedh, K; Lundin, P; Kraaz, W

    2007-06-01

    The aims were to determine agreement between staging of rectal cancer made by magnetic resonance imaging (MRI) and histopathological examination and the influence of MRI on choice of radiotherapy (RT) and surgical procedure. In this retrospective audit, preoperative MRI was performed on 91 patients who underwent bowel resection, with 93% having total mesorectal excision. Tumour stage according to mural penetration, nodal status and circumferential resection margin (mCRM) involvement was assessed and compared with histopathology. Five radiologists interpreted the images. Overall agreement between MRI and histopathology for T stage was 66%. The greatest difficulty was in distinguishing between T1, T2 and minimal T3 tumours. The accuracy for mCRM (MRI) was 86% (78/91),with an interobserver variation between 80% and 100%. In the 13 cases with no agreement between mCRM and pCRM (pathological), seven had long-term RT and nine en bloc resections, indicating that the margins initially were involved with an even higher accuracy for mCRM. Preoperative short-term RT was routine, but based on MRI findings, choice of RT was affected in 29 cases (32%); 17 patients had no RT and 12 long-term RT. The surgical procedure was affected in 17 cases (19%) with planned perirectal en bloc resections in all. CRM was involved (CRM with high accuracy in rectal cancer. MRI could be used as a clinical guidance with high reliability as indicated by the low figures of histopathologically involved CRM.

  11. High Accuracy Passive Magnetic Field-Based Localization for Feedback Control Using Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Shaohui Foong

    2016-08-01

    Full Text Available In this paper, a novel magnetic field-based sensing system employing statistically optimized concurrent multiple sensor outputs for precise field-position association and localization is presented. This method capitalizes on the independence between simultaneous spatial field measurements at multiple locations to induce unique correspondences between field and position. This single-source-multi-sensor configuration is able to achieve accurate and precise localization and tracking of translational motion without contact over large travel distances for feedback control. Principal component analysis (PCA is used as a pseudo-linear filter to optimally reduce the dimensions of the multi-sensor output space for computationally efficient field-position mapping with artificial neural networks (ANNs. Numerical simulations are employed to investigate the effects of geometric parameters and Gaussian noise corruption on PCA assisted ANN mapping performance. Using a 9-sensor network, the sensing accuracy and closed-loop tracking performance of the proposed optimal field-based sensing system is experimentally evaluated on a linear actuator with a significantly more expensive optical encoder as a comparison.

  12. High-resolution CT of transplanted teeth: imaging technique and measurement accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Gahleitner, Andre [Medical University of Vienna, Department of Radiology/Osteology and MR, Vienna (Austria); Medical University Vienna, Department of Radiology, Vienna (Austria); Kuchler, Ulrike; Heschl, Janina; Watzek, Georg [Medical University of Vienna, Department of Oral Surgery, Vienna (Austria); Homolka, Peter [Medical University of Vienna, Center for Biomedical Engineering and Physics, Vienna (Austria); Imhof, Herwig [Medical University of Vienna, Department of Radiology/Osteology and MR, Vienna (Austria)

    2008-12-15

    The aim of this study was to determine the accuracy of crown diameter measurements by dental CT as a tool for preoperative diagnosis before tooth transplantations. Fifty-eight patients underwent clinically indicated dental CT. The diameter of the crowns were measured by CT using a standard protocol (1.5-mm slice thickness, 1-mm table feed, 120 kV, 25-75 mA/s, 2-s scan time/slice, 512 matrix) and a standard dental software package. Postoperatively, the same distances were clinically measured using a sliding gauge. The degree of the deviation between CT measurements and clinical measurements was in the sub-millimeter range. According to the regression analysis, the correlation coefficient equals 0.98 and 0.97, indicating a strong relationship between the CT and the manual measurement of the crown diameter in the bucco-lingual and the mesio-distal direction. The mean deviation of CT measurements with regard to the bucco-lingual diameter of the crown was +0.08 mm (SD: {+-}0.38 mm). For the mesio-distal diameter, the mean deviation of CT measurements was -0.24 mm (SD: {+-}0.53 mm). These results demonstrate that dental CT promises to be a valuable tool for the evaluation of the potential and optimal size and site for tooth transplantations. (orig.)

  13. Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease.

    Science.gov (United States)

    Tsanas, Athanasios; Little, Max A; McSharry, Patrick E; Spielman, Jennifer; Ramig, Lorraine O

    2012-05-01

    There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD.

  14. High Accuracy Passive Magnetic Field-Based Localization for Feedback Control Using Principal Component Analysis

    Science.gov (United States)

    Foong, Shaohui; Sun, Zhenglong

    2016-01-01

    In this paper, a novel magnetic field-based sensing system employing statistically optimized concurrent multiple sensor outputs for precise field-position association and localization is presented. This method capitalizes on the independence between simultaneous spatial field measurements at multiple locations to induce unique correspondences between field and position. This single-source-multi-sensor configuration is able to achieve accurate and precise localization and tracking of translational motion without contact over large travel distances for feedback control. Principal component analysis (PCA) is used as a pseudo-linear filter to optimally reduce the dimensions of the multi-sensor output space for computationally efficient field-position mapping with artificial neural networks (ANNs). Numerical simulations are employed to investigate the effects of geometric parameters and Gaussian noise corruption on PCA assisted ANN mapping performance. Using a 9-sensor network, the sensing accuracy and closed-loop tracking performance of the proposed optimal field-based sensing system is experimentally evaluated on a linear actuator with a significantly more expensive optical encoder as a comparison. PMID:27529253

  15. Designing a high accuracy 3D auto stereoscopic eye tracking display, using a common LCD monitor

    Science.gov (United States)

    Taherkhani, Reza; Kia, Mohammad

    2012-09-01

    This paper describes the design and building of a low cost and practical stereoscopic display that does not need to wear special glasses, and uses eye tracking to give a large degree of freedom to viewer (or viewer's) movement while displaying the minimum amount of information. The parallax barrier technique is employed to turn a LCD into an auto-stereoscopic display. The stereo image pair is screened on the usual liquid crystal display simultaneously but in different columns of pixels. Controlling of the display in red-green-blue sub pixels increases the accuracy of light projecting direction to less than 2 degrees without losing too much LCD's resolution and an eye-tracking system determines the correct angle to project the images along the viewer's eye pupils and an image processing system puts the 3D images data in correct R-G-B sub pixels. 1.6 degree of light direction controlling achieved in practice. The 3D monitor is just made by applying some simple optical materials on a usual LCD display with normal resolution. [Figure not available: see fulltext.

  16. High Accuracy Passive Magnetic Field-Based Localization for Feedback Control Using Principal Component Analysis.

    Science.gov (United States)

    Foong, Shaohui; Sun, Zhenglong

    2016-08-12

    In this paper, a novel magnetic field-based sensing system employing statistically optimized concurrent multiple sensor outputs for precise field-position association and localization is presented. This method capitalizes on the independence between simultaneous spatial field measurements at multiple locations to induce unique correspondences between field and position. This single-source-multi-sensor configuration is able to achieve accurate and precise localization and tracking of translational motion without contact over large travel distances for feedback control. Principal component analysis (PCA) is used as a pseudo-linear filter to optimally reduce the dimensions of the multi-sensor output space for computationally efficient field-position mapping with artificial neural networks (ANNs). Numerical simulations are employed to investigate the effects of geometric parameters and Gaussian noise corruption on PCA assisted ANN mapping performance. Using a 9-sensor network, the sensing accuracy and closed-loop tracking performance of the proposed optimal field-based sensing system is experimentally evaluated on a linear actuator with a significantly more expensive optical encoder as a comparison.

  17. High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study.

    Science.gov (United States)

    Lonner, Jess H; Smith, Julie R; Picard, Frederic; Hamlin, Brian; Rowe, Philip J; Riches, Philip E

    2015-01-01

    Surgical robotics has been shown to improve the accuracy of bone preparation and soft tissue balance in unicondylar knee arthroplasty (UKA). However, although extensive data have emerged with regard to a CT scan-based haptically constrained robotic arm, little is known about the accuracy of a newer alternative, an imageless robotic system. We assessed the accuracy of a novel imageless semiautonomous freehand robotic sculpting system in performing bone resection and preparation in UKA using cadaveric specimens. In this controlled study, we compared the planned and final implant placement in 25 cadaveric specimens undergoing UKA using the new tool. A quantitative analysis was performed to determine the translational, angular, and rotational differences between the planned and achieved positions of the implants. The femoral implant rotational mean error was 1.04° to 1.88° and mean translational error was 0.72 to 1.29 mm across the three planes. The tibial implant rotational mean error was 1.48° to 1.98° and the mean translational error was 0.79 to 1.27 mm across the three planes. The image-free robotic sculpting tool achieved accurate implementation of the surgical plan with small errors in implant placement. The next step will be to determine whether accurate implant placement translates into a clinical and functional benefit for the patient.

  18. Estimating Accuracy at Exercise Intensities: A Comparative Study of Self-Monitoring Heart Rate and Physical Activity Wearable Devices.

    Science.gov (United States)

    Dooley, Erin E; Golaszewski, Natalie M; Bartholomew, John B

    2017-03-16

    Physical activity tracking wearable devices have emerged as an increasingly popular method for consumers to assess their daily activity and calories expended. However, whether these wearable devices are valid at different levels of exercise intensity is unknown. The objective of this study was to examine heart rate (HR) and energy expenditure (EE) validity of 3 popular wrist-worn activity monitors at different exercise intensities. A total of 62 participants (females: 58%, 36/62; nonwhite: 47% [13/62 Hispanic, 8/62 Asian, 7/62 black/ African American, 1/62 other]) wore the Apple Watch, Fitbit Charge HR, and Garmin Forerunner 225. Validity was assessed using 2 criterion devices: HR chest strap and a metabolic cart. Participants completed a 10-minute seated baseline assessment; separate 4-minute stages of light-, moderate-, and vigorous-intensity treadmill exercises; and a 10-minute seated recovery period. Data from devices were compared with each criterion via two-way repeated-measures analysis of variance and Bland-Altman analysis. Differences are expressed in mean absolute percentage error (MAPE). For the Apple Watch, HR MAPE was between 1.14% and 6.70%. HR was not significantly different at the start (P=.78), during baseline (P=.76), or vigorous intensity (P=.84); lower HR readings were measured during light intensity (P=.03), moderate intensity (P=.001), and recovery (P=.004). EE MAPE was between 14.07% and 210.84%. The device measured higher EE at all stages (Pphysical activity intensities. Establishing validity of wearable devices is of particular interest as these devices are being used in weight loss interventions and could impact findings. Future research should investigate why differences between exercise intensities and the devices exist.

  19. An evaluation of memory accuracy in food hoarding marsh tits Poecile palustris--how accurate are they compared to humans?

    Science.gov (United States)

    Brodin, Anders; Urhan, A Utku

    2013-07-01

    Laboratory studies of scatter hoarding birds have become a model system for spatial memory studies. Considering that such birds are known to have a good spatial memory, recovery success in lab studies seems low. In parids (titmice and chickadees) typically ranging between 25 and 60% if five seeds are cached in 50-128 available caching sites. Since these birds store many thousands of food items in nature in one autumn one might expect that they should easily retrieve five seeds in a laboratory where they know the environment with its caching sites in detail. We designed a laboratory set up to be as similar as possible with previous studies and trained wild caught marsh tits Poecile palustris to store and retrieve in this set up. Our results agree closely with earlier studies, of the first ten looks around 40% were correct when the birds had stored five seeds in 100 available sites both 5 and 24h after storing. The cumulative success curve suggests high success during the first 15 looks where after it declines. Humans performed much better, in the first five looks most subjects were 100% correct. We discuss possible reasons for why the birds were not doing better.

  20. ISPA - a high accuracy X-ray and gamma camera Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    ISPA offers ... Ten times better resolution than Anger cameras High efficiency single gamma counting Noise reduction by sensitivity to gamma energy ...for Single Photon Emission Computed Tomography (SPECT)

  1. The diagnostic accuracy of physical examination compared to lung ultrasound for determining lung congestion in hemodialysis patients who have reached their dry weight

    Science.gov (United States)

    Rahardjo, K. D.; Dharmaeizar; Nainggolan, G.; Harimurti, K.

