WorldWideScience

Sample records for high absorption coefficients

  1. Converting Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2013-01-01

    are suggested: An optimization method for the surface impedances for locally reacting absorbers, the flow resistivity for extendedly reacting absorbers, and the flow resistance for fabrics. With four porous type absorbers, the conversion methods are validated. For absorbers backed by a rigid wall, the surface...... coefficients to random incidence absorption coefficients are proposed. The overestimations of the Sabine absorption coefficient are investigated theoretically based on Miki's model for porous absorbers backed by a rigid wall or an air cavity, resulting in conversion factors. Additionally, three optimizations...... impedance optimization produces the best results, while the flow resistivity optimization also yields reasonable results. The flow resistivity and flow resistance optimization for extendedly reacting absorbers are also found to be successful. However, the theoretical conversion factors based on Miki's model...

  2. Carbonation Coefficients from Concrete Made with High-Absorption Limestone Aggregate

    Directory of Open Access Journals (Sweden)

    Eric I. Moreno

    2013-01-01

    Full Text Available Normal aggregates employed in concrete have absorption levels in the range of 0.2% to 4% for coarse aggregate and 0.2 to 2% for fine aggregate. However, some aggregates have absorption levels above these values. As the porosity of concrete is related to the porosity of both the cement paste and the aggregate and the carbonation rate is a function, among other things, of the porosity of the material, there is concern about the effect of this high porosity material in achieving good quality concrete from the durability point of view. Thus, the objective of this investigation was to study the carbonation rates of concrete specimens made with high-absorption limestone aggregate. Four different water/cement ratios were used, and cylindrical concrete specimens were exposed to accelerated carbonation. High porosity values were obtained for concrete specimens beyond the expected limits for durable concrete. However, carbonation coefficients related to normal quality concrete were obtained for the lowest water/cement ratio employed suggesting that durable concrete may be obtained with this material despite the high porosity.

  3. Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2014-01-01

    into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods...

  4. Reproducibility of The Random Incidence Absorption Coefficient Converted From the Sabine Absorption Coefficient

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Chang, Ji-ho

    2015-01-01

    largely depending on the test room. Several conversion methods for porous absorbers from the Sabine absorption coefficient to the random incidence absorption coefficient were suggested by considering the finite size of a test specimen and non-uniformly incident energy onto the specimen, which turned out...... resistivity optimization outperforms the surface impedance optimization in terms of the reproducibility....

  5. Absorption coefficients of silicon: A theoretical treatment

    Science.gov (United States)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.

  6. Multiphoton absorption coefficients in solids: an universal curve

    International Nuclear Information System (INIS)

    Brandi, H.S.; Araujo, C.B. de

    1983-04-01

    An universal curve for the frequency dependence of the multiphoton absorption coefficient is proposed based on a 'non-perturbative' approach. Specific applications have been made to obtain two, three, four and five photons absorption coefficient in different materials. Properly scaling of the two photon absorption coefficient and the use of the universal curve yields results for the higher order absorption coefficients in good agreement with the experimental data. (Author) [pt

  7. Experimental methodology for obtaining sound absorption coefficients

    Directory of Open Access Journals (Sweden)

    Carlos A. Macía M

    2011-07-01

    Full Text Available Objective: the authors propose a new methodology for estimating sound absorption coefficients using genetic algorithms. Methodology: sound waves are generated and conducted along a rectangular silencer. The waves are then attenuated by the absorbing material covering the silencer’s walls. The attenuated sound pressure level is used in a genetic algorithm-based search to find the parameters of the proposed attenuation expressions that include geometric factors, the wavelength and the absorption coefficient. Results: a variety of adjusted mathematical models were found that make it possible to estimate the absorption coefficients based on the characteristics of a rectangular silencer used for measuring the attenuation of the noise that passes through it. Conclusions: this methodology makes it possible to obtain the absorption coefficients of new materials in a cheap and simple manner. Although these coefficients might be slightly different from those obtained through other methodologies, they provide solutions within the engineering accuracy ranges that are used for designing noise control systems.

  8. Studies on absorption coefficient near edge of multi elements

    International Nuclear Information System (INIS)

    Eisa, M.H.; Shen, H.; Yao, H.Y.; Mi, Y.; Zhou, Z.Y.; Hu, T.D.; Xie, Y.N.

    2005-01-01

    X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained

  9. Studies on absorption coefficient near edge of multi elements

    Science.gov (United States)

    Eisa, M. H.; Shen, H.; Yao, H. Y.; Mi, Y.; Zhou, Z. Y.; Hu, T. D.; Xie, Y. N.

    2005-12-01

    X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained.

  10. Estimation of water absorption coefficient using the TDR method

    Science.gov (United States)

    Suchorab, Zbigniew; Majerek, Dariusz; Brzyski, Przemysław; Sobczuk, Henryk; Raczkowski, Andrzej

    2017-07-01

    Moisture accumulation and transport in the building barriers is an important feature that influences building performance, causing serious exploitation problems as increased energy use, mold and bacteria growth, decrease of indoor air parameters that may lead to sick building syndrome (SBS). One of the parameters that is used to describe moisture characteristic of the material is water absorption coefficient being the measure of capillary behavior of the material as a function of time and the surface area of the specimen. As usual it is determined using gravimetric methods according to EN 1925:1999 standard. In this article we demonstrate the possibility of determination of water absorption coefficient of autoclaved aerated concrete (AAC) using the Time Domain Reflectometry (TDR) method. TDR is an electric technique that had been adopted from soil science and can be successfully used for real-time monitoring of moisture transport in building materials and envelopes. Data achieved using TDR readouts show high correlation with standard method of moisture absorptivity coefficient determination.

  11. Mass: Fortran program for calculating mass-absorption coefficients

    International Nuclear Information System (INIS)

    Nielsen, Aa.; Svane Petersen, T.

    1980-01-01

    Determinations of mass-absorption coefficients in the x-ray analysis of trace elements are an important and time consuming part of the arithmetic calculation. In the course of time different metods have been used. The program MASS calculates the mass-absorption coefficients from a given major element analysis at the x-ray wavelengths normally used in trace element determinations and lists the chemical analysis and the mass-absorption coefficients. The program is coded in FORTRAN IV, and is operational on the IBM 370/165 computer, on the UNIVAC 1110 and on PDP 11/05. (author)

  12. Axially symmetric reconstruction of plasma emission and absorption coefficients

    International Nuclear Information System (INIS)

    Yang Lixin; Jia Hui; Yang Jiankun; Li Xiujian; Chen Shaorong; Liu Xishun

    2013-01-01

    A layered structure imaging model is developed in order to reconstruct emission coefficients and absorption coefficients simultaneously, in laser fusion core plasma diagnostics. A novel axially symmetric reconstruction method that utilizes the LM (Levenberg-Marquardt) nonlinear least squares minimization algorithm is proposed based on the layered structure. Numerical simulation results demonstrate that the proposed method is sufficiently accurate to reconstruct emission coefficients and absorption coefficients, and when the standard deviation of noise is 0.01, the errors of emission coefficients and absorption coefficients are 0.17, 0.22, respectively. Furthermore, this method could perform much better on reconstruction effect compared with traditional inverse Abel transform algorithms. (authors)

  13. Modelling the light absorption coefficients of oceanic waters: Implications for underwater optical applications

    Science.gov (United States)

    Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy

    2018-05-01

    Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.

  14. Remarkable optical red shift and extremely high optical absorption coefficient of V-Ga co-doped TiO2

    Science.gov (United States)

    Deng, Quanrong; Han, Xiaoping; Gao, Yun; Shao, Guosheng

    2012-07-01

    A first attempt has been made to study the effect of codoping of transition metal and sp metal on the electronic structure and associated optical properties of TiO2, through V-Ga codoped thin films. V-Ga codoped rutile TiO2 films were fabricated on fused quartz substrates using pulsed laser ablation, followed by heat treatment at high temperatures. Gigantic redshift in the optical absorption edge was observed in V-Ga co-doped TiO2 materials, from UV to infrared region with high absorption coefficient. Through combined structural characterization and theoretical modeling, this is attributed to the p-d hybridization between the two metals. This leads to additional energy bands to overlap with the minimum of the conduction band, leading to remarkably narrowed band gap free of mid-gap states. The direct-gap of the co-doped phase is key to the remarkably high optical absorption coefficient of the coped titania.

  15. Determination of optical absorption coefficient with focusing photoacoustic imaging.

    Science.gov (United States)

    Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R

    2012-06-01

    Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.

  16. Use of appropriate absorption coefficients in gamma-ray dosimetry

    International Nuclear Information System (INIS)

    Gopinath, D.V.; Natarajan, A.; Subbaiah, K.V.

    1985-01-01

    The current use of the different types of absorption coefficients in the computation of γ-ray energy deposition rates and air dose is critically analyzed. Transport calculations are presented to bring out the errors associated with the use of different absorption coefficients. It is observed that except for source energies in the range of 0.3 to 3.0 MeV the consistent use of the absorption coefficient, μ/sub a/ results in an underestimate of the air dose everywhere and of energy deposition at regions away from source. The underestimate becomes more significant with increased atomic number (Z) of the medium. Based on the computations and analysis it is concluded that the absorption coefficients μ/sub a/ and μ/sub k/ are of very limited use in practical γ-ray dosimetry

  17. Calculation of effective absorption coefficient for aerosols of internal mixture

    International Nuclear Information System (INIS)

    Xu Bo; Huang Yinbo; Fan Chengyu; Qiao Chunhong

    2012-01-01

    The effective absorption coefficient with time of strong absorbing aerosol made of carbon dusts and water of internal mixture is analyzed, and the influence of different wavelengths and radius ratios on it is discussed. The shorter the wavelength is, the larger the effective absorption coefficient is , and more quickly it increases during 1-100 μs, and the largest increase if 132.65% during 1-100 μs. Different ratios between inner and outer radius have large influence on the effective absorption coefficient. The larger the ratio is, the larger the effective absorption coefficient is, and more quickly it increases during 1-100 μs. The increase of the effective absorption coefficient during 1-100 μs is larger than that during 100-1000 μs, and the largest increase is 138.66% during 1-100 μs. (authors)

  18. Techniques For Measuring Absorption Coefficients In Crystalline Materials

    Science.gov (United States)

    Klein, Philipp H.

    1981-10-01

    Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.

  19. Restricted mass energy absorption coefficients for use in dosimetry

    International Nuclear Information System (INIS)

    Brahme, A.

    1977-02-01

    When matter is irradiated by a photon beam the fraction of energy absorbed locally in some region Rsub(Δ) (where the size of the region Rsub(Δ) is related to the range of secondary electrons of some restriction energy Δ) is expressed by the restricted mass energy absorption coefficient. In this paper an example is given of how restricted mass energy absorption coefficients can be calculated from existing differential photon interaction cross sections. Some applications of restricted mass absorption coefficients in dosimetry are also given. (B.D.)

  20. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    Science.gov (United States)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  1. Measurement of Absorption Coefficient of Paraformaldehyde and Metaldehyde with Terahertz Spectroscopy

    Science.gov (United States)

    Zhang, J.; Xia, T.; Chen, Q.; Sun, Q.; Deng, Y.; Wang, C.

    2018-03-01

    The characteristic absorption spectra of paraformaldehyde and metaldehyde in the terahertz frequency region are obtained by terahertz time-domain spectroscopy (THz-TDS). In order to reduce the absorption of terahertz (THz) wave by water vapor in the air and the background noise, the measurement system was filled with dry air and the measurements were conducted at the temperature of 24°C. Meanwhile, the humidity was controlled within 10% RH. The THz frequency domain spectra of samples and their references from 0 to 2.5 THz were analyzed via Fourier transform. The refractive index and absorption coefficients of the two aldehydes were calculated by the model formulas. From 0.1 to 2.5 THz, there appear two weak absorption peaks at 1.20 and 1.66 THz in the absorption spectra of paraformaldehyde. Only one distinct absorption peak emerges at 1.83 THz for metaldehyde. There are significant differences between the terahertz absorption coefficients of paraformaldehyde and metaldehyde, which can be used as "fingerprints" to identify these substances. Furthermore, the relationship between the average absorption coefficients and mass concentrations was investigated and the average absorption coefficient-mass concentration diagrams of paraformaldehyde and metaldehyde were shown. For paraformaldehyde, there is a linear relationship between the average absorption coefficient and the natural logarithm of mass concentration. For metaldehyde, there exists a simpler linear relationship between the average absorption coefficient and the mass concentration. Because of the characteristics of THz absorption of paraformaldehyde and metaldehyde, the THz-TDS can be applied to the qualitative and quantitative detection of the two aldehydes to reduce the unpredictable hazards due to these substances.

  2. Effect of applied mechanical stress on absorption coefficient of compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Manoj Kumar, E-mail: mkgupta.sliet@gmail.com [Department of Applied Sciences, Bhai Gurdas Institute of Engineering and Technology, Sangrur (India); Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S. [Department of Physics, Sant Longowal Institute of Engineering & Technology Deemed University, Longowal (Sangrur) India-148106 (India)

    2015-08-28

    The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al{sub 2}O{sub 3}, CaCO{sub 3}, ZnO{sub 2}, SmO{sub 2} and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.

  3. Measurement of gamma attenuation coefficients in UO2 and zirconium for self-absorption corrections of burn-up determination

    International Nuclear Information System (INIS)

    Podest, M.; Klima, J.; Stecher, P.; Stecherova, E.

    1978-01-01

    UO 2 pellets from ALUOX fuel elements were used in measuring the absorption coefficient of gamma radiation in UO 2 . The results of measurements of the energy dependence of the linear absorption coefficient (within 622 to 796 keV) and of the dependence on pellet density showed that in the given density interval the absorption coefficient was almost constant. The density interval was chosen to be typical for pellet fuel used in water cooled and water moderated power reactors. The results are also shown of the dependence of the mass absorption coefficient of gamma radiation in Zr on radiation energy and compared with the mass absorption coefficient of Mo; these also showed the independence of the absorption coefficient on density. The linear and mass absorption coefficients of UO 2 are considerably high and correspond approximately to the absorption coefficient of lead. For the measured energy range the variation of absorption coefficient is about 40%, which causes errors in burnup determination. The efficiency was also determined of Ge(Li) detectors for the energy range 0.5 to 1.2 MeV. The determination of the above coefficients was used for improving the gamma fuel scanning technique in determining the activity and burnup of spent fuel elements. (J.P.)

