WorldWideScience

Sample records for high accuracy alignment

  1. PACMAN Project: A New Solution for the High-accuracy Alignment of Accelerator Components

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalán Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon; Modena, Michele; Novotny, Peter; Russenschuck, Stephan; Sanz, Claude; Severino, Giordana; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia

    2016-01-01

    The beam alignment requirements for the next generation of lepton colliders have become increasingly challenging. As an example, the alignment requirements for the three major collider components of the CLIC linear collider are as follows. Before the first beam circulates, the Beam Position Monitors (BPM), Accelerating Structures (AS)and quadrupoles will have to be aligned up to 10 μm w.r.t. a straight line over 200 m long segments, along the 20 km of linacs. PACMAN is a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale. It is an Innovative Doctoral Program, funded by the EU and hosted by CERN, providing high quality training to 10 Early Stage Researchers working towards a PhD thesis. The technical aim of the project is to improve the alignment accuracy of the CLIC components by developing new methods and tools addressing several steps of alignment simultaneously, to gain time and accuracy. The tools and methods developed will be validated on a test bench. This paper pr...

  2. Multiple sequence alignment accuracy and phylogenetic inference.

    Science.gov (United States)

    Ogden, T Heath; Rosenberg, Michael S

    2006-04-01

    Phylogenies are often thought to be more dependent upon the specifics of the sequence alignment rather than on the method of reconstruction. Simulation of sequences containing insertion and deletion events was performed in order to determine the role that alignment accuracy plays during phylogenetic inference. Data sets were simulated for pectinate, balanced, and random tree shapes under different conditions (ultrametric equal branch length, ultrametric random branch length, nonultrametric random branch length). Comparisons between hypothesized alignments and true alignments enabled determination of two measures of alignment accuracy, that of the total data set and that of individual branches. In general, our results indicate that as alignment error increases, topological accuracy decreases. This trend was much more pronounced for data sets derived from more pectinate topologies. In contrast, for balanced, ultrametric, equal branch length tree shapes, alignment inaccuracy had little average effect on tree reconstruction. These conclusions are based on average trends of many analyses under different conditions, and any one specific analysis, independent of the alignment accuracy, may recover very accurate or inaccurate topologies. Maximum likelihood and Bayesian, in general, outperformed neighbor joining and maximum parsimony in terms of tree reconstruction accuracy. Results also indicated that as the length of the branch and of the neighboring branches increase, alignment accuracy decreases, and the length of the neighboring branches is the major factor in topological accuracy. Thus, multiple-sequence alignment can be an important factor in downstream effects on topological reconstruction.

  3. High-accuracy local positioning network for the alignment of the Mu2e experiment.

    Energy Technology Data Exchange (ETDEWEB)

    Hejdukova, Jana B. [Czech Technical Univ., Prague (Czech Republic)

    2017-06-01

    This Diploma thesis describes the establishment of a high-precision local positioning network and accelerator alignment for the Mu2e physics experiment. The process of establishing new network consists of few steps: design of the network, pre-analysis, installation works, measurements of the network and making adjustments. Adjustments were performed using two approaches. First is a geodetic approach of taking into account the Earth’s curvature and the metrological approach of a pure 3D Cartesian system on the other side. The comparison of those two approaches is performed and evaluated in the results and compared with expected differences. The effect of the Earth’s curvature was found to be significant for this kind of network and should not be neglected. The measurements were obtained with Absolute Tracker AT401, leveling instrument Leica DNA03 and gyrotheodolite DMT Gyromat 2000. The coordinates of the points of the reference network were determined by the Least Square Meth od and the overall view is attached as Annexes.

  4. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    Energy Technology Data Exchange (ETDEWEB)

    Burkhard, Boeckem [Institute for Geodesy and Photogrammetry, ETH Zurich (Switzerland)

    1999-07-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle {delta}{beta}, is to first approximation proportional to the refraction angle: {beta}{sub IR} {nu}({beta}{sub blue} - {beta}{sub IR}) = {nu} {delta}{beta}, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of

  5. Using ProtMAX to create high-mass-accuracy precursor alignments from label-free quantitative mass spectrometry data generated in shotgun proteomics experiments.

    Science.gov (United States)

    Egelhofer, Volker; Hoehenwarter, Wolfgang; Lyon, David; Weckwerth, Wolfram; Wienkoop, Stefanie

    2013-03-01

    Recently, new software tools have been developed for improved protein quantification using mass spectrometry (MS) data. However, there are still limitations especially in high-sample-throughput quantification methods, and most of these relate to extensive computational calculations. The mass accuracy precursor alignment (MAPA) strategy has been shown to be a robust method for relative protein quantification. Its major advantages are high resolution, sensitivity and sample throughput. Its accuracy is data dependent and thus best suited for precursor mass-to-charge precision of ∼1 p.p.m. This protocol describes how to use a software tool (ProtMAX) that allows for the automated alignment of precursors from up to several hundred MS runs within minutes without computational restrictions. It comprises features for 'ion intensity count' and 'target search' of a distinct set of peptides. This procedure also includes the recommended MS settings for complex quantitative MAPA analysis using ProtMAX (http://www.univie.ac.at/mosys/software.html).

  6. Effect of alignment angle on the alignment accuracy of a miniature rotation robot for microscopy imaging

    Directory of Open Access Journals (Sweden)

    Wenfeng Wan

    2017-05-01

    Full Text Available Most recently, a miniature rotation robot has been proposed to allow imaging samples from multidirection for the first time. However, one existing problem for that rotation robot is that the alignment efficiency and accuracy is affected greatly by the alignment angle. This article investigates the effect of alignment angle on the alignment accuracy. Alignment accuracy is measured by sample’s position shift during a 360° rotation. Firstly, the miniature robotic system and its alignment principle are introduced briefly. Then, the source of alignment error is analyzed and the error model is built. After that, simulation results are given and indicate that as alignment angle increases, alignment error first decreases, then becomes stable and finally increases. Reasons for the trend of alignment error are explained. Finally, experiment results are demonstrated and have a good agreement with theoretical analysis and simulation results. The results indicate that 90° should be chosen as the alignment angle to ensure both alignment accuracy and alignment speed.

  7. Multiple sequence alignment accuracy and evolutionary distance estimation.

    Science.gov (United States)

    Rosenberg, Michael S

    2005-11-23

    Sequence alignment is a common tool in bioinformatics and comparative genomics. It is generally assumed that multiple sequence alignment yields better results than pair wise sequence alignment, but this assumption has rarely been tested, and never with the control provided by simulation analysis. This study used sequence simulation to examine the gain in accuracy of adding a third sequence to a pair wise alignment, particularly concentrating on how the phylogenetic position of the additional sequence relative to the first pair changes the accuracy of the initial pair's alignment as well as their estimated evolutionary distance. The maximal gain in alignment accuracy was found not when the third sequence is directly intermediate between the initial two sequences, but rather when it perfectly subdivides the branch leading from the root of the tree to one of the original sequences (making it half as close to one sequence as the other). Evolutionary distance estimation in the multiple alignment framework, however, is largely unrelated to alignment accuracy and rather is dependent on the position of the third sequence; the closer the branch leading to the third sequence is to the root of the tree, the larger the estimated distance between the first two sequences. The bias in distance estimation appears to be a direct result of the standard greedy progressive algorithm used by many multiple alignment methods. These results have implications for choosing new taxa and genomes to sequence when resources are limited.

  8. High Accuracy and Fast Alignment Method for Single-axial Rotation SINS%一种单轴旋转捷联惯导系统高精度快速对准方法

    Institute of Scientific and Technical Information of China (English)

    刘永红; 刘明雍; 谢波

    2015-01-01

    It needs prolonging the coarse alignment time to improve the accuracy of the coarse alignment under the rocking condition.Otherwise,it can’t control the azimuth error in the small range,then the fine alignment will converge slowly.To solve this problem,a high accuracy and fast alignment method which uses reverse navigation technology is put forward for rotary SINS.This method prolongs the coarse alignment time mostly,then saves the data of SINS to carry on fine alignment.It use the data of alignmet sufficiently and improve the alignment accuracy mostly in certain alignment time.The result of test indicated this method is not only reduce amount of calculation,but also simplify the algorithm ,it can also achieve fast alignment of rotary SINS and can acquire high accuracy.All this characteristics prove that the method is valuable in engineering application.%在晃动条件下,需要延长粗对准时间来提高粗对准精度。否则,无法把方位误差控制在小角度范围内,从而导致后续的精对准无法快速收敛。针对这个问题,提出了一种利用逆向导航技术的单轴旋转捷联惯导系统高精度快速对准方法,最大限度地延长粗对准时间,并把采样数据存储下来,进行逆向精对准。这种算法充分地利用了对准数据,在固定对准时间内极大程度的提高了对准精度。试验证明,这种算法计算量小,算法简单,能实现单轴旋转捷联惯导系统高精度快速对准,且对准精度高,具有一定的工程应用价值。

  9. FastSP: linear time calculation of alignment accuracy.

    Science.gov (United States)

    Mirarab, Siavash; Warnow, Tandy

    2011-12-01

    Multiple sequence alignment is a basic part of much biological research, including phylogeny estimation and protein structure and function prediction. Different alignments on the same set of unaligned sequences are often compared, sometimes in order to assess the accuracy of alignment methods or to infer a consensus alignment from a set of estimated alignments. Three of the standard techniques for comparing alignments, Developer, Modeler and Total Column (TC) scores can be derived through calculations of the set of homologies that the alignments share. However, the brute-force technique for calculating this set is quadratic in the input size. The remaining standard technique, Cline Shift Score, inherently requires quadratic time. In this article, we prove that each of these scores can be computed in linear time, and we present FastSP, a linear-time algorithm for calculating these scores. Even on the largest alignments we explored (one with 50 000 sequences), FastSP completed <2 min and used at most 2 GB of the main memory. The best alternative is qscore, a method whose empirical running time is approximately the same as FastSP when given sufficient memory (at least 8 GB), but whose asymptotic running time has never been theoretically established. In addition, for comparisons of large alignments under lower memory conditions (at most 4 GB of main memory), qscore uses substantial memory (up to 10 GB for the datasets we studied), took more time and failed to analyze the largest datasets. The open-source software and executables are available online at http://www.cs.utexas.edu/~phylo/software/fastsp/. tandy@cs.utexas.edu.

  10. Navigation improves accuracy of rotational alignment in total knee arthroplasty.

    Science.gov (United States)

    Stöckl, Bernd; Nogler, Michael; Rosiek, Rafal; Fischer, Martin; Krismer, Martin; Kessler, Oliver

    2004-09-01

    Successful total knee arthroplasty is dependent on the correct alignment of implanted prostheses. Major clinical problems can be related to poor femoral component positioning, including sagittal plane and rotational malalignment. A prospective randomized study was designed to test whether an optical navigation system for total knee arthroplasty achieved greater implantation precision than a nonnavigated technique. The primary variable was rotation of the femoral component in the transverse plane, measured from postoperative radiographs and computed tomography images. Sixty-four patients were included in the study. All patients received the Duracon total knee prosthesis. The patients were randomly divided into two groups: Group C patients had conventional total knee arthroplasty without navigation; Group N patients had total knee arthroplasty using a computer-assisted knee navigation system. Analysis showed that patients in Group N had significantly better rotational alignment and flexion angle of the femoral component than patients in Group C. In addition, superior postoperative alignment of the mechanical axis, posterior tibial slope, and rotational alignment was achieved for patients in Group N. The use of a navigation system provides improved alignment accuracy, and can help to avoid femoral malrotation and errors in axial alignment.

  11. Fiducialisation and initial alignment of CLIC component with micrometric accuracy

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalan Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan Petrov; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon William; Modena, Michele; Novotny, Peter; Sanz, Claude; Severino, Giordana; Russenschuck, Stephan; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia; CERN. Geneva. ATS Department

    2016-01-01

    We propose a new solution to fiducialise the three major components of the CLIC collider: quadrupoles, beam-position monitors (BPM), and accelerating structures (AS). This solution is based on the use of a copper-beryllium (CuBe) wire to locate the reference position, i.e. the symmetry axes of the components (their magnetic, respectively electromagnetic centre axis), and to determine their position in the common support assembly defining a local coordinate system, with respect to the fiducials. These alignment targets will be used later to align the support assembly in the tunnel. With such a method, several accelerator components of different types, supported by a dedicated adjustment system, can be simultaneously fiducialised and pre-aligned using the same wire, enabling a micrometric accuracy with help of a 3D coordinate measurement machine (CMM). Alternative solutions based on frequency scanning interferometry (FSI) and micro-triangulation are also under development, to perform such fiducialisation and in...

  12. Coval: Improving Alignment Quality and Variant Calling Accuracy for Next-Generation Sequencing Data

    Science.gov (United States)

    Kosugi, Shunichi; Natsume, Satoshi; Yoshida, Kentaro; MacLean, Daniel; Cano, Liliana; Kamoun, Sophien; Terauchi, Ryohei

    2013-01-01

    Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in ‘targeted’ alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/. PMID:24116042

  13. Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Shunichi Kosugi

    Full Text Available Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in 'targeted' alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/.

  14. Low power and high accuracy spike sorting microprocessor with on-line interpolation and re-alignment in 90 nm CMOS process.

    Science.gov (United States)

    Chen, Tung-Chien; Ma, Tsung-Chuan; Chen, Yun-Yu; Chen, Liang-Gee

    2012-01-01

    Accurate spike sorting is an important issue for neuroscientific and neuroprosthetic applications. The sorting of spikes depends on the features extracted from the neural waveforms, and a better sorting performance usually comes with a higher sampling rate (SR). However for the long duration experiments on free-moving subjects, the miniaturized and wireless neural recording ICs are the current trend, and the compromise on sorting accuracy is usually made by a lower SR for the lower power consumption. In this paper, we implement an on-chip spike sorting processor with integrated interpolation hardware in order to improve the performance in terms of power versus accuracy. According to the fabrication results in 90nm process, if the interpolation is appropriately performed during the spike sorting, the system operated at the SR of 12.5 k samples per second (sps) can outperform the one not having interpolation at 25 ksps on both accuracy and power.

  15. A high-accuracy two-position alignment inertial navigation system for lunar rovers aided by a star sensor with a calibration and positioning function

    Science.gov (United States)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming

    2016-12-01

    An integrated inertial/celestial navigation system (INS/CNS) has wide applicability in lunar rovers as it provides accurate and autonomous navigational information. Initialization is particularly vital for a INS. This paper proposes a two-position initialization method based on a standard Kalman filter. The difference between the computed star vector and the measured star vector is measured. With the aid of a star sensor and the two positions, the attitudinal and positional errors can be greatly reduced, and the biases of three gyros and accelerometers can also be estimated. The semi-physical simulation results show that the positional and attitudinal errors converge within 0.07″ and 0.1 m, respectively, when the given initial positional error is 1 km and the attitudinal error is 10°. These good results show that the proposed method can accomplish alignment, positioning and calibration functions simultaneously. Thus the proposed two-position initialization method has the potential for application in lunar rover navigation.

  16. Improving the accuracy of protein secondary structure prediction using structural alignment

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2006-06-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has steadily improved over the past 30 years. Now many secondary structure prediction methods routinely achieve an accuracy (Q3 of about 75%. We believe this accuracy could be further improved by including structure (as opposed to sequence database comparisons as part of the prediction process. Indeed, given the large size of the Protein Data Bank (>35,000 sequences, the probability of a newly identified sequence having a structural homologue is actually quite high. Results We have developed a method that performs structure-based sequence alignments as part of the secondary structure prediction process. By mapping the structure of a known homologue (sequence ID >25% onto the query protein's sequence, it is possible to predict at least a portion of that query protein's secondary structure. By integrating this structural alignment approach with conventional (sequence-based secondary structure methods and then combining it with a "jury-of-experts" system to generate a consensus result, it is possible to attain very high prediction accuracy. Using a sequence-unique test set of 1644 proteins from EVA, this new method achieves an average Q3 score of 81.3%. Extensive testing indicates this is approximately 4–5% better than any other method currently available. Assessments using non sequence-unique test sets (typical of those used in proteome annotation or structural genomics indicate that this new method can achieve a Q3 score approaching 88%. Conclusion By using both sequence and structure databases and by exploiting the latest techniques in machine learning it is possible to routinely predict protein secondary structure with an accuracy well above 80%. A program and web server, called PROTEUS, that performs these secondary structure predictions is accessible at http://wishart.biology.ualberta.ca/proteus. For high throughput or batch sequence analyses, the PROTEUS programs

  17. Structure alignment of membrane proteins: Accuracy of available tools and a consensus strategy.

    Science.gov (United States)

    Stamm, Marcus; Forrest, Lucy R

    2015-09-01

    Protein structure alignment methods are used for the detection of evolutionary and functionally related positions in proteins. A wide array of different methods are available, but the choice of the best method is often not apparent to the user. Several studies have assessed the alignment accuracy and consistency of structure alignment methods, but none of these explicitly considered membrane proteins, which are important targets for drug development and have distinct structural features. Here, we compared 13 widely used pairwise structural alignment methods on a test set of homologous membrane protein structures (called HOMEP3). Each pair of structures was aligned and the corresponding sequence alignment was used to construct homology models. The model accuracy compared to the known structures was assessed using scoring functions not incorporated in the tested structural alignment methods. The analysis shows that fragment-based approaches such as FR-TM-align are the most useful for aligning structures of membrane proteins. Moreover, fragment-based approaches are more suitable for comparison of protein structures that have undergone large conformational changes. Nevertheless, no method was clearly superior to all other methods. Additionally, all methods lack a measure to rate the reliability of a position within a structure alignment. To solve both of these problems, we propose a consensus-type approach, combining alignments from four different methods, namely FR-TM-align, DaliLite, MATT, and FATCAT. Agreement between the methods is used to assign confidence values to each position of the alignment. Overall, we conclude that there remains scope for the improvement of structural alignment methods for membrane proteins. © 2015 Wiley Periodicals, Inc.

  18. In-plane laser forming for high precision alignment

    NARCIS (Netherlands)

    Folkersma, Ger; Römer, Gert-Willem; Brouwer, Dannis; Huis in 't Veld, Bert

    2014-01-01

    Laser microforming is extensively used to align components with submicrometer accuracy, often after assembly. While laser-bending sheet metal is the most common laser-forming mechanism, the in-plane upsetting mechanism is preferred when a high actuator stiffness is required. A three-bridge planar ac

  19. High accuracy FIONA-AFM hybrid imaging.

    Science.gov (United States)

    Fronczek, D N; Quammen, C; Wang, H; Kisker, C; Superfine, R; Taylor, R; Erie, D A; Tessmer, I

    2011-04-01

    Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish different proteins from one another. Here, we combine high resolution fluorescence microscopy and AFM (FIONA-AFM) to allow the identification of different proteins in such complexes. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, we are able to align fluorescence and AFM information to ≥8nm accuracy. This accuracy is sufficient to identify individual fluorescently labeled proteins in most multi-protein complexes. We investigate the limitations of localization precision and accuracy in fluorescence and AFM images separately and their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two orthogonal techniques (FIONA and AFM) opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10nm) information about the conformational properties of multi-protein complexes and the fluorescence can indicate spatial relationships of the proteins in the complexes.

  20. High-resolution accelerator alignment using x-ray optics

    Directory of Open Access Journals (Sweden)

    Bingxin Yang

    2006-03-01

    Full Text Available We propose a novel alignment technique utilizing the x-ray beam of an undulator in conjunction with pinholes and position-sensitive detectors for positioning components of the accelerator, undulator, and beam line in an x-ray free-electron laser. Two retractable pinholes at each end of the undulator define a stable and reproducible x-ray beam axis (XBA. Targets are precisely positioned on the XBA using a pinhole camera technique. Position-sensitive detectors responding to both x-ray and electron beams enable direct transfer of the position setting from the XBA to the electron beam. This system has the potential to deliver superior alignment accuracy (1–3   μm for target pinholes in the transverse directions over a long distance (200 m or longer. It can be used to define the beam axis of the electron-beam–based alignment, enabling high reproducibility of the latter. This x-ray–based concept should complement the electron-beam–based alignment and the existing survey methods to raise the alignment accuracy of long accelerators to an unprecedented level. Further improvement of the transverse accuracy using x-ray zone plates will be discussed. We also propose a concurrent measurement scheme during accelerator operation to allow real-time feedback for transverse position correction.

  1. High accuracy flexural hinge development

    Science.gov (United States)

    Santos, I.; Ortiz de Zárate, I.; Migliorero, G.

    2005-07-01

    This document provides a synthesis of the technical results obtained in the frame of the HAFHA (High Accuracy Flexural Hinge Assembly) development performed by SENER (in charge of design, development, manufacturing and testing at component and mechanism levels) with EADS Astrium as subcontractor (in charge of doing an inventory of candidate applications among existing and emerging projects, establishing the requirements and perform system level testing) under ESA contract. The purpose of this project has been to develop a competitive technology for a flexural pivot, usuable in highly accurate and dynamic pointing/scanning mechanisms. Compared with other solutions (e.g. magnetic or ball bearing technologies) flexural hinges are the appropriate technology for guiding with accuracy a mobile payload over a limited angular ranges around one rotation axes.

  2. The accuracy of intramedullary tibial guide of sagittal alignment of PCL-substituting total knee arthroplasty.

    Science.gov (United States)

    Han, Hyuk-Soo; Kang, Seung-Baik; Jo, Chris H; Kim, Sun-Hong; Lee, Jung-Ha

    2010-10-01

    Experimental and clinical studies on the accuracy of the intramedullary alignment method have produced different results, and few have addressed accuracy in the sagittal plane. Reported deviations are not only attributable to the alignment method but also to radiological errors. The purpose of this study was to evaluate the accuracy of the intramedullary alignment method in the sagittal plane using computed tomography (CT) and 3-dimensional imaging software. Thirty-one TKAs were performed using an intramedullary alignment method involving the insertion of a long 8-mm diameter rod into the medullary canal to the distal metaphysis of the tibia. All alignment instruments were set to achieve an ideal varus/valgus angle of 0° in the coronal plane and a tibial slope of 0° in the sagittal plane. The accuracy of the intramedullary alignment system was assessed by measuring the coronal tibial component angle and sagittal tibial slope angles, i.e., angles between the tibial anatomical axis and the tangent to the medial and lateral tibial plateau or the cut-surface. The mean coronal tibial component angle was 88.5° ± 1.2° and the mean tibial component slope in the sagittal plane was 1.6° ± 1.2° without anterior slope. Our intramedullary tibial alignment method, which involves passing an 8-mm diameter long rod through the tibial shaft isthmus, showed good accuracy (less than 3 degrees of variation and no anterior slope) in the sagittal plane in neutral or varus knees.

  3. Sample-Align-D: A High Performance Multiple Sequence Alignment System using Phylogenetic Sampling and Domain Decomposition

    CERN Document Server

    Saeed, Fahad

    2009-01-01

    Multiple Sequence Alignment (MSA) is one of the most computationally intensive tasks in Computational Biology. Existing best known solutions for multiple sequence alignment take several hours (in some cases days) of computation time to align, for example, 2000 homologous sequences of average length 300. Inspired by the Sample Sort approach in parallel processing, in this paper we propose a highly scalable multiprocessor solution for the MSA problem in phylogenetically diverse sequences. Our method employs an intelligent scheme to partition the set of sequences into smaller subsets using kmer count based similarity index, referred to as k-mer rank. Each subset is then independently aligned in parallel using any sequential approach. Further fine tuning of the local alignments is achieved using constraints derived from a global ancestor of the entire set. The proposed Sample-Align-D Algorithm has been implemented on a cluster of workstations using MPI message passing library. The accuracy of the proposed solutio...

  4. Moving State Marine SINS Initial Alignment Based on High Degree CKF

    Directory of Open Access Journals (Sweden)

    Yong-Gang Zhang

    2014-01-01

    Full Text Available A new moving state marine initial alignment method of strap-down inertial navigation system (SINS is proposed based on high-degree cubature Kalman filter (CKF, which can capture higher order Taylor expansion terms of nonlinear alignment model than the existing third-degree CKF, unscented Kalman filter and central difference Kalman filter, and improve the accuracy of initial alignment under large heading misalignment angle condition. Simulation results show the efficiency and advantage of the proposed initial alignment method as compared with existing initial alignment methods for the moving state SINS initial alignment with large heading misalignment angle.

  5. High-harmonic spectroscopy of aligned molecules

    Science.gov (United States)

    Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee

    2017-01-01

    High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.

  6. HAMSA: Highly Accelerated Multiple Sequence Aligner

    Directory of Open Access Journals (Sweden)

    Naglaa M. Reda

    2016-06-01

    Full Text Available For biologists, the existence of an efficient tool for multiple sequence alignment is essential. This work presents a new parallel aligner called HAMSA. HAMSA is a bioinformatics application designed for highly accelerated alignment of multiple sequences of proteins and DNA/RNA on a multi-core cluster system. The design of HAMSA is based on a combination of our new optimized algorithms proposed recently of vectorization, partitioning, and scheduling. It mainly operates on a distance vector instead of a distance matrix. It accomplishes similarity computations and generates the guide tree in a highly accelerated and accurate manner. HAMSA outperforms MSAProbs with 21.9- fold speedup, and ClustalW-MPI of 11-fold speedup. It can be considered as an essential tool for structure prediction, protein classification, motive finding and drug design studies.

  7. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

    Science.gov (United States)

    Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

    2015-09-01

    Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

  8. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.

    Science.gov (United States)

    Sievers, Fabian; Wilm, Andreas; Dineen, David; Gibson, Toby J; Karplus, Kevin; Li, Weizhong; Lopez, Rodrigo; McWilliam, Hamish; Remmert, Michael; Söding, Johannes; Thompson, Julie D; Higgins, Desmond G

    2011-10-11

    Multiple sequence alignments are fundamental to many sequence analysis methods. Most alignments are computed using the progressive alignment heuristic. These methods are starting to become a bottleneck in some analysis pipelines when faced with data sets of the size of many thousands of sequences. Some methods allow computation of larger data sets while sacrificing quality, and others produce high-quality alignments, but scale badly with the number of sequences. In this paper, we describe a new program called Clustal Omega, which can align virtually any number of protein sequences quickly and that delivers accurate alignments. The accuracy of the package on smaller test cases is similar to that of the high-quality aligners. On larger data sets, Clustal Omega outperforms other packages in terms of execution time and quality. Clustal Omega also has powerful features for adding sequences to and exploiting information in existing alignments, making use of the vast amount of precomputed information in public databases like Pfam.

  9. The Electrical and Mechanical Alignment and Accuracy Detection of Numerial Control Machine Tool

    Institute of Scientific and Technical Information of China (English)

    XU Liang-xiong; ZHOU Xiang

    2012-01-01

    In the work of numerical control reformation of general machine tool, the installation and debugging of machine tool is a crucial part. For the C6132 machine tool, and make the use of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been used to finish a series of tailing in the work of numerical control reformation of general machine tool. In this paper, the detailed process of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been demonstrated, meanwhile, the specific operational approach of these work programs has been discussed. Therefore, the present results provides essential reference and approach for the numerical control reformation of general machine tool.

  10. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner

    DEFF Research Database (Denmark)

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan

    2009-01-01

    MOTIVATION: The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary......' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners...... heuristics. RESULTS: We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect...

  11. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework

    Directory of Open Access Journals (Sweden)

    Toh Hiroyuki

    2008-04-01

    Full Text Available Abstract Background Structural alignment of RNAs is becoming important, since the discovery of functional non-coding RNAs (ncRNAs. Recent studies, mainly based on various approximations of the Sankoff algorithm, have resulted in considerable improvement in the accuracy of pairwise structural alignment. In contrast, for the cases with more than two sequences, the practical merit of structural alignment remains unclear as compared to traditional sequence-based methods, although the importance of multiple structural alignment is widely recognized. Results We took a different approach from a straightforward extension of the Sankoff algorithm to the multiple alignments from the viewpoints of accuracy and time complexity. As a new option of the MAFFT alignment program, we developed a multiple RNA alignment framework, X-INS-i, which builds a multiple alignment with an iterative method incorporating structural information through two components: (1 pairwise structural alignments by an external pairwise alignment method such as SCARNA or LaRA and (2 a new objective function, Four-way Consistency, derived from the base-pairing probability of every sub-aligned group at every multiple alignment stage. Conclusion The BRAliBASE benchmark showed that X-INS-i outperforms other methods currently available in the sum-of-pairs score (SPS criterion. As a basis for predicting common secondary structure, the accuracy of the present method is comparable to or rather higher than those of the current leading methods such as RNA Sampler. The X-INS-i framework can be used for building a multiple RNA alignment from any combination of algorithms for pairwise RNA alignment and base-pairing probability. The source code is available at the webpage found in the Availability and requirements section.

  12. An Automatic High Efficient Method for Dish Concentrator Alignment

    OpenAIRE

    Yong Wang; Song Li; Jinshan Xu; Yijiang Wang; Xu Cheng; Changgui Gu; Shengyong Chen; Bin Wan

    2014-01-01

    Alignment of dish concentrator is a key factor to the performance of solar energy system. We propose a new method for the alignment of faceted solar dish concentrator. The isosceles triangle configuration of facet’s footholds determines a fixed relation between light spot displacements and foothold movements, which allows an automatic determination of the amount of adjustments. Tests on a 25 kW Stirling Energy System dish concentrator verify the feasibility, accuracy, and efficiency of our...

  13. Liquid crystallinity driven highly aligned large graphene oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kim, Sang Ouk, E-mail: sangouk.kim@kaist.ac.kr [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)

    2015-04-15

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.

  14. An Automatic High Efficient Method for Dish Concentrator Alignment

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2014-01-01

    for the alignment of faceted solar dish concentrator. The isosceles triangle configuration of facet’s footholds determines a fixed relation between light spot displacements and foothold movements, which allows an automatic determination of the amount of adjustments. Tests on a 25 kW Stirling Energy System dish concentrator verify the feasibility, accuracy, and efficiency of our method.

  15. Highly improved homopolymer aware nucleotide-protein alignments with 454 data

    Directory of Open Access Journals (Sweden)

    Lysholm Fredrik

    2012-09-01

    Full Text Available Abstract Background Roche 454 sequencing is the leading sequencing technology for producing long read high throughput sequence data. Unlike most methods where sequencing errors translate to base uncertainties, 454 sequencing inaccuracies create nucleotide gaps. These gaps are particularly troublesome for translated search tools such as BLASTx where they introduce frame-shifts and result in regions of decreased identity and/or terminated alignments, which affect further analysis. Results To address this issue, the Homopolymer Aware Cross Alignment Tool (HAXAT was developed. HAXAT uses a novel dynamic programming algorithm for solving the optimal local alignment between a 454 nucleotide and a protein sequence by allowing frame-shifts, guided by 454 flowpeak values. The algorithm is an efficient minimal extension of the Smith-Waterman-Gotoh algorithm that easily fits in into other tools. Experiments using HAXAT demonstrate, through the introduction of 454 specific frame-shift penalties, significantly increased accuracy of alignments spanning homopolymer sequence errors. The full effect of the new parameters introduced with this novel alignment model is explored. Experimental results evaluating homopolymer inaccuracy through alignments show a two to five-fold increase in Matthews Correlation Coefficient over previous algorithms, for 454-derived data. Conclusions This increased accuracy provided by HAXAT does not only result in improved homologue estimations, but also provides un-interrupted reading-frames, which greatly facilitate further analysis of protein space, for example phylogenetic analysis. The alignment tool is available at http://bioinfo.ifm.liu.se/454tools/haxat.

  16. High Accuracy Imaging Polarimetry with NICMOS

    CERN Document Server

    Batcheldor, D; Hines, D C; Schmidt, G D; Axon, D J; Robinson, A; Sparks, W; Tadhunter, C

    2008-01-01

    The ability of NICMOS to perform high accuracy polarimetry is currently hampered by an uncalibrated residual instrumental polarization at a level of 1.2-1.5%. To better quantify and characterize this residual we obtained observations of three polarimetric standard stars at three separate space-craft roll angles. Combined with archival data, these observations were used to characterize the residual instrumental polarization to enable NICMOS to reach its full polarimetric potential. Using these data, we calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetric standards. The uncertainties associated with the parallel transmission coefficients, a result of the photometric repeatability of the observations, dominate the accuracy of p and theta. However, the new coefficients now enable imaging polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15 degrees.

  17. High Accuracy Transistor Compact Model Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hembree, Charles E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mar, Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  18. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...

  19. Read-only high accuracy volume holographic optical correlator

    Science.gov (United States)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  20. The analysis of the accuracy of the wheel alignment inspection method on the side-slip plate stand

    Science.gov (United States)

    Gajek, A.; Strzępek, P.

    2016-09-01

    The article presents the theoretical basis and the results of the examination of the wheel alignment inspection method on the slide slip plate stand. It is obligatory test during periodic technical inspection of the vehicle. The measurement is executed in the dynamic conditions. The dependence between the lateral displacement of the plate and toe-in of the tested wheels has been shown. If the diameter of the wheel rim is known then the value of the toe-in can be calculated. The comparison of the toe-in measurements on the plate stand and on the four heads device for the wheel alignment inspection has been carried out. The accuracy of the measurements and the influence of the conditions of the tests on the plate stand (the way of passing through the plate) were estimated. The conclusions about the accuracy of this method are presented.

  1. High-throughput sequence alignment using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Trapnell Cole

    2007-12-01

    Full Text Available Abstract Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.

  2. Computing High Accuracy Power Spectra with Pico

    CERN Document Server

    Fendt, William A

    2007-01-01

    This paper presents the second release of Pico (Parameters for the Impatient COsmologist). Pico is a general purpose machine learning code which we have applied to computing the CMB power spectra and the WMAP likelihood. For this release, we have made improvements to the algorithm as well as the data sets used to train Pico, leading to a significant improvement in accuracy. For the 9 parameter nonflat case presented here Pico can on average compute the TT, TE and EE spectra to better than 1% of cosmic standard deviation for nearly all $\\ell$ values over a large region of parameter space. Performing a cosmological parameter analysis of current CMB and large scale structure data, we show that these power spectra give very accurate 1 and 2 dimensional parameter posteriors. We have extended Pico to allow computation of the tensor power spectrum and the matter transfer function. Pico runs about 1500 times faster than CAMB at the default accuracy and about 250,000 times faster at high accuracy. Training Pico can be...

  3. Optical alignment of high resolution Fourier transform spectrometers

    Science.gov (United States)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  4. Novel method for high accuracy figure measurement of optical flat

    Science.gov (United States)

    E, Kewei; Li, Dahai; Yang, Lijie; Guo, Guangrao; Li, Mengyang; Wang, Xuemin; Zhang, Tao; Xiong, Zhao

    2017-01-01

    Phase Measuring Deflectometry (PMD) is a non-contact, high dynamic-range and full-field metrology which becomes a serious competitor to interferometry. However, the accuracy of deflectometry metrology is strongly influenced by the level of the calibrations, including test geometry, imaging pin-hole camera and digital display. In this paper, we propose a novel method that can measure optical flat surface figure to a high accuracy. We first calibrate the camera using a checker pattern shown on a LCD display at six different orientations, and the last orientation is aligned at the same position as the test optical flat. By using this method, lens distortions and the mapping relationship between the CCD pixels and the subaperture coordinates on the test optical flat can be determined at the same time. To further reduce the influence of the calibration errors on measurements, a reference optical flat with a high quality surface is measured, and then the system errors in our PMD setup can be eliminated by subtracting the figure of the reference flat from the figure of the test flat. Although any expensive coordinates measuring machine, such as laser tracker and coordinates measuring machine are not applied in our measurement, our experimental results of optical flat figure from low to high order aberrations still show a good agreement with that from the Fizeau interferometer.

  5. Fast and High Accuracy Wire Scanner

    CERN Document Server

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  6. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...... shutter is controlled in steps of 100 ps. Camera delay is controlled in steps of 100 ps. Each laser pulse triggers the camera delay and shutter. A 3-D image is constructed from a sequence of 50-100 2-D reflectivity images, where each frame integrates about 700 laser pulses on the CCD. In 50 Hz video mode...

  7. Heat-Treatment-Responsive Proteins in Different Developmental Stages of Tomato Pollen Detected by Targeted Mass Accuracy Precursor Alignment (tMAPA).

    Science.gov (United States)

    Chaturvedi, Palak; Doerfler, Hannes; Jegadeesan, Sridharan; Ghatak, Arindam; Pressman, Etan; Castillejo, Maria Angeles; Wienkoop, Stefanie; Egelhofer, Volker; Firon, Nurit; Weckwerth, Wolfram

    2015-11-01

    Recently, we have developed a quantitative shotgun proteomics strategy called mass accuracy precursor alignment (MAPA). The MAPA algorithm uses high mass accuracy to bin mass-to-charge (m/z) ratios of precursor ions from LC-MS analyses, determines their intensities, and extracts a quantitative sample versus m/z ratio data alignment matrix from a multitude of samples. Here, we introduce a novel feature of this algorithm that allows the extraction and alignment of proteotypic peptide precursor ions or any other target peptide from complex shotgun proteomics data for accurate quantification of unique proteins. This strategy circumvents the problem of confusing the quantification of proteins due to indistinguishable protein isoforms by a typical shotgun proteomics approach. We applied this strategy to a comparison of control and heat-treated tomato pollen grains at two developmental stages, post-meiotic and mature. Pollen is a temperature-sensitive tissue involved in the reproductive cycle of plants and plays a major role in fruit setting and yield. By LC-MS-based shotgun proteomics, we identified more than 2000 proteins in total for all different tissues. By applying the targeted MAPA data-processing strategy, 51 unique proteins were identified as heat-treatment-responsive protein candidates. The potential function of the identified candidates in a specific developmental stage is discussed.

  8. Vibrating wire alignment technique

    CERN Document Server

    Xiao-Long, Wang; lei, Wu; Chun-Hua, Li

    2013-01-01

    Vibrating wire alignment technique is a kind of method which through measuring the spatial distribution of magnetic field to do the alignment and it can achieve very high alignment accuracy. Vibrating wire alignment technique can be applied for magnet fiducialization and accelerator straight section components alignment, it is a necessary supplement for conventional alignment method. This article will systematically expound the international research achievements of vibrating wire alignment technique, including vibrating wire model analysis, system frequency calculation, wire sag calculation and the relation between wire amplitude and magnetic induction intensity. On the basis of model analysis this article will introduce the alignment method which based on magnetic field measurement and the alignment method which based on amplitude and phase measurement. Finally, some basic questions will be discussed and the solutions will be given.

  9. 传递对准精度评定指标研究%Study on the Index of Transfer Alignment Accuracy Assessment

    Institute of Scientific and Technical Information of China (English)

    李文新; 闫敦才; 潘天峰; 桂燕

    2016-01-01

    为解决传递对准性能中对准时间和对准精度矛盾的问题,提出了一个传递对准精度评定指标。分析了对准度的涵义,利用对准后导航状态试验数据间接的对传递对准精度进行计算,给出了计算对准度的具体方法和步骤。算例分析结果表明:该指标既能反映对准时间和对准精度,又能反映不同机动对准方案的差异等,可在传递对准方案验证及鉴定相关标准规范的制定中提供参考。%In order to solve the contradictory problems of time alignment and alignment accuracy in the transfer alignment performance, put forward a transfer alignment accuracy evaluation index. Analyzed the meaning of alignment degree, and the accuracy of transfer alignment is calculated by using the data of post navigation state test. The methods and steps of calculation the alignment degree are given. Example analysis results show that the index can reflect the time alignment and alignment accuracy, but also reflect the differences among each maneuver alignment scheme. The index can be in transfer alignment scheme verification and identification of relevant standards formulated to provide the reference.

  10. A SINGLE STEP SCHEME WITH HIGH ACCURACY FOR PARABOLIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    陈传淼; 胡志刚

    2001-01-01

    A single step scheme with high accuracy for solving parabolic problem is proposed. It is shown that this scheme possesses good stability and fourth order accuracy with respect to both time and space variables, which are superconvergent.

  11. Arioc: high-throughput read alignment with GPU-accelerated exploration of the seed-and-extend search space

    Directory of Open Access Journals (Sweden)

    Richard Wilton

    2015-03-01

    Full Text Available When computing alignments of DNA sequences to a large genome, a key element in achieving high processing throughput is to prioritize locations in the genome where high-scoring mappings might be expected. We formulated this task as a series of list-processing operations that can be efficiently performed on graphics processing unit (GPU hardware.We followed this approach in implementing a read aligner called Arioc that uses GPU-based parallel sort and reduction techniques to identify high-priority locations where potential alignments may be found. We then carried out a read-by-read comparison of Arioc’s reported alignments with the alignments found by several leading read aligners. With simulated reads, Arioc has comparable or better accuracy than the other read aligners we tested. With human sequencing reads, Arioc demonstrates significantly greater throughput than the other aligners we evaluated across a wide range of sensitivity settings. The Arioc software is available at https://github.com/RWilton/Arioc. It is released under a BSD open-source license.

  12. Arioc: high-throughput read alignment with GPU-accelerated exploration of the seed-and-extend search space.

    Science.gov (United States)

    Wilton, Richard; Budavari, Tamas; Langmead, Ben; Wheelan, Sarah J; Salzberg, Steven L; Szalay, Alexander S

    2015-01-01

    When computing alignments of DNA sequences to a large genome, a key element in achieving high processing throughput is to prioritize locations in the genome where high-scoring mappings might be expected. We formulated this task as a series of list-processing operations that can be efficiently performed on graphics processing unit (GPU) hardware.We followed this approach in implementing a read aligner called Arioc that uses GPU-based parallel sort and reduction techniques to identify high-priority locations where potential alignments may be found. We then carried out a read-by-read comparison of Arioc's reported alignments with the alignments found by several leading read aligners. With simulated reads, Arioc has comparable or better accuracy than the other read aligners we tested. With human sequencing reads, Arioc demonstrates significantly greater throughput than the other aligners we evaluated across a wide range of sensitivity settings. The Arioc software is available at https://github.com/RWilton/Arioc. It is released under a BSD open-source license.

  13. High harmonic generation from impulsively aligned SO2

    Science.gov (United States)

    Devin, Julien; Wang, Song; Kaldun, Andreas; Bucksbaum, Phil

    2016-05-01

    Previous work in high harmonics generation (HHG) in aligned molecular gases has mainly focused on rotational dynamics in order to determine the contributions of different orbitals to the ionization step. In our experiment, we focus on the shorter timescale of vibrational dynamics. We generate high harmonics from impulsively aligned SO2 molecules in a gas jet and record the emitted attosecond pulse trains in a home-built high resolution vacuum ultra violet (VUV) spectrometer. Using the high temporal resolution of our setup, we are able to map out the effects of vibrational wavepackets with a sub-femtosecond resolution. The target molecule, SO2 gas, is impulsively aligned by a near-infrared laser pulse and has accessible vibrations on the timescale of the short laser pulse used. We present first experimental results for the response to this excitation in high-harmonics. We observe both fast oscillations in the time domain as well as shifts of the VUV photon energy outside of the pulse overlaps. Research supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division and by the National Science Foundation Graduate Research Fellowship.

  14. Correlated Terahertz and High Harmonic Generation from Aligned Nitrogen Molecules

    Science.gov (United States)

    Huang, Yindong; Meng, Chao; Wang, Xiaowei; Lv, Zhihui; Zhang, Dongwen; Chen, Wenbo; Zhao, Jing; Yuan, Jianmin; Zhao, Zengxiu

    2016-05-01

    When laser beams are focused on atoms and molecules, wide spectral range of photons can be radiated from the source. In the region of high energy, high harmonic generation (HHG), covering tens to hundreds electron volts, emit within the attosecond timescale. In the low energy region, terahertz wave generation (TWG) can also be generated. Synchronizing TWG with HHG is to take snapshot of the electronic dynamics with time-scale spanning over 6 orders of magnitudes. In this abstract, we report the joint measurements on TWG and HHG from pre-aligned molecules. By calibrating the angular ionization rates with the alignment dependent TWG, we reconstruct the photoionization cross section (PICS) of nitrogen in one run of experiment. The measured PICS is found to be consistent with theoretical predications, although some discrepancies exist. This all-optical method provides a new alternative for investigating molecular structures (Yindong Huang et al., Phys. Rev. Lett. 115, 123002, 2015).

  15. Optimal Position Estimation for the Automatic Alignment of a High Energy Laser

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J V; Mcclay, W A; Awwal, A S; Ferguson, S W

    2004-07-20

    The alignment of high energy laser beams for potential fusion experiments demand high precision and accuracy by the underlying positioning algorithms whether it be for actuator control or monitoring the beam line for potential anomalies. This paper discusses the feasibility of employing on-line optimal position estimators in the form of model-based processors to achieve the desired results. Here we discuss the modeling, development, implementation and processing of model-based processors applied to both simulated and actual beam line data.

  16. Methodology for high accuracy contact angle measurement.

    Science.gov (United States)

    Kalantarian, A; David, R; Neumann, A W

    2009-12-15

    A new version of axisymmetric drop shape analysis (ADSA) called ADSA-NA (ADSA-no apex) was developed for measuring interfacial properties for drop configurations without an apex. ADSA-NA facilitates contact angle measurements on drops with a capillary protruding into the drop. Thus a much simpler experimental setup, not involving formation of a complete drop from below through a hole in the test surface, may be used. The contact angles of long-chained alkanes on a commercial fluoropolymer, Teflon AF 1600, were measured using the new method. A new numerical scheme was incorporated into the image processing to improve the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. The images acquired in the experiments were also analyzed by a different drop shape technique called theoretical image fitting analysis-axisymmetric interfaces (TIFA-AI). The results were compared with literature values obtained by means of the standard ADSA for sessile drops with the apex. Comparison of the results from ADSA-NA with those from TIFA-AI and ADSA reveals that, with different numerical strategies and experimental setups, contact angles can be measured with an accuracy of less than 0.2 degrees. Contact angles and surface tensions measured from drops with no apex, i.e., by means of ADSA-NA and TIFA-AI, were considerably less scattered than those from complete drops with apex. ADSA-NA was also used to explore sources of improvement in contact angle resolution. It was found that using an accurate value of surface tension as an input enhances the accuracy of contact angle measurements.

  17. Automated cantilever exchange and optical alignment for High-throughput, parallel atomic force microscopy

    CERN Document Server

    Bijnagte, Tom; Kramer, Lukas; Dekker, Bert; Herfst, Rodolf; Sadeghian, Hamed

    2016-01-01

    In atomic force microscopy (AFM), the exchange and alignment of the AFM cantilever with respect to the optical beam and position-sensitive detector (PSD) are often performed manually. This process is tedious and time-consuming and sometimes damages the cantilever or tip. To increase the throughput of AFM in industrial applications, the ability to automatically exchange and align the cantilever in a very short time with sufficient accuracy is required. In this paper, we present the development of an automated cantilever exchange and optical alignment instrument. We present an experimental proof of principle by exchanging various types of AFM cantilevers in 6 seconds with an accuracy better than 2 um. The exchange and alignment unit is miniaturized to allow for integration in a parallel AFM. The reliability of the demonstrator has also been evaluated. Ten thousand continuous exchange and alignment cycles were performed without failure. The automated exchange and alignment of the AFM cantilever overcome a large ...

  18. High accuracy GNSS based navigation in GEO

    Science.gov (United States)

    Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André

    2017-07-01

    Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.

  19. Helix Electrohydrodynamic Printing of Highly Aligned Serpentine Micro/Nanofibers

    Directory of Open Access Journals (Sweden)

    Yongqing Duan

    2017-09-01

    Full Text Available Micro/nano serpentine structures have widespread applications in flexible/stretchable electronics; however, challenges still exist for low-cost, high-efficiency and controllable manufacturing. Helix electrohydrodynamic printing (HE-printing has been proposed here to realize controllable direct-writing of large area, highly aligned serpentine micro/nanofibers by introducing the rope coiling effect into printing process. By manipulating the flying trajectory and solidification degree of the micro/nano jet, the solidified micro/nanofiber flying in a stabilized helical manner and versatile serpentine structures deposited on a moving collector have been achieved. Systematic experiments and theoretical analysis were conducted to study the transformation behavior and the size changing rules for various deposited microstructures, and highly aligned serpentine microfibers were directly written by controlling the applied voltage, nozzle-to-collector distance and collector velocity. Furthermore, a hyper-stretchable piezoelectric device that can detect stretching, bending and pressure has been successfully fabricated using the printed serpentine micro/nanofibers, demonstrating the potential of HE-printing in stretchable electronics manufacturing.

  20. Three-dimensional analysis of accuracy of patient-matched instrumentation in total knee arthroplasty: Evaluation of intraoperative techniques and postoperative alignment.

    Science.gov (United States)

    Kuwashima, Umito; Mizu-Uchi, Hideki; Okazaki, Ken; Hamai, Satoshi; Akasaki, Yukio; Murakami, Koji; Nakashima, Yasuharu

    2017-09-06

    It is questionable that the accuracies of patient-matched instrumentation (PMI) have been controversial, even though many surgeons follow manufacturers' recommendations. The purpose of this study was to evaluate the accuracy of intraoperative procedures and the postoperative alignment of the femoral side using PMI with 3-dimensional (3D) analysis. Eighteen knees that underwent total knee arthroplasty using MRI-based PMI were assessed. Intraoperative alignment and bone resection errors of the femoral side were evaluated with a CT-based navigation system. A conventional adjustable guide was used to compare cartilage data with that derived by PMI intraoperatively. Postoperative alignment was assessed using a 3D coordinate system with a computer-assisted design software. We also measured the postoperative alignments using conventional alignment guides with the 3D evaluation. Intraoperative coronal alignment with PMI was 90.9° ± 1.6°. Seventeen knees (94.4%) were within 3° of the optimal alignment. Intraoperative rotational alignment of the femoral guide position of PMI was 0.2° ± 1.6°compared with the adjustable guide, with 17 knees (94.4%) differing by 3° or less between the two methods. Maximum differences in coronal and rotation alignment before and after bone cutting were 2.0° and 2.8°, respectively. Postoperative coronal and rotational alignments were 89.4° ± 1.8° and -1.1° ± 1.3°, respectively. In both alignments, 94.4% of cases were within 3° of the optimal value. The PMI group had less outliers than conventional group in rotational alignment (p = 0.018). Our 3D analysis provided evidence that PMI system resulted in reasonably satisfactory alignments both intraoperatively and postoperatively. Surgeons should be aware that certain surgical techniques including bone cutting, and the associated errors may affect postoperative alignment despite accurate PMI positioning. Copyright © 2017 The Japanese Orthopaedic Association. Published by

  1. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase II proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  2. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  3. High speed high dynamic range high accuracy measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Deibele, Craig E.; Curry, Douglas E.; Dickson, Richard W.; Xie, Zaipeng

    2016-11-29

    A measuring system includes an input that emulates a bandpass filter with no signal reflections. A directional coupler connected to the input passes the filtered input to electrically isolated measuring circuits. Each of the measuring circuits includes an amplifier that amplifies the signal through logarithmic functions. The output of the measuring system is an accurate high dynamic range measurement.

  4. Evaluation of the quantitative accuracy of 3D reconstruction of edentulous jaw models with jaw relation based on reference point system alignment.

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    Full Text Available OBJECTIVES: To apply contact measurement and reference point system (RPS alignment techniques to establish a method for 3D reconstruction of the edentulous jaw models with centric relation and to quantitatively evaluate its accuracy. METHODS: Upper and lower edentulous jaw models were clinically prepared, 10 pairs of resin cylinders with same size were adhered to axial surfaces of upper and lower models. The occlusal bases and the upper and lower jaw models were installed in the centric relation position. Faro Edge 1.8m was used to directly obtain center points of the base surface of the cylinders (contact method. Activity 880 dental scanner was used to obtain 3D data of the cylinders and the center points were fitted (fitting method. 3 pairs of center points were used to align the virtual model to centric relation. An observation coordinate system was interactively established. The straight-line distances in the X (horizontal left/right, Y (horizontal anterior/posterior, and Z (vertical between the remaining 7 pairs of center points derived from contact method and fitting method were measured respectively and analyzed using a paired t-test. RESULTS: The differences of the straight-line distances of the remaining 7 pairs of center points between the two methods were X: 0.074 ± 0.107 mm, Y: 0.168 ± 0.176 mm, and Z: -0.003± 0.155 mm. The results of paired t-test were X and Z: p >0.05, Y: p <0.05. CONCLUSION: By using contact measurement and the reference point system alignment technique, highly accurate reconstruction of the vertical distance and centric relation of a digital edentulous jaw model can be achieved, which meets the design and manufacturing requirements of the complete dentures. The error of horizontal anterior/posterior jaw relation was relatively large.

  5. Aligned submicron grains in archeological potteries with high TRM anisotropy

    Science.gov (United States)

    Fukuma, K.; Ooga, M.; Isobe, H.

    2010-12-01

    Potteries have been often used to obtain archeointensity data because of the extremely high success rates in Thellier experiments. Since high anisotropy of thermoremanent magnetization (TRM) are commonly observed for potteries, anisotropy correction is routinely applied to make archeointensity data reliable. Such a TRM anisotropy is characterized by the foliated structure parallel to the surface and has been interpreted to reflect aligned magnetic minerals during molding. However, the high thermal stability and the higher degrees of TRM anisotropies than those of low-field susceptibility suggest that pottery TRM resides in fine-grained magnetic minerals formed during firing. Molding is not sufficient to explain highly anisotropic TRM of potteries. We measured TRM susceptibility tensors on potteries manufactured from 14th to 17th centuries in Japan. These potteries were fired up to about 1200°C resulting in partial vitrification. The ratios of maximum and minimum eigenvalues of the TRM susceptibility tensors are well distributed and reaches 1.8 for most anisotropic samples. The Curie temperature ranges from 500°C to 550°C implying titanium-poor titanomagnetite as TRM carriers, and the narrow unblocking temperature indicates that the low-titanium titanomagnetites are in or close to the single-domain size range. Submicron titanomagnetite grains were commonly observed on the polished sections under a FE-SEM. Some of the grains occur as inclusions in iron-bearing silicates such as pyroxene or hornblende, and other grains reside in glass matrix. In addition, vesiculated clay minerals contain highly elongated titanomagnetite grains. Such clay minerals seem stretched parallel to the pottery surface and inside titanomagnetite grains are also elongated along the surface. Relative abundance of titanomagnetite inclusions in silicates or glass against in clay minerals should control the degree of TRM anisotropy. Foliated TRM anisotropies originate from both alignment of clay

  6. High accuracy in silico sulfotransferase models.

    Science.gov (United States)

    Cook, Ian; Wang, Ting; Falany, Charles N; Leyh, Thomas S

    2013-11-29

    Predicting enzymatic behavior in silico is an integral part of our efforts to understand biology. Hundreds of millions of compounds lie in targeted in silico libraries waiting for their metabolic potential to be discovered. In silico "enzymes" capable of accurately determining whether compounds can inhibit or react is often the missing piece in this endeavor. This problem has now been solved for the cytosolic sulfotransferases (SULTs). SULTs regulate the bioactivities of thousands of compounds--endogenous metabolites, drugs and other xenobiotics--by transferring the sulfuryl moiety (SO3) from 3'-phosphoadenosine 5'-phosphosulfate to the hydroxyls and primary amines of these acceptors. SULT1A1 and 2A1 catalyze the majority of sulfation that occurs during human Phase II metabolism. Here, recent insights into the structure and dynamics of SULT binding and reactivity are incorporated into in silico models of 1A1 and 2A1 that are used to identify substrates and inhibitors in a structurally diverse set of 1,455 high value compounds: the FDA-approved small molecule drugs. The SULT1A1 models predict 76 substrates. Of these, 53 were known substrates. Of the remaining 23, 21 were tested, and all were sulfated. The SULT2A1 models predict 22 substrates, 14 of which are known substrates. Of the remaining 8, 4 were tested, and all are substrates. The models proved to be 100% accurate in identifying substrates and made no false predictions at Kd thresholds of 100 μM. In total, 23 "new" drug substrates were identified, and new linkages to drug inhibitors are predicted. It now appears to be possible to accurately predict Phase II sulfonation in silico.

  7. High accuracy & long timescale light curves

    Directory of Open Access Journals (Sweden)

    Hodgkin S.