    2017-08-01

    Research has shown that hemodialysis patients with lung congestion have high morbidity and mortality. Patients were assumed to be free of lung congestion if they had reached their post-dialysis dry weight. Most often, to determine if the patient was free of lung congestion, physical examination was used. However, the accuracy of physical examination in detecting lung congestion has not been established. To compare the capabilities of physical examination and lung ultrasound in detection of lung congestion, cross-sectional data collection was conducted on hemodialysis patients. Analysis was done to obtain proportion, sensitivity, specificity, positive predictive value, negative predictive value, and positive likelihood ratio. Sixty patients participated in this study. The inter observer variation of 20 patients revealed a kappa value of 0.828. When all 60 patients were taken into account, we found that 36 patients (57.1%) had lung congestion. Mild lung congestion was found in 24 (38.1%), and 12 (19%) had a moderate degree of congestion. In the analysis comparing jugular venous pressure to lung ultrasound, we found that sensitivity was 0.47 (0.31-0.63), specificity was 0.73 (0.54-0.86), positive predictive value (PPV) was 0.51 (0.36-0.67), negative predictive value (NPV) was 0.70 (0.49-0.84), positive likelihood ratio (PLR) was 1.75 (0.88-3.47), and the negative likelihood ratio (NLR) was 0.72 (0.47-1.12). In terms of lung auscultation, we found that sensitivity was 0.56 (0.39-0.71), specificity was 0.54 (0.35-0.71), PPV was 0.61 (0.44-0.76), NPV was 0.48 (0.31-0.66), PLR was 1.21 (0.73-2.0), and NLR was 0.82 (0.49-1.38). The results of our study showed that jugular venous distention and lung auscultation examination are not reliable means of detecting lung congestion.

  2. Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with conventional contrast-enhanced MR angiography for the assessment of thoracic aortic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Krishnam, Mayil S. [University of California, Cardiovascular and Thoracic Imaging, UCI Medical Center, Irvine, CA (United States); Tomasian, Anderanik; Malik, Sachin; Ruehm, Stefan G. [University of California at Los Angeles, Department of Radiological Sciences, Ronald Reagan Medical Center, Los Angeles, CA (United States); Desphande, Vibhas; Laub, Gerhard [Siemens Medical Solutions, Los Angeles, CA (United States)

    2010-06-15

    The purpose of this study was to determine the image quality and diagnostic accuracy of three-dimensional (3D) unenhanced steady state free precession (SSFP) magnetic resonance angiography (MRA) for the evaluation of thoracic aortic diseases. Fifty consecutive patients with known or suspected thoracic aortic disease underwent free-breathing ECG-gated unenhanced SSFP MRA with non-selective radiofrequency excitation and contrast-enhanced (CE) MRA of the thorax at 1.5 T. Two readers independently evaluated the two datasets for image quality in the aortic root, ascending aorta, aortic arch, descending aorta, and origins of supra-aortic arteries, and for abnormal findings. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were determined for both datasets. Sensitivity, specificity, and diagnostic accuracy of unenhanced SSFP MRA for the diagnosis of aortic abnormalities were determined. Abnormal aortic findings, including aneurysm (n = 47), coarctation (n = 14), dissection (n = 12), aortic graft (n = 6), intramural hematoma (n = 11), mural thrombus in the aortic arch (n = 1), and penetrating aortic ulcer (n = 9), were confidently detected on both datasets. Sensitivity, specificity, and diagnostic accuracy of SSFP MRA for the detection of aortic disease were 100% with CE-MRA serving as a reference standard. Image quality of the aortic root was significantly higher on SSFP MRA (P < 0.001) with no significant difference for other aortic segments (P > 0.05). SNR and CNR values were higher for all segments on SSFP MRA (P < 0.01). Our results suggest that free-breathing navigator-gated 3D SSFP MRA with non-selective radiofrequency excitation is a promising technique that provides high image quality and diagnostic accuracy for the assessment of thoracic aortic disease without the need for intravenous contrast material. (orig.)

  3. High-accuracy measurement of ship velocities by DGPS; DGPS ni yoru sensoku keisoku no koseidoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S.; Koterayama, W. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-10

    The differential global positioning system (DGPS) can eliminate most of errors in ship velocity measurement by GPS positioning alone. Through two rounds of marine observations by towing an observation robot in summer 1995, the authors attempted high-accuracy measurement of ship velocities by DGPS, and also carried out both positioning by GPS alone and measurement using the bottom track of ADCP (acoustic Doppler current profiler). In this paper, the results obtained by these measurement methods were examined through comparison among them, and the accuracy of the measured ship velocities was considered. In DGPS measurement, both translocation method and interference positioning method were used. ADCP mounted on the observation robot allowed measurement of the velocity of current meter itself by its bottom track in shallow sea areas less than 350m. As the result of these marine observations, it was confirmed that the accuracy equivalent to that of direct measurement by bottom track is possible to be obtained by DGPS. 3 refs., 5 figs., 1 tab.

  4. High-accuracy current generation in the nanoampere regime from a silicon single-trap electron pump

    Science.gov (United States)

    Yamahata, Gento; Giblin, Stephen P.; Kataoka, Masaya; Karasawa, Takeshi; Fujiwara, Akira

    2017-01-01

    A gigahertz single-electron (SE) pump with a semiconductor charge island is promising for a future quantum current standard. However, high-accuracy current in the nanoampere regime is still difficult to achieve because the performance of SE pumps tends to degrade significantly at frequencies exceeding 1 GHz. Here, we demonstrate robust SE pumping via a single-trap level in silicon up to 7.4 GHz, at which the pumping current exceeds 1 nA. An accuracy test with an uncertainty of about one part per million (ppm) reveals that the pumping current deviates from the ideal value by only about 20 ppm at the flattest part of the current plateau. This value is two orders of magnitude better than the best one reported in the nanoampere regime. In addition, the pumping accuracy is almost unchanged up to 7.4 GHz, probably due to strong electron confinement in the trap. These results indicate that trap-mediated SE pumping is promising for achieving the practical operation of the quantum current standard. PMID:28322339

  5. DURA-Peel, DURACON-Based Removable High Accuracy IR Thermography Coatings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber reinforced composite materials are used extensively in aerospace applications due to their high stiffness and strength to weight ratio, and superior thermal,...

  6. Development of Serum Marker Models to Increase Diagnostic Accuracy of Advanced Fibrosis in Nonalcoholic Fatty Liver Disease: The New LINKI Algorithm Compared with Established Algorithms

    Science.gov (United States)

    Lykiardopoulos, Byron; Hagström, Hannes; Fredrikson, Mats; Ignatova, Simone; Stål, Per; Hultcrantz, Rolf; Ekstedt, Mattias

    2016-01-01

    Background and Aim Detection of advanced fibrosis (F3-F4) in nonalcoholic fatty liver disease (NAFLD) is important for ascertaining prognosis. Serum markers have been proposed as alternatives to biopsy. We attempted to develop a novel algorithm for detection of advanced fibrosis based on a more efficient combination of serological markers and to compare this with established algorithms. Methods We included 158 patients with biopsy-proven NAFLD. Of these, 38 had advanced fibrosis. The following fibrosis algorithms were calculated: NAFLD fibrosis score, BARD, NIKEI, NASH-CRN regression score, APRI, FIB-4, King´s score, GUCI, Lok index, Forns score, and ELF. Study population was randomly divided in a training and a validation group. A multiple logistic regression analysis using bootstrapping methods was applied to the training group. Among many variables analyzed age, fasting glucose, hyaluronic acid and AST were included, and a model (LINKI-1) for predicting advanced fibrosis was created. Moreover, these variables were combined with platelet count in a mathematical way exaggerating the opposing effects, and alternative models (LINKI-2) were also created. Models were compared using area under the receiver operator characteristic curves (AUROC). Results Of established algorithms FIB-4 and King´s score had the best diagnostic accuracy with AUROCs 0.84 and 0.83, respectively. Higher accuracy was achieved with the novel LINKI algorithms. AUROCs in the total cohort for LINKI-1 was 0.91 and for LINKI-2 models 0.89. Conclusion The LINKI algorithms for detection of advanced fibrosis in NAFLD showed better accuracy than established algorithms and should be validated in further studies including larger cohorts. PMID:27936091

  7. Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment

    Science.gov (United States)

    Ernstsen, Verner B.; Noormets, Riko; Hebbeln, Dierk; Bartholomä, Alex; Flemming, Burg W.

    2006-09-01

    Over 4 years, repetitive bathymetric measurements of a shipwreck in the Grådyb tidal inlet channel in the Danish Wadden Sea were carried out using a state-of-the-art high-resolution multibeam echosounder (MBES) coupled with a real-time long range kinematic (LRK™) global positioning system. Seven measurements during a single survey in 2003 ( n=7) revealed a horizontal and vertical precision of the MBES system of ±20 and ±2 cm, respectively, at a 95% confidence level. By contrast, four annual surveys from 2002 to 2005 ( n=4) yielded a horizontal and vertical precision (at 95% confidence level) of only ±30 and ±8 cm, respectively. This difference in precision can be explained by three main factors: (1) the dismounting of the system between the annual surveys, (2) rougher sea conditions during the survey in 2004 and (3) the limited number of annual surveys. In general, the precision achieved here did not correspond to the full potential of the MBES system, as this could certainly have been improved by an increase in coverage density (soundings/m2), achievable by reducing the survey speed of the vessel. Nevertheless, precision was higher than that reported to date for earlier offshore test surveys using comparable equipment.

  8. A COMPARATIVE ASSESSMENT OF THE ACCURACIES OF RAYPEX 5, RAYPEX 6, IPEX AND IPEX II ELECTRONIC APEX LOCATORS: AN IN VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Mügem Aslı GÜREL

    2017-01-01

    Full Text Available Purpose: The aims of this study were to examine the accuracy of iPex II and to compare it with those of Raypex 5, Raypex 6 and iPex electronic apex locators (EALs. Materials and Methods: Thirty fresh human mandibular premolar teeth were used in this study. Crown segments were cut and root canals were coronally flared. A #10 K-file was inserted until its tip can be seen within apical foramen to determine actual working length (AWL. Teeth were embedded in alginate and each multi-frequency EALs were randomly tested to determine the electronic working length (EWL. Differences between AWLs and EWLs were statistically compared. Results: No significant differences were found between four EALs. EWL measurements by Raypex 5 were accurate in 64.29%, Raypex 6 in 53.58%, iPex in 64.29% and iPex II in 50% of the specimens, within the range of ±0.5 mm from the AWL. Conclusion: Within the limitations of this in vitro experiment, our findings indicate that the accuracy of working length measurements calculated with iPex II was similar to those of other multi-frequency EALs used in this study.

  9. Physiologically-based, predictive analytics using the heart-rate-to-Systolic-Ratio significantly improves the timeliness and accuracy of sepsis prediction compared to SIRS.

    Science.gov (United States)

    Danner, Omar K; Hendren, Sandra; Santiago, Ethel; Nye, Brittany; Abraham, Prasad

    2017-04-01

    Enhancing the efficiency of diagnosis and treatment of severe sepsis by using physiologically-based, predictive analytical strategies has not been fully explored. We hypothesize assessment of heart-rate-to-systolic-ratio significantly increases the timeliness and accuracy of sepsis prediction after emergency department (ED) presentation. We evaluated the records of 53,313 ED patients from a large, urban teaching hospital between January and June 2015. The HR-to-systolic ratio was compared to SIRS criteria for sepsis prediction. There were 884 patients with discharge diagnoses of sepsis, severe sepsis, and/or septic shock. Variations in three presenting variables, heart rate, systolic BP and temperature were determined to be primary early predictors of sepsis with a 74% (654/884) accuracy compared to 34% (304/884) using SIRS criteria (p sepsis identification via detection of variations in HR-to-systolic ratio. This approach may lead to earlier sepsis workup and life-saving interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. High Accuracy Investigation of Microwave Absorption in Polymer Electrical Components on Motherboard of Computers

    Science.gov (United States)

    Dašić, P.; Hutanu, C.; Jevremović, V.; Dobra, R.; Risteiu, M.; Ileana, I.

    2017-06-01

    Electronic operating at high frequencies can have problems with emission of high frequency noise. Once put inside an enclosure, the energy will add in phase at certain frequencies to cause resonances which will hinder the performance of the device. These absorbers are based upon open celled foam impregnated with a carbon coating. It is quite possible that in the near future, microprocessors would be to work on a frequency located in 5 to 10 GHz. In these circumstances it is useful to know how and how much of the electromagnetic field emitted by a microprocessor, it is absorbed by the circuit elements in the immediate vicinity of the microprocessor. The aim of this contribution is to demonstrate throughout high-level experimental analysis how the main electric parameters of polymer materials, which build the printed circuits and the one of electric capacitors and resistors, depend on the frequencies on which they work from the microwave range.

  11. Bayesian approach increases accuracy when selecting cowpea genotypes with high adaptability and phenotypic stability.