  4. X-ray absorption intensity at high-energy region

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Kaneko, Katsumi

    2012-01-01

    We theoretically discuss X-ray absorption intensity in high-energy region far from the deepest core threshold to explain the morphology-dependent mass attenuation coefficient of some carbon systems, carbon nanotubes (CNTs), highly oriented pyrolytic graphite (HOPG) and fullerenes (C 60 ). The present theoretical approach is based on the many-body X-ray absorption theory including the intrinsic losses (shake-up losses). In the high-energy region the absorption coefficient has correction term dependent on the solid state effects given in terms of the polarization part of the screened Coulomb interaction W p . We also discuss the tail of the valence band X-ray absorption intensity. In the carbon systems C 2s contribution has some influence on the attenuation coefficient even in the high energy region at 20 keV.

  5. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  6. A method for determination mass absorption coefficient of gamma rays by Compton scattering

    International Nuclear Information System (INIS)

    El Abd, A.

    2014-01-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. - Highlights: • Compton scattering of γ−rays was used for determining mass absorption coefficient. • Scattered intensities were determined by the MCSHAPE software. • Mass absorption coefficients were determined for some compounds, mixtures and alloys. • Mass absorption coefficients were calculated by Winxcom software. • Good agreements were found between determined and calculated results

  7. [Extracting THz absorption coefficient spectrum based on accurate determination of sample thickness].

    Science.gov (United States)

    Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang

    2012-04-01

    Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.

  8. Noninvasive photoacoustic measurement of absorption coefficient using internal light irradiation of cylindrical diffusing fiber

    Science.gov (United States)

    Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui

    2017-09-01

    Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.

  9. Minority carrier diffusion lengths and absorption coefficients in silicon sheet material

    Science.gov (United States)

    Dumas, K. A.; Swimm, R. T.

    1980-01-01

    Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.

  10. X-ray absorption coefficients of the elements (Li TO Bi, U)

    International Nuclear Information System (INIS)

    Sasaki, Satoshi.

    1990-11-01

    The atomic absorption coefficient, μ a , and the mass absorption coefficient, μ/ρ, have been calculated for the elements Li to Bi and U, based on both photoelectric and scattering effects. Tables include the μ a and μ/ρ values (i) at 0.01 A intervals in the wavelength range from 0.1 to 2.89 A and (ii) at 0.0001 A intervals in the neighborhood of the K, L 1 , L 2 , and L 3 absorption edges. (author)

  11. Mass attenuation coefficient of chromium and manganese compounds around absorption edge.

    Science.gov (United States)

    Sharanabasappa; Kaginelli, S B; Kerur, B R; Anilkumar, S; Hanumaiah, B

    2009-01-01

    The total mass attenuation coefficient for Potassium dichromate, Potassium chromate and Manganese acetate compounds are measured at different photon energies 5.895, 6.404, 6.490, 7.058, 8.041 and 14.390 keV using Fe-55, Co-57 and 241Am source with Copper target, radioactive sources. The photon intensity is analyzed using a high resolution HPGe detector system coupled to MCA under good geometrical arrangement. The obtained values of mass attenuation coefficient values are compared with theoretical values. This study suggests that measured mass attenuation coefficient values at and near absorption edges differ from the theoretical value by about 5-28%.

  12. Peculiarities of determination of coefficient of radionuclide absorption in alimentary canal of ruminants

    International Nuclear Information System (INIS)

    Korneev, N.A.; Sirotkin, A.N.; Rasin, I.M.; Sarapul'tsev, I.A.; Abramova, T.N.

    1986-01-01

    Sheep taken as example, the new method for calculation of the coefficient of radionuclide ( 65 Zn) absorption in gastrointestinal tract (GIT) is suggested. It is shown that the radionuclide absorption process of sheep lasted 35 h. In case of parenteral intake radionuclide excretion from tissues and organs and its inclusion in structural parts of blood occurs. In animals to which 65 Zn is injected orally, the same processes at 65 Zn simultaneous absorption in GIT during 35 h take place. In 35 hours after radio nuclide injection its absorption coefficient in the GIT of sheep constituted 10.1+-0.05%. Using traditional calculation methods the 65 Zn absorption coefficient for the first 24 h constituted 6.6%

  13. Regularity of the Interband Light Absorption Coefficient

    Indian Academy of Sciences (India)

    In this paper we consider the interband light absorption coefficient (ILAC), in a symmetric form, in the case of random operators on the -dimensional lattice. We show that the symmetrized version of ILAC is either continuous or has a component which has the same modulus of continuity as the density of states.

  14. Absorption coefficient instrument for turbid natural waters

    Science.gov (United States)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-01-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  15. Measured and numerically partitioned phytoplankton spectral absorption coefficients in inland waters

    NARCIS (Netherlands)

    Zhang, Y.; Liu, M.; Van Dijk, M.A.; Zhu, G.; Gong, Z.; Li, Y.M.; Qin, B.

    2009-01-01

    Total particulate, tripton and phytoplankton absorption coefficients were measured for eutrophic (Lake Taihu), meso-eutrophic (Lake Tianmuhu) and mesotrophic waters (the Three Gorges Reservoir) in China using the quantitative filter technique. Meanwhile, tripton and phytoplankton absorption

  16. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    Science.gov (United States)

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A parameterization scheme for the x-ray linear attenuation coefficient and energy absorption coefficient.

    Science.gov (United States)

    Midgley, S M

    2004-01-21

    A novel parameterization of x-ray interaction cross-sections is developed, and employed to describe the x-ray linear attenuation coefficient and mass energy absorption coefficient for both elements and mixtures. The new parameterization scheme addresses the Z-dependence of elemental cross-sections (per electron) using a simple function of atomic number, Z. This obviates the need for a complicated mathematical formalism. Energy dependent coefficients describe the Z-direction curvature of the cross-sections. The composition dependent quantities are the electron density and statistical moments describing the elemental distribution. We show that it is possible to describe elemental cross-sections for the entire periodic table and at energies above the K-edge (from 6 keV to 125 MeV), with an accuracy of better than 2% using a parameterization containing not more than five coefficients. For the biologically important elements 1 coefficients. At higher energies, the parameterization uses fewer coefficients with only two coefficients needed at megavoltage energies.

  18. Dynamic absorption coefficients of chemically amplified resists and nonchemically amplified resists at extreme ultraviolet

    Science.gov (United States)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-07-01

    The dynamic absorption coefficients of several chemically amplified resists (CAR) and non-CAR extreme ultraviolet (EUV) photoresists are measured experimentally using a specifically developed setup in transmission mode at the x-ray interference lithography beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general, the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called chemical sensitivity to account for all the postabsorption chemical reaction ongoing in the resist, which also predicts a quantitative clearing volume and clearing radius, due to the photon absorption in the resist. These parameters may help provide deeper insight into the underlying mechanisms of the EUV concepts of clearing volume and clearing radius, which are then defined and quantitatively calculated.

  19. Analysis of the absorption coefficient by annealing in carbon implanted Nd: YVO4

    International Nuclear Information System (INIS)

    Sanchez-Morales, M E; Vazquez, G V; Lifante, G; Cantelar, E; Rickards, J; Trejo-Luna, R

    2011-01-01

    Low loss in optical waveguides is very important in order to achieve high laser efficiency. Waveguide fabrication by ion implantation generates color centers, leading to absorption losses which can be reduced by annealing; however, this process may eliminate the waveguide and hence it is necessary to consider both the optimum annealing time and temperature. This work reports the behavior of the absorption coefficient by successive annealing steps in Nd:YVO 4 implanted with a dose of 5xl0 14 ions/cm 2 .

  20. Laboratory measurement of the absorption coefficient of riboflavin for ultraviolet light (365 nm).

    Science.gov (United States)

    Iseli, Hans Peter; Popp, Max; Seiler, Theo; Spoerl, Eberhard; Mrochen, Michael

    2011-03-01

    Corneal cross-linking (CXL) is an increasingly used treatment technique for stabilizing the cornea in keratoconus. Cross-linking (polymerization) between collagen fibrils is induced by riboflavin (vitamin B2) and ultraviolet light (365 nm). Although reported to reach a constant value at higher riboflavin concentrations, the Lambert-Beer law predicts a linear increase in the absorption coefficient. This work was carried out to determine absorption behavior at different riboflavin concentrations and to further investigate the purported plateau absorption coefficient value of riboflavin and to identify possible bleaching effects. The Lambert-Beer law was used to calculate the absorption coefficient at various riboflavin concentrations. The following investigated concentrations of riboflavin solutions were prepared using a mixture of 0.5% riboflavin and 20% Dextran T500 dissolved in 0.9% sodium chloride solution: 0%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.08%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, and were investigated with and without aperture plate implementation. An additional test series measured the transmitted power at selected riboflavin concentrations over time. In diluted solutions, a linear correlation exists between the absorption coefficient and riboflavin concentration. The absorption coefficient reaches a plateau, but this occurs at a higher riboflavin concentration (0.1%) than previously reported (just above 0.04%). Transmitted light power increases over time, indicating a bleaching effect of riboflavin. The riboflavin concentration can be effectively varied as a treatment parameter in a considerably broader range than previously thought. Copyright 2011, SLACK Incorporated.

  1. Determination of sedimentation rates and absorption coefficient of ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    particles have pores that can absorb radiation. Gamma rays have been used to study the absorption coefficients of cobalt(II) insoluble compounds (Essien and Ekpe, 1998), densities of marine sediments. (Gerland and Villinger, 1995) and soil particle-size distribution (Vaz et al., 1992). In this study, sedimentation rates of ...

  2. Producing of Impedance Tube for Measurement of Acoustic Absorption Coefficient of Some Sound Absorber Materials

    Directory of Open Access Journals (Sweden)

    R. Golmohammadi

    2008-04-01

    Full Text Available Introduction & Objective: Noise is one of the most important harmful agents in work environment. In spit of industrial improvements, exposure with over permissible limit of noise is counted as one of the health complication of workers. In Iran, do not exact information of the absorption coefficient of acoustic materials. Iranian manufacturer have not laboratory for measured of sound absorbance of their products, therefore using of sound absorber is limited for noise control in industrial and non industrial constructions. The goal of this study was to design an impedance tube based on pressure method for measurement of the sound absorption coefficient of acoustic materials.Materials & Methods: In this study designing of measuring system and method of calculation of sound absorption based on a available equipment and relatively easy for measurement of the sound absorption coefficient related to ISO10534-1 was performed. Measuring system consist of heavy asbestos tube, a pure tone sound generator, calibrated sound level meter for measuring of some commonly of sound absorber materials was used. Results: In this study sound absorption coefficient of 23 types of available acoustic material in Iran was tested. Reliability of results by three repeat of measurement was tested. Results showed that the standard deviation of sound absorption coefficient of study materials was smaller than .Conclusion: The present study performed a necessary technology of designing and producing of impedance tube for determining of acoustical materials absorption coefficient in Iran.

  3. Temperature dependence of the absorption coefficient of water for midinfrared laser radiation

    NARCIS (Netherlands)

    Jansen, E. D.; van Leeuwen, T. G.; Motamedi, M.; Borst, C.; Welch, A. J.

    1994-01-01

    The dynamics of the water absorption peak around 1.94 microns was examined. This peak is important for the absorption of holmium and thulium laser radiation. To examine the effect of temperature on the absorption coefficient, the transmission of pulsed Ho:YAG, Ho:YAG, Ho:YSGG, and Tm:YAG laser

  4. Bayesian inversion from sabine absorption coefficients to flow resistivity values for porous absorbers

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2015-01-01

    to determine the flow resistivity of a porous material from the Sabine absorption coefficient was investigated through a reliable model. The model for the flow resistivity estimation is based on an equivalent fluid model, i.e., Miki’s model, together with the most advanced model that accounts for edge...... diffraction, named Thomasson’s finite size correction. As input data, a set of the Sabine absorption coefficients in a recent absorption round robin test in 13 European chambers was used. Finally, the flow resistivity of the test specimen is characterized via the Bayesian framework, together...

  5. Lifshitz Tails for the Interband Light Absorption Coefficient

    Indian Academy of Sciences (India)

    In this paper we consider the interband light absorption coefficient (ILAC) for various models. We show that at the lower and upper edges of the spectrum the Lifshitz tails behaviour of the density of states implies similar behaviour for the ILAC at appropriate energies. The Lifshitz tails property is also exhibited at some points ...

  6. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 2. On the possibility of light absorption coefficient measurement in a turbid medium from the amplitude of the opto-acoustic signal

    International Nuclear Information System (INIS)

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-01-01

    The second part of this work describes the experimental technique of measuring the local light absorption in turbid media. The technique is based on the measurement of the amplitude of an opto-acoustic (OA) signal excited in a turbid medium under the condition of one-sided access to the object under study. An OA transducer is developed to perform the proposed measurement procedure. Experiments are conducted for the turbid media with different optical properties (light absorption and reduced scattering coefficients) and for different diameters of the incident laser beam. It is found that the laser beam diameter can be chosen so that the dependences of the measured OA signal amplitude on the light absorption coefficient coincide upon varying the reduced scattering coefficient by more than twice. The obtained numerical and experimental results demonstrate that the OA method is applicable for measuring the local light absorption coefficient in turbid media, for example, in biological tissues. (measurement of parametrs of laser radiation)

  7. Empirical formulae for mass attenuation and energy absorption coefficients from 1 keV to 20 MeV

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Sowmya, N.; Seenappa, L.; Sridhar, K.N.; Hanumantharayappa, C.