    2013-04-01

    Full Text Available We present a theoretical analysis of the optical light curves (LCs for short-period high-mass transiting extrasolar planet systems. Our method considers the primary transit, the secondary eclipse, and the overall phase shape of the LC between the occultations. Phase variations arise from (i reflected and thermally emitted light by the planet, (ii the ellipsoidal shape of the star due to the gravitational pull of the planet, and (iii the Doppler shift of the stellar light as the star orbits the center of mass of the system. Our full model of the out-of-eclipse variations contains information about the planetary mass, orbital eccentricity, the orientation of periastron and the planet's albedo. For a range of hypothetical systems we demonstrate that the ellipsoidal variations (ii. can be large enough to be distinguished from the remaining components and that this effect can be used to constrain the planet's mass. As an example we presend KOI-13b (candidate exoplanet system included in the September 2011 Kepler data release. The Kepler light curve shows both primary and secondary eclipses, as well as significant out-of-eclipse light curve variations. We model the relative contributions from (i thermal emission from the companion, (ii planetary reflected light, (iii doppler beaming, and (iv ellipsoidal variations in the host-star arising from the tidal distortion of the host star by its companion. Our analysis, based on the light curve alone, enables us to constrain the mass of the KOI-13.01 companion to be MC = 8.3 ± 1.25 MJ and thus demonstrates that the transiting companion is a planet. The teqnique is useful for current and future space missions such as Kepler and PLATO.

  8. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  9. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    Science.gov (United States)

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  10. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Qingzhong Cai

    2016-06-01

    Full Text Available An inertial navigation system (INS has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs using common turntables, has a great application potential in future atomic gyro INSs.

  11. High precision optical fiber alignment using tube laser bending

    NARCIS (Netherlands)

    Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Herder, Justus Laurens

    2016-01-01

    In this paper, we present a method to align optical fibers within 0.2 μm of the optimal position, using tube laser bending and in situ measuring of the coupling efficiency. For near-UV wavelengths, passive alignment of the fibers with respect to the waveguides on photonic integrated circuit chips

  12. PhyPA: Phylogenetic method with pairwise sequence alignment outperforms likelihood methods in phylogenetics involving highly diverged sequences.

    Science.gov (United States)

    Xia, Xuhua

    2016-09-01

    While pairwise sequence alignment (PSA) by dynamic programming is guaranteed to generate one of the optimal alignments, multiple sequence alignment (MSA) of highly divergent sequences often results in poorly aligned sequences, plaguing all subsequent phylogenetic analysis. One way to avoid this problem is to use only PSA to reconstruct phylogenetic trees, which can only be done with distance-based methods. I compared the accuracy of this new computational approach (named PhyPA for phylogenetics by pairwise alignment) against the maximum likelihood method using MSA (the ML+MSA approach), based on nucleotide, amino acid and codon sequences simulated with different topologies and tree lengths. I present a surprising discovery that the fast PhyPA method consistently outperforms the slow ML+MSA approach for highly diverged sequences even when all optimization options were turned on for the ML+MSA approach. Only when sequences are not highly diverged (i.e., when a reliable MSA can be obtained) does the ML+MSA approach outperforms PhyPA. The true topologies are always recovered by ML with the true alignment from the simulation. However, with MSA derived from alignment programs such as MAFFT or MUSCLE, the recovered topology consistently has higher likelihood than that for the true topology. Thus, the failure to recover the true topology by the ML+MSA is not because of insufficient search of tree space, but by the distortion of phylogenetic signal by MSA methods. I have implemented in DAMBE PhyPA and two approaches making use of multi-gene data sets to derive phylogenetic support for subtrees equivalent to resampling techniques such as bootstrapping and jackknifing.

  13. Sagittal accuracy of tibial osteotomy position during in vivo tibial plateau levelling osteotomy performed without an alignment jig and cutting guide.

    Science.gov (United States)

    Craig, Andrew; Witte, Philip Georg; Scott, Harry William

    2017-01-16

    To assess the accuracy of tibial osteotomy location for tibial plateau levelling osteotomy (TPLO) in the sagittal plane and its effect on the postoperative tibial plateau angle (TPA), when performed without an alignment jig and saw guide. Also, to document the improvement gained with experience. Medical records and stifle radiographs of dogs undergoing TPLO, without the use of an alignment jig and saw guide, by one surgeon were reviewed (2010-2014). Postoperative radiographs were reviewed to record the distance and direction of eccentricity. Postoperative TPA was also recorded. In a series of 401 TPLO procedures, 231 met the inclusion criteria. The absolute distance of eccentricity (DOE) for all dogs was 3.0 ± 1.6 mm. When evaluating surgical experience, the DOE for the final 77 cases (2.72 ± 1.43 mm), the middle 77 cases (3.18 ± 1.49 mm), and the first 77 cases (3.24 ± 1.7 mm) were not significantly different (p = 0.07157). There was a very weak correlation between DOE and postoperative TPA (R = 0.029). The location of the tibial osteotomy when performing TPLO without an alignment jig and saw guide compared favourably with previously documented use of an alignment jig and saw guide. Whilst the location of the tibial osteotomy has a theoretical impact on the postoperative TPA, other factors appear to be of greater importance. Surgeon experience did not result in significant improvement in accuracy up to 231 procedures.

  14. High Accuracy Wavelength Calibration For A Scanning Visible Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Filippo Scotti and Ronald Bell

    2010-07-29

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤ 0.2Â. An automated calibration for a scanning spectrometer has been developed to achieve a high wavelength accuracy overr the visible spectrum, stable over time and environmental conditions, without the need to recalibrate after each grating movement. The method fits all relevant spectrometer paraameters using multiple calibration spectra. With a steping-motor controlled sine-drive, accuracies of ~0.025 Â have been demonstrated. With the addition of high resolution (0.075 aresec) optical encoder on the grading stage, greater precision (~0.005 Â) is possible, allowing absolute velocity measurements with ~0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  15. Influence of spatial temperature distribution on high accuracy interferometric metrology

    Science.gov (United States)

    Gu, Yongqiang; Miao, Erlong; Yan, Feng; Zhang, Jian; Yang, Huaijiang

    2010-10-01

    We calculate the influence of temperature change on the refractive index of air, establish a model of air temperature distribution and analyze the effect of different temperature distribution on the high accuracy interferometric metrology. First, a revised Edlen formula is employed to acquire the relation between temperature and refractive index of air, followed by introducing the fixed temperature gradient distribution among the spatial grid within the optical cavity between the reference flat and the test flat of the Fizeau interferometer, accompanied by a temperature change random function within each grid. Finally, all the rays through the air layer with different incident angles are traced by Matlab program in order to obtain the final output position, angle and OPD for each ray. The influence of different temperature distribution and the length of the optical cavity in on the testing accuracy can be analyzed through the RMS value that results from repeatable rays tracing. As a result, the horizontal distribution (vertical to optical axis) has a large effect on the testing accuracy. Thus, to realize the high accuracy figure metrology, the horizontal distribution of temperature must be rigorously controlled as well as to shorten the length of the optical cavity to a large extent. The results from our simulation are of great significant for the accuracy analysis of interferometric testing and the research of manufacturing a interferometer.

  16. Relay telescope for high power laser alignment system

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2006-09-19

    A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.

  17. Highly oriented carbon nanotube papers made of aligned carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ding; Song Pengcheng; Liu Changhong; Wu Wei; Fan Shoushan [Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics, Tsinghua University, Beijing 100084 (China)], E-mail: chliu@tsinghua.edu.cn

    2008-02-20

    Paper-like carbon nanotube (CNT) materials have many important applications such as in catalysts, in filtration, actuators, capacitor or battery electrodes, and so on. Up to now, the most popular way of preparing buckypapers has involved the procedures of dispersion and filtration of a suspension of CNTs. In this work, we present a simple and effective macroscopic manipulation of aligned CNT arrays called 'domino pushing' in the preparation of the aligned thick buckypapers with large areas. This simple method can efficiently ensure that most of the CNTs are well aligned tightly in the buckypaper. The initial measurements indicate that these buckypapers have better performance on thermal and electrical conductance. These buckypapers with controllable structure also have many potential applications, including supercapacitor electrodes.

  18. High anisotropy of flow-aligned bicellar membrane systems

    KAUST Repository

    Kogan, Maxim

    2013-10-01

    In recent years, multi-lipid bicellar systems have emerged as promising membrane models. The fast orientational diffusion and magnetic alignability made these systems very attractive for NMR investigations. However, their alignment was so far achieved with a strong magnetic field, which limited their use with other methods that require macroscopic orientation. Recently, it was shown that bicelles could be aligned also by shear flow in a Couette flow cell, making it applicable to structural and biophysical studies by polarized light spectroscopy. Considering the sensitivity of this lipid system to small variations in composition and physicochemical parameters, efficient use of such a flow-cell method with coupled techniques will critically depend on the detailed understanding of how the lipid systems behave under flow conditions. In the present study we have characterized the flow alignment behavior of the commonly used dimyristoyl phosphatidylcholine/dicaproyl phosphatidylcholine (DMPC/DHPC) bicelle system, for various temperatures, lipid compositions, and lipid concentrations. We conclude that at optimal flow conditions the selected bicellar systems can produce the most efficient flow alignment out of any lipid systems used so far. The highest degree of orientation of DMPC/DHPC samples is noticed in a narrow temperature interval, at a practical temperature around 25 C, most likely in the phase transition region characterized by maximum sample viscosity. The change of macroscopic orientation factor as function of the above conditions is now described in detail. The increase in macroscopic alignment observed for bicelles will most likely allow recording of higher resolution spectra on membrane systems, which provide deeper structural insight and analysis into properties of biomolecules interacting with solution phase lipid membranes. © 2013 Elsevier Ireland Ltd.

  19. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1998-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with realtime information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate flight

  20. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1999-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with real-time information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate lligh

  1. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1999-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with real-time information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate lligh

  2. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1998-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with realtime information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate flight

  3. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1999-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with real-time information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate

  4. Surgical accuracy in high tibial osteotomy: coronal equivalence of computer navigation and gap measurement.

    Science.gov (United States)

    Schröter, S; Ihle, C; Elson, D W; Döbele, S; Stöckle, U; Ateschrang, A

    2016-11-01

    Medial opening wedge high tibial osteotomy (MOW HTO) is now a successful operation with a range of indications, requiring an individualised approach to the choice of intended correction. This manuscript introduces the concept of surgical accuracy as the absolute deviation of the achieved correction from the intended correction, where small values represent greater accuracy. Surgical accuracy is compared in a randomised controlled trial (RCT) between gap measurement and computer navigation groups. This was a prospective RCT conducted over 3 years of 120 consecutive patients with varus malalignment and medial compartment osteoarthritis, who underwent MOW HTO. All procedures were planned with digital software. Patients were randomly assigned into gap measurement or computer navigation groups. Coronal plane alignment was judged using the mechanical tibiofemoral angle (mTFA), before and after surgery. Absolute (positive) values were calculated for surgical accuracy in each individual case. There was no significant difference in the mean intended correction between groups. The achieved mTFA revealed a small under-correction in both groups. This was attributed to a failure to account for saw blade thickness (gap measurement) and over-compensation for weight bearing (computer navigation). Surgical accuracy was 1.7° ± 1.2° (gap measurement) compared to 2.1° ± 1.4° (computer navigation) without statistical significance. The difference in tibial slope increases of 2.7° ± 3.9° (gap measurement) and 2.1° ± 3.9° (computer navigation) had statistical significance (P osteotomy for individual cases. This work is clinically relevant because coronal surgical accuracy was not superior in either group. Therefore, the increased expense and surgical time associated with navigated MOW HTO is not supported, because meticulously conducted gap measurement yields equivalent surgical accuracy. I.

  5. Compensation of motion error in a high accuracy AFM

    Science.gov (United States)

    Cui, Yuguo; Arai, Yoshikazu; He, Gaofa; Asai, Takemi; Gao, Wei

    2008-10-01

    An atomic force microscope (AFM) system is used for large-area measurement with a spiral scanning strategy, which is composed of an air slide, an air spindle and a probe unit. The motion error which is brought from the air slide and the air spindle will increase with the increasing of the measurement area. Then the measurement accuracy will decrease. In order to achieve a high speed and high accuracy measurement, the probe scans along X-direction with constant height mode driven by the air slide, and at the same time, based on the change way of the motion error, it moves along Zdirection conducted by piezoactuator. According to the above method of error compensation, the profile measurement experiment of a micro-structured surface has been carried out. The experimental result shows that this method is effective for eliminating motion error, and it can achieve high speed and precision measurement of micro-structured surface.

  6. Focus conditioning effects on molecular field-free alignment observed with high-order harmonic generation

    Institute of Scientific and Technical Information of China (English)

    吴家骏; 尉鹏飞

    2012-01-01

    We investigate the focus conditioning effects on molecular field-free alignment observed with high-order harmonic generation (HHG) from CO2 molecules.We also experimentally demonstrate that both the spectral shape and alignment signal of HHG significantly vary with changing focus position.A maximal alignment signal is achieved at a given focus position because of the optimal intensity of the driving laser.This intensity is related to the ionization potential of the molecules.These results indicate that a unique focus position provides an optimal alignment signal for practical applications.

  7. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberger, Pascale [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Kaufmann, Rainer [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Siebert, C. Alistair; Hagen, Christoph [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Wodrich, Harald [Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux SEGALEN, 146 rue Leo Seignat, 33076 Bordeaux (France); Grünewald, Kay, E-mail: kay@strubi.ox.ac.uk [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. - Highlights: • Vitrified mammalian cell were imaged by fluorescence and electron cryo microscopy. • TetraSpeck fluorescence markers were added to correct shifts between cryo fluorescence channels. • FluoSpheres fiducials were used as reference points to assign new coordinates to cryoEM images. • Adenovirus particles were localised with an average correlation precision of 63 nm.

  8. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers.

    Science.gov (United States)

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. © 2013 Published by Elsevier B.V.

  9. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    Science.gov (United States)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  10. Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis

    Directory of Open Access Journals (Sweden)

    Michael Korenberg

    2012-08-01

    Full Text Available In both military and civilian applications, the inertial navigation system (INS and the global positioning system (GPS are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.

  11. Why is a high accuracy needed in dosimetry. [Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lanzl, L.H.

    1976-01-01

    Dose and exposure intercomparisons on a national or international basis have become an important component of quality assurance in the practice of good radiotherapy. A high degree of accuracy of ..gamma.. and x radiation dosimetry is essential in our international society, where medical information is so readily exchanged and used. The value of accurate dosimetry lies mainly in the avoidance of complications in normal tissue and an optimal degree of tumor control.

  12. Navigation message designing with high accuracy for NAV

    Institute of Scientific and Technical Information of China (English)

    Wang Luxiao; Huang Zhigang; Zhao Yun

    2014-01-01

    Navigation message designing with high accuracy guarantee is the key to efficient navi-gation message distribution in the global navigation satellite system (GNSS). Developing high accu-racy-aware navigation message designing algorithms is an important topic. This paper investigates the high-accuracy navigation message designing problem with the message structure unchanged. The contributions made in this paper include a heuristic that employs the concept of the estimated range deviation (ERD) to improve the existing well-known navigation message on L1 frequency (NAV) of global positioning system (GPS) for good accuracy service; a numerical analysis approximation method (NAAM) to evaluate the range error due to truncation (RET) of different navigation messages; and a basic positioning parameters designing algorithm in the limited space allocation. Based on the predicted ultra-rapid data from the ultra-rapid data from the international GPS service for geodynamic (IGU), ERDs are generated in real time for error correction. Simulations show that the algorithms developed in this paper are general and flexible, and thus are applicable to NAV improvement and other navigation message designs.

  13. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  14. Alignment and Characterization of High Uniformity Imaging Spectrometers

    Science.gov (United States)

    Bender, Holly A.; Mouroulis, Pantazis; Eastwood, Michael L.; Green, Robert O.; Geier, Sven; Hochberg, Eric B.

    2011-01-01

    Imaging spectrometers require precise adjustments, in some cases at the sub-micrometer level, in order to achieve auniform response over both the spectral and spatial dimensions. We describe a set of measurement techniques and theircorresponding alignment adjustments to achieve the 95% or higher uniformity specifications required for Earthobservingimaging spectrometers. The methods are illustrated with measurements from the Next Generation Imaging Spectrometer system that has been built at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  15. High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.

    Science.gov (United States)

    Song, Shiyu; Chandraker, Manmohan; Guest, Clark C

    2016-04-01

    We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.

  16. Fabrication of Aligned-Carbon-Nanotube-Composite Paper with High and Anisotropic Conductivity

    Directory of Open Access Journals (Sweden)

    Yuki Fujitsuka

    2012-01-01

    Full Text Available A functional carbon-nanotube (CNT-composite paper is described in which the CNTs are aligned. This “aligned-CNT composite paper” is a flexible composite material that has CNT functionality (e.g., electrical conductivity despite being a paper. An advanced fabrication method was developed to overcome the problem of previous CNT-composite papers, that is, reduced conductivity due to random CNT alignment. Aligning the CNTs by using an alternating current (AC field was hypothesized to increase the electrical conductivity and give the paper an anisotropic characteristic. Experimental results showed that a nonionic surfactant was not suitable as a CNT dispersant for fabricating aligned-CNT composite paper and that catechin with its six-membered rings and hydrophilic groups was suitable. Observation by scanning electron microscopy of samples prepared using catechin showed that the CNTs were aligned in the direction of the AC field on the paper fibers. Measurement of the electric conductivity showed that the surface resistance was different between the direction of the aligned CNTs (high conductivity and that of verticality (low. The conductivity of the aligned-CNT-composite paper samples was higher than that of nonaligned samples. This unique and functional paper, which has high and anisotropic conductivity, is applicable to a conductive material to control the direction of current.

  17. Determining the Cost-Savings Threshold and Alignment Accuracy of Patient-Specific Instrumentation in Total Ankle Replacements.

    Science.gov (United States)

    Hamid, Kamran S; Matson, Andrew P; Nwachukwu, Benedict U; Scott, Daniel J; Mather, Richard C; DeOrio, James K

    2017-01-01

    Traditional intraoperative referencing for total ankle replacements (TARs) involves multiple steps and fluoroscopic guidance to determine mechanical alignment. Recent adoption of patient-specific instrumentation (PSI) allows for referencing to be determined preoperatively, resulting in less steps and potentially decreased operative time. We hypothesized that usage of PSI would result in decreased operating room time that would offset the additional cost of PSI compared with standard referencing (SR). In addition, we aimed to compare postoperative radiographic alignment between PSI and SR. Between August 2014 and September 2015, 87 patients undergoing TAR were enrolled in a prospectively collected TAR database. Patients were divided into cohorts based on PSI vs SR, and operative times were reviewed. Radiographic alignment parameters were retrospectively measured at 6 weeks postoperatively. Time-driven activity-based costing (TDABC) was used to derive direct costs. Cost vs operative time-savings were examined via 2-way sensitivity analysis to determine cost-saving thresholds for PSI applicable to a range of institution types. Cost-saving thresholds defined the price of PSI below which PSI would be cost-saving. A total of 35 PSI and 52 SR cases were evaluated with no significant differences identified in patient characteristics. Operative time from incision to completion of casting in cases without adjunct procedures was 127 minutes with PSI and 161 minutes with SR ( P cost-savings threshold range at our institution of $863 below which PSI pricing would provide net cost-savings. Two-way sensitivity analysis generated a globally applicable cost-savings threshold model based on institution-specific costs and surgeon-specific time-savings. This study demonstrated equivalent postoperative TAR alignment with PSI and SR referencing systems but with a significant decrease in operative time with PSI. Based on TDABC and associated sensitivity analysis, a cost-savings threshold

  18. Three-time rapid transfer alignment method of SINS/GPS navigation system of high-speed marine missile

    Institute of Scientific and Technical Information of China (English)

    WANG Si; DENG Zheng-long; SU Ling-feng

    2008-01-01

    The transfer alignment of SINS/GPS navigation system of a high-speed marine missile was investiga-ted. With the help of the big acceleration of a high-speed missile, the transfer alignment was changed into a three-time alignment. The azimuth alignment was coarsely finished in 10s in the first time alignment, the hori-zontal alignment was accurately and rapidly finished in the second time alignment, and the azimuth alignment was accurately finished in the third time alignment. Because the second time alignment and the third time align-ment were finished by GPS after the missile was launched, the horizontal alignment and the second azimuth a-lignment got rid of the influence of the warship body flexibility deforming. The precision and rapidity of the hori-zontal alignment were prominently increased due to the vertical launch of the marine missile with the big accel-eration. Simulation verifies the effectiveness of the proposed alignment method.

  19. Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications

    Science.gov (United States)

    Wang, Han Bing; Mullins, Michael E.; Cregg, Jared M.; Hurtado, Andres; Oudega, Martin; Trombley, Matthew T.; Gilbert, Ryan J.

    2009-02-01

    Aligned, electrospun polymer fibers have shown considerable promise in directing regenerating axons in vitro and in vivo. However, in several studies, final electrospinning parameters are presented for producing aligned fiber scaffolds, and alignment where minimal fiber crossing occurs is not achieved. Highly aligned species are necessary for neural tissue engineering applications to ensure that axonal extension occurs through a regenerating environment efficiently. Axonal outgrowth on fibers that deviate from the natural axis of growth may delay axonal extension from one end of a scaffold to the other. Therefore, producing aligned fiber scaffolds with little fiber crossing is essential. In this study, the contributions of four electrospinning parameters (collection disk rotation speed, needle size, needle tip shape and syringe pump flow rate) were investigated thoroughly with the goal of finding parameters to obtain highly aligned electrospun fibers made from poly-L-lactic acid (PLLA). Using an 8 wt% PLLA solution in chloroform, a collection disk rotation speed of 1000 revolutions per minute (rpm), a 22 gauge, sharp-tip needle and a syringe pump rate of 2 ml h-1 produced highly aligned fiber (1.2-1.6 µm in diameter) scaffolds verified using a fast Fourier transform and a fiber alignment quantification technique. Additionally, the application of an insulating sheath around the needle tip improved the rate of fiber deposition (electrospinning efficiency). Optimized scaffolds were then evaluated in vitro using embryonic stage nine (E9) chick dorsal root ganglia (DRGs) and rat Schwann cells (SCs). To demonstrate the importance of creating highly aligned scaffolds to direct neurite outgrowth, scaffolds were created that contained crossing fibers. Neurites on these scaffolds were directed down the axis of the aligned fibers, but neurites also grew along the crossed fibers. At times, these crossed fibers even stopped further axonal extension. Highly aligned PLLA fibers

  20. High accuracy and visibility-consistent dense multiview stereo.

    Science.gov (United States)

    Vu, Hoang-Hiep; Labatut, Patrick; Pons, Jean-Philippe; Keriven, Renaud

    2012-05-01

    Since the initial comparison of Seitz et al., the accuracy of dense multiview stereovision methods has been increasing steadily. A number of limitations, however, make most of these methods not suitable to outdoor scenes taken under uncontrolled imaging conditions. The present work consists of a complete dense multiview stereo pipeline which circumvents these limitations, being able to handle large-scale scenes without sacrificing accuracy. Highly detailed reconstructions are produced within very reasonable time thanks to two key stages in our pipeline: a minimum s-t cut optimization over an adaptive domain that robustly and efficiently filters a quasidense point cloud from outliers and reconstructs an initial surface by integrating visibility constraints, followed by a mesh-based variational refinement that captures small details, smartly handling photo-consistency, regularization, and adaptive resolution. The pipeline has been tested over a wide range of scenes: from classic compact objects taken in a laboratory setting, to outdoor architectural scenes, landscapes, and cultural heritage sites. The accuracy of its reconstructions has also been measured on the dense multiview benchmark proposed by Strecha et al., showing the results to compare more than favorably with the current state-of-the-art methods.

  1. Fabrication of highly aligned fibrous scaffolds for tissue regeneration by centrifugal spinning technology

    Energy Technology Data Exchange (ETDEWEB)

    Loordhuswamy, Amalorpava Mary [Department of Textile Technology, Anna University, Chennai 600025 (India); Krishnaswamy, Venkat Raghavan; Korrapati, Purna Sai [Department of Biomaterials, CSIR-Central Leather Research Institute, Chennai 600020 (India); Thinakaran, Senthilram [Department of Textile Technology, Anna University, Chennai 600025 (India); Rengaswami, Giri Dev Venkateshwarapuram, E-mail: vrgiridev@yahoo.com [Department of Textile Technology, Anna University, Chennai 600025 (India)

    2014-09-01

    Centrifugal spinning (C-Spin) is an emerging technology which uses centrifugal force to produce ultrafine fibers. Being a voltage free technique it can overcome the limitations of electrospinning. Owing to the unique characteristic features such as high surface area to volume ratio, porosity, mechanical strength and fiber alignment, centrifugal spun (C-spun) fibrous mat has a wide range of scope in various biomedical applications. Higher degree of fiber alignment can be effortlessly achieved by the C-Spin process. In order to prove the versatility of C-Spin system with respect to fiber alignment, Polycaprolactone (PCL) and gelatin were spun taking them as model polymers. The morphological analysis revealed that highly aligned ultrafine fibers with smooth surface are achieved by C-Spinning. Hydrophilicity, porosity and mechanical property results confirm that the C-spun mat is more suitable for tissue engineering applications. In vitro and in vivo experiments proved that the scaffolds are biocompatible and can be efficiently used as a wound dressing material. - Highlights: • Highly aligned PCL/gelatin fibrous scaffolds were prepared by C-Spinning system. • Degree of fiber alignment was influenced by the proportion of gelatin in the blends. • Direction of cell growth was parallel to the direction of fiber alignment. • C-Spun matrices can efficiently accelerate faster wound healing.

  2. HIGH-ACCURACY BAND TO BAND REGISTRATION METHOD FOR MULTI-SPECTRAL IMAGES OF HJ-1A/B

    Institute of Scientific and Technical Information of China (English)

    Lu Hao; Liu Tuanjie; Zhao Haiqing

    2012-01-01

    Band-to-band registration accuracy is an important parameter of multispectral data.A novel band-to-band registration approach with high precision is proposed for the multi-spectral images of HJ-1A/B.Firstly,the main causes resulted in misregistration are analyzed,and a high-order polynomial model is proposed.Secondly,a phase fringe filtering technique is employed to Phase Correlation Method based on Singular Value Decomposition (SVD-PCM) for reducing the noise in phase difference matrix.Then,experiments are carried out to build nonlinear registration models,and images of green band and red band are aligned to blue band with an accuracy of 0.1 pixels,while near infrared band with an accuracy of 0.2 pixels.

  3. Preparation and Characterization of Highly Aligned Carbon Nanotubes/Polyacrylonitrile Composite Nanofibers

    Directory of Open Access Journals (Sweden)

    Yanhua Song

    2017-01-01

    Full Text Available In the electrospinning process, a modified parallel electrode method (MPEM, conducted by placing a positively charged ring between the needle and the parallel electrode collector, was used to fabricate highly aligned carbon nanotubes/polyacrylonitrile (CNTs/PAN composite nanofibers. Characterizations of the samples—such as morphology, the degree of alignment, and mechanical and conductive properties—were investigated by a combination of scanning electron microscopy (SEM, transmission electron microscopy (TEM, universal testing machine, high-resistance meter, and other methods. The results showed the MPEM could improve the alignment and uniformity of electrospun CNTs/PAN composite nanofibers, and enhance their mechanical and conductive properties. This meant the successful preparation of highly aligned CNT-reinforced PAN nanofibers with enhanced physical properties, suggesting their potential application in appliances and communication areas.

  4. High precision survey and alignment techniques in accelerator construction

    CERN Document Server

    Gervaise, J

    1974-01-01

    Basic concepts of precision surveying are briefly reviewed, and an historical account is given of instruments and techniques used during the construction of the Proton Synchrotron (1954-59), the Intersecting Storage Rings (1966-71), and the Super Proton Synchrotron (1971). A nylon wire device, distinvar, invar wire and tape, and recent automation of the gyrotheodolite and distinvar as well as auxiliary equipment (polyurethane jacks, Centipede) are discussed in detail. The paper ends summarizing the present accuracy in accelerator metrology, giving an outlook of possible improvement, and some aspects of staffing for the CERN Survey Group. (0 refs).

  5. High-precision optical systems with inexpensive hardware: a unified alignment and structural design approach

    Science.gov (United States)

    Winrow, Edward G.; Chavez, Victor H.

    2011-09-01

    High-precision opto-mechanical structures have historically been plagued by high costs for both hardware and the associated alignment and assembly process. This problem is especially true for space applications where only a few production units are produced. A methodology for optical alignment and optical structure design is presented which shifts the mechanism of maintaining precision from tightly toleranced, machined flight hardware to reusable, modular tooling. Using the proposed methodology, optical alignment error sources are reduced by the direct alignment of optics through their surface retroreflections (pips) as seen through a theodolite. Optical alignment adjustments are actualized through motorized, sub-micron precision actuators in 5 degrees of freedom. Optical structure hardware costs are reduced through the use of simple shapes (tubes, plates) and repeated components. This approach produces significantly cheaper hardware and more efficient assembly without sacrificing alignment precision or optical structure stability. The design, alignment plan and assembly of a 4" aperture, carbon fiber composite, Schmidt-Cassegrain concept telescope is presented.

  6. High Accuracy Near-infrared Imaging Polarimetry with NICMOS

    CERN Document Server

    Batcheldor, D; Hines, D C; Schmidt, G D; Axon, D J; Robinson, A; Sparks, W; Tadhunter, C

    2008-01-01

    The findings of a nine orbit calibration plan carried out during HST Cycle 15, to fully determine the NICMOS camera 2 (2.0 micron) polarization calibration to high accuracy, are reported. Recently Ueta et al. and Batcheldor et al. have suggested that NICMOS possesses a residual instrumental polarization at a level of 1.2-1.5%. This would completely inhibit the data reduction in a number of GO programs, and hamper the ability of the instrument to perform high accuracy polarimetry. We obtained polarimetric calibration observations of three polarimetric standards at three spacecraft roll angles separated by ~60deg. Combined with archival data, these observations were used to characterize the residual instrumental polarization in order for NICMOS to reach its full potential of accurate imaging polarimetry at p~1%. Using these data, we place an 0.6% upper limit on the instrumental polarization and calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetri...

  7. High-accuracy mass spectrometry for fundamental studies.

    Science.gov (United States)

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  8. Researches on High Accuracy Prediction Methods of Earth Orientation Parameters

    Science.gov (United States)

    Xu, X. Q.

    2015-09-01

    The Earth rotation reflects the coupling process among the solid Earth, atmosphere, oceans, mantle, and core of the Earth on multiple spatial and temporal scales. The Earth rotation can be described by the Earth's orientation parameters, which are abbreviated as EOP (mainly including two polar motion components PM_X and PM_Y, and variation in the length of day ΔLOD). The EOP is crucial in the transformation between the terrestrial and celestial reference systems, and has important applications in many areas such as the deep space exploration, satellite precise orbit determination, and astrogeodynamics. However, the EOP products obtained by the space geodetic technologies generally delay by several days to two weeks. The growing demands for modern space navigation make high-accuracy EOP prediction be a worthy topic. This thesis is composed of the following three aspects, for the purpose of improving the EOP forecast accuracy. (1) We analyze the relation between the length of the basic data series and the EOP forecast accuracy, and compare the EOP prediction accuracy for the linear autoregressive (AR) model and the nonlinear artificial neural network (ANN) method by performing the least squares (LS) extrapolations. The results show that the high precision forecast of EOP can be realized by appropriate selection of the basic data series length according to the required time span of EOP prediction: for short-term prediction, the basic data series should be shorter, while for the long-term prediction, the series should be longer. The analysis also showed that the LS+AR model is more suitable for the short-term forecasts, while the LS+ANN model shows the advantages in the medium- and long-term forecasts. (2) We develop for the first time a new method which combines the autoregressive model and Kalman filter (AR+Kalman) in short-term EOP prediction. The equations of observation and state are established using the EOP series and the autoregressive coefficients

  9. Researching the technology of high-accuracy camshaft measurement

    Science.gov (United States)

    Chen, Wei; Chen, Yong-Le; Wang, Hong; Liao, Hai-Yang

    1996-10-01

    This paper states the cam's data processing algorithm in detail in high accurate camshaft measurement system. It contains: 1) using minimum error of curve symmetry to seek the center position of the key slot; 2) Calculating the minimum error by cam's curve in theory to search top area; 3) According to cam's tolerance E(i) function and minimum angle error at cam top, seeking the best position of cam top and getting the best angle value and error curve. The algorithm is suitable for measuring all kinds of symmetry or asymmetry cam, and plain push-rod or spherical push-rod cam, for example, bus camshaft, car camshaft, motor camshaft, etc. Using the algorithm, high accuracy measurement can be achieved.

  10. Spatial augmented reality based high accuracy human face projection

    Science.gov (United States)

    Li, Dong; Xie, Jinghui; Li, Yufeng; Weng, Dongdong; Liu, Yue

    2015-08-01

    This paper discusses the imaging principles and the technical difficulties of spatial augmented reality based human face projection. A novel geometry correction method is proposed to realize fast, high-accuracy face model projection. Using a depth camera to reconstruct the projected object, the relative position from the rendered model to the projector can be accessed and the initial projection image is generated. Then the projected image is distorted by using Bezier interpolation to guarantee that the projected texture matches with the object surface. The proposed method is under a simple process flow and can achieve high perception registration of virtual and real object. In addition, this method has a good performance in the condition that the reconstructed model is not exactly same with the rendered virtual model which extends its application area in the spatial augmented reality based human face projection.

  11. The Synthesis of Highly Aligned Cupric Oxide Nanowires by Heating Copper Foil

    Directory of Open Access Journals (Sweden)

    Jianbo Liang

    2011-01-01

    Full Text Available We have investigated the effects of grain size and orientation of copper substrates for the growth of cupric oxide nanowires by thermal oxidation method. Long, less-roughness, high-density, and aligned cupric oxide nanowires have been synthesized by heating (200 oriented copper foils with small grain size in air gas. Long and aligned nanowires of diameter around 80 nm can only be formed within a short temperature range from 400 to 700°C. On the other hand, uniform, smooth-surface, and aligned nanowires were not formed in the case of larger crystallite size of copper foils with (111 and (200 orientation. Smaller grain size of copper foil with (200 orientation is favorable for the growth of highly aligned, smooth surface, and larger-diameter nanowires by thermal oxidation method.

  12. High Throughput via Cross-Layer Interference Alignment for Mobile Ad Hoc Networks

    Science.gov (United States)

    2013-08-26

    hoc networks ( MANETS ) under practical assumptions. Several problems were posed and solved that provide insight into when and how interference alignment...REPORT High Throughput via Cross-Layer Interference Alignment for Mobile Ad Hoc Networks 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Recent...investigations into the fundamental limits of mobile ad hoc networks have produced a physical layer method for approaching their capacity. This strategy, known

  13. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  14. Improvements in spinal alignment after high tibial osteotomy in patients with medial compartment knee osteoarthritis.

    Science.gov (United States)

    Kim, Yoon Hyuk; Dorj, Ariunzaya; Han, Ahreum; Kim, Kyungsoo; Nha, Kyung Wook

    2016-07-01

    Since the correlation between spinal and lower extremity alignments is high, high tibial osteotomy (HTO) surgery may also affect spinal alignment, where the spinal alignment parameters are the most important parameters for the evaluation of spinal disorders. In this study, the effect of HTO surgery on spinal alignment during gait was investigated by comparing spinal alignment parameters between patients with knee osteoarthritis (OA) and healthy young controls. Eight patients (age, 55.0±5.1years; height, 160.3±7.0cm; weight, 71.3±14.1kg) with a medial compartment knee OA participated in the gait experiment two times approximately one week before and one year after HTO surgery and eight healthy young controls (age, 26.7±1.7years; height, 163.4±6.5cm; weight, 58.4±11.3kg) participated only once. Cervical curvature angle, thoracic curvature angle, lumbar curvature angle, coronal vertical axis, and coronal pelvic tilt in the coronal plane and cervical lordosis, thoracic kyphosis, lumbar lordosis, sagittal vertical axis, and sagittal pelvic tilt in the sagittal plane were estimated using motion analysis system with skin markers. All spinal alignment parameters after HTO surgery were significantly closer to those of healthy young subjects than those before HTO, especially in the coronal plane. These findings suggest that the HTO had a positive effect on spinal alignment, as well as lower extremity alignment, and moreover, reduced the abnormality that may result in spinal problems such as degeneration or pain.

  15. Robust precision alignment algorithm for micro tube laser forming

    NARCIS (Netherlands)

    Folkersma, K.G.P.; Brouwer, D.M.; Römer, G.R.B.E.; Herder, J.L.

    2016-01-01

    Tube laser forming on a small diameter tube can be used as a high precision actuator to permanently align small (optical)components. Applications, such as the alignment of optical fibers to photonic integrated circuits, often require sub-micron alignment accuracy. Although the process causes signifi

  16. Robust precision alignment algorithm for micro tube laser forming

    NARCIS (Netherlands)

    Folkersma, Ger; Brouwer, Dannis Michel; Römer, Gerardus Richardus, Bernardus, Engelina; Herder, Justus Laurens

    2016-01-01

    Tube laser forming on a small diameter tube can be used as a high precision actuator to permanently align small (optical)components. Applications, such as the alignment of optical fibers to photonic integrated circuits, often require sub-micron alignment accuracy. Although the process causes

  17. High accuracy mantle convection simulation through modern numerical methods

    KAUST Repository

    Kronbichler, Martin

    2012-08-21

    Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.

  18. Monitoring techniques for high accuracy interference fit assembly processes

    Science.gov (United States)

    Liuti, A.; Vedugo, F. Rodriguez; Paone, N.; Ungaro, C.

    2016-06-01

    In the automotive industry, there are many assembly processes that require a high geometric accuracy, in the micrometer range; generally open-loop controllers cannot meet these requirements. This results in an increased defect rate and high production costs. This paper presents an experimental study of interference fit process, aimed to evaluate the aspects which have the most impact on the uncertainty in the final positioning. The press-fitting process considered, consists in a press machine operating with a piezoelectric actuator to press a plug into a sleeve. Plug and sleeve are designed and machined to obtain a known interference fit. Differential displacement and velocity measurements of the plug with respect to the sleeve are measured by a fiber optic differential laser Doppler vibrometer. Different driving signals of the piezo actuator allow to have an insight into the differences between a linear and a pulsating press action. The paper highlights how the press-fit assembly process is characterized by two main phases: the first is an elastic deformation of the plug and sleeve, which produces a reversible displacement, the second is a sliding of the plug with respect to the sleeve, which results in an irreversible displacement and finally realizes the assembly. The simultaneous measurements of the displacement and the force have permitted to define characteristic features in the signal useful to identify the start of the irreversible movement. These indicators could be used to develop a control logic in a press assembly process.

  19. A high-accuracy DCO with hybrid architecture

    Science.gov (United States)

    Sun, Yapeng; Zhao, Huidong; Qiao, Shushan; Hei, Yong; Zhang, Fuhai

    2017-07-01

    In this paper, a novel hybrid digital-controlled oscillator (DCO) is proposed, which is used to improve the accuracy of the all-digital clock generator without reference source. The DCO with hybrid architecture consists of two parts: DCO_high and DCO_low. The DCO_high decides the coarse output frequency of DCO, and adopts the cascade structure to decrease the area. The DCO_low adopts the chain structure with three-state buffer, and decides the fine output frequency of DCO. Compared with traditional cascade DCO, the proposed hybrid DCO features higher precision with less inherent delay. Therefore the clock generator can tolerate process, voltage and temperature (PVT) variation and meet the needs of different conditions. The DCO is designed in SMIC 180 nm CMOS process with 0.021 mm2 chip area. The output frequency is adjusted from 15-120 MHz. The frequency error is less than 0.83% at 25 MHz with 1.6-1.8 V supply voltage and 0-80 °C temperature variations in TT, FF, SS corners. Project supported by the National Natural Science Foundation of China (Nos. 61306025, 61474135).

  20. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure.

    Science.gov (United States)

    Fu, Yinan; Wand, A Joshua

    2013-08-01

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.

  1. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yinan; Wand, A. Joshua, E-mail: wand@mail.med.upenn.edu [University of Pennsylvania, Department of Biochemistry and Biophysics, Johnson Research Foundation (United States)

    2013-08-15

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.

  2. Semiautomated Alignment of High-Throughput Metabolite Profiles with Chemometric Tools

    Science.gov (United States)

    Xiao, Zi-dan; Liang, Yi-zeng; Chau, Foo-tim; Chan, Hoi-yan

    2017-01-01

    The rapid increase in the use of metabolite profiling/fingerprinting techniques to resolve complicated issues in metabolomics has stimulated demand for data processing techniques, such as alignment, to extract detailed information. In this study, a new and automated method was developed to correct the retention time shift of high-dimensional and high-throughput data sets. Information from the target chromatographic profiles was used to determine the standard profile as a reference for alignment. A novel, piecewise data partition strategy was applied for the determination of the target components in the standard profile as markers for alignment. An automated target search (ATS) method was proposed to find the exact retention times of the selected targets in other profiles for alignment. The linear interpolation technique (LIT) was employed to align the profiles prior to pattern recognition, comprehensive comparison analysis, and other data processing steps. In total, 94 metabolite profiles of ginseng were studied, including the most volatile secondary metabolites. The method used in this article could be an essential step in the extraction of information from high-throughput data acquired in the study of systems biology, metabolomics, and biomarker discovery. PMID:28168083

  3. Biodiesel and Integrated STEM: Vertical Alignment of High School Biology/Biochemistry and Chemistry

    Science.gov (United States)

    Burrows, Andrea C.; Breiner, Jonathan M.; Keiner, Jennifer; Behm, Chris

    2014-01-01

    This article explores the vertical alignment of two high school classes, biology and chemistry, around the core concept of biodiesel fuel production. High school teachers and university faculty members investigated biodiesel as it relates to societal impact through a National Science Foundation Research Experience for Teachers. Using an action…

  4. Improved photomask accuracy with a high-productivity DUV laser pattern generator

    Science.gov (United States)

    Öström, Thomas; Måhlén, Jonas; Karawajczyk, Andrzej; Rosling, Mats; Carlqvist, Per; Askebjer, Per; Karlin, Tord; Sallander, Jesper; Österberg, Anders

    2006-10-01

    A strategy for sub-100 nm technology nodes is to maximize the use of high-speed deep-UV laser pattern generators, reserving e-beam tools for the most critical photomask layers. With a 248 nm excimer laser and 0.82 NA projection optics, the Sigma7500 increases the application space of laser pattern generators. A programmable spatial light modulator (SLM) is imaged with partially coherent optics to compose the photomask pattern. Image profiles are enhanced with phase shifting in the pattern generator, and features below 200 nm are reliably printed. The Sigma7500 extends the SLM-based architecture with improvements to CD uniformity and placement accuracy, resulting from an error budget-based methodology. Among these improvements is a stiffer focus stage design with digital servos, resulting in improved focus stability. Tighter climate controls and improved dose control reduce drift during mask patterning. As a result, global composite CD uniformity below 5 nm (3σ) has been demonstrated, with placement accuracy below 10 nm (3σ) across the mask. Self-calibration methods are used to optimize and monitor system performance, reducing the need to print test plates. The SLM calibration camera views programmed test patterns, making it possible to evaluate image metrics such as CD uniformity and line edge roughness. The camera is also used to characterize image placement over the optical field. A feature called ProcessEqualizer TM has been developed to correct long-range CD errors arising from process effects on production photomasks. Mask data is sized in real time to compensate for pattern-dependent errors related to local pattern density, as well as for systematic pattern-independent errors such as radial CD signatures. Corrections are made in the pixel domain in the advanced adjustments processor, which also performs global biasing, stamp distortion compensation, and corner enhancement. In the Sigma7500, the mask pattern is imaged with full edge addressability in each

  5. Determination of UAV position using high accuracy navigation platform

    Directory of Open Access Journals (Sweden)

    Ireneusz Kubicki

    2016-07-01

    Full Text Available The choice of navigation system for mini UAV is very important because of its application and exploitation, particularly when the installed on it a synthetic aperture radar requires highly precise information about an object’s position. The presented exemplary solution of such a system draws attention to the possible problems associated with the use of appropriate technology, sensors, and devices or with a complete navigation system. The position and spatial orientation errors of the measurement platform influence on the obtained SAR imaging. Both, turbulences and maneuvers performed during flight cause the changes in the position of the airborne object resulting in deterioration or lack of images from SAR. Consequently, it is necessary to perform operations for reducing or eliminating the impact of the sensors’ errors on the UAV position accuracy. You need to look for compromise solutions between newer better technologies and in the field of software. Keywords: navigation systems, unmanned aerial vehicles, sensors integration

  6. Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies.

    Science.gov (United States)

    Liu, Guangtong; Zhao, Yuanchun; Deng, Ke; Liu, Zheng; Chu, Weiguo; Chen, Jingran; Yang, Yanlian; Zheng, Kaihong; Huang, Haibo; Ma, Wenjun; Song, Li; Yang, Haifang; Gu, Changzhi; Rao, Guanghui; Wang, Chen; Xie, Sishen; Sun, Lianfeng

    2008-04-01

    We have developed a low-cost and effective method to align single-walled carbon nanotubes (SWNTs) using a series of diamond wire drawing dies. The obtained SWNTs are highly dense and perfectly aligned. X-ray diffraction (XRD) indicates that the highly dense and perfectly aligned SWNTs (HDPA-SWNTs) form a two-dimensional triangular lattice with a lattice constant of 19.62 A. We observe a sharp (002) reflection in the XRD pattern, which should be ascribed to an intertube spacing 3.39 A of adjacent SWNTs. Raman spectra reveal that the radical breath mode (RBM) of SWNTs with larger diameter in the HDPA-SWNTs is suppressed compared with that of as-grown SWNTs. The HDPA-SWNTs have a large density, approximately 1.09 g/cm 3, and a low resistivity, approximately 2 m Omega cm, at room temperature, as well as a large response to light illumination.

  7. Cavity-enhanced field-free molecular alignment at high repetition rate

    CERN Document Server

    Benko, Craig; Allison, Thomas K; Labaye, François; Ye, Jun

    2015-01-01

    Extreme ultraviolet frequency combs are a versatile tool with applications including precision measurement, strong-field physics, and solid-state physics. Here we report on an application of extreme ultraviolet frequency combs and their driving lasers to studying strong-field effects in molecular systems. We perform field-free molecular alignment and high-order hamonic generation with aligned molecules in a gas jet at 154 MHz repetition rate using a high-powered optical frequency comb inside a femtosecond enhancement cavity. The cavity-enhanced system provides means to reach suitable intensities to study field-free molecular alignment and enhance the observable effects of the molecule-field interaction. We observe modulations of the driving field, arising from the nature of impulsive stimulated Raman scattering responsible for coherent molecular rotations. We foresee impact of this work on the study of molecule-based strong-field physics, with improved precision and a more fundamental understanding of the int...

  8. High-harmonic and terahertz wave spectroscopy (HATS) for aligned molecules

    CERN Document Server

    Huang, Yindong; Zhao, Jing; Wang, Xiaowei; Lü, Zhihui; Zhang, Dongwen; Yuan, Jianmin; Zhao, Zengxiu

    2016-01-01

    We present the experimental and theoretical details of our recent published letter [Phys. Rev. Lett. 115. 123002] on synchronized high-harmonic and terahertz-wave spectroscopy (HATS) from nonadiabatically aligned nitrogen molecules in dual-color laser fields. Associating the alignment-angle dependent terahertz wave generation with the synchronizing high-harmonic signal, the angular differential photoionization cross section (PICS) for molecules can be reconstructed, and the minima of the angle on PICS show great convergence between the theoretical predictions and the experimental deduced results. We also show the optimal relative phase between the dual-color laser fields for terahertz wave generation dose not change with the alignment angle at a precision of $50$ attoseconds. This all-optical method provides an alternative for investigating molecular structures and dynamics.

  9. A Short Range, High Accuracy Radar Ranging System,

    Science.gov (United States)

    1984-12-01

    radar cross section of a triangular trihedral reflector can be calculated using a= 4ni (0.289 L) 2 2 (5) r, where L, is the length of the...imaximum radar cross section of 16.1 square meters. Alignment of the axis of the corner reflector was done visually: since triangular corner reflectors ...As the aircraft flies its motion causes the radar cross section of each of the many scatterers to fluctuate. If the radar

  10. Crystallographic alignment of high-density gallium nitride nanowire arrays.

    Science.gov (United States)

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong

    2004-08-01

    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  11. Sensing Characteristics of A Precision Aligner Using Moire Gratings for Precision Alignment System

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lizhong; Hideo Furuhashi; Yoshiyuki Uchida

    2001-01-01

    Sensing characteristics of a precision aligner using moire gratings for precision alignment sysem has been investigated. A differential moire alignment system and a modified alignment system were used. The influence of the setting accuracy of the gap length and inclination of gratings on the alignment accuracy has been studied experimentally and theoretically. Setting accuracy of the gap length less than 2.5μm is required in modified moire alignment. There is no influence of the gap length on the alignment accuracy in the differential alignment system. The inclination affects alignment accuracies in both differential and modified moire alignment systems.

  12. Alignment dependent ultrafast electron-nuclear dynamics in high-order harmonic generation

    CERN Document Server

    Li, Mu-Zi; Bian, Xue-Bin

    2016-01-01

    We investigated the high-order harmonic generation (HHG) process of diatomic molecular ion $\\mathrm{H}_2^+$ in non-Born-Oppenheimer approximations. The corresponding three-dimensional time-dependent Schr\\"odinger equation is solved with arbitrary alignment angles. It is found that the nuclear motion can lead to spectral modulation of HHG. Redshifts are unique in molecular HHG which decrease with the increase of alignment angles of the molecules and are sensitive to the initial vibrational states. It can be used to extract the ultrafast electron-nuclear dynamics and image molecular structure.

  13. An anti-disturbance high-precision alignment for distributed POS based on inertial reference frame

    Science.gov (United States)

    Bai, Lijian; Wang, Yue

    2017-03-01

    The distributed POS is playing an important role in the ultra-high resolution aerial survey and remote sensing system, and can accurately provide time-spatial reference information for various imaging sensors. However, the distributed POS faces a special problem that the flexible arms used to connect the inertial measurement units (IMUs) would deteriorate the phenomenon that external disturbance leads to serious alignment errors. In order to improve the alignment precision of distributed POS in external disturbance, an anti-disturbance coarse alignment based on inertial reference frame is proposed. This method is developed mainly based on the structure of non-collinear vectors, which are constructed by a velocity vector determined by gravity vector integration. The disturbed acceleration and rotation is decreased a lot by the integral operation in the proposed method. Finally, the experiments were carried out and verified the validity of the proposed method.

  14. Least Squares Approach to the Alignment of the Generic High Precision Tracking System

    CERN Document Server

    Brückman de Renstrom, P

    2005-01-01

    A least squares method to solve a generic alignment problem of high granularity tracking system is presented. The formalism takes advantage of the assumption that the derived corrections are small and consequently uses the first order linear expansion throughout. The algorithm consists of analytical linear expansion allowing for multiple nested fits. E.g. imposing a common vertex for groups of particle tracks is of particular interest. We present a consistent and complete recipe to impose constraints on any set of either implicit or explicit parameters. The baseline solution to the alignment problem is equivalent to the one described in [1]. The latter was derived using purely algebraic methods to reduce the initial large system of linear equations arising from separate fits of tracks and alignment parameters. The method presented here benefits from wider range of applications including problems with implicit vertex fit, physics constraints on track parameters, use of external information to constrain the geo...

  15. Integrated crystal mounting and alignment system for high-throughput biological crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Nordmeyer, Robert A.; Snell, Gyorgy P.; Cornell, Earl W.; Kolbe, William; Yegian, Derek; Earnest, Thomas N.; Jaklevic, Joseph M.; Cork, Carl W.; Santarsiero, Bernard D.; Stevens, Raymond C.

    2005-07-19

    A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.

  16. Integrated crystal mounting and alignment system for high-throughput biological crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Nordmeyer, Robert A. (San Leandro, CA); Snell, Gyorgy P. (Richmond, CA); Cornell, Earl W. (Antioch, CA); Kolbe, William F. (Moraga, CA); Yegian, Derek T. (Oakland, CA); Earnest, Thomas N. (Berkeley, CA); Jaklevich, Joseph M. (Lafayette, CA); Cork, Carl W. (Walnut Creek, CA); Santarsiero, Bernard D. (Chicago, IL); Stevens, Raymond C. (La Jolla, CA)

    2007-09-25

    A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.

  17. Designing aligned inorganic nanotubes at the electrode interface: towards highly efficient photovoltaic wires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tao; Qiu, Longbin; Yang, Zhibin; Peng, Huisheng [State Key Laboratory of Molecular, Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai (China); Kia, Hamid G. [Chemical Sciences and Materials Systems Lab, GM Global R and D, Warren, MI (United States)

    2012-09-04

    Aligned carbon and titanium dioxide nanotubes are designed at the electrode interface to improve the charge separation and transport. The resulting organic photovoltaic wire exhibits high power conversion efficiency. This flexible photovoltaic wire can be easily integrated into a textile by a conventional weaving technique. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Self-Assembly of Chip-Size Components with Cavity Structures: High-Precision Alignment and Direct Bonding without Thermal Compression for Hetero Integration

    Directory of Open Access Journals (Sweden)

    Mitsumasa Koyanagi

    2011-02-01

    Full Text Available New surface mounting and packaging technologies, using self-assembly with chips having cavity structures, were investigated for three-dimensional (3D and hetero integration of complementary metal-oxide semiconductors (CMOS and microelectromechanical systems (MEMS. By the surface tension of small droplets of 0.5 wt% hydrogen fluoride (HF aqueous solution, the cavity chips, with a side length of 3 mm, were precisely aligned to hydrophilic bonding regions on the surface of plateaus formed on Si substrates. The plateaus have micro-channels to readily evaporate and fully remove the liquid from the cavities. The average alignment accuracy of the chips with a 1 mm square cavity was found to be 0.4 mm. The alignment accuracy depends, not only on the area of the bonding regions on the substrates and the length of chip periphery without the widths of channels in the plateaus, but also the area wetted by the liquid on the bonding regions. The precisely aligned chips were then directly bonded to the substrates at room temperature without thermal compression, resulting in a high shear bonding strength of more than 10 MPa.

  19. Key technologies for high-accuracy large mesh antenna reflectors

    Science.gov (United States)

    Meguro, Akira; Harada, Satoshi; Watanabe, Mitsunobu

    2003-12-01

    Nippon Telephone and Telegram Corporation (NTT) continues to develop the modular mesh-type deployable antenna. Antenna diameter can be changed from 5 m to about 20 m by changing the number of modules used with surface accuracy better than 2.4 mm RMS (including all error factors) with sufficient deployment reliability. Key technologies are the antenna's structural design, the deployment mechanism, the design tool, the analysis tool, and modularized testing/evaluation methods. This paper describes our beam steering mechanism. Tests show that it yields a beam pointing accuracy of better than 0.1°. Based on the S-band modular mesh antenna reflector, the surface accuracy degradation factors that must be considered in designing the new antenna are partially identified. The influence of modular connection errors on surface accuracy is quantitatively estimated. Our analysis tool SPADE is extended to include the addition of joint gaps. The addition of gaps allows non-linear vibration characteristics due to gapping in deployment hinges to be calculated. We intend to design a new type of mesh antenna reflector. Our new goal is an antenna for Ku or Ka band satellite communication. For this mission, the surface shape must be 5 times more accurate than is required for an S-band antenna.

  20. High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning.

    Science.gov (United States)

    Erickson, Ariane E; Edmondson, Dennis; Chang, Fei-Chien; Wood, Dave; Gong, Alex; Levengood, Sheeny Lan; Zhang, Miqin

    2015-12-10

    The inability to produce large quantities of nanofibers has been a primary obstacle in advancement and commercialization of electrospinning technologies, especially when aligned nanofibers are desired. Here, we present a high-throughput centrifugal electrospinning (HTP-CES) system capable of producing a large number of highly-aligned nanofiber samples with high-yield and tunable diameters. The versatility of the design was revealed when bead-less nanofibers were produced from copolymer chitosan/polycaprolactone (C-PCL) solutions despite variations in polymer blend composition or spinneret needle gauge. Compared to conventional electrospinning techniques, fibers spun with the HTP-CES not only exhibited superior alignment, but also better diameter uniformity. Nanofiber alignment was quantified using Fast Fourier Transform (FFT) analysis. In addition, a concave correlation between the needle diameter and resultant fiber diameter was identified. This system can be easily scaled up for industrial production of highly-aligned nanofibers with tunable diameters that can potentially meet the requirements for various engineering and biomedical applications.

  1. Fabrication of highly aligned fibrous scaffolds for tissue regeneration by centrifugal spinning technology.

    Science.gov (United States)

    Loordhuswamy, Amalorpava Mary; Krishnaswamy, Venkat Raghavan; Korrapati, Purna Sai; Thinakaran, Senthilram; Rengaswami, Giri Dev Venkateshwarapuram

    2014-09-01

    Centrifugal spinning (C-Spin) is an emerging technology which uses centrifugal force to produce ultrafine fibers. Being a voltage free technique it can overcome the limitations of electrospinning. Owing to the unique characteristic features such as high surface area to volume ratio, porosity, mechanical strength and fiber alignment, centrifugal spun (C-spun) fibrous mat has a wide range of scope in various biomedical applications. Higher degree of fiber alignment can be effortlessly achieved by the C-Spin process. In order to prove the versatility of C-Spin system with respect to fiber alignment, Polycaprolactone (PCL) and gelatin were spun taking them as model polymers. The morphological analysis revealed that highly aligned ultrafine fibers with smooth surface are achieved by C-Spinning. Hydrophilicity, porosity and mechanical property results confirm that the C-spun mat is more suitable for tissue engineering applications. In vitro and in vivo experiments proved that the scaffolds are biocompatible and can be efficiently used as a wound dressing material.