    Science.gov (United States)

    Barroso, L M A; Teodoro, P E; Nascimento, M; Torres, F E; Dos Santos, A; Corrêa, A M; Sagrilo, E; Corrêa, C C G; Silva, F A; Ceccon, G

    2016-03-11

    This study aimed to verify that a Bayesian approach could be used for the selection of upright cowpea genotypes with high adaptability and phenotypic stability, and the study also evaluated the efficiency of using informative and minimally informative a priori distributions. Six trials were conducted in randomized blocks, and the grain yield of 17 upright cowpea genotypes was assessed. To represent the minimally informative a priori distributions, a probability distribution with high variance was used, and a meta-analysis concept was adopted to represent the informative a priori distributions. Bayes factors were used to conduct comparisons between the a priori distributions. The Bayesian approach was effective for selection of upright cowpea genotypes with high adaptability and phenotypic stability using the Eberhart and Russell method. Bayes factors indicated that the use of informative a priori distributions provided more accurate results than minimally informative a priori distributions.

  12. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement

    NARCIS (Netherlands)

    Van den Berg, S.A.; Van Eldik, S.; Bhattacharya, N.

    2015-01-01

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phas

  13. Novel method of high-accuracy wavefront-phase and amplitude correction for coronagraphy

    Science.gov (United States)

    Bowers, Charles W.; Woodgate, Bruce E.; Lyon, Richard G.

    2003-11-01

    Detection of extra-solar, and especially terrestrial-like planets, using coronagraphy requires an extremely high level of wavefront correction. For example, the study of Woodruff et al. (2002) has shown that phase uniformity of order 10-4λ(rms) must be achieved over the critical range of spatial frequencies to produce the ~1010 contrast needed for the Terrestrial Planet Finder (TPF) mission. Correction of wavefront phase errors to this level may be accomplished by using a very high precision deformable mirror (DM). However, not only phase but also amplitude uniformity of the same scale (~10-4) and over the same spatial frequency range must be simultaneously obtained to remove all residual speckle in the image plane. We present a design for producing simultaneous wavefront phase and amplitude uniformity to high levels from an input wavefront of lower quality. The design uses a dual Michelson interferometer arrangement incorporating two DM and a single, fixed mirror (all at pupils) and two beamsplitters: one with unequal (asymmetric) beam splitting and one with symmetric beam splitting. This design allows high precision correction of both phase and amplitude using DM with relatively coarse steps and permits a simple correction algorithm.

  14. Diagnostic accuracy of 320-slice computed-tomography for detection of significant coronary artery stenosis in patients with various heart rates and heart rhythms compared with conventional coronary-angiography.

    Science.gov (United States)

    Uehara, Masae; Takaoka, Hiroyuki; Kobayashi, Yoshio; Funabashi, Nobusada

    2013-08-10

    To evaluate the diagnostic accuracy of 320-slice CT for detection of significant coronary artery stenosis in patients with various heart rates (HR) and heart rhythms, including tachycardia and chronic atrial-fibrillation (CAF) compared with conventional-coronary-angiography (CAG). One-hundred-six consecutive patients underwent both 320-slice CT and CAG within 3 months (normal-sinus-rhythm [NSR] 91.5%, CAF 8.5%, mean HR 65 ± 15 beats/min). There were no cardiac events between the 2 procedures. Patients were divided in 2 groups: Group 1 (HR 64 with NSR or heart rhythm irregularities at CT scan, n=44). Patients with >50% or >75% luminal stenosis on CT were compared with those with >50% or >75% stenosis on CAG, respectively. In a segment-by-segment analysis, in all patients, sensitivity, specificity, positive (PPV) and negative predictive value (NPV) of >50% stenosis on CT for predicting >50% stenosis on CAG were 69, 98, 78, and 97%, respectively, and those of >75% stenosis on CT for predicting >75% stenosis on CAG were 78, 98, 64, and 99%, respectively. Sensitivity, specificity, PPV, and NPV of >50% and 75% stenosis on CT for predicting >50% and >75% stenosis, respectively, on CAG were comparable. Diagnostic accuracy was essentially the same in both groups. 320-slice CT had high diagnostic accuracy for the detection of significant coronary artery stenosis compared with CAG. Even though the numbers were small, patients with high HR or heart rhythm irregularities might have essentially equivalent results to those with low HR with NSR. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. A randomized trial comparing the diagnostic accuracy of visual inspection with acetic acid to Visual Inspection with Lugol's Iodine for cervical cancer screening in HIV-infected women.

    Science.gov (United States)

    Huchko, Megan J; Sneden, Jennifer; Zakaras, Jennifer M; Smith-McCune, Karen; Sawaya, George; Maloba, May; Bukusi, Elizabeth Ann; Cohen, Craig R

    2015-01-01

    Visual inspection with Acetic Acid (VIA) and Visual Inspection with Lugol’s Iodine (VILI) are increasingly recommended in various cervical cancer screening protocols in low-resource settings. Although VIA is more widely used, VILI has been advocated as an easier and more specific screening test. VILI has not been well-validated as a stand-alone screening test, compared to VIA or validated for use in HIV-infected women. We carried out a randomized clinical trial to compare the diagnostic accuracy of VIA and VILI among HIV-infected women. Women attending the Family AIDS Care and Education Services (FACES) clinic in western Kenya were enrolled and randomized to undergo either VIA or VILI with colposcopy. Lesions suspicious for cervical intraepithelial neoplasia 2 or greater (CIN2+) were biopsied. Between October 2011 and June 2012, 654 were randomized to undergo VIA or VILI. The test positivity rates were 26.2% for VIA and 30.6% for VILI (p = 0.22). The rate of detection of CIN2+ was 7.7% in the VIA arm and 11.5% in the VILI arm (p = 0.10). There was no significant difference in the diagnostic performance of VIA and VILI for the detection of CIN2+. Sensitivity and specificity were 84.0% and 78.6%, respectively, for VIA and 84.2% and 76.4% for VILI. The positive and negative predictive values were 24.7% and 98.3% for VIA, and 31.7% and 97.4% for VILI. Among women with CD4+ count < 350, VILI had a significantly decreased specificity (66.2%) compared to VIA in the same group (83.9%, p = 0.02) and compared to VILI performed among women with CD4+ count ≥ 350 (79.7%, p = 0.02). VIA and VILI had similar diagnostic accuracy and rates of CIN2+ detection among HIV-infected women.

  16. Accuracy of MRI for prediction of response to neo-adjuvant chemotherapy in triple negative breast cancer compared to other subtypes of breast cancer

    Directory of Open Access Journals (Sweden)

    Gaurav J Bansal

    2016-01-01

    Full Text Available Purpose: The aim of this study was to compare the accuracy of magnetic resonance imaging (MRI for the prediction of response to neo-adjuvant chemotherapy in triple negative (TN breast cancer, with respect to other subtypes. Materials and Methods: There were a total of 1610 breast cancers diagnosed between March 2009 and August 2014, out of which 82 patients underwent MRI before and after neo-adjuvant chemotherapy but just before surgery. TN cancers were analyzed with respect to others subtypes. Accuracy of MRI for prediction of pathological complete response was compared between different subtypes by obtaining receiver operating characteristic (ROC curves. The Statistical Package for the Social Sciences version 21 was used for all data analysis, with P value of 0.05 as statistically significant. Results: Out of 82 patients, 29 were luminal (HR+/HER2−, 23 were TN (HR−, HER2−, 11 were HER2 positive (HR−, HER2+, and 19 were of hybrid subtype (HR+/HER2+. TN cancers presented as masses on the pre-chemotherapy MRI scan, were grade 3 on histopathology, and showed concentric shrinkage following chemotherapy. TN cancers were more likely to have both imaging and pathological complete response following chemotherapy (P = 0.055 in contrast to luminal cancers, which show residual cancer. ROC curves were constructed for the prediction of pathological complete response with MRI. For the TN subgroup, MR had a sensitivity of 0.745 and specificity of 0.700 (P = 0.035, with an area under curve of 0.745 (95% confidence interval: 0.526–0.965, which was significantly better compared to other subtypes. Conclusion: TN breast cancers present as masses and show concentric shrinkage following chemotherapy. MRI is most accurate in predicting response to chemotherapy in the TN group, compared to others subtypes. MRI underestimates residual disease in luminal cancers.

  17. A randomized trial comparing the diagnostic accuracy of visual inspection with acetic acid to Visual Inspection with Lugol's Iodine for cervical cancer screening in HIV-infected women.

    Directory of Open Access Journals (Sweden)

    Megan J Huchko

    Full Text Available Visual inspection with Acetic Acid (VIA and Visual Inspection with Lugol’s Iodine (VILI are increasingly recommended in various cervical cancer screening protocols in low-resource settings. Although VIA is more widely used, VILI has been advocated as an easier and more specific screening test. VILI has not been well-validated as a stand-alone screening test, compared to VIA or validated for use in HIV-infected women. We carried out a randomized clinical trial to compare the diagnostic accuracy of VIA and VILI among HIV-infected women. Women attending the Family AIDS Care and Education Services (FACES clinic in western Kenya were enrolled and randomized to undergo either VIA or VILI with colposcopy. Lesions suspicious for cervical intraepithelial neoplasia 2 or greater (CIN2+ were biopsied. Between October 2011 and June 2012, 654 were randomized to undergo VIA or VILI. The test positivity rates were 26.2% for VIA and 30.6% for VILI (p = 0.22. The rate of detection of CIN2+ was 7.7% in the VIA arm and 11.5% in the VILI arm (p = 0.10. There was no significant difference in the diagnostic performance of VIA and VILI for the detection of CIN2+. Sensitivity and specificity were 84.0% and 78.6%, respectively, for VIA and 84.2% and 76.4% for VILI. The positive and negative predictive values were 24.7% and 98.3% for VIA, and 31.7% and 97.4% for VILI. Among women with CD4+ count < 350, VILI had a significantly decreased specificity (66.2% compared to VIA in the same group (83.9%, p = 0.02 and compared to VILI performed among women with CD4+ count ≥ 350 (79.7%, p = 0.02. VIA and VILI had similar diagnostic accuracy and rates of CIN2+ detection among HIV-infected women.

  18. The Drift Diffusion Model can account for the accuracy and reaction time of value-based choices under high and low time pressure

    Directory of Open Access Journals (Sweden)

    Milica Milosavljevic

    2010-10-01

    Full Text Available An important open problem is how values are compared to make simple choices. A natural hypothesis is that the brain carries out the computations associated with the value comparisons in a manner consistent with the Drift Diffusion Model (DDM, since this model has been able to account for a large amount of data in other domains. We investigated the ability of four different versions of the DDM to explain the data in a real binary food choice task under conditions of high and low time pressure. We found that a seven-parameter version of the DDM can account for the choice and reaction time data with high-accuracy, in both the high and low time pressure conditions. The changes associated with the introduction of time pressure could be traced to changes in two key model parameters: the barrier height and the noise in the slope of the drift process.

  19. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    Energy Technology Data Exchange (ETDEWEB)

    Burkhard, Boeckem [Institute for Geodesy and Photogrammetry, ETH Zurich (Switzerland)

    1999-07-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle {delta}{beta}, is to first approximation proportional to the refraction angle: {beta}{sub IR} {nu}({beta}{sub blue} - {beta}{sub IR}) = {nu} {delta}{beta}, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of

  20. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Gnad, Florian; de Godoy, Lyris M F; Cox, Jürgen

    2009-01-01

    mapped to 1118 proteins, representatively covering the yeast kinome and a multitude of transcription factors. We show that a single false discovery rate for all peptide identifications significantly overestimates occurrence of rare modifications, such as tyrosine phosphorylation in yeast. The identified...... phosphorylation sites are predominantly located on irregularly structured and accessible protein regions. We found high evolutionary conservation of phosphorylated proteins and a large overlap of significantly over-represented motifs with the human phosphoproteome. Nevertheless, phosphorylation events at the site...... level were not highly conserved between yeast and higher eukaryotes, which points to metazoan-specific kinase and substrate families. We constructed a yeast-specific phosphorylation sites predictor on the basis of a support vector machine, which - together with the yeast phosphorylation data...

  1. High accuracy and precision micro injection moulding of thermoplastic elastomers micro ring production

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Elsborg, René

    2016-01-01

    of using tool geometries as reference calibrated artefacts to establish effective process technology development and control. The results allow identifying the correct process windows for optimal part quality reducing product dimensional variation in the micrometer dimensional range. The proposed......The mass-replication nature of the process calls for fast monitoring of process parameters and product geometrical characteristics. In this direction, the present study addresses the possibility to develop a micro manufacturing platform for micro assembly injection moulding with real-time process/product...... monitoring and metrology. The study represent a new concept yet to be developed with great potential for high precision mass-manufacturing of highly functional 3D multi-material (i.e. including metal/soft polymer) micro components. The activities related to HINMICO project objectives proves the importance...