    2017-01-01

    Mass attenuation and energy absorption coefficients represents attenuation and absorption of X-rays and gamma rays in the material medium. A new empirical formula is proposed for mass attenuation and energy absorption coefficients in the region 1 < Z < 92 and from 1 keV to 20 MeV. The mass attenuation and energy absorption coefficients do not varies linearly with energy. We have performed the nonlinear regressions/nonlinear least square fittings and proposed the simple empirical relations between mass attenuation coefficients (μ/ρ) and mass energy absorption coefficients (μ en /ρ) and energy. We have compared the values produced by this formula with that of experiments. A good agreement of present formula with the experiments/previous models suggests that the present formulae could be used to evaluate mass attenuation and energy absorption coefficients in the region 1 < Z < 92. This formula is a model-independent formula and is the first of its kind that produces a mass attenuation and energy absorption coefficient values with the only simple input of energy for wide energy range 1 keV - 20 MeV in the atomic number region 1 < Z < 92. This formula is very much useful in the fields of radiation physics and dosimetry

  8. Semi-analytical Model for Estimating Absorption Coefficients of Optically Active Constituents in Coastal Waters

    Science.gov (United States)

    Wang, D.; Cui, Y.

    2015-12-01

    The objectives of this paper are to validate the applicability of a multi-band quasi-analytical algorithm (QAA) in retrieval absorption coefficients of optically active constituents in turbid coastal waters, and to further improve the model using a proposed semi-analytical model (SAA). The ap(531) and ag(531) semi-analytically derived using SAA model are quite different from the retrievals procedures of QAA model that ap(531) and ag(531) are semi-analytically derived from the empirical retrievals results of a(531) and a(551). The two models are calibrated and evaluated against datasets taken from 19 independent cruises in West Florida Shelf in 1999-2003, provided by SeaBASS. The results indicate that the SAA model produces a superior performance to QAA model in absorption retrieval. Using of the SAA model in retrieving absorption coefficients of optically active constituents from West Florida Shelf decreases the random uncertainty of estimation by >23.05% from the QAA model. This study demonstrates the potential of the SAA model in absorption coefficients of optically active constituents estimating even in turbid coastal waters. Keywords: Remote sensing; Coastal Water; Absorption Coefficient; Semi-analytical Model

  9. Stopping-power and mass energy-absorption coefficient ratios for Solid Water

    International Nuclear Information System (INIS)

    Ho, A.K.; Paliwal, B.R.

    1986-01-01

    The AAPM Task Group 21 protocol provides tables of ratios of average restricted stopping powers and ratios of mean energy-absorption coefficients for different materials. These values were based on the work of Cunningham and Schulz. We have calculated these quantities for Solid Water (manufactured by RMI), using the same x-ray spectra and method as that used by Cunningham and Schulz. These values should be useful to people who are using Solid Water for high-energy photon calibration

  10. Measurement of the sound absorption coefficient for an advanced undergraduate physics laboratory

    Science.gov (United States)

    Macho-Stadler, E.; Elejalde-García, M. J.

    2017-09-01

    We present a simple experiment that allows advanced undergraduates to learn the basics of the acoustic properties of materials. The impedance tube-standing wave method is applied to study the normal absorption coefficient of acoustics insulators. The setup includes a tube, a speaker, a microphone, a digital function generator and an oscilloscope, material available in an undergraduate laboratory. Results of the change of the absorption coefficient with the frequency, the sample thickness and the sample density are analysed and compared with those obtained with a commercial system.

  11. Effect of intense high-frequency laser field on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a parabolic quantum well under the applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Yesilgul, U., E-mail: uyesilgul@cumhuriyet.edu.tr [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Ungan, F. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sakiroglu, S. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, C.P. 62209 Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Kasapoglu, E.; Sarı, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sökmen, I. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey)

    2014-01-15

    The effects of the intense high-frequency laser field on the optical absorption coefficients and the refractive index changes in a GaAs/GaAlAs parabolic quantum well under the applied electric field have been investigated theoretically. The electron energy levels and the envelope wave functions of the parabolic quantum well are calculated within the effective mass approximation. Analytical expressions for optical properties are obtained using the compact density-matrix approach. The numerical results show that the intense high-frequency laser field has a large effect on the optical characteristics of these structures. Also we can observe that the refractive index and absorption coefficient changes are very sensitive to the electric field in large dimension wells. Thus, this result gives a new degree of freedom in the optoelectronic device applications. -- Highlights: • ILF has a large effect on the optical properties of parabolic quantum wells. • The total absorption coefficients increase as the ILF increases. • The RICs increase as the ILF increases.

  12. Sound absorption coefficient of coal bottom ash concrete for railway application

    Science.gov (United States)

    Ramzi Hannan, N. I. R.; Shahidan, S.; Maarof, Z.; Ali, N.; Abdullah, S. R.; Ibrahim, M. H. Wan

    2017-11-01

    A porous concrete able to reduce the sound wave that pass through it. When a sound waves strike a material, a portion of the sound energy was reflected back and another portion of the sound energy was absorbed by the material while the rest was transmitted. The larger portion of the sound wave being absorbed, the lower the noise level able to be lowered. This study is to investigate the sound absorption coefficient of coal bottom ash (CBA) concrete compared to the sound absorption coefficient of normal concrete by carried out the impedance tube test. Hence, this paper presents the result of the impedance tube test of the CBA concrete and normal concrete.

  13. Spectroscopic method for determination of the absorption coefficient in brain tissue

    Science.gov (United States)

    Johansson, Johannes D.

    2010-09-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  14. Experimental Determination of the Molar Absorption Coefficient of n-Hexane Adsorbed on High-Silica Zeolites.

    Science.gov (United States)

    Gatti, Giorgio; Olivas Olivera, Diana F; Sacchetto, Vittoria; Cossi, Maurizio; Braschi, Ilaria; Marchese, Leonardo; Bisio, Chiara

    2017-09-06

    Determination of the molar absorption coefficients of the CH 3 bending mode at ν˜ =1380 cm -1 (ϵ 1380 ) of n-hexane adsorbed from the gas phase on two different dealuminated zeolites is derived by a combination of IR spectroscopy and microgravimetric analysis. High-silica zeolite Y (HSZ-Y) and zeolite ZSM-5 (with SiO 2 /Al 2 O 3 ratios of 200 and 280, respectively) with different textural and surface features are selected to evaluate the effect of the pore structure and architecture on the value of ϵ 1380 of the adsorbed n-hexane. Experimental data indicate that the molecule experiences a different adsorption environment inside zeolites; thus resulting in a significant change of the dipole moment and very different ϵ 1380 values: (0.278±0.018) cm μmol -1 for HSZ-Y and (0.491±0.032) cm μmol -1 for ZSM-5. Experimental data are also supported by computational modeling, which confirms the effect of different matrices on the IR absorption intensity. This study reveals that the use of probe molecules for quantitative measurements of surface sites has to be judiciously adopted, especially if adsorption occurs in the restricted spaces of microporous materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bottom Extreme-Ultraviolet-Sensitive Coating for Evaluation of the Absorption Coefficient of Ultrathin Film

    Science.gov (United States)

    Hijikata, Hayato; Kozawa, Takahiro; Tagawa, Seiichi; Takei, Satoshi

    2009-06-01

    A bottom extreme-ultraviolet-sensitive coating (BESC) for evaluation of the absorption coefficients of ultrathin films such as extreme ultraviolet (EUV) resists was developed. This coating consists of a polymer, crosslinker, acid generator, and acid-responsive chromic dye and is formed by a conventional spin-coating method. By heating the film after spin-coating, a crosslinking reaction is induced and the coating becomes insoluble. A typical resist solution can be spin-coated on a substrate covered with the coating film. The evaluation of the linear absorption coefficients of polymer films was demonstrated by measuring the EUV absorption of BESC substrates on which various polymers were spin-coated.

  16. ABSORPTION, SCATTERING, ATTENUATION COEFFICIENTS and Other Data from NOAA-11 SATELLITE from 19930101 to 19931231 (NCEI Accession 9300064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea surface topography, absorption, scattering, attenuation coefficients and other data in this accession was collected from NOAA-11 Advanced Very High...

  17. Sound absorption coefficient in situ: an alternative for estimating soil loss factors.

    Science.gov (United States)

    Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina

    2015-01-01

    The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Reference-free determination of tissue absorption coefficient by modulation transfer function characterization in spatial frequency domain.

    Science.gov (United States)

    Chen, Weiting; Zhao, Huijuan; Li, Tongxin; Yan, Panpan; Zhao, Kuanxin; Qi, Caixia; Gao, Feng

    2017-08-08

    [Formula: see text] = 2.0 mm -1 , respectively. We have also presented quantitative ex vivo imaging of human lung cancer in a subcutaneous xenograft mouse model for further validation, and observed high absorption contrast in the tumor region. The proposed method can be applied to the rapid and accurate determination of the absorption coefficient, and better yet, in a reference-free way. We believe this reference-free strategy will facilitate the clinical translation of the SFD measurement to achieve enhanced intraoperative hemodynamic monitoring and personalized treatment planning in photodynamic therapy.

  19. Statistical evidences of absorption at high latitudes

    International Nuclear Information System (INIS)

    Fesenko, B.I.

    1980-01-01

    Evidences are considered which indicate to the significant effect of the irregular interstellar absorption at high latitudes b. The number density of faint galaxies grows with the increasing |b| even at the values of |b| exceeding 50 deg. The effects of interstellar medium are traced even in the directions of the stars and globular clusters with very low values of the colour excess. The coefficient of absorption, Asub(B)=0.29+-0.05, was estimated from the colours of the bright E-galaxies [ru

  20. Prediction of mass absorption coefficients from inelastically scattered X-radiation for specimens of less than 'infinite thickness'

    International Nuclear Information System (INIS)

    Kieser, R.; Mulligan, T.J.

    1979-01-01

    An equation is developed which describes the X-ray scatter radiation from specimens of any thickness. This equation suggests that a specimen's mass absorption coefficient can be determined from its inelastically scattered X-radiation not only when the specimen is 'infinitely thick' but also when it is of 'intermediate thickness'. Measurements have been carried out with a standard energy-dispersive X-ray spectrometer on specimens of 'intermediate thickness'. Good agreement is obtained between the mass absorption coefficients that are calculated from the scattered radiation and those obtained on the basis of tabulated mass absorption coefficients for the elements. (author)

  1. Radiographic and radioscopic testing of coatings with a high absorption coefficient

    International Nuclear Information System (INIS)

    Bourdarios, M.; Deleuze, M.; Lepoutre, M.

    1983-06-01

    Radiographies of a uranium disk obtained with an Ir192 source and a X-ray generator of 420kV are compared. Then a testing installation with a X-ray generator for high absorption material is studied. It comprises a mechanism to put the sample into position and a system for image processing to improve contrast and decrease background noise [fr

  2. UV absorption coefficients of Y2(1-x-y)Gd2xEu2yO3 phosphors

    International Nuclear Information System (INIS)

    Ling, M.; Yocom, P.W.; Soules, T.F.

    1990-01-01

    The ability of a phosphor to absorb 254 nm excitation is important in the development of phosphors for fluorescent lamps. Recently the optical properties of phosphor coating were modeled using ray tracing Monte-Carlo techniques. These calculations provided a relationship between absorptance measured on a semi-infinite plaque at a given wavelength and the product of the absorption coefficient of the phosphor and its particle diameter. The purpose of this work is to provide experimental data for comparison with the calculated data, to demonstrate a technique for obtaining absorption coefficients and to provide UV absorption coefficients obtained in this way for important yttrium oxide europium red-emitting phosphors

  3. Mass Absorption Coefficients At 661,6 keV Energy In Various Samples

    International Nuclear Information System (INIS)

    Suhariyono, Gatot; Bunawas

    2000-01-01

    Determination mass absorption coefficients (mum) at 661.6 keV energy in the samples various, such as lysine, coffee, chocolate, nutrisari, coconut oil, monosodium glutamate (MSG), tea, tin fish and the soil with experiment method has been carried out. The mum research was carried out in effort to give the measurement result of Cs-137 concentration that more accurate to the samples, because the sample density increases, mass absorption coefficients (mum) decreases. The mum correction on measurement of Cs-137 concentration in the samples various around between 0 and 13%, the highest is on the chocolate sample and the lowest is on the tin fish sample. Density of the samples decreases, the mum influence increases on the counting of Cs-137 concentration in the sample (Bq/kg)

  4. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    Science.gov (United States)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  5. Mass absorption and mass energy transfer coefficients for 0.4-10 MeV gamma rays in elemental solids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Gurler, O. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey)], E-mail: ogurler@uludag.edu.tr; Oz, H. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Yalcin, S. [Education Faculty, Kastamonu University, 37200 Kastamonu (Turkey); Gundogdu, O. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); NCCPM, Medical Physics, Royal Surrey County Hospital, GU2 7XX (United Kingdom)

    2009-01-15

    The mass energy absorption, the mass energy transfer and mass absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy transfer and mass absorption coefficients for gamma rays with an incident energy range between 0.4 and 10 MeV in nitrogen, silicon, carbon, copper and sodium iodide. The mass absorption and mass energy transfer coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature.

  6. Mass absorption and mass energy transfer coefficients for 0.4-10 MeV gamma rays in elemental solids and gases

    International Nuclear Information System (INIS)

    Gurler, O.; Oz, H.; Yalcin, S.; Gundogdu, O.

    2009-01-01

    The mass energy absorption, the mass energy transfer and mass absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy transfer and mass absorption coefficients for gamma rays with an incident energy range between 0.4 and 10 MeV in nitrogen, silicon, carbon, copper and sodium iodide. The mass absorption and mass energy transfer coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature

  7. On the sound absorption coefficient of porous asphalt pavements for oblique incident sound waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Bekke, Dirk; Davy, J.; Don, Ch.; McMinn, T.; Dowsett, L.; Broner, N.; Burgess, M.