  2. A Catalogue of Field Horizontal Branch Stars Aligned with High Velocity Clouds

    CERN Document Server

    Thom, C; Christlieb, N; Thom, Christopher; Gibson, Brad K.; Christlieb, Norbert

    2005-01-01

    We present a catalogue of 430 Field Horizontal Branch (FHB) stars, selected from the Hamburg/ESO Survey (HES), which fortuitously align with high column density neutral hydrogen (HI) High-Velocity Cloud (HVC) gas. These stars are ideal candidates for absorption-line studies of HVCs, attempts at which have been made for almost 40 years with little success. A parent sample of 8321 HES FHB stars was used to extract HI spectra along each line-of-sight, using the HI Parkes All-Sky Survey. All lines-of-sight aligned with high velocity HI emission with peak brightness temperatures greater than 120mK were examined. The HI spectra of these 430 probes were visually screened and cross-referenced with several HVC catalogues. In a forthcoming paper, we report on the results of high-resolution spectroscopic observations of a sample of stars drawn from this catalogue.

  3. A Robust Highly Aligned DNA Nanowire Array-Enabled Lithography for Graphene Nanoribbon Transistors.

    Science.gov (United States)

    Kang, Seok Hee; Hwang, Wan Sik; Lin, Zhiqun; Kwon, Se Hun; Hong, Suck Won

    2015-12-01

    Because of its excellent charge carrier mobility at the Dirac point, graphene possesses exceptional properties for high-performance devices. Of particular interest is the potential use of graphene nanoribbons or graphene nanomesh for field-effect transistors. Herein, highly aligned DNA nanowire arrays were crafted by flow-assisted self-assembly of a drop of DNA aqueous solution on a flat polymer substrate. Subsequently, they were exploited as "ink" and transfer-printed on chemical vapor deposited (CVD)-grown graphene substrate. The oriented DNA nanowires served as the lithographic resist for selective removal of graphene, forming highly aligned graphene nanoribbons. Intriguingly, these graphene nanoribbons can be readily produced over a large area (i.e., millimeter scale) with a high degree of feature-size controllability and a low level of defects, rendering the fabrication of flexible two terminal devices and field-effect transistors.

  4. High Accuracy and Real-Time Gated Viewing Laser Radar

    Institute of Scientific and Technical Information of China (English)

    Dong Li; Hua-Jun Yang; Shan-Pei Zhou

    2011-01-01

    A gated viewing laser radar has an excellent performance in underwater low light level imaging,and it also provides a viable solution to inhibit backscattering.In this paper,a gated viewing imaging system according to the demand for real-time imaging is presented,and then the simulation is used to analyze the performance of the real-time gated viewing system.The range accuracy performance is limited by the slice number,the width of gate,the delay time step,the initial delay time,as well as the system noise and atmospheric turbulence.The simulation results indicate that the highest range accuracy can be achieved when the system works with the optimal parameters.Finally,how to choose the optimal parameters has been researched.

  5. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework.

    Directory of Open Access Journals (Sweden)

    Qi Zheng

    2016-10-01

    Full Text Available Accurate mapping of next-generation sequencing (NGS reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost's algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost.

  6. GraphAlignment: Bayesian pairwise alignment of biological networks

    Directory of Open Access Journals (Sweden)

    Kolář Michal

    2012-11-01

    Full Text Available Abstract Background With increased experimental availability and accuracy of bio-molecular networks, tools for their comparative and evolutionary analysis are needed. A key component for such studies is the alignment of networks. Results We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks. The alignment incorporates information both from network vertices and network edges and is based on an explicit evolutionary model, allowing inference of all scoring parameters directly from empirical data. We compare the performance of our algorithm to an alternative algorithm, Græmlin 2.0. On simulated data, GraphAlignment outperforms Græmlin 2.0 in several benchmarks except for computational complexity. When there is little or no noise in the data, GraphAlignment is slower than Græmlin 2.0. It is faster than Græmlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case complexity grows approximately as O(N2.6. On empirical bacterial protein-protein interaction networks (PIN and gene co-expression networks, GraphAlignment outperforms Græmlin 2.0 with respect to coverage and specificity, albeit by a small margin. On large eukaryotic PIN, Græmlin 2.0 outperforms GraphAlignment. Conclusions The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs, and shows very good performance in identification of homologous vertices defined by high vertex and/or interaction similarity. The simplicity and generality of GraphAlignment edge scoring makes the algorithm an appropriate choice for global alignment of networks.

  7. High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures

    Science.gov (United States)

    Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max

    2003-01-01

    A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  8. Fully automated hybrid diode laser assembly using high precision active alignment

    Science.gov (United States)

    Böttger, Gunnar; Weber, Daniel; Scholz, Friedemann; Schröder, Henning; Schneider-Ramelow, Martin; Lang, Klaus-Dieter

    2016-03-01

    Fraunhofer IZM, Technische Universität Berlin and eagleyard Photonics present various implementations of current micro-optical assemblies for high quality free space laser beam forming and efficient fiber coupling. The laser modules shown are optimized for fast and automated assembly in small form factor packages via state-of-the-art active alignment machinery, using alignment and joining processes that have been developed and established in various industrial research projects. Operational wavelengths and optical powers ranging from 600 to 1600 nm and from 1 mW to several W respectively are addressed, for application in high-resolution laser spectroscopy, telecom and optical sensors, up to the optical powers needed in industrial and medical laser treatment.

  9. 基于光栅的贴片机对准系统的精度标定%Accuracy calibration of alignment system of chip mounter based on grating

    Institute of Scientific and Technical Information of China (English)

    刘文超; 钟毓宁; 王选择; 谢铁邦

    2009-01-01

    贴片机对准系统的精度标定是视觉定位的关键环节,直接影响贴片精度与贴片质量.为提高对准系统标定精度,提出了基于光栅的精度标定方法.将光栅图像灰度值之和形成一组周期固定的准正弦信号,通过像元平移把图像条纹灰度值变为李萨如图.对李萨如图及其数据进行分析与处理,直接计算出光学系统的分辨率,从而实现光学系统的精度标定.采用上述方法得到了与理论计算比较吻合的贴片机对准系统精度标定结果,并且利用标准大刻尺进行了标定验证实验.获取了标准大刻尺的图像,通过图像处理计算出刻线间的像素坐标差,将像素坐标差值与成像系统分辨率相乘计算出代表实测的刻线间距.对实验数据的误差分析表明,这种标定方法精度高,偏差<0.2 μm,满足贴片机的对准精度要求.%Accuracy calibration is a key of the vision alignment system of a high-precision chip mounter,which affects the precision and quality of the chip mounting greatly.For improving the calibration accuracy of the alignment system,this paper presents a new calibration method based on a grating.With proposed method,a group of data similar to quasi-sinusoid signals is abtained by calculating the sum of gray-value of pixels in each column.Then,these calculated data are elaborately converted into a Lissajous figure by pixel translation.The size mapping coefficient between the grating groove and their image pixels of the optical alignment system is calculated to realize the accurate calibration,obtained calibration results indicate that it is coincident with the theoretical calculation results well.A big standard ruler is used to verify the calibration experiment,the error analysis on the experimental data shows that the accuracy error by proposed method is less than 0.2 μn,which can meet the precision needs of vision alignment systems of automatic chip mounters.

  10. Design of a high linearity and high gain accuracy analog baseband circuit for DAB receiver

    Science.gov (United States)

    Li, Ma; Zhigong, Wang; Jian, Xu; Yiqiang, Wu; Junliang, Wang; Mi, Tian; Jianping, Chen

    2015-02-01

    An analog baseband circuit of high linearity and high gain accuracy for a digital audio broadcasting receiver is implemented in a 0.18-μm RFCMOS process. The circuit comprises a 3rd-order active-RC complex filter (CF) and a programmable gain amplifier (PGA). An automatic tuning circuit is also designed to tune the CF's pass band. Instead of the class-A fully differential operational amplifier (FDOPA) adopted in the conventional CF and PGA design, a class-AB FDOPA is specially employed in this circuit to achieve a higher linearity and gain accuracy for its large current swing capability with lower static current consumption. In the PGA circuit, a novel DC offset cancellation technique based on the MOS resistor is introduced to reduce the settling time significantly. A reformative switching network is proposed, which can eliminate the switch resistor's influence on the gain accuracy of the PGA. The measurement result shows the gain range of the circuit is 10-50 dB with a 1-dB step size, and the gain accuracy is less than ±0.3 dB. The OIP3 is 23.3 dBm at the gain of 10 dB. Simulation results show that the settling time is reduced from 100 to 1 ms. The image band rejection is about 40 dB. It only draws 4.5 mA current from a 1.8 V supply voltage.

  11. Alignment of Kr/sup 35+/ np states in high velocity charge transfer collisions

    Energy Technology Data Exchange (ETDEWEB)

    Wohrer, K.; Ben Salah, F.; Rozet, J.P.; Chetioui, A.; Touati, A.; Bouisset, P.; Vernhet, D.; Stephan, C.; Gayet, R.

    1987-07-01

    Experimental alignments of some Kr/sup 35+/ np states (n less than or equal to 4) populated by electron capture in 3 GeV Kr/sup 36+/ ion-atom collisions are presented. A full comparison with theoretical CDW calculations is performed, which provides a further test of the applicability of this theory at the low side of the high energy range (upsilon/sub p//upsilon/sub i/, upsilon/sub f/ approx. = 2 to 4).

  12. Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes.

    Science.gov (United States)

    Zhang, Guang; Liu, Changhong; Fan, Shoushan

    2013-01-01

    Using a simple and precise instrument system, we directly measured the thermo-physical properties of one-dimensional highly aligned carbon nanotubes (CNTs). A kind of CNT-based macroscopic materials named super aligned carbon nanotube (SACNT) buckypapers was measured in our experiment. We defined a new one-dimensional parameter, the "thermal transfer speed" to characterize the thermal damping mechanisms in the SACNT buckypapers. Our results indicated that the SACNT buckypapers with different densities have obviously different thermal transfer speeds. Furthermore, we found that the thermal transfer speed of high-density SACNT buckypapers may have an obvious damping factor along the CNTs aligned direction. The anisotropic thermal diffusivities of SACNT buckypapers could be calculated by the thermal transfer speeds. The thermal diffusivities obviously increase as the buckypaper-density increases. For parallel SACNT buckypapers, the thermal diffusivity could be as high as 562.2 ± 55.4 mm(2)/s. The thermal conductivities of these SACNT buckypapers were also calculated by the equation k = Cpαρ.

  13. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks

    CERN Document Server

    Chou, C -W; Koelemeij, J C J; Wineland, D J; Rosenband, T

    2009-01-01

    We have constructed an optical clock with a fractional frequency inaccuracy of 8.6e-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser-cool the Al+ ion and detect its quantum state. The frequency of the 1S0->3P0 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0e-18. The two clocks exhibit a relative stability of 2.8e-15/ sqrt(tau), and a fractional frequency difference of -1.8e-17, consistent with the accuracy limit of the older clock.

  14. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks

    Science.gov (United States)

    Chou, C. W.; Hume, D. B.; Koelemeij, J. C. J.; Wineland, D. J.; Rosenband, T.

    2010-02-01

    We have constructed an optical clock with a fractional frequency inaccuracy of 8.6×10-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser cool the Al+ ion and detect its quantum state. The frequency of the S01↔P03 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0×10-18. The two clocks exhibit a relative stability of 2.8×10-15τ-1/2, and a fractional frequency difference of -1.8×10-17, consistent with the accuracy limit of the older clock.

  15. Alignment validation

    Energy Technology Data Exchange (ETDEWEB)

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  16. A high-throughput processing service for retention time alignment of complex proteomics and metabolomics LC-MS data

    NARCIS (Netherlands)

    Ahmad, Isthiaq; Suits, Frank; Hoekman, Berend; Swertz, Morris A.; Byelas, Heorhiy; Dijkstra, Martijn; Hooft, Rob; Katsubo, Dmitry; van Breukelen, Bas; Bischoff, Rainer; Horvatovich, Peter

    2011-01-01

    Warp2D is a novel time alignment approach, which uses the overlapping peak volume of the reference and sample peak lists to correct misleading peak shifts. Here, we present an easyto- use web interface for high-throughput Warp2D batch processing time alignment service using the Dutch Life Science Gr

  17. High-Mobility Aligned Pentacene Films Grown by Zone-Casting

    DEFF Research Database (Denmark)

    Duffy, Claudia M.; Andreasen, Jens Wenzel; Breiby, Dag W.;

    2008-01-01

    We investigate the growth and field-effect transistor performance of aligned pentacene thin films deposited by zone-casting from a solution of unsubstituted pentacene molecules in a chlorinated solvent. Polarized optical microscopy shows that solution processed pentacene films grow as large......-of-plane 00n reflections up to at least the seventh order, and a pronounced in-plane anisotropy with the a-axis of the triclinic unit cell predominantly aligned parallel to the zone-casting direction and the ab-plane parallel to the substrate. The average charge carrier mobility of the zone-cast pentacene...... devices depends strongly on the underlying dielectric. Divinylsiloxane-bis-benzocyclobutene (BCB) resin is found to be a suitable gate dielectric allowing reproducible film deposition and high field-effect mobilities up to 0.4−0.7 cm2/(V s) and on/off ratios of 106−107. A small mobility anisotropy...

  18. Subfamily logos: visualization of sequence deviations at alignment positions with high information content

    Directory of Open Access Journals (Sweden)

    Beitz Eric

    2006-06-01

    Full Text Available Abstract Background Recognition of relevant sequence deviations can be valuable for elucidating functional differences between protein subfamilies. Interesting residues at highly conserved positions can then be mutated and experimentally analyzed. However, identification of such sites is tedious because automated approaches are scarce. Results Subfamily logos visualize subfamily-specific sequence deviations. The display is similar to classical sequence logos but extends into the negative range. Positive, upright characters correspond to residues which are characteristic for the subfamily, negative, upside-down characters to residues typical for the remaining sequences. The symbol height is adjusted to the information content of the alignment position. Residues which are conserved throughout do not appear. Conclusion Subfamily logos provide an intuitive display of relevant sequence deviations. The method has proven to be valid using a set of 135 aligned aquaporin sequences in which established subfamily-specific positions were readily identified by the algorithm.

  19. Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays.

    Science.gov (United States)

    Wei, Yaguang; Wu, Wenzhuo; Guo, Rui; Yuan, Dajun; Das, Suman; Wang, Zhong Lin

    2010-09-01

    This article presents an effective approach for patterned growth of vertically aligned ZnO nanowire (NW) arrays with high throughput and low cost at wafer scale without using cleanroom technology. Periodic hole patterns are generated using laser interference lithography on substrates coated with the photoresist SU-8. ZnO NWs are selectively grown through the holes via a low-temperature hydrothermal method without using a catalyst and with a superior control over orientation, location/density, and as-synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass. This combined approach demonstrates a novel method of manufacturing large-scale patterned one-dimensional nanostructures on various substrates for applications in energy harvesting, sensing, optoelectronics, and electronic devices.

  20. Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

    Science.gov (United States)

    Guerra, Carlos

    2017-01-01

    In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires) as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i) the gas diffusion coefficient inside such arrays, (ii) the time between collisions of molecules with the nanocylinder walls (mean time of flight), (iii) the surface impingement rate, and (iv) the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes. PMID:28144565

  1. Spray-coating route for highly aligned and large-scale arrays of nanowires.

    Science.gov (United States)

    Assad, Ossama; Leshansky, Alexander M; Wang, Bin; Stelzner, Thomas; Christiansen, Silke; Haick, Hossam

    2012-06-26

    Technological implementation of nanowires (NWs) requires these components to be organized with controlled orientation and density on various substrates. Here, we report on a simple and efficient route for the deposition of highly ordered and highly aligned NW arrays on a wide range of receiver substrates, including silicon, glass, metals, and flexible plastics with controlled density. The deposition approach is based on spray-coating of a NW suspension under controlled conditions of the nozzle flow rate, droplet size of the sprayed NWs suspension, spray angle, and the temperature of the receiver substrate. The dynamics of droplet generation is understood by a combined action of shear forces and capillary forces. Provided that the size of the generated droplet is comparable to the length of the single NW, the shear-driven elongation of the droplets results presumably in the alignment of the confined NW in the spraying direction. Flattening the droplets upon their impact with the substrate yields fast immobilization of the spray-aligned NWs on the surface due to van der Waals attraction. The availability of the spray-coating technique in the current microelectronics technology would ensure immediate implementation in production lines, with minimal changes in the fabrication design and/or auxiliary tools used for this purpose.

  2. Sensitivity analysis for high accuracy proximity effect correction

    Science.gov (United States)

    Thrun, Xaver; Browning, Clyde; Choi, Kang-Hoon; Figueiro, Thiago; Hohle, Christoph; Saib, Mohamed; Schiavone, Patrick; Bartha, Johann W.

    2015-10-01

    A sensitivity analysis (SA) algorithm was developed and tested to comprehend the influences of different test pattern sets on the calibration of a point spread function (PSF) model with complementary approaches. Variance-based SA is the method of choice. It allows attributing the variance of the output of a model to the sum of variance of each input of the model and their correlated factors.1 The objective of this development is increasing the accuracy of the resolved PSF model in the complementary technique through the optimization of test pattern sets. Inscale® from Aselta Nanographics is used to prepare the various pattern sets and to check the consequences of development. Fraunhofer IPMS-CNT exposed the prepared data and observed those to visualize the link of sensitivities between the PSF parameters and the test pattern. First, the SA can assess the influence of test pattern sets for the determination of PSF parameters, such as which PSF parameter is affected on the employments of certain pattern. Secondly, throughout the evaluation, the SA enhances the precision of PSF through the optimization of test patterns. Finally, the developed algorithm is able to appraise what ranges of proximity effect correction is crucial on which portion of a real application pattern in the electron beam exposure.

  3. Calibration results using highly aberrated images for aligning the JWST instruments to the telescope

    Science.gov (United States)

    Smith, Koby Z.; Acton, D. Scott; Gallagher, Ben B.; Knight, J. Scott; Dean, Bruce H.; Jurling, Alden S.; Zielinski, Thomas P.

    2016-07-01

    The James Webb Space Telescope (JWST) project is an international collaboration led by NASA's Goddard Space Flight Center (GSFC) in Greenbelt, MD. JWST is NASA's flagship observatory that will operate nearly a million miles away from Earth at the L2 Lagrange point. JWST's optical design is a three-mirror anastigmat with four main optical components; 1) the eighteen Primary Mirror Segment Assemblies (PMSA), 2) a single Secondary Mirror Assembly (SMA), 3) an Aft-Optics Subsystem (AOS) consisting of a Tertiary Mirror and Fine Steering Mirror, and 4) an Integrated Science Instrument Module consisting of the various instruments for JWST. JWST's optical system has been designed to accommodate a significant amount of alignment capability and risk with the PMSAs and SMA having rigid body motion available on-orbit just for alignment purposes. However, the Aft-Optics Subsystem (AOS) and Integrated Science Instrument Module (ISIM) are essentially fixed optical subsystems within JWST, and therefore the cryogenic alignment of the AOS to the ISIM is critical to the optical performance and mission success of JWST. In support of this cryogenic alignment of the AOS to ISIM, an array of fiber optic sources, known as the AOS Source Plate Assembly (ASPA), are placed near the intermediate image location of JWST (between the secondary and tertiary mirrors) during thermal vacuum ground-test operations. The AOS produces images of the ASPA fiber optic sources at the JWST focal surface location, where they are captured by the various science instruments. In this manner, the AOS provides an optical yardstick by which the instruments within ISIM can evaluate their relative positions to and the alignment of the AOS to ISIM can be quantified. However, since the ASPA is located at the intermediate image location of the JWST three-mirror anastigmat design, the images of these fiber optic sources produced by the AOS are highly aberrated with approximately 2-3μm RMS wavefront error consisting

  4. Co-alignment between Environment Risk, Capital Structure, Growth and High-tech Firm Performance

    Institute of Scientific and Technical Information of China (English)

    LI Yan-xi; BAO Shi-ze

    2007-01-01

    To examine whether there is a co-alignment relationship between environment risk, capital structure, growth and high-tech firm performance, the environment risk was measured from the viewpoint of environment change, the long-term debt ratio was adopted as the measure of the capital structure, and the total asset growth and sales growth were chosen to measure the growth of high-tech firms. Regression analysis shows that there is a significant relationship between environment risk, growth and performance of hightech firms measured by the return on equity and cash flow, respectively.

  5. Distributed High Accuracy Peer-to-Peer Localization in Mobile Multipath Environments

    CERN Document Server

    Ekambaram, Venkatesan

    2010-01-01

    In this paper we consider the problem of high accuracy localization of mobile nodes in a multipath-rich environment where sub-meter accuracies are required. We employ a peer to peer framework where the vehicles/nodes can get pairwise multipath-degraded ranging estimates in local neighborhoods together with a fixed number of anchor nodes. The challenge is to overcome the multipath-barrier with redundancy in order to provide the desired accuracies especially under severe multipath conditions when the fraction of received signals corrupted by multipath is dominating. We invoke a message passing analytical framework based on particle filtering and reveal its high accuracy localization promise through simulations.

  6. High-accuracy Subdaily ERPs from the IGS

    Science.gov (United States)

    Ray, J. R.; Griffiths, J.

    2012-04-01

    Since November 2000 the International GNSS Service (IGS) has published Ultra-rapid (IGU) products for near real-time (RT) and true real-time applications. They include satellite orbits and clocks, as well as Earth rotation parameters (ERPs) for a sliding 48-hr period. The first day of each update is based on the most recent GPS and GLONASS observational data from the IGS hourly tracking network. At the time of release, these observed products have an initial latency of 3 hr. The second day of each update consists of predictions. So the predictions between about 3 and 9 hr into the second half are relevant for true RT uses. Originally updated twice daily, the IGU products since April 2004 have been issued every 6 hr, at 3, 9, 15, and 21 UTC. Up to seven Analysis Centers (ACs) contribute to the IGU combinations. Two sets of ERPs are published with each IGU update, observed values at the middle epoch of the first half and predicted values at the middle epoch of the second half. The latency of the near RT ERPs is 15 hr while the predicted ERPs, based on projections of each AC's most recent determinations, are issued 9 hr ahead of their reference epoch. While IGU ERPs are issued every 6 hr, each set represents an integrated estimate over the surrounding 24 hr. So successive values are temporally correlated with about 75% of the data being common; this fact should be taken into account in user assimilations. To evaluate the accuracy of these near RT and predicted ERPs, they have been compared to the IGS Final ERPs, available about 11 to 17 d after data collection. The IGU products improved dramatically in the earlier years but since about 2008.0 the performance has been stable and excellent. During the last three years, RMS differences for the observed IGU ERPs have been about 0.036 mas and 0.0101 ms for each polar motion component and LOD respectively. (The internal precision of the reference IGS ERPs over the same period is about 0.016 mas for polar motion and 0

  7. A study for high accuracy real-time 3D ultrasonic location system.

    Science.gov (United States)

    Zhou, Ping; Ha, Zhang; Zhou, Kangyuan

    2006-12-22

    We discussed a high accuracy real-time 3D ultrasonic location system in this article. The signal received was sampled after it passed the TGC and the logarithmic amplifier. Inside the DSP, we used the dynamic threshold tracing technique to improve the accuracy. The result was processed with Weighted Arithmetic Average. By testing the 40 kHz 3D location system, we have arrived at the accuracy of 1 cm.

  8. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior st

  9. Development of high accuracy and resolution geoid and gravity maps

    Science.gov (United States)

    Gaposchkin, E. M.

    1986-01-01

    Precision satellite to satellite tracking can be used to obtain high precision and resolution maps of the geoid. A method is demonstrated to use data in a limited region to map the geopotential at the satellite altitude. An inverse method is used to downward continue the potential to the Earth surface. The method is designed for both satellites in the same low orbit.

  10. Highly ordered and highly aligned two-dimensional binary superlattice of a SWNT/cylindrical-micellar system.

    Science.gov (United States)

    Lim, Sung-Hwan; Jang, Hyung-Sik; Ha, Jae-Min; Kim, Tae-Hwan; Kwasniewski, Pawel; Narayanan, Theyencheri; Jin, Kyeong Sik; Choi, Sung-Min

    2014-11-10

    We report a highly ordered intercalated hexagonal binary superlattice of hydrophilically functionalized single-walled carbon nanotubes (p-SWNTs) and surfactant (C12 E5 ) cylindrical micelles. When p-SWNTs (with a diameter slightly larger than that of the C12 E5 cylinders) were added to the hexagonally packed C12 E5 cylindrical-micellar system, p-SWNTs positioned themselves in such a way that the free-volume entropies for both p-SWNTs and C12 E5 cylinders were maximized, thus resulting in the intercalated hexagonal binary superlattice. In this binary superlattice, a hexagonal array of p-SWNTs is embedded in a honeycomb lattice of C12 E5 cylinders. The intercalated hexagonal binary superlattice can be highly aligned in one direction by an oscillatory shear field and remains aligned after the shear is removed.

  11. In-Situ Alignment of MnBi Crystals Induced by High Magnetic Field above Curie Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Yong-Sheng; ZHANG Jin-Cang; REN Zhong-Ming; CAO Shi-Xun

    2007-01-01

    @@ Above Curie temperature, MnBi crystals are aligned in situ along the c-axis in a Bi matrix by a high fabrication magnetic field Hf of 10 T. Magnetic testing shows a pronounced anisotropy in magnetization in directions normal and parallel to the fabrication field, resulting from the alignment. The successful alignment may result from the fact that the easy magnetization direction is along the c-axis of MnBi and the high fabrication field of 10 T is large enough to rotate the MnBi crystal to this direction even though the temperature is above the Curie temperature.

  12. Alignment of high-throughput sequencing data inside in-memory databases.

    Science.gov (United States)

    Firnkorn, Daniel; Knaup-Gregori, Petra; Lorenzo Bermejo, Justo; Ganzinger, Matthias

    2014-01-01

    In times of high-throughput DNA sequencing techniques, performance-capable analysis of DNA sequences is of high importance. Computer supported DNA analysis is still an intensive time-consuming task. In this paper we explore the potential of a new In-Memory database technology by using SAP's High Performance Analytic Appliance (HANA). We focus on read alignment as one of the first steps in DNA sequence analysis. In particular, we examined the widely used Burrows-Wheeler Aligner (BWA) and implemented stored procedures in both, HANA and the free database system MySQL, to compare execution time and memory management. To ensure that the results are comparable, MySQL has been running in memory as well, utilizing its integrated memory engine for database table creation. We implemented stored procedures, containing exact and inexact searching of DNA reads within the reference genome GRCh37. Due to technical restrictions in SAP HANA concerning recursion, the inexact matching problem could not be implemented on this platform. Hence, performance analysis between HANA and MySQL was made by comparing the execution time of the exact search procedures. Here, HANA was approximately 27 times faster than MySQL which means, that there is a high potential within the new In-Memory concepts, leading to further developments of DNA analysis procedures in the future.

  13. High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gohier, Aurelien; Kim, Ki-Hwan; Maurice, Jean-Luc; Cojocaru, Costel Sorin [Laboratoire de Physique des Interfaces et des Couches Minces, LPICM, Ecole Polytechnique, route de Saclay, 91128 Palaiseau Cedex (France); Laik, Barbara; Pereira-Ramos, Jean-Pierre [Institut de Chimie et des Materiaux Paris-Est, ICMPE/GESMAT, UMR 7182 CNRS-UPEC, 2 rue Henri Dunant, 94320 Thiais (France); Van, Pierre Tran [Renault SAS, DREAM/DETA/SEE, 1, avenue du Golf, 78288 Guyancourt (France)

    2012-05-15

    The concept of a hybrid nanostructured collector made of thin vertically aligned carbon nanotubes (CNTs) decorated with Si nanoparticles provides high power density anodes in lithium-ion batteries. An impressive rate capability is achieved due to the efficient electronic conduction of CNTs combined with well defined electroactive Si nanoparticles: capacities of 3000 mAh g{sup -1} at 1.3C and 800 mAh g{sup -1} at 15C are achieved. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. High accuracy magnetic field sensors with wide operation temperature range

    Science.gov (United States)

    Vasil'evskii, I. S.; Vinichenko, A. N.; Rubakin, D. I.; Bolshakova, I. A.; Kargin, N. I.

    2016-10-01

    n+InAs(Si) epitaxial thin films heavily doped by silicon and Hall effect magnetic field sensors based on this structures have been fabricated and studied. We have demonstrated the successful formation of highly doped InAs thin films (∼100 nm) with the different intermediate layer arrangement and appropriate electron mobility values. Hall sensors performance parameters have been measured in wide temperature range. Obtained sensitivity varied from 1 to 40 Ω/T, while the best linearity and lower temperature coefficient have been found in the higher doped samples with lower electron mobility. We attribute this to the electron system degeneracy and decreased phonon contribution to electron mobility and resistance.

  15. A High Accuracy Method for Semi-supervised Information Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Tratz, Stephen C.; Sanfilippo, Antonio P.

    2007-04-22

    Customization to specific domains of dis-course and/or user requirements is one of the greatest challenges for today’s Information Extraction (IE) systems. While demonstrably effective, both rule-based and supervised machine learning approaches to IE customization pose too high a burden on the user. Semi-supervised learning approaches may in principle offer a more resource effective solution but are still insufficiently accurate to grant realistic application. We demonstrate that this limitation can be overcome by integrating fully-supervised learning techniques within a semi-supervised IE approach, without increasing resource requirements.

  16. High-accuracy 3-D modeling of cultural heritage: the digitizing of Donatello's "Maddalena".

    Science.gov (United States)

    Guidi, Gabriele; Beraldin, J Angelo; Atzeni, Carlo

    2004-03-01

    Three-dimensional digital modeling of Heritage works of art through optical scanners, has been demonstrated in recent years with results of exceptional interest. However, the routine application of three-dimensional (3-D) modeling to Heritage conservation still requires the systematic investigation of a number of technical problems. In this paper, the acquisition process of the 3-D digital model of the Maddalena by Donatello, a wooden statue representing one of the major masterpieces of the Italian Renaissance which was swept away by the Florence flood of 1966 and successively restored, is described. The paper reports all the steps of the acquisition procedure, from the project planning to the solution of the various problems due to range camera calibration and to material non optically cooperative. Since the scientific focus is centered on the 3-D model overall dimensional accuracy, a methodology for its quality control is described. Such control has demonstrated how, in some situations, the ICP-based alignment can lead to incorrect results. To circumvent this difficulty we propose an alignment technique based on the fusion of ICP with close-range digital photogrammetry and a non-invasive procedure in order to generate a final accurate model. In the end detailed results are presented, demonstrating the improvement of the final model, and how the proposed sensor fusion ensure a pre-specified level of accuracy.

  17. R3D Align: global pairwise alignment of RNA 3D structures using local superpositions

    Science.gov (United States)

    Rahrig, Ryan R.; Leontis, Neocles B.; Zirbel, Craig L.

    2010-01-01

    Motivation: Comparing 3D structures of homologous RNA molecules yields information about sequence and structural variability. To compare large RNA 3D structures, accurate automatic comparison tools are needed. In this article, we introduce a new algorithm and web server to align large homologous RNA structures nucleotide by nucleotide using local superpositions that accommodate the flexibility of RNA molecules. Local alignments are merged to form a global alignment by employing a maximum clique algorithm on a specially defined graph that we call the ‘local alignment’ graph. Results: The algorithm is implemented in a program suite and web server called ‘R3D Align’. The R3D Align alignment of homologous 3D structures of 5S, 16S and 23S rRNA was compared to a high-quality hand alignment. A full comparison of the 16S alignment with the other state-of-the-art methods is also provided. The R3D Align program suite includes new diagnostic tools for the structural evaluation of RNA alignments. The R3D Align alignments were compared to those produced by other programs and were found to be the most accurate, in comparison with a high quality hand-crafted alignment and in conjunction with a series of other diagnostics presented. The number of aligned base pairs as well as measures of geometric similarity are used to evaluate the accuracy of the alignments. Availability: R3D Align is freely available through a web server http://rna.bgsu.edu/R3DAlign. The MATLAB source code of the program suite is also freely available for download at that location. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: r-rahrig@onu.edu PMID:20929913

  18. Traffic Sign Recognition with High Accuracy Using Mixture of Experts

    Directory of Open Access Journals (Sweden)

    Reza Azad

    2014-06-01

    Full Text Available Traffic signs provide the driver various information for safe and efficient navigation. Automatic recognition of traffic signs is, therefore, important for automated driving or driver assistance systems.In this paper, a new and efficient traffic sign recognition system based on extracting diverse feature set, and applying mixture of experts'architecture on the extracted featuresis proposed.In the result part, the proposed approach is evaluated on the German traffic sign recognition and Grigorescu traffic signsbenchmark and high recognition rate is achieved.Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in traffic sign recognition that is the recognition rate of 99.94% for the training set and 98.50% for the test set.In addition, experimental results have demonstrated our method robust in successful recognition of traffic signs even with variant lighting.

  19. Gated viewing and high-accuracy three-dimensional laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a fast and high-accuracy three-dimensional (3-D) imaging laser radar that can achieve better than 1 mm range accuracy for half a million pixels in less than 1 s. Our technique is based on range-gating segmentation. We combine the advantages of gated viewing with our new fast...

  20. Gated viewing and high-accuracy three-dimensional laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a fast and high-accuracy three-dimensional (3-D) imaging laser radar that can achieve better than 1 mm range accuracy for half a million pixels in less than 1 s. Our technique is based on range-gating segmentation. We combine the advantages of gated viewing with our new fast...

  1. Seeking the perfect alignment

    CERN Multimedia

    2002-01-01

    The first full-scale tests of the ATLAS Muon Spectrometer are about to begin in Prévessin. The set-up includes several layers of Monitored Drift Tubes Chambers (MDTs) and will allow tests of the performance of the detectors and of their highly accurate alignment system.   Monitored Drift Chambers in Building 887 in Prévessin, where they are just about to be tested. Muon chambers are keeping the ATLAS Muon Spectrometer team quite busy this summer. Now that most people go on holiday, the beam and alignment tests for these chambers are just starting. These chambers will measure with high accuracy the momentum of high-energy muons, and this implies very demanding requirements for their alignment. The MDT chambers consist of drift tubes, which are gas-filled metal tubes, 3 cm in diameter, with wires running down their axes. With high voltage between the wire and the tube wall, the ionisation due to traversing muons is detected as electrical pulses. With careful timing of the pulses, the position of the muon t...

  2. A High-Throughput, High-Accuracy System-Level Simulation Framework for System on Chips

    Directory of Open Access Journals (Sweden)

    Guanyi Sun

    2011-01-01

    Full Text Available Today's System-on-Chips (SoCs design is extremely challenging because it involves complicated design tradeoffs and heterogeneous design expertise. To explore the large solution space, system architects have to rely on system-level simulators to identify an optimized SoC architecture. In this paper, we propose a system-level simulation framework, System Performance Simulation Implementation Mechanism, or SPSIM. Based on SystemC TLM2.0, the framework consists of an executable SoC model, a simulation tool chain, and a modeling methodology. Compared with the large body of existing research in this area, this work is aimed at delivering a high simulation throughput and, at the same time, guaranteeing a high accuracy on real industrial applications. Integrating the leading TLM techniques, our simulator can attain a simulation speed that is not slower than that of the hardware execution by a factor of 35 on a set of real-world applications. SPSIM incorporates effective timing models, which can achieve a high accuracy after hardware-based calibration. Experimental results on a set of mobile applications proved that the difference between the simulated and measured results of timing performance is within 10%, which in the past can only be attained by cycle-accurate models.

  3. The accuracy of QCD perturbation theory at high energies

    CERN Document Server

    Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2016-01-01

    We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  4. Fabrication of Aligned-Carbon-Nanotube-Composite Paper with High and Anisotropic Conductivity

    OpenAIRE

    Yuki Fujitsuka; Takahide Oya

    2012-01-01

    A functional carbon-nanotube (CNT)-composite paper is described in which the CNTs are aligned. This “aligned-CNT composite paper” is a flexible composite material that has CNT functionality (e.g., electrical conductivity) despite being a paper. An advanced fabrication method was developed to overcome the problem of previous CNT-composite papers, that is, reduced conductivity due to random CNT alignment. Aligning the CNTs by using an alternating current (AC) field was hypothesized to increase ...

  5. Methodology of High Accuracy and Resolution 3D Geological Model Generation and Application

    Institute of Scientific and Technical Information of China (English)

    吴键; 曹代勇; 邓爱居; 李东津; 蒋涛; 翟光华

    2004-01-01

    By generating a high accuracy and high resolution geological model in Liuchu oil field, the technique of geological modeling is expanded and involved in primary geological study, making the sand bodies and reservoir be easily described in detail. The 3D visualization and 3D interactive editing of geological structure model are the key for modeling procedure. And a high accuracy and resolution geological model has been well applied in optimizing the production scheme.

  6. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner

    DEFF Research Database (Denmark)

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan;

    2009-01-01

    MOTIVATION: The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary...

  7. High-speed, high-accuracy large range 3D measurement

    Science.gov (United States)

    An, Yatong; Zhang, Song

    2017-05-01

    This paper presents such a high-speed, high-accuracy structured light technique that could achieve large range 3D shape measurement. The enabling method is our recently proposed system calibration that splits the calibration process into two stages. Specifically, we calibrate the intrinsic parameters at a near position with a regular size yet precisely fabricated calibration target, and then calibrate the extrinsic parameters with the assistance of an additional large range yet low accuracy low cost 3D scanner (i.e., Kinect). We developed a system that achieved 500 Hz with a resolution 2304 × 1400. The field of view (FOV) of our structured light system is 0.9 m(W) × 1.4 m(H) × 0.8 m(D). Our experimental data demonstrated that such a large range structured light system can achieve an mean error of 0.13 mm with a standard deviation of 1.18 mm by measuring a 304.8 mm diameter sphere. We further experimentally demonstrated that proposed method can simultaneously measure multiple objects or large dynamically changing objects.

  8. A three axis turntable's online initial state measurement method based on the high-accuracy laser gyro SINS

    Science.gov (United States)

    Gao, Chunfeng; Wei, Guo; Wang, Qi; Xiong, Zhenyu; Wang, Qun; Long, Xingwu

    2016-10-01

    As an indispensable equipment in inertial technology tests, the three-axis turntable is widely used in the calibration of various types inertial navigation systems (INS). In order to ensure the calibration accuracy of INS, we need to accurately measure the initial state of the turntable. However, the traditional measuring method needs a lot of exterior equipment (such as level instrument, north seeker, autocollimator, etc.), and the test processing is complex, low efficiency. Therefore, it is relatively difficult for the inertial measurement equipment manufacturers to realize the self-inspection of the turntable. Owing to the high precision attitude information provided by the laser gyro strapdown inertial navigation system (SINS) after fine alignment, we can use it as the attitude reference of initial state measurement of three-axis turntable. For the principle that the fixed rotation vector increment is not affected by measuring point, we use the laser gyro INS and the encoder of the turntable to provide the attitudes of turntable mounting plat. Through this way, the high accuracy measurement of perpendicularity error and initial attitude of the three-axis turntable has been achieved.

  9. Study of High Precision Dynamic Initial Alignment Technology for Inertial Navigation System%惯导系统高精度动态对准技术研究

    Institute of Scientific and Technical Information of China (English)

    先治文; 胡小平; 练军想; 李冠南

    2013-01-01

    惯性导航初始对准技术是惯性导航的关键技术之一,而动态对准技术可以增强惯导系统的环境适应性.就GPS位置信息辅助下的惯性导航系统高精度动态对准技术进行研究.首先构建了15状态的Kalman滤波器,分析验证了Kalman滤波参数对于对准精度和对准速度的影响,在一定范围内,适当调整滤波参数,可以较好地改善滤波性能;然后在对准过程中使用了两位置转动观测增强的方法,提高了系统可观性,正确地估计比传感器件的零偏误差,并在纯惯导中加以补偿;最后通过跑车实验进行行车动态对准,达到了对准后24h纯惯导定位误差优于1 nmil的精度.%Inertial navigation is a process of integration, the main task of initial alignment of inertial navigation is determine the initial values of the integration and gyro drift errors and accelerometer biases. The initial alignment is one of the key technique of inertial navigation , in which dynamic initial alignment can improve the application of inertial navigation. In the paper, a high precision dynamic initial alignment technique is proposed for the GPS aided inertial navigation system (INS) on the moving base. This paper proposes the Kalman filter of 15 states, analyzes the effects of the Kalman parameters on the alignment accuracy and speed, showes that it will improve the performace of the filter that changing the Kalman paramaters properly. On the other hand, this paper uses the two-position a-lignment to improve the observability of the system, estimated the sensor-errores correctly then compensated them in the process of inertial navigation. Finally, the field-test used the high precision dynamic initial alignment technique, and the position error of navigation o-vermatch 1 nmile for 24 hours navigation.

  10. State of the art in high accuracy high detail DTMs derived from ALS

    Science.gov (United States)

    Pfeifer, N.; Briese, C.; Mandlburger, G.; Höfle, B.; Ressl, C.

    2009-04-01

    High-resolution Digital Terrain Models (DTMs) representing the bare Earth are a fundamental input for various applications in geomorphology. Airborne laser scanning (ALS) is established as a standard tool for deriving DTMs over large areas with unprecedented accuracy. Due to advances in sensor technology and in processing algorithms in the recent years the obtainable accuracy is still increasing. Accuracy is understood as the deviation from the elevation at one specified point to its true value. These advances may lead to a more efficient data acquisition, if reduced accuracy is targeted, but also allow data acquisition schemes with more detail becoming visible, i.e. small features of the relief. For the latter a high internal precision, i.e. repeatability, is necessary. The essential advances in the technologies are improvements in ranging through the introduction of full-waveform (FWF) laser scanning and rigorous models of strip adjustment. In FWF laser scanning the time-dependent strength of the backscattered signal is recorded. This is opposed to the analogue processing of the incoming energy and storage of one arrival time of discrete-return systems. In a simple one-echo situation, the arrival time corresponds to the maximum of the waveform. By applying a decomposition of the full waveform into single echoes, which are transformed copies of the emitted signal, it is possible to retrieve more echoes per shot. Additionally, if echoes of individual scatterers are overlapping, FWF sensors might be able to separate them, whereas discrete return systems might rather only be able to derive one collective arrival time. Finally, the overlay of two echoes does not have the maxima at the same positions as the individual echoes. Additionally, the pulse repetition rate of laser scanners has increased, which allows higher point densities and therefore higher richness of detail. These advances in data acquisition increase the precision within one ALS strip. Deficiencies in

  11. Orbit IMU alignment: Error analysis

    Science.gov (United States)

    Corson, R. W.

    1980-01-01

    A comprehensive accuracy analysis of orbit inertial measurement unit (IMU) alignments using the shuttle star trackers was completed and the results are presented. Monte Carlo techniques were used in a computer simulation of the IMU alignment hardware and software systems to: (1) determine the expected Space Transportation System 1 Flight (STS-1) manual mode IMU alignment accuracy; (2) investigate the accuracy of alignments in later shuttle flights when the automatic mode of star acquisition may be used; and (3) verify that an analytical model previously used for estimating the alignment error is a valid model. The analysis results do not differ significantly from expectations. The standard deviation in the IMU alignment error for STS-1 alignments was determined to the 68 arc seconds per axis. This corresponds to a 99.7% probability that the magnitude of the total alignment error is less than 258 arc seconds.

  12. Alignment of primary Al3Ni phases in hypereutectic Al-Ni alloys with various compositions under high magnetic fields

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Al-Ni hypereutectic alloys with various compositions were solidified under various magnetic field con- ditions to investigate the alignment of primary Al3Ni phases. The results showed that the application of high magnetic fields could improve the homogeneity of the primary Al3Ni phase distribution and induce the alignment of primary Al3Ni phases in the direction perpendicular to the magnetic field direction to form chain-like structures. However, the alignment was different from the orientation of the Al3Ni phases. Furthermore, the degree of the alignment decreased with the increasing concentration of Ni element. This can be attributed to the combination effects of high magnetic field and alloy composition on the concentration field around the crystallized primary Al3Ni crystals.

  13. Alignment of primary Al3Ni phases in hypereutectic AI-Ni alloys with various compositions under high magnetic fields

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; WANG ZhongYing; LIU Tie; WANG ChunJiang; ZHANG Chao; HE JiCheng

    2009-01-01

    Al-Ni hypereutectic alloys with various compositions were solidified under various magnetic field conditions to investigate the alignment of primary Al3Ni phases. The results showed that the application of high magnetic fields could improve the homogeneity of the primary Al3Ni phase distribution and induce the alignment of primary Al3Ni phases in the direction perpendicular to the magnetic field direction to form chain-like structures. However, the alignment was different from the orientation of the Al3Ni phases. Furthermore, the degree of the alignment decreased with the increasing concentration of Ni element. This can be attributed to the combination effects of high magnetic field and alloy composition on the concentration field around the crystallized primary Al3Ni crystals.

  14. High-accuracy determination for optical indicatrix rotation in ferroelectric DTGS

    OpenAIRE

    O.S.Kushnir; O.A.Bevz; O.G.Vlokh

    2000-01-01

    Optical indicatrix rotation in deuterated ferroelectric triglycine sulphate is studied with the high-accuracy null-polarimetric technique. The behaviour of the effect in ferroelectric phase is referred to quadratic spontaneous electrooptics.

  15. High-accuracy interferometric measurements of flatness and parallelism of a step gauge

    CSIR Research Space (South Africa)

    Kruger, OA

    2001-01-01

    Full Text Available for the calibration of step gauges to a high accuracy. A system was also developed for interferometric measurements of the flatness and parallelism of gauge block faces for use in uncertainty calculations....

  16. High Accuracy Reference Network (HARN), Points generated from coordinates supplied by NGS, Published in 1993, MARIS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This High Accuracy Reference Network (HARN) dataset, was produced all or in part from Field Survey/GPS information as of 1993. It is described as 'Points generated...

  17. Third order optical nonlinear studies on highly conducting vertically aligned carbon nanoflakes

    Science.gov (United States)

    Singh, Mukesh; Kumar, Indrajeet; Khare, Alika; Agarwal, Pratima

    2016-12-01

    Third order optical nonlinearity of carbon nanoflakes were studied by modified single beam closed aperture Z-scan technique using a continuous wave He-Ne laser at 632.8 nm. Thin films of vertically aligned carbon nanoflakes were synthesized on corning glass substrate at substrate temperature of 400 °C by hot filament chemical vapor deposition. Films were characterized by scanning electron microscope and atomic force microscopy which confirmed that carbon nanoflakes were vertically aligned on the substrate. Temperature dependent electrical conductivity measurements in temperature range of 300-480 K under high vacuum (˜10-5 mbar) showed that conductivity of the films was increased almost linearly with increasing temperature with a weak temperature dependence. The negative temperature coefficient of resistance indicates semiconducting behavior of the films. Nonlinear refractive index coefficient (n 2) of the films was found to be of the order of 10-5 cm2 W-1, which can be important for the applications in the field of nonlinear photonics.

  18. Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays

    KAUST Repository

    Wei, Yaguang

    2010-09-08

    This article presents an effective approach for patterned growth of vertically aligned ZnO nanowire (NW) arrays with high throughput and low cost at wafer scale without using cleanroom technology. Periodic hole patterns are generated using laser interference lithography on substrates coated with the photoresist SU-8. ZnO NWs are selectively grown through the holes via a low-temperature hydrothermal method without using a catalyst and with a superior control over orientation, location/density, and as-synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass. This combined approach demonstrates a novel method of manufacturing large-scale patterned one-dimensional nanostructures on various substrates for applications in energy harvesting, sensing, optoelectronics, and electronic devices. © 2010 American Chemical Society.

  19. Photopolymerization of Diacetylene on Aligned Multiwall Carbon Nanotube Microfibers for High-Performance Energy Devices.

    Science.gov (United States)

    Ulaganathan, Mani; Hansen, Reinack Varghese; Drayton, Nateisha; Hingorani, Hardik; Kutty, R Govindan; Joshi, Hrishikesh; Sreejith, Sivaramapanicker; Liu, Zheng; Yang, Jinglei; Zhao, Yanli

    2016-12-07

    Linear two-dimensional materials have recently attracted an intense interest for supercapacitors because of their potential uses as electrodes in next-generation wearable electronics. However, enhancing the electrochemical properties of these materials without complicated structural modifications remains a challenge. Herein, we present the preparation of a hybrid electrode system via polydiacetylene (PDA) cloaking on the surface of aligned multiwall carbon nanotubes (MWCNTs) through self-assembly based in situ photopolymerization. This strategy eliminates the need for initiators and binders that hinder electrochemical performance in conventional conducting polymer based composite electrodes. As noncovalent PDA cloaking did not alter the chemical structure of MWCNTs, high inherent conductivity from sp(2) hybridized carbon was preserved. The resulting hybrid microfiber (MWCNT@PDA) exhibited a significant increase in specific capacitance (1111 F g(-1)) when compared to bare MWCNTs (500 F g(-1)) and PDA (666.7 F g(-1)) in a voltage window of 0-1.2 V at a current density of 3 A g(-1) in 0.5 M K2SO4 electrolyte. The specific capacitance was retained (ca. 95%) after 7000 charge/discharge cycles. The present results suggest that aligned MWCNTs cloaked with conjugated polymers could meet the demands for future flexible electronics.

  20. Highly uniform hole spacing micro brushes based on aligned carbon nanotube arrays

    Science.gov (United States)

    Yang, Zhi; Zhu, Xingzhong; Huang, Xiaolu; Cheng, Yingwu; Liu, Yun; Geng, Huijuan; Wu, Yue; Su, Yanjie; Wei, Hao; Zhang, Yafei

    2013-11-01

    Highly uniform hole spacing micro brushes were fabricated based on aligned carbon nanotube (CNT) arrays synthesized by chemical vapor deposition method with the assistance of anodic aluminum oxide (AAO) template. Different micro brushes from CNT arrays were constructed on silicon, glass, and polyimide substrates, respectively. The micro brushes had highly uniform hole spacing originating from the regularly periodic pore structure of AAO template. The CNT arrays, serving as bristles, were firmly grafted on the substrates. The brushes can easily clean particles with scale of micrometer on the surface of silicon wafer and from the narrow spaces between the electrodes in a series of cleaning experiments. The results show the potential application of the CNT micro brushes as a cleaning tool in microelectronics manufacture field.

  1. High-harmonic probing of electronic coherence in dynamically aligned molecules

    CERN Document Server

    Kraus, P M; Gijsbertsen, A; Lucchese, R R; Rohringer, N; Wörner, H J

    2013-01-01

    We introduce and demonstrate a new approach to measuring coherent electron wave packets using high-harmonic spectroscopy. By preparing a molecule in a coherent superposition of electronic states, we show that electronic coherence opens previously unobserved high-harmonic-generation channels that connect distinct but coherently related electronic states. Performing the measurements in dynamically aligned nitric oxide (NO) molecules we observe the complex temporal evolution of the electronic coherence under coupling to nuclear motion. Choosing a weakly allowed transition to prepare the wave packet, we demonstrate an unprecedented sensitivity that arises from optical interference between coherent and incoherent pathways. This mechanism converts a 0.1 $%$ excitation fraction into a $\\sim$20 $%$ signal modulation.

  2. Data supporting the high-accuracy haplotype imputation using unphased genotype data as the references

    Directory of Open Access Journals (Sweden)

    Wenzhi Li

    2016-09-01

    Full Text Available The data presented in this article is related to the research article entitled “High-accuracy haplotype imputation using unphased genotype data as the references” which reports the unphased genotype data can be used as reference for haplotyping imputation [1]. This article reports different implementation generation pipeline, the results of performance comparison between different implementations (A, B, and C and between HiFi and three major imputation software tools. Our data showed that the performances of these three implementations are similar on accuracy, in which the accuracy of implementation-B is slightly but consistently higher than A and C. HiFi performed better on haplotype imputation accuracy and three other software performed slightly better on genotype imputation accuracy. These data may provide a strategy for choosing optimal phasing pipeline and software for different studies.

  3. ClustalXeed: a GUI-based grid computation version for high performance and terabyte size multiple sequence alignment

    Directory of Open Access Journals (Sweden)

    Kim Taeho

    2010-09-01

    Full Text Available Abstract Background There is an increasing demand to assemble and align large-scale biological sequence data sets. The commonly used multiple sequence alignment programs are still limited in their ability to handle very large amounts of sequences because the system lacks a scalable high-performance computing (HPC environment with a greatly extended data storage capacity. Results We designed ClustalXeed, a software system for multiple sequence alignment with incremental improvements over previous versions of the ClustalX and ClustalW-MPI software. The primary advantage of ClustalXeed over other multiple sequence alignment software is its ability to align a large family of protein or nucleic acid sequences. To solve the conventional memory-dependency problem, ClustalXeed uses both physical random access memory (RAM and a distributed file-allocation system for distance matrix construction and pair-align computation. The computation efficiency of disk-storage system was markedly improved by implementing an efficient load-balancing algorithm, called "idle node-seeking task algorithm" (INSTA. The new editing option and the graphical user interface (GUI provide ready access to a parallel-computing environment for users who seek fast and easy alignment of large DNA and protein sequence sets. Conclusions ClustalXeed can now compute a large volume of biological sequence data sets, which were not tractable in any other parallel or single MSA program. The main developments include: 1 the ability to tackle larger sequence alignment problems than possible with previous systems through markedly improved storage-handling capabilities. 2 Implementing an efficient task load-balancing algorithm, INSTA, which improves overall processing times for multiple sequence alignment with input sequences of non-uniform length. 3 Support for both single PC and distributed cluster systems.

  4. High finesse optical fiber cavities: optimal alignment and robust stabilization (Conference Presentation)

    Science.gov (United States)

    Ratschbacher, Lothar; Gallego, Jose; Ghosh, Sutapa; Alavi, Seyed; Alt, Wolfgang; Martinez-Dorantes, Miguel; Meschede, Dieter

    2016-04-01

    Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications. Some of the most promising areas of application of these optical micro-resonators with high finesse and small mode volume are in the field of quantum communication and information. The resonator-enhanced light-matter interaction, for instance, provide basis for the realization of efficient optical interfaces between stationary matter-based quantum nodes and flying single-photon qubits. To date fiber Fabry-Perot cavities have been successfully applied in experiments interfacing single photons with a wide range of quantum systems, including cold atoms, ions and solid state emitters as well as quantum optomechanical experiments. Here we address some important practical questions that arise during the experimental implementation of high finesse fiber Fabry-Perot cavities: How can optimal fiber cavity alignment be achieved and how can the efficiency of coupling light from the optical fibers to the cavity mode and vice versa be characterized? How should optical fiber cavities be constructed and stabilized to fulfill their potential for miniaturization and integration into robust scientific and technological devices that can operate outside of dedicated laboratory environments in the future? The first two questions we answer with an analytic mode matching calculation that relates the alignment dependent fiber-to-cavity mode-matching efficiency to the easily measurable dip in the reflected light power at the cavity resonance. Our general analysis provides a simple recipe for the optimal alignment of fiber Fabry-Perot cavities and moreover for the first time explains the asymmetry in their reflective line shapes. The latter question we explore by investigating a novel, intrinsically rigid fiber cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal

  5. A highly sensitive hydrogen peroxide amperometric sensor based on MnO{sub 2}-modified vertically aligned multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Xu Bin; Ye Minling; Yu Yuxiang [Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong (China); Zhang Weide, E-mail: zhangwd@scut.edu.cn [Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong (China)

    2010-07-26

    In this report, a highly sensitive amperometric sensor based on MnO{sub 2}-modified vertically aligned multiwalled carbon nanotubes (MnO{sub 2}/VACNTs) for determination of hydrogen peroxide (H{sub 2}O{sub 2}) was fabricated by electrodeposition. The morphology of the nanocomposite was characterized by scanning electron microscopy, energy-dispersive X-ray spectrometer and X-ray diffraction. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were applied to investigate the electrochemical properties of the MnO{sub 2}/VACNTs nanocomposite electrode. The mechanism for the electrochemical reaction of H{sub 2}O{sub 2} at the MnO{sub 2}/VACNTs nanocomposite electrode was also discussed. In borate buffer (pH 7.8, 0.20 M), the MnO{sub 2}/VACNTs nanocomposite electrode exhibits a linear dependence (R = 0.998) on the concentration of H{sub 2}O{sub 2} from 1.2 x 10{sup -6} M to 1.8 x 10{sup -3} M, a high sensitivity of 1.08 x 10{sup 6} {mu}A M{sup -1} cm{sup -2} and a detection limit of 8.0 x 10{sup -7} M (signal/noise = 3). Meanwhile, the MnO{sub 2}/VACNTs nanocomposite electrode is also highly resistant towards typical inorganic salts and some biomolecules such as acetic acid, citric acid, uric acid and D-(+)-glucose, etc. In addition, the sensor based on the MnO{sub 2}/VACNTs nanocomposite electrode was applied for the determination of trace of H{sub 2}O{sub 2} in milk with high accuracy, demonstrating its potential for practical application.