  2. Challenges in high accuracy surface replication for micro optics and micro fluidics manufacture

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Calaon, Matteo;

    2014-01-01

    by replication technologies such as nickel electroplating. All replication steps are enabled by a high precision master and high reproduction fidelity to ensure that the functionalities associated with the design are transferred to the final component. Engineered surface micro structures can be either......Patterning the surface of polymer components with microstructured geometries is employed in optical and microfluidic applications. Mass fabrication of polymer micro structured products is enabled by replication technologies such as injection moulding. Micro structured tools are also produced...... distributed, e.g., to create an optical pattern, or discretised, e.g., as micro channels for fluids manipulation. Key aspects of two process chains based on replication technologies for both types of micro structures are investigated: lateral replication fidelity, dimensional control at micro scale, edge...

  3. Modelling and Control of Stepper Motors for High Accuracy Positioning Systems Used in Radioactive Environments

    OpenAIRE

    Picatoste Ruilope, Ricardo

    2014-01-01

    Hybrid Stepper Motors are widely used in open-loop position applications. They are the choice of actuation for the collimators in the Large Hadron Collider, the largest particle accelerator at CERN. In this case the positioning requirements and the highly radioactive operating environment are unique. The latter forces both the use of long cables to connect the motors to the drives which act as transmission lines and also prevents the use of standard position sensors. However, reliable and pre...

  4. The Ultrasonic Piezo Drive an Innovative Solution for High-Accuracy Positioning

    OpenAIRE

    Seiler, René; Six, Marc; Debornot, Miguel; Le Letty, Ronan; CLAEYSSEN, Frank

    2002-01-01

    Piezo-electric motors have been successfully developed for various applications like autofocus drives in camera lenses and handling equipment for semiconductor production. Their high speed and accurate positioning capability, combined with a favourable holding torque in unpowered condition, make piezo motors also very attractive for actuation purposes in spacecraft mechanisms. However, so far only a few studies have been reported considering their suitability for actual use in space. Piezo mo...

  5. High-Accuracy Methods for Numerical Flow Analysis Using Adaptive Non-Linear Wavelets

    Science.gov (United States)

    2012-08-01

    to the research by Bacry, Mallat and Papanicolaou [10] or Holmström and Walden [11], AWGM solves PDE problems in a wavelet coefficient space. It is...of the threshold value, these variations are discarded and restricted by multiplying the weighting factor . This process can especially contribute the...weighting factor . This restriction technique enhances the convergence rate of steady state calculations. References [1] Harten A., “High

  6. High accuracy measure of atomic polarizability in an optical lattice clock

    OpenAIRE

    Sherman, J. A.; Lemke, N. D.; Hinkley, N.; Pizzocaro, M.; Fox, R. W.; Ludlow, A. D.; Oates, C. W.

    2011-01-01

    Despite being a canonical example of quantum mechanical perturbation theory, as well as one of the earliest observed spectroscopic shifts, the Stark effect contributes the largest source of uncertainty in a modern optical atomic clock through blackbody radiation. By employing an ultracold, trapped atomic ensemble and high stability optical clock, we characterize the quadratic Stark effect with unprecedented precision. We report the ytterbium optical clock's sensitivity to electric fields (suc...

  7. Continuous assessment of land mapping accuracy at High Resolution from global networks of atmospheric and field observatories -concept and demonstration

    Science.gov (United States)

    Sicard, Pierre; Martin-lauzer, François-regis

    2017-04-01

    In the context of global climate change and adjustment/resilience policies' design and implementation, there is a need not only i. for environmental monitoring, e.g. through a range of Earth Observations (EO) land "products" but ii. for a precise assessment of uncertainties of the aforesaid information that feed environmental decision-making (to be introduced in the EO metadata) and also iii. for a perfect handing of the thresholds which help translate "environment tolerance limits" to match detected EO changes through ecosystem modelling. Uncertainties' insight means precision and accuracy's knowledge and subsequent ability of setting thresholds for change detection systems. Traditionally, the validation of satellite-derived products has taken the form of intensive field campaigns to sanction the introduction of data processors in Payload Data Ground Segments chains. It is marred by logistical challenges and cost issues, reason why it is complemented by specific surveys at ground-based monitoring sites which can provide near-continuous observations at a high temporal resolution (e.g. RadCalNet). Unfortunately, most of the ground-level monitoring sites, in the number of 100th or 1000th, which are part of wider observation networks (e.g. FLUXNET, NEON, IMAGINES) mainly monitor the state of the atmosphere and the radiation exchange at the surface, which are different to the products derived from EO data. In addition they are "point-based" compared to the EO cover to be obtained from Sentinel-2 or Sentinel-3. Yet, data from these networks, processed by spatial extrapolation models, are well-suited to the bottom-up approach and relevant to the validation of vegetation parameters' consistency (e.g. leaf area index, fraction of absorbed photosynthetically active radiation). Consistency means minimal errors on spatial and temporal gradients of EO products. Test of the procedure for land-cover products' consistency assessment with field measurements delivered by worldwide

  8. Accuracy and feasibility of frameless stereotactic and robot-assisted CT-based puncture in interventional radiology. A comparative phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Stoffner, R.; Widmann, G.; Bale, R. [Radiologie, Medizinische Univ. Innsbruck (Austria); Augschoell, C. [Chirurgie, LKH Salzburg (Austria); Boehler, D. [LKH Salzburg (Austria)

    2009-09-15

    Purpose: To compare the accuracy of frameless stereotactic and robot-assisted puncture in vitro based on computed tomography (CT) imaging with a slice thickness of 1, 3, and 5 mm. Materials and Methods: 300 punctures were carried out with help of the Atlas aiming device guided by the optical navigation system Stealth Station TREONplus and 150 punctures were guided by the robotic assistance system Innomotion. Conically shaped rods were punctured with Kirschner wires. The accuracy was evaluated on the basis of control CTs by measuring the Euclidean distance between the wire tip and target and the normal distance between the target and wire. Results: With the Stealth Station a mean Euclidean distance of 1.94{+-}0.912, 2.2{+-}1.136, and 2.74{+-}1.166 mm at a slice thickness of 1, 3 and 5 mm, respectively, was reached. The mean normal distance was 1.64{+-}0.919, 1.84{+-}1.189, and 2.48{+-}1.196 mm, respectively. The Innomotion system resulted in a mean Euclidean distance of 1.69{+-}0.772, 1.91{+-}0.673, and 2.30{+-}0.881 mm, respectively, while the mean normal distance was (1.42{+-}0.78), 1.60{+-}0.733, and 1.98{+-}1.002 mm, respectively. A statistical significance between accuracies with both systems with 1 mm and 3 mm slices could not be detected (p > 0.05). At a slice thickness of 5 mm, the robot was significantly more accurate, but not as accurate as when using thinner slices (p < 0.05). The procedure time is longer for the Innomotion system ({proportional_to}30 vs. {proportional_to}18 min), and the practicability is higher with the Stealth Station. (orig.)

  9. Exponential Runge-Kutta schemes for inhomogeneous Boltzmann equations with high order of accuracy

    CERN Document Server

    Li, Qin

    2012-01-01

    We consider the development of exponential methods for the robust time discretization of space inhomogeneous Boltzmann equations in stiff regimes. Compared to the space homogeneous case, or more in general to the case of splitting based methods, studied in Dimarco Pareschi (SIAM J. Num. Anal. 2011) a major difficulty is that the local Maxwellian equilibrium state is not constant in a time step and thus needs a proper numerical treatment. We show how to derive asymptotic preserving (AP) schemes of arbitrary order and in particular using the Shu-Osher representation of Runge-Kutta methods we explore the monotonicity properties of such schemes, like strong stability preserving (SSP) and positivity preserving. Several numerical results confirm our analysis.

  10. Accuracy optimization of high-speed AFM measurements using Design of Experiments

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, F.; Hansen, Hans Nørgaard

    2010-01-01

    , the estimated dimensions of measured features. The definition of scan settings is based on a comprehensive optimization that targets maximization of information from collected data and minimization of measurement uncertainty and scan time. The Design of Experiments (DOE) technique is proposed and applied......Atomic Force Microscopy (AFM) is being increasingly employed in industrial micro/nano manufacturing applications and integrated into production lines. In order to achieve reliable process and product control at high measuring speed, instrument optimization is needed. Quantitative AFM measurement...

  11. 4-Dimensionally Guided 3-Dimensional Color-Doppler Ultrasonography Quantifies Carotid Artery Stenosis With High Reproducibility and Accuracy.

    Science.gov (United States)

    Macharzina, Roland Richard; Kocher, Sascha; Messé, Steven R; Rutkowski, Thomas; Hoffmann, Fabian; Vogt, Matthias; Vach, Werner; Fan, Nian; Rastan, Aljoscha; Neumann, Franz-Josef; Zeller, Thomas

    2017-07-13

    The purpose was to analyze the agreement and binary accuracy of the degree of internal carotid artery stenosis (ICAS) as determined by 4-dimensionally (4D) real-time gray-scale guided 3-dimensional (3D) color-Doppler ultrasonography (3DC-US) (4D/3DC-US) compared with catheter angiography (CA) and duplex ultrasonography (DUS). This study hypothesized that 4D/3DC-US is noninferior to CA and DUS in grading ICAS in selected patients. Clinical stratification in patients with ICAS largely depends on a patient's symptomatic status and the degree of stenosis. Screening with 4D/3DC-US was prospectively performed in 93 study patients (with 122 ICASs), thus yielding 80 patients for analysis (with 103 ICASs) after excluding patients with insufficient image quality, previous revascularization, and contraindications to CA. The ultrasound examination (10 MHz) consisted of consensus conform DUS examination and independent real-time 4D-guided gray-scale views for orientation followed by static 3DC-US NASCET (North American Symptomatic Carotid Endarterectomy Trial) percent stenosis quantification using off-line multiplanar rendering. Multiplanar selective CA of the same ICASs was quantified with dedicated software in a blinded fashion. Quantitative CA of 103 stenoses with a mean degree of 65 ± 17% was compared with 4D/3DC-US, with a resulting concordance correlation coefficient of 0.89 and a standard deviation of differences (SDD) of 8.1% at a bias of +1.7%. Binary 50% and 70% stenosis detection with 4D/3DC-US revealed a sensitivity of 97% and 87%, respectively, and a specificity of 92% and 84%, respectively. Interobserver SDD for CA of 52 stenoses (7.2%) did not differ from SDD for 4D/3DC-US and CA (p = 0.274). Accuracy of 50% stenosis detection by 4D/3DC-US was tendentially higher compared with DUS (96% vs. 91%). The 4D/3DC-US method provides reliable and accurate stenosis quantification and binary classification with good diagnostic accuracy compared with CA and DUS. Copyright

  12. A three axis turntable's online initial state measurement method based on the high-accuracy laser gyro SINS

    Science.gov (United States)

    Gao, Chunfeng; Wei, Guo; Wang, Qi; Xiong, Zhenyu; Wang, Qun; Long, Xingwu

    2016-10-01

    As an indispensable equipment in inertial technology tests, the three-axis turntable is widely used in the calibration of various types inertial navigation systems (INS). In order to ensure the calibration accuracy of INS, we need to accurately measure the initial state of the turntable. However, the traditional measuring method needs a lot of exterior equipment (such as level instrument, north seeker, autocollimator, etc.), and the test processing is complex, low efficiency. Therefore, it is relatively difficult for the inertial measurement equipment manufacturers to realize the self-inspection of the turntable. Owing to the high precision attitude information provided by the laser gyro strapdown inertial navigation system (SINS) after fine alignment, we can use it as the attitude reference of initial state measurement of three-axis turntable. For the principle that the fixed rotation vector increment is not affected by measuring point, we use the laser gyro INS and the encoder of the turntable to provide the attitudes of turntable mounting plat. Through this way, the high accuracy measurement of perpendicularity error and initial attitude of the three-axis turntable has been achieved.

  13. High accuracy indirect optical manipulation of live cells with functionalized microtools

    Science.gov (United States)

    Vizsnyiczai, Gaszton; Aekbote, Badri L.; Buzás, András.; Grexa, István.; Ormos, Pál.; Kelemen, Lóránd

    2016-09-01

    Optical micro manipulation of live cells has been extensively used to study a wide range of cellular phenomena with relevance in basic research or in diagnostics. The approaches span from manipulation of many cells for high throughput measurement or sorting, to more elaborated studies of intracellular events on trapped single cells when coupled with modern imaging techniques. In case of direct cell trapping the damaging effects of light-cell interaction must be minimized, for instance with the choice of proper laser wavelength. Microbeads have already been used for trapping cells indirectly thereby reducing the irradiation damage and increasing trapping efficiency with their high refractive index contrast. We show here that such intermediate objects can be tailor-made for indirect cell trapping to further increase cell-to-focal spot distance while maintaining their free and fast maneuverability. Carefully designed structures were produced with two-photon polymerization with shapes optimized for effective manipulation and cell attachment. Functionalization of the microstructures is also presented that enables cell attachment to them within a few seconds with strength much higher that the optical forces. Fast cell actuation in 6 degrees of freedom is demonstrated with the outlook to possible applications in cell imaging.