    2014-01-01

    A rolling tyre will radiate noise in all directions. However, conventional measurement techniques for the sound absorption of surfaces only give the absorption coefficient for normal incidence. In this paper, a measurement technique is described with which it is possible to perform in situ sound

  8. Energy absorption coefficients for 662 keV gamma ray in some fatty acids

    International Nuclear Information System (INIS)

    Bhandal, G.S.; Singh, K.; Rama Rani; Vijay Kumar

    1993-01-01

    The mass energy absorption coefficient refers to the amount of energy dissipation by the secondary electron set in motion as a result of interactions between incident photons and matter. Under certain conditions, the energy dissipated by electrons in a given volume can be equated to the energy absorbed in that volume. The absorbed energy is of basic interest in radiation dosimetry because it represents the amount of energy made available for the production of chemical or biological effects. Sphere transmission is employed for the direct measurement of mass energy absorption coefficients at 662 keV in some fatty acids. Excellent agreement is obtained between the measured and theoretical values. (author). 6 refs., 1 fig., 1 tab

  9. Chlorophyll specific absorption coefficient and phytoplankton biomass in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash

    2015-01-01

    The role of total particulate matter, the sum of phytoplankton and nonalgal particles, is essential to understanding the distribution and pathways of particulate carbon in the ocean. Their relative contributions to light absorption and scattering are fundamental to understanding remotely sensed ocean color. Until recently, data regarding the contribution of phytoplankton and algal particles to the inherent optical properties of the Red Sea was nonexistent. Some of the first measurements of these inherent optical properties in the Red Sea including phytoplankton specific absorption coefficients (aph*(λ)) were obtained by the TARA Oceans expedition in January 2010. From these observations, chlorophyll a was calculated using the Line Height Method (LHM) that minimizes the contribution to total and particulate absorption by non-algal particles (NAP) and CDOM. Bricaud and Stramski’s (1990) a method was then used to decompose hyperspectral total particulate absorption into the contributions by phytoplankton and nonalgal particles.

  10. Light Absorption Coefficients for Soluble Species in Snow, Dome C, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains light absorption coefficients for soluble chromophores (light-absorbing chemicals) and concentrations of hydrogen peroxide (HOOH) and nitrate...

  11. Bayesian inference of the flow resistivity of a sound absorber and the room's influence on the Sabine absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Choi, Sang-Hyeon; Lee, Ikjin

    2017-01-01

    A Bayesian analysis is applied to determine the flow resistivity of a porous sample and the influence of the test chamber based on measured Sabine absorption coefficient data. The Sabine absorption coefficient measured in a reverberation chamber according to ISO 354 is influenced by the test...... chamber significantly, whereas the flow resistivity is a rather reproducible material property, from which the absorptive characteristics can be calculated through reliable models. Using Sabine absorption coefficients measured in 13 European reverberation chambers, the maximum a posteriori...... and the uncertainty of the flow resistivity and the test chamber’s influence are estimated. Inclusion of more than one chamber’s absorption data helps the flow resistivity converge towards a reliable value with a standard deviation below 17%...

  12. Exploring the origin of high optical absorption in conjugated polymers

    KAUST Repository

    Vezie, Michelle S.; Few, Sheridan; Meager, Iain; Pieridou, Galatia; Dö rling, Bernhard; Ashraf, Raja Shahid; Goñ i, Alejandro R.; Bronstein, Hugo; McCulloch, Iain; Hayes, Sophia C.; Campoy-Quiles, Mariano; Nelson, Jenny

    2016-01-01

    The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure.

  13. Exploring the origin of high optical absorption in conjugated polymers

    KAUST Repository

    Vezie, Michelle S.

    2016-05-16

    The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure.

  14. Light absorption coefficients by phytoplankton pigments, suspended particles and colored dissolved organic matter in the Crimea coastal water (the Black sea) in June 2016

    Science.gov (United States)

    Moiseeva, N.; Churilova, T.; Efimova, T.; Krivenko, O.; Latushkin, A.

    2017-11-01

    Variability of the bio-optical properties of the Crimean coastal waters in June 2016 has been analyzed. The type of vertical distribution chlorophyll a concentration and phytoplankton light absorption coefficients and spectra shape differed between shallow and deeper water. In the deeper water seasonal stratification divided euphotic zone into layers with different environmental conditions. In the deeper part of the euphotic zone (below the thermocline) phytoplankton absorption spectra had local maximum at 550 nm, which was likely to be associated with high abundance of cyanobacteria (Synechococcus sps.) in the phytoplankton community. The concentration of chlorophyll a specific light absorption coefficient of phytoplankton decreased with depth (especially pronounced in the blue domain of the spectrum). In the shallow water the vertical distributions of all absorption properties were relatively homogeneous due to vertical water mixing. In the shallow water non-algal particles light absorption coefficient and its contribution to total particulate absorption were higher than those in the deeper water. The non-algal particles (NAP) and colored dissolved organic matter (CDOM) light absorption spectra were well described by an exponential function with a slope averaging 0.010 nm-1 (SD = 0.001 nm-1) and 0.022 nm-1 (SD = 0.0060 nm-1), correspondingly. The CDOM absorption at 440 nm and slope coefficient varied significantly across the investigated area, which was possibly associated with the terrestrial influences. The assessment of the contribution of phytoplankton, NAP and CDOM to total light absorption showed that CDOM dominated in the absorption at 440 nm.

  15. High absorption coefficients of the CuSb(Se,Te2 and CuBi(S,Se2 alloys enable high-efficient 100 nm thin-film photovoltaics

    Directory of Open Access Journals (Sweden)

    Chen Rongzhen

    2017-01-01

    Full Text Available We demonstrate that the band-gap energies Eg of CuSb(Se,Te2 and CuBi(S,Se2 can be optimized for high energy conversion in very thin photovoltaic devices, and that the alloys then exhibit excellent optical properties, especially for tellurium rich CuSb(Se1−xTex2. This is explained by multi-valley band structure with flat energy dispersions, mainly due to the localized character of the Sb/Bi p-like conduction band states. Still the effective electron mass is reasonable small: mc ≈ 0.25m0 for CuSbTe2. The absorption coefficient α(ω for CuSb(Se1−xTex2 is at ħω = Eg + 1 eV as much as 5–7 times larger than α(ω for traditional thin-film absorber materials. Auger recombination does limit the efficiency if the carrier concentration becomes too high, and this effect needs to be suppressed. However with high absorptivity, the alloys can be utilized for extremely thin inorganic solar cells with the maximum efficiency ηmax ≈ 25% even for film thicknesses d ≈ 50 − 150 nm, and the efficiency increases to ∼30% if the Auger effect is diminished.

  16. High absorption coefficients of the CuSb(Se,Te)2 and CuBi(S,Se)2 alloys enable high-efficient 100 nm thin-film photovoltaics

    Science.gov (United States)

    Chen, Rongzhen; Persson, Clas

    2017-06-01

    We demonstrate that the band-gap energies Eg of CuSb(Se,Te)2 and CuBi(S,Se)2 can be optimized for high energy conversion in very thin photovoltaic devices, and that the alloys then exhibit excellent optical properties, especially for tellurium rich CuSb(Se1-xTex)2. This is explained by multi-valley band structure with flat energy dispersions, mainly due to the localized character of the Sb/Bi p-like conduction band states. Still the effective electron mass is reasonable small: mc ≈ 0.25m0 for CuSbTe2. The absorption coefficient α(ω) for CuSb(Se1-xTex)2 is at ħω = Eg + 1 eV as much as 5-7 times larger than α(ω) for traditional thin-film absorber materials. Auger recombination does limit the efficiency if the carrier concentration becomes too high, and this effect needs to be suppressed. However with high absorptivity, the alloys can be utilized for extremely thin inorganic solar cells with the maximum efficiency ηmax ≈ 25% even for film thicknesses d ≈ 50 - 150 nm, and the efficiency increases to ˜30% if the Auger effect is diminished.

  17. Modeling of the Interminiband Absorption Coefficient in InGaN Quantum Dot Superlattices

    Directory of Open Access Journals (Sweden)

    Giovanni Giannoccaro

    2016-01-01

    Full Text Available In this paper, a model to estimate minibands and theinterminiband absorption coefficient for a wurtzite (WZ indium gallium nitride (InGaN self-assembled quantum dot superlattice (QDSL is developed. It considers a simplified cuboid shape for quantum dots (QDs. The semi-analytical investigation starts from evaluation through the three-dimensional (3D finite element method (FEM simulations of crystal mechanical deformation derived from heterostructure lattice mismatch under spontaneous and piezoelectric polarization effects. From these results, mean values in QDs and barrier regions of charge carriers’ electric potentials and effective masses for the conduction band (CB and three valence sub-bands for each direction are evaluated. For the minibands’ investigation, the single-particle time-independent Schrödinger equation in effective mass approximation is decoupled in three directions and resolved using the one-dimensional (1D Kronig–Penney model. The built-in electric field is also considered along the polar axis direction, obtaining Wannier–Stark ladders. Then, theinterminiband absorption coefficient in thermal equilibrium for transverse electric (TE and magnetic (TM incident light polarization is calculated using Fermi’s golden rule implementation based on a numerical integration into the first Brillouin zone. For more detailed results, an absorption coefficient component related to superlattice free excitons is also introduced. Finally, some simulation results, observations and comments are given.

  18. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells

    International Nuclear Information System (INIS)

    Artursson, P.; Karlsson, J.

    1991-01-01

    Monolayers of a well differentiated human intestinal epithelial cell line, Caco-2, were used as a model to study passive drug absorption across the intestinal epithelium. Absorption rate constants (expressed as apparent permeability coefficients) were determined for 20 drugs and peptides with different structural properties. The permeability coefficients ranged from approximately 5 x 10 - 8 to 5 x 10 - 5 cm/s. A good correlation was obtained between data on oral absorption in humans and the results in the Caco-2 model. Drugs that are completely absorbed in humans had permeability coefficients greater than 1 x 10 - 6 cm/s. Drugs that are absorbed to greater than 1% but less than 100% had permeability coefficients of 0.1-1.0 x 10 - 6 cm/s while drugs and peptides that are absorbed to less than 1% had permeability coefficients of less than or equal to 1 x 10 - 7 cm/s. The results indicate that Caco-2 monolayers can be used as a model for studies on intestinal drug absorption

  19. Non-invasive determination of the absorption coefficient of the brain from time-resolved reflectance using a neural network

    International Nuclear Information System (INIS)

    Jaeger, Marion; Kienle, Alwin

    2011-01-01

    We investigated the performance of a neural network for derivation of the absorption coefficient of the brain from simulated non-invasive time-resolved reflectance measurements on the head. A five-layered geometry was considered assuming that the optical properties (except the absorption coefficient of the brain) and the thickness of all layers were known with an uncertainty. A solution of the layered diffusion equation was used to train the neural network. We determined the absorption coefficient of the brain with an RMS error of <6% from reflectance data at a single distance calculated by diffusion theory. By applying the neural network to reflectance curves obtained from Monte Carlo simulations, similar errors were found. (note)

  20. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    Science.gov (United States)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  1. Photon mass energy absorption coefficients from 0.4 MeV to 10 MeV for silicon, carbon, copper and sodium iodide

    International Nuclear Information System (INIS)

    Oz, H.; Gurler, O.; Gultekin, A.; Yalcin, S.; Gundogdu, O.

    2006-01-01

    The absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy absorption coefficients for gamma rays with an incident energy range between 0.4 MeV and 10 MeV in silicon, carbon, copper and sodium iodide. The mass energy absorption coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature.

  2. Photon mass energy absorption coefficients from 0.4 MeV to 10 MeV for silicon, carbon, copper and sodium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Oz, H.; Gurler, O.; Gultekin, A. [Uludag University, Bursa (Turkmenistan); Yalcin, S. [Kastamonu University, Kastamonu (Turkmenistan); Gundogdu, O. [University of Surrey, Guildford (United Kingdom)

    2006-07-15

    The absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy absorption coefficients for gamma rays with an incident energy range between 0.4 MeV and 10 MeV in silicon, carbon, copper and sodium iodide. The mass energy absorption coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature.

  3. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    Energy Technology Data Exchange (ETDEWEB)

    More, Chaitali V., E-mail: chaitalimore89@gmail.com; Lokhande, Rajkumar M.; Pawar, Pravina P., E-mail: pravinapawar4@gmail.com [Department of physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India)

    2016-05-06

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  4. Functional dependence of the lower hybrid power absorption coefficient in JET

    International Nuclear Information System (INIS)

    Pericoli-Ridolfini, V.; Ekedahl, A.; Baranov, Y.

    1997-01-01

    The fraction of the coupled lower hybrid (LH) power adsorbed in divertor plasmas in JET has been determined experimentally with a method utilizing the time derivative of the total stored energy (plasma and magnetic). This method can account for the power adsorbed inside a normalized flux co-ordinate ψ ∼ 0.7. The experimental LH absorption coefficient reaches 100% at low plasma densities, antineutron e 19 m -3 and decreases to 25% at antineutron e > 3.5 x 10 19 m -3 . The LH wave accessibility to the plasma core has been found to play an important role in determining the power absorption and the radial deposition profile. The decreasing absorption is correlated with a gradual shift of the LH power deposition profile, as determined by the hard x-ray profiles, towards the plasma periphery. Similar behaviour is found in ray tracing + Fokker-Planck code calculations. The frequency spectrum of the LH pump wave as determined by a probe outside the tokamak vessel broadens strongly as the wave accessibility is reduced and the absorption drops. (author)

  5. Comparison of different models for the determination of the absorption and scattering coefficients of thermal barrier coatings

    International Nuclear Information System (INIS)

    Wang, Li; Eldridge, Jeffrey I.; Guo, S.M.

    2014-01-01

    The thermal radiative properties of thermal barrier coatings (TBCs) are becoming more important as the inlet temperatures of advanced gas-turbine engines are continuously being pushed higher in order to improve efficiency. To determine the absorption and scattering coefficients of TBCs, four-flux, two-flux and Kubelka–Munk models were introduced and used to characterize the thermal radiative properties of plasma-sprayed yttria-stabilized zirconia (YSZ) coatings. The results show that the absorption coefficient of YSZ is extremely low for wavelengths 200 μm suggests that when the coating thickness is larger than around twice the average scattering distance, the collimated flux can be simply treated as a diffuse flux inside the coating, and thus the two-flux model can be used to determine the absorption and scattering coefficients as a simplification of the four-flux model

  6. Compositional dependence of absorption coefficient and band-gap for Nb2O5-SiO2 mixture thin films

    International Nuclear Information System (INIS)

    Sancho-Parramon, Jordi; Janicki, Vesna; Zorc, Hrvoje

    2008-01-01

    The absorption coefficient of composite films consisting of niobia (Nb 2 O 5 ) and silica (SiO 2 ) mixtures is studied for photon energies around the band gap. The films were deposited by co-evaporation and their composition was varied by changing the ratio of deposition rates of the two materials. Both, as-deposited and thermally annealed films were characterized by different techniques: the absorption coefficient was determined by spectrophotometric measurements and the structural properties were investigated using infrared spectroscopy, transmission electron microscopy and X-ray diffraction. The correlation between the variations of absorption properties and film composition and structure is established. The absorption coefficients determined experimentally are compared with the results derived from effective medium theories in order to evaluate the suitability of these theories for the studied composites

  7. Realistic absorption coefficient of each individual film in a multilayer architecture

    Science.gov (United States)

    Cesaria, M.; Caricato, A. P.; Martino, M.