  6. High-Order Kinetic Relaxation Schemes as High-Accuracy Poisson Solvers

    CERN Document Server

    Mendoza, M; Herrmann, H J

    2015-01-01

    We present a new approach to find accurate solutions to the Poisson equation, as obtained from the steady-state limit of a diffusion equation with strong source terms. For this purpose, we start from Boltzmann's kinetic theory and investigate the influence of higher order terms on the resulting macroscopic equations. By performing an appropriate expansion of the equilibrium distribution, we provide a method to remove the unnecessary terms up to a desired order and show that it is possible to find, with high level of accuracy, the steady-state solution of the diffusion equation for sizeable Knudsen numbers. In order to test our kinetic approach, we discretise the Boltzmann equation and solve the Poisson equation, spending up to six order of magnitude less computational time for a given precision than standard lattice Boltzmann methods.

  7. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    Science.gov (United States)

    Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-01

    The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H+) and hydroxide (OH-) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H+ and OH- ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the relative resistance variations of the sensor increases linearly with increasing the pH values in the range from 5 to 9 and the response time ranges from 0.2 s to 22.6 s. The pH sensor also shows high performance in mechanical bendability, which benefited from the combination of flexible PET substrates and SWNTs. The SWNT-based flexible pH sensor demonstrates great potential in a wide range of areas due to its simple structure, excellent performance, low power consumption, and compatibility with integrated circuits.

  8. Integrated Alignment and Inspection Platform for High Precision Optical Continuous Images

    Directory of Open Access Journals (Sweden)

    Chuen-Horng Lin

    2014-11-01

    Full Text Available This platform is mainly intended to be used as a facility for high precision optical continuous images. Then, with a fixed pattern being selected, this platform can quickly search, with resistance to variation, the mark that corresponds to the pattern in order to achieve the alignment and inspection target. Since the pattern is a minute component with multiple shapes and unstable features, this platform can automatically acquire it through the system or select it by user. The targets searched by the mark include light, intensity, occlusion and rotation. It then, calculates the variances of light, intensity, occlusion and rotation individually with the mark under detection, search and pattern to achieve the inspection function. Therefore, combined with a quick and accurate mark detection and the search method, this platform builds an interface integrated platform that is easy to operate and user-friendly.

  9. Preparation of highly aligned silicon oxide nanowires with stable intensive photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M., E-mail: duraia_physics@yahoo.co [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Mansurov, Z.A. [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Tokmolden, S. [Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Beall, Gary W. [Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States)

    2010-02-15

    In this work we report the successful formation of highly aligned vertical silicon oxide nanowires. The source of silicon was from the substrate itself without any additional source of silicon. X-ray measurement demonstrated that our nanowires are amorphous. Photoluminescence measurements were conducted through 18 months and indicated that there is a very good intensive emission peaks near the violet regions. The FTIR measurements indicated the existence of peaks at 463, 604, 795 and a wide peak at 1111 cm{sup -1} and this can be attributed to Si-O-Si and Si-O stretching vibrations. We also report the formation of the octopus-like silicon oxide nanowires and the growth mechanism of these structures was discussed.

  10. Dynamics of capillary infiltration of liquids into a highly aligned multi-walled carbon nanotube film.

    Science.gov (United States)

    Boncel, Sławomir; Walczak, Krzysztof Z; Koziol, Krzysztof K K

    2011-01-01

    The physical compatibility of a highly aligned carbon nanotube (HACNT) film with liquids was established using a fast and convenient experimental protocol. Two parameters were found to be decisive for the infiltration process. For a given density of nanotube packing, the thermodynamics of the infiltration process (wettability) were described by the contact angle between the nanotube wall and a liquid meniscus (θ). Once the wettability criterion (θ capillarity for a steady process (Lucas-Washburn law), where the nanoscale capillary force, here supported by gravity, is compensated by viscous drag. This most general theory of capillarity can be applied in a prediction of both wettability of HACNT films and the dynamics of capillary rise in the intertube space in various technological applications.

  11. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts.

    Science.gov (United States)

    Hu, Yue; Kang, Lixing; Zhao, Qiuchen; Zhong, Hua; Zhang, Shuchen; Yang, Liangwei; Wang, Zequn; Lin, Jingjing; Li, Qingwen; Zhang, Zhiyong; Peng, Lianmao; Liu, Zhongfan; Zhang, Jin

    2015-01-20

    Single-walled carbon nanotube (SWNT)-based electronics have been regarded as one of the most promising candidate technologies to replace or supplement silicon-based electronics in the future. These applications require high-density horizontally aligned SWNT arrays. During the past decade, significant efforts have been directed towards growth of high-density SWNT arrays. However, obtaining SWNT arrays with suitable density and quality still remains a big challenge. Herein, we develop a rational approach to grow SWNT arrays with ultra-high density using Trojan catalysts. The density can be as high as 130 SWNTs μm(-1). Field-effect transistors fabricated with our SWNT arrays exhibit a record drive current density of -467.09 μA μm(-1) and an on-conductance of 233.55 μS μm(-1). Radio frequency transistors fabricated on these samples exhibit high intrinsic fT and fMAX of 6.94 and 14.01 GHz, respectively. These results confirm our high-density SWNT arrays are strong candidates for applications in electronics.

  12. Magnetic field alignment of randomly oriented, high aspect ratio silicon microwires into vertically oriented arrays.

    Science.gov (United States)

    Beardslee, Joseph A; Sadtler, Bryce; Lewis, Nathan S

    2012-11-27

    External magnetic fields have been used to vertically align ensembles of silicon microwires coated with ferromagnetic nickel films. X-ray diffraction and image analysis techniques were used to quantify the degree of vertical orientation of the microwires. The degree of vertical alignment and the minimum field strength required for alignment were evaluated as a function of the wire length, coating thickness, magnetic history, and substrate surface properties. Nearly 100% of 100 μm long, 2 μm diameter, Si microwires that had been coated with 300 nm of Ni could be vertically aligned by a 300 G magnetic field. For wires ranging from 40 to 60 μm in length, as the length of the wire increased, a higher degree of alignment was observed at lower field strengths, consistent with an increase in the available magnetic torque. Microwires that had been exposed to a magnetic sweep up to 300 G remained magnetized and, therefore, aligned more readily during subsequent magnetic field alignment sweeps. Alignment of the Ni-coated Si microwires occurred at lower field strengths on hydrophilic Si substrates than on hydrophobic Si substrates. The magnetic field alignment approach provides a pathway for the directed assembly of solution-grown semiconductor wires into vertical arrays, with potential applications in solar cells as well as in other electronic devices that utilize nano- and microscale components as active elements.

  13. MaxAlign: maximizing usable data in an alignment

    DEFF Research Database (Denmark)

    Oliveira, Rodrigo Gouveia; Sackett, Peter Wad; Pedersen, Anders Gorm

    2007-01-01

    BACKGROUND: The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. RESULTS: MaxAlign is a program that optimizes...... the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns - the alignment area - by selecting the optimal subset of sequences to exclude from the alignment. MaxAlign can be used prior to phylogenetic and bioinformatical...... analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAlign's performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign...

  14. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy.

    Science.gov (United States)

    Derevianko, Andrei; Dzuba, V A; Flambaum, V V

    2012-11-02

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f(12) ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks.

  15. SU-E-J-138: An IGRT QA Device for Measuring with Tenths-Millimeter Accuracy KV and MV Isocenter Congruence, Couch Travel and Laser Alignment of Accelerators Used for SRS and SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Brezovich, I; Popple, R; Duan, J; Huang, M; Benhabib, S; Shen, S; Cardan, R; Wu, X [University of Alabama Birmingham, Birmingham, AL (United States)

    2014-06-01

    Purpose: To develop a practical device having sufficient accuracy for daily QA tests of accelerators used for SRS and SBRT. Methods: The UAB (Universal Alignment Ball) consists of a 6.35 mm (1/4 inch) diameter tungsten sphere located concentrically within a 25.4 mm (1 inch) diameter acrylic plastic (PMMA) sphere. The spheres are embedded in polystyrene foam, which, in turn, is surrounded by a cylindrical PMMA shell. The UAB is placed on the couch and aligned with wall lasers according to marks that have known positions in relation to the center of the spheres. Using planar and cone beam images the couch is shifted till the surface of the PMMA sphere matches Eclipse-generated circular contours. Anterior and lateral MV images taken with small MLC openings allow measurement of distance between kV and MV isocenter, laser and MLC alignment. Measurements were taken over a one-month period. Results: Artifacts from the tungsten sphere were confined within the PMMA sphere and did not affect cone beam localization of the sphere boundary, allowing 0.1 mm precise alignment with a computer-generated circle centered at kV isocenter. In tests extending over a one-month period, the distance between kV and MV isocenters along the vertical, longitudinal and lateral directions was 0.125 +/−0.06, 0.19 +/−0.08, and 0.02 +/−0.08 mm, respectively. Laser misalignment along these directions was 0.34 +/- 0.15, 0.74 +/−0.29, and 0.49 +/−0.22 mm. Automated couch shifts moved the spheres to within 0.1 mm of the selected position. The center of a 1cmx1cm MLC-defined field remained within +/−0.2 mm of the tungsten sphere center as the gantry was rotated. Conclusion: The UAB is practical for daily end-to-end QA tests of accelerator alignment. It provides tenths-mm accuracy for measuring agreement of kV and MV isocenters, couch motions, gantry flex and laser alignment.

  16. The effect of pattern overlap on the accuracy of high resolution electron backscatter diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Vivian, E-mail: v.tong13@imperial.ac.uk [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Jiang, Jun [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Britton, T. Ben [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-15

    High resolution, cross-correlation-based, electron backscatter diffraction (EBSD) measures the variation of elastic strains and lattice rotations from a reference state. Regions near grain boundaries are often of interest but overlap of patterns from the two grains could reduce accuracy of the cross-correlation analysis. To explore this concern, patterns from the interior of two grains have been mixed to simulate the interaction volume crossing a grain boundary so that the effect on the accuracy of the cross correlation results can be tested. It was found that the accuracy of HR-EBSD strain measurements performed in a FEG-SEM on zirconium remains good until the incident beam is less than 18 nm from a grain boundary. A simulated microstructure was used to measure how often pattern overlap occurs at any given EBSD step size, and a simple relation was found linking the probability of overlap with step size. - Highlights: • Pattern overlap occurs at grain boundaries and reduces HR-EBSD accuracy. • A test is devised to measure the accuracy of HR-EBSD in the presence of overlap. • High pass filters can sometimes, but not generally, improve HR-EBSD measurements. • Accuracy of HR-EBSD remains high until the reference pattern intensity is <72%. • 9% of points near a grain boundary will have significant error for 200nm step size in Zircaloy-4.

  17. PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences.

    Science.gov (United States)

    Mirarab, Siavash; Nguyen, Nam; Guo, Sheng; Wang, Li-San; Kim, Junhyong; Warnow, Tandy

    2015-05-01

    We introduce PASTA, a new multiple sequence alignment algorithm. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy and scalability of the leading alignment methods (including SATé). We also show that trees estimated on PASTA alignments are highly accurate--slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is faster than SATé, highly parallelizable, and requires relatively little memory.

  18. Nucleation, Growth, and Alignment of Poly(3-hexylthiophene) Nanofibers for High-Performance OFETs.

    Science.gov (United States)

    Persson, Nils E; Chu, Ping-Hsun; McBride, Michael; Grover, Martha; Reichmanis, Elsa

    2017-02-24

    Conjugated semiconducting polymers have been the subject of intense study for over two decades with promising advances toward a printable electronics manufacturing ecosystem. These materials will deliver functional electronic devices that are lightweight, flexible, large-area, and cost-effective, with applications ranging from biomedical sensors to solar cells. Synthesis of novel molecules has led to significant improvements in charge carrier mobility, a defining electrical performance metric for many applications. However, the solution processing and thin film deposition of conjugated polymers must also be properly controlled to obtain reproducible device performance. This has led to an abundance of research on the process-structure-property relationships governing the microstructural evolution of the model semicrystalline poly(3-hexylthiophene) (P3HT) as applied to organic field effect transistor (OFET) fabrication. What followed was the production of an expansive body of work on the crystallization, self-assembly, and charge transport behavior of this semiflexible polymer whose strong π-π stacking interactions allow for highly creative methods of structural control, including the modulation of solvent and solution properties, flow-induced crystallization and alignment techniques, structural templating, and solid-state thermal and mechanical processing. This Account relates recent progress in the microstructural control of P3HT thin films through the nucleation, growth, and alignment of P3HT nanofibers. Solution-based nanofiber formation allows one to develop structural order prior to thin film deposition, mitigating the need for intricate deposition processes and enabling the use of batch and continuous chemical processing steps. Fiber growth is framed as a traditional crystallization problem, with the balance between nucleation and growth rates determining the fiber size and ultimately the distribution of grain boundaries in the solid state. Control of

  19. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lu; Shao, Jinyou, E-mail: jyshao@mail.xjtu.edu.cn; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-15

    Highlights: • The flexible chemiresistive pH sensor based on two-terminal microsensors eliminating the need for a reference electrode, is simple in structure and can be fabricated on a variety of substrates such as PET, PI and PVC. • SWNTs as an ideal one dimensional material are carboxyl-functionalized to make the pH sensor show high sensitivity and outstanding flexibility for practical applications. • DEP technique is used to manipulate and position SWNTs into appropriate locations and desired formations to improve the metal-nanotube interface and highly rapid detection of pH value, resulting in better overall device performance. • Mechanical bendability of the pH sensor, which arises from the combination of flexible PET substrates and SWNTs, offer a significant improvement for applications that are difficult or impossible to achieve with traditional sensors on rigid substrates. - Abstract: The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H{sup +}) and hydroxide (OH{sup −}) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H{sup +} and OH{sup −} ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results

  20. Development of an automatic calibration device for high-accuracy low temperature thermometers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the analysis and investigation of calibration systems for high-accuracy low temperature thermometers,a new facility for automatic calibration of high-accuracy low temperature thermometers was developed.Continuous calibration for multiple points can be made automatically with this device.According to the thermophysical characteristics of the constant-temperature block in this device,segmented Fuzzy-PID (proportional-integral-differential) algorithm was applied.The experimental results showed that the temperature fluctuation was smaller than ±0.005 K in 30 min.Therefore,this new device can fully meet the calibration requirement of high-precision low temperature thermometers.

  1. Highly Aligned Poly(vinylidene fluoride-co-hexafluoro propylene) Nanofibers via Electrospinning Technique.

    Science.gov (United States)

    Han, Tae-Hwan; Nirmala, R; Kim, Tae Woo; Navamathavan, R; Kim, Hak Yong; Park, Soo Jin

    2016-01-01

    We report on the simple way of obtaining aligned poly(vinylidiene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofibers by electrospinning process. The collector drum rotation speed was adjusted to prepare well aligned PVDF-HFP nanofibers. The degree of alignment and the orientation of PVDF-HFP nanofibers can be significantly altered by varying the speed of collector drum rotation. The resultant PVDF-HFP nanofibers were systematically characterized. From the scanning electron microscopy data, it was found that the electrospun PVDF-HFP nanofibers were formed with well-aligned nature. The X-ray diffraction results revealed that the electrospun PVDF-HFP nanofibers with β-phase can be formed by the increased collector drum rotation speed. Overall, the collector rotation speed during the electrospinning process plays an important role in obtaining well-aligned and improved characteristics of PVDF-HFP nanofibers.

  2. glyXalign: high-throughput migration time alignment preprocessing of electrophoretic data retrieved via multiplexed capillary gel electrophoresis with laser-induced fluorescence detection-based glycoprofiling.

    Science.gov (United States)

    Behne, Alexander; Muth, Thilo; Borowiak, Matthias; Reichl, Udo; Rapp, Erdmann

    2013-08-01

    Glycomics has become a rapidly emerging field and monitoring of protein glycosylation is needed to ensure quality and consistency during production processes of biologicals such as therapeutic antibodies or vaccines. Glycoanalysis via multiplexed CGE with LIF detection (xCGE-LIF) represents a powerful technique featuring high resolution, high sensitivity as well as high-throughput performance. However, sample data retrieved from this method exhibit challenges for downstream computational analysis due to intersample migration time shifts as well as stretching and compression of electropherograms. Here, we present glyXalign, a freely available and easy-to-use software package to automatically correct for distortions in xCGE-LIF based glycan data. We demonstrate its ability to outperform conventional algorithms such as dynamic time warping and correlation optimized warping in terms of processing time and alignment accuracy for high-resolution datasets. Built upon a set of rapid algorithms, the tool includes an intuitive graphical user interface and allows full control over all parameters. Additionally, it visualizes the alignment process and enables the user to readjust misaligned results. Software and documentation are available at http://www.glyxera.com. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Template synthesis and magnetic properties of highly aligned barium hexaferrite (BaFe{sub 12}O{sub 19}) nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Boneng [College of Material Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029 (China); Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029 (China); Li, Congju, E-mail: congjuli@gmail.com [College of Material Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029 (China); Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029 (China); Wang, Jiaona [College of Material Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029 (China); Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029 (China)

    2013-06-15

    Using electrospun poly(ethylene terephthalate)/citric acid (PET/CA) microfibers as the template, highly aligned barium hexaferrite (BaFe{sub 12}O{sub 19}) nanofibers with diameters of ca. 800 nm and lengths up to 2 cm were synthesized by sol–gel precursor coating technique and subsequent high temperature calcination. Structural and morphological investigations revealed that individual BaFe{sub 12}O{sub 19} nanofibers were composed of numerous nanocrystallites stacking alternatively along the nanofiber axis, the average grain size was ca. 225 nm and the single crystallites on each BaFe{sub 12}O{sub 19} nanofibers were of random orientations. The formation mechanism of aligned BaFe{sub 12}O{sub 19} nanofibers was proposed based on experiment. The magnetic measurement revealed that the aligned BaFe{sub 12}O{sub 19} nanofibers exhibited orientation-dependent magnetic behavior with respect to the applied magnetic field. The magnetic anisotropy with the easy magnetizing axis along the length of the nanofibers was due to the shape anisotropy. Such aligned magnetic nanofibers can find relevance in application requiring an orientation-dependent physical response. - Highlights: ► A simple method was used to synthesize the aligned BaFe{sub 12}O{sub 19} nanofibers. ► The aligned BaFe{sub 12}O{sub 19} nanofibers display an obvious orientation-dependent magnetic behavior. ► The method can be readily applied to other aligned one-dimensional inorganic nanomaterials.

  4. Study on High Accuracy Topographic Mapping via UAV-based Images

    Science.gov (United States)

    Chi, Yun-Yao; Lee, Ya-Fen; Tsai, Shang-En

    2016-10-01

    Unmanned aerial vehicle (UAV) provides a promising tool for the acquisition of such multi-temporal aerial stereo photos and high-resolution digital surface models. Recently, the flight of UAVs operates with high degrees of autonomy by the global position system and onboard digit camera and computer. The UAV-based mapping can be obtained faster and cheaper, but its accuracy is anxious. This paper aims to identify the integration ability of high accuracy topographic map via the image of quad-rotors UAV and ground control points (GCPs). The living survey data is collected in the Errn river basins area in Tainan, Taiwan. The high accuracy UAV-based topographic in the study area is calibrated by the local coordinate of GCPs using the total station with the accuracy less than 1/2000. The comparison results show the accuracy of UAV-based topographic is accepted by overlapping. The results can be a reference for the practice works of mapping survey in earth.

  5. High-intracavity-power thin-disk laser for the alignment of molecules

    CERN Document Server

    Deppe, Bastian; Kränkel, Christian; Küpper, Jochen

    2015-01-01

    We propose a novel approach for strong alignment of gas-phase molecules for experiments at arbitrary repetition rates. A high-intracavity-power continuous-wave laser will provide the necessary ac electric field of $\\!10^{10}$- $10^{11}~\\text{W}/\\text{cm}^2$. We demonstrate thin-disk lasers based on Yb:YAG and Yb:Lu$_2$O$_3$ in a linear high-finesse resonator providing intracavity power levels in excess of 100~kW at pump power levels on the order of 50~W. The multi-longitudinal-mode operation of this laser avoids spatial-hole burning even in a linear standing-wave resonator. The system will be scaled up as in-vacuum system to allow for the generation of fields of $10^{11}~\\text{W}/\\text{cm}^2$. This system will be directly applicable for experiments at modern X-ray light sources, such as synchrotrons or free-electron lasers, which operate at various very high repetition rates. This would allow to record molecular movies through temporally resolved diffractive imaging of fixed-in-space molecules, as well as the...

  6. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Ruifeng; Meng Chuizhou; Zhu Feng; Li Qunqing; Liu Changhong; Fan Shoushan; Jiang Kaili, E-mail: JiangKL@tsinghua.edu.cn [Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084 (China)

    2010-08-27

    Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 {mu}g cm{sup -2}), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co{sub 3}O{sub 4} or Mn{sub 2}O{sub 3} nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance ({approx}500 F g{sup -1}, including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g{sup -1} at 155 A g{sup -1}).

  7. RECAT - Redundant Channel Alignment Technique

    Science.gov (United States)

    2016-06-07

    distribution unlimited 13. SUPPLEMENTARY NOTES NUWC2015 14. ABSTRACT A problem in the analog-to- digital , (A/D), conversion of broadband tape recorded...Alignment Technique, is used to align data taken on one pass with data from any other pass. The accuracy of this alignment is a function of the digital ...Redundant Channel Alignment Technique; analog-to- digital ; A/D; Broadband Bearing Time Processing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  8. Application of Matlab/Simulink in Transfer Alignment Accuracy Estimation%应用 Matlab/Simulink 实现传递对准精度评估仿真*

    Institute of Scientific and Technical Information of China (English)

    何金刚; 江云

    2014-01-01

    In this paper ,the application of Matlab/Simulink for designing the accuracy estimate for transfer alignment is presented .The strong calculating function of Matlab and easy for modeling of Simulink is used by the research .Fligh trace and estimate filter is realized with matlab program .Inertial navigation system(INS) model is realized with Simulink .The in‐teractant based on Matlab program and Simulink model supplied a new method to the accuracy estimate for transfer alignment in INS .The simulation results indicate that themethod is very feasible and effective .%论文提出了捷联惯导传递对准精度评估算法的设计方案,并利用Matlab数值计算的强大功能和Simulink建模容易实现的特点进行仿真研究,其中对仿真飞行轨迹和评估滤波器采用Matlab编程实现,惯导系统建模采用Simulink实现,将Matlab程序与Simulink模型进行交互,为捷联惯导传递对准精度评估提供了新的实现途径。仿真结果表明,该方案是可行的,评估是有效的。

  9. 离心压缩机组联轴器对中精度的影响因素%Influencing Factors of Shaft Coupling Alignment Accuracy of Centrifugal Compressors

    Institute of Scientific and Technical Information of China (English)

    王志春; 韩建伟

    2013-01-01

      离心式压缩机组在安装和维修过程中自始至终存在着联轴器找正对中问题,联轴器对中精度的高低对机组运行状况、生产效率有着重大的影响。从联轴器类型及安装质量和检测仪器仪表精度、质量等9个方面,来阐述离心压缩机组联轴器找正对中精度的影响因素。%There is a problem of shaft coupling alignment accuracy in complete installation and maintenance procedure of centrifugal compressors, the problem has significant effect on operation and production efficiency of the centrifugal compressors. In this article, influencing factors of shaft coupling alignment accuracy of centrifugal compressors were analyzed from nine aspects.

  10. Very high-accuracy calibration of radiation pattern and gain of a near-field probe

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2014-01-01

    In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission of the Europ......In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission...

  11. Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure.

    Science.gov (United States)

    Shen, Heng; Guo, Jing; Wang, Hao; Zhao, Ning; Xu, Jian

    2015-03-18

    With the development of microelectronic technology, the demand of insulating electronic encapsulation materials with high thermal conductivity is ever growing and much attractive. Surface modification of chemical inert h-BN is yet a distressing issue which hinders its applications in thermal conductive composites. Here, dopamine chemistry has been used to achieve the facile surface modification of h-BN microplatelets by forming a polydopamine (PDA) shell on its surface. The successful and effective preparation of h-BN@PDA microplatelets has been confirmed by SEM, EDS, TEM, Raman spectroscopy, and TGA investigations. The PDA coating increases the dispersibility of the filler and enhances its interaction with PVA matrix as well. Based on the combination of surface modification and doctor blading, composite films with aligned h-BN@PDA are fabricated. The oriented fillers result in much higher in-plane thermal conductivities than the films with disordered structures produced by casting or using the pristine h-BN. The thermal conductivity is as high as 5.4 W m(-1) K(-1) at 10 vol % h-BN@PDA loading. The procedure is eco-friendly, easy handling, and suitable for the practical application in large scale.

  12. Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water.

    Science.gov (United States)

    Zhang, Panpan; Li, Jing; Lv, Lingxiao; Zhao, Yang; Qu, Liangti

    2017-05-23

    Efficient utilization of solar energy for clean water is an attractive, renewable, and environment friendly way to solve the long-standing water crisis. For this task, we prepared the long-range vertically aligned graphene sheets membrane (VA-GSM) as the highly efficient solar thermal converter for generation of clean water. The VA-GSM was prepared by the antifreeze-assisted freezing technique we developed, which possessed the run-through channels facilitating the water transport, high light absorption capacity for excellent photothermal transduction, and the extraordinary stability in rigorous conditions. As a result, VA-GSM has achieved average water evaporation rates of 1.62 and 6.25 kg m(-2) h(-1) under 1 and 4 sun illumination with a superb solar thermal conversion efficiency of up to 86.5% and 94.2%, respectively, better than that of most carbon materials reported previously, which can efficiently produce the clean water from seawater, common wastewater, and even concentrated acid and/or alkali solutions.

  13. [Study on high accuracy detection of multi-component gas in oil-immerse power transformer].

    Science.gov (United States)

    Fan, Jie; Chen, Xiao; Huang, Qi-Feng; Zhou, Yu; Chen, Gang

    2013-12-01

    In order to solve the problem of low accuracy and mutual interference in multi-component gas detection, a kind of multi-component gas detection network with high accuracy was designed. A semiconductor laser with narrow bandwidth was utilized as light source and a novel long-path gas cell was also used in this system. By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM) and time division multiplexing (TDM) technique, the detection of multi-component gas was achieved. The experiments indicate that the linearity relevance coefficient is 0. 99 and the measurement relative error is less than 4%. The system dynamic response time is less than 15 s, by filling a volume of multi-component gas into the gas cell gradually. The system has advantages of high accuracy and quick response, which can be used in the fault gas on-line monitoring for power transformers in real time.

  14. The Laser Shaft Alignment System with Dual PSDs

    Institute of Scientific and Technical Information of China (English)

    JIAO Guohua; LI Yulin; ZHANG Dongbo; LI Tonghai; HU Baowen

    2006-01-01

    Shaft alignment is an important technique during installation and maintenance of a rotating machine. A high-precision laser alignment system has been designed with dual PSDs (Position Sensing Detector) to change traditional manual way of shaft alignment and to make the measurement easier and more accurate. The system is comprised of two small measuring units (laser transmitter and detector) and a PDA (Personal Digital Assistant) with the measurement software. The laser alignment system with dual PSDs was improved on a single PSD system, and it gets higher measurement accuracy than the previous design, and it has been succeeded in designing and implement for actual shaft alignment. In the system, the range of offset measurement is ±4 mm, and the resolution is 1.5 μm, and the accuracy is less than 2 μm.

  15. A laser shaft alignment system with dual PSDs

    Institute of Scientific and Technical Information of China (English)

    JIAO Guo-hua; LI Yu-lin; ZHANG Dong-bo; LI Tong-hai; HU Bao-wen

    2006-01-01

    Shaft alignment is an important technique during installation and maintenance of a rotating machine. A high-precision laser alignment system has been designed with dual PSDs (Position Sensing Detector) to change traditional manual way of shaft alignment and to make the measurement easier and more accurate. The system is comprised of two small measuring units (laser transmitter and detector) and a PDA (Personal Digital Assistant) with measurement software. The laser alignment system with dual PSDs was improved on a single PSD system, and yields higher measurement accuracy than the previous design, and has been successful for designing and implements actual shaft alignment. In the system, the range of offset measurement is ±4 mm, and the resolution is 1.5 μm, with accuracy being less than 2 μm.

  16. Intraoperative adjustment of alignment under valgus stress reduces outliers in patients undergoing medial opening-wedge high tibial osteotomy.

    Science.gov (United States)

    Kim, Man Soo; Son, Jong Min; Koh, In Jun; Bahk, Ji Hoon; In, Yong

    2017-08-01

    A considerable percentage of outliers with under- or over-correction continue to be reported despite precise preoperative planning and cautious intraoperative correction of lower limb alignment in medial opening-wedge high tibial osteotomy (MOWHTO). The purpose of this study was to determine whether our novel technique for the intraoperative adjustment of alignment under valgus stress reduces the number of outliers in patients undergoing MOWHTO compared to the conventional technique, which corrects alignment according to the cable method only. One hundred seventeen consecutive knees were enrolled in this case-control study. The first 52 knees (51 patients) were corrected in accordance with preoperative plans using the Dugdale method with modification with an intraoperative cable (group 1). In the other 65 knees (60 patients), the angle was corrected using the Dugdale method and limb alignment was adjusted using the intraoperative cable technique by applying valgus stress to the knee joint (group 2). The postoperative weight bearing line ratios and mechanical axis of the lower limb were compared at postoperative one year. Each knee was evaluated according to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score preoperatively and at postoperative one year. A significant reduction in the number of outliers was seen in group 2 compared to group 1 (group 1 = 48.1%, group 2 = 9.2%, p outliers compared to a technique that corrected alignment using the cable method in patients undergoing MOWHTO. Level III, retrospective comparative study.

  17. Analysis of Accuracy of a High-speed Mobile Platform Control System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The efficient manufacture technique involves a high-speed control of platform mobile system. A linear acutor is presented in this paper. The linear acutor is constructed as a linear stepper motor. However, to sustain both high accuracy and high speed for the position and speed control, A single-stack computer system is constructed and a special control algorithm is prescribed to controled the linear actuator continuously. In this paper, the nonlinear errors resulted from the magnetic saturation and the h...

  18. Continuous high-yield production of vertically aligned carbon nanotubes on 2D and 3D substrates.

    Science.gov (United States)

    Guzmán de Villoria, Roberto; Hart, A John; Wardle, Brian L

    2011-06-28

    Vertically aligned carbon nanotubes (VACNTs) have certain advantages over bulk CNT powders and randomly oriented CNT mats for applications in flexible electronic devices, filtration membranes, biosensors and multifunctional aerospace materials. Here, a machine and a process to synthesize VACNTs in a continuous manner are presented showing uniform growth on 2D and 3D substrates, including alumina fibers, silicon wafer pieces, and stainless steel foils. Aligned multiwalled carbon nanotubes (MWNT) are synthesized at substrate feed rates of up to 6.8 cm/min, and the CNTs reach up to 60 μm in length depending on residence time in the reactor. In addition to the aligned morphology indicative of high yield growth, transmission electron microscopy and Raman spectroscopy reveal that the CNTs are of comparable quality to CNTs grown via a similar batch process. A significant reduction in time, reaction products, gases, and energy is demonstrated relative to batch processing, paving the way for industrial production of VACNTs.

  19. Highly efficient growth of vertically aligned carbon nanotubes on Fe-Ni based metal alloy foils for supercapacitors

    Science.gov (United States)

    Amalina Raja Seman, Raja Noor; Asyadi Azam, Mohd; Ambri Mohamed, Mohd

    2016-12-01

    Supercapacitors are highly promising energy devices with superior charge storage performance and a long lifecycle. Construction of the supercapacitor cell, especially electrode fabrication, is critical to ensure good performance in applications. This work demonstrates direct growth of vertically aligned carbon nanotubes (CNTs) on Fe-Ni based metal alloy foils, namely SUS 310S, Inconel 600 and YEF 50, and their use in symmetric vertically aligned CNT supercapacitor electrodes. Alumina and cobalt thin film catalysts were deposited onto the foils, and then CNT growth was performed using alcohol catalytic chemical vapour deposition. By this method, vertically aligned CNTs were successfully grown and used directly as a binder-free supercapacitor electrode to deliver excellent electrochemical performance. The device showed relatively good specific capacitance, a superior rate capability and excellent cycle stability, maintaining about 96% capacitance up to 1000 cycles.

  20. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses

    CERN Document Server

    Mondal, S; Ding, W J; Hafez, H A; Fareed, M A; Laramée, A; Ropagnol, X; Zhang, G; Sun, S; Sheng, Z M; Zhang, J; Ozaki, T

    2016-01-01

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with length 5 \\mu m, a maximum 13.8 times enhancement in the THz pulse energy (in $\\leq$ 20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies ($\\leq$ 20THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20 - 200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets of length 60 \\mu m . Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.

  1. High Power Self-Aligned, Trench-Implanted 4H-SiC JFETs

    Directory of Open Access Journals (Sweden)

    Vamvoukakis K.

    2017-01-01

    Full Text Available The process technology for the fabrication of 4H-SiC trenched-implanted-gate 4H–SiC vertical-channel JFET (TI-VJFET has been developed. The optimized TIVJFETs have been fabricated with self-aligned nickel silicide source and gate contacts using a process sequence that greatly reduces process complexity as it includes only four lithography steps. A source-pillars sidewall oxidation and subsequent removal of the metallization from the top of the sidewall oxide ensured isolation between gate and source. Optimum planarization of the source pillars top has been performed by cyclotene spin coating and etch back. The effect of the channel geometry on the electrical characteristics has been studied by varying its length (0.3 and 1.2μm and its width (1.5-5μm. The voltage blocking exhibits a triode shape, which is typical for a static-induction transistor (SIT operation. The transistors exhibited high ON current handling capabilities (Direct Current density >1kA/cm2 and values of RON ranging from 6 - 12 mΩ•cm2 depending on the channel length. Maximum voltage blocking was 800V limited by the edge termination. The maximum voltage gain was 51. Most transistors were normally-on. Normally-off operation has been observed for transistors lower than 2μm channel width (mask level and deep implantation.

  2. Highly aligned carbon nanotube forests coated by superconducting NbC.

    Science.gov (United States)

    Zou, G F; Luo, H M; Baily, S; Zhang, Y Y; Haberkorn, N F; Xiong, J; Bauer, E; McCleskey, T M; Burrell, A K; Civale, L; Zhu, Y T; Macmanus-Driscoll, J L; Jia, Q X

    2011-08-16

    The formation of carbon nanotube and superconductor composites makes it possible to produce new and/or improved functionalities that the individual material does not possess. Here we show that coating carbon nanotube forests with superconducting niobium carbide (NbC) does not destroy the microstructure of the nanotubes. NbC also shows much improved superconducting properties such as a higher irreversibility and upper critical field. An upper critical field value of ~5 T at 4.2 K is much greater than the 1.7 T reported in the literature for pure bulk NbC. Furthermore, the aligned carbon nanotubes induce anisotropy in the upper critical field, with a higher upper critical field occurring when the magnetic field is parallel to the carbon nanotube growth direction. These results suggest that highly oriented carbon nanotubes embedded in superconducting NbC matrix can function as defects and effectively enhance the superconducting properties of the NbC.

  3. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene).

    Science.gov (United States)

    Persano, Luana; Dagdeviren, Canan; Su, Yewang; Zhang, Yihui; Girardo, Salvatore; Pisignano, Dario; Huang, Yonggang; Rogers, John A

    2013-01-01

    Multifunctional capability, flexible design, rugged lightweight construction and self-powered operation are desired attributes for electronics that directly interface with the human body or with advanced robotic systems. For these applications, piezoelectric materials, in forms that offer the ability to bend and stretch, are attractive for pressure/force sensors and mechanical energy harvesters. Here, we introduce a large area, flexible piezoelectric material that consists of sheets of electrospun fibres of the polymer poly[(vinylidenefluoride-co-trifluoroethylene]. The flow and mechanical conditions associated with the spinning process yield free-standing, three-dimensional architectures of aligned arrangements of such fibres, in which the polymer chains adopt strongly preferential orientations. The resulting material offers exceptional piezoelectric characteristics, to enable ultra-high sensitivity for measuring pressure, even at exceptionally small values (0.1 Pa). Quantitative analysis provides detailed insights into the pressure sensing mechanisms, and establishes engineering design rules. Potential applications range from self-powered micro-mechanical elements, to self-balancing robots and sensitive impact detectors.

  4. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene)

    Science.gov (United States)

    Persano, Luana; Dagdeviren, Canan; Su, Yewang; Zhang, Yihui; Girardo, Salvatore; Pisignano, Dario; Huang, Yonggang; Rogers, John A.

    2013-03-01

    Multifunctional capability, flexible design, rugged lightweight construction and self-powered operation are desired attributes for electronics that directly interface with the human body or with advanced robotic systems. For these applications, piezoelectric materials, in forms that offer the ability to bend and stretch, are attractive for pressure/force sensors and mechanical energy harvesters. Here, we introduce a large area, flexible piezoelectric material that consists of sheets of electrospun fibres of the polymer poly[(vinylidenefluoride-co-trifluoroethylene]. The flow and mechanical conditions associated with the spinning process yield free-standing, three-dimensional architectures of aligned arrangements of such fibres, in which the polymer chains adopt strongly preferential orientations. The resulting material offers exceptional piezoelectric characteristics, to enable ultra-high sensitivity for measuring pressure, even at exceptionally small values (0.1 Pa). Quantitative analysis provides detailed insights into the pressure sensing mechanisms, and establishes engineering design rules. Potential applications range from self-powered micro-mechanical elements, to self-balancing robots and sensitive impact detectors.

  5. Alignment-free ultra-high-throughput comparison of druggable protein-ligand binding sites.

    Science.gov (United States)

    Weill, Nathanaël; Rognan, Didier

    2010-01-01

    Inferring the biological function of a protein from its three-dimensional structure as well as explaining why a drug may bind to various targets is of crucial importance to modern drug discovery. Here we present a generic 4833-integer vector describing druggable protein-ligand binding sites that can be applied to any protein and any binding cavity. The fingerprint registers counts of pharmacophoric triplets from the Calpha atomic coordinates of binding-site-lining residues. Starting from a customized data set of diverse protein-ligand binding site pairs, the most appropriate metric and a similarity threshold could be defined for similar binding sites. The method (FuzCav) has been used in various scenarios: (i) screening a collection of 6000 binding sites for similarity to different queries; (ii) classifying protein families (serine endopeptidases, protein kinases) by binding site diversity; (iii) discriminating adenine-binding cavities from decoys. The fingerprint generation and comparison supports ultra-high throughput (ca. 1000 measures/s), does not require prior alignment of protein binding sites, and is able to detect local similarity among subpockets. It is thus particularly well suited to the functional annotation of novel genomic structures with low sequence identity to known X-ray templates.

  6. Aligning the Cultures of Teaching and Learning Science in Urban High Schools

    Science.gov (United States)

    Tobin, Kenneth

    2006-09-01

    This paper analyzes teaching and learning in urban science classrooms in which most of the students are African American and from low-income homes. Their teachers are also racial minorities and yet they struggle to teach successfully across cultural boundaries. The first set of case studies involves a male teacher who taught in a high-energy way that produced structures for students to get involved in the doing of science. His verbal fluency and expressive individualism, involving emphatic gestures, rhythmic use of his body, and voice intonation maintained student participation. A second case study examines successful interactions among the students, involving an argument over competing models for chemical valence. Whereas the students interacted successfully, the teacher was frequently out of synchrony in terms of amplitude, pitch, and non-verbal actions. The key implication is the necessity for teachers and students to learn how to interact successfully in ways that produce positive emotional energy, a sense of belonging to the class, and a commitment to shared responsibility for one another's participation. Aligning the cultures of teaching and learning offers a possibility that fluent interactions will occur, afford success, and facilitate the learning of science.

  7. Dynamics of capillary infiltration of liquids into a highly aligned multi-walled carbon nanotube film

    Directory of Open Access Journals (Sweden)

    Sławomir Boncel

    2011-06-01

    Full Text Available The physical compatibility of a highly aligned carbon nanotube (HACNT film with liquids was established using a fast and convenient experimental protocol. Two parameters were found to be decisive for the infiltration process. For a given density of nanotube packing, the thermodynamics of the infiltration process (wettability were described by the contact angle between the nanotube wall and a liquid meniscus (θ. Once the wettability criterion (θ < 90° was met, the HACNT film (of free volume equal to 91% was penetrated gradually by the liquid in a rate that can be linearly correlated to dynamic viscosity of the liquid (η. The experimental results follow the classical theory of capillarity for a steady process (Lucas–Washburn law, where the nanoscale capillary force, here supported by gravity, is compensated by viscous drag. This most general theory of capillarity can be applied in a prediction of both wettability of HACNT films and the dynamics of capillary rise in the intertube space in various technological applications.

  8. Achievement of a high-mobility FET with a cloud-aligned composite oxide semiconductor

    Science.gov (United States)

    Yamazaki, Shunpei; Shima, Yukinori; Hosaka, Yasuharu; Okazaki, Kenichi; Koezuka, Junichi

    2016-11-01

    We have recently discovered that films of a widely used In-Ga-Zn oxide (IGZO) with \\text{In}:\\text{Ga}:\\text{Zn} = 1:1:1 have different material composition states when sputter-deposited under different conditions using the same polycrystalline IGZO target. Significant improvements in on-state current and mobility (as high as 40 cm2·V-1·s-1) are obtained. The results of local composition analysis indicate that the deposited film is not composed of any known homogeneous IGZO compound and that the components of this film are separated into two types of nanoparticle regions: one type is composed mainly of GaO x and GaZnO x , which contribute to on/off (switching) characteristics, and the other is composed mainly of InO x and InZnO x , which contribute to on-state characteristics. These regions constitute a new type of oxide semiconductor (OS) film. The nanoparticles with a blurry boundary extend like a cloud, probably complementing one another. We consider that this OS film has a novel composition, which can be described as a “cloud-aligned composite OS” (CAC-OS).

  9. Statistical Association: Alignment of Current U.S. High School Textbooks with the Common Core State Standards for Mathematics

    Science.gov (United States)

    Tran, Dung

    2016-01-01

    This study examined the alignment of three selected U.S. high school textbooks series with the Common Core State Standards for Mathematics (CCSSM) regarding the treatment of statistical association. A framework grounded in the literature for inclusion and exclusion of reasoning about association topics was developed, and textbook entries were…

  10. High-accuracy C-14 measurements for atmospheric CO2 samples by AMS

    NARCIS (Netherlands)

    Meijer, H.A.J.; Pertuisot, M.H.; van der Plicht, J.

    2006-01-01

    In this paper, we investigate how to achieve high-accuracy radiocarbon measurements by accelerator mass spectrometry (ANIS) and present measurement series (performed on archived CO2) of (CO2)-C-14 between 1985 and 1991 for Point Barrow (Alaska) and the South Pole. We report in detail the measurement

  11. Further results on the operation of high-accuracy drift chambers

    NARCIS (Netherlands)

    Breskin, A.; Charpak, G.; Gabioud, B.; Sauli, F.; Trautner, N.

    Optimization of the working parameters in the drift chambers with adjustable electric fields permits stable operation and high accuracies. Full saturation of the drift velocity leads to remarkable improvements, namely a very linear space-time correlation for perpendicular tracks, and simple

  12. From journal to headline: the accuracy of climate science news in Danish high quality newspapers

    DEFF Research Database (Denmark)

    Vestergård, Gunver Lystbæk

    2011-01-01

    analysis to examine the accuracy of Danish high quality newspapers in quoting scientific publications from 1997 to 2009. Out of 88 articles, 46 contained inaccuracies though the majority was found to be insignificant and random. The study concludes that Danish broadsheet newspapers are ‘moderately...

  13. A 1-V 15 μW High-Accuracy Temperature Switch

    NARCIS (Netherlands)

    Schinkel, D.; Boer, de R.P.; Annema, A.J.; Tuijl, van A.J.M.

    2004-01-01

    A CMOS temperature switch with uncalibrated high accuracy is presented. The circuit is based on the classical CMOS bandgap reference structure, using parasitic PNPs and a PTAT multiplier. The circuit was designed in a standard digital 0.18 m CMOS process. The temperature switch has an in-designed hy

  14. From journal to headline: the accuracy of climate science news in Danish high quality newspapers

    DEFF Research Database (Denmark)

    Vestergård, Gunver Lystbæk

    2011-01-01

    analysis to examine the accuracy of Danish high quality newspapers in quoting scientific publications from 1997 to 2009. Out of 88 articles, 46 contained inaccuracies though the majority was found to be insignificant and random. The study concludes that Danish broadsheet newspapers are ‘moderately...

  15. A high-accuracy surgical augmented reality system using enhanced integral videography image overlay.

    Science.gov (United States)

    Zhang, Xinran; Chen, Guowen; Liao, Hongen

    2015-01-01

    Image guided surgery has been used in clinic to improve the surgery safety and accuracy. Augmented reality (AR) technique, which can provide intuitive image guidance, has been greatly evolved these years. As one promising approach of surgical AR systems, integral videography (IV) autostereoscopic image overlay has achieved accurate fusion of full parallax guidance into surgical scene. This paper describes an image enhanced high-accuracy IV overlay system. A flexible optical image enhancement system (IES) is designed to increase the resolution and quality of IV image. Furthermore, we introduce a novel IV rendering algorithm to promote the spatial accuracy with the consideration of distortion introduced by micro lens array. Preliminary experiments validated that the image accuracy and resolution are improved with the proposed methods. The resolution of the IV image could be promoted to 1 mm for a micro lens array with pitch of 2.32 mm and IES magnification value of 0.5. The relative deviation of accuracy in depth and lateral directions are -4.68 ± 0.83% and -9.01 ± 0.42%.

  16. Horizontal Positional Accuracy of Google Earth's High-Resolution Imagery Archive.

    Science.gov (United States)

    Potere, David

    2008-12-08

    Google Earth now hosts high-resolution imagery that spans twenty percent of the Earth's landmass and more than a third of the human population. This contemporary highresolution archive represents a significant, rapidly expanding, cost-free and largely unexploited resource for scientific inquiry. To increase the scientific utility of this archive, we address horizontal positional accuracy (georegistration) by comparing Google Earth with Landsat GeoCover scenes over a global sample of 436 control points located in 109 cities worldwide. Landsat GeoCover is an orthorectified product with known absolute positional accuracy of less than 50 meters root-mean-squared error (RMSE). Relative to Landsat GeoCover, the 436 Google Earth control points have a positional accuracy of 39.7 meters RMSE (error magnitudes range from 0.4 to 171.6 meters). The control points derived from satellite imagery have an accuracy of 22.8 meters RMSE, which is significantly more accurate than the 48 control-points based on aerial photography (41.3 meters RMSE; t-test p-value Google Earth highresolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world's peri-urban areas.

  17. Determining dynamical parameters of the Milky Way Galaxy based on high-accuracy radio astrometry

    Science.gov (United States)

    Honma, Mareki; Nagayama, Takumi; Sakai, Nobuyuki

    2015-08-01

    In this paper we evaluate how the dynamical structure of the Galaxy can be constrained by high-accuracy VLBI (Very Long Baseline Interferometry) astrometry such as VERA (VLBI Exploration of Radio Astrometry). We generate simulated samples of maser sources which follow the gas motion caused by a spiral or bar potential, with their distribution similar to those currently observed with VERA and VLBA (Very Long Baseline Array). We apply the Markov chain Monte Carlo analyses to the simulated sample sources to determine the dynamical parameter of the models. We show that one can successfully determine the initial model parameters if astrometric results are obtained for a few hundred sources with currently achieved astrometric accuracy. If astrometric data are available from 500 sources, the expected accuracy of R0 and Θ0 is ˜ 1% or higher, and parameters related to the spiral structure can be constrained by an error of 10% or with higher accuracy. We also show that the parameter determination accuracy is basically independent of the locations of resonances such as corotation and/or inner/outer Lindblad resonances. We also discuss the possibility of model selection based on the Bayesian information criterion (BIC), and demonstrate that BIC can be used to discriminate different dynamical models of the Galaxy.

  18. High-throughput Image Analysis of Fibrillar Materials: A Case Study on Polymer Nanofiber Packing, Alignment, and Defects in OFETs.

    Science.gov (United States)

    Persson, Nils; Rafshoon, Joshua; Naghshpour, Kaylie; Fast, Tony; Chu, Ping-Hsun; McBride, Michael; Risteen, Bailey; Grover, Martha A; Reichmanis, Elsa

    2017-09-27

    High-throughput discovery of process-structure-property relationships in materials through an informatics-enabled empirical approach is an increasingly utilized technique in materials research due to the rapidly expanding availability of data. Here, process-structure-property relationships are extracted for the nucleation, growth and deposition of semiconducting poly(3-hexylthiophene) (P3HT) nanofibers used in organic field effect transistors, via high-throughput image analysis. This study is performed using an automated image analysis pipeline combining existing open-source software and new algorithms, enabling the rapid evaluation of structural metrics for images of fibrillar materials, including local orientational order, fiber length density, and fiber length distributions. We observe that microfluidic processing leads to fibers that pack with unusually high density, while sonication yields fibers that pack sparsely with low alignment. The is attributed to differences in their crystallization mechanisms. P3HT nanofiber packing during thin film deposition exhibits behavior suggesting that fibers are confined to packing in two-dimensional layers. We find that fiber alignment, a feature correlated with charge carrier mobility, is driven by increasing fiber length, and that shorter fibers tend to segregate to the buried dielectric interface during deposition, creating potentially performance-limiting defects in alignment. Another barrier to perfect alignment is the curvature of P3HT fibers; we propose a mechanistic simulation of fiber growth that reconciles both this curvature and the log-normal distribution of fiber lengths inherent to the fiber populations under consideration.

  19. Two-step Structural Design of Mesh Antennas for High Beam Pointing Accuracy

    Science.gov (United States)

    Zhang, Shuxin; Du, Jingli; Wang, Wei; Zhang, Xinghua; Zong, Yali

    2017-05-01

    A well-designed reflector surface with high beam pointing accuracy in electromagnetic performance is of practical significance to the space application of cable mesh reflector antennas. As for space requirements, circular polarizations are widely used in spaceborne antennas, which usually lead to a beam shift for offset reflectors and influence the beam pointing accuracy. A two-step structural design procedure is proposed to overcome the beam squint phenomenon for high beam pointing accuracy design of circularly polarized offset cable mesh reflectors. A simple structural optimal design and an integrated structural electromagnetic optimization are combined to alleviate the beam squint effect of circular polarizations. It is implemented by cable pretension design and adjustment to shape the offset cable mesh surface. Besides, in order to increase the efficiency of integrated optimization, an update Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian matrix is employed in the optimization iteration with sequential quadratic programming. A circularly polarized offset cable mesh reflector is utilized to show the feasibility and effectiveness of the proposed procedure. A high beam pointing accuracy in order of 0.0001º of electromagnetic performance is achieved.

  20. Enhanced piezoresponse of highly aligned electrospun poly(vinylidene fluoride) nanofibers

    Science.gov (United States)

    Kang, Sung Bum; Won, Sang Hyuk; Im, Min Ji; Kim, Chan Ul; Park, Won Il; Baik, Jeong Min; Choi, Kyoung Jin

    2017-09-01

    Well-ordered nanostructure arrays with controlled densities can potentially improve material properties; however, their fabrication typically involves the use of complicated processing techniques. In this work, we demonstrate a uniaxial alignment procedure for fabricating poly(vinylidene fluoride) (PVDF) electrospun nanofibers (NFs) by introducing collectors with additional steps. The mechanism of the observed NF alignment, which occurs due to the concentration of lateral electric field lines around collector steps, has been elucidated via finite-difference time-domain simulations. The membranes composed of well-aligned PVDF NFs are characterized by a higher content of the PVDF β-phase, as compared to those manufactured from randomly orientated fibers. The piezoelectric energy harvester, which was fabricated by transferring well-aligned PVDF NFs onto flexible substrates with Ag electrodes attached to both sides, exhibited a 2-fold increase in the output voltage and a 3-fold increase in the output current as compared to the corresponding values obtained for the device manufactured from randomly oriented NFs. The enhanced piezoresponse observed for the aligned PVDF NFs is due to their higher β-phase content, denser structure, smaller effective radius of curvature during bending, greater applied strain, and higher fraction of contributing NFs.

  1. Convective high-speed flow and field-aligned high-speed flows explored by TC-1

    Institute of Scientific and Technical Information of China (English)

    ZHANG LingQian; LIU ZhenXing; MA ZhiWei; W.BAUMJOHANN; M.W.DUNLOP4; WANG GuangJun; WANG Xiao; H.REME; C.CARR

    2008-01-01

    From June 1, 2004 to October 31, 2006, a total 465 high-speed flow events are observed by the TC-1 satellite in the near-Earth region (-13 RE < X < -9 RE, |Y|<10 RE, |2|<5 RE). Based on the angle between the flow and the magnetic field, the high-speed flow events are further divided into two types, that is,field-aligned high-speed flow (FAHF) in the plasma sheet boundary and convective bursty bulk flow (BBF) in the center plasma sheet. Among the total 465 high-speed flow events, there are 371 FAHFs,and 94 BBFs. The CHF are mainly concentrated in the plasma sheet, the intersection angle between the flow and the magnetic field is larger, the magnetic field intensity is relatively weak. The FHF are mainly distributed near the boundary layer of the plasma sheet, the intersection angle between the flow and magnetic field is smaller, and the magnetic field intensity is relatively strong. The convective BBFs have an important effect on the substorm.

  2. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals.

    Science.gov (United States)

    Li, Hanying; Tee, Benjamin C-K; Cha, Judy J; Cui, Yi; Chung, Jong Won; Lee, Sang Yoon; Bao, Zhenan

    2012-02-08

    Field-effect transistors based on single crystals of organic semiconductors have the highest reported charge carrier mobility among organic materials, demonstrating great potential of organic semiconductors for electronic applications. However, single-crystal devices are difficult to fabricate. One of the biggest challenges is to prepare dense arrays of single crystals over large-area substrates with controlled alignment. Here, we describe a solution processing method to grow large arrays of aligned C(60) single crystals. Our well-aligned C(60) single-crystal needles and ribbons show electron mobility as high as 11 cm(2)V(-1)s(-1) (average mobility: 5.2 ± 2.1 cm(2)V(-1)s(-1) from needles; 3.0 ± 0.87 cm(2)V(-1)s(-1) from ribbons). This observed mobility is ~8-fold higher than the maximum reported mobility for solution-grown n-channel organic materials (1.5 cm(2)V(-1)s(-1)) and is ~2-fold higher than the highest mobility of any n-channel organic material (~6 cm(2)V(-1)s(-1)). Furthermore, our deposition method is scalable to a 100 mm wafer substrate, with around 50% of the wafer surface covered by aligned crystals. Hence, our method facilitates the fabrication of large amounts of high-quality semiconductor crystals for fundamental studies, and with substantial improvement on the surface coverage of crystals, this method might be suitable for large-area applications based on single crystals of organic semiconductors.

  3. The Impact of Ionospheric Disturbances on High Accuracy Positioning in Brazil

    Science.gov (United States)

    Yang, L.; Park, J.; Susnik, A.; Aquino, M. H.; Dodson, A.