  14. Automated high-accuracy mutation screening with the WAVE nucleic acid fragment analysis system

    Science.gov (United States)

    Hecker, Karl H.

    2002-06-01

    The analysis of DNA fragments by ion-pair reversed-phase high-performance liquid chromatography on an alkylated, nonporous poly(styrene-divinylbenzene) matrix (DNA Cartridge) using the WAVE Nucleic Acid Fragment Analysis System is a powerful and versatile tool for DNA analysis. Resolution of DNA fragments is based on two principles, size-dependent retention of double-stranded (ds) DNA and differential retention of ds vs. single-stranded (ss) DNA. Temperature Modulated Heteroduplex Analysis utilizes both principles of separation to detect single nucleotide polymorphisms (SNP) and short insertions/deletions. At a given temperature the difference in the melting between homo- and heteroduplexes is revealed by differences in retention times. The temperature at which differential melting occurs is sequence dependent and is predicated accurately using either WAVEMAKER or WAVE Navigator software, which use a modified Fixman-Friere algorithm. Detection of known and unknown sequence variations can be performed on DNA fragments of up to 1,000 base pairs with high sensitivity and specificity. The use of fluorescent labels is compatible with the technology and increases sensitivity. Retention times are increased and resolution is not affected. Fluorescent labeling significantly increases sensitivity.

  15. High-accuracy measurement of the emission spectrum of liquid xenon in the vacuum ultraviolet region

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Keiko, E-mail: fujii-keiko-nv@ynu.jp [Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501 (Japan); Endo, Yuya; Torigoe, Yui; Nakamura, Shogo [Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501 (Japan); Haruyama, Tomiyoshi; Kasami, Katsuyu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Mihara, Satoshi; Saito, Kiwamu; Sasaki, Shinichi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); The Graduate School of Advanced Studies, Hayama, Kanagawa 240-0193 (Japan); Tawara, Hiroko [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)

    2015-09-21

    The emission spectrum of cryogenic liquid xenon in the vacuum ultraviolet region was measured by irradiating liquid xenon with gamma-rays from a radioactive source. To achieve a high signal-to-noise ratio, we employed coincident photon counting. Additionally, the charge of the photo-sensor signals was measured to estimate the number of detected photons accurately. In addition, proper corrections were incorporated for the wavelength; response functions of the apparatus obtained using a low-pressure mercury lamp, and photon detection efficiencies of the optical system were considered. The obtained emission spectrum is found to be in the shape of a Gaussian function, with the center at 57,199±34 (stat.)±33 (syst.) cm{sup −1} (174.8±0.1 (stat.)±0.1 (syst.) nm) and the full width at half maximum of 3328±72 (stat.)±65 (syst.) cm{sup −1} (10.2±0.2 (stat.)±0.2 (sys.) nm). These results are the most accurate values obtained in terms of the data acquisition method and the calibration for the experimental system and provide valuable information regarding the high-precision instruments that employ a liquid-xenon scintillator.

  16. Modelling and Control of Stepper Motors for High Accuracy Positioning Systems Used in Radioactive Environments

    CERN Document Server

    Picatoste Ruilope, Ricardo; Masi, Alessandro

    Hybrid Stepper Motors are widely used in open-loop position applications. They are the choice of actuation for the collimators in the Large Hadron Collider, the largest particle accelerator at CERN. In this case the positioning requirements and the highly radioactive operating environment are unique. The latter forces both the use of long cables to connect the motors to the drives which act as transmission lines and also prevents the use of standard position sensors. However, reliable and precise operation of the collimators is critical for the machine, requiring the prevention of step loss in the motors and maintenance to be foreseen in case of mechanical degradation. In order to make the above possible, an approach is proposed for the application of an Extended Kalman Filter to a sensorless stepper motor drive, when the motor is separated from its drive by long cables. When the long cables and high frequency pulse width modulated control voltage signals are used together, the electrical signals difer greatl...

  17. Meditation Experience Predicts Introspective Accuracy

    Science.gov (United States)

    Fox, Kieran C. R.; Zakarauskas, Pierre; Dixon, Matt; Ellamil, Melissa; Thompson, Evan; Christoff, Kalina

    2012-01-01

    The accuracy of subjective reports, especially those involving introspection of one's own internal processes, remains unclear, and research has demonstrated large individual differences in introspective accuracy. It has been hypothesized that introspective accuracy may be heightened in persons who engage in meditation practices, due to the highly introspective nature of such practices. We undertook a preliminary exploration of this hypothesis, examining introspective accuracy in a cross-section of meditation practitioners (1–15,000 hrs experience). Introspective accuracy was assessed by comparing subjective reports of tactile sensitivity for each of 20 body regions during a ‘body-scanning’ meditation with averaged, objective measures of tactile sensitivity (mean size of body representation area in primary somatosensory cortex; two-point discrimination threshold) as reported in prior research. Expert meditators showed significantly better introspective accuracy than novices; overall meditation experience also significantly predicted individual introspective accuracy. These results suggest that long-term meditators provide more accurate introspective reports than novices. PMID:23049790

  18. Geoid undulation accuracy

    Science.gov (United States)

    Rapp, Richard H.

    1993-01-01

    The determination of the geoid and equipotential surface of the Earth's gravity field, has long been of interest to geodesists and oceanographers. The geoid provides a surface to which the actual ocean surface can be compared with the differences implying information on the circulation patterns of the oceans. For use in oceanographic applications the geoid is ideally needed to a high accuracy and to a high resolution. There are applications that require geoid undulation information to an accuracy of +/- 10 cm with a resolution of 50 km. We are far from this goal today but substantial improvement in geoid determination has been made. In 1979 the cumulative geoid undulation error to spherical harmonic degree 20 was +/- 1.4 m for the GEM10 potential coefficient model. Today the corresponding value has been reduced to +/- 25 cm for GEM-T3 or +/- 11 cm for the OSU91A model. Similar improvements are noted by harmonic degree (wave-length) and in resolution. Potential coefficient models now exist to degree 360 based on a combination of data types. This paper discusses the accuracy changes that have taken place in the past 12 years in the determination of geoid undulations.

  19. Determination of the QCD Λ Parameter and the Accuracy of Perturbation Theory at High Energies.

    Science.gov (United States)

    Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2016-10-28

    We discuss the determination of the strong coupling α_{MS[over ¯]}(m_{Z}) or, equivalently, the QCD Λ parameter. Its determination requires the use of perturbation theory in α_{s}(μ) in some scheme s and at some energy scale μ. The higher the scale μ, the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ parameter in three-flavor QCD, we perform lattice computations in a scheme that allows us to nonperturbatively reach very high energies, corresponding to α_{s}=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a 3% error in the Λ parameter, while data around α_{s}≈0.2 are clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  20. A magnetic bearing momentum wheel for high pointing accuracy and vibration sensitive space applications

    Science.gov (United States)

    Bichler, U. J.

    The paper describes a magnetic bearing momentum wheel (MW-X) theoretically and experimentally with attention given to its low-noise application to spacecraft attitude-control systems. The MW-X gyroscopic actuator comprises a rotor, emergency bearings, a locking mechanisms, and a drive motor, and Vernier gimballing is employed so that the rotor and the momentum vector can be tilted actively with about one degree. The MW-X utilizes a suspension-control system for noise attenuation and active vibration suppression to reduce noise from the sensor surface. The actively controlled magnetic bearing wheels are shown to provide active damping of flexible structures by means of fully controllable translational bearing forces. The MW-X devices are of interest for applications to optical communications links, space telescopes, and earth-observation satellites with high resolutions.

  1. High Accuracy Tracking of Space-Borne Non-Cooperative Targets

    DEFF Research Database (Denmark)

    Pedersen, David Arge Klevang

    for the spacecraft to navigate safely and autonomously towards the target. These methods are applied on three distinct study cases, which are based on the platform of the microASC instrument. In relation to the Mars2020 rover, a structured light system is used to navigate the PIXL instrument towards the Martian...... the surface and to enhance the PIXL instrument's capabilities with highly accurate distance measurements. Optical observations of planetary bodies and satellites are utilized to determine the inertial position of a spacecraft. A software module is developed, tested and verified by both ground based and in......-ight observations, where the performanceover the complete operational envelope is characterized by simulations. The in-flight observations were captured onboard Juno, during the Earth flyby, by the microASC instrument, operating as an inertially controlled imager. The involvement in Juno's Earth Fly By operational...

  2. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air

    Directory of Open Access Journals (Sweden)

    C. W. Rella

    2013-03-01

    Full Text Available Traditional techniques for measuring the mole fractions of greenhouse gases in the well-mixed atmosphere have required dry sample gas streams (dew point inter-laboratory compatibility goals (WMO, 2011a without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapour correction factors, and we summarise a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterised dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to a water vapour concentration of at least 1%. By determining the correction factors for individual instruments once at the start of life, this water vapour concentration range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended up to and even above 4% water vapour concentrations.

  3. Diagnostic accuracy of low-dose CT compared with abdominal radiography in non-traumatic acute abdominal pain: prospective study and systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Alshamari, Muhammed; Geijer, Haakan [Oerebro University, Department of Radiology, Faculty of Medicine and Health, Oerebro (Sweden); Norrman, Eva [Oerebro University, Department of Medical Physics, Faculty of Medicine and Health, Oerebro (Sweden); Geijer, Mats [Lund University and Skaane University Hospital, Department of Medical Imaging and Physiology, Lund (Sweden); Jansson, Kjell [Oerebro University, Department of Surgery, Faculty of Medicine and Health, Oerebro (Sweden)

    2016-06-15

    Abdominal radiography is frequently used in acute abdominal non-traumatic pain despite the availability of more advanced diagnostic modalities. This study evaluates the diagnostic accuracy of low-dose CT compared with abdominal radiography, at similar radiation dose levels. Fifty-eight patients were imaged with both methods and were reviewed independently by three radiologists. The reference standard was obtained from the diagnosis in medical records. Sensitivity and specificity were calculated. A systematic review was performed after a literature search, finding a total of six relevant studies including the present. Overall sensitivity with 95 % CI for CT was 75 % (66-83 %) and 46 % (37-56 %) for radiography. Specificity was 87 % (77-94 %) for both methods. In the systematic review the overall sensitivity for CT varied between 75 and 96 % with specificity from 83 to 95 % while the overall sensitivity for abdominal radiography varied between 30 and 77 % with specificity 75 to 88 %. Based on the current study and available evidence, low-dose CT has higher diagnostic accuracy than abdominal radiography and it should, where logistically possible, replace abdominal radiography in the workup of adult patients with acute non-traumatic abdominal pain. (orig.)

  4. Social power and recognition of emotional prosody: High power is associated with lower recognition accuracy than low power.

    Science.gov (United States)

    Uskul, Ayse K; Paulmann, Silke; Weick, Mario

    2016-02-01

    Listeners have to pay close attention to a speaker's tone of voice (prosody) during daily conversations. This is particularly important when trying to infer the emotional state of the speaker. Although a growing body of research has explored how emotions are processed from speech in general, little is known about how psychosocial factors such as social power can shape the perception of vocal emotional attributes. Thus, the present studies explored how social power affects emotional prosody recognition. In a correlational study (Study 1) and an experimental study (Study 2), we show that high power is associated with lower accuracy in emotional prosody recognition than low power. These results, for the first time, suggest that individuals experiencing high or low power perceive emotional tone of voice differently.

  5. Hybrid single-packet IP traceback with low storage and high accuracy.

    Science.gov (United States)

    Yang, Ming Hour

    2014-01-01

    Traceback schemes have been proposed to trace the sources of attacks that usually hide by spoofing their IP addresses. Among these methods, schemes using packet logging can achieve single-packet traceback. But packet logging demands high storage on routers and therefore makes IP traceback impractical. For lower storage requirement, packet logging and packet marking are fused to make hybrid single-packet IP traceback. Despite such attempts, their storage still increases with packet numbers. That is why RIHT bounds its storage with path numbers to guarantee low storage. RIHT uses IP header's ID and offset fields to mark packets, so it inevitably suffers from fragment and drop issues for its packet reassembly. Although the 16-bit hybrid IP traceback schemes, for example, MORE, can mitigate the fragment problem, their storage requirement grows up with packet numbers. To solve the storage and fragment problems in one shot, we propose a single-packet IP traceback scheme that only uses packets' ID field for marking. Our major contributions are as follows: (1) our fragmented packets with tracing marks can be reassembled; (2) our storage is not affected by packet numbers; (3) it is the first hybrid single-packet IP traceback scheme to achieve zero false positive and zero false negative rates.