    2015-02-01

    A spectrophotometric strategy, termed multilayer-method (ML-method), is presented and discussed to realistically calculate the absorption coefficient of each individual layer embedded in multilayer architectures without reverse engineering, numerical refinements and assumptions about the layer homogeneity and thickness. The strategy extends in a non-straightforward way a consolidated route, already published by the authors and here termed basic-method, able to accurately characterize an absorbing film covering transparent substrates. The ML-method inherently accounts for non-measurable contribution of the interfaces (including multiple reflections), describes the specific film structure as determined by the multilayer architecture and used deposition approach and parameters, exploits simple mathematics, and has wide range of applicability (high-to-weak absorption regions, thick-to-ultrathin films). Reliability tests are performed on films and multilayers based on a well-known material (indium tin oxide) by deliberately changing the film structural quality through doping, thickness-tuning and underlying supporting-film. Results are found consistent with information obtained by standard (optical and structural) analysis, the basic-method and band gap values reported in the literature. The discussed example-applications demonstrate the ability of the ML-method to overcome the drawbacks commonly limiting an accurate description of multilayer architectures.

  8. Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry

    Directory of Open Access Journals (Sweden)

    H.Cabrera

    2006-01-01

    Full Text Available We use an optimized pump-probe mode-mismatched thermal lens scheme to determine the optical absorption coefficient and thermal diffusivity of ethanol, benzene, acetone, methanol, toluene and chloroform. In this scheme the excitation beam is focused in the presence of a collimated probe beam. The agreement between experimentally obtained results and values reported in the literature is good.

  9. Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.

    Science.gov (United States)

    Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A

    2014-08-01

    Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database).

  10. Pancreatic enzyme replacement therapy in cystic fibrosis: dose, variability and coefficient of fat absorption

    Directory of Open Access Journals (Sweden)

    Joaquim Calvo-Lerma

    Full Text Available Objectives: Pancreatic enzyme replacement therapy (PERT remains a backbone in the nutritional treatment of cystic fibrosis. Currently, there is a lack of an evidence-based tool that allows dose adjustment. To date, no studies have found an association between PERT dose and fat absorption. Therefore, the aim of the study was to assess the influence of both the PERT dose and the variability in this dose on the coefficient of fat absorption (CFA. Methods: This is a retrospective longitudinal study of 16 pediatric patients (192 food records with three consecutive visits to the hospital over a twelve-month period. Dietary fat intake and PERT were assessed via a four-day food record and fat content in stools was determined by means of a three-day stool sample collection. A beta regression model was built to explain the association between the CFA and the interaction between the PERT dose (lipase units [LU]/g dietary fat and the variability in the PERT dose (standard deviation [SD]. Results: The coefficient of fat absorption increased with the PERT dose when the variability in the dose was low. In contrast, even at the highest PERT dose values, the CFA decreased when the variability was high. The confidence interval suggested an association, although the analysis was not statistically significant. Conclusion: The variability in the PERT dose adjustment should be taken into consideration when performing studies on PERT efficiency. A clinical goal should be the maintenance of a constant PERT dose rather than trying to obtain an optimal value.

  11. Pancreatic enzyme replacement therapy in cystic fibrosis: dose, variability and coefficient of fat absorption.

    Science.gov (United States)

    Calvo-Lerma, Joaquim; Martínez-Barona, Sandra; Masip, Etna; Fornés, Victoria; Ribes-Koninckx, Carmen

    2017-10-01

    Pancreatic enzyme replacement therapy (PERT) remains a backbone in the nutritional treatment of cystic fibrosis. Currently, there is a lack of an evidence-based tool that allows dose adjustment. To date, no studies have found an association between PERT dose and fat absorption. Therefore, the aim of the study was to assess the influence of both the PERT dose and the variability in this dose on the coefficient of fat absorption (CFA). This is a retrospective longitudinal study of 16 pediatric patients (192 food records) with three consecutive visits to the hospital over a twelve-month period. Dietary fat intake and PERT were assessed via a four-day food record and fat content in stools was determined by means of a three-day stool sample collection. A beta regression model was built to explain the association between the CFA and the interaction between the PERT dose (lipase units [LU]/g dietary fat) and the variability in the PERT dose (standard deviation [SD]). The coefficient of fat absorption increased with the PERT dose when the variability in the dose was low. In contrast, even at the highest PERT dose values, the CFA decreased when the variability was high. The confidence interval suggested an association, although the analysis was not statistically significant. The variability in the PERT dose adjustment should be taken into consideration when performing studies on PERT efficiency. A clinical goal should be the maintenance of a constant PERT dose rather than trying to obtain an optimal value.

  12. Precise determination of total absorption coefficients for low-energy gamma-quanta with Moessbauer effect

    International Nuclear Information System (INIS)

    Bonchev, T.; Statev, S.; Nejkov, Kh.

    1980-01-01

    A new method of determining the total absorption coefficient applying the Moessbauer effect is proposed. This method enables the accuracy of the measurement increase. The coefficient is measured with practically no background on using the recoilless part of gamma radiation obtained from the Moessbauer source with and without the sample between the source of the gamma-quanta and the detector. Moessbauer sources and absorbers with a single line and without an isomeric shift are used. The recoilless part of the radiation is obtained by the ''two point'' method as a difference between the numbers of photons corresponding to the stationary source and to the vibrating one with a big mean square velocity, respectively. In the concrete measurements the sources 57 Co and 119 Sn are used. The total absorption coefficient for different samples beginning with water up to plumbum is determined. The mean square error for the mean result in all measurements is less than the mean statistical error for the coefficient. The obtained experimental data give a much smaller deviation from the theoretical data of the last issue of the Stom-Israel Tables than the one expected by their authors

  13. Mass attenuation and mass energy absorption coefficients for 10 keV to 10 MeV photons; Coefficients d'attenuation massique et d'absorption massique en energie pour les photons de 10 keV a 10 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Joffre, H; Pages, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    In this report are given the elements allowing the definition of the values of mass attenuation coefficients and mass energy absorption coefficients for some elements and mixtures, necessary for the study of tissue equivalent materials, for photons in the energy range 10 keV to 10 MeV. After a short reminding of the definitions of the two coefficients, follows, in table form, a compilation of these coefficients, as a function of energy, for simple elements, for certain mineral compounds, organic compounds, gases and particularly of soft tissues. (author) [French] Dans ce rapport, sont donnes les elements permettant de determiner les valeurs des coefficients d'attenuation massique et d'absorption massique en energie pour certains elements et melanges necessaires a l'etude des materiaux equivalents aux tissus pour les photons dans le domaine d'energie allant de 10 keV a 10 MeV. Apres un bref rappel des definitions des deux coefficients, suit, sous forme de tableaux, un recueil de ces coefficients, en fonction de l'energie, pour les elements simples, certains composes mineraux, composes organiques, gaz, et, particulierement, pour les tissus mous. (auteur)

  14. Mapping Surface Water DOC in the Northern Gulf of Mexico Using CDOM Absorption Coefficients and Remote Sensing Imagery

    Science.gov (United States)

    Kelly, B.; Chelsky, A.; Bulygina, E.; Roberts, B. J.

    2017-12-01

    Remote sensing techniques have become valuable tools to researchers, providing the capability to measure and visualize important parameters without the need for time or resource intensive sampling trips. Relationships between dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and spectral data have been used to remotely sense DOC concentrations in riverine systems, however, this approach has not been applied to the northern Gulf of Mexico (GoM) and needs to be tested to determine how accurate these relationships are in riverine-dominated shelf systems. In April, July, and October 2017 we sampled surface water from 80+ sites over an area of 100,000 km2 along the Louisiana-Texas shelf in the northern GoM. DOC concentrations were measured on filtered water samples using a Shimadzu TOC-VCSH analyzer using standard techniques. Additionally, DOC concentrations were estimated from CDOM absorption coefficients of filtered water samples on a UV-Vis spectrophotometer using a modification of the methods of Fichot and Benner (2011). These values were regressed against Landsat visible band spectral data for those same locations to establish a relationship between the spectral data, CDOM absorption coefficients. This allowed us to spatially map CDOM absorption coefficients in the Gulf of Mexico using the Landsat spectral data in GIS. We then used a multiple linear regressions model to derive DOC concentrations from the CDOM absorption coefficients and applied those to our map. This study provides an evaluation of the viability of scaling up CDOM absorption coefficient and remote-sensing derived estimates of DOC concentrations to the scale of the LA-TX shelf ecosystem.

  15. Lithium bromide high-temperature absorption heat pump: coefficient of performance and exergetic efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, M [Consejo Superior de Investigaciones Cientificas, Madrid (ES). Inst. de Optica; Aroca, S [Escuela Tecnica Superior de Ingenieros Industriales, Valladolid (ES). Catedratico de Ingenieria Termica

    1990-04-01

    A theoretical study of a lithium bromide absorption heat pump, used as a machine type I and aimed to produce heat at 120{sup 0}C via waste heat sources at 60{sup 0}C, is given. Real performance conditions are stated for each component of the machine. By means of thermodynamic diagrams (p, t, x) and (h, x), the required data are obtained for calculation of the heat recovered in the evaporator Q{sub e}, the heat delivered to the absorber Q{sub a} and to the condenser Q{sub c}, and the heat supplied to the generator Q{sub g}. The heat delivered by the hot solution to the cold solution in the heat recovered Q{sub r}, and the work W{sub p} done by the solution pump are calculated. The probable COP is calculated as close to 1.4 and the working temperature in the generator ranges from 178 to 200{sup 0}C. The heat produced by the heat pump is 22% cheaper than that obtained from a cogeneration system comprising a natural gas internal combustion engine and high temperature heat pump with mechanical compression. Compared with a high temperature heat pump with mechanical compression, the heat produced by the absorption heat pump is 31% cheaper. From (h, x) and (s, x) diagrams, exergy losses for each component can be determined leading to an exergetic efficiency of 75% which provides the quality index of the absorption cycle. (author).

  16. Polaron effects on the linear and the nonlinear optical absorption coefficients and refractive index changes in cylindrical quantum dots with applied magnetic field

    International Nuclear Information System (INIS)

    Wu Qingjie; Guo Kangxian; Liu Guanghui; Wu Jinghe

    2013-01-01

    Polaron effects on the linear and the nonlinear optical absorption coefficients and refractive index changes in cylindrical quantum dots with the radial parabolic potential and the z-direction linear potential with applied magnetic field are theoretically investigated. The optical absorption coefficients and refractive index changes are presented by using the compact-density-matrix approach and iterative method. Numerical calculations are presented for GaAs/AlGaAs. It is found that taking into account the electron-LO-phonon interaction, not only are the linear, the nonlinear and the total optical absorption coefficients and refractive index changes enhanced, but also the total optical absorption coefficients are more sensitive to the incident optical intensity. It is also found that no matter whether the electron-LO-phonon interaction is considered or not, the absorption coefficients and refractive index changes above are strongly dependent on the radial frequency, the magnetic field and the linear potential coefficient.

  17. The CO_2 absorption spectrum in the 2.3 µm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    International Nuclear Information System (INIS)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO_2 absorption continuum near 2.3 µm is determined for a series of sub atmospheric pressures (250–750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO_2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO_2 continuum was obtained as the difference between the CO_2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm"−"1. Following the results of the preceding analysis of the CO_2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer (10.1016/j.jqsrt.2016.07.002), a CO_2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10"−"8 cm"−"1 amagat"−"2 between 4320 and 4380 cm"−"1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra. - Highlights: • The CO_2 absorption continuum is measured by CRDS in the 2.3 µm window. • The achieved sensitivity and stability allow measurements at sub-atmospheric pressure. • The absorption coefficient is on the order of 3×10"−"8 cm"−"1 amagat"−"2 near 4350 cm"−"1. • A good agreement is obtained with previous results at much higher density (20 amagat).

  18. Changing of optical absorption and scattering coefficients in nonlinear-optical crystal lithium triborate before and after interaction with UV-radiation

    Science.gov (United States)

    Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.

    2016-04-01

    In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.

  19. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  20. Hybrid local piezoelectric and conductive functions for high performance airborne sound absorption

    Science.gov (United States)

    Rahimabady, Mojtaba; Statharas, Eleftherios Christos; Yao, Kui; Sharifzadeh Mirshekarloo, Meysam; Chen, Shuting; Tay, Francis Eng Hock

    2017-12-01

    A concept of hybrid local piezoelectric and electrical conductive functions for improving airborne sound absorption is proposed and demonstrated in composite foam made of porous polar polyvinylidene fluoride (PVDF) mixed with conductive single-walled carbon nanotube (SWCNT). According to our hybrid material function design, the local piezoelectric effect in the PVDF matrix with the polar structure and the electrical resistive loss of SWCNT enhanced sound energy conversion to electrical energy and subsequently to thermal energy, respectively, in addition to the other known sound absorption mechanisms in a porous material. It is found that the overall energy conversion and hence the sound absorption performance are maximized when the concentration of the SWCNT is around the conductivity percolation threshold. For the optimal composition of PVDF/5 wt. % SWCNT, a sound reduction coefficient of larger than 0.58 has been obtained, with a high sound absorption coefficient higher than 50% at 600 Hz, showing their great values for passive noise mitigation even at a low frequency.

  1. Parameterization of the chlorophyll a-specific in vivo light absorption coefficient covering estuarine, coastal and oceanic waters

    DEFF Research Database (Denmark)

    Stæhr, P. A.; Markager, S.