    2013-12-01

    High positioning accuracy is a key requirement to a number of applications with a high economic impact, such as precision agriculture, surveying, geodesy, land management, off-shore operations. Global Navigation Satellite Systems (GNSS) carrier phase measurement based techniques, such as Real Time Kinematic (RTK), Network-RTK (NRTK) and Precise Point Positioning (PPP), have played an important role in providing centimetre-level positioning accuracy, and become the core of the above applications. However these techniques are especially sensitive to ionospheric perturbations, in particular scintillation. Brazil sits in one of the most affected regions of the Earth and can be regarded as a test-bed for scenarios of the severe ionospheric condition. Over the Brazilian territory, the ionosphere behaves in a considerably unpredictable way and scintillation activity is very prominent, occurring especially after sunset hours. NRTK services may not be able to provide satisfactory accuracy, or even continuous positioning during strong scintillation periods. CALIBRA (Countering GNSS high Accuracy applications Limitations due to Ionospheric disturbances in BRAzil) started in late 2012 and is a project funded by the GSA (European GNSS Agency) and the European Commission under the Framework Program 7 to deliver improvements on carrier phase based high accuracy algorithms and their implementation in GNSS receivers, aiming to counter the adverse ionospheric effects over Brazil. As the first stage of this project, the ionospheric disturbances, which affect the applications of RTK, NRTK or PPP, are characterized. Typical problems include degraded positioning accuracy, difficulties in ambiguity fixing, NRTK network interpolation errors, long PPP convergence time etc. It will identify how GNSS observables and existing algorithms are degraded by ionosphere related phenomena, evaluating the impact on positioning techniques in terms of accuracy, integrity and availability. Through the

  4. Hybrid head-tracker being examined for the high-accuracy attack rotorcraft market

    Science.gov (United States)

    Blanton, Buddy

    2002-08-01

    The need for the helmet-mounted display (HMD) to present flight, navigation, and weapon information in the pilot's line-of-sight has continued to rise as helicopter missions increase in complexity. To obtain spatial correlation of the direction of the head line-of-sight and pilotage imagery generated from helicopter-mounted sensors, it is necessary to slave the sensors to the head motion. To accomplish this task, a head-tracking system (HTS) must be incorporated into the HMD. There are a variety of techniques that could be applied for locating the position and attitude of a helmet-mounted display. Regardless of the technology, an HTS must provide defined measurements of accuracy. System parameters include motion box size, angular range, pointing angle accuracy, pointing angle resolution, update rate, and slew rate. This paper focuses on a hybrid tracker implementation in which a combination of optical and inertial tracking using strap-down gyros is preferred. Specifically, this tracker implementation is being examined for the high-accuracy attack rotorcraft market which requires a high degree of accuracy. The performance and resultant cost of the tracker components are determined by the specific needs of the intended application. The paper will also indicate how the various requirements drive the cost, configuration, and performance of the resultant hybrid head-tracker.

  5. Literature survey of high-impact journals revealed reporting weaknesses in abstracts of diagnostic accuracy studies.

    Science.gov (United States)

    Korevaar, Daniël A; Cohen, Jérémie F; Hooft, Lotty; Bossuyt, Patrick M M

    2015-06-01

    Informative journal abstracts are crucial for the identification and initial appraisal of studies. We aimed to evaluate the informativeness of abstracts of diagnostic accuracy studies. PubMed was searched for reports of studies that had evaluated the diagnostic accuracy of a test against a clinical reference standard, published in 12 high-impact journals in 2012. Two reviewers independently evaluated the information contained in included abstracts using 21 items deemed important based on published guidance for adequate reporting and study quality assessment. We included 103 abstracts. Crucial information on study population, setting, patient sampling, and blinding as well as confidence intervals around accuracy estimates were reported in items per abstract was 10.1 of 21 (standard deviation 2.2). The mean number of reported items was significantly lower for multiple-gate (case-control type) studies, in reports in specialty journals, and for studies with smaller sample sizes and lower abstract word counts. No significant differences were found between studies evaluating different types of tests. Many abstracts of diagnostic accuracy study reports in high-impact journals are insufficiently informative. Developing guidelines for such abstracts could help the transparency and completeness of reporting. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  7. About accuracy of the discrimination parameter estimation for the dual high-energy method

    Science.gov (United States)

    Osipov, S. P.; Chakhlov, S. V.; Osipov, O. S.; Shtein, A. M.; Strugovtsev, D. V.

    2015-04-01

    A set of the mathematical formulas to estimate the accuracy of discrimination parameters for two implementations of the dual high energy method - by the effective atomic number and by the level lines is given. The hardware parameters which influenced on the accuracy of the discrimination parameters are stated. The recommendations to form the structure of the high energy X-ray radiation impulses are formulated. To prove the applicability of the proposed procedure there were calculated the statistical errors of the discrimination parameters for the cargo inspection system of the Tomsk polytechnic university on base of the portable betatron MIB-9. The comparison of the experimental estimations and the theoretical ones of the discrimination parameter errors was carried out. It proved the practical applicability of the algorithm to estimate the discrimination parameter errors for the dual high energy method.

  8. High accuracy digital aging monitor based on PLL-VCO circuit

    Science.gov (United States)

    Yuejun, Zhang; Zhidi, Jiang; Pengjun, Wang; Xuelong, Zhang

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm2. After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%.

  9. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  10. Measurement of the angular distributions of high-order harmonic generations from aligned CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H; Zhao, S T; Zhang, Z X; Liu, P; Zeng, Z N; Li, R X; Xu, Z Z, E-mail: peng@siom.ac.cn, E-mail: ruxinli@mail.shcnc.ac.cn [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, No. 390, Qinghe Road, Jiading District, Shanghai 201800 (China)

    2011-02-01

    In this study, the angular distributions of harmonics emission from aligned CO{sub 2} are explored experimentally and theoretically, and the validity of Strong Field Approximation (SFA) model in the molecular high harmonic generation is therefore studied. The study shows that for describing the angle distribution of high harmonic generation from molecules, SFA is roughly consistent with the qualitative analysis, while the quantitative analysis is different.

  11. Automatic alignment of double optical paths in excimer laser amplifier

    Science.gov (United States)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  12. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    CERN Document Server

    Smith, Donald F; Leach, Franklin E; Robinson, Errol W; Paša-Tolić, Ljiljana; Heeren, Ron M A

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissu...

  13. Accelerating large-scale protein structure alignments with graphics processing units

    Directory of Open Access Journals (Sweden)

    Pang Bin

    2012-02-01

    Full Text Available Abstract Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs. As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU.

  14. Association between knee alignment and knee pain in patients surgically treated for medial knee osteoarthritis by high tibial osteotomy. A one year follow-up study

    DEFF Research Database (Denmark)

    W-Dahl, Annette; Toksvig-Larsen, Sören; Roos, Ewa

    2009-01-01

    BACKGROUND: The association between knee alignment and knee pain in knee osteoarthritis (OA) is unclear. High tibial osteotomy, a treatment option in knee OA, alters load from the affected to the unaffected compartment of the knee by correcting malalignment. This surgical procedure thus offers...... the possibility to study the cross-sectional and longitudinal association of alignment to pain. The aims were to study 1) the preoperative association of knee alignment to preoperative knee pain and 2) the association of change in knee alignment with surgery to change in knee pain over time in patients operated...... on for knee OA by high tibial osteotomy. METHODS: 182 patients (68% men) mean age 53 years (34 - 69) with varus alignment having tibial osteotomy by the hemicallotasis technique for medial knee OA were consecutively included. Knee alignment was assessed by the Hip-Knee-Ankle (HKA) angle from radiographs...

  15. Results of error correction techniques applied on two high accuracy coordinate measuring machines

    Energy Technology Data Exchange (ETDEWEB)

    Pace, C.; Doiron, T.; Stieren, D.; Borchardt, B.; Veale, R. (Sandia National Labs., Albuquerque, NM (USA); National Inst. of Standards and Technology, Gaithersburg, MD (USA))

    1990-01-01

    The Primary Standards Laboratory at Sandia National Laboratories (SNL) and the Precision Engineering Division at the National Institute of Standards and Technology (NIST) are in the process of implementing software error correction on two nearly identical high-accuracy coordinate measuring machines (CMMs). Both machines are Moore Special Tool Company M-48 CMMs which are fitted with laser positioning transducers. Although both machines were manufactured to high tolerance levels, the overall volumetric accuracy was insufficient for calibrating standards to the levels both laboratories require. The error mapping procedure was developed at NIST in the mid 1970's on an earlier but similar model. The error mapping procedure was originally very complicated and did not make any assumptions about the rigidness of the machine as it moved, each of the possible error motions was measured at each point of the error map independently. A simpler mapping procedure was developed during the early 1980's which assumed rigid body motion of the machine. This method has been used to calibrate lower accuracy machines with a high degree of success and similar software correction schemes have been implemented by many CMM manufacturers. The rigid body model has not yet been used on highly repeatable CMMs such as the M48. In this report we present early mapping data for the two M48 CMMs. The SNL CMM was manufactured in 1985 and has been in service for approximately four years, whereas the NIST CMM was delivered in early 1989. 4 refs., 5 figs.

  16. Electrodeposition of Various Au Nanostructures on Aligned Carbon Nanotubes as Highly Sensitive Nanoelectrode Ensembles

    Science.gov (United States)

    Fayazfar, H.; Afshar, A.; Dolati, A.

    2015-05-01

    An efficient method has been developed to synthesize well-aligned multi-walled carbon nanotubes (MWCNTs) on a conductive Ta substrate by chemical vapor deposition. Free-standing MWCNTs arrays were functionalized through electrochemical oxidation with the formation of hydroxyl and carboxyl functional groups. Facile template-free electrochemical routes were then developed for the shape-selective synthesis of less-common Au nanostructures, including flower, sphere, dendrite, rod, sheet, and cabbage onto the aligned MWCNTs at room temperature. Especially, among all the synthesis methods for Au nanocrystals, this is the first report using electrochemical technique to synthesize wide variety shapes of gold nanostructures (GNs) onto the aligned MWCNTs. The morphology of electrodeposited Au nanostructures was controlled by adjustment of the deposition time and potential, the number of potential cycles, the kind of deposition bath, and electrodeposition method. Transmission electron microscopy and field-emission scanning electron microscopy were used to characterize the products. Cyclic voltammograms showed that the MWCNT/Ta electrodes modified with GNs have higher sensitivity compared to the unmodified electrodes in the presence of Fe2+/Fe3+ redox couple. These kinds of aligned-CNT/Au nanostructure hybrid materials introduced by these efficient and simple electrochemical methods could lead to the development of a new generation device for ultrasensitive catalytic and biological application.

  17. RNA secondary structure modeling at consistent high accuracy using differential SHAPE.

    Science.gov (United States)

    Rice, Greggory M; Leonard, Christopher W; Weeks, Kevin M

    2014-06-01

    RNA secondary structure modeling is a challenging problem, and recent successes have raised the standards for accuracy, consistency, and tractability. Large increases in accuracy have been achieved by including data on reactivity toward chemical probes: Incorporation of 1M7 SHAPE reactivity data into an mfold-class algorithm results in median accuracies for base pair prediction that exceed 90%. However, a few RNA structures are modeled with significantly lower accuracy. Here, we show that incorporating differential reactivities from the NMIA and 1M6 reagents--which detect noncanonical and tertiary interactions--into prediction algorithms results in highly accurate secondary structure models for RNAs that were previously shown to be difficult to model. For these RNAs, 93% of accepted canonical base pairs were recovered in SHAPE-directed models. Discrepancies between accepted and modeled structures were small and appear to reflect genuine structural differences. Three-reagent SHAPE-directed modeling scales concisely to structurally complex RNAs to resolve the in-solution secondary structure analysis problem for many classes of RNA.

  18. A fast and high accuracy numerical simulation algorithm of the polymer spherulite at the mesoscale Level

    Science.gov (United States)

    Liu, Yongzhi; Geng, Tie; (Tom Turng, Lih-Sheng; Liu, Chuntai; Cao, Wei; Shen, Changyu

    2017-09-01

    In the multiscale numerical simulation of polymer crystallization during the processing period, flow and temperature of the polymer melt are simulated on the macroscale level, while nucleation and growth of the spherulite are simulated at the mesoscale level. As a part of the multiscale simulation, the meso-simulation requires a fast solving speed because the meso-simulation software must be run several times in every macro-element at each macro-step. Meanwhile, the accuracy of the calculation results is also very important. It is known that the simulation geometry of crystallization includes planar (2D) and three-dimensional space (3D). The 3D calculations are more accurate but more expensive because of the long CPU time consumed. On the contrary, 2D calculations are always much faster but lower in accuracy. To reach the desirable speed and high accuracy at the same time, an algorithm is presented, in which the Delesse law coupled with the Monte Carlo method and pixel method are employed to simulate the nucleation, growth, and impingement of the polymer spherulite at the mesoscale level. Based on this algorithm, a software is developed with the Visual C++ language, and its numerical examples’ results prove that the solving speed of this algorithm is as fast as the 2D classical simulation and the calculation accuracy is at the same level as the 3D simulation.

  19. High Accuracy Gravitational Waveforms from Black Hole Binary Inspirals Using OpenCL

    CERN Document Server

    McKennon, Justin; Khanna, Gaurav

    2012-01-01

    There is a strong need for high-accuracy and efficient modeling of extreme-mass-ratio binary black hole systems because these are strong sources of gravitational waves that would be detected by future observatories. In this article, we present sample results from our Teukolsky EMRI code: a time-domain Teukolsky equation solver (a linear, hyperbolic, partial differential equation solver using finite-differencing), that takes advantage of several mathematical and computational enhancements to efficiently generate long-duration and high-accuracy EMRI waveforms. We emphasize here the computational advances made in the context of this code. Currently there is considerable interest in making use of many-core processor architectures, such as Nvidia and AMD graphics processing units (GPUs) for scientific computing. Our code uses the Open Computing Language (OpenCL) for taking advantage of the massive parallelism offered by modern GPU architectures. We present the performance of our Teukolsky EMRI code on multiple mod...

  20. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes

    Science.gov (United States)

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-01-01

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g−1, which is 6 times higher than disordered CNTs in HClO4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g−1), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g−1) and high energy density (98.1 Wh kg−1) in EMIBF4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation. PMID:28272474

  1. Influence of field of view alignment on division of time polarimetry accuracy%视场重合程度对分时偏振测量精度的影响

    Institute of Scientific and Technical Information of China (English)

    王羿; 洪津; 骆冬根; 胡亚东; 汪方斌; 李志伟

    2015-01-01

    Nearly all polarization measurement suffers from field of view (FOV) misalignment. FOV misalignment would result in discrepancy between the polarization measurement to the target and actual polarization information, named artificial polarization. Instrument and the platform (plane or satellite) movement are the main factors resulting in FOV misalignment of division of time polarization measurement. First of all, the principle of polarization measurement was discussed. The reason of FOV alignment influencing on polarimetry accuracy was described. Then the method on measurement on FOV alignment was proposed on reviewing and summarizing domestic and international current research. After that, factors on influence of FOV alignment space borne and the compensate effect were analyzed in detail. Finally, the discussion on a imaging Polarimeter was shown. Results indicate that FOV misalignment caused by satellite is decreased after compensation. Polarimetry accuracy was increased.%视场不完全重合是偏振测量的共性问题。视场不重合导致对目标探测时获取的偏振信息与真实的偏振信息存在差异,即产生伪偏振。造成分时偏振测量视场不重合的主要因素由两方面构成:仪器自身和仪器所搭载平台(飞机或卫星)的运动状态。首先介绍了偏振测量的基本原理,提出了视场重合程度影响偏振测量精度的原因;其次,结合国内外研究现状,提出了视场不重合的度量方法;再次,重点分析了星载背景下影响视场不重合的因素以及改进措施;最后以某星载偏振成像仪为例给出了分析结果并讨论。结果表明:采取补偿措施后由卫星平台造成的视场不重合程度远小于采取补偿前,仪器偏振测量精度得到了提高。

  2. Cavity ring-down technique for measurement of reflectivity of high reflectivity mirrors with high accuracy

    Indian Academy of Sciences (India)

    G Sridhar; Sandeep K Agarwalla; Sunita Singh; L M Gantayet

    2010-12-01

    A simple, accurate and reliable method for measuring the reflectivity of laser-grade mirrors ( > 99.5 %) based on cavity ring-down (CRD) technique has been success-fully demonstrated in our laboratory using a pulsed Nd:YAG laser. A fast photomultiplier tube with an oscilloscope was used to detect and analyse the CRD signal. The cavity decay times were measured for three cavities formed by a combination of three mirror pairs. The absolute reflectivities 1, 2, 3 were determined to be 99.94%, 99.63%, 99.52% at normal incidence. The reflectivity of mirrors is measured to an accuracy of 0.01%.

  3. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    Directory of Open Access Journals (Sweden)

    Guanwu Zhou

    2014-07-01

    Full Text Available Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system’s performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

  4. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Donald F.; Kiss, Andras; Leach, Franklin E.; Robinson, Errol W.; Pasa-Tolic, Ljiljana; Heeren, Ronald M.

    2013-07-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for exact mass elemental formula assignment. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (m/Δm50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m/Δm50% > 3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.

  5. Accuracy of GPS devices for measuring high-intensity running in field-based team sports.

    Science.gov (United States)

    Rampinini, E; Alberti, G; Fiorenza, M; Riggio, M; Sassi, R; Borges, T O; Coutts, A J

    2015-01-01

    We compared the accuracy of 2 GPS systems with different sampling rates for the determination of distances covered at high-speed and metabolic power derived from a combination of running speed and acceleration. 8 participants performed 56 bouts of shuttle intermittent running wearing 2 portable GPS devices (SPI-Pro, GPS-5 Hz and MinimaxX, GPS-10 Hz). The GPS systems were compared with a radar system as a criterion measure. The variables investigated were: total distance (TD), high-speed distance (HSR>4.17 m·s(-1)), very high-speed distance (VHSR>5.56 m·s(-1)), mean power (Pmean), high metabolic power (HMP>20 W·kg(-1)) and very high metabolic power (VHMP>25 W·kg(-1)). GPS-5 Hz had low error for TD (2.8%) and Pmean (4.5%), while the errors for the other variables ranged from moderate to high (7.5-23.2%). GPS-10 Hz demonstrated a low error for TD (1.9%), HSR (4.7%), Pmean (2.4%) and HMP (4.5%), whereas the errors for VHSR (10.5%) and VHMP (6.2%) were moderate. In general, GPS accuracy increased with a higher sampling rate, but decreased with increasing speed of movement. Both systems could be used for calculating TD and Pmean, but they cannot be used interchangeably. Only GPS-10 Hz demonstrated a sufficient level of accuracy for quantifying distance covered at higher speeds or time spent at very high power. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Parameter Identification Method for SINS Initial Alignment under Inertial Frame

    Directory of Open Access Journals (Sweden)

    Haijian Xue

    2016-01-01

    Full Text Available The performance of a strapdown inertial navigation system (SINS largely depends on the accuracy and rapidness of the initial alignment. The conventional alignment method with parameter identification has been already applied widely, but it needs to calculate the gyroscope drifts through two-position method; then the time of initial alignment is greatly prolonged. For this issue, a novel self-alignment algorithm by parameter identification method under inertial frame for SINS is proposed in this paper. Firstly, this coarse alignment method using the gravity in the inertial frame as a reference is discussed to overcome the limit of dynamic disturbance on a rocking base and fulfill the requirement for the fine alignment. Secondly, the fine alignment method by parameter identification under inertial frame is formulated. The theoretical analysis results show that the fine alignment model is fully self-aligned with no external reference information and the gyrodrifts can be estimated in real time. The simulation results demonstrate that the proposed method can achieve rapid and highly accurate initial alignment for SINS.

  7. CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.

    Science.gov (United States)

    Terashi, Genki; Takeda-Shitaka, Mayuko

    2015-01-01

    Proteins are flexible, and this flexibility has an essential functional role. Flexibility can be observed in loop regions, rearrangements between secondary structure elements, and conformational changes between entire domains. However, most protein structure alignment methods treat protein structures as rigid bodies. Thus, these methods fail to identify the equivalences of residue pairs in regions with flexibility. In this study, we considered that the evolutionary relationship between proteins corresponds directly to the residue-residue physical contacts rather than the three-dimensional (3D) coordinates of proteins. Thus, we developed a new protein structure alignment method, contact area-based alignment (CAB-align), which uses the residue-residue contact area to identify regions of similarity. The main purpose of CAB-align is to identify homologous relationships at the residue level between related protein structures. The CAB-align procedure comprises two main steps: First, a rigid-body alignment method based on local and global 3D structure superposition is employed to generate a sufficient number of initial alignments. Then, iterative dynamic programming is executed to find the optimal alignment. We evaluated the performance and advantages of CAB-align based on four main points: (1) agreement with the gold standard alignment, (2) alignment quality based on an evolutionary relationship without 3D coordinate superposition, (3) consistency of the multiple alignments, and (4) classification agreement with the gold standard classification. Comparisons of CAB-align with other state-of-the-art protein structure alignment methods (TM-align, FATCAT, and DaliLite) using our benchmark dataset showed that CAB-align performed robustly in obtaining high-quality alignments and generating consistent multiple alignments with high coverage and accuracy rates, and it performed extremely well when discriminating between homologous and nonhomologous pairs of proteins in both

  8. Making high-accuracy null depth measurements for the LBTI exozodi survey

    Science.gov (United States)

    Mennesson, Bertrand; Defrère, Denis; Nowak, Matthias; Hinz, Philip; Millan-Gabet, Rafael; Absil, Olivier; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William; Kennedy, Grant M.; Marion, Lindsay; Roberge, Aki; Serabyn, Eugene; Skemer, Andy J.; Stapelfeldt, Karl; Weinberger, Alycia J.; Wyatt, Mark

    2016-08-01

    The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of 12 zodis per star, for a representative ensemble of 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 σ measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation ("null") levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.

  9. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    Directory of Open Access Journals (Sweden)

    Zheng You

    2013-04-01

    Full Text Available The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  10. Highly uniform and vertically aligned SnO2 nanochannel arrays for photovoltaic applications

    Science.gov (United States)

    Kim, Jae-Yup; Kang, Jin Soo; Shin, Junyoung; Kim, Jin; Han, Seung-Joo; Park, Jongwoo; Min, Yo-Sep; Ko, Min Jae; Sung, Yung-Eun

    2015-04-01

    Nanostructured electrodes with vertical alignment have been considered ideal structures for electron transport and interfacial contact with redox electrolytes in photovoltaic devices. Here, we report large-scale vertically aligned SnO2 nanochannel arrays with uniform structures, without lateral cracks fabricated by a modified anodic oxidation process. In the modified process, ultrasonication is utilized to avoid formation of partial compact layers and lateral cracks in the SnO2 nanochannel arrays. Building on this breakthrough, we first demonstrate the photovoltaic application of these vertically aligned SnO2 nanochannel arrays. These vertically aligned arrays were directly and successfully applied in quasi-solid state dye-sensitized solar cells (DSSCs) as photoanodes, yielding reasonable conversion efficiency under back-side illumination. In addition, a significantly short process time (330 s) for achieving the optimal thickness (7.0 μm) and direct utilization of the anodized electrodes enable a simple, rapid and low-cost fabrication process. Furthermore, a TiO2 shell layer was coated on the SnO2 nanochannel arrays by the atomic layer deposition (ALD) process for enhancement of dye-loading and prolonging the electron lifetime in the DSSC. Owing to the presence of the ALD TiO2 layer, the short-circuit photocurrent density (Jsc) and conversion efficiency were increased by 20% and 19%, respectively, compared to those of the DSSC without the ALD TiO2 layer. This study provides valuable insight into the development of efficient SnO2-based photoanodes for photovoltaic application by a simple and rapid fabrication process.Nanostructured electrodes with vertical alignment have been considered ideal structures for electron transport and interfacial contact with redox electrolytes in photovoltaic devices. Here, we report large-scale vertically aligned SnO2 nanochannel arrays with uniform structures, without lateral cracks fabricated by a modified anodic oxidation process

  11. Influence of Anodic Conditions on Self-ordered Growth of Highly Aligned Titanium Oxide Nanopores

    Directory of Open Access Journals (Sweden)

    Hernández-Vélez M

    2007-01-01

    Full Text Available AbstractSelf-aligned nanoporous TiO2templates synthesized via dc current electrochemical anodization have been carefully analyzed. The influence of environmental temperature during the anodization, ranging from 2 °C to ambient, on the structure and morphology of the nanoporous oxide formation has been investigated, as well as that of the HF electrolyte chemical composition, its concentration and their mixtures with other acids employed for the anodization. Arrays of self-assembled titania nanopores with inner pores diameter ranging between 50 and 100 nm, wall thickness around 20–60 nm and 300 nm in length, are grown in amorphous phase, vertical to the Ti substrate, parallel aligned to each other and uniformly disordering distributed over all the sample surface. Additional remarks about the photoluminiscence properties of the titania nanoporous templates and the magnetic behavior of the Ni filled nanoporous semiconductor Ti oxide template are also included.

  12. FAAST: Flow-space Assisted Alignment Search Tool

    Directory of Open Access Journals (Sweden)

    Persson Bengt

    2011-07-01

    Full Text Available Abstract Background High throughput pyrosequencing (454 sequencing is the major sequencing platform for producing long read high throughput data. While most other sequencing techniques produce reading errors mainly comparable with substitutions, pyrosequencing produce errors mainly comparable with gaps. These errors are less efficiently detected by most conventional alignment programs and may produce inaccurate alignments. Results We suggest a novel algorithm for calculating the optimal local alignment which utilises flowpeak information in order to improve alignment accuracy. Flowpeak information can be retained from a 454 sequencing run through interpretation of the binary SFF-file format. This novel algorithm has been implemented in a program named FAAST (Flow-space Assisted Alignment Search Tool. Conclusions We present and discuss the results of simulations that show that FAAST, through the use of the novel algorithm, can gain several percentage points of accuracy compared to Smith-Waterman-Gotoh alignments, depending on the 454 data quality. Furthermore, through an efficient multi-thread aware implementation, FAAST is able to perform these high quality alignments at high speed. The tool is available at http://www.ifm.liu.se/bioinfo/

  13. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-08-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices.

  14. Realizing one-dimensional quantum and high-frequency transport features in aligned single-walled carbon nanotube ropes

    Science.gov (United States)

    Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath

    2014-07-01

    The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2-300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80-300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.

  15. Realizing one-dimensional quantum and high-frequency transport features in aligned single-walled carbon nanotube ropes

    Energy Technology Data Exchange (ETDEWEB)

    Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath, E-mail: Somnath.Bhattacharyya@wits.ac.za [Nano-Scale Transport Physics Laboratory, School of Physics and DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg (South Africa)

    2014-07-14

    The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2–300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80–300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.

  16. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-01-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices. PMID:27510357

  17. High Accuracy Attitude Control System Design for Satellite with Flexible Appendages

    Directory of Open Access Journals (Sweden)

    Wenya Zhou

    2014-01-01

    Full Text Available In order to realize the high accuracy attitude control of satellite with flexible appendages, attitude control system consisting of the controller and structural filter was designed. When the low order vibration frequency of flexible appendages is approximating the bandwidth of attitude control system, the vibration signal will enter the control system through measurement device to bring impact on the accuracy or even the stability. In order to reduce the impact of vibration of appendages on the attitude control system, the structural filter is designed in terms of rejecting the vibration of flexible appendages. Considering the potential problem of in-orbit frequency variation of the flexible appendages, the design method for the adaptive notch filter is proposed based on the in-orbit identification technology. Finally, the simulation results are given to demonstrate the feasibility and effectiveness of the proposed design techniques.

  18. High-accuracy determination of the neutron flux at n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V. [Sezione di Bari, INFN, Bari (Italy); Guerrero, C.; Andriamonje, S.; Boccone, V.; Brugger, M.; Calviani, M.; Cerutti, F.; Chin, M.; Ferrari, A.; Kadi, Y.; Losito, R.; Versaci, R.; Vlachoudis, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA), Athens (Greece); Tarrio, D.; Duran, I.; Leal-Cidoncha, E.; Paradela, C. [Universidade de Santiago de Compostela, Santiago (Spain); Altstadt, S.; Goebel, K.; Langer, C.; Reifarth, R.; Schmidt, S.; Weigand, M. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (Germany); Andrzejewski, J.; Marganiec, J.; Perkowski, J. [Uniwersytet Lodzki, Lodz (Poland); Audouin, L.; Leong, L.S.; Tassan-Got, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Becares, V.; Cano-Ott, D.; Garcia, A.R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S. [Charles University, Prague (Czech Republic); Belloni, F.; Fraval, K.; Gunsing, F.; Lampoudis, C.; Papaevangelou, T. [Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E.; Chiaveri, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Billowes, J.; Ware, T.; Wright, T. [University of Manchester, Manchester (United Kingdom); Bosnar, D.; Zugec, P. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Calvino, F.; Cortes, G.; Gomez-Hornillos, M.B.; Riego, A. [Universitat Politecnica de Catalunya, Barcelona (Spain); Carrapico, C.; Goncalves, I.F.; Sarmento, R.; Vaz, P. [Universidade Tecnica de Lisboa, Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Lisboa (Portugal); Cortes-Giraldo, M.A.; Praena, J.; Quesada, J.M.; Sabate-Gilarte, M. [Universidad de Sevilla, Sevilla (Spain); Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R. [National Technical University of Athens (NTUA), Athens (Greece); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Dressler, R.; Kivel, N.; Schumann, D.; Steinegger, P. [Paul Scherrer Institut, Villigen PSI (Switzerland); Dzysiuk, N.; Mastinu, P.F. [Laboratori Nazionali di Legnaro, INFN, Rome (Italy); Eleftheriadis, C.; Manousos, A. [Aristotle University of Thessaloniki, Thessaloniki (Greece); Ganesan, S.; Gurusamy, P.; Saxena, A. [Bhabha Atomic Research Centre (BARC), Mumbai (IN); Griesmayer, E.; Jericha, E.; Leeb, H. [Technische Universitaet Wien, Atominstitut, Wien (AT); Hernandez-Prieto, A. [European Organization for Nuclear Research (CERN), Geneva (CH); Universitat Politecnica de Catalunya, Barcelona (ES); Jenkins, D.G.; Vermeulen, M.J. [University of York, Heslington, York (GB); Kaeppeler, F. [Institut fuer Kernphysik, Karlsruhe Institute of Technology, Campus Nord, Karlsruhe (DE); Koehler, P. [Oak Ridge National Laboratory (ORNL), Oak Ridge (US); Lederer, C. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE); University of Vienna, Faculty of Physics, Vienna (AT); Massimi, C.; Mingrone, F.; Vannini, G. [Universita di Bologna (IT); INFN, Sezione di Bologna, Dipartimento di Fisica, Bologna (IT); Mengoni, A.; Ventura, A. [Agenzia nazionale per le nuove tecnologie, l' energia e lo sviluppo economico sostenibile (ENEA), Bologna (IT); Milazzo, P.M. [Sezione di Trieste, INFN, Trieste (IT); Mirea, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Mondalaers, W.; Plompen, A.; Schillebeeckx, P. [Institute for Reference Materials and Measurements, European Commission JRC, Geel (BE); Pavlik, A.; Wallner, A. [University of Vienna, Faculty of Physics, Vienna (AT); Rauscher, T. [University of Basel, Department of Physics and Astronomy, Basel (CH); Roman, F. [European Organization for Nuclear Research (CERN), Geneva (CH); Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Rubbia, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Laboratori Nazionali del Gran Sasso dell' INFN, Assergi (AQ) (IT); Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE)

    2013-12-15

    The neutron flux of the n{sub T}OF facility at CERN was measured, after installation of the new spallation target, with four different systems based on three neutron-converting reactions, which represent accepted cross sections standards in different energy regions. A careful comparison and combination of the different measurements allowed us to reach an unprecedented accuracy on the energy dependence of the neutron flux in the very wide range (thermal to 1 GeV) that characterizes the n{sub T}OF neutron beam. This is a pre-requisite for the high accuracy of cross section measurements at n{sub T}OF. An unexpected anomaly in the neutron-induced fission cross section of {sup 235}U is observed in the energy region between 10 and 30keV, hinting at a possible overestimation of this important cross section, well above currently assigned uncertainties. (orig.)

  19. Navigation Facility for High Accuracy Offline Trajectory and Attitude Estimation in Airborne Applications

    Directory of Open Access Journals (Sweden)

    A. Renga

    2013-01-01

    Full Text Available The paper focuses on a navigation facility, relying on commercial-off-the-shelf (COTS technology, developed to generate high-accuracy attitude and trajectory measurements in postprocessing. Target performance is cm-level positioning with tenth of degree attitude accuracy. The facility is based on the concept of GPS-aided inertial navigation but comprises carrier-phase differential GPS (CDGPS processing and attitude estimation based on multiantenna GPS configurations. Expected applications of the system include: (a performance assessment of integrated navigation systems, developed for general aviation aircraft and medium size unmanned aircraft systems (UAS; (b generation of reference measurements to evaluate the flight performance of airborne sensors (e.g., radar or laser; and (c generation of reference trajectory and attitude for improving imaging quality of airborne remote sensing data. The paper describes system architecture, selected algorithms for data processing and integration, and theoretical performance evaluation. Experimental results are also presented confirming the effectiveness of the implemented approach.

  20. High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes.

    Science.gov (United States)

    Yan, Jing; Jeong, Young Gyu

    2016-06-22

    Piezoelectric nanogenerators, harvesting energy from mechanical stimuli in our living environments, hold great promise to power sustainable self-sufficient micro/nanosystems and mobile/portable electronics. BaTiO3 as a lead-free material with high piezoelectric coefficient and dielectric constant has been widely examined to realize nanogenerators, capacitors, sensors, etc. In this study, polydimethylsiloxane (PDMS)-based flexible composites including BaTiO3 nanofibers with different alignment modes were manufactured and their piezoelectric performance was examined. For the study, BaTiO3 nanofibers were prepared by an electrospinning technique utilizing a sol-gel precursor and following calcination process, and they were then aligned vertically or horizontally or randomly in PDMS matrix-based nanogenerators. The morphological structures of BaTiO3 nanofibers and their nanogenerators were analyzed by using SEM images. The crystal structures of the nanogenerators before and after poling were characterized by X-ray diffraction. The dielectric and piezoelectric properties of the nanogenerators were investigated as a function of the nanofiber alignment mode. The nanogenerator with BaTiO3 nanofibers aligned vertically in the PDMS matrix sheet achieved high piezoelectric performance of an output power of 0.1841 μW with maximum voltage of 2.67 V and current of 261.40 nA under a low mechanical stress of 0.002 MPa, in addition to a high dielectric constant of 40.23 at 100 Hz. The harvested energy could thus power a commercial LED directly or be stored into capacitors after rectification.

  1. Using ESTs for phylogenomics: Can one accurately infer a phylogenetic tree from a gappy alignment?

    Directory of Open Access Journals (Sweden)

    Hartmann Stefanie

    2008-03-01

    sequences and gappy multiple sequence alignments can pose a major problem for phylogenetic analysis. The concern will be greatest for high-throughput phylogenomic analyses, in which Neighbor Joining is often the preferred method due to its computational efficiency. Both approaches can be used to increase the accuracy of phylogenetic inference from a gappy alignment. The choice between the two approaches will depend upon how robust the application is to the loss of sequences from the input set, with alignment masking generally giving a much greater improvement in accuracy but at the cost of discarding a larger number of the input sequences.

  2. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Guy Jean-Pierre Schumann

    2016-01-01

    Full Text Available Digital elevation models (DEMs are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  3. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Science.gov (United States)

    Schumann, Guy; Moller, Delwyn; Mentgen, Felix

    2015-12-01

    Digital elevation models (DEMs) are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  4. SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy

    Science.gov (United States)

    Samango-Sprouse, Carole; Banjevic, Milena; Ryan, Allison; Sigurjonsson, Styrmir; Zimmermann, Bernhard; Hill, Matthew; Hall, Megan P.; Westemeyer, Margaret; Saucier, Jennifer; Demko, Zachary; Rabinowitz, Matthew

    2013-01-01

    Objective To develop a single nucleotide polymorphism- and informatics-based non-invasive prenatal test that detects sex chromosome aneuploidies early in pregnancy. Methods Fifteen aneuploid samples, including thirteen 45,X, two 47,XXY, and one 47,XYY, along with 185 euploid controls, were analyzed. Cell-free DNA was isolated from maternal plasma, amplified in a single multiplex PCR assay that targeted 19,488 polymorphic loci covering chromosomes 13, 18, 21, X, and Y, and sequenced. Sequencing results were analyzed using a Bayesian-based maximum likelihood statistical method to determine copy number of interrogated chromosomes, calculating sample-specific accuracies. Results Of the samples that passed a stringent quality control metric (93%), the algorithm correctly identified copy number at all five chromosomes in all 187 samples, for 934/935 correct calls as early as 9.4 weeks of gestation. We detected 45,X with 91.7% sensitivity (CI: 61.5-99.8%) and 100% specificity (CI: 97.9-100%), and 47,XXY and 47,XYY. The average calculated accuracy was 99.78%. Conclusion This method non-invasively detected 45,X, 47,XXY, and 47,XYY fetuses from cfDNA isolated from maternal plasma with high calculated accuracies, and thus offers a non-invasive method with the potential to function as a routine screen allowing for early prenatal detection of rarely diagnosed yet commonly occurring sex aneuploidies. PMID:23712453

  5. High-accuracy defect sizing for nozzle attachment welds using asymmetric TOFD

    Energy Technology Data Exchange (ETDEWEB)

    Bloodworth, T. [AEA Technology, Risley (United Kingdom)

    1999-09-01

    Inspection procedures for the detection, characterisation and high-accuracy sizing of defects in nozzle attachment welds in a Swedish BWR have been developed. These welds are set-on nozzle-to-pipe attachment welds between the main recirculation pipe and related piping systems. The nozzles and the main recirculation pipe are made of ferritic steel with austenitic stainless steel cladding on the inner surface. The overall wall thickness of the nozzle is 30 mm. The inspection uses an automated pulse-echo technique for the detection and length sizing of defects. Software for the display of complex geometry ultrasonic data is used to assist in data analysis. An unorthodox automated ultrasonic TOFD technique is used to measure the through-wall height of defects. This technique deploys probes on both the nozzle and main pipe surfaces. The TOFD data for this complex geometry are analysed using the CGTOFD software, to locate the origin of defect edge signals. The Qualification detection criterion for this inspection is the detection of defects 6 mm x 18 mm (height x length) or greater. The required length measurement accuracy is {+-}14 mm and the required through-wall height measurement accuracy is {+-}2.3 mm. This last requirement is very demanding. The inspection procedures for detection and sizing passed Procedure Qualification when measured against the above criteria on an `open` test specimen. Data collection and analysis personnel have subsequently passed Personnel Qualification using `blind` specimens. (Author)

  6. Uncertainty and target accuracy studies for the very high temperature reactor(VHTR) physics parameters.

    Energy Technology Data Exchange (ETDEWEB)

    Taiwo, T. A.; Palmiotti, G.; Aliberti, G.; Salvatores, M.; Kim, T.K.

    2005-09-16

    The potential impact of nuclear data uncertainties on a number of performance parameters (core and fuel cycle) of the prismatic block-type Very High Temperature Reactor (VHTR) has been evaluated and results are presented in this report. An uncertainty analysis has been performed, based on sensitivity theory, which underlines what cross-sections, what energy range and what isotopes are responsible for the most significant uncertainties. In order to give guidelines on priorities for new evaluations or validation experiments, required accuracies on specific nuclear data have been derived, accounting for target accuracies on major design parameters. Results of an extensive analysis indicate only a limited number of relevant parameters do not meet the target accuracies assumed in this work; this does not imply that the existing nuclear cross-section data cannot be used for the feasibility and pre-conceptual assessments of the VHTR. However, the results obtained depend on the uncertainty data used, and it is suggested to focus some future evaluation work on the production of consistent, as far as possible complete and user oriented covariance data.

  7. High accuracy measurements of magnetic field integrals for the european XFEL undulator systems

    Science.gov (United States)

    Wolff-Fabris, Frederik; Viehweger, Marc; Li, Yuhui; Pflüger, Joachim

    2016-10-01

    Two high accuracy moving wire (MW) measurement systems based on stretched wire technique were built for the European XFEL (XFEL.EU). They were dedicated to monitor, tune and improve the magnetic field integrals properties during the serial production of the undulator segments, phase shifters and air coil correctors for XFEL.EU. For the magnetic tuning of phase shifters and the calibration of the air coils correctors a short portable MW measurement bench was built to measure first field integrals in short devices with magnetic length of less than about 300 mm and with an ultimate accuracy much better than 1 G cm (0.001 T mm). A long MW measurement setup was dedicated to obtain the total first and second field integrals on the 5-meters long undulator segments with accuracy of about 4 G cm (0.004 T mm) and 2000 G cm2 (20 T mm2) for the 1st and 2nd field integrals, respectively. Using these data a method was developed to compute the proper corrections for the air coils correctors used at both extremities so that zero first and second field integrals for an undulator segment are obtained. It is demonstrated that charging air coils correctors with these corrections results in near zero effect to the electron trajectory in the undulator systems and consequently no negative impact on the self-amplified spontaneous emission (SASE) process should occur.

  8. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    Science.gov (United States)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  9. A High-Performance Operational Amplifier for High-Speed High-Accuracy Switch-Capacitor Cells

    Institute of Scientific and Technical Information of China (English)

    Qi Fan; Ning Ning; Qi Yu; Da Chen

    2007-01-01

    A highspeed highaccuracy fully differenttial operational amplifier (opamp) is realized based on noMillercapacitor feedforward (NMCF) compensation scheme. In order to achieve a good phase margin, the NMCF compensation scheme uses the positive phase shift of lefthalfplane (LHP) zero caused by the feedforward path to counteract the negative phase shift of the nondominant pole. Compared to traditional Miller compensation method, the opamp obtains high gain and wide band synchronously without the polesplitting effect while saves significant chip area due to the absence of the Miller capacitor. Simulated by the 0.35 μm CMOS RF technology, the result shows that the openloop gain of the opamp is 118 dB with the unity gainbandwidth (UGBW)of 1 GHz, and the phase margin is 61°while the settling time is 5.8 ns when achieving 0.01% accuracy. The opamp is especially suitable for the frontend sample/hold (S/H)cell and the multiplying D/A converter(MDAC) module of the highspeed highresolution pipelined A/D converters(ADCs).

  10. Measurement of pair-production by high energy photons in an aligned tungsten crystal

    Science.gov (United States)

    Moore, R.; Parker, M. A.; Baurichter, A.; Kirsebom, K.; Medenwaldt, R.; Mikkelsen, U.; Møller, S. P.; Uggerhøj, E.; Worm, T.; Doble, N.; Elsener, K.; Ballestrero, S.; Sona, P.; Strakhovenko, V. M.; Biino, C.; Vilakazi, Z. Z.

    1996-10-01

    A new measurement has been made of the rate of pair-production in a 3.2 mm thick tungsten crystal, exposed to photons with energies in the range 10 to 150 GeV, for angles of incidence up to 10 mrad from the crystal axis. A strong enhancement of the pair-production rate is observed when the beam is aligned along the crystal axis, as compared to a random orientation. This effect can be exploited in the NA48 CP-violation experiment by using a thin crystal rather than an amorphous material to convert photons, thus minimising the scattering of kaons in the converter.

  11. High Accuracy, Two-Dimensional Read-Out in Multiwire Proportional Chambers

    Science.gov (United States)

    Charpak, G.; Sauli, F.

    1973-02-14

    In most applications of proportional chambers, especially in high-energy physics, separate chambers are used for measuring different coordinates. In general one coordinate is obtained by recording the pulses from the anode wires around which avalanches have grown. Several methods have been imagined for obtaining the position of an avalanche along a wire. In this article a method is proposed which leads to the same range of accuracies and may be preferred in some cases. The problem of accurate measurements for large-size chamber is also discussed.

  12. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-20

    In a modified Twyman-Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  13. A small and high accuracy gyro stabilization electro-optical platform

    Science.gov (United States)

    Qiu, Haitao; Han, Yonggen; Lv, Yanhong

    2008-10-01

    A high accuracy line-of-sight (LOS) Stabilization system based on digital control technology was designed. The current feedback closed-loop system was introduced which uses the CCD graphic and resolver to constitute the position closed-loop and uses the optic fiber gyro to constitute the rate closed-loop. In order to realize zero steady-state error of angular output in counteracting disturbance from carrier, a PII2 (proportional-integral-double integral) control scheme is proposed. The hardware configuration and software system is presented. Experimental results show that the system has perfect dynamic and static performance and the technical requirements were satisfied.

  14. High Accuracy Three-dimensional Simulation of Micro Injection Moulded Parts

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F. S.; Hansen, Hans Nørgaard

    2011-01-01

    Micro injection moulding (μIM) is the key replication technology for high precision manufacturing of polymer micro products. Data analysis and simulations on micro-moulding experiments have been conducted during the present validation study. Detailed information about the μIM process was gathered...... and used to establish a reliable simulation methodology suitable for μIM parts. Various Simulation set-up parameters that have been considered in order to improve the simulation accuracy: injection speed profile, melt and mould temperatures, 3D mesh, material rheology, inertia effect and shrinkage...

  15. High-accuracy mass determination of unstable nuclei with a Penning trap mass spectrometer

    CERN Multimedia

    2002-01-01

    The mass of a nucleus is its most fundamental property. A systematic study of nuclear masses as a function of neutron and proton number allows the observation of collective and single-particle effects in nuclear structure. Accurate mass data are the most basic test of nuclear models and are essential for their improvement. This is especially important for the astrophysical study of nuclear synthesis. In order to achieve the required high accuracy, the mass of ions captured in a Penning trap is determined via their cyclotron frequency $ \

  16. An angle encoder for super-high resolution and super-high accuracy using SelfA

    Science.gov (United States)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  17. High-accuracy current sensing circuit with current compensation technique for buck-boost converter

    Science.gov (United States)

    Rao, Yuan; Deng, Wan-Ling; Huang, Jun-Kai

    2015-03-01

    A novel on-chip current sensing circuit with current compensation technique suitable for buck-boost converter is presented in this article. The proposed technique can sense the full-range inductor current with high accuracy and high speed. It is mainly based on matched current mirror and does not require a large proportion of aspect ratio between the powerFET and the senseFET, thus it reduces the complexity of circuit design and the layout mismatch issue without decreasing the power efficiency. The circuit is fabricated with TSMC 0.25 µm 2P5M mixed-signal process. Simulation results show that the buck-boost converter can be operated at 200 kHz to 4 MHz switching frequency with an input voltage from 2.8 to 4.7 V. The output voltage is 3.6 V, and the maximum accuracy for both high and low side sensing current reaches 99% within the load current ranging from 200 to 600 mA.

  18. Simple high-accuracy resolution program for convective modelling of discontinuities

    Science.gov (United States)

    Leonard, B. P.

    1988-01-01

    For steady multidimensional convection, the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme has several attractive properties. However, for highly convective simulation of step profiles, QUICK produces unphysical overshoots and a few oscillations, and this may cause serious problems in nonlinear flows. Fortunately, it is possible to modify the convective flux by writing the normalized convected control-volume face value as a function of the normalized adjacent upstream node value, developing criteria for monotonic resolution without sacrificing formal accuracy. This results in a nonlinear functional relationship between the normalized variables, whereas standard methods are all linear in this sense. The resulting Simple High Accuracy Resolution Program (SHARP) can be applied to steady multidimensional flows containing thin shear or mixing layers, shock waves, and other frontal phenomena. This represents a significant advance in modeling highly convective flows of engineering and geophysical importance. SHARP is based on an explicit, conservative, control-volume flux formation, equally applicable to one, two, or three dimensional elliptic, parabolic, hyperbolic, or mixed-flow regimes. Results are given for the bench-mark purely convective first-order results and the nonmonotonic predictions of second- and third-order upwinding.

  19. High-accuracy optimal finite-thrust trajectories for Moon escape

    Science.gov (United States)

    Shen, Hong-Xin; Casalino, Lorenzo

    2017-02-01

    The optimization problem of fuel-optimal trajectories from a low circular Moon orbit to a target hyperbolic excess velocity vector using finite-thrust propulsion is solved. The ability to obtain the most accurate satisfaction of necessary optimality conditions in a high-accuracy dynamic model is the main motivation of the current study. The solutions allow attaining anytime-return Earth-interface conditions from a low lunar orbit. Gravitational effects of the Sun, Earth, and Moon are included throughout the entire trajectory. Severe constraints on the fuel budget combined with high-accuracy demands on the endpoint conditions necessitate a high-fidelity solution to the trajectory optimization problem and JPL DE405 ephemeris model is used to determine the perturbing bodies' positions. The optimization problem is solved using an indirect method. The optimality of the solution is verified by an application of Pontryagin's maximum principle. More accurate and fuel-efficient trajectories are found for the same mission objectives and constraints published in other research, emphasizing the advantages of this technique. It is also shown that the thrust structure consists of three finite burns. In contrast to previous research, no singular arc is required in the optimal solutions, and all the controls appear bang-bang.

  20. Emergency positioning system accuracy with infrared LEDs in high-security facilities

    Science.gov (United States)

    Knoch, Sierra N.; Nelson, Charles; Walker, Owens

    2017-05-01

    Instantaneous personnel location presents a challenge in Department of Defense applications where high levels of security restrict real-time tracking of crew members. During emergency situations, command and control requires immediate accountability of all personnel. Current radio frequency (RF) based indoor positioning systems can be unsuitable due to RF leakage and electromagnetic interference with sensitively calibrated machinery on variable platforms like ships, submarines and high-security facilities. Infrared light provide a possible solution to this problem. This paper proposes and evaluates an indoor line-of-sight positioning system that is comprised of IR and high-sensitivity CMOS camera receivers. In this system the movement of the LEDs is captured by the camera, uploaded and analyzed; the highest point of power is located and plotted to create a blueprint of crewmember location. Results provided evaluate accuracy as a function of both wavelength and environmental conditions. Research will further evaluate the accuracy of the LED transmitter and CMOS camera receiver system. Transmissions in both the 780 and 850nm IR are analyzed.

  1. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  2. High Sensitivity Electrochemical Cholesterol Sensor Utilizing a Vertically Aligned Carbon Nanotube Electrode with Electropolymerized Enzyme Immobilization

    Directory of Open Access Journals (Sweden)

    Ditsayut Phokharatkul

    2009-10-01

    Full Text Available In this report, a new cholesterol sensor is developed based on a vertically aligned CNT electrode with two-step electrochemical polymerized enzyme immobilization. Vertically aligned CNTs are selectively grown on a 1 mm2 window of gold coated SiO2/Si substrate by thermal chemical vapor deposition (CVD with gravity effect and water-assisted etching. CNTs are then simultaneously functionalized and enzyme immobilized by electrochemical polymerization of polyaniline and cholesterol enzymes. Subsequently, ineffective enzymes are removed and new enzymes are electrochemically recharged. Scanning electron microscopic characterization indicates polymer-enzyme nanoparticle coating on CNT surface. Cyclic voltammogram (CV measurements in cholesterol solution show the oxidation and reduction peaks centered around 450 and −220 mV, respectively. An approximately linear relationship between the cholesterol concentration and the response current could be observed in the concentration range of 50–300 mg/dl with a sensitivity of approximately 0.22 μA/mg·dl−1, which is considerably higher compared to previously reported CNT bioprobe. In addition, good specificity toward glucose, uric acid acetaminophen and ascorbic acid have been obtained. Moreover, sensors have satisfactory stability, repeatability and life time. Therefore, the electropolymerized CNT bioprobe is promising for cholesterol detection in normal cholesterol concentration in human blood.

  3. A context dependent pair hidden Markov model for statistical alignment

    CERN Document Server

    Arribas-Gil, Ana

    2011-01-01

    This article proposes a novel approach to statistical alignment of nucleotide sequences by introducing a context dependent structure on the substitution process in the underlying evolutionary model. We propose to estimate alignments and context dependent mutation rates relying on the observation of two homologous sequences. The procedure is based on a generalized pair-hidden Markov structure, where conditional on the alignment path, the nucleotide sequences follow a Markov distribution. We use a stochastic approximation expectation maximization (saem) algorithm to give accurate estimators of parameters and alignments. We provide results both on simulated data and vertebrate genomes, which are known to have a high mutation rate from CG dinucleotide. In particular, we establish that the method improves the accuracy of the alignment of a human pseudogene and its functional gene.

  4. High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay

    Directory of Open Access Journals (Sweden)

    Du Yuefen

    2003-05-01

    Full Text Available Abstract Background Rolling circle amplification of ligated probes is a simple and sensitive means for genotyping directly from genomic DNA. SNPs and mutations are interrogated with open circle probes (OCP that can be circularized by DNA ligase when the probe matches the genotype. An amplified detection signal is generated by exponential rolling circle amplification (ERCA of the circularized probe. The low cost and scalability of ligation/ERCA genotyping makes it ideally suited for automated, high throughput methods. Results A retrospective study using human genomic DNA samples of known genotype was performed for four different clinically relevant mutations: Factor V Leiden, Factor II prothrombin, and two hemochromatosis mutations, C282Y and H63D. Greater than 99% accuracy was obtained genotyping genomic DNA samples from hundreds of different individuals. The combined process of ligation/ERCA was performed in a single tube and produced fluorescent signal directly from genomic DNA in less than an hour. In each assay, the probes for both normal and mutant alleles were combined in a single reaction. Multiple ERCA primers combined with a quenched-peptide nucleic acid (Q-PNA fluorescent detection system greatly accellerated the appearance of signal. Probes designed with hairpin structures reduced misamplification. Genotyping accuracy was identical from either purified genomic DNA or genomic DNA generated using whole genome amplification (WGA. Fluorescent signal output was measured in real time and as an end point. Conclusions Combining the optimal elements for ligation/ERCA genotyping has resulted in a highly accurate single tube assay for genotyping directly from genomic DNA samples. Accuracy exceeded 99 % for four probe sets targeting clinically relevant mutations. No genotypes were called incorrectly using either genomic DNA or whole genome amplified sample.

  5. Discovery and validation of urine markers of acute pediatric appendicitis using high accuracy mass spectrometry

    Science.gov (United States)

    Kentsis, Alex; Lin, Yin Yin; Kurek, Kyle; Calicchio, Monica; Wang, Yan Yan; Monigatti, Flavio; Campagne, Fabien; Lee, Richard; Horwitz, Bruce; Steen, Hanno; Bachur, Richard

    2015-01-01

    Study Objective Molecular definition of disease has been changing all aspects of medical practice, from diagnosis and screening to understanding and treatment. Acute appendicitis is among many human conditions that are complicated by the heterogeneity of clinical presentation and shortage of diagnostic markers. Here, we sought to profile the urine of patients with appendicitis with the goal of identifying new diagnostic markers. Methods Candidate markers were identified from the urine of children with histologically proven appendicitis by using high accuracy mass spectrometry proteome profiling. These systemic and local markers were used to assess the probability of appendicitis in a blinded, prospective study of children being evaluated for acute abdominal pain in our emergency department. Tests of performance of the markers were evaluated against the pathologic diagnosis and histologic grade of appendicitis. Results Test performance of 57 identified candidate markers was studied in 67 patients, with median age of 11 years, 37% of whom had appendicitis. Several exhibited favorable diagnostic performance, including calgranulin A (S100-A8), α-1-acid glycoprotein 1 (orosomucoid), and leucine-rich α-2-glycoprotein (LRG), with the ROC AUC and values of 0.84 (95 % CI 0.72-0.95), 0.84 (0.72-0.95), and 0.97 (0.93-1.0), respectively. LRG was enriched in diseased appendices and its abundance correlated with severity of appendicitis. Conclusions High accuracy mass spectrometry urine proteome profiling allowed identification of diagnostic markers of acute appendicitis. Usage of LRG and other identified biomarkers may improve the diagnostic accuracy of clinical evaluations of appendicitis. PMID:19556024

  6. SpaceNav - A high accuracy navigation system for space applications

    Science.gov (United States)

    Evers, H.-H.