  6. High-accuracy acoustic detection of nonclassical component of material nonlinearity.

    Science.gov (United States)

    Haupert, Sylvain; Renaud, Guillaume; Rivière, Jacques; Talmant, Maryline; Johnson, Paul A; Laugier, Pascal

    2011-11-01

    The aim is to assess the nonclassical component of material nonlinearity in several classes of materials with weak, intermediate, and high nonlinear properties. In this contribution, an optimized nonlinear resonant ultrasound spectroscopy (NRUS) measuring and data processing protocol applied to small samples is described. The protocol is used to overcome the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic nonlinearity. External temperature fluctuation is identified as a primary source of measurement contamination. For instance, a variation of 0.1 °C produced a frequency variation of 0.01%, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to overcome environmental effects, the reference frequency measurements are repeated before each excitation level and then used to compute nonlinear parameters. Using this approach, relative resonant frequency shifts of 10(-5) can be measured, which is below the limit of 10(-4) often considered as the limit of NRUS sensitivity under common experimental conditions. Due to enhanced sensitivity resulting from the correction procedure applied in this work, nonclassical nonlinearity in materials that before have been assumed to only be classically nonlinear in past work (steel, brass, and aluminum) is reported.

  7. Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Brida, Mattia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Fritzsch, Patrick [Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Korzec, Tomasz [Wuppertal Univ. (Germany). Dept. of Physics; Ramos, Alberto [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Collaboration: ALPHA Collaboration

    2016-04-15

    We discuss the determination of the strong coupling α{sub MS}(m{sub Z}) or equivalently the QCD Λ-parameter. Its determination requires the use of perturbation theory in α{sub s}(μ) in some scheme, s, and at some energy scale μ. The higher the scale μ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to α{sub s}=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a three percent error in the Λ-parameter, while data around α{sub s}∼0.2 is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  8. Temporal Stability of the Velodyne HDL-64E S2 Scanner for High Accuracy Scanning Applications

    Directory of Open Access Journals (Sweden)

    Craig Glennie

    2011-03-01

    Full Text Available The temporal stability and static calibration and analysis of the Velodyne HDL‑64E S2 scanning LiDAR system is discussed and analyzed. The mathematical model for measurements for the HDL-64E S2 scanner is updated to include misalignments between the angular encoder and scanner axis of rotation, which are found to be a marginally significant source of error. It is reported that the horizontal and vertical laser offsets cannot reliably be obtained with the current calibration model due to their high correlation with the horizontal and vertical offsets. By analyzing observations from two separate HDL-64E S2 scanners it was found that the temporal stability of the horizontal angle offset is near the quantization level of the encoder, but the vertical angular offset, distance offset and distance scale are slightly larger than expected. This is felt to be due to long term variations in the scanner range, whose root cause is as of yet unidentified. Nevertheless, a temporally averaged calibration dataset for each of the scanners resulted in a 25% improvement in the 3D planar misclosure residual RMSE over the standard factory calibration model.

  9. High-accuracy, high-precision, high-resolution, continuous monitoring of urban greenhouse gas emissions? Results to date from INFLUX

    Science.gov (United States)

    Davis, K. J.; Brewer, A.; Cambaliza, M. O. L.; Deng, A.; Hardesty, M.; Gurney, K. R.; Heimburger, A. M. F.; Karion, A.; Lauvaux, T.; Lopez-Coto, I.; McKain, K.; Miles, N. L.; Patarasuk, R.; Prasad, K.; Razlivanov, I. N.; Richardson, S.; Sarmiento, D. P.; Shepson, P. B.; Sweeney, C.; Turnbull, J. C.; Whetstone, J. R.; Wu, K.

    2015-12-01

    The Indianapolis Flux Experiment (INFLUX) is testing the boundaries of our ability to use atmospheric measurements to quantify urban greenhouse gas (GHG) emissions. The project brings together inventory assessments, tower-based and aircraft-based atmospheric measurements, and atmospheric modeling to provide high-accuracy, high-resolution, continuous monitoring of emissions of GHGs from the city. Results to date include a multi-year record of tower and aircraft based measurements of the urban CO2 and CH4 signal, long-term atmospheric modeling of GHG transport, and emission estimates for both CO2 and CH4 based on both tower and aircraft measurements. We will present these emissions estimates, the uncertainties in each, and our assessment of the primary needs for improvements in these emissions estimates. We will also present ongoing efforts to improve our understanding of atmospheric transport and background atmospheric GHG mole fractions, and to disaggregate GHG sources (e.g. biogenic vs. fossil fuel CO2 fluxes), topics that promise significant improvement in urban GHG emissions estimates.

  10. An Evaluation of the Diagnostic Accuracy of the Grade of Preoperative Biopsy Compared to Surgical Excision in Chondrosarcoma of the Long Bones

    Directory of Open Access Journals (Sweden)

    Robert Jennings

    2010-01-01

    Full Text Available Chondrosarcoma is the second most common primary malignant bone tumour. Distinguishing between grades is not necessarily straightforward and may alter the disease management. We evaluated the correlation between histological grading of the preoperative image-guided needle biopsy and the resection specimen of 78 consecutive cases of chondrosarcoma of the femur, humerus, and tibia. In 11 instances, there was a discrepancy in histological grade between the biopsy and surgical specimen. Therefore, there was an 85.9% (67/78 accuracy rate for pre-operative histological grading of chondrosarcoma, based on needle biopsy. However, the accuracy of the diagnostic biopsy to distinguish low-grade from high-grade chondrosarcoma was 93.6% (73/78. We conclude that accurate image-guided biopsy is a very useful adjunct in determining histological grade of chondrosarcoma and the subsequent treatment plan. At present, a multidisciplinary approach, comprising experienced orthopaedic surgeons, radiologists, and pathologists, offers the most reliable means of accurately diagnosing and grading of chondrosarcoma of long bones.

  11. The Impact of Financial Crisis on the Predictability of the Stock Markets of PIGS Countries – Comparative Study of Prediction Accuracy of Technical Analysis and Neural Networks

    Directory of Open Access Journals (Sweden)

    Katarína Hiľovská

    2011-09-01

    Full Text Available To a degree the financial crisis influenced all European countries but the most affected are the PIGS (Portugal, Ireland, Greece and Spain. We investigated the effect of the financial crisis on the prediction accuracy of artificial neural networks on the Portuguese, Irish, Athens and Madrid Stock Exchange. We applied three-layered feed-forward neural networks with backpropagation algorithm to forecast the next day prices and we compared the paper returns achieved before and after the recent financial crisis. This method failed in forecasting the direction of the next day price movement but performed well in absolute price changes. However, it achieved better results than the strategy based on technical analysis in the period before the crisis. On the other hand, technical analysis performed better during the crisis.

  12. Real-time integration of a tactical-grade IMU and GPS for high-accuracy positioning and navigation

    Science.gov (United States)

    Petovello, Mark G.

    2003-10-01

    The integration of the Global Positioning System (CPS) and Inertial Navigation Systems (INSs) is often used to provide accurate positioning and navigation information. For applications requiring the highest accuracy, the quality of the inertial sensors required is usually assumed to be very high. This dissertation investigates the integration of CPS with a tactical-grade Inertial Measurement Unit (IMU) for centimetre-level navigation in real-time. Different GPS/INS integration strategies are investigated to assess their relative performance in terms of position and velocity accuracy during partial and complete data outages, carrier phase ambiguity resolution after such data outages, and the overall statistical reliability of the system. In terms of statistical reliability, the traditional equations used in dynamic systems are redeveloped in light of some practical considerations, including centralized and decentralized filter architectures, and sequential versus simultaneous measurement updating. Results show that the integrated solution outperforms the GPS-only approach in all areas. The difference between loose and tight integration strategies was most significant for ambiguity resolution and system reliability. The integrated solution is capable of providing decimetre-level accuracy or better for durations of about five or ten seconds when a complete or partial CPS outage is simulated. This level of accuracy, extended over longer time intervals, is shown to reduce the time required to resolve the L1 ambiguities by an average of about 50% or more for data outages as long as 30 seconds when using a tight integration strategy. More importantly, the reliability of the ambiguity resolution process is improved with the integrated system. Statistical reliability parameters are also dramatically better when using the integrated system with the ability of detecting a single-cycle cycle slip being better and more consistent, relative to GPS-only. The effect of undetected

  13. Comparative study of accuracy and clinical agreement of the CoaguChek XS portable device versus standard laboratory practice in unexperienced patients.

    Science.gov (United States)

    Torreiro, Eduardo G; Fernández, Elizabeth Gómez; Rodríguez, Rosa Mariño; López, Carmen Vázquez; Núñez, Julia Barreal

    2009-05-01

    The objective of the study was to compare the accuracy and clinical agreement of the CoaguChek XS versus the standard laboratory practice. Forty-one patients on long-term anticoagulation with acenocumarol without previous experience in self-monitoring participated to obtain 218 pairs of data. Several methods for comparative statistics were applied to assess the possible disagreements between techniques as well as a range of previously published criteria of clinical agreement and the very recently described error-grid for INR comparison that we partially modify. The mean age was 52.1 and the indications for oral anticoagulation were prosthetic valves (36.59%), atrial fibrillation (34.15%), venous thromboembolic disease (21.95%) and others (7.31%) with a target range of 2-3 INR units (63.4%) or 2.5-3.5 (36.6%). Analyzing the whole series of data, the Pearsons rho correlation coefficient for precision between methods was 0.95 and the C(b) bias correction factor for accuracy 0.99 with a minimal bias of 0.1 INR units between methods applying the Bland-Altman plot. The linear regression procedure described by Passing and Bablok showed a minimal deviation from the best-fit line and a slope of 0.90. The mean of the absolute relative differences was 7% which is in the "very good" range of agreement. No results were found in the clinically "dangerous" D zone of the error-grids with 99% of data in the clinically irrelevant and low relevant areas A and B. In this study self-management with the CoaguChek XS was clinically safe and reliable.

  14. The accuracy of the first response histidine-rich protein2 rapid diagnostic test compared with malaria microscopy for guiding field treatment in an outbreak of falciparum malaria

    Science.gov (United States)

    Ghouth, Abdulla Salim Bin; Nasseb, Faraj Mubarak; Al-Kaldy, Khaled Hussin

    2012-01-01

    Background: Recent WHO guidelines recommended a universal “test and treat” strategy for malaria mainly by use of the rapid diagnostic test (RDT) in all areas. There are concerns about RDT that use the antigen histidine-rich protein2 (HRP2) to detect Plasmodium falciparum, because infection can persist after effective treatment. Aim: The aim of this paper is to describe the accuracy of the first response (HRP2)-RDT compared with malaria microscopy used for guiding the field treatment of patients in an outbreak situation in the Al-Rahabah area in Al-Rydah district in Hadramout/Yemen. Materials and Methods: An ad hoc cross sectional survey of all febrile patients in the affected area was conducted in May 2011. The field team was developed including the case management group and the entomology group. The group of case management prepared their plan based on “test and treat” strategy by using First Response Malaria Antigen HRP2 rapid diagnostic test for falciparum malaria, artemsinin-based combination therapy (ACT) according to the national policy of anti-malaria drugs in Yemen were supplied to treat those who were found to be RDT positive in the field; also blood smear films were taken from every patient with fever in order to validate the use of the RDT in the field. Blood film slides prepared and read by skilled lab technicians, the fourth reading was done by one lab expert in the malaria referral lab. Results: The accuracy parameters of HRP2 compared with microscopy are: Sensitivity (74%), specificity (94%). The positive predictive value is 68% and the negative predictive value is 96%. Total agreement is 148/162 (93%) and the overall prevalence is 14%. All the positive malaria cases were of P. falciparum either coming from RDT or microscopy. Conclusions: HRP2–rapid test is an acceptable test as a guide for field treatment in an outbreak situation where prompt response is indicated. Good prepared blood film slides should be used as it is feasible to

  15. Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning

    Directory of Open Access Journals (Sweden)

    Craig Glennie

    2010-06-01

    Full Text Available The static calibration and analysis of the Velodyne HDL-64E S2 scanning LiDAR system is presented and analyzed. The mathematical model for measurements for the HDL-64E S2 scanner is derived and discussed. A planar feature based least squares adjustment approach is presented and utilized in a minimally constrained network in order to derive an optimal solution for the laser’s internal calibration parameters. Finally, the results of the adjustment along with a detailed examination of the adjustment residuals are given. A three-fold improvement in the planar misclosure residual RMSE over the standard factory calibration model was achieved by the proposed calibration. Results also suggest that there may still be some unmodelled distortions in the range measurements from the scanner. However, despite this, the overall precision of the adjusted laser scanner data appears to make it a viable choice for high accuracy mobile scanning applications.