    2004-01-01

    We evaluated models predicting the spectral chlorophyll-a (Chl a)-specific absorption coefficient (a*ph (¿)) from Chl a concentration [Chl a] on the basis of 465 phytoplankton absorption spectra collected in estuarine, coastal and oceanic waters. A power model on ln-transformed data provided...

  2. Reconstruction of absorption and scattering coefficients in two dimensional heterogeneous participating media

    International Nuclear Information System (INIS)

    Montero, Raul F. Carita; Roberty, Nilson C.; Silva Neto, Antonio J.; Universidade Federal, Rio de Janeiro, RJ

    2002-01-01

    In the present work it is presented the solution of the two dimensional inverse radiative transfer problem of scattering and absorption coefficients estimation, in heterogeneous media, using the source-detector methodology and a discrete ordinates method consistent with the source-detector system. The mathematical formulation of the direct and inverse problems is presented as well as test case results. (author)

  3. Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere

    Science.gov (United States)

    Courtin, Regis

    1988-01-01

    The semiempirical theory of Birnbaum and Cohen (1976) is used to calculate the FIR pressure-induced absorption (PIA) spectra of N2, CH4, N2 + Ar, N2 + CH4, and N2 + H2 under conditions like those in the Titan troposphere. The results are presented graphically and compared with published data from laboratory measurements of PIA in the same gases and mixtures (Dagg et al., 1986; Dore et al., 1986). Good agreement is obtained, with only a slight underestimation of PIA at 300-400/cm in the case of CH4. The absorption coefficients are presented in tables, and it is suggested that the present findings are of value for evaluating the effects of tropospheric clouds on the Titan FIR spectrum and studying the greenhouse effect near the Titan surface.

  4. IR Absorption Coefficients for the Quantification of Water in Hydrous Ringwoodite

    Science.gov (United States)

    Thomas, Sylvia-Monique; Jacobsen, Steven D.; Bina, Craig R.; Smyth, Joseph R.; Frost, Daniel J.

    2010-05-01

    Raman spectroscopy, combined with the 'Comparator technique' has been developed to determine water contents ranging from a few wt ppm to wt% in glasses and nominally anhydrous minerals including garnets, olivine, and SiO2 polymorphs (Thomas et al. 2009). The routine is one promising example of quantification tools to determine mineral specific molar absorption coefficients (ɛ) for IR spectroscopy. Mineral specific absorption coefficients are required because general IR calibrations do not necessarily apply to minerals with water incorporated as hydroxyl point defects. Here we utilize the 'Comparator technique' to provide ɛ-values for a set of synthetic Fe-free (Fo100) and Fe-bearing (Fo90, Fo87, Fo83, Fo60) ringwoodites, as well as for γ-Mg2GeO4. Ringwoodite is considered one of the major phases of the Earth's lower transition zone (520-660 km depth) and the knowledge of its absolute water storage capacity is essential for modeling the Earth's deep water cycle. Samples were synthesized at variable P-T conditions in a multi-anvil press and cover a range of OH contents. Single-crystals were characterized using X-ray diffraction and IR spectroscopy. Mineral specific IR absorption coefficients were calculated from independently determined water contents from Raman spectroscopy. Unpolarized IR spectra of Mg-ringwoodite show broad absorption features in the OH region with band maxima at ~2350, 2538, 3130, 3172, 3598 and 3688 cm-1. In the spectra of Fe-bearing ringwoodite and γ-Mg2GeO4 the maxima of the main OH band are shifted to 3244 cm-1 (Fo60) and 3207 cm-1, respectively. For Mg-ringwoodite with the mean wavenumber (area-weighted average of the peak position) of 3170 cm-1 an ɛ-value of 191500 ± 38300 L cm-2/ molH2O was determined. For the ringwoodites with Fo90, Fo87 and Fo83 composition and the mean wavenumbers of 3229 cm-1, 3252 cm-1 and 3163 cm-1 values of 123600 ± 24700 L cm-2/ molH2O, 176300 ± 52900 L cm-2/ molH2O and 155000 ± 46500 L cm-2/ molH2O were

  5. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    Science.gov (United States)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  6. Bias in the absorption coefficient determination of a fluorescent dye, standard reference material 1932 fluorescein solution

    International Nuclear Information System (INIS)

    DeRose, Paul C.; Kramer, Gary W.

    2005-01-01

    The absorption coefficient of standard reference material[registered] (SRM[registered]) 1932, fluorescein in a borate buffer solution (pH=9.5) has been determined at λ=488.0, 490.0, 490.5 and 491.0 nm using the US national reference UV/visible spectrophotometer. The purity of the fluorescein was determined to be 97.6% as part of the certification of SRM 1932. The solution measured was prepared gravimetrically by diluting SRM 1932 with additional borate buffer. The value of the absorption coefficient was corrected for bias due to fluorescence that reaches the detector and for dye purity. Bias due to fluorescence was found to be on the order of -1% for both monochromatic and polychromatic (e.g., diode-array based) spectrophotometers

  7. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Günther, Karoline; Giebing, Christina; Askani, Antonia [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Leisegang, Tilmann [Saxray GmbH, Maria-Reiche-Str. 1, 01109 Dresden (Germany); Krieg, Marcus [TITK, Thüringisches Institut für Textil- und Kunststoff-Forschung e.V., Breitscheidstraße 97, 07407 Rudolstadt (Germany); Kyosev, Yordan; Weide, Thomas [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Mahltig, Boris, E-mail: Boris.Mahltig@hs-niederrhein.de [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany)

    2015-11-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  8. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    International Nuclear Information System (INIS)

    Günther, Karoline; Giebing, Christina; Askani, Antonia; Leisegang, Tilmann; Krieg, Marcus; Kyosev, Yordan; Weide, Thomas; Mahltig, Boris

    2015-01-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  9. Additions and corrections to the absorption coefficients of CO2 ice: Applications to the Martian south polar cap

    International Nuclear Information System (INIS)

    Calvin, W.M.

    1990-01-01

    Reflectance spectra of carbon dioxide frosts were calculated using the optical constants provided by Warren (1986) for the wavelength region 2-6 μm. In comparing these calculated spectra to spectra of frosts observed in the laboratory and on the surface of Mars, problems in the optical constants presented by Warren (1986) became apparent. Absorption coefficients for CO 2 ice have been derived using laboratory reflectance measurements and the Hapke (1981) model for calculating diffuse reflectance. This provides approximate values in regions where no data were previously available and indicates where corrections to the compilation by Warren (1986) are required. Using these coefficients to calculate the reflectance of CO 2 ice at varying grain sizes indicates that a typical Mariner polar cap spectrum is dominated by absorptions due to CO 2 frost or ice at grain sizes that are quite large, probably of the order of millimeters to centimeters. There are indications of contamination of water frost or dust, but confirmation will require more precise absorption coefficients for solid CO 2 than can be obtained from the method used here

  10. Determination of the absorption coefficient of chromophoric dissolved organic matter from underway spectrophotometry.

    Science.gov (United States)

    Dall'Olmo, Giorgio; Brewin, Robert J W; Nencioli, Francesco; Organelli, Emanuele; Lefering, Ina; McKee, David; Röttgers, Rüdiger; Mitchell, Catherine; Boss, Emmanuel; Bricaud, Annick; Tilstone, Gavin

    2017-11-27

    Measurements of the absorption coefficient of chromophoric dissolved organic matter (ay) are needed to validate existing ocean-color algorithms. In the surface open ocean, these measurements are challenging because of low ay values. Yet, existing global datasets demonstrate that ay could contribute between 30% to 50% of the total absorption budget in the 400-450 nm spectral range, thus making accurate measurement of ay essential to constrain these uncertainties. In this study, we present a simple way of determining ay using a commercially-available in-situ spectrophotometer operated in underway mode. The obtained ay values were validated using independent collocated measurements. The method is simple to implement, can provide measurements with very high spatio-temporal resolution, and has an accuracy of about 0.0004 m -1 and a precision of about 0.0025 m -1 when compared to independent data (at 440 nm). The only limitation for using this method at sea is that it relies on the availability of relatively large volumes of ultrapure water. Despite this limitation, the method can deliver the ay data needed for validating and assessing uncertainties in ocean-colour algorithms.

  11. Absorption Coefficient in Periodic InAs/GaAs Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-BolIvar, S; Gomez-Campos, F M; Luque-Rodriguez, A; Lopez-Villanueva, J A; Carceller, J E, E-mail: fmgomez@ugr.e [Departamento de Electronica y TecnologIa de los Computadores, Facultad de Ciencias, Av. Fuentenueva s/n, C. P. 18071, Universidad de Granada (Spain)

    2010-09-01

    Periodic nanostructure manufacture has been proposed as a procedure for obtaining new materials with tunable physical properties, such as the photon absorption coefficient. In this work we have theoretically investigated this quantity in ordered InAs/GaAs cubic quantum dot systems. We solved the Schroedinger equation associated with these structures, using a set of 13x13x13 plane waves at 12,167 equally spaced points of the Q space. We focused on the transitions between minibands arising from the conduction band. We took into account the different effective masses in each material. We included the effects of the strain by taking a conduction band offset of 0.5 eV, corresponding to strained InAs in GaAs

  12. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    Science.gov (United States)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO2 absorption continuum near 2.3 μm is determined for a series of sub atmospheric pressures (250-750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO2 continuum was obtained as the difference between the CO2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm-1. Following the results of the preceding analysis of the CO2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer 10.1016/j.jqsrt.2016.07.002, a CO2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10-8 cm-1 amagat-2 between 4320 and 4380 cm-1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra.

  13. Spatial dispersion effects in spectral line broadening by pressure. I. The Bouguer Law and absorption coefficient

    International Nuclear Information System (INIS)

    Cherkasov, M.R.

    1995-01-01

    Based on the general principles of semiclassical electrodynamics, the Bouguer law is derived, and the expression for the absorption coefficient is obtained, formally including all effects related to the phenomenon of spatial dispersion

  14. Laser radiation short pulse absorption in a high-density plasma

    International Nuclear Information System (INIS)

    Brantov, A.V.; Bychenkov, V.Yu.; Tikhonchuk, V.T.

    1998-01-01

    Dependences of the absorption coefficients for s and p polarized electromagnetic waves (laser radiation) in a semi-bound plasma on the temperature and incidence angle are found for an arbitrary ratio of the skin-layer depth to the electron free path length t. The dependences obtained describe transition from the normal skin effect to abnormal one and permit quantitatively to determine the absorption coefficients in the intermediate range of the parameter t, characteristic for the majority of modern experiments

  15. A drying coefficient for building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2009-01-01

    coefficient is defined which can be determined based on measured drying data. The correlation of this coefficient with the water absorption and the vapour diffusion coefficient is analyzed and its additional information content is critically challenged. As result, a drying coefficient has been derived......The drying experiment is an important element of the hygrothermal characterisation of building materials. Contrary to other moisture transport experiments as the vapour diffusion and the water absorption test, it is until now not possible to derive a simple coefficient for the drying. However......, in many cases such a coefficient would be highly appreciated, e.g. in interaction of industry and research or for the distinction and selection of suitable building materials throughout design and practise. This article first highlights the importance of drying experiments for hygrothermal...

  16. Doppler broadening and its contribution to Compton energy-absorption cross sections: An analysis of the Compton component in terms of mass-energy absorption coefficient

    International Nuclear Information System (INIS)

    Rao, D.V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Cesareo, R.; Brunetti, A.; Gigante, G.E.

    2002-01-01

    Compton energy absorption cross sections are calculated using the formulas based on a relativistic impulse approximation to assess the contribution of Doppler broadening and to examine the Compton profile literature and explore what, if any, effect our knowledge of this line broadening has on the Compton component in terms of mass-energy absorption coefficient. Compton energy-absorption cross sections are evaluated for all elements, Z=1-100, and for photon energies 1 keV-100 MeV. Using these cross sections, the Compton component of the mass-energy absorption coefficient is derived in the energy region from 1 keV to 1 MeV for all the elements Z=1-100. The electron momentum prior to the scattering event should cause a Doppler broadening of the Compton line. The momentum resolution function is evaluated in terms of incident and scattered photon energy and scattering angle. The overall momentum resolution of each contribution is estimated for x-ray and γ-ray energies of experimental interest in the angular region 1 deg. -180 deg. . Also estimated is the Compton broadening using nonrelativistic formula in the angular region 1 deg. -180 deg., for 17.44, 22.1, 58.83, and 60 keV photons for a few elements (H, C, N, O, P, S, K, and Ca) of biological importance

  17. Doppler Broadening and its Contribution to Compton Energy-Absorption Cross Sections: An Analysis of the Compton Component in Terms of Mass-Energy Absorption Coefficient

    Science.gov (United States)

    Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Cesareo, R.; Brunetti, A.; Gigante, G. E.

    2002-09-01

    Compton energy absorption cross sections are calculated using the formulas based on a relativistic impulse approximation to assess the contribution of Doppler broadening and to examine the Compton profile literature and explore what, if any, effect our knowledge of this line broadening has on the Compton component in terms of mass-energy absorption coefficient. Compton energy-absorption cross sections are evaluated for all elements, Z=1-100, and for photon energies 1 keV-100 MeV. Using these cross sections, the Compton component of the mass-energy absorption coefficient is derived in the energy region from 1 keV to 1 MeV for all the elements Z=1-100. The electron momentum prior to the scattering event should cause a Doppler broadening of the Compton line. The momentum resolution function is evaluated in terms of incident and scattered photon energy and scattering angle. The overall momentum resolution of each contribution is estimated for x-ray and γ-ray energies of experimental interest in the angular region 1°-180°. Also estimated is the Compton broadening using nonrelativistic formula in the angular region 1°-180°, for 17.44, 22.1, 58.83, and 60 keV photons for a few elements (H, C, N, O, P, S, K, and Ca) of biological importance.

  18. Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements

    Science.gov (United States)

    Kamaraju, N.; Kumar, Sunil; Sood, A. K.; Guha, Shekhar; Krishnamurthy, Srinivasan; Rao, C. N. R.