    The technology of the SpaceNav-system is based on research performed by the Institute of Flight Guidance and Control at the Technical University of Braunschweig, Germany. In 1989 this institute gave the worlds first public demonstration of a fully automatic landing of an aircraft, using inertial and satellite informations exclusively. The SpaceNav device components are: Acceleration-/Gyro Sensor Package; Global Positioning System (GPS) Receiver/optional more than one; Time Reference Unit; CPU; Telemetry (optional); and Differential GPS (DGPS) Receiver (optional). The coupling of GPS receivers with inertial sensors provides an extremely accurate navigation data set in real time applications even in phases with high dynamic conditions. The update rate of this navigation information is up to 100 Hz with the same accuracy in 3D-position, velocity, acceleration, attitude and time. SpaceNav is an integrated navigation system, which operates according to the principle of combining the longterm stability and accuracy of GPS, and the high level of dynamic precision of conventional inertial navigation system (INS) strapdown systems. The system's design allows other aiding sensors e.g. GLONASS satellite navigation system, distance measuring equipment (DME), altimeter (radar and/or barometric), flux valve etc. to be connected, in order to increase the redundancy of the system. The advantage of such an upgraded system is the availability of more sensor information than necessary for a navigation solution. The resulting redundancy in range measurement allows real-time detection and identification of sensor signals that are incompatible with the other information. As a result you get Receiver Autonomous Integrity Monitoring (RAIM) as described in 'A Multi-Sensor Approach to Assuring GPS Integrity', presented by Alison Brown in the March/April 1990 issue of 'GPS World'. In this paper the author presents information about the principles of the Satellite Navigation System GPS, and

  7. Self-centering fiber alignment structures for high-precision field installable single-mode fiber connectors

    Science.gov (United States)

    Van Erps, Jürgen; Ebraert, Evert; Gao, Fei; Vervaeke, Michael; Berghmans, Francis; Beri, Stefano; Watté, Jan; Thienpont, Hugo

    2014-05-01

    There is a steady increase in the demand for internet bandwidth, primarily driven by cloud services and high-definition video streaming. Europe's Digital Agenda states the ambitious objective that by 2020 all Europeans should have access to internet at speeds of 30Mb/s or above, with 50% or more of households subscribing to connections of 100Mb/s. Today however, internet access in Europe is mainly based on the first generation of broadband, meaning internet accessed over legacy telephone copper and TV cable networks. In recent years, Fiber-To-The-Home (FTTH) networks have been adopted as a replacement of traditional electrical connections for the `last mile' transmission of information at bandwidths over 1Gb/s. However, FTTH penetration is still very low (FTTH networks. Indeed, the success and adoption of optical access networks critically depend on the quality and reliability of connections between optical fibers. In particular a further reduction of insertion loss of field- installable connectors must be achieved without a significant increase in component cost. This requires precise alignment of fibers that can differ in terms of ellipticity, eccentricity or diameter and seems hardly achievable using today's widespread ferrule-based alignment systems. In this paper, we present a field-installable connector based on deflectable/compressible spring structures, providing a self-centering functionality for the fiber. This way, it can accommodate for possible fiber cladding diameter variations (the tolerance on the cladding diameter of G.652 fiber is typically +/-0.7μm). The mechanical properties of the cantilever are derived through an analytical approximation and a mathematical model of the spring constant, and finite element-based simulations are carried out to find the maximum first principal stress as well as the stress distribution distribution in the fiber alignment structure. Elastic constants of the order of 104N=m are found to be compatible with a proof

  8. BFAST: an alignment tool for large scale genome resequencing.

    Directory of Open Access Journals (Sweden)

    Nils Homer

    Full Text Available BACKGROUND: The new generation of massively parallel DNA sequencers, combined with the challenge of whole human genome resequencing, result in the need for rapid and accurate alignment of billions of short DNA sequence reads to a large reference genome. Speed is obviously of great importance, but equally important is maintaining alignment accuracy of short reads, in the 25-100 base range, in the presence of errors and true biological variation. METHODOLOGY: We introduce a new algorithm specifically optimized for this task, as well as a freely available implementation, BFAST, which can align data produced by any of current sequencing platforms, allows for user-customizable levels of speed and accuracy, supports paired end data, and provides for efficient parallel and multi-threaded computation on a computer cluster. The new method is based on creating flexible, efficient whole genome indexes to rapidly map reads to candidate alignment locations, with arbitrary multiple independent indexes allowed to achieve robustness against read errors and sequence variants. The final local alignment uses a Smith-Waterman method, with gaps to support the detection of small indels. CONCLUSIONS: We compare BFAST to a selection of large-scale alignment tools -- BLAT, MAQ, SHRiMP, and SOAP -- in terms of both speed and accuracy, using simulated and real-world datasets. We show BFAST can achieve substantially greater sensitivity of alignment in the context of errors and true variants, especially insertions and deletions, and minimize false mappings, while maintaining adequate speed compared to other current methods. We show BFAST can align the amount of data needed to fully resequence a human genome, one billion reads, with high sensitivity and accuracy, on a modest computer cluster in less than 24 hours. BFAST is available at (http://bfast.sourceforge.net.

  9. A fast cross-validation method for alignment of electron tomography images based on Beer-Lambert law

    Science.gov (United States)

    Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen

    2015-01-01

    In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer-Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography. PMID:26455556

  10. Self-aligned coplanar amorphous indium zinc oxide thin-film transistors with high performance

    Science.gov (United States)

    Park, Jae Chul; Lee, Ho-Nyeon

    2015-01-01

    Self-aligned coplanar amorphous indium zinc oxide thin-film transistors (a-IZO TFTs) were fabricated. The a-IZO TFTs had a field-effect mobility of μFE = 24.4 cm2 V-1 s-1, a subthreshold slope of 180 mV/dec, and an on/off ratio of 109. As the channel length decreased, the threshold voltage VTH shifted to more negative voltages, and μFE increased due to the diffused carriers from the contact regions. The intrinsic field-effect mobility was estimated to be 15.05 cm2 V-1 s-1 in the linear mode and 13.28 cm2 V-1 s-1 in saturation mode. Under positive/negative bias-temperature-illumination stress, the shift in VTH was less than ±0.7 V after 11,000 s.

  11. High accuracy of family history of melanoma in Danish melanoma cases

    DEFF Research Database (Denmark)

    Wadt, Karin A W; Drzewiecki, Krzysztof T; Gerdes, Anne-Marie

    2015-01-01

    The incidence of melanoma in Denmark has immensely increased over the last 10 years making Denmark a high risk country for melanoma. In the last two decades multiple public campaigns have sought to increase the awareness of melanoma. Family history of melanoma is a known major risk factor...... but previous studies have shown that self-reported family history of melanoma is highly inaccurate. These studies are 15 years old and we wanted to examine if a higher awareness of melanoma has increased the accuracy of self-reported family history of melanoma. We examined the family history of 181 melanoma...... probands who reported 199 cases of melanoma in relatives, of which 135 cases where in first degree relatives. We confirmed the diagnosis of melanoma in 77% of all relatives, and in 83% of first degree relatives. In 181 probands we validated the negative family history of melanoma in 748 first degree...

  12. High Accuracy mass Measurement of the very Short-Lived Halo Nuclide $^{11}$Li

    CERN Multimedia

    Le scornet, G

    2002-01-01

    The archetypal halo nuclide $^{11}$Li has now attracted a wealth of experimental and theoretical attention. The most outstanding property of this nuclide, its extended radius that makes it as big as $^{48}$Ca, is highly dependent on the binding energy of the two neutrons forming the halo. New generation experiments using radioactive beams with elastic proton scattering, knock-out and transfer reactions, together with $\\textit{ab initio}$ calculations require the tightening of the constraint on the binding energy. Good metrology also requires confirmation of the sole existing precision result to guard against a possible systematic deviation (or mistake). We propose a high accuracy mass determintation of $^{11}$Li, a particularly challenging task due to its very short half-life of 8.6 ms, but one perfectly suiting the MISTRAL spectrometer, now commissioned at ISOLDE. We request 15 shifts of beam time.

  13. Arithmetic Accuracy in Children From High- and Low-Income Schools

    Directory of Open Access Journals (Sweden)

    Elida V. Laski

    2016-04-01

    Full Text Available This study investigated income group differences in kindergartners’ and first graders’ (N = 161 arithmetic by examining the link between accuracy and strategy use on simple and complex addition problems. Low-income children were substantially less accurate than high-income children, in terms of both percentage of correctly solved problems and the magnitude of errors, with low-income first graders being less accurate than high-income kindergartners. Higher-income children were more likely to use sophisticated mental strategies than their lower-income peers, who used predominantly inefficient counting or inappropriate strategies. Importantly, this difference in strategies mediated the relation between income group and addition. Examining underlying strategies has implications for understanding income group differences in arithmetic and potential means of remedying it via instruction.

  14. High Accuracy Liquid Propellant Slosh Predictions Using an Integrated CFD and Controls Analysis Interface

    Science.gov (United States)

    Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  15. Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions

    Science.gov (United States)

    Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  16. Using Mobile Laser Scanning Data for Features Extraction of High Accuracy Driving Maps

    Science.gov (United States)

    Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Dong, Zhen

    2016-06-01

    High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.

  17. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2011-01-01

    The Muon Alignment work now focuses on producing a new track-based alignment with higher track statistics, making systematic studies between the results of the hardware and track-based alignment methods and aligning the barrel using standalone muon tracks. Currently, the muon track reconstruction software uses a hardware-based alignment in the barrel (DT) and a track-based alignment in the endcaps (CSC). An important task is to assess the muon momentum resolution that can be achieved using the current muon alignment, especially for highly energetic muons. For this purpose, cosmic ray muons are used, since the rate of high-energy muons from collisions is very low and the event statistics are still limited. Cosmics have the advantage of higher statistics in the pT region above 100 GeV/c, but they have the disadvantage of having a mostly vertical topology, resulting in a very few global endcap muons. Only the barrel alignment has therefore been tested so far. Cosmic muons traversing CMS from top to bottom are s...

  18. Initial development of high-accuracy CFRP panel for DATE5 antenna

    Science.gov (United States)

    Qian, Yuan; Lou, Zheng; Hao, Xufeng; Zhu, Jing; Cheng, Jingquan; Wang, Hairen; Zuo, Yingxi; Yang, Ji

    2016-07-01

    DATE5 antenna, which is a 5m telescope for terahertz exploration, will be sited at Dome A, Antarctica. It is necessary to keep high surface accuracy of the primary reflector panels so that high observing efficiency can be achieved. In antenna field, carbon fiber reinforced composite (CFRP) sandwich panels are widely used as these panels are light in weight, high in strength, low in thermal expansion, and cheap in mass fabrication. In DATE5 project, CFRP panels are important panel candidates. In the design study phase, a CFRP prototype panel of 1-meter size is initially developed for the verification purpose. This paper introduces the material arrangement in the sandwich panel, measured performance of this testing sandwich structure samples, and together with the panel forming process. For anti-icing in the South Pole region, a special CFRP heating film is embedded in the front skin of sandwich panel. The properties of some types of basic building materials are tested. Base on the results, the deformation of prototype panel with different sandwich structures and skin layers are simulated and a best structural concept is selected. The panel mold used is a high accuracy one with a surface rms error of 1.4 μm. Prototype panels are replicated from the mold. Room temperature curing resin is used to reduce the thermal deformation in the resin transfer process. In the curing, vacuum negative pressure technology is also used to increase the volume content of carbon fiber. After the measurement of the three coordinate measure machine (CMM), a prototype CFRP panel of 5.1 μm rms surface error is developed initially.

  19. ABS: Sequence alignment by scanning

    KAUST Repository

    Bonny, Mohamed Talal

    2011-08-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  20. Usability and accuracy of high-resolution detectors for daily quality assurance for robotic radiosurgery

    Directory of Open Access Journals (Sweden)

    Loutfi-Krauss Britta

    2017-09-01

    Full Text Available For daily CyberKnife QA a Winston-Lutz-Test (Automated-Quality-Assurance, AQA is used to determine sub-millimeter deviations in beam delivery accuracy. This test is performed using gafchromic film, an extensive and user-dependent method requiring the use of disposables. We therefore analyzed the usability and accuracy of high-resolution detector arrays. We analyzed a liquid-filled ionization-chamber array (Octavius 1000SRS, PTW, Germany, which has a central resolution of 2.5mm. To test sufficient sensitivity, beam profiles with robot shifts of 0.1mm along the arrays' axes were measured. The detected deviation between the shifted and central profile were compared to the real robot's position. We then compared the results to the SRS-Profiler (SunNuclear, USA with 4.0mm resolution and to the Nonius (QUART, Germany, a single-line diode detector with 2.8mm resolution. Finally, AQA variance and usability were analyzed performing a number of AQA tests over time, which required the use of specially designed fixtures for each array, and the results were compared to film. Concerning sensitivity, the 1000SRS detected the beam profile shifts with a maximum difference of 0.11mm (mean deviation = 0.03mm compared to the actual robot shift. The Nonius and SRS-Profiler showed differences of up to 0.15mm and 0.69mm with mean deviation of 0.05mm and 0.18mm, respectively. Analyzing the variation of AQA results over time, the 1000SRS showed a comparable standard deviation to film (0.26mm vs. 0.18mm. The SRS-Profiler and the Nonius showed a standard deviation of 0.16mm and 0.24mm, respectively. The 1000SRS seems to provide equivalent accuracy and sensitivity to the gold standard film when performing daily AQA tests. Compared to other detectors in our study the sensitivity as well as the accuracy of the 1000SRS appears to be superior and more user-friendly. Furthermore, no significant modification of the standard AQA procedure is required when introducing 1000SRS for

  1. An output amplitude configurable wideband automatic gain control with high gain step accuracy

    Institute of Scientific and Technical Information of China (English)

    何晓丰; 莫太山; 马成炎; 叶甜春

    2012-01-01

    An output amplitude configurable wideband automatic gain control (AGC) with high gain step accuracy for the GNSS receiver is presented.The amplitude of an AGC is configurable in order to cooperate with baseband chips to achieve interference suppression and be compatible with different full range ADCs.And what's more,the gain-boosting technology is introduced and the circuit is improved to increase the step accuracy.A zero,which is composed by the source feedback resistance and the source capacity,is introduced to compensate for the pole.The AGC is fabricated in a 0.18 μm CMOS process.The AGC shows a 62 dB gain control range by 1 dB each step with a gain error of less than 0.2 dB.The AGC provides 3 dB bandwidth larger than 80 MHz and the overall power consumption is less than 1.8 mA,and the die area is 800 × 300μm2.

  2. Accuracy of the high-throughput amplicon sequencing to identify species within the genus Aspergillus.

    Science.gov (United States)

    Lee, Seungeun; Yamamoto, Naomichi

    2015-12-01

    This study characterized the accuracy of high-throughput amplicon sequencing to identify species within the genus Aspergillus. To this end, we sequenced the internal transcribed spacer 1 (ITS1), β-tubulin (BenA), and calmodulin (CaM) gene encoding sequences as DNA markers from eight reference Aspergillus strains with known identities using 300-bp sequencing on the Illumina MiSeq platform, and compared them with the BLASTn outputs. The identifications with the sequences longer than 250 bp were accurate at the section rank, with some ambiguities observed at the species rank due to mostly cross detection of sibling species. Additionally, in silico analysis was performed to predict the identification accuracy for all species in the genus Aspergillus, where 107, 210, and 187 species were predicted to be identifiable down to the species rank based on ITS1, BenA, and CaM, respectively. Finally, air filter samples were analysed to quantify the relative abundances of Aspergillus species in outdoor air. The results were reproducible across biological duplicates both at the species and section ranks, but not strongly correlated between ITS1 and BenA, suggesting the Aspergillus detection can be taxonomically biased depending on the selection of the DNA markers and/or primers.

  3. Real-Time and High-Accuracy Arctangent Computation Using CORDIC and Fast Magnitude Estimation

    Directory of Open Access Journals (Sweden)

    Luca Pilato

    2017-03-01

    Full Text Available This paper presents an improved VLSI (Very Large Scale of Integration architecture for real-time and high-accuracy computation of trigonometric functions with fixed-point arithmetic, particularly arctangent using CORDIC (Coordinate Rotation Digital Computer and fast magnitude estimation. The standard CORDIC implementation suffers of a loss of accuracy when the magnitude of the input vector becomes small. Using a fast magnitude estimator before running the standard algorithm, a pre-processing magnification is implemented, shifting the input coordinates by a proper factor. The entire architecture does not use a multiplier, it uses only shift and add primitives as the original CORDIC, and it does not change the data path precision of the CORDIC core. A bit-true case study is presented showing a reduction of the maximum phase error from 414 LSB (angle error of 0.6355 rad to 4 LSB (angle error of 0.0061 rad, with small overheads of complexity and speed. Implementation of the new architecture in 0.18 µm CMOS technology allows for real-time and low-power processing of CORDIC and arctangent, which are key functions in many embedded DSP systems. The proposed macrocell has been verified by integration in a system-on-chip, called SENSASIP (Sensor Application Specific Instruction-set Processor, for position sensor signal processing in automotive measurement applications.

  4. High Accuracy Mass Measurement of the Dripline Nuclides $^{12,14}$Be

    CERN Multimedia

    2002-01-01

    State-of-the art, three-body nuclear models that describe halo nuclides require the binding energy of the halo neutron(s) as a critical input parameter. In the case of $^{14}$Be, the uncertainty of this quantity is currently far too large (130 keV), inhibiting efforts at detailed theoretical description. A high accuracy, direct mass deterlnination of $^{14}$Be (as well as $^{12}$Be to obtain the two-neutron separation energy) is therefore required. The measurement can be performed with the MISTRAL spectrometer, which is presently the only possible solution due to required accuracy (10 keV) and short half-life (4.5 ms). Having achieved a 5 keV uncertainty for the mass of $^{11}$Li (8.6 ms), MISTRAL has proved the feasibility of such measurements. Since the current ISOLDE production rate of $^{14}$Be is only about 10/s, the installation of a beam cooler is underway in order to improve MISTRAL transmission. The projected improvement of an order of magnitude (in each transverse direction) will make this measureme...

  5. Combined Scintigraphy and Tumor Marker Analysis Predicts Unfavorable Histopathology of Neuroblastic Tumors with High Accuracy.

    Directory of Open Access Journals (Sweden)

    Wolfgang Peter Fendler

    Full Text Available Our aim was to improve the prediction of unfavorable histopathology (UH in neuroblastic tumors through combined imaging and biochemical parameters.123I-MIBG SPECT and MRI was performed before surgical resection or biopsy in 47 consecutive pediatric patients with neuroblastic tumor. Semi-quantitative tumor-to-liver count-rate ratio (TLCRR, MRI tumor size and margins, urine catecholamine and NSE blood levels of neuron specific enolase (NSE were recorded. Accuracy of single and combined variables for prediction of UH was tested by ROC analysis with Bonferroni correction.34 of 47 patients had UH based on the International Neuroblastoma Pathology Classification (INPC. TLCRR and serum NSE both predicted UH with moderate accuracy. Optimal cut-off for TLCRR was 2.0, resulting in 68% sensitivity and 100% specificity (AUC-ROC 0.86, p < 0.001. Optimal cut-off for NSE was 25.8 ng/ml, resulting in 74% sensitivity and 85% specificity (AUC-ROC 0.81, p = 0.001. Combination of TLCRR/NSE criteria reduced false negative findings from 11/9 to only five, with improved sensitivity and specificity of 85% (AUC-ROC 0.85, p < 0.001.Strong 123I-MIBG uptake and high serum level of NSE were each predictive of UH. Combined analysis of both parameters improved the prediction of UH in patients with neuroblastic tumor. MRI parameters and urine catecholamine levels did not predict UH.

  6. High-accuracy same-beam VLBI observations using Shanghai and Urumqi telescopes

    Institute of Scientific and Technical Information of China (English)

    KIKUCHI; Fuyuhiko; KAMATA; Shun’ichi; MATSUMOTO; Koji; HANADA; Hideo

    2009-01-01

    The same-beam VLBI observations of Rstar and Vstar,which were two small satellites of Japanese lunar mission,SELENE,were successfully performed by using Shanghai and Urumqi 25-m telescopes. When the separation angle between Rstar and Vstar was less than 0.1 deg,the differential phase delay of the X-band signals between Rstar and Vstar on Shanghai-Urumqi baseline was obtained with a very small error of 0.15 mm rms,which was reduced by 1-2 order compared with the former VLBI results. When the separation angle was less than 0.56 deg,the differential phase delay of the S-band signals was also obtained with a very small error of several mm rms. The orbit determination for Rstar and Vstar was performed,and the accuracy was improved to a level of several meters by using VLBI and Doppler data. The high-accuracy same-beam differential VLBI technique is very useful in orbit determination for a spacecraft,and will be used in orbit determination for Mars missions of China Yinghuo-1 and Russia Phobos-grunt.

  7. High-accuracy same-beam VLBI observations using Shanghai and Urumqi telescopes

    Institute of Scientific and Technical Information of China (English)

    LIU QingHui; PING JingSong; FAN QingYuan; XIA Bo; AN Tao; QIAN ZhiHan; YANG WenJun; ZHANG Hua; WANG Zhen; WANG Na; SHI Xian; KIKUCHI Fuyuhiko; HUANG Qian; KAMATA Shun'ichi; MATSUMOTO Koji; HANADA Hideo; HONG XiaoYu; YU AiLi

    2009-01-01

    The same-beam VLBI observations of Rstar and Vstar, which were two small satellites of Japanese lunar mission, SELENE, were successfully performed by using Shanghai and Urumqi 25-m telescopes.When the separation angle between Rstar and Vstar was less than 0.1 deg, the differential phase delay of the X-band signals between Rstar and Vstar on Shanghai-Urumqi baseline was obtained with a very small error of 0.15 mm rms, which was reduced by 1-2 order compared with the former VLBI results.When the separation angle was less than 0.56 deg, the differential phase delay of the S-band signals was also obtained with a very small error of several mm rms. The orbit determination for Rstar and Vstar was performed, and the accuracy was improved to a level of several meters by using VLBI and Doppler data. The high-accuracy same-beam differential VLBI technique is very useful in orbit determination for a spacecraft, and will be used in orbit determination for Mars missions of China Yinghuo-1 and Russia Phobos-grunt.

  8. Reducing Systematic Centroid Errors Induced by Fiber Optic Faceplates in Intensified High-Accuracy Star Trackers

    Science.gov (United States)

    Xiong, Kun; Jiang, Jie

    2015-01-01

    Compared with traditional star trackers, intensified high-accuracy star trackers equipped with an image intensifier exhibit overwhelmingly superior dynamic performance. However, the multiple-fiber-optic faceplate structure in the image intensifier complicates the optoelectronic detecting system of star trackers and may cause considerable systematic centroid errors and poor attitude accuracy. All the sources of systematic centroid errors related to fiber optic faceplates (FOFPs) throughout the detection process of the optoelectronic system were analyzed. Based on the general expression of the systematic centroid error deduced in the frequency domain and the FOFP modulation transfer function, an accurate expression that described the systematic centroid error of FOFPs was obtained. Furthermore, reduction of the systematic error between the optical lens and the input FOFP of the intensifier, the one among multiple FOFPs and the one between the output FOFP of the intensifier and the imaging chip of the detecting system were discussed. Two important parametric constraints were acquired from the analysis. The correctness of the analysis on the optoelectronic detecting system was demonstrated through simulation and experiment. PMID:26016920

  9. Swing arm profilometer: high accuracy testing for large reaction-bonded silicon carbide optics with a capacitive probe

    Science.gov (United States)

    Xiong, Ling; Luo, Xiao; Hu, Hai-xiang; Zhang, Zhi-yu; Zhang, Feng; Zheng, Li-gong; Zhang, Xue-jun

    2017-08-01

    A feasible way to improve the manufacturing efficiency of large reaction-bonded silicon carbide optics is to increase the processing accuracy in the ground stage before polishing, which requires high accuracy metrology. A swing arm profilometer (SAP) has been used to measure large optics during the ground stage. A method has been developed for improving the measurement accuracy of SAP using a capacitive probe and implementing calibrations. The experimental result compared with the interferometer test shows the accuracy of 0.068 μm in root-mean-square (RMS) and maps in 37 low-order Zernike terms show accuracy of 0.048 μm RMS, which shows a powerful capability to provide a major input in high-precision grinding.

  10. [Diagnostic accuracy of the immersion high-frequency B-scan ultrasonography in chemical injured eyes].

    Science.gov (United States)

    Yang, Qinghua; Chen, Bing; Wang, Liqiang; Li, Zhaohui; Huang, Yifei

    2014-08-01

    To investigate the diagnostic accuracy of the immersion high-frequency B-scan ultrasonography, a noninvasive preoperative diagnosis method, in observing the anterior segment in chemical injured eyes. It was a retrospective study. Sixty-three ocular chemical injury patients (63 eyes), who accepted the keratoplasty or the artificial cornea transplant in PLA General Hospital from May 2011 to May 2013, were included in this study. All the injured eyes were examined by ultrasound bio-microscopy (UBM) and immersion high-frequency B-scan ultrasonography, respectively. The images were analyzed and the results were compared with the intraoperative findings. The observation of lens was the main parameter. All the 63 patients were examined with the UBM and the immersion high-frequency B-scan ultrasonography before the surgery. The findings of the cornea, anterior chamber angle, iris from UBM were consistent with those from the immersion high-frequency B-scan ultrasonography. As for the lens observation, in 32 eyes in which the lens were not detected by UBM, the lens were not detected in only 16 eyes, while 3 eyes with normal lens and 13 eyes with lens pacifications (1 eye with pyknotic lens) by immersion high-frequency B-scan ultrasonography. In 17 eyes in which the lens were found normal by UBM, there were only 14 eyes with normal lens and the rest 3 eyes' lens were found intumescent by immersion high-frequency B-scan ultrasonography. In 6 eyes in which lens were detected with suspicious by UBM, 2 eyes' lens were pyknotic and 4 eyes' lens were intumescent or clouded by immersion high-frequency B-scan ultrasonography. The findings of immersion high-frequency B-scan ultrasonography were highly consistent with the intraoperative findings. The lens could be observed accurately by immersion high-frequency B-scan ultrasonography in chemical injured eyes.

  11. High-accuracy infra-red thermography method using reflective marker arrays

    Science.gov (United States)

    Kirollos, Benjamin; Povey, Thomas

    2017-09-01

    In this paper, we describe a new method for high-accuracy infra-red (IR) thermography measurements in situations with significant spatial variation in reflected radiation from the surroundings, or significant spatial variation in surface emissivity due to viewing angle non-uniformity across the field of view. The method employs a reflective marker array (RMA) on the target surface—typically, high emissivity circular dots—and an integrated image analysis algorithm designed to require minimal human input. The new technique has two particular advantages which make it suited to high-accuracy measurements in demanding environments: (i) it allows the reflected radiation component to be calculated directly, in situ, and as a function of position, overcoming a key problem in measurement environments with non-uniform and unsteady stray radiation from the surroundings; (ii) using image analysis of the marker array (via apparent aspect ratio of the circular reflective markers), the local viewing angle of the target surface can be estimated, allowing corrections for angular variation of local emissivity to be performed without prior knowledge of the geometry. A third advantage of the technique is that allows for simple focus-stacking algorithms due to increased image entropy. The reflective marker array method is demonstrated for an isothermal, hemispherical object exposed to an external IR source arranged to give a significant non-uniform reflected radiation term. This is an example of a challenging environment, both because of the significant non-uniform reflected radiation term, and also the significant variation in target emissivity due to surface angle variation. We demonstrate that the new RMA IR technique leads to significantly lower error in evaluated surface temperature than conventional IR techniques. The method is applicable to any complex radiative environment.

  12. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films

    Science.gov (United States)

    Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; Qu, Ge; Zhang, Fengjiao; Zhao, Xikang; Mei, Jianguo; Zuo, Jian-Min; Shukla, Diwakar; Diao, Ying

    2017-07-01

    Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template-polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results in highly aligned, highly crystalline donor-acceptor polymer thin films over large area (>1 cm2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.

  13. Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics

    Science.gov (United States)

    Bucella, Sadir G.; Luzio, Alessandro; Gann, Eliot; Thomsen, Lars; McNeill, Christopher R.; Pace, Giuseppina; Perinot, Andrea; Chen, Zhihua; Facchetti, Antonio; Caironi, Mario

    2015-09-01

    High-mobility semiconducting polymers offer the opportunity to develop flexible and large-area electronics for several applications, including wearable, portable and distributed sensors, monitoring and actuating devices. An enabler of this technology is a scalable printing process achieving uniform electrical performances over large area. As opposed to the deposition of highly crystalline films, orientational alignment of polymer chains, albeit commonly achieved by non-scalable/slow bulk alignment schemes, is a more robust approach towards large-area electronics. By combining pre-aggregating solvents for formulating the semiconductor and by adopting a room temperature wired bar-coating technique, here we demonstrate the fast deposition of submonolayers and nanostructured films of a model electron-transporting polymer. Our approach enables directional self-assembling of polymer chains exhibiting large transport anisotropy and a mobility up to 6.4 cm2 V-1 s-1, allowing very simple device architectures to operate at 3.3 MHz. Thus, the proposed deposition strategy is exceptionally promising for mass manufacturing of high-performance polymer circuits.

  14. Design and calibration of a high-sensitivity and high-accuracy polarimeter based on liquid crystal variable retarders

    Science.gov (United States)

    Guo, Jing; Ren, De-Qing; Liu, Cheng-Chao; Zhu, Yong-Tian; Dou, Jiang-Pei; Zhang, Xi; Beck, Christian

    2017-01-01

    Polarimetry plays an important role in the measurement of solar magnetic fields. We developed a high-sensitivity and high-accuracy polarimeter (HHP) based on nematic liquid crystal variable retarders (LCVRs), which has a compact setup and no mechanical moving parts. The system design and calibration methods are discussed in detail. The azimuth error of the transmission axis of the polarizer as well as the fast axes of the two LCVRs and the quarter-wave plate were determined using dedicated procedures. Linearly and circularly polarized light were employed to evaluate the performance of the HHP. The experimental results indicate that a polarimetric sensitivity of better than \\[5.7 × {10 - 3}\\] can be achieved by using a single short-exposure image, while an accuracy on the order of 10‑5 can be reached by using a large number of short-exposure images. This makes the HHP a high-performance system that can be used with a ground-based solar telescope for high-precision solar magnetic field investigations.

  15. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  16. SPEAR3 Construction Alignment

    Energy Technology Data Exchange (ETDEWEB)

    LeCocq, Catherine; Banuelos, Cristobal; Fuss, Brian; Gaudreault, Francis; Gaydosh, Michael; Griffin, Levirt; Imfeld, Hans; McDougal, John; Perry, Michael; Rogers,; /SLAC

    2005-08-17

    An ambitious seven month shutdown of the existing SPEAR2 synchrotron radiation facility was successfully completed in March 2004 when the first synchrotron light was observed in the new SPEAR3 ring, SPEAR3 completely replaced SPEAR2 with new components aligned on a new highly-flat concrete floor. Devices such as magnets and vacuum chambers had to be fiducialized and later aligned on girder rafts that were then placed into the ring over pre-aligned support plates. Key to the success of aligning this new ring was to ensure that the new beam orbit matched the old SPEAR2 orbit so that existing experimental beamlines would not have to be reoriented. In this presentation a pictorial summary of the Alignment Engineering Group's surveying tasks for the construction of the SPEAR3 ring is provided. Details on the networking and analysis of various surveys throughout the project can be found in the accompanying paper.

  17. Onorbit IMU alignment error budget

    Science.gov (United States)

    Corson, R. W.

    1980-01-01

    The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.

  18. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    Science.gov (United States)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air

  19. Very Low Power, Low Voltage, High Accuracy, and High Performance Current Mirror

    Institute of Scientific and Technical Information of China (English)

    Hassan Faraji Baghtash; Khalil Monfaredi; Ahmad Ayatollahi

    2011-01-01

    A novel low power and low voltage current mirror with a very low current copy error is presented and the principle of its operation is discussed.In this circuit,the gain boosting regulated cascode scheme is used to improve the output resistance,while using inverter as an amplifier.The simulation results with HSPICE in TSMC 0.18 μm CMOS technology are given,which verify the high performance of the proposed structure.Simulation results show an input resistance of 0.014 Ω and an output resistance of 3 GΩ.The current copy error is favorable as low as 0.002% together with an input (the minimum input voltage of vin,min~ 0.24 V) and an output (the minimum output voltage of vout,min~ 0.16 V) compliances while working with the 1 V power supply and the 50 μA input current.The current copy error is near zero at the input current of 27 μA.It consumes only 76 μW and introduces a very low output offset current of 50 pA.

  20. ADFE METHOD WITH HIGH ACCURACY FOR NONLINEAR PARABOLIC INTEGRO-DIFFERENTIAL SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    崔霞

    2002-01-01

    Alternating direction finite element (ADFE) scheme for d-dimensional nonlinear system of parabolic integro-differential equations is studied. By using a local approximation based on patches of finite elements to treat the capacity term qi(u), decomposition of the coefficient matrix is realized; by using alternating direction, the multi-dimensional problem is reduced to a family of single space variable problems, calculation work is simplified; by using finite element method, high accuracy for space variant is kept; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity of the coefficients and boundary conditions is treated; by introducing Ritz-Volterra projection, the difficulty coming from the memory term is solved. Finally, by using various techniques for priori estimate for differential equations, the unique resolvability and convergence properties for both FE and ADFE schemes are rigorously demonstrated, and optimal H1 and L2norm space estimates and O((△t)2) estimate for time variant are obtained.

  1. SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space

    Science.gov (United States)

    Coppo, P.; Ricciarelli, B.; Brandani, F.; Delderfield, J.; Ferlet, M.; Mutlow, C.; Munro, G.; Nightingale, T.; Smith, D.; Bianchi, S.; Nicol, P.; Kirschstein, S.; Hennig, T.; Engel, W.; Frerick, J.; Nieke, J.

    2010-10-01

    SLSTR is a high accuracy infrared radiometer which will be embarked in the Earth low-orbit Sentinel 3 operational GMES mission. SLSTR is an improved version of the previous AATSR and ATSR-1/2 instruments which have flown respectively on Envisat and ERS-1/2 ESA missions. SLSTR will provide data continuity with respect to these previous missions but with a substantial improvement due to its higher swaths (750 km in dual view and 1400 km in single view) which should permit global coverage of SST and LST measurements (at 1 km of spatial resolution in IR channels) with daily revisit time, useful for climatological and meteorological applications. Two more SWIR channels and a higher spatial resolution in the VIS/SWIR channels (0.5 km) are also implemented for a better clouds/aerosols screening. Two further additional channels for global scale fire monitoring are present at the same time as the other nominal channels.

  2. Study on Calibration System for Electronic Transformers Based on High-Accuracy PCI Card

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhang

    2013-03-01

    Full Text Available With preliminary applying of Electronic Transformer (ET based on IEC 61850 standards in power grid, the calibrations of tested transformers have attracted extensive research attention. This study proposes a novel Calibration System of ET (CSET based on high-accuracy card. Data acquisition of ET and Standard Trans-former (ST is gotten by optic Ethernet and PCI-4462 data acquisition card, respectively. Meanwhile, the synchronized sampling between ET and ST is completed on the optic/electronic pulse signal of PCI synchronization card. The signals processing and human interface are realized by Labview software. The system proposed in the study is feasible for calibrating Electronic Voltage/Current Transformers (EVT/ECT of different voltage classes. System tests show that the precision of the system can get to 0.2°.

  3. Study on Calibration System for Electronic Transformers Based on High-Accuracy PCI Card

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhang

    2013-05-01

    Full Text Available With preliminary applying of Electronic Transformer (ET based on IEC 61850 standards in power grid, the calibration of tested transformers has attracted extensive research attention. This study proposes a novel Calibration System of ET (CSET based on high-accuracy card. Data acquisition of ET and standard trans-former (ST is gotten by optic Ethernet and PCI-4462 data acquisition card, respectively. Meanwhile, the synchronized sampling between ET and ST is completed on the optic/electronic pulse signal of PCI synchronization card. The signals processing and human interface are realized by Lab view software. The system proposed in the study is feasible for calibrating Electronic Voltage/Current Transformers (EVT/ECT of different voltage classes. System tests show that the precision of the system can get to 0.2°.

  4. High-Accuracy Programmable Timing Generator with Wide-Range Tuning Capability

    Directory of Open Access Journals (Sweden)

    Ting-Li Chu

    2013-01-01

    Full Text Available In this paper, a high-accuracy programmable timing generator with wide-range tuning capability is proposed. With the aid of dual delay-locked loop (DLL, both of the coarse- and fine-tuning mechanisms are operated in precise closed-loop scheme to lessen the effects of the ambient variations. The timing generator can provide sub-gate resolution and instantaneous switching capability. The circuit is implemented and simulated in TSMC 0.18 μm 1P6M technology. The test chip area occupies 1.9 mm2. The reference clock cycle can be divided into 128 bins by interpolation to obtain 14 ps resolution with the clock rate at 550 MHz. The INL and DNL are within −0.21~+0.78 and −0.27~+0.43 LSB, respectively.

  5. Well-posedness of the difference schemes of the high order of accuracy for elliptic equations

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available It is well known the differential equation − u ″ ( t +Au( t =f( t ( −∞high order of accuracy two-step difference schemes generated by an exact difference scheme or by Taylor's decomposition on three points for the approximate solutions of this differential equation. The well-posedness of these difference schemes in the difference analogy of the smooth functions is obtained. The exact almost coercive inequality for solutions in C( τ,E of these difference schemes is established.

  6. High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogenlike carbon.

    Science.gov (United States)

    Häffner, H; Beier, T; Hermanspahn, N; Kluge, H J; Quint, W; Stahl, S; Verdú, J; Werth, G

    2000-12-18

    We present a new experimental value for the magnetic moment of the electron bound in hydrogenlike carbon (12C5+): g(exp) = 2.001 041 596 (5). This is the most precise determination of an atomic g(J) factor so far. The experiment was carried out on a single 12C5+ ion stored in a Penning trap. The high accuracy was made possible by spatially separating the induction of spin flips and the analysis of the spin direction. The current theoretical value amounts to g(th) = 2.001 041 591 (7). Together experiment and theory test the bound-state QED contributions to the g(J) factor of a bound electron to a precision of 1%.

  7. Computer-aided diagnosis of breast MRI with high accuracy optical flow estimation

    Science.gov (United States)

    Meyer-Baese, Anke; Barbu, Adrian; Lobbes, Marc; Hoffmann, Sebastian; Burgeth, Bernhard; Kleefeld, Andreas; Meyer-Bäse, Uwe

    2015-05-01

    Non-mass enhancing lesions represent a challenge for the radiological reading. They are not well-defined in both morphology (geometric shape) and kinetics (temporal enhancement) and pose a problem to lesion detection and classification. To enhance the discriminative properties of an automated radiological workflow, the correct preprocessing steps need to be taken. In an usual computer-aided diagnosis (CAD) system, motion compensation plays an important role. To this end, we employ a new high accuracy optical flow based motion compensation algorithm with robustification variants. An automated computer-aided diagnosis system evaluates the atypical behavior of these lesions, and additionally considers the impact of non-rigid motion compensation on a correct diagnosis.

  8. High Accuracy Speed-fed Grating Angular Acceleration Measurement System Based on FPGA

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2012-09-01

    Full Text Available Shaft angular acceleration is one of the most important parameter of rotary machines, the error of angular acceleration increased when the shaft speed up. For this problem, a new high accuracy angular acceleration measurement system is presented, the principle of measurement is self-regulating the period of speed sampling signal according to the proportion of the shaft speed up. This measurement system combined FPGA and SCM, the speed of shaft is received by the timer of SCM responding the interrupts of FPGA, and then set the parameter of frequency divider in FPGA, so as to make the period of speed sampling consistent with the proportion of the speed up. This measurement system could overcome the error when system speed up according to the experiment.

  9. High Accuracy Reference Network (HARN), Published in 2000, 1:600 (1in=50ft) scale, Brown County, WI.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This High Accuracy Reference Network (HARN) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from Field Survey/GPS information as of 2000....

  10. High-accuracy approximation of high-rank derivatives: isotropic finite differences based on lattice-Boltzmann stencils.

    Science.gov (United States)

    Mattila, Keijo Kalervo; Hegele Júnior, Luiz Adolfo; Philippi, Paulo Cesar

    2014-01-01

    We propose isotropic finite differences for high-accuracy approximation of high-rank derivatives. These finite differences are based on direct application of lattice-Boltzmann stencils. The presented finite-difference expressions are valid in any dimension, particularly in two and three dimensions, and any lattice-Boltzmann stencil isotropic enough can be utilized. A theoretical basis for the proposed utilization of lattice-Boltzmann stencils in the approximation of high-rank derivatives is established. In particular, the isotropy and accuracy properties of the proposed approximations are derived directly from this basis. Furthermore, in this formal development, we extend the theory of Hermite polynomial tensors in the case of discrete spaces and present expressions for the discrete inner products between monomials and Hermite polynomial tensors. In addition, we prove an equivalency between two approaches for constructing lattice-Boltzmann stencils. For the numerical verification of the presented finite differences, we introduce 5th-, 6th-, and 8th-order two-dimensional lattice-Boltzmann stencils.

  11. Controllable growth and characterization of highly aligned ZnO nanocolumnar thin films

    Science.gov (United States)

    Onuk, Zuhal; Rujisamphan, Nopporn; Murray, Roy; Bah, Mohamed; Tomakin, Murat; Shah, S. Ismat

    2017-02-01

    We investigated the effects of growth conditions during magnetron sputtering on the structural, morphological, and optical properties of nanostructured ZnO thin films. Undoped ZnO thin films are deposited onto p-type Si (100) and corning 7059 glass substrates by RF magnetron sputtering using a ZnO target in combination with various Ar-O2 sputtering gas mixtures at room temperature. The effect of the partial pressure of oxygen on the morphology of ZnO thin film structure and band alignment were investigated. Thickness, and therefore the growth rate of the samples measured from the cross-sectional SEM micrographs, is found to be strongly correlated with the oxygen partial pressure in the sputtering chamber. The optical transmittance spectrometry results show that the absorption edge shifts towards the longer wavelength at higher oxygen partial pressure. X-ray photoelectron spectroscopy (XPS) used for determining the surface chemical structure and valence band offsets show that conduction band can be controlled by changing the sputtering atmosphere.

  12. Differences in foraging ecology align with genetically divergent ecotypes of a highly mobile marine top predator.

    Science.gov (United States)

    Jeglinski, Jana W E; Wolf, Jochen B W; Werner, Christiane; Costa, Daniel P; Trillmich, Fritz

    2015-12-01

    Foraging differentiation within a species can contribute to restricted gene flow between ecologically different groups, promoting ecological speciation. Galapagos sea lions (Zalophus wollebaeki) show genetic and morphological divergence between the western and central archipelago, possibly as a result of an ecologically mediated contrast in the marine habitat. We use global positioning system (GPS) data, time-depth recordings (TDR), stable isotope and scat data to compare foraging habitat characteristics, diving behaviour and diet composition of Galapagos sea lions from a western and a central colony. We consider both juvenile and adult life stages to assess the potential role of ontogenetic shifts that can be crucial in shaping foraging behaviour and habitat choice for life. We found differences in foraging habitat use, foraging style and diet composition that aligned with genetic differentiation. These differences were consistent between juvenile and adult sea lions from the same colony, overriding age-specific behavioural differences. Our study contributes to an understanding of the complex interaction of ecological condition, plastic behavioural response and genetic make-up of interconnected populations.

  13. Study of high-altitude radar altimeter model accuracy and SITAN performance using HAAFT data

    Energy Technology Data Exchange (ETDEWEB)

    Shieves, T.C.; Callahan, M.W.

    1979-07-01

    Radar altimetry data, inertial navigation data, and scoring data were collected under the HAAFT program by Martin Marietta Corporation for the United States Air Force over several areas in the western United States at altitudes ranging from 3 to 20 km. The study reported here uses the HAAFT data in conjunction with Defense Mapping Agency (DMA) topographic data to evaluate the accuracy of a high-altitude pulsed-radar altimeter model and the resulting performance of the terrain-aided guidance concept SITAN. Previous SITAN flight tests at low altitudes (less than 1500 m AGL) have demonstrated 6-20 m CEP. The high-altitude flight test data analyzed herein show a SITAN CEP of 120 m. The radar altimeter model was required to achieve this performance includes the effects of the internal track loop, AGC loop, antenna beamwidth, and the terrain radar cross section and provided a factor of 6 improvement over simple nadir ground clearance for rough terrain. It is postulated that high-altitude CEP could be reduced to 50 m or less if an altimeter were designed specifically for high-altitude terrain sensing.

  14. TECHNOLOGICAL PROVISION OF ACCURACY AND QUALITY PARAMETERS OF INTRICATE PROFILE PARTS AT HIGH-SPEED MULTI-COORDINATE MACHINING

    Directory of Open Access Journals (Sweden)

    V. K. Sheleg

    2009-01-01

    Full Text Available The paper considers requirements to CAM-systems for provision of high-speed multi-coordinate milling, principles of generation and recommendations on trajectory programming for high-speed machining, influence of vibration and balancing of the technological system on parameters of  the machining accuracy, characteristics of a cutting tool, types of tool coatings that is rather actual for improvement of accuracy and quality of intricate profile parts.

  15. A rank-based sequence aligner with applications in phylogenetic analysis.

    Directory of Open Access Journals (Sweden)

    Liviu P Dinu

    Full Text Available Recent tools for aligning short DNA reads have been designed to optimize the trade-off between correctness and speed. This paper introduces a method for assigning a set of short DNA reads to a reference genome, under Local Rank Distance (LRD. The rank-based aligner proposed in this work aims to improve correctness over speed. However, some indexing strategies to speed up the aligner are also investigated. The LRD aligner is improved in terms of speed by storing [Formula: see text]-mer positions in a hash table for each read. Another improvement, that produces an approximate LRD aligner, is to consider only the positions in the reference that are likely to represent a good positional match of the read. The proposed aligner is evaluated and compared to other state of the art alignment tools in several experiments. A set of experiments are conducted to determine the precision and the recall of the proposed aligner, in the presence of contaminated reads. In another set of experiments, the proposed aligner is used to find the order, the family, or the species of a new (or unknown organism, given only a set of short Next-Generation Sequencing DNA reads. The empirical results show that the aligner proposed in this work is highly accurate from a biological point of view. Compared to the other evaluated tools, the LRD aligner has the important advantage of being very accurate even for a very low base coverage. Thus, the LRD aligner can be considered as a good alternative to standard alignment tools, especially when the accuracy of the aligner is of high importance. Source code and UNIX binaries of the aligner are freely available for future development and use at http://lrd.herokuapp.com/aligners. The software is implemented in C++ and Java, being supported on UNIX and MS Windows.

  16. Integrative fitting of absorption line profiles with high accuracy, robustness, and speed

    Science.gov (United States)

    Skrotzki, Julian; Habig, Jan Christoph; Ebert, Volker

    2014-08-01

    The principle of the integrative evaluation of absorption line profiles relies on the numeric integration of absorption line signals to retrieve absorber concentrations, e.g., of trace gases. Thus, it is a fast and robust technique. However, previous implementations of the integrative evaluation principle showed shortcomings in terms of accuracy and the lack of a fit quality indicator. This has motivated the development of an advanced integrative (AI) fitting algorithm. The AI fitting algorithm retains the advantages of previous integrative implementations—robustness and speed—and is able to achieve high accuracy by introduction of a novel iterative fitting process. A comparison of the AI fitting algorithm with the widely used Levenberg-Marquardt (LM) fitting algorithm indicates that the AI algorithm has advantages in terms of robustness due to its independence from appropriately chosen start values for the initialization of the fitting process. In addition, the AI fitting algorithm shows speed advantages typically resulting in a factor of three to four shorter computational times on a standard personal computer. The LM algorithm on the other hand retains advantages in terms of a much higher flexibility, as the AI fitting algorithm is restricted to the evaluation of single absorption lines with precomputed line width. Comparing both fitting algorithms for the specific application of in situ laser hygrometry at 1,370 nm using direct tunable diode laser absorption spectroscopy (TDLAS) suggests that the accuracy of the AI algorithm is equivalent to that of the LM algorithm. For example, a signal-to-noise ratio of 80 and better typically yields a deviation of TDLAS hygrometry at the aerosol and cloud chamber aerosol interactions and dynamics in the atmosphere (AIDA)—a unique large-scale facility to study atmospheric processes. The robustness of the AI fitting algorithm has been validated for typical AIDA conditions encompassing strong transmission fluctuations

  17. A new device for liver cancer biomarker detection with high accuracy

    Directory of Open Access Journals (Sweden)

    Shuaipeng Wang

    2015-06-01

    Full Text Available A novel cantilever array-based bio-sensor was batch-fabricated with IC compatible MEMS technology for precise liver cancer bio-marker detection. A micro-cavity was designed in the free end of the cantilever for local antibody-immobilization, thus adsorption of the cancer biomarker is localized in the micro-cavity, and the adsorption-induced k variation can be dramatically reduced with comparison to that caused by adsorption of the whole lever. The cantilever is pizeoelectrically driven into vibration which is pizeoresistively sensed by Wheatstone bridge. These structural features offer several advantages: high sensitivity, high throughput, high mass detection accuracy, and small volume. In addition, an analytical model has been established to eliminate the effect of adsorption-induced lever stiffness change and has been applied to precise mass detection of cancer biomarker AFP, the detected AFP antigen mass (7.6 pg/ml is quite close to the calculated one (5.5 pg/ml, two orders of magnitude better than the value by the fully antibody-immobilized cantilever sensor. These approaches will promote real application of the cantilever sensors in early diagnosis of cancer.

  18. High Accuracy Decoding of Dynamical Motion from a Large Retinal Population.

    Directory of Open Access Journals (Sweden)

    Olivier Marre

    2015-07-01

    Full Text Available Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.

  19. Model Accuracy Comparison for High Resolution Insar Coherence Statistics Over Urban Areas

    Science.gov (United States)

    Zhang, Yue; Fu, Kun; Sun, Xian; Xu, Guangluan; Wang, Hongqi

    2016-06-01

    The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR) images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR) coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  20. Transfer Alignment Accuracy Evaluation of Airborne Missile SINS Based on GPS Pseudo-Range/Pseudo-Range Rate%基于伪距/伪距率的弹载捷联惯导传递对准精度评估

    Institute of Scientific and Technical Information of China (English)

    吴辉; 赵剡; 陈雨

    2012-01-01

    针对空空导弹的传递对准精度评估问题,提出了采用GPS伪距/伪距率作为观测量的传递对准精度评估方法。在建立传递对准精度评估模型后,采用RTS固定区间最优平滑算法对传递对准精度进行评估。针对所提出的评估方法设计了评估软件进行仿真验证,结果表明所提出的评估方法能够对传递对准的精度进行有效的估计。%Focusing on the problem of airborne missile transfer alignment accuracy evaluation, a method which takes GPS pseudo-range/pseudo-range rate as measurements is proposed. After establishing the transfer alignment evaluation model, RTS fixed interval optimal smoothing algorithm is used to estimate the transfer alignment accuracy. An evaluation software is designed to verify the proposed method. The simulation results indicate that the proposed evaluation method is effective to estimate the transfer alignment accuracy.

  1. Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping

    Directory of Open Access Journals (Sweden)

    Johannes eStelzer

    2014-04-01

    Full Text Available Although ultra-high-field fMRI at field strengths of 7T or above provides substantial gains in BOLD contrast-to-noise ratio, when very high-resolution fMRI is required such gains are inevitably reduced. The improvement in sensitivity provided by multivariate analysis techniques, as compared with univariate methods, then becomes especially welcome. Information mapping approaches are commonly used, such as the searchlight technique, which take into account the spatially distributed patterns of activation in order to predict stimulus conditions. However, the popular searchlight decoding technique, in particular, has been found to be prone to spatial inaccuracies. For instance, the spatial extent of informative areas is generally exaggerated, and their spatial configuration is distorted. We propose the combination of a nonparametric and permutation-based statistical framework with linear classifiers. We term this new combined method Feature Weight Mapping (FWM. The main goal of the proposed method is to map the specific contribution of each voxel to the classification decision while including a correction for the multiple comparisons problem. Next, we compare this new method to the searchlight approach using a simulation and ultra-high-field 7T experimental data. We found that the searchlight method led to spatial inaccuracies that are especially noticeable in high-resolution fMRI data. In contrast, FWM was more spatially precise, revealing both informative anatomical structures as well as the direction by which voxels contribute to the classification. By maximizing the spatial accuracy of ultra-high-field fMRI results, global multivariate methods provide a substantial improvement for characterizing structure-function relationships.

  2. High-resolution CT of nontuberculous mycobacterium infection in adult CF patients: diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, Sinead; Lavelle, Lisa; Kilcoyne, Aoife; McCarthy, Colin; Dodd, Jonathan D. [St. Vincent' s University Hospital, Department of Radiology, Dublin (Ireland); DeJong, Pim A. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Loeve, Martine; Tiddens, Harm A.W.M. [Erasmus MC-Sophia Children' s Hospital, Department of Radiology, Department of Pediatric Pulmonology and Allergology, Rotterdam (Netherlands); McKone, Edward; Gallagher, Charles G. [St. Vincent' s University Hospital, Department of Respiratory Medicine and National Referral Centre for Adult Cystic Fibrosis, Dublin (Ireland)

    2012-12-15

    To determine the diagnostic accuracy of high-resolution computed tomography (HRCT) for the detection of nontuberculous mycobacterium infection (NTM) in adult cystic fibrosis (CF) patients. Twenty-seven CF patients with sputum-culture-proven NTM (NTM+) underwent HRCT. An age, gender and spirometrically matched group of 27 CF patients without NTM (NTM-) was included as controls. Images were randomly and blindly analysed by two readers in consensus and scored using a modified Bhalla scoring system. Significant differences were seen between NTM (+) and NTM (-) patients in the severity of the bronchiectasis subscore [45 % (1.8/4) vs. 35 % (1.4/4), P = 0.029], collapse/consolidation subscore [33 % (1.3/3) vs. 15 % (0.6/3)], tree-in-bud/centrilobular nodules subscore [43 % (1.7/3) vs. 25 % (1.0/3), P = 0.002] and the total CT score [56 % (18.4/33) vs. 46 % (15.2/33), P = 0.002]. Binary logistic regression revealed BMI, peribronchial thickening, collapse/consolidation and tree-in-bud/centrilobular nodules to be predictors of NTM status (R{sup 2} = 0.43). Receiver-operator curve analysis of the regression model showed an area under the curve of 0.89, P < 0.0001. In adults with CF, seven or more bronchopulmonary segments showing tree-in-bud/centrilobular nodules on HRCT is highly suggestive of NTM colonisation. (orig.)

  3. Rigorous Training of Dogs Leads to High Accuracy in Human Scent Matching-To-Sample Performance.

    Directory of Open Access Journals (Sweden)

    Sophie Marchal

    Full Text Available Human scent identification is based on a matching-to-sample task in which trained dogs are required to compare a scent sample collected from an object found at a crime scene to that of a suspect. Based on dogs' greater olfactory ability to detect and process odours, this method has been used in forensic investigations to identify the odour of a suspect at a crime scene. The excellent reliability and reproducibility of the method largely depend on rigor in dog training. The present study describes the various steps of training that lead to high sensitivity scores, with dogs matching samples with 90% efficiency when the complexity of the scents presented during the task in the sample is similar to that presented in the in lineups, and specificity reaching a ceiling, with no false alarms in human scent matching-to-sample tasks. This high level of accuracy ensures reliable results in judicial human scent identification tests. Also, our data should convince law enforcement authorities to use these results as official forensic evidence when dogs are trained appropriately.

  4. High accuracy jog CD control on OPC pattern by advanced laser writer Sigma7500

    Science.gov (United States)

    Chin, Tomas; Wu, Wen-Bin; Shih, Chiang-Lin

    2008-10-01

    With the progress of mask writer technology, 50 KV electron beam writers always perform with better pattern fidelity and critical dimension (CD) control than traditional laser raster-scan writers because laser spot size is confined by the laser longer wavelength relative to electron beam. As far as Optical Proximity Correction (OPC) pattern fidelity is concerned, critical masks with OPC process have to choose Variable-Shape-Beam (VSB) electron beam writer presently. However, the over-aggressive OPC fragmentation induces data volume abrupt explosion, longer writing time, higher mask cost and even mask quality degradation 1. Micronic Sigma7500 laser writer introduces a novel imaging system combining partial coherent light and DUV spatial light modulation (SLM) to generate a high-quality pattern image 2. The benefit of raster-scan laser writer is high throughput with consistent writing time regardless of pattern geometry, complexity and data size. However, pattern CD accuracy still needs improvement. This study is to evaluate jog CD control capability of Sigma7500 on OPC typical line-and-space test patterns with different orientations of 0°, 90°, 45° and 135°. In addition, mask CD uniformity and OPC jog height linearity will also be demonstrated.

  5. High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects

    Science.gov (United States)

    Beverini, N.; Di Virgilio, A.; Belfi, J.; Ortolan, A.; Schreiber, K. U.; Gebauer, A.; Klügel, T.

    2016-06-01

    The Gross Ring G is a square ring laser gyroscope, built as a monolithic Zerodur structure with 4 m length on all sides. It has demonstrated that a large ring laser provides a sensitivity high enough to measure the rotational rate of the Earth with a high precision of ΔΩE GINGER project is intending to take this level of sensitivity further and to improve the accuracy and the long-term stability. A monolithic structure similar to the G ring laser is not available for GINGER. Therefore the preliminary goal is the demonstration of the feasibility of a larger gyroscope structure, where the mechanical stability is obtained through an active control of the geometry. A prototype moderate size gyroscope (GP-2) has been set up in Pisa in order to test this active control of the ring geometry, while a second structure (GINGERino) has been installed inside the Gran Sasso underground laboratory in order to investigate the properties of a deep underground laboratory in view of an installation of a future GINGER apparatus. The preliminary data on these two latter instruments are presented.