  16. 不同软件在ASTER数据中提取DEM的精度对比%Comparative Analysis of the DEM Extracting Accuracy form ASTER Data by Different Software

    Institute of Scientific and Technical Information of China (English)

    何兆培; 杨斌

    2013-01-01

    利用3个不同的软件对四川省龙门山中段ASTER 15m分辨率的立体像对进行了DEM提取,并对其精度进行了初步评价.分别使用立体测量法和干涉测量法提取DEM,并通过检验点法和剖面线法对比分析.结果表明,利用ERDAS的干涉测量法提取出的DEM效果较好,高程精度可达30m,对后续数据深挖掘和高层次地形分析具有应用价值.%This paper used three different software to extract the DEM form the stereo images which the ASTER 15 m resolution of the middle Longmen Mountain in Sichuan province, and evaluated its accuracy preliminarily. DEM's accuracy depends on accuracy, distribution and quantity of the control point of ground.lt is also influenced by the control precision of software in the production process. In this thesis, three-dimensional measurements and interferometer measurements were taken to extract the DEM respectively, and a comparative analysis was made by test point method and the section line method. The results show that using the interferometer method of ERDAS to extract the DEM is better, with the height accuracy up to 30 m. It will provide the practice value for getting more detail data in future and analysis of the high-level terrain.

  17. Diagnostic accuracy of colour Doppler ultrasonography, CT angiography and blood-pool-enhanced MR angiography in assessing carotid stenosis: a comparative study with DSA in 170 patients.

    Science.gov (United States)

    Anzidei, M; Napoli, A; Zaccagna, F; Di Paolo, P; Saba, L; Cavallo Marincola, B; Zini, C; Cartocci, G; Di Mare, L; Catalano, C; Passariello, R

    2012-02-01

    This study was undertaken to prospectively evaluate the diagnostic performance of colour Doppler ultrasonography (CDUS), first-pass (FP) and steady-state (SS) contrast-enhanced magnetic resonance angiography (MRA) and computed tomography angiography (CTA) of the carotid arteries using digital subtraction angiography (DSA) as the reference standard. A total of 170 patients with previous cerebrovascular events and suspected carotid artery stenoses underwent CDUS, blood-pool MRA, CTA and DSA. Accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for CDUS, FP MRA, SS MRA and CTA. The McNemar and Wilcoxon tests and receiver operating characteristic (ROC) curve analysis were used to determine significant differences (p<0.05) between the diagnostic performances of the four modalities, and the degree of stenosis was compared using linear regression. A total of 336 carotid bifurcations were studied. The area under the curve (AUC) for degree of stenosis was: CDUS 0.85±0.02, FP MRA 0.982±0.005, SS MRA 0.994±0.002 and CTA 0.997±0.001. AUC analysis showed no statistically significant difference between CTA and MRA (p=0.0174) and a statistically significant difference between CDUS and the other techniques (p<0.001). Plaque morphology analysis showed no significant difference between CTA and SS MRA; a significant difference was seen between CTA and SS MRA versus FP MRA (p=0.04) and CDUS (p=0.038). Plaque ulceration analysis showed a statistically significant difference between MRA and CTA (0.04< p<0.046) versus CDUS (p=0.019). CTA is the most accurate technique for evaluating carotid stenoses, with a slightly better performance than MRA (97% vs. 95% for SS MRA and 92% for FP MRA) and a greater accuracy than CDUS (97% vs. 76%). Blood-pool contrast-enhanced SS sequences offer improved evaluation of degree of stenosis and plaque morphology with accuracy substantially identical to CTA.

  18. Accuracy of computer-aided ultrasound as compared with magnetic resonance imaging in the evaluation of nonalcoholic fatty liver disease in obese and eutrophic adolescents

    Directory of Open Access Journals (Sweden)

    José Hermes Ribas do Nascimento

    2015-08-01

    Full Text Available AbstractObjective:To compare the accuracy of computer-aided ultrasound (US and magnetic resonance imaging (MRI by means of hepatorenal gradient analysis in the evaluation of nonalcoholic fatty liver disease (NAFLD in adolescents.Materials and Methods:This prospective, cross-sectional study evaluated 50 adolescents (aged 11–17 years, including 24 obese and 26 eutrophic individuals. All adolescents underwent computer-aided US, MRI, laboratory tests, and anthropometric evaluation. Sensitivity, specificity, positive and negative predictive values and accuracy were evaluated for both imaging methods, with subsequent generation of the receiver operating characteristic (ROC curve and calculation of the area under the ROC curve to determine the most appropriate cutoff point for the hepatorenal gradient in order to predict the degree of steatosis, utilizing MRI results as the gold-standard.Results:The obese group included 29.2% girls and 70.8% boys, and the eutrophic group, 69.2% girls and 30.8% boys. The prevalence of NAFLD corresponded to 19.2% for the eutrophic group and 83% for the obese group. The ROC curve generated for the hepatorenal gradient with a cutoff point of 13 presented 100% sensitivity and 100% specificity. As the same cutoff point was considered for the eutrophic group, false-positive results were observed in 9.5% of cases (90.5% specificity and false-negative results in 0% (100% sensitivity.Conclusion:Computer-aided US with hepatorenal gradient calculation is a simple and noninvasive technique for semiquantitative evaluation of hepatic echogenicity and could be useful in the follow-up of adolescents with NAFLD, population screening for this disease as well as for clinical studies.

  19. Accuracy of 99mTc (V)-Dimercaptosuccinic Acid Scintigraphy and Fecal Calprotectin Compared with Colonoscopy in Localizing Active Lesions in Inflammatory Bowel Disease

    Science.gov (United States)

    Basirat, Vahid; Azizi, Zahra; Javid Anbardan, Sanam; Taghizadeh Asl, Mina; Farbod, Yasaman; Teimouri, Azam; Ebrahimi Daryani, Nasser

    2016-01-01

    INTRODUCTION Due to limitation of colonoscopy in assessing the entire bowel and patients’ intolerance in inflammatory bowel disease (IBD), in the current study, we aimed to prospectively compare the accuracy of 99mTc(V)-dimercaptosuccinic acid (DMSA) and fecal calprotectin with ileocolonoscopy as new methods for localizing inflammations. METHODS Current prospective study conducted between 2012 and 2014 on 30 patients with IBD attending Gastroenterology Clinic of Tehran University of Medical Sciences. Fecal calprotectin and disease activity were measured for all participants and all of them underwent 99mTc (V)-DMSA scintigraphy and colonoscopy. The accuracy of 99mTc (V)-DMSA scintigraphy and calprotectin in localizing bowel lesions were calculated. RESULTS A total of 22 patients with ulcerative colitis (UC) and 8 patients with Crohn’s disease (CD) were evaluated in our study. Sensitivity, positive likelihood ratio (PLR), and positive predictive value (PPV) of scintigraphy and calprotectin over colonoscopy in localization of UC lesions were 86.36%, 0.86%, 100.00% and 90.91%, 0.91, and 100.00%, respectively. Meanwhile, it showed 66.67% sensitivity and 81.25% specificity with PLR=3.56, negative likelihood ratio (NLR)=0.41, PPV=84.21%, and negative predictive value (NPV)= 61.90% in localizing lesions in patients with CD. The calprotectin level had sensitivity, PLR, and PPV of 90.00%, 0.90, and 100.00% in detecting active disease over colonoscopy, respectively. CONCLUSION The 99mTc (V)-DMSA scintigraphy would be an accurate method for detecting active inflammation in follow-up of patients with IBD and assessing response to treatment as a non-invasive and complementary method beside colonoscopy for more accurate diagnosis of CD or UC. PMID:27698971

  20. Accuracy of computer-aided ultrasound as compared with magnetic resonance imaging in the evaluation of nonalcoholic fatty liver disease in obese and eutrophic adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Jose Hermes Ribas do, E-mail: josehermesnascimento@gmail.com [Instituto Cenecista de Ensino Superior de Santo Angelo (IESA), Santo Angelo, RS (Brazil); Soder, Ricardo Bernardi; Epifanio, Matias; Baldisserotto, Matteo [Pontificia Universidade Catolica do Rio Grande do Sul (InsCer/PUCRS), Porto Alegre, RS (Brazil). Instituto do Cerebro

    2015-07-15

    Objective: to compare the accuracy of computer-aided ultrasound (US) and magnetic resonance imaging (MRI) by means of hepatorenal gradient analysis in the evaluation of nonalcoholic fatty liver disease (NAFLD) in adolescents. Materials and methods: this prospective, cross-sectional study evaluated 50 adolescents (aged 11-17 years), including 24 obese and 26 eutrophic individuals. All adolescents underwent computer-aided US, MRI, laboratory tests, and anthropometric evaluation. Sensitivity, specificity, positive and negative predictive values and accuracy were evaluated for both imaging methods, with subsequent generation of the receiver operating characteristic (ROC) curve and calculation of the area under the ROC curve to determine the most appropriate cutoff point for the hepatorenal gradient in order to predict the degree of steatosis, utilizing MRI results as the gold-standard. Results: the obese group included 29.2% girls and 70.8% boys, and the eutrophic group, 69.2% girls and 30.8% boys. The prevalence of NAFLD corresponded to 19.2% for the eutrophic group and 83% for the obese group. The ROC curve generated for the hepatorenal gradient with a cutoff point of 13 presented 100% sensitivity and 100% specificity. As the same cutoff point was considered for the eutrophic group, false-positive results were observed in 9.5% of cases (90.5% specificity) and false-negative results in 0% (100% sensitivity). Conclusion: computer-aided US with hepatorenal gradient calculation is a simple and noninvasive technique for semiquantitative evaluation of hepatic echogenicity and could be useful in the follow-up of adolescents with NAFLD, population screening for this disease as well as for clinical studies. (author)

  1. Characterization of Small Focal Renal Lesions: Diagnostic Accuracy with Single-Phase Contrast-enhanced Dual-Energy CT with Material Attenuation Analysis Compared with Conventional Attenuation Measurements.

    Science.gov (United States)

    Marin, Daniele; Davis, Drew; Roy Choudhury, Kingshuk; Patel, Bhavik; Gupta, Rajan T; Mileto, Achille; Nelson, Rendon C

    2017-09-01

    Purpose To determine whether single-phase contrast material-enhanced dual-energy material attenuation analysis improves the characterization of small (1-4 cm) renal lesions compared with conventional attenuation measurements by using histopathologic analysis and follow-up imaging as the clinical reference standards. Materials and Methods In this retrospective, HIPAA-compliant, institutional review board-approved study, 136 consecutive patients (95 men and 41 women; mean age, 54 years) with 144 renal lesions (111 benign, 33 malignant) measuring 1-4 cm underwent single-energy unenhanced and contrast-enhanced dual-energy computed tomography (CT) of the abdomen. For each renal lesion, attenuation measurements were obtained; attenuation change of greater than or equal to 15 HU was considered evidence of enhancement. Dual-energy attenuation measurements were also obtained by using iodine-water, water-iodine, calcium-water, and water-calcium material basis pairs. Mean lesion attenuation values and material densities were compared between benign and malignant renal lesions by using the two-sample t test. Diagnostic accuracy of attenuation measurements and dual-energy material densities was assessed and validated by using 10-fold cross-validation to limit the effect of optimistic bias. Results By using cross-validated optimal thresholds at 100% sensitivity, iodine-water material attenuation images significantly improved specificity for differentiating between benign and malignant renal lesions compared with conventional enhancement measurements (93% [103 of 111]; 95% confidence interval: 86%, 97%; vs 81% [90 of 111]; 95% confidence interval: 73%, 88%) (P = .02). Sensitivity with iodine-water and calcium-water material attenuation images was also higher than that with conventional enhancement measurements, although the difference was not statistically significant. Conclusion Contrast-enhanced dual-energy CT with material attenuation analysis improves specificity for

  2. Novel technique to suppress hydrocarbon contamination for high accuracy determination of carbon content in steel by FE-EPMA

    Science.gov (United States)

    Yamashita, Takako; Tanaka, Yuji; Yagoshi, Masayasu; Ishida, Kiyohito

    2016-07-01

    In multiphase steels, control of the carbon contents in the respective phases is the most important factor in alloy design for achieving high strength and high ductility. However, it is unusually difficult to determine the carbon contents in multiphase structures with high accuracy by electron probe microanalysis (EPMA) due to the unavoidable effect of hydrocarbon contamination during measurements. We have investigated new methods for suppressing hydrocarbon contamination during field emission (FE) EPMA measurements as well as a conventional liquid nitrogen trap. Plasma cleaner inside the specimen chamber results in a improvement of carbon-content determination by point analysis, increasing precision tenfold from the previous 0.1 mass%C to 0.01 mass%C. Stage heating at about 100 °C dramatically suppresses contamination growth during continuous point measurement and mapping. By the combination of above two techniques, we successfully visualized the two-dimensional carbon distribution in a dual-phase steel. It was also noted that the carbon concentrations at the ferrite/martensite interfaces were not the same across all interfaces, and local variation was observed. The developed technique is expected to be a powerful tool for understanding the mechanisms of mechanical properties and microstructural evolution, thereby contributing to the design of new steel products with superior properties.