    2007-12-01

    Nonlinear transmission of 80 and 140fs pulsed light with 0.79μm wavelength through single walled carbon nanotubes suspended in water containing sodium dodecyl sulfate is studied. Pulse-width independent saturation absorption and negative cubic nonlinearity are observed, respectively, in open and closed aperture z-scan experiments. The theoretical expressions derived to analyze the z-dependent transmission in the saturable limit require two photon absorption coefficient β0˜1.4cm/MW and a nonlinear index γ ˜-5.5×10-11cm2/W to fit the data.

  19. Predicting dissolved lignin phenol concentrations in the coastal ocean from chromophoric dissolved organic matter (CDOM absorption coefficients

    Directory of Open Access Journals (Sweden)

    Cédric G. Fichot

    2016-02-01

    Full Text Available Dissolved lignin is a well-established biomarker of terrigenous dissolved organic matter (DOM in the ocean, and a chromophoric component of DOM. Although evidence suggests there is a strong linkage between lignin concentrations and chromophoric DOM (CDOM absorption coefficients in coastal waters, the characteristics of this linkage and the existence of a relationship that is applicable across coastal oceans remain unclear. Here, 421 paired measurements of dissolved lignin concentrations (sum of 9 lignin phenols and CDOM absorption coefficients (ag(λ were used to examine their relationship along the river-ocean continuum (0-37 salinity and across contrasting coastal oceans (sub-tropical, temperate, high-latitude. Overall, lignin concentrations spanned four orders of magnitude and revealed a strong, non-linear relationship with ag(λ. The characteristics of the relationship (shape, wavelength dependency, lignin-composition dependency and evidence from degradation indicators were all consistent with lignin being an important driver of CDOM variability in coastal oceans, and suggested physical mixing and long-term photodegradation were important in shaping the relationship. These observations were used to develop two simple empirical models for estimating lignin concentrations from ag(λ with a +/- 20% error relative to measured values. The models are expected to be applicable in most coastal oceans influenced by terrigenous inputs.

  20. Effect of the concentration of magnetic grains on the linear-optical-absorption coefficient of ferrofluid-doped lyotropic mesophases: deviation from the Beer-Lambert law.

    Science.gov (United States)

    Cuppo, F L S; Gómez, S L; Figueiredo Neto, A M

    2004-04-01

    In this paper is reported a systematic experimental study of the linear-optical-absorption coefficient of ferrofluid-doped isotropic lyotropic mixtures as a function of the magnetic-grains concentration. The linear optical absorption of ferrolyomesophases increases in a nonlinear manner with the concentration of magnetic grains, deviating from the usual Beer-Lambert law. This behavior is associated to the presence of correlated micelles in the mixture which favors the formation of small-scale aggregates of magnetic grains (dimers), which have a higher absorption coefficient with respect to that of isolated grains. We propose that the indirect heating of the micelles via the ferrofluid grains (hyperthermia) could account for this nonlinear increase of the linear-optical-absorption coefficient as a function of the grains concentration.

  1. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    Science.gov (United States)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (Petroleo (IMP) and CENICA.

  2. Measurement of the electronic absorption coefficient for 57Co 14.4 keV gamma photons in aluminium using the Moessbauer effect as a monochromator

    International Nuclear Information System (INIS)

    Rajan, N.; Nigam, A.K.

    1984-01-01

    The total electronic absorption coefficient for 14.4 keV gamma photons in aluminium, has been measured experimentally, for the first time, using the Moessbauer effect as a monochromator. This data is important for the determination of background in Moessbauer recoilless fraction measurements especially if the energy of X-rays of the source host lattice lie near the 14.4 keV photon energy (e.g. in Rh and Pd) in which case electronic absorption coefficients should be known precisely. The coefficient obtained by interpolation from available values at other energies differ from our experimental value by as much as 20%. It is shown that this can lead to errors, in recoilless fraction values, which are far from negligible. The above absorption coefficient for aluminium was measured to be 11+-1 cm 2 /g. (orig.)

  3. Statistical Models for Sediment/Detritus and Dissolved Absorption Coefficients in Coastal Waters of the Northern Gulf of Mexico

    National Research Council Canada - National Science Library

    Green, Rebecca E; Gould, Jr., Richard W; Ko, Dong S

    2008-01-01

    ... (CDOM) absorption coefficients from physical hydrographic and atmospheric properties. The models were developed for northern Gulf of Mexico shelf waters using multi-year satellite and physical data...

  4. A Correction of Random Incidence Absorption Coefficients for the Angular Distribution of Acoustic Energy under Measurement Conditions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2009-01-01

    Most acoustic measurements are based on an assumption of ideal conditions. One such ideal condition is a diffuse and reverberant field. In practice, a perfectly diffuse sound field cannot be achieved in a reverberation chamber. Uneven incident energy density under measurement conditions can cause...... discrepancies between the measured value and the theoretical random incidence absorption coefficient. Therefore the angular distribution of the incident acoustic energy onto an absorber sample should be taken into account. The angular distribution of the incident energy density was simulated using the beam...... tracing method for various room shapes and source positions. The averaged angular distribution is found to be similar to a Gaussian distribution. As a result, an angle-weighted absorption coefficient was proposed by considering the angular energy distribution to improve the agreement between...

  5. Antimony orthophosphate glasses with large nonlinear refractive indices, low two-photon absorption coefficients, and ultrafast response

    International Nuclear Information System (INIS)

    Falcao-Filho, E.L.; Araujo, Cid B. de; Bosco, C.A.C.; Maciel, G.S.; Acioli, L.H.; Nalin, M.; Messaddeq, Y.

    2005-01-01

    Antimony glasses based on the composition Sb 2 O 3 -SbPO 4 were prepared and characterized. The samples present high refractive index, good transmission from 380 to 2000 nm, and high thermal stability. The nonlinear refractive index, n 2 , of the samples was studied using the optical Kerr shutter technique at 800 nm. The third-order correlation signals between pump and probe pulses indicate ultrafast response ( 2 was observed by adding lead oxide to the Sb 2 O 3 -SbPO 4 composition. Large values of n 2 ≅10 -14 cm 2 /W and negligible two-photon absorption coefficients (smaller than 0.01 cm/GW) were determined for all samples. The glass compositions studied present appropriate figure-of-merit for all-optical switching applications

  6. Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV.

    Science.gov (United States)

    Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H

    2012-12-21

    For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.

  7. The fundamental parameter approach of quantitative XRFA- investigation of photoelectric absorption coefficients

    International Nuclear Information System (INIS)

    Shaltout, A.

    2003-06-01

    The present work describes some actual problems of quantitative x-ray fluorescence analysis by means of the fundamental parameter approach. To perform this task, some of the main parameters are discussed in detail. These parameters are photoelectric cross sections, coherent and incoherent scattering cross sections, mass absorption cross sections and the variation of the x-ray tube voltage. Photoelectric cross sections, coherent and incoherent scattering cross sections and mass absorption cross sections in the energy range from 1 to 300 keV for the elements from Z=1 to 94 considering ten different data bases are studied. These are data bases given by Hubbell, McMaster, Mucall, Scofield, Xcom, Elam, Sasaki, Henke, Cullen and Chantler's data bases. These data bases have been developed also for an application in fundamental parameter programs for quantitative x-ray analysis (Energy Dispersive X-Ray Fluorescence Analysis (EDXRFA), Electron Probe Microanalysis (EPMA), X-Ray Photoelectron Spectroscopy (XPS) and Total Electron Yield (TEY)). In addition a comparison is performed between different data bases. In McMaster's data base, the missing elements (Z=84, 85, 87, 88, 89, 91, and 93) are added by using photoelectric cross sections of Scofield's data base, coherent as well as incoherent scattering cross sections of Elam's data base and the absorption edges of Bearden. Also, the N-fit coefficients of the elements from Z=61 to 69 are wrong in McMaster data base, therefore, linear least squares fits are used to recalculate the N-fit coefficients of these elements. Additionally, in the McMaster tables the positions of the M- and N-edges of all elements with the exception of the M1- and N1- edges are not defined as well as the jump ratio of the edges. In the present work, the M- and N-edges and the related jump ratios are calculated. To include the missing N-edges, Bearden's values of energy edges are used. In Scofield's data base, modifications include check and correction

  8. Realistic absorption coefficient of ultrathin films

    International Nuclear Information System (INIS)

    Cesaria, M; Caricato, A P; Martino, M

    2012-01-01

    Both a theoretical algorithm and an experimental procedure are discussed of a new route to determine the absorption/scattering properties of thin films deposited on transparent substrates. Notably, the non-measurable contribution of the film–substrate interface is inherently accounted for. While the experimental procedure exploits only measurable spectra combined according to a very simple algorithm, the theoretical derivation does not require numerical handling of the acquired spectra or any assumption on the film homogeneity and substrate thickness. The film absorption response is estimated by subtracting the measured absorption spectrum of the bare substrate from that of the film on the substrate structure but in a non-straightforward way. In fact, an assumption about the absorption profile of the overall structure is introduced and a corrective factor accounting for the relative film-to-substrate thickness. The method is tested on films of a well known material (ITO) as a function of the film structural quality and influence of the film–substrate interface, both deliberately changed by thickness tuning and doping. Results are found fully consistent with information obtained by standard optical analysis and band gap values reported in the literature. Additionally, comparison with a conventional method demonstrates that our route is generally more accurate even if particularly suited for very thin films. (paper)

  9. Realistic absorption coefficient of ultrathin films

    Science.gov (United States)

    Cesaria, M.; Caricato, A. P.; Martino, M.

    2012-10-01

    Both a theoretical algorithm and an experimental procedure are discussed of a new route to determine the absorption/scattering properties of thin films deposited on transparent substrates. Notably, the non-measurable contribution of the film-substrate interface is inherently accounted for. While the experimental procedure exploits only measurable spectra combined according to a very simple algorithm, the theoretical derivation does not require numerical handling of the acquired spectra or any assumption on the film homogeneity and substrate thickness. The film absorption response is estimated by subtracting the measured absorption spectrum of the bare substrate from that of the film on the substrate structure but in a non-straightforward way. In fact, an assumption about the absorption profile of the overall structure is introduced and a corrective factor accounting for the relative film-to-substrate thickness. The method is tested on films of a well known material (ITO) as a function of the film structural quality and influence of the film-substrate interface, both deliberately changed by thickness tuning and doping. Results are found fully consistent with information obtained by standard optical analysis and band gap values reported in the literature. Additionally, comparison with a conventional method demonstrates that our route is generally more accurate even if particularly suited for very thin films.

  10. Optical absorption measurement system

    International Nuclear Information System (INIS)

    Draggoo, V.G.; Morton, R.G.; Sawicki, R.H.; Bissinger, H.D.

    1989-01-01

    This patent describes a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature

  11. Quantitative photoacoustic integrating sphere (QPAIS platform for absorption coefficient and Grüneisen parameter measurements: Demonstration with human blood

    Directory of Open Access Journals (Sweden)

    Yolanda Villanueva-Palero

    2017-06-01

    Full Text Available Quantitative photoacoustic imaging in biomedicine relies on accurate measurements of relevant material properties of target absorbers. Here, we present a method for simultaneous measurements of the absorption coefficient and Grüneisen parameter of small volume of liquid scattering and absorbing media using a coupled-integrating sphere system which we refer to as quantitative photoacoustic integrating sphere (QPAIS platform. The derived equations do not require absolute magnitudes of optical energy and pressure values, only calibration of the setup using aqueous ink dilutions is necessary. As a demonstration, measurements with blood samples from various human donors are done at room and body temperatures using an incubator. Measured absorption coefficient values are consistent with known oxygen saturation dependence of blood absorption at 750 nm, whereas measured Grüneisen parameter values indicate variability among five different donors. An increasing Grüneisen parameter value with both hematocrit and temperature is observed. These observations are consistent with those reported in literature.

  12. Pancreatic Enzyme Therapy and Coefficient of Fat Absorption in Children and AdolReplacement escents With Cystic Fibrosis

    NARCIS (Netherlands)

    Woestenenk, Janna W; van der Ent, Cornelis K.; Houwen, Roderick H J; van der Ent, CK

    Objectives: Pancreatic enzyme replacement therapy (PERT) is the proven therapy to substantially reduce fat malabsorption in patients with cystic fibrosis (CF). Few details of the daily practice regarding PERT and the resulting coefficient of fat absorption (CFA) are known. We therefore recorded the

  13. Particulate absorption properties in the Red Sea from hyperspectral particulate absorption spectra

    KAUST Repository

    Tiwari, Surya Prakash

    2018-03-16

    This paper aims to describe the variability of particulate absorption properties using a unique hyperspectral dataset collected in the Red Sea as part of the TARA Oceans expedition. The absorption contributions by phytoplankton (aph) and non-algal particles (aNAP) to the total particulate absorption coefficients are determined using a numerical decomposition method (NDM). The NDM is validated by comparing the NDM derived values of aph and aNAP with simulated values of aph and aNAP are found to be in excellent agreement for the selected wavelengths (i.e., 443, 490, 555, and 676nm) with high correlation coefficient (R2), low root mean square error (RMSE), mean relative error (MRE), and with a slope close to unity. Further analyses showed that the total particulate absorption coefficients (i.e., ap(443)average = 0.01995m−1) were dominated by phytoplankton absorption (i.e., aph(443)average = 0.01743m−1) with a smaller contribution by non-algal particles absorption (i.e., aNAP(443)average = 0.002524m−1). The chlorophyll a is computed using the absorption based Line Height Method (LHM). The derived chlorophyll-specific absorption ((a⁎ph = aph(λ)/ChlLH)) showed more variability in the blue part of spectrum as compared to the red part of spectrum representative of the package effect and changes in pigment composition. A new parametrization proposed also enabled the reconstruction of a⁎ph(λ) for the Red Sea. Comparison of derived spectral constants with the spectral constants of existing models showed that our study A(λ) values are consistent with the existing values, despite there is a divergence with the B(λ) values. This study provides valuable information derived from the particulate absorption properties and its spectral variability and this would help us to determine the relationship between the phytoplankton absorption coefficients and chlorophyll a and its host of variables for the Red Sea.

  14. Calculus of the amplification and absorption coefficients of the electromagnetic waves in a cylindrical over dense plasma

    International Nuclear Information System (INIS)

    Arzate P, N.