  6. High accuracy and transferability of a neural network potential through charge equilibration for calcium fluoride

    Science.gov (United States)

    Faraji, Somayeh; Ghasemi, S. Alireza; Rostami, Samare; Rasoulkhani, Robabe; Schaefer, Bastian; Goedecker, Stefan; Amsler, Maximilian

    2017-03-01

    We investigate the accuracy and transferability of a recently developed high-dimensional neural network (NN) method for calcium fluoride, fitted to a database of ab initio density functional theory (DFT) calculations based on the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional. We call the method charge equilibration via neural network technique (CENT). Although the fitting database contains only clusters (i.e., nonperiodic structures), the NN scheme accurately describes a variety of bulk properties. In contrast to other available empirical methods the CENT potential has a much simpler functional form, nevertheless it correctly reproduces the PBE energetics of various crystalline phases both at ambient and high pressure. Surface energies and structures as well as dynamical properties derived from phonon calculations are also in good agreement with PBE results. Overall, the difference between the values obtained by the CENT potential and the PBE reference values is less than or equal to the difference between the values of local density approximation (LDA) and Born-Mayer-Huggins (BMH) with those calculated by the PBE exchange correlation functional.

  7. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device.

  8. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Jong-Seok Kim

    2016-01-01

    Full Text Available The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart.

  9. Assessing the Accuracy of Sentinel-3 SLSTR Sea-Surface Temperature Retrievals Using High Accuracy Infrared Radiiometers on Ships of Opportunity

    Science.gov (United States)

    Minnett, P. J.; Izaguirre, M. A.; Szcszodrak, M.; Williams, E.; Reynolds, R. M.

    2015-12-01

    The assessment of errors and uncertainties in satellite-derived SSTs can be achieved by comparisons with independent measurements of skin SST of high accuracy. Such validation measurements are provided by well-calibrated infrared radiometers mounted on ships. The second generation of Marine-Atmospheric Emitted Radiance Interferometers (M-AERIs) have recently been developed and two are now deployed on cruise ships of Royal Caribbean Cruise Lines that operate in the Caribbean Sea, North Atlantic and Mediterranean Sea. In addition, two Infrared SST Autonomous Radiometers (ISARs) are mounted alternately on a vehicle transporter of NYK Lines that crosses the Pacific Ocean between Japan and the USA. Both M-AERIs and ISARs are self-calibrating radiometers having two internal blackbody cavities to provide at-sea calibration of the measured radiances, and the accuracy of the internal calibration is periodically determined by measurements of a NIST-traceable blackbody cavity in the laboratory. This provides SI-traceability for the at-sea measurements. It is anticipated that these sensors will be deployed during the next several years and will be available for the validation of the SLSTRs on Sentinel-3a and -3b.

  10. Accuracy of the field triage protocol in selecting severely injured patients after high energy trauma.

    Science.gov (United States)

    van Laarhoven, J J E M; Lansink, K W W; van Heijl, M; Lichtveld, R A; Leenen, L P H

    2014-05-01

    For optimal treatment of trauma patients it is of great importance to identify patients who are at risk for severe injuries. The Dutch field triage protocol for trauma patients, the LPA (National Protocol of Ambulance Services), is designed to get the right patient, in the right time, to the right hospital. Purpose of this study was to determine diagnostic accuracy and compliance of this triage protocol. Triage criteria were categorised into physiological condition (P), mechanism of trauma (M) and injury type (I). A retrospective analysis of prospectively collected data of all high-energy trauma patients from 2008 to 2011 in the region Central Netherlands is performed. Diagnostic parameters (sensitivity, specificity, negative predictive value, positive predictive value) of the field triage protocol for selecting severely injured patients were calculated including rates of under- and overtriage. Undertriage was defined as the proportion of severely injured patients (Injury Severity Score (ISS)≥16) who were transported to a level two or three trauma care centre. Overtriage was defined as the proportion of non-severely injured patients (ISSprotocol was 89.1% (95% confidence interval (CI) 84.4-92.6) and 60.5% (95% CI 57.9-63.1), respectively. The overall rate of undertriage was 10.9% (95%CI 7.4-15.7) and the overall rate of overtriage was 39.5% (95%CI 36.9-42.1). These rates were 16.5% and 37.7%, respectively for patients with M+I-P-. Compliance to the triage protocol for patients with M+I-P- was 78.7%. Furthermore, compliance in patients with either a positive I+ or positive P+ was 91.2%. The overall rate of undertriage (10.8%) was mainly influenced by a high rate of undertriage in the group of patients with only a positive mechanism criterion, therefore showing low diagnostic accuracy in selecting severely injured patients. As a consequence these patients with severe injury are undetected using the current triage protocol. As it has been shown that severely injured

  11. Metabolic network alignment in large scale by network compression

    Directory of Open Access Journals (Sweden)

    Ay Ferhat

    2012-03-01

    Full Text Available Abstract Metabolic network alignment is a system scale comparative analysis that discovers important similarities and differences across different metabolisms and organisms. Although the problem of aligning metabolic networks has been considered in the past, the computational complexity of the existing solutions has so far limited their use to moderately sized networks. In this paper, we address the problem of aligning two metabolic networks, particularly when both of them are too large to be dealt with using existing methods. We develop a generic framework that can significantly improve the scale of the networks that can be aligned in practical time. Our framework has three major phases, namely the compression phase, the alignment phase and the refinement phase. For the first phase, we develop an algorithm which transforms the given networks to a compressed domain where they are summarized using fewer nodes, termed supernodes, and interactions. In the second phase, we carry out the alignment in the compressed domain using an existing network alignment method as our base algorithm. This alignment results in supernode mappings in the compressed domain, each of which are smaller instances of network alignment problem. In the third phase, we solve each of the instances using the base alignment algorithm to refine the alignment results. We provide a user defined parameter to control the number of compression levels which generally determines the tradeoff between the quality of the alignment versus how fast the algorithm runs. Our experiments on the networks from KEGG pathway database demonstrate that the compression method we propose reduces the sizes of metabolic networks by almost half at each compression level which provides an expected speedup of more than an order of magnitude. We also observe that the alignments obtained by only one level of compression capture the original alignment results with high accuracy. Together, these suggest that our

  12. Magnetic alignment and the Poisson alignment reference system

    Science.gov (United States)

    Griffith, L. V.; Schenz, R. F.; Sommargren, G. E.

    1990-08-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This article begins with a review of the motivation for developing an alignment system that will assure better than 100-μm accuracy in the alignment of the magnetic axis throughout an FEL. The 100-μm accuracy is an error circle about an ideal axis for 300 m or more. The article describes techniques for identifying the magnetic axes of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development of a straight-line reference based on the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. The Poisson alignment reference system should be accurate to 25 μm over 300 m, which is believed to be a factor-of-4 improvement over earlier techniques. An error budget shows that only 25% of the total budgeted tolerance is used for the alignment reference system, so the remaining tolerances should fall within the allowable range for FEL alignment.

  13. Alignment of Configuration and Documentation for Highly Engineered Complex Product Configuration Systems: a Demonstration from a Case Study

    DEFF Research Database (Denmark)

    Shafiee, Sara; Kristjansdottir, Katrin; Hvam, Lars

    2015-01-01

    Adequate documentation is critical for successful implementation, maintenance and further developments of product configuration system (PCS) specially in companies making complex and highly engineered products. This article is based on experience of modelling and utilizing a PCS from an Engineer......-To-Order (ETO), where the main focus is on the challenges concerned with the documentation of the PCS, both in the development and production phase. Aligning the development of the PCS with an automatic documentation system creates value. Using the suggested method for documentation facilitates the following...... activities: (1) iterative testing of the system during the development, (2) communication with domain experts, (3) documentation and maintenance, and finally (4) updates without spending a lot of time and resources. This article is supplemented with a case study from an ETO company where the method...

  14. DUC-Curve, a highly compact 2D graphical representation of DNA sequences and its application in sequence alignment

    Science.gov (United States)

    Li, Yushuang; Liu, Qian; Zheng, Xiaoqi

    2016-08-01

    A highly compact and simple 2D graphical representation of DNA sequences, named DUC-Curve, is constructed through mapping four nucleotides to a unit circle with a cyclic order. DUC-Curve could directly detect nucleotide, di-nucleotide compositions and microsatellite structure from DNA sequences. Moreover, it also could be used for DNA sequence alignment. Taking geometric center vectors of DUC-Curves as sequence descriptor, we perform similarity analysis on the first exons of β-globin genes of 11 species, oncogene TP53 of 27 species and twenty-four Influenza A viruses, respectively. The obtained reasonable results illustrate that the proposed method is very effective in sequence comparison problems, and will at least play a complementary role in classification and clustering problems.

  15. Alignment of Configuration and Documentation for Highly Engineered Complex Product Configuration Systems: a Demonstration from a Case Study

    DEFF Research Database (Denmark)

    Shafiee, Sara; Kristjansdottir, Katrin; Hvam, Lars

    2015-01-01

    Adequate documentation is critical for successful implementation, maintenance and further developments of product configuration system (PCS) specially in companies making complex and highly engineered products. This article is based on experience of modelling and utilizing a PCS from an Engineer......-To-Order (ETO), where the main focus is on the challenges concerned with the documentation of the PCS, both in the development and production phase. Aligning the development of the PCS with an automatic documentation system creates value. Using the suggested method for documentation facilitates the following...... activities: (1) iterative testing of the system during the development, (2) communication with domain experts, (3) documentation and maintenance, and finally (4) updates without spending a lot of time and resources. This article is supplemented with a case study from an ETO company where the method...

  16. Beyond Alignment

    DEFF Research Database (Denmark)

    Beyond Alignment: Applying Systems Thinking to Architecting Enterprises is a comprehensive reader about how enterprises can apply systems thinking in their enterprise architecture practice, for business transformation and for strategic execution. The book's contributors find that systems thinking...... is a valuable way of thinking about the viable enterprise and how to architect it....

  17. Comparative analysis of the processing accuracy of high strength metal sheets by AWJ, laser and plasma

    Science.gov (United States)

    Radu, M. C.; Schnakovszky, C.; Herghelegiu, E.; Tampu, N. C.; Zichil, V.

    2016-08-01

    Experimental tests were carried out on two high-strength steel materials (Ramor 400 and Ramor 550). Quantification of the dimensional accuracy was achieved by measuring the deviations from some geometric parameters of part (two lengths and two radii). It was found that in case of Ramor 400 steel, at the jet inlet, the deviations from the part radii are quite small for all the three analysed processes. Instead for the linear dimensions, the deviations are small only in case of laser cutting. At the jet outlet, the deviations raised in small amount compared to those obtained at the jet inlet for both materials as well as for all the three processes. Related to Ramor 550 steel, at the jet inlet the deviations from the part radii are very small in case of AWJ and laser cutting but larger in case of plasma cutting. At the jet outlet, the deviations from the part radii are very small for all processes; in case of linear dimensions, there was obtained very small deviations only in the case of laser processing, the other two processes leading to very large deviations.

  18. Accuracy of Intraocular Lens Power Calculation Formulas for Highly Myopic Eyes

    Science.gov (United States)

    Zhang, Yichi; Liang, Xiao Ying; Liu, Shu; Lee, Jacky W. Y.; Bhaskar, Srinivasan; Lam, Dennis S. C.

    2016-01-01

    Purpose. To evaluate and compare the accuracy of different intraocular lens (IOL) power calculation formulas for eyes with an axial length (AL) greater than 26.00 mm. Methods. This study reviewed 407 eyes of 219 patients with AL longer than 26.0 mm. The refractive prediction errors of IOL power calculation formulas (SRK/T, Haigis, Holladay, Hoffer Q, and Barrett Universal II) using User Group for Laser Interference Biometry (ULIB) constants were evaluated and compared. Results. One hundred seventy-one eyes were enrolled. The Barrett Universal II formula had the lowest mean absolute error (MAE) and SRK/T and Haigis had similar MAE, and the statistical highest MAE were seen with the Holladay and Hoffer Q formulas. The interquartile range of the Barrett Universal II formula was also the lowest among all the formulas. The Barrett Universal II formulas yielded the highest percentage of eyes within ±1.0 D and ±0.5 D of the target refraction in this study (97.24% and 79.56%, resp.). Conclusions. Barrett Universal II formula produced the lowest predictive error and the least variable predictive error compared with the SRK/T, Haigis, Holladay, and Hoffer Q formulas. For high myopic eyes, the Barrett Universal II formula may be a more suitable choice. PMID:27119018

  19. Accuracy of Intraocular Lens Power Calculation Formulas for Highly Myopic Eyes

    Directory of Open Access Journals (Sweden)

    Yichi Zhang

    2016-01-01

    Full Text Available Purpose. To evaluate and compare the accuracy of different intraocular lens (IOL power calculation formulas for eyes with an axial length (AL greater than 26.00 mm. Methods. This study reviewed 407 eyes of 219 patients with AL longer than 26.0 mm. The refractive prediction errors of IOL power calculation formulas (SRK/T, Haigis, Holladay, Hoffer Q, and Barrett Universal II using User Group for Laser Interference Biometry (ULIB constants were evaluated and compared. Results. One hundred seventy-one eyes were enrolled. The Barrett Universal II formula had the lowest mean absolute error (MAE and SRK/T and Haigis had similar MAE, and the statistical highest MAE were seen with the Holladay and Hoffer Q formulas. The interquartile range of the Barrett Universal II formula was also the lowest among all the formulas. The Barrett Universal II formulas yielded the highest percentage of eyes within ±1.0 D and ±0.5 D of the target refraction in this study (97.24% and 79.56%, resp.. Conclusions. Barrett Universal II formula produced the lowest predictive error and the least variable predictive error compared with the SRK/T, Haigis, Holladay, and Hoffer Q formulas. For high myopic eyes, the Barrett Universal II formula may be a more suitable choice.

  20. Rapid, high-accuracy detection of strabismus and amblyopia using the pediatric vision scanner.

    Science.gov (United States)

    Loudon, Sjoukje E; Rook, Caitlin A; Nassif, Deborah S; Piskun, Nadya V; Hunter, David G

    2011-07-07

    Purpose. The Pediatric Vision Scanner (PVS) detects strabismus by identifying ocular fixation in both eyes simultaneously. This study was undertaken to assess the ability of the PVS to identify patients with amblyopia or strabismus, particularly anisometropic amblyopia with no measurable strabismus. Methods. The PVS test, administered from 40 cm and requiring 2.5 seconds of attention, generated a binocularity score (BIN, 0%-100%). We tested 154 patients and 48 controls between the ages of 2 and 18 years. BIN scores of amblyopic children and controls were measured, and 21 children received sequential PVS measurements to detect any changes in BIN resulting from amblyopia treatment. Results. With the pass/refer threshold set at BIN 60%, sensitivity and specificity were 96% for the detection of amblyopia or strabismus. Assuming a 5% prevalence of amblyopia or strabismus, the inferred positive and negative predictive values of the PVS were 56% and 100%, respectively. Fixation accuracy was significantly reduced in amblyopic eyes. In anisometropic amblyopia patients treated successfully, the BIN improved to 100%. Conclusions. The PVS identified children with amblyopia or strabismus with high sensitivity and specificity, while successful treatment restored normal BIN scores in amblyopic patients without strabismus. The results support the hypothesis that the PVS detects strabismus and amblyopia directly. Future strategies for screening by nonspecialists may thus be based on diagnostic detection of amblyopia and strabismus rather than the estimation of risk factors, allowing for rapid, accurate identification of children with amblyopia early in life when it is most amenable to treatment.

  1. A high accuracy broadband measurement system for time resolved complex bioimpedance measurements.

    Science.gov (United States)

    Kaufmann, S; Malhotra, A; Ardelt, G; Ryschka, M

    2014-06-01

    Bioimpedance measurements are useful tools in biomedical engineering and life science. Bioimpedance is the electrical impedance of living tissue and can be used in the analysis of various physiological parameters. Bioimpedance is commonly measured by injecting a small well known alternating current via surface electrodes into an object under test and measuring the resultant surface voltages. It is non-invasive, painless and has no known hazards. This work presents a field programmable gate array based high accuracy broadband bioimpedance measurement system for time resolved bioimpedance measurements. The system is able to measure magnitude and phase of complex impedances under test in a frequency range of about 10-500 kHz with excitation currents from 10 µA to 5 mA. The overall measurement uncertainties stay below 1% for the impedance magnitude and below 0.5° for the phase in most measurement ranges. Furthermore, the described system has a sample rate of up to 3840 impedance spectra per second. The performance of the bioimpedance measurement system is demonstrated with a resistor based system calibration and with measurements on biological samples.

  2. GRACE Data-based High Accuracy Global Static Earth's Gravity Field Model

    Directory of Open Access Journals (Sweden)

    CHEN Qiujie

    2016-04-01

    Full Text Available To recover the highly accurate static earth's gravity field by using GRACE satellite data is one of the hot topics in geodesy. Since linearization errors of dynamic approach quickly increase when extending satellite arc length, we established a modified dynamic approach for processing GRACE orbit and range-rate measurements in this paper, which treated orbit observations of the twin GRACE satellites as approximate values for linearization. Using the GRACE data spanning the period Jan. 2003 to Dec. 2010, containing satellite attitudes, orbits, range-rate, and non-conservative forces, we developed two global static gravity field models. One is the unconstrained solution called Tongji-Dyn01s complete to degree and order 180; the other one is the Tongji-Dyn01k model computed by using Kaula constraint. The comparisons between our models and those latest GRACE-only models (including the AIUB-GRACE03, the GGM05S, the ITSG-Grace2014k and the Tongji-GRACE01 published by different international groups, and the external validations with marine gravity anomalies from DTU13 product and height anomalies from GPS/levelling data, were performed in this study. The results demonstrate that the Tongji-Dyn01s has the same accuracy level with those of the latest GRACE-only models, while the Tongji-Dyn01k model is closer to the EIGEN6C2 than the other GRACE-only models as a whole.

  3. High Accuracy Extraction of Respiratory Sinus Arrhythmia with Statistical Processing using Normal Distribution

    Science.gov (United States)

    Numata, Takashi; Ogawa, Yutaro; Yoshida, Lui; Kotani, Kiyoshi; Jimbo, Yasuhiko

    The autonomic nervous system is important in maintaining homeostasis by mediating the opposing effects of the sympathetic and parasympathetic nervous activity on organs. Although it is known that the amplitude of RSA (Respiratory Sinus Arrhythmia) is an index of parasympathetic nervous activity, it is difficult to estimate that activity in real-time in everyday situations. It is partly caused by body motions and extrasystoles. Also, automatic recognition of the R-wave on electrocardiograms is required for real-time analysis of RSA amplitude, there is an unresolved problem of false recognition of the R-wave. In this paper, we propose a method to evaluate the amplitude of RSA accurately using statistical processing with probabilistic models. Then, we estimate parasympathetic nervous activity during body motion and isometric exercise to examine the validity of the method. As a result, using the proposed method, we demonstrate that the amplitude of RSA can be extracted with false recognition of the R-wave. In addition, an appropriate threshold for the estimate is one or five percent because waveforms of RSA amplitude do not follow the abrupt changes of the parasympathetic nervous activity evoked by isometric exercise with the threshold at ten percent. Furthermore, the method using normal distribution is found to be more appropriate than that of chi-square distribution for statistical processing. Therefore, we expect that the proposed method can evaluate parasympathetic nervous activity with high accuracy in everyday situations.

  4. Raman spectroscopic determination of the molecular constants of the hydrogen isotopologues with high accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Krasch, Bennet; Mirz, Sebastian; Groessle, Robin [Karlsruhe Institute of Technology KIT (Germany). Institute for Technical Physics (ITEP), Tritium Laboratory Karlsruhe (TLK); Collaboration: KATRIN-Collaboration

    2016-07-01

    The interest in the thermodynamic properties of gases as the chemical equilibrium is faced by the challenge of time-consuming and technical extensive experimental setups. One possible solution is the derivation of these properties from the molecular constants. The rotational and vibrational movement of diatomic molecules, as the hydrogen isotopologues, is described by the concept of the rotational anharmonic oscillator. The molecular constants are the free parameters of this concept. Molecular constants themselves can be determined by measuring the line position of rotational and/or rotational transitions e.g. with Raman spectroscopy for hydrogen as it has been done since several years. In this contribution a Raman method was development to measure the molecular constant of the hydrogen isotopologues with high accuracy to obtain reliable results. But not only the method was development but also a complete measurement uncertainty budget was set up. The uncertainty budget contains all possible sources for uncertainties from the measurement period or the analysis process as well the contribution of each single uncertainty. The method and the uncertainty budget were exemplary tested on Deuterium.

  5. Fast-type high-accuracy universal polarimeter using charge-coupled device spectrometer

    Directory of Open Access Journals (Sweden)

    Akifumi Takanabe

    2017-02-01

    Full Text Available A fast, high-accuracy universal polarimeter was developed using a charge-coupled device (CCD spectrometer (CCD-HAUP, to carry out simultaneous optical anisotropic (linear birefringence, LB; linear dichroism, LD and chiroptical (circular birefringence, CB; circular dichroism, CD measurements on single crystals without any pretreatment, in the visible region between 400–680 nm. The principle of the HAUP method is to measure the intensities of emergent light passing through a polarizer, a crystal sample, and then an analyzer, as the azimuth angles of the polarizer and analyzer are independently altered. The CCD-HAUP has the unique feature that white transmitted light intensity can be measured using a CCD spectrometer, compared with the generalized HAUP (G-HAUP system in which monochromatic transmitted light is measured using a photomultiplier. The CCD-HAUP measurements across the entire wavelength region are completed within the G-HAUP measurement time for a single wavelength. The CCD-HAUP drastically reduces the measurement time for a dataset to only 1.5 h, from the 24 h required for the G-HAUP system. LB, LD, CB, and CD measurements of single crystals of α-quartz and enantiomeric photomechanical salicylidenephenylethylamines before, during, and after ultraviolet light irradiation show results comparable to those obtained using the G-HAUP system. The newly developed system is very effective for samples susceptible to degradation induced by external stimuli, such as light and heat.

  6. Aligning High School and College Instruction: Preparing Students for Success in College Level Mathematics

    Science.gov (United States)

    Alexander, Julie

    2013-01-01

    Across the United States, students are entering college with a need for improvement in basic mathematics and communication skills. In 2008, the Florida Legislature passed Senate Bill 1908 which changed the expectations for the senior year of high school for many students. Students who score within certain levels on the mandatory high school…

  7. Statistical downscaling of precipitation using local regression and high accuracy surface modeling method

    Science.gov (United States)

    Zhao, Na; Yue, Tianxiang; Zhou, Xun; Zhao, Mingwei; Liu, Yu; Du, Zhengping; Zhang, Lili

    2017-07-01

    Downscaling precipitation is required in local scale climate impact studies. In this paper, a statistical downscaling scheme was presented with a combination of geographically weighted regression (GWR) model and a recently developed method, high accuracy surface modeling method (HASM). This proposed method was compared with another downscaling method using the Coupled Model Intercomparison Project Phase 5 (CMIP5) database and ground-based data from 732 stations across China for the period 1976-2005. The residual which was produced by GWR was modified by comparing different interpolators including HASM, Kriging, inverse distance weighted method (IDW), and Spline. The spatial downscaling from 1° to 1-km grids for period 1976-2005 and future scenarios was achieved by using the proposed downscaling method. The prediction accuracy was assessed at two separate validation sites throughout China and Jiangxi Province on both annual and seasonal scales, with the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE). The results indicate that the developed model in this study outperforms the method that builds transfer function using the gauge values. There is a large improvement in the results when using a residual correction with meteorological station observations. In comparison with other three classical interpolators, HASM shows better performance in modifying the residual produced by local regression method. The success of the developed technique lies in the effective use of the datasets and the modification process of the residual by using HASM. The results from the future climate scenarios show that precipitation exhibits overall increasing trend from T1 (2011-2040) to T2 (2041-2070) and T2 to T3 (2071-2100) in RCP2.6, RCP4.5, and RCP8.5 emission scenarios. The most significant increase occurs in RCP8.5 from T2 to T3, while the lowest increase is found in RCP2.6 from T2 to T3, increased by 47.11 and 2.12 mm, respectively.

  8. Statistical downscaling of precipitation using local regression and high accuracy surface modeling method

    Science.gov (United States)

    Zhao, Na; Yue, Tianxiang; Zhou, Xun; Zhao, Mingwei; Liu, Yu; Du, Zhengping; Zhang, Lili

    2016-03-01

    Downscaling precipitation is required in local scale climate impact studies. In this paper, a statistical downscaling scheme was presented with a combination of geographically weighted regression (GWR) model and a recently developed method, high accuracy surface modeling method (HASM). This proposed method was compared with another downscaling method using the Coupled Model Intercomparison Project Phase 5 (CMIP5) database and ground-based data from 732 stations across China for the period 1976-2005. The residual which was produced by GWR was modified by comparing different interpolators including HASM, Kriging, inverse distance weighted method (IDW), and Spline. The spatial downscaling from 1° to 1-km grids for period 1976-2005 and future scenarios was achieved by using the proposed downscaling method. The prediction accuracy was assessed at two separate validation sites throughout China and Jiangxi Province on both annual and seasonal scales, with the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE). The results indicate that the developed model in this study outperforms the method that builds transfer function using the gauge values. There is a large improvement in the results when using a residual correction with meteorological station observations. In comparison with other three classical interpolators, HASM shows better performance in modifying the residual produced by local regression method. The success of the developed technique lies in the effective use of the datasets and the modification process of the residual by using HASM. The results from the future climate scenarios show that precipitation exhibits overall increasing trend from T1 (2011-2040) to T2 (2041-2070) and T2 to T3 (2071-2100) in RCP2.6, RCP4.5, and RCP8.5 emission scenarios. The most significant increase occurs in RCP8.5 from T2 to T3, while the lowest increase is found in RCP2.6 from T2 to T3, increased by 47.11 and 2.12 mm, respectively.

  9. SWAMP+: multiple subsequence alignment using associative massive parallelism

    Energy Technology Data Exchange (ETDEWEB)

    Steinfadt, Shannon Irene [Los Alamos National Laboratory; Baker, Johnnie W [KENT STATE UNIV.

    2010-10-18

    A new parallel algorithm SWAMP+ incorporates the Smith-Waterman sequence alignment on an associative parallel model known as ASC. It is a highly sensitive parallel approach that expands traditional pairwise sequence alignment. This is the first parallel algorithm to provide multiple non-overlapping, non-intersecting subsequence alignments with the accuracy of Smith-Waterman. The efficient algorithm provides multiple alignments similar to BLAST while creating a better workflow for the end users. The parallel portions of the code run in O(m+n) time using m processors. When m = n, the algorithmic analysis becomes O(n) with a coefficient of two, yielding a linear speedup. Implementation of the algorithm on the SIMD ClearSpeed CSX620 confirms this theoretical linear speedup with real timings.

  10. Geometric Accuracy Investigations of SEVIRI High Resolution Visible (HRV) Level 1.5 Imagery

    National Research Council Canada - National Science Library

    Sultan Kocaman Aksakal

    2013-01-01

    .... In a joint project between the Swiss GCOS Office and ETH Zurich, geometric accuracy and temporal stability of 1-km resolution HRV channel imagery of SEVIRI have been evaluated over Switzerland...

  11. SMETANA: Accurate and Scalable Algorithm for Probabilistic Alignment of Large-Scale Biological Networks: e67995

    National Research Council Canada - National Science Library

    Sayed Mohammad Ebrahim Sahraeian; Byung-Jun Yoon

    2013-01-01

    .... We demonstrate that the proposed algorithm, called SMETANA, outperforms many state-of-the-art network alignment techniques, in terms of computational efficiency, alignment accuracy, and scalability...

  12. SMETANA: accurate and scalable algorithm for probabilistic alignment of large-scale biological networks

    National Research Council Canada - National Science Library

    Sahraeian, Sayed Mohammad Ebrahim; Yoon, Byung-Jun

    2013-01-01

    .... We demonstrate that the proposed algorithm, called SMETANA, outperforms many state-of-the-art network alignment techniques, in terms of computational efficiency, alignment accuracy, and scalability...

  13. The regulatory benefits of high levels of affect perception accuracy: a process analysis of reactions to stressors in daily life.

    Science.gov (United States)

    Robinson, Michael D; Moeller, Sara K; Buchholz, Maria M; Boyd, Ryan L; Troop-Gordon, Wendy

    2012-08-01

    Individuals attuned to affective signals from the environment may possess an advantage in the emotion-regulation realm. In two studies (total n = 151), individual differences in affective perception accuracy were assessed in an objective, performance-based manner. Subsequently, the same individuals completed daily diary protocols in which daily stressor levels were reported as well as problematic states shown to be stress-reactive in previous studies. In both studies, individual differences in affect perception accuracy interacted with daily stressor levels to predict the problematic outcomes. Daily stressors precipitated problematic reactions--whether depressive feelings (study 1) or somatic symptoms (study 2)--at low levels of affect perception accuracy, but did not do so at high levels of affect perception accuracy. The findings support a regulatory view of such perceptual abilities. Implications for understanding emotion regulation processes, emotional intelligence, and individual differences in reactivity are discussed.

  14. [Accuracy of liquid-based cytology in diagnosis of high-grade squamous cervical intraepithelial neoplasia].

    Science.gov (United States)

    Li, Min; Mei, Ping; Luo, Dong-lan; Wang, Xiao-bing; Liu, Yan-hui

    2012-04-01

    To investigate factors affecting the diagnostic accuracy of cervical liquid-based cytology for high-grade squamous intraepithelial lesion (HSIL). A retrospective evaluation of cytological and histological slides was performed in 415 patients who had cytological HSIL between 2007 and 2010. Among 42 209 cases screened by ThinPrep liquid-based cytology, 415 cases (1.0%) of HSIL were eventually identified. The mean age of HSIL patients was 41.6 years, and 30-49 years were the most common age group. Among 415 cases, 325 patients had available histological diagnosis as follows: 23 (7.1%) negative, 22 (6.8%) CIN1/HPV, 223 (68.6%) CIN2/CIN3, and 57 (17.5%) squamous cell carcinoma (SCC). The positive predictive values of HSIL to predict CIN2 (or higher grade of dysplasia) and CIN1 were 86.2% (280/325) and 92.9% (302/325), respectively. Inadequate biopsy, reactive glandular cells, islet atrophy, chemo/radiotherapy and others were responsible for the cytologically false-positive diagnosis. Fifty-seven (17.5%) cases of HSIL had a histological diagnosis of SCC. The possible causes of misdiagnosis were social factors, under-recognized cytological features of poorly-differentiated SCC and absence of typical diagnostic features in cytology slides. Cytology of HSIL has a high positive predictive value for the presence of CIN2/CIN3 and SCC. Cytologists and gynecologists should be aware of the diagnostic pitfalls that may lead to the discrepancy between cytology and histology.

  15. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack

    2013-09-18

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  16. Incremental Alignment Manifold Learning

    Institute of Scientific and Technical Information of China (English)

    Zhi Han; De-Yu Meng; Zong-Sen Xu; Nan-Nan Gu

    2011-01-01

    A new manifold learning method, called incremental alignment method (IAM), is proposed for nonlinear dimensionality reduction of high dimensional data with intrinsic low dimensionality. The main idea is to incrementally align low-dimensional coordinates of input data patch-by-patch to iteratively generate the representation of the entire dataset. The method consists of two major steps, the incremental step and the alignment step. The incremental step incrementally searches neighborhood patch to be aligned in the next step, and the alignment step iteratively aligns the low-dimensional coordinates of the neighborhood patch searched to generate the embeddings of the entire dataset. Compared with the existing manifold learning methods, the proposed method dominates in several aspects: high efficiency, easy out-of-sample extension, well metric-preserving, and averting of the local minima issue. All these properties are supported by a series of experiments performed on the synthetic and real-life datasets. In addition, the computational complexity of the proposed method is analyzed, and its efficiency is theoretically argued and experimentally demonstrated.

  17. Direct Georeferencing : a New Standard in Photogrammetry for High Accuracy Mapping

    Science.gov (United States)

    Rizaldy, A.; Firdaus, W.

    2012-07-01

    Direct georeferencing is a new method in photogrammetry, especially in the digital camera era. Theoretically, this method does not require ground control points (GCP) and the Aerial Triangulation (AT), to process aerial photography into ground coordinates. Compared with the old method, this method has three main advantages: faster data processing, simple workflow and less expensive project, at the same accuracy. Direct georeferencing using two devices, GPS and IMU. GPS recording the camera coordinates (X, Y, Z), and IMU recording the camera orientation (omega, phi, kappa). Both parameters merged into Exterior Orientation (EO) parameter. This parameters required for next steps in the photogrammetric projects, such as stereocompilation, DSM generation, orthorectification and mosaic. Accuracy of this method was tested on topographic map project in Medan, Indonesia. Large-format digital camera Ultracam X from Vexcel is used, while the GPS / IMU is IGI AeroControl. 19 Independent Check Point (ICP) were used to determine the accuracy. Horizontal accuracy is 0.356 meters and vertical accuracy is 0.483 meters. Data with this accuracy can be used for 1:2.500 map scale project.

  18. HIGH ACCURACY FINITE VOLUME ELEMENT METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    王同科

    2002-01-01

    In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs fromthe high order generalized difference methods. It is proved that the method has optimal order er-ror estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.

  19. Numerical simulation for accuracy of velocity analysis in small-scale high-resolution marine multichannel seismic technology

    Science.gov (United States)

    Luo, Di; Cai, Feng; Wu, Zhiqiang

    2017-06-01

    When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates (Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.

  20. Towards Building Reliable, High-Accuracy Solar Irradiance Database For Arid Climates

    Science.gov (United States)

    Munawwar, S.; Ghedira, H.

    2012-12-01

    Middle East's growing interest in renewable energy has led to increased activity in solar technology development with the recent commissioning of several utility-scale solar power projects and many other commercial installations across the Arabian Peninsula. The region, lying in a virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2, is also one of the most promising candidates for solar energy deployment. However, it is not the availability of resource, but its characterization and reasonably accurate assessment that determines the application potential. Solar irradiance, magnitude and variability inclusive, is the key input in assessing the economic feasibility of a solar system. The accuracy of such data is of critical importance for realistic on-site performance estimates. This contribution aims to identify the key stages in developing a robust solar database for desert climate by focusing on the challenges that an arid environment presents to parameterization of solar irradiance attenuating factors. Adjustments are proposed based on the currently available resource assessment tools to produce high quality data for assessing bankability. Establishing and maintaining ground solar irradiance measurements is an expensive affair and fairly limited in time (recently operational) and space (fewer sites) in the Gulf region. Developers within solar technology industry, therefore, rely on solar radiation models and satellite-derived data for prompt resource assessment needs. It is imperative that such estimation tools are as accurate as possible. While purely empirical models have been widely researched and validated in the Arabian Peninsula's solar modeling history, they are known to be intrinsically site-specific. A primal step to modeling is an in-depth understanding of the region's climate, identifying the key players attenuating radiation and their appropriate characterization to determine solar irradiance. Physical approach

  1. Finite-element solution of the coupled-channel Schrödinger equation using high-order accuracy approximations

    Science.gov (United States)

    Abrashkevich, A. G.; Abrashkevich, D. G.; Kaschiev, M. S.; Puzynin, I. V.

    1995-01-01

    The finite element method (FEM) is applied to solve the bound state (Sturm-Liouville) problem for systems of ordinary linear second-order differential equations. The convergence, accuracy and the range of applicability of the high-order FEM approximations (up to tenth order) are studied systematically on the basis of numerical experiments for a wide set of quantum-mechanical problems. The analytical and tabular forms of giving the coefficients of differential equations are considered. The Dirichlet and Neumann boundary conditions are discussed. It is shown that the use of the FEM high-order accuracy approximations considerably increases the accuracy of the FE solutions with substantial reduction of the requirements on the computational resources. The results of the FEM calculations for various quantum-mechanical problems dealing with different types of potentials used in atomic and molecular calculations (including the hydrogen atom in a homogeneous magnetic field) are shown to be well converged and highly accurate.

  2. Alignment between High School Biology Curriculum Standard and the Standardised Tests of Four Provinces in China

    Science.gov (United States)

    Lu, Qun; Liu, Enshan

    2012-01-01

    With the development and implementation of new curriculum standards, the field tests of education reform in senior high schools began in 2004 in four pilot provinces in mainland China. After five years of the reform, it is necessary to know how and to what extent the curriculum standard guides test classroom instruction. The present study was…

  3. Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach.

    Directory of Open Access Journals (Sweden)

    Andre F Marquand

    Full Text Available Progressive supranuclear palsy (PSP, multiple system atrophy (MSA and idiopathic Parkinson's disease (IPD can be clinically indistinguishable, especially in the early stages, despite distinct patterns of molecular pathology. Structural neuroimaging holds promise for providing objective biomarkers for discriminating these diseases at the single subject level but all studies to date have reported incomplete separation of disease groups. In this study, we employed multi-class pattern recognition to assess the value of anatomical patterns derived from a widely available structural neuroimaging sequence for automated classification of these disorders. To achieve this, 17 patients with PSP, 14 with IPD and 19 with MSA were scanned using structural MRI along with 19 healthy controls (HCs. An advanced probabilistic pattern recognition approach was employed to evaluate the diagnostic value of several pre-defined anatomical patterns for discriminating the disorders, including: (i a subcortical motor network; (ii each of its component regions and (iii the whole brain. All disease groups could be discriminated simultaneously with high accuracy using the subcortical motor network. The region providing the most accurate predictions overall was the midbrain/brainstem, which discriminated all disease groups from one another and from HCs. The subcortical network also produced more accurate predictions than the whole brain and all of its constituent regions. PSP was accurately predicted from the midbrain/brainstem, cerebellum and all basal ganglia compartments; MSA from the midbrain/brainstem and cerebellum and IPD from the midbrain/brainstem only. This study demonstrates that automated analysis of structural MRI can accurately predict diagnosis in individual patients with Parkinsonian disorders, and identifies distinct patterns of regional atrophy particularly useful for this process.

  4. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  5. Autotaxin activity has a high accuracy to diagnose intrahepatic cholestasis of pregnancy.

    Science.gov (United States)

    Kremer, Andreas E; Bolier, Ruth; Dixon, Peter H; Geenes, Victoria; Chambers, Jenny; Tolenaars, Dagmar; Ris-Stalpers, Carrie; Kaess, Bernhard M; Rust, Christian; van der Post, Joris A; Williamson, Catherine; Beuers, Ulrich; Oude Elferink, Ronald P J

    2015-04-01

    Intrahepatic cholestasis of pregnancy (ICP) is defined by pruritus, elevated total fasting serum bile salts (TBS) and transaminases, and an increased risk of adverse fetal outcome. An accurate diagnostic marker is needed. Increased serum autotaxin correlates with cholestasis-associated pruritus. We aimed at unraveling the diagnostic accuracy of autotaxin in ICP. Serum samples and placental tissue were collected from 44 women with uncomplicated pregnancies and 105 with pruritus and/or elevated serum transaminases. Autotaxin serum levels were quantified enzymatically and by Western blotting, autotaxin gene expression by quantitative PCR. Serum autotaxin was increased in ICP (mean ± SD: 43.5 ± 18.2 nmol ml(-1)min(-1), n=55, ppregnancy (16.8 ± 6.7 nmol ml(-1)min(-1), n=33), pre-eclampsia complicated by HELLP-syndrome (16.8 ± 8.9 nmol ml(-1)min(-1), n=17), and pregnant controls (19.6 ± 5.7 nmol ml(-1)min(-1), n=44). Longitudinal analysis during pregnancy revealed a marked rise in serum autotaxin with onset of ICP-related pruritus. Serum autotaxin was increased in women taking oral contraceptives. Increased serum autotaxin during ICP was not associated with increased autotaxin mRNA in placenta. With a cut-off value of 27.0 nmol ml(-1)min(-1), autotaxin had an excellent sensitivity and specificity in distinguishing ICP from other pruritic disorders or pre-eclampsia/HELLP-syndrome. Serum autotaxin displayed no circadian rhythm and was not influenced by food intake. Increased serum autotaxin activity represents a highly sensitive, specific and robust diagnostic marker of ICP, distinguishing ICP from other pruritic disorders of pregnancy and pregnancy-related liver diseases. Pregnancy and oral contraception increase serum autotaxin to a much lesser extent than ICP. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  6. High accuracy solution of bi-directional wave propagation in continuum mechanics

    Science.gov (United States)

    Mulloth, Akhil; Sawant, Nilesh; Haider, Ijlal; Sharma, Nidhi; Sengupta, Tapan K.

    2015-10-01

    Solution of partial differential equations by numerical method is strongly affected due to numerical errors, which are caused mainly by deviation of numerical dispersion relation from the physical dispersion relation. To quantify and control such errors and obtain high accuracy solutions, we consider a class of problems which involve second derivative of unknowns with respect to time. Here, we analyse numerical metrics such as the numerical group velocity, numerical phase speed and the numerical amplification factor for different methods in solving the model bi-directional wave equation (BDWE). Such equations can be solved directly, for example, by Runge-Kutta-Nyström (RKN) method. Alternatively, the governing equation can be converted to a set of first order in time equations and then using four-stage fourth order Runge-Kutta (RK4) method for time integration. Spatial discretisation considered are the classical second and fourth order central difference schemes, along with Lele's central compact scheme for evaluating second derivatives. In another version, we have used Lele's scheme for evaluating first derivatives twice to obtain the second derivative. As BDWE represents non-dissipative, non-dispersive dynamics, we also consider the canonical problem of linearised rotating shallow water equation (LRSWE) in a new formulation involving second order derivative in time, which represents dispersive waves along with a stationary mode. The computations of LRSWE with RK4 and RKN methods for temporal discretisation and Lele's compact schemes for spatial discretisation are compared with computations performed with RK4 method for time discretisation and staggered compact scheme (SCS) for spatial discretisation by treating it as a set of three equations as reported in Rajpoot et al. (2012) [1].

  7. In-depth, high-accuracy proteomics of sea urchin tooth organic matrix

    Directory of Open Access Journals (Sweden)

    Mann Matthias

    2008-12-01

    Full Text Available Abstract Background The organic matrix contained in biominerals plays an important role in regulating mineralization and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin tooth, which is an important model for developmental biology and biomineralization, only few matrix components have been identified. The recent publication of the Strongylocentrotus purpuratus genome sequence rendered possible not only the identification of genes potentially coding for matrix proteins, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy proteomic analysis. Results We identified 138 proteins in the matrix of tooth powder. Only 56 of these proteins were previously identified in the matrices of test (shell and spine. Among the novel components was an interesting group of five proteins containing alanine- and proline-rich neutral or basic motifs separated by acidic glycine-rich motifs. In addition, four of the five proteins contained either one or two predicted Kazal protease inhibitor domains. The major components of tooth matrix were however largely identical to the set of spicule matrix proteins and MSP130-related proteins identified in test (shell and spine matrix. Comparison of the matrices of crushed teeth to intact teeth revealed a marked dilution of known intracrystalline matrix proteins and a concomitant increase in some intracellular proteins. Conclusion This report presents the most comprehensive list of sea urchin tooth matrix proteins available at present. The complex mixture of proteins identified may reflect many different aspects of the mineralization process. A comparison between intact tooth matrix, presumably containing odontoblast remnants, and crushed tooth matrix served to differentiate between matrix components and possible contributions of cellular remnants. Because LC-MS/MS-based methods directly

  8. High accuracy of arterial spin labeling perfusion imaging in differentiation of pilomyxoid from pilocytic astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, S.A.; Assadsangabi, R.; Hajmomenian, M.; Vossough, A. [Perelman School of Medicine of the University of Pennsylvania, Department of Radiology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Santi, M. [Perelman School of Medicine of the University of Pennsylvania, Department of Pathology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States)

    2015-05-01

    Pilomyxoid astrocytoma (PMA) is a relatively new tumor entity which has been added to the 2007 WHO Classification of tumors of the central nervous system. The goal of this study is to utilize arterial spin labeling (ASL) perfusion imaging to differentiate PMA from pilocytic astrocytoma (PA). Pulsed ASL and conventional MRI sequences of patients with PMA and PA in the past 5 years were retrospectively evaluated. Patients with history of radiation or treatment with anti-angiogenic drugs were excluded. A total of 24 patients (9 PMA, 15 PA) were included. There were statistically significant differences between PMA and PA in mean tumor/gray matter (GM) cerebral blood flow (CBF) ratios (1.3 vs 0.4, p < 0.001) and maximum tumor/GM CBF ratio (2.3 vs 1, p < 0.001). Area under the receiver operating characteristic (ROC) curves for differentiation of PMA from PA was 0.91 using mean tumor CBF, 0.95 using mean tumor/GM CBF ratios, and 0.89 using maximum tumor/GM CBF. Using a threshold value of 0.91, the mean tumor/GM CBF ratio was able to diagnose PMA with 77 % sensitivity, 100 % specificity, and a threshold value of 0.7, provided 88 % sensitivity and 86 % specificity. There was no statistically significant difference between the two tumors in enhancement pattern (p = 0.33), internal architecture (p = 0.15), or apparent diffusion coefficient (ADC) values (p = 0.07). ASL imaging has high accuracy in differentiating PMA from PA. The result of this study may have important applications in prognostication and treatment planning especially in patients with less accessible tumors such as hypothalamic-chiasmatic gliomas. (orig.)

  9. High Resolution Ice Surface of the Ross Ice Shelf: Accuracy and Links to Basal Processes

    Science.gov (United States)

    Starke, S. E.

    2015-12-01

    We use airborne laser altimetry data from IcePod and IceBridge to map the surface across the Ross Ice Shelf in Antarctica. Laser altimetry and radar data is analyzed from the IcePod 2014 and 2015 field campaigns as well as IceBridge 2013. Icepod is a multi sensor suite that includes ice penetrating radars, a swath scanning laser, visible and IR cameras as well as GPS mounted on a LC-130. Using shallow ice radar data from both IcePod and IceBridge we identify the base of the ice shelf. Across the shelf we observe distinct areas of high reflectivity in the radar data suggesting basal crevassing. In some regions, the basal reflector is not well defined. Laser altimetry profiles correlate surface morphology with features at the base including basal crevasses and marine ice formed by freezing on to the base of the ice shelf. Building Digital Elevation Models (DEMs) from the laser altimetry data, we investigate the relationship between the surface expressions of these ice shelf dynamics including thickness changes, potential sites of marine ice at the base and basal morphology in regions where a well defined basal reflector does not exist in the radar profiles. We present accuracy of the IcePod laser altimetry dataset using ground control points and GPS grids from Greenland and Antarctica as well as Photogrammetric DEMs. Our laser altimetry analysis resolves sub-meter surface features which, combined with coincident radar, provides a link between basal processes and their surface expressions.

  10. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    Science.gov (United States)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  11. A multiple-alignment based primer design algorithm for genetically highly variable DNA targets.

    Science.gov (United States)

    Brodin, Johanna; Krishnamoorthy, Mohan; Athreya, Gayathri; Fischer, Will; Hraber, Peter; Gleasner, Cheryl; Green, Lance; Korber, Bette; Leitner, Thomas

    2013-08-21

    Primer design for highly variable DNA sequences is difficult, and experimental success requires attention to many interacting constraints. The advent of next-generation sequencing methods allows the investigation of rare variants otherwise hidden deep in large populations, but requires attention to population diversity and primer localization in relatively conserved regions, in addition to recognized constraints typically considered in primer design. Design constraints include degenerate sites to maximize population coverage, matching of melting temperatures, optimizing de novo sequence length, finding optimal bio-barcodes to allow efficient downstream analyses, and minimizing risk of dimerization. To facilitate primer design addressing these and other constraints, we created a novel computer program (PrimerDesign) that automates this complex procedure. We show its powers and limitations and give examples of successful designs for the analysis of HIV-1 populations. PrimerDesign is useful for researchers who want to design DNA primers and probes for analyzing highly variable DNA populations. It can be used to design primers for PCR, RT-PCR, Sanger sequencing, next-generation sequencing, and other experimental protocols targeting highly variable DNA samples.

  12. Assembly and alignment of infrared refractive system

    Science.gov (United States)

    Yang, Lin; Lin, Jian-chun; Wang, Ya-jing; Chen, Fan-sheng

    2013-09-01

    Optical systems for scientific instrumentation frequently include lens or mirrors with critical mechanical requirements. Position issues of those components are inextricably bound to the efficiency of the instrument. The position referring to the lens system mainly means spacer and rotation of all elements concerned. Instrument could not be completed without the accuracy assembly even the previous design was top one. The alignment of infrared optical system always is a tough thing due to the IR material being opaque to visible light which hardly effect on the imaging ability of the system. In this paper a large-aperture IR refractive system was described in details and the alignment of this system was presented. The brief work describes the assembly and integration of the camera barrel in lab. First of all, all the mechanical elements must be manufactured with high accuracy requirements to meet alignment tolerances and minimum errors mostly could be ignored. The rotations relative to the optical axis were hardy restricted by the space between barrel and cells. The lens vertex displacements were determined through high accuracy titanium alloy spacer. So the actual shape data of the optical lenses were obtained by coordinate measuring machining (CMM) to calculate the real space between lenses after alignment1 done. All the measured results were critical for instruction of the practical assemble. Based on the properties and tolerances of the system, the camera barrel includes sets of six lenses with their respective supports and cells which are composed of two parts: the flied lens group and the relay lenses group. The first one was aligned by the geometry centering used CMM. And the relay lenses were integrated one by one after centered individually with a classical centering instrument. Then the two separate components were assembled under the monitor of the CMM with micron precision. Three parameters on the opti-mechanical elements which include decenter, tilt and

  13. Accurate frequency alignment in fabrication of high-order microring-resonator filters.

    Science.gov (United States)

    Sun, Jie; Holzwarth, Charles W; Dahlem, Marcus; Hastings, Jeffrey T; Smith, Henry I

    2008-09-29

    Frequency mismatch in high-order microring-resonator filters is investigated. We demonstrate that this frequency mismatch is caused mainly by the intrafield distortion of scanning-electron-beam-lithography (SEBL) used in fabrication. The intrafield distortion of an SEBL system is measured, and a simple method is also proposed to correct this distortion. By applying this correction method, the average frequency mismatch in second-order microring-resonator filters was reduced from -8.6 GHz to 0.28 GHz.

  14. Progressive multiple sequence alignments from triplets

    Directory of Open Access Journals (Sweden)

    Stadler Peter F

    2007-07-01

    Full Text Available Abstract Background The quality of progressive sequence alignments strongly depends on the accuracy of the individual pairwise alignment steps since gaps that are introduced at one step cannot be removed at later aggregation steps. Adjacent insertions and deletions necessarily appear in arbitrary order in pairwise alignments and hence form an unavoidable source of errors. Research Here we present a modified variant of progressive sequence alignments that addresses both issues. Instead of pairwise alignments we use exact dynamic programming to align sequence or profile triples. This avoids a large fractions of the ambiguities arising in pairwise alignments. In the subsequent aggregation steps we follow the logic of the Neighbor-Net algorithm, which constructs a phylogenetic network by step-wisely replacing triples by pairs instead of combining pairs to singletons. To this end the three-way alignments are subdivided into two partial alignments, at which stage all-gap columns are naturally removed. This alleviates the "once a gap, always a gap" problem of progressive alignment procedures. Conclusion The three-way Neighbor-Net based alignment program aln3nn is shown to compare favorably on both protein sequences and nucleic acids sequences to other progressive alignment tools. In the latter case one easily can include scoring terms that consider secondary structure features. Overall, the quality of resulting alignments in general exceeds that of clustalw or other multiple alignments tools even though our software does not included heuristics for context dependent (mismatch scores.

  15. Very fast capillary electrophoresis with electrochemical detection for high-throughput analysis using short, vertically aligned capillaries.

    Science.gov (United States)

    Mark, Jonas Josef Peter; Piccinelli, Paolo; Matysik, Frank-Michael

    2014-09-01

    A method for conducting fast and efficient capillary electrophoresis (CE) based on short separation capillaries in vertical alignment was developed. The strategy enables for high-throughput analysis from small sample vials (low microliter to nanoliter range). The system consists of a lab-made miniaturized autosampling unit and an amperometric end-column detection (AD) cell. The device enables a throughput of up to 200 separations per hour. CE-AD separations of a dye model system in capillaries of only 4 to 7.5 cm length with inner diameters (ID) of 10 or 15 μm were carried out under conditions of very high electric field strengths (up to 3.0 kV/cm) with high separation efficiency (half peak widths below 0.2 s) in less than 3.5 s migration time. A non-aqueous background electrolyte, consisting of 10 mM ammonium acetate and 1 M acetic acid in acetonitrile, was used. The practical suitability of the system was evaluated by applying it to the determination of dyes in overhead projector pens.

  16. NGC: lossless and lossy compression of aligned high-throughput sequencing data.

    Science.gov (United States)

    Popitsch, Niko; von Haeseler, Arndt

    2013-01-01

    A major challenge of current high-throughput sequencing experiments is not only the generation of the sequencing data itself but also their processing, storage and transmission. The enormous size of these data motivates the development of data compression algorithms usable for the implementation of the various storage policies that are applied to the produced intermediate and final result files. In this article, we present NGC, a tool for the compression of mapped short read data stored in the wide-spread SAM format. NGC enables lossless and lossy compression and introduces the following two novel ideas: first, we present a way to reduce the number of required code words by exploiting common features of reads mapped to the same genomic positions; second, we present a highly configurable way for the quantization of per-base quality values, which takes their influence on downstream analyses into account. NGC, evaluated with several real-world data sets, saves 33-66% of disc space using lossless and up to 98% disc space using lossy compression. By applying two popular variant and genotype prediction tools to the decompressed data, we could show that the lossy compression modes preserve >99% of all called variants while outperforming comparable methods in some configurations.

  17. Fabrication of vertically aligned diamond whiskers from highly boron-doped diamond by oxygen plasma etching.

    Science.gov (United States)

    Terashima, Chiaki; Arihara, Kazuki; Okazaki, Sohei; Shichi, Tetsuya; Tryk, Donald A; Shirafuji, Tatsuru; Saito, Nagahiro; Takai, Osamu; Fujishima, Akira

    2011-02-01

    Conductive diamond whiskers were fabricated by maskless oxygen plasma etching on highly boron-doped diamond substrates. The effects of the etching conditions and the boron concentration in diamond on the whisker morphology and overall substrate coverage were investigated. High boron-doping levels (greater than 8.4 × 10(20) cm(-3)) are crucial for the formation of the nanosized, densely packed whiskers with diameter of ca. 20 nm, length of ca. 200 nm, and density of ca. 3.8 × 10(10) cm(-2) under optimal oxygen plasma etching conditions (10 min at a chamber pressure of 20 Pa). Confocal Raman mapping and scanning electron microscopy illustrate that the boron distribution in the diamond surface region is consistent with the distribution of whisker sites. The boron dopant atoms in the diamond appear to lead to the initial fine column formation. This simple method could provide a facile, cost-effective means for the preparation of conductive nanostructured diamond materials for electrochemical applications as well as electron emission devices.

  18. Millimeter-Wave Airborne Interferometry for High-accuracy Topography Mapping

    Science.gov (United States)

    Moller, D.; Hensley, S.; Wu, X.; Rodriguez, E.

    2011-12-01

    sensor geometry, bandwidth and number of channels needed for SWOT cal/val cannot be met within the framework of GLISTIN-A or a similar interface to UAVSAR. To address SWOT's cal/val requirements, the Ka-band SWOT Phenomenology Airborne Radar (KaSPAR) builds upon GLISTIN-A heritage and is the primary payload of the AirSWOT program. KaSPAR is a unique system with multiple temporal and cross-track baselines to fully characterize the scattering and statistics expected from SWOT, provide data for developing classification algorithms, and understanding instrument performance over the vast variety of scenes that SWOT will encounter. Furthermore a >5km swath high-accuracy WSE mapping capability provides the framework to translate traditional point or profile measurements to the spatial framework that SWOT will measure. Specific measurements from the integrated AirSWOT assembly are 1) WSE maps over a 5km swath with <3cm mean error at 100m x 100m postings (for ocean surface at 6m/s wind speed), 2) 2-D slope maps derived from WSE maps and 3) shoreline delineation at 10m resolution. These measurements will be made at resolutions exceeding that of SWOT to better characterize corrections for the spaceborne sensor.

  19. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs.

    Directory of Open Access Journals (Sweden)

    Alexander T Dilthey

    2016-10-01

    Full Text Available Genetic variation at the Human Leucocyte Antigen (HLA genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG framework. First, we construct a PRG for 46 (mostly HLA genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1 and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data. Of 158 alleles tested, we correctly infer 157 alleles (99.4%. We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30-250 CPU hours per sample remain a

  20. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs.