  3. High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data

    Science.gov (United States)

    Lee, Seung-Kuk; Ryu, Joo-Hyung

    2017-01-01

    This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.

  4. Novel technique to suppress hydrocarbon contamination for high accuracy determination of carbon content in steel by FE-EPMA.

    Science.gov (United States)

    Yamashita, Takako; Tanaka, Yuji; Yagoshi, Masayasu; Ishida, Kiyohito

    2016-07-19

    In multiphase steels, control of the carbon contents in the respective phases is the most important factor in alloy design for achieving high strength and high ductility. However, it is unusually difficult to determine the carbon contents in multiphase structures with high accuracy by electron probe microanalysis (EPMA) due to the unavoidable effect of hydrocarbon contamination during measurements. We have investigated new methods for suppressing hydrocarbon contamination during field emission (FE) EPMA measurements as well as a conventional liquid nitrogen trap. Plasma cleaner inside the specimen chamber results in a improvement of carbon-content determination by point analysis, increasing precision tenfold from the previous 0.1 mass%C to 0.01 mass%C. Stage heating at about 100 °C dramatically suppresses contamination growth during continuous point measurement and mapping. By the combination of above two techniques, we successfully visualized the two-dimensional carbon distribution in a dual-phase steel. It was also noted that the carbon concentrations at the ferrite/martensite interfaces were not the same across all interfaces, and local variation was observed. The developed technique is expected to be a powerful tool for understanding the mechanisms of mechanical properties and microstructural evolution, thereby contributing to the design of new steel products with superior properties.

  5. Characterization of an experimental arrangement to measure position of particles in 3D with a high accuracy

    Science.gov (United States)

    Martínez González, A.; Guerrero Viramontes, J. A.; Moreno Hernández, D.

    2011-09-01

    Single particle position calculation in three dimensions (3D) with high accuracy is the very important in several branches of science. On the other hand, the use of in-line holography to study very small objects in a dynamic volume is a technique of importance for scientists and engineers across a variety of disciplines for obtaining information about size, shape, trajectory and velocity of small objects such as dust particles. However, in general for in-line holography, accurate determination of the object's position in the optical axis direction is difficult. In order to overcome this shortcoming, we proposed to use in-line holography set up to record particle images in two orthogonal forward configurations. In this study, we avoid digital holography reconstruction to calculate particle position. To determine particle position, the proposed method is based on the calculation of the size and position of the central spot size (CSS) of a particle diffraction image. The size of the CSS is calculated by using the Continuous Wavelet Transform (CWT) and Continuous Hough Transforms (CHT), an then the size of the CSS is related to a calibration curve calculated experimentally in order to determine the "z" particle position and centroid of the CSS render the "x-y" position of a particle image. The procedure proposed in this work to determine the 3D particle position is so simple since it avoids a complicated experimental set-up and several computational steps in order to obtain the 3D position of the particles. Our approach offers the following advantages: First, the mathematical accuracy, light illumination as well as particle and medium refractive indexes are used during the analysis. Second, it is not required to resolve the size of particle since we calculate only the size of CSS of a diffraction particle image pattern.

  6. Expanding analytical possibilities concerning the detection of stanozolol misuse by means of high resolution/high accuracy mass spectrometric detection of stanozolol glucuronides in human sports drug testing.

    Science.gov (United States)

    Schänzer, Wilhelm; Guddat, Sven; Thomas, Andreas; Opfermann, Georg; Geyer, Hans; Thevis, Mario

    2013-01-01

    Anabolic-androgenic steroids (AAS) represent one of the most frequently detected classes of prohibited substances in doping controls. Due to their long-lasting beneficial effects on athletic performance, utmost retrospectivity via urine analysis is desirable and accomplished by targeting long-term metabolites of the respective drugs. In case of stanozolol, a substantial variety of metabolites has enabled the identification of numerous adverse analytical findings in the past, and recent studies concerning complementary phase-I and phase-II metabolites has further expanded the windows of opportunity for detecting the abuse of stanozolol. In this study, the utility of liquid chromatography-high resolution/high accuracy (tandem) mass spectrometry (LC-MS/MS) for the detection of 3'-OH-stanozolol glucuronide in sports drug testing is presented and the identification of two additional and so far unreported metabolites is shown. The structures of the complementary glucuronic acid conjugates were attributed to stanozolol-N-glucuronide and 17-epistanozolol-N-glucuronide. By means of chemical synthesis, stanozolol-N-glucuronide was prepared and used to corroborate the suggested structures. The 3'-OH-stanozolol glucuronide and the newly identified target compounds were implemented into routine sports drug test assays consisting of direct injection LC-MS/MS or solid-phase extraction (SPE) followed by LC-MS/MS. A considerably expanded detection window for stanozolol abuse was demonstrated compared to the use of conventional phase-I metabolites and methodologies based on, for example, low resolution LC-MS/MS or gas chromatography-tandem mass spectrometry (GC-MS/MS). The commercial availability of 3'-OH-stanozolol glucuronide has been of great value for confirmatory purposes, and 17-epistanozolol-N-glucuronide was found to be a favourable long-term metabolite for doping controls as it was observed up to 28 days post-administration of the drug. Applying the established

  7. The absence of longitudinal data limits the accuracy of high-throughput clinical phenotyping for identifying type 2 diabetes mellitus subjects.

    Science.gov (United States)

    Wei, Wei-Qi; Leibson, Cynthia L; Ransom, Jeanine E; Kho, Abel N; Chute, Christopher G

    2013-04-01

    To evaluate the impact of insufficient longitudinal data on the accuracy of a high-throughput clinical phenotyping (HTCP) algorithm for identifying (1) patients with type 2 diabetes mellitus (T2DM) and (2) patients with no diabetes. Retrospective study conducted at Mayo Clinic in Rochester, Minnesota. Eligible subjects were Olmsted County residents with ≥1 Mayo Clinic encounter in each of three time periods: (1) 2007, (2) from 1997 through 2006, and (3) before 1997 (N = 54,283). Diabetes relevant electronic medical record (EMR) data about diagnoses, laboratories, and medications were used. We employed the HTCP algorithm to categorize individuals as T2DM cases and non-diabetes controls. Considering the full 11 years (1997-2007) as the gold standard, we compared gold-standard categorizations with those using data for 10 subsequent intervals, ranging from 1998-2007 (10-year data) to 2007 (1-year data). Positive predictive values (PPVs) and false-negative rates (FNRs) were calculated. McNemar tests were used to determine whether categorizations using shorter time periods differed from the gold standard. Statistical significance was defined as P FNRs, respectively, were 70% and 25% for case identification and 59% and 67% for control identification. All time frames differed significantly from the gold standard, except for the 10-year period. The accuracy of the algorithm reduced remarkably as data were limited to shorter observation periods. This impact should be considered carefully when designing/executing HTCP algorithms. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Optimization and design of inter-stage amplifier with wide output swing,high speed and high accuracy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi-qiang; SUN Quan; GAO Jing

    2008-01-01

    To satisfy the design requirements of analog-to-digital converter (ADC) of high speed sampling sys-tem in an infrared focal plane array tester with 1024 × 1024 pixels, a first inter-stage amplifier of 12-bit 40-Msample/s pipelined ADC was designed with 0.35 μm CMOS technology. On the basis of traditional two-stage amplifier, the cross-coupled class AB output stage and cascode compensation were adopted to improve the out-put voltage swing and bandwidth. Power dissipation was optimized with math tools. Circuit and layout design were completed. Simulation results show that the designed amplifier has good performance of 95 dB de gain, ±2 V output voltage swing, 190 MHz bandwidth and 63° phase margin with feedback factor 1/4, 33 mW pow-er dissipation and so on, which can meet the system requirements.

  9. A Comparative Evaluation of Accuracy of the Dies Affected by Tray Type, Material Viscosity, and Pouring Sequence of Dual and Single Arch Impressions- An In vitro Study.

    Science.gov (United States)

    Kulkarni, Poonam R; Kulkarni, Rahul S; Shah, Rupal J; Chhajlani, Rahul; Saklecha, Bhuwan; Maru, Kavita

    2017-04-01

    The clinician's skill, impression techniques, and materials play a very important role in recording fine details in an impression for accuracy of fixed partial denture prosthesis. Impression of prepared teeth and of the opposing arch can be recorded simultaneously by dual-arch trays, while the full arch metal trays are used for impressions of prepared teeth in one arch. To measure and compare the accuracy of working dies made from impressions with metal and plastic dual arch trays and metal full arch trays, for two viscosities of impression material and by changing the sequence of pour of working and non-working sides. A balanced design with independent samples was used to study the three variables (tray type, impression material viscosity, and pouring sequence). An impression made by dual arch trays and single arch trays were divided in to three groups (Group A-plastic dual arch tray, Group B-metal dual arch tray, Group C-full arch metal stock tray). Out of these three groups, two groups (Group A and B) were subdivided in to four subgroups each and one group (Group C) was subdivided in to two subgroups. A sample size of 30 was used in each subgroup yielding a total 300 impressions in three groups or ten subgroups. Impressions were made of a machined circular stainless steel die. All three dimensions (Occlusogingival, Mesiodistal, and Buccolingual) of the working dies as well as stainless steel standard die were measured three times, and the mean was used for the three standard sample values to which all working dies means were compared. Statistical analysis used for this study was a 3-factor analysis of variance with hypothesis testing at α =0.05. With respect to the selection of impression material viscosity statistically significant differences were found in the dies for the buccolingual and mesiodistal dimensions. Metal dual arch trays were slightly more accurate in the mesiodistal dimension in comparison to the plastic trays in reference of tray selection and

  10. Comparison of the temperature accuracy between smart phone based and high-end thermal cameras using a temperature gradient phantom

    Science.gov (United States)

    Klaessens, John H.; van der Veen, Albert; Verdaasdonk, Rudolf M.

    2017-03-01

    Recently, low cost smart phone based thermal cameras are being considered to be used in a clinical setting for monitoring physiological temperature responses such as: body temperature change, local inflammations, perfusion changes or (burn) wound healing. These thermal cameras contain uncooled micro-bolometers with an internal calibration check and have a temperature resolution of 0.1 degree. For clinical applications a fast quality measurement before use is required (absolute temperature check) and quality control (stability, repeatability, absolute temperature, absolute temperature differences) should be performed regularly. Therefore, a calibrated temperature phantom has been developed based on thermistor heating on both ends of a black coated metal strip to create a controllable temperature gradient from room temperature 26 °C up to 100 °C. The absolute temperatures on the strip are determined with software controlled 5 PT-1000 sensors using lookup tables. In this study 3 FLIR-ONE cameras and one high end camera were checked with this temperature phantom. The results show a relative good agreement between both low-cost and high-end camera's and the phantom temperature gradient, with temperature differences of 1 degree up to 6 degrees between the camera's and the phantom. The measurements were repeated as to absolute temperature and temperature stability over the sensor area. Both low-cost and high-end thermal cameras measured relative temperature changes with high accuracy and absolute temperatures with constant deviations. Low-cost smart phone based thermal cameras can be a good alternative to high-end thermal cameras for routine clinical measurements, appropriate to the research question, providing regular calibration checks for quality control.

  11. First results using a new technology for measuring masses of very short-lived nuclides with very high accuracy the MISTRAL program at ISOLDE

    CERN Document Server

    Monsanglant, C; Audi, G; Bollen, G; Borcea, C; Conreur, G; Cousin, R; Doubre, H; Duma, M; Jacotin, M; Henry, S; Képinski, J F; Kluge, H J; Lebée, G; Le Scornet, G; Lunney, S; De Saint-Simon, M; Scheidenberger, C; Thibault, C

    1999-01-01

    MISTRAL is an experimental program to measure masses of very short- lived nuclides (T$_{1/2}$ down to a few ms), with a very high accuracy (a few 10$^{-7}$). There were three data taking periods with radioactive beams and 22 masses of isotopes of Ne, Na*, Mg, Al*, K, Ca, and Ti were measured. The systematic errors are now under control at the level of 8$\\TIMES10^{-7}$, allowing to come close to the expected accuracy. Even for the very weakly produced $^{30}$Na (1 ion at the detector per proton burst), the final accuracy is 7$\\TIMES10^{-7}$. (15 refs).

  12. Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Jan Hesthaven

    2012-02-06

    Final report for DOE Contract DE-FG02-98ER25346 entitled Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences. Principal Investigator Jan S. Hesthaven Division of Applied Mathematics Brown University, Box F Providence, RI 02912 Jan.Hesthaven@Brown.edu February 6, 2012 Note: This grant was originally awarded to Professor David Gottlieb and the majority of the work envisioned reflects his original ideas. However, when Prof Gottlieb passed away in December 2008, Professor Hesthaven took over as PI to ensure proper mentoring of students and postdoctoral researchers already involved in the project. This unusual circumstance has naturally impacted the project and its timeline. However, as the report reflects, the planned work has been accomplis