    Science.gov (United States)

    Dilthey, Alexander T; Gourraud, Pierre-Antoine; Mentzer, Alexander J; Cereb, Nezih; Iqbal, Zamin; McVean, Gil

    2016-10-01

    Genetic variation at the Human Leucocyte Antigen (HLA) genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing) as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG) framework. First, we construct a PRG for 46 (mostly HLA) genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1) and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data). Of 158 alleles tested, we correctly infer 157 alleles (99.4%). We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30-250 CPU hours per sample) remain a significant

  1. Andreev reflection without Fermi surface alignment in high-T c van der Waals heterostructures

    Science.gov (United States)

    Zareapour, Parisa; Hayat, Alex; Zhao, Shu Yang F.; Kreshchuk, Michael; Xu, Zhijun; Liu, T. S.; Gu, G. D.; Jia, Shuang; Cava, Robert J.; Yang, H.-Y.; Ran, Ying; Burch, Kenneth S.

    2017-04-01

    We address the controversy over the proximity effect between topological materials and high-T c superconductors. Junctions are produced between Bi2Sr2CaCu2O{}8+δ and materials with different Fermi surfaces (Bi2Te3 and graphite). Both cases reveal tunneling spectra that are consistent with Andreev reflection. This is confirmed by a magnetic field that shifts features via the Doppler effect. This is modeled with a single parameter that accounts for tunneling into a screening supercurrent. Thus the tunneling involves Cooper pairs crossing the heterostructure, showing that the Fermi surface mismatch does not hinder the ability to form transparent interfaces, which is accounted for by the extended Brillouin zone and different lattice symmetries.

  2. Pilot Study of Inhaled Aerosols Targeted via Magnetic Alignment of High Aspect Ratio Particles in Rabbits

    Directory of Open Access Journals (Sweden)

    Gillian E. S. Redman

    2011-01-01

    Full Text Available Recently, inhaled pharmaceutical aerosols have seen increased investigation in the treatment of lung cancer, where the inability to deliver adequate therapeutic drug concentrations to tumour sites may be overcome with improved targeted delivery to the site of the tumour. In this study, the feasibility of magnetically targeted delivery of high aspect ratio particles loaded with iron oxide nanoparticles was studied in 19 New Zealand White rabbits. Half of the exposed rabbits had a magnetic field placed externally over their right lung. Iron sensitive magnetic resonance images of the lungs were acquired to determine the iron concentrations in the right and left lung of each animal. The right/left ratio increased in the middle and basal regions of the lung where, due to the morphology of the rabbit lung, this method of targeting is most effective. With further optimization, this technique could be an effective method for increasing the dose of drug delivered to a specific site within the lung.

  3. Fr-TM-align: a new protein structural alignment method based on fragment alignments and the TM-score

    Directory of Open Access Journals (Sweden)

    Skolnick Jeffrey

    2008-12-01

    Full Text Available Abstract Background Protein tertiary structure comparisons are employed in various fields of contemporary structural biology. Most structure comparison methods involve generation of an initial seed alignment, which is extended and/or refined to provide the best structural superposition between a pair of protein structures as assessed by a structure comparison metric. One such metric, the TM-score, was recently introduced to provide a combined structure quality measure of the coordinate root mean square deviation between a pair of structures and coverage. Using the TM-score, the TM-align structure alignment algorithm was developed that was often found to have better accuracy and coverage than the most commonly used structural alignment programs; however, there were a number of situations when this was not true. Results To further improve structure alignment quality, the Fr-TM-align algorithm has been developed where aligned fragment pairs are used to generate the initial seed alignments that are then refined using dynamic programming to maximize the TM-score. For the assessment of the structural alignment quality from Fr-TM-align in comparison to other programs such as CE and TM-align, we examined various alignment quality assessment scores such as PSI and TM-score. The assessment showed that the structural alignment quality from Fr-TM-align is better in comparison to both CE and TM-align. On average, the structural alignments generated using Fr-TM-align have a higher TM-score (~9% and coverage (~7% in comparison to those generated by TM-align. Fr-TM-align uses an exhaustive procedure to generate initial seed alignments. Hence, the algorithm is computationally more expensive than TM-align. Conclusion Fr-TM-align, a new algorithm that employs fragment alignment and assembly provides better structural alignments in comparison to TM-align. The source code and executables of Fr-TM-align are freely downloadable at: http://cssb.biology.gatech.edu/skolnick/files/FrTMalign/.

  4. Accuracy analysis of continuous deformation monitoring using BeiDou Navigation Satellite System at middle and high latitudes in China

    Science.gov (United States)

    Jiang, Weiping; Xi, Ruijie; Chen, Hua; Xiao, Yugang

    2017-02-01

    As BeiDou Navigation Satellite System (BDS) has been operational in the whole Asia-Pacific region, it means a new GNSS system with a different satellite orbit structure will become available for deformation monitoring in the future. Conversely, GNSS deformation monitoring data are always processed with a regular interval to form displacement time series for deformation analysis, where the interval can neither be too long from the time perspective nor too short from the precision of determined displacements angle. In this paper, two experimental platforms were designed, with one being at mid-latitude and another at higher latitude in China. BDS data processing software was also developed for investigating the accuracy of continuous deformation monitoring using current in-orbit BDS satellites. Data over 20 days at both platforms were obtained and were processed every 2, 4 and 6 h to generate 3 displacement time series for comparison. The results show that with the current in-orbit BDS satellites, in the mid-latitude area it is easy to achieve accuracy of 1 mm in horizontal component and 2-3 mm in vertical component; the accuracy could be further improved to approximately 1 mm in both horizontal and vertical directions when combined BDS/GPS measurements are employed. At higher latitude, however, the results are not as good as expected due to poor satellite geometry, even the 6 h solutions could only achieve accuracy of 4-6 and 6-10 mm in horizontal and vertical components, respectively, which implies that it may not be applicable to very high-precision deformation monitoring at high latitude using the current BDS. With the integration of BDS and GPS observations, however, in 4-h session, the accuracy can achieve 2 mm in horizontal component and 4 mm in vertical component, which would be an optimal choice for high-accuracy structural deformation monitoring at high latitude.

  5. Protein-enabled layer-by-layer syntheses of aligned, porous-wall, high-aspect-ratio TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Berrigan, John D.; Cai, Ye; Sandhage, Kenneth H. [School of Materials Science and Engineering, Air Force Center of Excellence on Bio-Nano-Enabled Inorganic/Organic Nanocomposites and Improved Cognition (BIONIC), Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0400 (United States); Kang, Tae-Sik; Deneault, James R.; Durstock, Michael F. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, 45433-7702 (United States)

    2011-05-10

    An aqueous, protein-enabled (biomimetic), layer-by-layer titania deposition process is developed, for the first time, to convert aligned-nanochannel templates into high-aspect-ratio, aligned nanotube arrays with thin (34 nm) walls composed of co-continuous networks of pores and titania nanocrystals (15 nm ave. size). Alumina templates with aligned open nanochannels are exposed in an alternating fashion to aqueous protamine-bearing and titania precursor-bearing (Ti(IV) bis-ammonium-lactato-dihydroxide, TiBALDH) solutions. The ability of protamine to bind to alumina and titania, and to induce the formation of a Ti-O-bearing coating upon exposure to the TiBALDH precursor, enables the layer-by-layer deposition of a conformal protamine/Ti-O-bearing coating on the nanochannel surfaces within the porous alumina template. Subsequent protamine pyrolysis yields coatings composed of co-continuous networks of pores and titania nanoparticles. Selective dissolution of the underlying alumina template through the porous coating then yields freestanding, aligned, porous-wall titania nanotube arrays. The interconnected pores within the nanotube walls allow enhanced loading of functional molecules (such as a Ru-based N719 dye), whereas the interconnected titania nanoparticles enable the high-aspect-ratio, aligned nanotube arrays to be used as electrodes (as demonstrated for dye-sensitized solar cells with power conversion efficiencies of 5.2 {+-} 0.4%). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Magnetic Alignment of Microelements Containing Cultured Neuronal Networks for High-Throughput Screening.

    Science.gov (United States)

    Gordon, Kent R; Wang, Yuli; Allbritton, Nancy L; Taylor, Anne Marion

    2015-10-01

    High-throughput screening (HTS) on neurons presents unique difficulties because they are postmitotic, limited in supply, and challenging to harvest from animals or generate from stem cells. These limitations have hindered neurological drug discovery, leaving an unmet need to develop cost-effective technology for HTS using neurons. Traditional screening methods use up to 20,000 neurons per well in 384-well plates. To increase throughput, we use "microraft" arrays, consisting of 1600 square, releasable, paramagnetic, polystyrene microelements (microrafts), each providing a culture surface for 500-700 neurons. These microrafts can be detached from the array and transferred to 384-well plates for HTS; however, they must be centered within wells for automated imaging. Here, we developed a magnet array plate, compatible with HTS fluid-handling systems, to center microrafts within wells. We used finite element analysis to select an effective size of the magnets and confirmed that adjacent magnetic fields do not interfere. We then experimentally tested the plate's centering ability and found a centering efficiency of 100%, compared with 4.35% using a flat magnet. We concluded that microrafts could be centered after settling randomly within the well, overcoming friction, and confirmed these results by centering microrafts containing hippocampal neurons cultured for 8 days.

  7. NANOIMPRINT LITHOGRAPHY TECHNOLOGY WITH AUTOMATIC ALIGNMENT

    Institute of Scientific and Technical Information of China (English)

    FAN Xiqiu; ZHANG Honghai; WANG Xuefang; HU Xiaofeng; JIA Ke; LIU Sheng

    2007-01-01

    Nanoimprint lithography (NIL) is recognized as one of the most promising candidates for the next generation lithography (NGL) to obtain sub-100 nm patterns because of its simplicity,high-throughput and low-cost. While substantial effort has been expending on NIL for producing smaller and smaller feature sizes, considerably less effort has been devoted to the equally important issue-alignment between template and substrate. A homemade prototype nanoimprint lithography enable the substrate to move towards the desired position automatically. Linear motors with 300 mm travel range and 1 μm step resolution are used as macro actuators, and piezoelectric translators with 50 μm travel range and 1 nm step resolution are used as micro actuators. In addition, the prototype provides one translation (z displacement) and two tilting motion(α and β) to automatically bring uniform intact contact between the template and substrate surfaces by using a flexure stage. As a result, 10 μm coarse alignment accuracy and 20 nm fine alignment accuracy can be achieved. Finally,some results of nanostructures and micro devices such as nanoscale trenches and holes, gratings and microlens array fabricated using the prototype tool are presented, and hot embossing lithography, one typical NIL technology, are depicted by taking nanoscale gratings fabrication as an example.

  8. Unexpected alignment patterns in high-j intruder bands evidence for a strong residual neutron proton interaction

    Energy Technology Data Exchange (ETDEWEB)

    Wyss, R. (Joint Inst. for Heavy Ion Research, Oak Ridge, TN (USA)); Johnson, A. (Manne Siegbahn Inst. of Physics, Stockholm (Sweden) Royal Inst. of Tech., Stockholm (Sweden). Dept. of Physics I)

    1990-01-01

    The alignment of h{sub 11/12} protons in {nu}i{sub 13/2} intruder bands in mass A = 130 region is investigated. The lack of a clear h{sub 11/12} band crossing is compared with the alignment pattern of i{sub 13/2} neutrons in {pi}i{sub 13/2} intruder bands in mass A = 180 region. The very smooth rise in angular momentum in the intruder bands is related to a possible neutron proton interaction between the single intruder orbital and the aligned two-quasiparticle configuration. 36 refs., 3 figs.

  9. Spectroscopy of H3+ based on a new high-accuracy global potential energy surface.

    Science.gov (United States)

    Polyansky, Oleg L; Alijah, Alexander; Zobov, Nikolai F; Mizus, Irina I; Ovsyannikov, Roman I; Tennyson, Jonathan; Lodi, Lorenzo; Szidarovszky, Tamás; Császár, Attila G

    2012-11-13

    The molecular ion H(3)(+) is the simplest polyatomic and poly-electronic molecular system, and its spectrum constitutes an important benchmark for which precise answers can be obtained ab initio from the equations of quantum mechanics. Significant progress in the computation of the ro-vibrational spectrum of H(3)(+) is discussed. A new, global potential energy surface (PES) based on ab initio points computed with an average accuracy of 0.01 cm(-1) relative to the non-relativistic limit has recently been constructed. An analytical representation of these points is provided, exhibiting a standard deviation of 0.097 cm(-1). Problems with earlier fits are discussed. The new PES is used for the computation of transition frequencies. Recently measured lines at visible wavelengths combined with previously determined infrared ro-vibrational data show that an accuracy of the order of 0.1 cm(-1) is achieved by these computations. In order to achieve this degree of accuracy, relativistic, adiabatic and non-adiabatic effects must be properly accounted for. The accuracy of these calculations facilitates the reassignment of some measured lines, further reducing the standard deviation between experiment and theory.

  10. Analysis of the plasmodium falciparum proteome by high-accuracy mass spectrometry

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Ishihama, Yasushi; Andersen, Jens S;

    2002-01-01

    -accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last...

  11. Literature survey of high-impact journals revealed reporting weaknesses in abstracts of diagnostic accuracy studies

    NARCIS (Netherlands)

    Korevaar, Daniël A; Cohen, Jérémie F; Hooft, Lotty; Bossuyt, Patrick M M

    2015-01-01

    OBJECTIVES: Informative journal abstracts are crucial for the identification and initial appraisal of studies. We aimed to evaluate the informativeness of abstracts of diagnostic accuracy studies. STUDY DESIGN AND SETTING: PubMed was searched for reports of studies that had evaluated the diagnostic

  12. The effect of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players.

    Science.gov (United States)

    Lyons, Mark; Al-Nakeeb, Yahya; Hankey, Joanne; Nevill, Alan

    2013-01-01

    Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female) and 17 non-expert (13 male, 4 female) tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70%) and high-intensities (90%) set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test). Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA's revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player's achievement goal indicators. Future research is required to explore the effects of fatigue on performance in tennis

  13. High-accuracy real-time automatic thresholding for centroid tracker

    Science.gov (United States)

    Zhang, Ye; Wang, Yanjie

    2006-01-01

    Many of the video image trackers today use the centroid as the tracking point. In engineering, a target's centroid is computed from a binary image to reduce the processing time. Hence thresholding of gray level image to binary image is a decisive step in centroid tracking. How to choose the feat thresholds in clutter is still an intractability problem unsolved today. This paper introduces a high-accuracy real-time automatic thresholding method for centroid tracker. It works well for variety types of target tracking in clutter. The core of this method is to get the entire information contained in the histogram, such as the number of the peaks, their height, position and other properties in the histogram. Combine with this histogram analysis; we can get several key pairs of peaks which can include the target and the background around it and use the method of Otsu to get intensity thresholds from them. According to the thresholds, we can gain the binary image and get the centroid from it. To track the target, the paper also suggests subjoining an eyeshot-window, just like our eyes focus on a target, we will not miss it unless it is out of our eyeshot, the impression will help us to extract the target in clutter and track it and we will wait its emergence since it has been covered. To obtain the impression, the paper offers a idea comes from the method of Snakes; it give a great help for us to get a glancing size, so that we can compare the size of the object in the current frame with the former. If the change is little, we consider the object has been tracked well. Otherwise, if the change is bigger than usual, we should analyze the inflection in the histogram to find out what happened to the object. In general, what we have to do is turning the analysis into codes for the tracker to determine a feat threshold. The paper will show the steps in detail. The paper also discusses the hardware architecture which can meet the speed requirement.

  14. High-accuracy, high-resolution gravity profiles from 2 years of the Geosat Exact Repeat Mission

    Science.gov (United States)

    Sandwell, David T.; Mcadoo, David C.

    1990-01-01

    Satellite altimeter data from the first 44 repeat cycles (2 years) of the Geosat Exact Repeat Mission (EWRM) were averaged to improve accuracy, resolution and coverage of the marine gravity field. Individual 17-day repeat cycles were first edited and differentiated, resulting in the along-track vertical deflection (i.e., gravity disturbance). To increase the signal-to-noise ratio, 44 of these cycles were then averaged to form a single highly accurate vertical deflection profile. The largest contribution to the vertical deflection error is short-wavelength altimeter noise and longer-wavelength oceanographic variability; the combined noise level is typically 6 microrad. Both types of noise are reduced by averaging many repeat cycles. Over most ocean areas the uncertainty of the average profile is less than 1 microrad which corresponds to 1 mgal of along-track gravity disturbance. However, in areas of seasonal ice coverage, its uncertainty can exceed 5 microrad. To assess the resolution of individual and average Geosat gravity profiles, the cross-spectral analysis technique was applied to repeat profiles. Individual Geosat repeat cycles are coherent (greater than 0.5) for wavelengths greater than about 30 km and become increasingly incoherent at shorter wavelengths.

  15. The Effects of Individual or Group Guidelines on the Calibration Accuracy and Achievement of High School Biology Students

    Science.gov (United States)

    Bol, Linda; Hacker, Douglas J.; Walck, Camilla C.; Nunnery, John A.

    2012-01-01

    A 2 x 2 factorial design was employed in a quasi-experiment to investigate the effects of guidelines in group or individual settings on the calibration accuracy and achievement of 82 high school biology students. Significant main effects indicated that calibration practice with guidelines and practice in group settings increased prediction and…

  16. Accuracy of High-Resolution MRI with Lumen Distention in Rectal Cancer Staging and Circumferential Margin Involvement Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Iannicelli, Elsa; Di Renzo, Sara [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ferri, Mario [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Pilozzi, Emanuela [Department of Clinical and Molecular Sciences, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Di Girolamo, Marco; Sapori, Alessandra [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ziparo, Vincenzo [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); David, Vincenzo [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy)

    2014-07-01

    To evaluate the accuracy of magnetic resonance imaging (MRI) with lumen distention for rectal cancer staging and circumferential resection margin (CRM) involvement prediction. Seventy-three patients with primary rectal cancer underwent high-resolution MRI with a phased-array coil performed using 60-80 mL room air rectal distention, 1-3 weeks before surgery. MRI results were compared to postoperative histopathological findings. The overall MRI T staging accuracy was calculated. CRM involvement prediction and the N staging, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were assessed for each T stage. The agreement between MRI and histological results was assessed using weighted-kappa statistics. The overall MRI accuracy for T staging was 93.6% (k = 0.85). The accuracy, sensitivity, specificity, PPV and NPV for each T stage were as follows: 91.8%, 86.2%, 95.5%, 92.6% and 91.3% for the group ≤ T2; 90.4%, 94.6%, 86.1%, 87.5% and 94% for T3; 98,6%, 85.7%, 100%, 100% and 98.5% for T4, respectively. The predictive CRM accuracy was 94.5% (k = 0.86); the sensitivity, specificity, PPV and NPV were 89.5%, 96.3%, 89.5%, and 96.3% respectively. The N staging accuracy was 68.49% (k = 0.4). MRI performed with rectal lumen distention has proved to be an effective technique both for rectal cancer staging and involved CRM predicting.

  17. Real-time displacement measurement with large range and high accuracy using sinusoidal phase modulating laser diode interferometer

    Institute of Scientific and Technical Information of China (English)

    Guotian He; Xiangzhao Wang; Aijun Zeng; Feng Tang; Bingjie Huang

    2007-01-01

    To resolve the conflict of large measurement range and high accuracy in the existing real-time displacement measurement laser diode (LD) interferometers, a novel real-time displacement measurement LD interferometry is proposed and its measurement principle is analyzed. By use of a new phase demodulation algorithm and a new phase compensation lgorithm of real-time phase unwrapping, the measurement accuracy is improved, and the measurement range is enlarged to a few wavelengths. In experiments, the peak-to-peak amplitude of the speaker vibration was 2361.7 nm, and the repeatability was 2.56 nm. The measurement time was less than 26μs.

  18. High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification

    Science.gov (United States)

    Bomble, Yannick J.; Vázquez, Juana; Kállay, Mihály; Michauk, Christine; Szalay, Péter G.; Császár, Attila G.; Gauss, Jürgen; Stanton, John F.

    2006-08-01

    The recently developed high-accuracy extrapolated ab initio thermochemistry method for theoretical thermochemistry, which is intimately related to other high-precision protocols such as the Weizmann-3 and focal-point approaches, is revisited. Some minor improvements in theoretical rigor are introduced which do not lead to any significant additional computational overhead, but are shown to have a negligible overall effect on the accuracy. In addition, the method is extended to completely treat electron correlation effects up to pentuple excitations. The use of an approximate treatment of quadruple and pentuple excitations is suggested; the former as a pragmatic approximation for standard cases and the latter when extremely high accuracy is required. For a test suite of molecules that have rather precisely known enthalpies of formation {as taken from the active thermochemical tables of Ruscic and co-workers [Lecture Notes in Computer Science, edited by M. Parashar (Springer, Berlin, 2002), Vol. 2536, pp. 25-38; J. Phys. Chem. A 108, 9979 (2004)]}, the largest deviations between theory and experiment are 0.52, -0.70, and 0.51kJmol-1 for the latter three methods, respectively. Some perspective is provided on this level of accuracy, and sources of remaining systematic deficiencies in the approaches are discussed.

  19. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation

    Directory of Open Access Journals (Sweden)

    Euiho Kim

    2017-09-01

    Full Text Available In the Federal Aviation Administration’s (FAA performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0–77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment.

  20. Friction compensation design based on state observer and adaptive law for high-accuracy positioning system

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Friction is one of the main factors that affect the positioning accuracy of motion system. Friction compensation based on friction model is usually adopted to eliminate the nonlinear effect of friction. This paper presents a proportional-plus-derivative (PD) feedback controller with a friction compensator based on LuGre friction model. We also design a state observer to observe the unknown state of LuGre friction model, and adopt a parameter adaptive law and off-line approximation to estimate the parameters of LuGre friction model. Comparative experiments are carried out among our proposed controller, PD controller with friction compensation based on classical friction model, and PD controller without friction compensation. Experimental results demonstrate that our proposed controller can achieve better performance, especially higher positioning accuracy.

  1. Ways to help Chinese Students in Senior High School improve language accuracy in writing

    Institute of Scientific and Technical Information of China (English)

    潘惠红

    2015-01-01

    <正>Introduction In Chinese ELT(English language teaching),as in other countries,both fluency and accuracy are considered important either in the teaching or assessment of writing.In this respect,the last decade has seen reforms in the College Entrance Examination in Guangdong Province.With two writing tasks being set as assessment,task one requires students to summarise Chinese language information into five English sentences while the

  2. A High-Accuracy Linear Conservative Difference Scheme for Rosenau-RLW Equation

    Directory of Open Access Journals (Sweden)

    Jinsong Hu

    2013-01-01

    Full Text Available We study the initial-boundary value problem for Rosenau-RLW equation. We propose a three-level linear finite difference scheme, which has the theoretical accuracy of Oτ2+h4. The scheme simulates two conservative properties of original problem well. The existence, uniqueness of difference solution, and a priori estimates in infinite norm are obtained. Furthermore, we analyze the convergence and stability of the scheme by energy method. At last, numerical experiments demonstrate the theoretical results.

  3. High-accuracy current measurement with low-cost shunts by means of dynamic error correction

    OpenAIRE

    Weßkamp, Patrick; Melbert, Joachim

    2016-01-01

    Measurement of electrical current is often performed by using shunt resistors. Thermal effects due to self-heating and ambient temperature variation limit the achievable accuracy, especially if low-cost shunt resistors with increased temperature coefficients are utilized. In this work, a compensation method is presented which takes static and dynamic temperature drift effects into account and provides a significant reduction of measurement error. A thermal model of the shunt...

  4. Measurement of process dynamics through coaxially aligned high speed near-infrared imaging in laser powder bed fusion additive manufacturing

    Science.gov (United States)

    Fox, Jason C.; Lane, Brandon M.; Yeung, Ho

    2017-05-01

    For process stability in laser powder bed fusion (LPBF) additive manufacturing (AM), control of melt pool dimensions is imperative. In order to control melt pool dimensions in real time, sampling frequencies in excess of 10 kHz may be required, which presents a challenge for many thermal and optical monitoring systems. The National Institute of Standards and Technology (NIST) is currently developing the Additive Manufacturing Metrology Testbed (AMMT), which replicates a metal based laser powder bed fusion AM process while providing open architecture for control, sensing, and calibration sources. The system is outfitted with a coaxially aligned, near-infrared (NIR) high speed melt pool monitoring (MPM) system. Similar monitoring systems are incorporated into LPBF research testbeds, and appearing on commercial machines, but at lower available frame rates, which may limit observation of higher frequency events such as spatter or size fluctuations. This paper presents an investigation of the coaxial imaging systems of the AMMT to capture the process dynamics, and quantify the effects of dynamic fluctuations on melt pool size measurements. Analysis is carried out on a baseline experiment with no powder material added, melt pool size measurements collected in-situ are compared to ex-situ measurements, and results are discussed in terms of temporal bandwidth. Findings will show that, even at the frame rate and resolution presented, challenges in relating in-situ video signals to the ex-situ measurement analysis remain.

  5. Photoirradiation Caused Controllable Wettability Switching of Sputtered Highly Aligned c-Axis-Oriented Zinc Oxide Columnar Films

    Directory of Open Access Journals (Sweden)

    P. W. Chi

    2014-01-01

    Full Text Available This study presents the microstructure morphology and UV photoirradiation coupling effects of the c-axis-oriented zinc oxide (ZnO columnar films. Highly aligned c-axis-oriented films have been deposited onto glass substrates at room temperature by radio-frequency (RF magnetron sputtering without introducing any oxygen source under different sputtering powers ranging from 50 to 150 W. Self-assembled ZnO columnar structures that were successfully obtained belong to wurtzite structure, and the corresponding columnar structures and crystalline orientation were confirmed by the FE-SEM and XRD, respectively. All the ZnO columnar films exhibit good transparency with a visible light averaged transmittance over 82%. According to water contact angle (CA measurement, ZnO columnar films exhibit hydrophobic behavior. After exposing to photoirradiation under ultraviolet (UV environment, all the ZnO samples showed remarkable transition from hydrophobic to superhydrophilic surfaces and could return to their original hydrophobicity after being placed in the dark. It is demonstrated that the controllable wettability of ZnO columnar films under changing between the UV photoirradiation and dark storage is due to the surface charges accumulation and discharging processes. As a result, this study could provide important applications for many fields such as ZnO-based hybrid sensors/solar cells functional devices with photoirradiation disinfection surfaces accompanied with reversible wettability switches.

  6. The Impact of Communication and Collaboration between Test Developers and Teachers on a High-Stakes ESL Exam: Aligning External Assessment and Classroom Practices

    Science.gov (United States)

    Tan, May; Turner, Carolyn E.

    2015-01-01

    In Quebec the high-stakes Secondary Five ESL exit writing exam developed by the Education Ministry (MELS) is administered and corrected by classroom teachers. In this distinctive situation, the MELS works toward aligning classroom-based assessment (CBA) and the writing exam by making ongoing teacher involvement part of its development and…

  7. Engagement, Alignment, and Rigor as Vital Signs of High-Quality Instruction: A Classroom Visit Protocol for Instructional Improvement and Research

    Science.gov (United States)

    Early, Diane M.; Rogge, Ronald D.; Deci, Edward L.

    2014-01-01

    This paper investigates engagement (E), alignment (A), and rigor (R) as vital signs of high-quality teacher instruction as measured by the EAR Classroom Visit Protocol, designed by the Institute for Research and Reform in Education (IRRE). Findings indicated that both school leaders and outside raters could learn to score the protocol with…

  8. A high-accuracy optical linear algebra processor for finite element applications

    Science.gov (United States)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  9. Will it Blend? Visualization and Accuracy Evaluation of High-Resolution Fuzzy Vegetation Maps

    Science.gov (United States)

    Zlinszky, A.; Kania, A.

    2016-06-01

    Instead of assigning every map pixel to a single class, fuzzy classification includes information on the class assigned to each pixel but also the certainty of this class and the alternative possible classes based on fuzzy set theory. The advantages of fuzzy classification for vegetation mapping are well recognized, but the accuracy and uncertainty of fuzzy maps cannot be directly quantified with indices developed for hard-boundary categorizations. The rich information in such a map is impossible to convey with a single map product or accuracy figure. Here we introduce a suite of evaluation indices and visualization products for fuzzy maps generated with ensemble classifiers. We also propose a way of evaluating classwise prediction certainty with "dominance profiles" visualizing the number of pixels in bins according to the probability of the dominant class, also showing the probability of all the other classes. Together, these data products allow a quantitative understanding of the rich information in a fuzzy raster map both for individual classes and in terms of variability in space, and also establish the connection between spatially explicit class certainty and traditional accuracy metrics. These map products are directly comparable to widely used hard boundary evaluation procedures, support active learning-based iterative classification and can be applied for operational use.

  10. High accuracy integrated global positioning system/inertial navigation system LDRD: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Owen, T.E.; Meindl, M.A.; Fellerhoff, J.R.

    1997-03-01

    This report contains the results of a Sandia National Laboratories Directed Research and Development (LDRD) program to investigate the integration of Global Positioning System (GPS) and inertial navigation system (INS) technologies toward the goal of optimizing the navigational accuracy of the combined GPSANS system. The approach undertaken is to integrate the data from an INS, which has long term drifts, but excellent short term accuracy, with GPS carrier phase signal information, which is accurate to the sub-centimeter level, but requires continuous tracking of the GPS signals. The goal is to maintain a sub-meter accurate navigation solution while the vehicle is in motion by using the GPS measurements to estimate the INS navigation errors and then using the refined INS data to aid the GPS carrier phase cycle slip detection and correction and bridge dropouts in the GPS data. The work was expanded to look at GPS-based attitude determination, using multiple GPS receivers and antennas on a single platform, as a possible navigation aid. Efforts included not only the development of data processing algorithms and software, but also the collection and analysis of GPS and INS flight data aboard a Twin Otter aircraft. Finally, the application of improved navigation system accuracy to synthetic aperture radar (SAR) target location is examined.

  11. THE EFFECT OF MODERATE AND HIGH-INTENSITY FATIGUE ON GROUNDSTROKE ACCURACY IN EXPERT AND NON-EXPERT TENNIS PLAYERS

    Directory of Open Access Journals (Sweden)

    Mark Lyons

    2013-06-01

    Full Text Available Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female and 17 non-expert (13 male, 4 female tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70% and high-intensities (90% set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test. Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA's revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player's achievement goal indicators. Future research is required to explore the effects of fatigue on

  12. Alignment-free design of highly discriminatory diagnostic primer sets for Escherichia coli O104:H4 outbreak strains.

    Science.gov (United States)

    Pritchard, Leighton; Holden, Nicola J; Bielaszewska, Martina; Karch, Helge; Toth, Ian K

    2012-01-01

    An Escherichia coli O104:H4 outbreak in Germany in summer 2011 caused 53 deaths, over 4000 individual infections across Europe, and considerable economic, social and political impact. This outbreak was the first in a position to exploit rapid, benchtop high-throughput sequencing (HTS) technologies and crowdsourced data analysis early in its investigation, establishing a new paradigm for rapid response to disease threats. We describe a novel strategy for design of diagnostic PCR primers that exploited this rapid draft bacterial genome sequencing to distinguish between E. coli O104:H4 outbreak isolates and other pathogenic E. coli isolates, including the historical hæmolytic uræmic syndrome (HUSEC) E. coli HUSEC041 O104:H4 strain, which possesses the same serotype as the outbreak isolates. Primers were designed using a novel alignment-free strategy against eleven draft whole genome assemblies of E. coli O104:H4 German outbreak isolates from the E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium website, and a negative sequence set containing 69 E. coli chromosome and plasmid sequences from public databases. Validation in vitro against 21 'positive' E. coli O104:H4 outbreak and 32 'negative' non-outbreak EHEC isolates indicated that individual primer sets exhibited 100% sensitivity for outbreak isolates, with false positive rates of between 9% and 22%. A minimal combination of two primers discriminated between outbreak and non-outbreak E. coli isolates with 100% sensitivity and 100% specificity. Draft genomes of isolates of disease outbreak bacteria enable high throughput primer design and enhanced diagnostic performance in comparison to traditional molecular assays. Future outbreak investigations will be able to harness HTS rapidly to generate draft genome sequences and diagnostic primer sets, greatly facilitating epidemiology and clinical diagnostics. We expect that high throughput primer design strategies will enable faster, more precise responses to

  13. Pareto optimal pairwise sequence alignment.

    Science.gov (United States)

    DeRonne, Kevin W; Karypis, George

    2013-01-01

    Sequence alignment using evolutionary profiles is a commonly employed tool when investigating a protein. Many profile-profile scoring functions have been developed for use in such alignments, but there has not yet been a comprehensive study of Pareto optimal pairwise alignments for combining multiple such functions. We show that the problem of generating Pareto optimal pairwise alignments has an optimal substructure property, and develop an efficient algorithm for generating Pareto optimal frontiers of pairwise alignments. All possible sets of two, three, and four profile scoring functions are used from a pool of 11 functions and applied to 588 pairs of proteins in the ce_ref data set. The performance of the best objective combinations on ce_ref is also evaluated on an independent set of 913 protein pairs extracted from the BAliBASE RV11 data set. Our dynamic-programming-based heuristic approach produces approximated Pareto optimal frontiers of pairwise alignments that contain comparable alignments to those on the exact frontier, but on average in less than 1/58th the time in the case of four objectives. Our results show that the Pareto frontiers contain alignments whose quality is better than the alignments obtained by single objectives. However, the task of identifying a single high-quality alignment among those in the Pareto frontier remains challenging.

  14. Pin-Align: a new dynamic programming approach to align protein-protein interaction networks.

    Science.gov (United States)

    Amir-Ghiasvand, Farid; Nowzari-Dalini, Abbas; Momenzadeh, Vida

    2014-01-01

    To date, few tools for aligning protein-protein interaction networks have been suggested. These tools typically find conserved interaction patterns using various local or global alignment algorithms. However, the improvement of the speed, scalability, simplification, and accuracy of network alignment tools is still the target of new researches. In this paper, we introduce Pin-Align, a new tool for local alignment of protein-protein interaction networks. Pin-Align accuracy is tested on protein interaction networks from IntAct, DIP, and the Stanford Network Database and the results are compared with other well-known algorithms. It is shown that Pin-Align has higher sensitivity and specificity in terms of KEGG Ortholog groups.

  15. Pin-Align: A New Dynamic Programming Approach to Align Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Farid Amir-Ghiasvand

    2014-01-01

    Full Text Available To date, few tools for aligning protein-protein interaction networks have been suggested. These tools typically find conserved interaction patterns using various local or global alignment algorithms. However, the improvement of the speed, scalability, simplification, and accuracy of network alignment tools is still the target of new researches. In this paper, we introduce Pin-Align, a new tool for local alignment of protein-protein interaction networks. Pin-Align accuracy is tested on protein interaction networks from IntAct, DIP, and the Stanford Network Database and the results are compared with other well-known algorithms. It is shown that Pin-Align has higher sensitivity and specificity in terms of KEGG Ortholog groups.

  16. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    2012-01-01

      The new alignment for the DT chambers has been successfully used in physics analysis starting with the 52X Global Tag. The remaining main areas of development over the next few months will be preparing a new track-based CSC alignment and producing realistic APEs (alignment position errors) and MC misalignment scenarios to match the latest muon alignment constants. Work on these items has been delayed from the intended timeline, mostly due to a large involvement of the muon alignment man-power in physics analyses over the first half of this year. As CMS keeps probing higher and higher energies, special attention must be paid to the reconstruction of very-high-energy muons. Recent muon POG reports from mid-June show a φ-dependence in curvature bias in Monte Carlo samples. This bias is observed already at the tracker level, where it is constant with muon pT, while it grows with pT as muon chamber information is added to the tracks. Similar studies show a much smaller effect in data, at le...

  17. MUON DETECTORS: ALIGNMENT

    CERN Document Server

    M. Dallavalle

    2013-01-01

    A new Muon misalignment scenario for 2011 (7 TeV) Monte Carlo re-processing was re-leased. The scenario is based on running of standard track-based reference-target algorithm (exactly as in data) using single-muon simulated sample (with the transverse-momentum spectrum matching data). It used statistics similar to what was used for alignment with 2011 data, starting from an initially misaligned Muon geometry from uncertainties of hardware measurements and using the latest Tracker misalignment geometry. Validation of the scenario (with muons from Z decay and high-pT simulated muons) shows that it describes data well. The study of systematic uncertainties (dominant by now due to huge amount of data collected by CMS and used for muon alignment) is finalised. Realistic alignment position errors are being obtained from the estimated uncertainties and are expected to improve the muon reconstruction performance. Concerning the Hardware Alignment System, the upgrade of the Barrel Alignment is in progress. By now, d...

  18. Horizontal Positional Accuracy of Google Earth’s High-Resolution Imagery Archive

    Directory of Open Access Journals (Sweden)

    David Potere

    2008-12-01

    Full Text Available Google Earth now hosts high-resolution imagery that spans twenty percent of the Earth’s landmass and more than a third of the human population. This contemporary highresolution archive represents a significant, rapidly expanding, cost-free and largely unexploited resource for scientific inquiry. To increase the scientific utility of this archive, we address horizontal positional accuracy (georegistration by comparing Google Earth with Landsat GeoCover scenes over a global sample of 436 control points located in 109 cities worldwide. Landsat GeoCover is an orthorectified product with known absolute positional accuracy of less than 50 meters root-mean-squared error (RMSE. Relative to Landsat GeoCover, the 436 Google Earth control points have a positional accuracy of 39.7 meters RMSE (error magnitudes range from 0.4 to 171.6 meters. The control points derived from satellite imagery have an accuracy of 22.8 meters RMSE, which is significantly more accurate than the 48 control-points based on aerial photography (41.3 meters RMSE; t-test p-value < 0.01. The accuracy of control points in more-developed countries is 24.1 meters RMSE, which is significantly more accurate than the control points in developing countries (44.4 meters RMSE; t-test p-value < 0.01. These findings indicate that Google Earth highresolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world’s peri-urban areas.

  19. Error correction algorithm for high accuracy bio-impedance measurement in wearable healthcare applications.

    Science.gov (United States)

    Kubendran, Rajkumar; Lee, Seulki; Mitra, Srinjoy; Yazicioglu, Refet Firat

    2014-04-01

    Implantable and ambulatory measurement of physiological signals such as Bio-impedance using miniature biomedical devices needs careful tradeoff between limited power budget, measurement accuracy and complexity of implementation. This paper addresses this tradeoff through an extensive analysis of different stimulation and demodulation techniques for accurate Bio-impedance measurement. Three cases are considered for rigorous analysis of a generic impedance model, with multiple poles, which is stimulated using a square/sinusoidal current and demodulated using square/sinusoidal clock. For each case, the error in determining pole parameters (resistance and capacitance) is derived and compared. An error correction algorithm is proposed for square wave demodulation which reduces the peak estimation error from 9.3% to 1.3% for a simple tissue model. Simulation results in Matlab using ideal RC values show an average accuracy of for single pole and for two pole RC networks. Measurements using ideal components for a single pole model gives an overall and readings from saline phantom solution (primarily resistive) gives an . A Figure of Merit is derived based on ability to accurately resolve multiple poles in unknown impedance with minimal measurement points per decade, for given frequency range and supply current budget. This analysis is used to arrive at an optimal tradeoff between accuracy and power. Results indicate that the algorithm is generic and can be used for any application that involves resolving poles of an unknown impedance. It can be implemented as a post-processing technique for error correction or even incorporated into wearable signal monitoring ICs.

  20. Aligning Responsible Business Practices

    DEFF Research Database (Denmark)

    Weller, Angeli E.

    2017-01-01

    This article offers an in-depth case study of a global high tech manufacturer that aligned its ethics and compliance, corporate social responsibility, and sustainability practices. Few large companies organize their responsible business practices this way, despite conceptual relevance and calls...... and managers interested in understanding how responsible business practices may be collectively organized....

  1. A High-accuracy Approach to Pronunciation Prediction for Out-of-vocabulary English Word

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; CHEN Gui-lin; XU Liang-xian

    2005-01-01

    Letter-to-Sound conversion is one of the fundamental issues in text-to-speech synthesis. In this paper, we address an approach to automatic prediction of word pronunciation. This approach combines example-based learning and dynamic-programming searching to predict sub-word pronunciation. Word pronunciation is formed by concatenating sub-word pronunciations. We conducted comparative experiments over a large-scale English dictionary. Experimental results show that this approach can achieve accuracy of 70.1%, which outperforms those published results.

  2. High accuracy wavelength locking of a DFB laser using tunable polarization interference filter

    Institute of Scientific and Technical Information of China (English)

    Xiyao Chen(陈曦曜); Jianping Xie(谢建平); Tianpeng Zhao(赵天鹏); Hai Ming(明海); Anting Wang(王安廷); Wencai Huang(黄文财); Liang Lü(吕亮); Lixin Xu(许立新)

    2003-01-01

    A temperature-tunable polarization interference filter (PIF) made of YVO4 crystal has been presented and applied for wavelength locking of a distributed feedback (DFB) semiconductor laser in dense wavelength-division-multiplexing (DWDM) optical communication systems. This new design offers a flexible way to monitor and then lock an operating wavelength of DFB laser to any preselected point without dead spots.The results show that the laser wavelength can be locked with accuracy better than ±0.01 nm with much relaxed requirement on temperature stability of the filter.

  3. High-accuracy mass determination of unstable cesium and barium isotopes

    CERN Document Server

    Ames, F; Beck, D; Bollen, G; De Saint-Simon, M; Jertz, R; Kluge, H J; Kohl, A; König, M; Lunney, M D; Martel, I; Moore, R B; Otto, T; Patyk, Z; Raimbault-Hartmann, H; Rouleau, G; Savard, G; Schark, E; Schwarz, S; Schweikhard, L; Stolzenberg, H; Szerypo, J

    1999-01-01

    Direct mass measurements of short-lived Cs and Ba isotopes have been performed with the tandem Penning trap mass spectrometer ISOLTRAP installed at the on-line isotope separator ISOLDE at CERN. Typically, a mass resolving power of 600 000 and an accuracy of $\\delta \\mbox{m} \\approx 13$ keV have been obtained. The masses of $^{123,124,126}$Ba and $^{122m}$Cs were measured for the first time. A least-squares adjustment has been performed and the experimental masses are compared with theoretical ones, particularly in the frame of a macroscopic-microscopic model.

  4. High-accuracy mass determination of neutron-rich rubidium and strontiumiIsotopes

    CERN Document Server

    Raimbault-Hartmann, H; Beck, D; Bollen, G; De Saint-Simon, M; Kluge, H J; König, M; Moore, R B; Schwarz, S; Savard, G; Szerypo, J

    2002-01-01

    The penning-trap mass spectrometer ISOLTRAP, installed at the on-line isotope separator ISOLDE at CERN, has been used to measure atomic masses of $^{88,89,90m,91,92,93,94}$Rb and $^{91- 95}$Sr. Using a resolving power of R $\\!\\scriptstyle\\approx$1 million a mass accuracy of typically 10 keV was achieved for all nuclides. Discrepancies with older data are analyzed and discussed, leading to corrections to those data. Together with the present ISOLTRAP data these corrected data have been used in the general mass adjustment.

  5. High-Accuracy Measurements of the Centre of Gravity of Avalanches in Proportional Chambers

    Science.gov (United States)

    Charpak, G.; Jeavons, A.; Sauli, F.; Stubbs, R.

    1973-09-24

    In a multiwire proportional chamber the avalanches occur close to the anode wires. The motion of the positive ions in the large electric fields at the vicinity of the wires induces fast-rising positive pulses on the surrounding electrodes. Different methods have been developed in order to determine the position of the centre of the avalanches. In the method we describe, the centre of gravity of the pulse distribution is measured directly. It seems to lead to an accuracy which is limited only by the stability of the spatial distribution of the avalanches generated by the process being measured.

  6. High-Accuracy Tracking Control of Robot Manipulators Using Time Delay Estimation and Terminal Sliding Mode

    Directory of Open Access Journals (Sweden)

    Maolin Jin

    2011-09-01

    Full Text Available A time delay estimation based general framework for trajectory tracking control of robot manipulators is presented. The controller consists of three elements: a time‐delay‐estimation element that cancels continuous nonlinearities of robot dynamics, an injecting element that endows desired error dynamics, and a correcting element that suppresses residual time delay estimation error caused by discontinuous nonlinearities. Terminal sliding mode is used for the correcting element to pursue fast convergence of the time delay estimation error. Implementation of proposed control is easy because calculation of robot dynamics including friction is not required. Experimental results verify high‐accuracy trajectory tracking of industrial robot manipulators.

  7. High-Accuracy Tracking Using Ultrawideband Signals for Enhanced Safety of Cyclists

    Directory of Open Access Journals (Sweden)

    Davide Dardari

    2017-01-01

    Full Text Available In this paper, an ultrawideband localization system to improve the cyclists’ safety is presented. The architectural solutions proposed consist of tags placed on bikes, whose positions have to be estimated, and anchors, acting as reference nodes, located at intersections and/or on vehicles. The peculiarities of the localization system in terms of accuracy and cost enable its adoption with enhanced risk assessment units situated on the infrastructure/vehicle, depending on the architecture chosen, as well as real-time warning to the road users. Experimental results reveal that the localization error, in both static and dynamic conditions, is below 50 cm in most of the cases.

  8. Alignment Mirror Mechanisms for Space Use

    Science.gov (United States)

    Jau, Bruno M.; McKinney, Colin M.; Smythe, Robert F.; Palmer, Dean

    2011-01-01

    The paper describes an optical Alignment Mirror Mechanism (AMM), and discusses its control scheme. The mirror's angular positioning accuracy requirement is +/- 0.2 arc-sec. This requires the mirror's linear positioning actuators to have a positioning accuracy of +/- 109 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are +/- 35 nm linear positioning capability at the actuator, which translates into +/- 0.07 arc-sec angular mirror positioning accuracy.

  9. Aligning Sequences by Minimum Description Length

    Directory of Open Access Journals (Sweden)

    John S. Conery

    2008-01-01

    Full Text Available This paper presents a new information theoretic framework for aligning sequences in bioinformatics. A transmitter compresses a set of sequences by constructing a regular expression that describes the regions of similarity in the sequences. To retrieve the original set of sequences, a receiver generates all strings that match the expression. An alignment algorithm uses minimum description length to encode and explore alternative expressions; the expression with the shortest encoding provides the best overall alignment. When two substrings contain letters that are similar according to a substitution matrix, a code length function based on conditional probabilities defined by the matrix will encode the substrings with fewer bits. In one experiment, alignments produced with this new method were found to be comparable to alignments from CLUSTALW. A second experiment measured the accuracy of the new method on pairwise alignments of sequences from the BAliBASE alignment benchmark.

  10. Affine-Invariant Geometric Constraints-Based High Accuracy Simultaneous Localization and Mapping

    Directory of Open Access Journals (Sweden)

    Gangchen Hua

    2017-01-01

    Full Text Available In this study we describe a new appearance-based loop-closure detection method for online incremental simultaneous localization and mapping (SLAM using affine-invariant-based geometric constraints. Unlike other pure bag-of-words-based approaches, our proposed method uses geometric constraints as a supplement to improve accuracy. By establishing an affine-invariant hypothesis, the proposed method excludes incorrect visual words and calculates the dispersion of correctly matched visual words to improve the accuracy of the likelihood calculation. In addition, camera’s intrinsic parameters and distortion coefficients are adequate for this method. 3D measuring is not necessary. We use the mechanism of Long-Term Memory and Working Memory (WM to manage the memory. Only a limited size of the WM is used for loop-closure detection; therefore the proposed method is suitable for large-scale real-time SLAM. We tested our method using the CityCenter and Lip6Indoor datasets. Our proposed method results can effectively correct the typical false-positive localization of previous methods, thus gaining better recall ratios and better precision.

  11. Axis-Exchanged Compensation and Gait Parameters Analysis for High Accuracy Indoor Pedestrian Dead Reckoning

    Directory of Open Access Journals (Sweden)

    Honghui Zhang

    2015-01-01

    Full Text Available Pedestrian dead reckoning (PDR is an effective way for navigation coupled with GNSS (Global Navigation Satellite System or weak GNSS signal environment like indoor scenario. However, indoor location with an accuracy of 1 to 2 meters determined by PDR based on MEMS-IMU is still very challenging. For one thing, heading estimation is an important problem in PDR because of the singularities. For another thing, walking distance estimation is also a critical problem for pedestrian walking with randomness. Based on the above two problems, this paper proposed axis-exchanged compensation and gait parameters analysis algorithm to improve the navigation accuracy. In detail, an axis-exchanged compensation factored quaternion algorithm is put forward first to overcome the singularities in heading estimation without increasing the amount of computation. Besides, real-time heading is updated by R-adaptive Kalman filter. Moreover, gait parameters analysis algorithm can be divided into two steps: cadence detection and step length estimation. Thus, a method of cadence classification and interval symmetry is proposed to detect the cadence accurately. Furthermore, a step length model adjusted by cadence is established for step length estimation. Compared to the traditional PDR navigation, experimental results showed that the error of navigation reduces 32.6%.

  12. Directional alignment of FeCo crystallites in Si/NiFe/Ru/FeCoB multilayer with high anisotropy field above 500 Oe.

    Science.gov (United States)

    Hirata, Ken-Ichiro; Gomi, Shunsuke; Nakagawa, Shigeki

    2011-03-01

    In-plane magnetic anisotropy and crystal structure of FeCoB layer on Si/NiFe/Ru underlayer were investigated by using X-Ray Diffraction (XRD) measurement. A pole-figure measurement of XRD showed directionally tilted alignment of FeCo crystallites in Si/NiFe/Ru/FeCoB multilayered film with high in-plane anisotropy field H(k) but no directional alignment was found in FeCoB single layered film. The higher H(k) appeared in the Si/NiFe/Ru/FeCoB multilayered configuration with the thicker FeCoB layer. Since Ru crystallites in a multiunderlayer configuration exhibited no directional alignment, the surface structure of underlayer should be no main reason for the directional alignment of FeCo crystallites deposited on it. The dependence of hickness of FeCoB layer in Si/NiFe/Ru/FeCoB film on H(k) indicated that the in-plane magnetic anisotropy is caused by not only the structure of Ru underlayer but also oblique incidence effect of sputtered particles, which is attained in configuration of Facing Targets Sputtering (FTS) system. From these experimental results, remarkably high H(k) of 540 Oe was obtained.

  13. Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2 batteries.

    Science.gov (United States)

    Shui, Jianglan; Du, Feng; Xue, Chenming; Li, Quan; Dai, Liming

    2014-03-25

    High energy efficiency and long cycleability are two important performance measures for Li-air batteries. Using a rationally designed oxygen electrode based on a vertically aligned nitrogen-doped coral-like carbon nanofiber (VA-NCCF) array supported by stainless steel cloth, we have developed a nonaqueous Li-O2 battery with an energy efficiency as high as 90% and a narrow voltage gap of 0.3 V between discharge/charge plateaus. Excellent reversibility and cycleability were also demonstrated for the newly developed oxygen electrode. The observed outstanding performance can be attributed to its unique vertically aligned, coral-like N-doped carbon microstructure with a high catalytic activity and an optimized oxygen/electron transportation capability, coupled with the microporous stainless steel substrate. These results demonstrate that highly efficient and reversible Li-O2 batteries are feasible by using a rationally designed carbon-based oxygen electrode.

  14. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and Y. Pakhotin

    2012-01-01

      A new track-based alignment for the DT chambers is ready for deployment: an offline tag has already been produced which will become part of the 52X Global Tag. This alignment was validated within the muon alignment group both at low and high momentum using a W/Z skim sample. It shows an improved mass resolution for pairs of stand-alone muons, improved curvature resolution at high momentum, and improved DT segment extrapolation residuals. The validation workflow for high-momentum muons used to depend solely on the “split cosmics” method, looking at the curvature difference between muon tracks reconstructed in the upper or lower half of CMS. The validation has now been extended to include energetic muons decaying from heavily boosted Zs: the di-muon invariant mass for global and stand-alone muons is reconstructed, and the invariant mass resolution is compared for different alignments. The main areas of development over the next few months will be preparing a new track-based C...

  15. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications.......A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing...... a two-stage frequency measurement cooperating with digital signal processing. In the experiment, 10GHz measurement range is guaranteed and the average uncertainty of estimated microwave frequency is 5.4MHz, which verifies the measurement accuracy is significantly improved by achieving an unprecedented...

  16. Large-scale fluctuations of PSBL magnetic flux tubes induced by the field-aligned motion of highly accelerated ions

    Directory of Open Access Journals (Sweden)

    E. E. Grigorenko

    2010-06-01

    Full Text Available We present a comprehensive analysis of magnetic field and plasma data measured in the course of 170 crossings of the lobeward edge of Plasma Sheet Boundary Layer (PSBL in the Earth's magnetotail by Cluster spacecraft. We found that large-scale fluctuations of the magnetic flux tubes have been registered during intervals of propagation of high velocity field-aligned ions. The observed kink-like oscillations propagate earthward along the main magnetic field with phase velocities of the order of local Alfvén velocity and have typical wavelengths ~5–20 RE, and frequencies of the order of 0.004–0.02 Hz. The oscillations of PSBL magnetic flux tubes are manifested also in a sudden increase of drift velocity of cold lobe ions streaming tailward. Since in the majority of PSBL crossings in our data set, the densities of currents corresponding to electron-ion relative drift have been low, the investigation of Kelvin-Helmholtz (K-H instability in a bounded flow sandwiched between the plasma sheet and the lobe has been performed to analyze its relevance to generation of the observed ultra-low frequency oscillations with wavelengths much larger than the flow width. The calculations have shown that, when plasma conditions are favorable for the excitation of K-H instability at least at one of the flow boundaries, kink-like ultra-low frequency waves, resembling the experimentally observed ones, could become unstable and efficiently develop in the system.

  17. CORE: Common Region Extension Based Multiple Protein Structure Alignment for Producing Multiple Solution

    Institute of Scientific and Technical Information of China (English)

    Woo-Cheol Kim; Sanghyun Park; Jung-Im Won

    2013-01-01

    Over the past several decades,biologists have conducted numerous studies examining both general and specific functions of proteins.Generally,if similarities in either the structure or sequence of amino acids exist for two proteins,then a common biological function is expected.Protein function is determined primarily based on the structure rather than the sequence of amino acids.The algorithm for protein structure alignment is an essential tool for the research.The quality of the algorithm depends on the quality of the similarity measure that is used,and the similarity measure is an objective function used to determine the best alignment.However,none of existing similarity measures became golden standard because of their individual strength and weakness.They require excessive filtering to find a single alignment.In this paper,we introduce a new strategy that finds not a single alignment,but multiple alignments with different lengths.This method has obvious benefits of high quality alignment.However,this novel method leads to a new problem that the running time for this method is considerably longer than that for methods that find only a single alignment.To address this problem,we propose algorithms that can locate a common region (CORE) of multiple alignment candidates,and can then extend the CORE into multiple alignments.Because the CORE can be defined from a final alignment,we introduce CORE* that is similar to CORE and propose an algorithm to identify the CORE*.By adopting CORE* and dynamic programming,our proposed method produces multiple alignments of various lengths with higher accuracy than previous methods.In the experiments,the alignments identified by our algorithm are longer than those obtained by TM-align by 17% and 15.48%,on average,when the comparison is conducted at the level of super-family and fold,respectively.

  18. Brief Report: Face Configuration Accuracy and Processing Speed Among Adults with High-Functioning Autism Spectrum Disorders

    OpenAIRE

    Faja, Susan; Webb, Sara Jane; Merkle, Kristen; Aylward, Elizabeth; Dawson, Geraldine

    2008-01-01

    The present study investigates the accuracy and speed of face processing employed by high-functioning adults with autism spectrum disorders (ASDs). Two behavioral experiments measured sensitivity to distances between features and face recognition when performance depended on holistic versus featural information. Results suggest adults with ASD were less accurate, but responded as quickly as controls for both tasks. In contrast to previous findings with children, adults with ASD demonstrated a...

  19. The Effect of Moderate and High-Intensity Fatigue on Groundstroke Accuracy in Expert and Non-Expert Tennis Players

    OpenAIRE

    Mark Lyons; Yahya Al-Nakeeb; Joanne Hankey; Alan Nevill

    2013-01-01

    peer-reviewed Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female) and 17 non-expe...

  20. A High Accuracy Pedestrian Detection System Combining a Cascade AdaBoost Detector and Random Vector Functional-Link Net

    OpenAIRE

    Zhihui Wang; Sook Yoon; Shan Juan Xie; Yu Lu; Dong Sun Park

    2014-01-01

    In pedestrian detection methods, their high accuracy detection rates are always obtained at the cost of a large amount of false pedestrians. In order to overcome this problem, the authors propose an accurate pedestrian detection system based on two machine learning methods: cascade AdaBoost detector and random vector functional-link net. During the offline training phase, the parameters of a cascade AdaBoost detector and random vector functional-link net are trained by standard dataset. These...