    1994-01-01

    Based on the fundamental theory of cylindrical waveguides and resonant cavities, the main characteristic parameters of the microwave plasma source reported in [1] are calculated. The absorption coefficient of an electromagnetic wave which is excited in H 11 mode in a cylindrical waveguide that contains a cold, inhomogeneous and magnetized plasma column is determined by using the perturbative method describe in [2]. In similar way, due to the presence of the plasma column, the shifts of the resonant frequency and of the inverse of the quality of a cylindrical resonant cavity where a TE 111 mode is oscilating are obtained. Finally, based on the linear theory, an analysis of the penetration of electromagnetic fields in a semi-bounded plasma and a plasma layer is done. The reflexion, transmission and absorption coefficients of H waves for the cases of an isotropic homogeneous and weak inhomogeneous plasma are calculated. (Author)

  15. Simultaneous effects of hydrostatic pressure and spin–orbit coupling on linear and nonlinear intraband optical absorption coefficients in a GaAs quantum ring

    International Nuclear Information System (INIS)

    Mughnetsyan, V.N.; Manaselyan, A.Kh.; Barseghyan, M.G.; Kirakosyan, A.A.

    2013-01-01

    In this paper the simultaneous effect of hydrostatic pressure and Rashba spin–orbit interaction on intraband linear and nonlinear light absorption has been investigated in cylindrical quantum ring. The one electron energy spectrum has been found using the effective mass approximation and diagonalization procedure. We have found that the Rashba interaction can lead both to the blue- or to the red-shift of the absorption spectrum depending on the transitions character, while the only red-shift is observed due to the hydrostatic pressure. - Highlights: ► The effects of hydrostatic pressure and spin–orbit coupling are investigated for quantum ring. ► The non-linear absorption coefficient is calculated. ► The hydrostatic pressure leads to the decrease in the absorption coefficient. ► Spin–orbit coupling weakens some transitions and strengthens others.

  16. Simultaneous measurement of thermal diffusivity and effective infrared absorption coefficient in IR semitransparent and semiconducting n-CdMgSe crystals using photothermal radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M., E-mail: mpawlak@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, Toruń (Poland); Maliński, M. [Department of Electronics and Computer Science, Koszalin University of Technology, 2 Śniadeckich St., Koszalin 75-453 (Poland)

    2015-01-10

    Highlights: • The new method of determination of the effective infrared absorption coefficient is presented. • The method can be used for transparent samples for the excitation radiation. • The effect of aluminum foil on the PTR signal in a transmission configuration is discussed. - Abstract: In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd{sub 1−x}Mg{sub x}Se crystals.

  17. Pressure shift coefficient measurements in an RF discharge for Ar 4s[3/2]2—5p[3/2]3 transition with the help of diodelaser absorption spectroscopy

    Science.gov (United States)

    Chernyshov, A. K.; Mikheyev, P. A.; Lunev, N. N.; Azyazov, V. N.

    2018-04-01

    Optically pumped all-rare-gas laser (OPRGL) with unique properties were recently proposed with a possibility to obtain the laser power on the order of hundreds of Watts from a cubic centimeter. To provide high laser efficiency, the pumping radiation has to match the absorption spectrum of the rare gas metastables. To meet this condition a reliable diagnostics of the key parameters of the active medium is required and knowledge of the broadening and shift coefficients for corresponding transitions of rare gases is necessary. In this paper, the diode-laser absorption spectroscopy was employed to determine the pressure shift coefficient for 811.5 nm Ar line. The value of obtained coefficient in pure argon reduced to 300 K is -(2.1 ± 0.1) × 10-10 s-1cm3. In the course of the study the pressure broadening coefficient was also evaluated and found to be (2.4 ± 0.5) × 10-10 s-1cm3.

  18. ABSORBANCE, ABSORPTION COEFFICIENT, AND APPARENT QUANTUM YIELD: A COMMENT ON AMBIGUITY IN THE USE OF THESE OPTICAL CONCEPTS

    Science.gov (United States)

    Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...

  19. A High Molar Extinction Coefficient Mono-Anthracenyl Bipyridyl Heteroleptic Ruthenium(II Complex: Synthesis, Photophysical and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2011-06-01

    Full Text Available In our quest to develop good materials as photosensitizers for photovoltaic dye-sensitized solar cells (DSSCs, cis-dithiocyanato-4-(2,3-dimethylacrylic acid-2,2'-bipyridyl-4-(9-anthracenyl-(2,3-dimethylacrylic-2,2'-bipyridyl ruthenium(II complex, a high molar extinction coefficient charge transfer sensitizer, was designed, synthesized and characterized by spectroscopy and electrochemical techniques. Earlier studies on heteroleptic ruthenium(II complex analogues containing functionalized oligo-anthracenyl phenanthroline ligands have been reported and documented. Based on a general linear correlation between increase in the length of π-conjugation bond and the molar extinction coefficients, herein, we report the photophysical and electrochemical properties of a Ru(II bipyridyl complex analogue with a single functionalized anthracenyl unit. Interestingly, the complex shows better broad and intense metal-to ligand charge transfer (MLCT band absorption with higher molar extinction coefficient (λmax = 518 nm, e = 44900 M−1cm−1, and appreciable photoluminescence spanning the visible region than those containing higher anthracenyl units. It was shown that molar absorption coefficient of the complexes may not be solely depended on the extended π-conjugation but are reduced by molecular aggregation in the molecules.

  20. Measurement of X-ray mass attenuation coefficient of nickel around the K-edge using synchrotron radiation based X-ray absorption study

    International Nuclear Information System (INIS)

    Roy, Bunty Rani; Rajput, Parasmani; Jha, S.N.; Nageswara Rao, A.S.

    2015-01-01

    The work presents the X-ray absorption fine structure (XAFS) technique for measuring the X-ray mass attenuation coefficient of nickel metal foil in the X-ray energy range of 8271.2–8849.4 eV using scanning XAFS beam line (BL-09) at Indus-2 synchrotron radiation source facility, Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore, India. The result represents the X-ray mass attenuation coefficient data for 0.02 mm thick Ni metal foil in the XAFS region of Ni K-edge. However, the results are compared to theoretical values using X-COM. There is a maximum deviation which is found exactly near the K-edge jump and decreases as we move away from the absorption edge. Oscillatory structure appears just above the observed absorption edge i.e., 8348.7 eV and is confined to around 250 eV above the edge. - Highlights: • Mass attenuation coefficient measurements of nickel using synchrotron radiation. • The measurements were taken exactly near the Ni K-edge at an energy step of 1 eV. • A maximum deviation is found near the K-edge

  1. The selection of stopping power and mass energy absorption coefficient data for the HPA Code of Practice for dosimetry

    International Nuclear Information System (INIS)

    Williams, P.C.

    1985-01-01

    The author draws attention to a discussion by Cunningham and Schultz (1984) which states that, 'with the exception of the NACP and AAPM protocols, the selection of stopping power and energy absorption coefficient ratios has been based upon only the stated accelerating potential of the accelerator', and points out that the HPA Revised Code of Practice should be added to these exceptions. In calculating the HPA's new Csub(lambda) values, a similar, but not identical, approach was taken in order to determine the stopping power and absorption coefficient ratios at each radiation quality. It was recognised that the approximation of a spectrum to a monoenergetic spectrum of between 0.4 and 0.45 of the maximum energy, as had been done in calculating the values, given in ICRU Report 14, was incorrect. (U.K.)

  2. Measurement of mass attenuation coefficients around the K absorption edge by parametric X-rays

    International Nuclear Information System (INIS)

    Tamura, Masaya; Akimoto, Tadashi; Aoki, Yohei; Ikeda, Jiro; Sato, Koichi; Fujita, Fumiyuki; Homma, Akira; Sawamura, Teruko; Narita, Masakuni

    2002-01-01

    When electrons at relativistic velocities pass through a crystal plate, such as silicon, photons are emitted around the Bragg angle for X-ray diffraction. This phenomenon is called parametric X-ray radiation (PXR). The monochromaticity and directivity of PXR are adequate and the energy can be changed continuously by rotating the crystal. This study measured the mass attenuation coefficient around the K-shell absorption edge of Nb, Zr and Mo as a PXR application of monochromatic hard X-ray radiation sources

  3. Measurement of mass attenuation coefficients around the K absorption edge by parametric X-rays

    CERN Document Server

    Tamura, M; Aoki, Y; Ikeda, J; Sato, K; Fujita, F; Homma, A; Sawamura, T; Narita, M

    2002-01-01

    When electrons at relativistic velocities pass through a crystal plate, such as silicon, photons are emitted around the Bragg angle for X-ray diffraction. This phenomenon is called parametric X-ray radiation (PXR). The monochromaticity and directivity of PXR are adequate and the energy can be changed continuously by rotating the crystal. This study measured the mass attenuation coefficient around the K-shell absorption edge of Nb, Zr and Mo as a PXR application of monochromatic hard X-ray radiation sources.

  4. Water Absorption Properties of Heat-Treated Bamboo Fiber and High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Lanxing Du

    2014-01-01

    Full Text Available To modify water absorption properties of bamboo fiber (BF and high density polyethylene (HDPE composites, heat treatment of BFs was performed prior to compounding them with HDPE to form the composites. The moisture sorption property of the composites was measured and their diffusion coefficients (Dm were evaluated using a one-dimensional diffusion model. Moisture diffusion coefficient values of all composites were in the range of 0.115x10-8 to 1.267x10-8 cm2/s. The values of Dm decreased with increasing BF heat-treatment temperature, and increased with increasing BF loading level. The Dm value of 40 wt% bamboo fiber/HDPE composites with BFs treated with 100 oC was the greatest (i.e., 1.267x10-8cm2/s. Morphology analysis showed increased fiber-matrix interfacial bonding damage due to fiber swelling and shrinking from water uptaking and drying. The mechanism of water absorption of the composite, indicated a general Fickian diffusion process.

  5. The Optical Absorption Coefficient of Maize Grains Investigated by Photoacoustic Spectroscopy

    Science.gov (United States)

    Rodríguez-Páez, C. L.; Carballo-Carballo, A.; Rico-Molina, R.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Moreno-Martínez, E.

    2017-01-01

    In the maize and tortilla industry, it is important to characterize the color of maize ( Zea mays L.) grain, as it is one of the attributes that directly affect the quality of the tortillas consumed by the population. For this reason, the availability of alternative techniques for assessing and improving the quality of grain is valued. Photoacoustic spectroscopy has proven to be a useful tool for characterizing maize grain. So, the objective of the present study was to determine the optical absorption coefficient β of the maize grain used to make tortillas from two regions of Mexico: (a) Valles Altos, 2012-2013 production cycle and (b) Guasave, Sinaloa, 2013-2014 production cycle. Traditional reflectance measurements, physical characteristics of the grain and nutrient content were also calculated. The experimental results show different characteristics for maize grains.

  6. The influence of surface modification on sound absorption coefficient of albizzia wood absorber

    Science.gov (United States)

    Diharjo, Kuncoro; Prabowo, Anditya E.; Jamasri, Suharty, Neng Sri

    2017-01-01

    The purpose of this research is to investigate the influence of surface modification to sound absorption on absorber based albizia wood and kenaf fiber. The absorber was produced using the albizia wood as main materials, and the kenaf fiber was used as acoustic fill. The albizia wood used for producing the absorber was cut in the transverse direction so that its surface had good porosity. The size of specimens had 100 mm in diameter and 40 mm in thickness. The configuration of resonator cavities was 30 mm in diameter and 20 mm in depth, and each resonator was completed with a neck hole of the resonator. The types of surface modification were the addition of screen printing ink, fabric (with and without neck hole), and vinyl-wallpaper (with and without neck hole). According to ISO 10534-2, the absorber specimens were tested using two microphones impedance tube with random noise source to get the curve of noise absorption coefficient (NAC) for each specimen. The result shows that both unmodified absorber and absorber modified with screen printing ink have the similar characteristic of NAC and they are feasible to be used as an absorber in conversation rooms. The addition of fabric and vinyl-wallpaper as cover on the absorber surface give the positive effect of the air gap, and it increases the NAC in low frequency (100-400 Hz). However, the covers decrease the NAC in high frequency (400-1,400 Hz). The holes on the fabric and wallpaper covers give the improvement of NAC.

  7. Evaluation of the Extinction Coefficient, Radiation Absorption and Use Efficiency of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    Seyyedeh Maliheh Mirhashemi

    2015-10-01

    Full Text Available Leaf area index, light extinction coefficient and radiation use efficiency are important eco-physiological characteristics for realization of crops growth, development and radiation absorption. In order to determine the leaf area index (LAI, light extinction coefficient (K and radiation use efficiency (RUE of saffron during the first and second growing seasons, four experiments were started in 2011 and ended in 2014, at the Research Farm of the Agriculture Faculty, the Ferdowsi University of Mashhad, Iran. Saffron corms with weights between 13 to15 g and density of 50 plant.m2 were cultivated in 2011 and 2012. In all experimental years during the growing season, crop sampling was taken for required measurements including the leaf area index and shoot dry weight of saffron once every 14 days. The results showed that by increasing the age of saffron from 1 year to two years, the maximum LAI of saffron increased from 0.33 to 1.81, and light extinction coefficient decreased from 1.20 to 0.54. The increasing trend of LAI was coincident with fraction of absorbed radiation for all four years of the experiment. In the first and the second growing seasons, the amount of fraction of absorbed radiation gradually increased with increasing LAI and at 1083 and 1034 GDD reached its maximum value, respectively. In saffron farms when the plant was one year old and two years old, the mean value of RUE was 0.68 and 1.73 g.MJ-1 PAR, respectively. These results indicate that by increasing the saffron age and LAI, the value of K decreases and consequently radiation absorption and use efficiency will‎ increase.

  8. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    Science.gov (United States)

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of bacterial or porcine lipase with low- or high-fat diets on nutrient absorption in pancreatic-insufficient dogs.

    Science.gov (United States)

    Suzuki, A; Mizumoto, A; Rerknimitr, R; Sarr, M G; DiMango, E P

    1999-02-01

    Treatment of human exocrine pancreatic insufficiency is suboptimal. This study assessed the effects of bacterial lipase, porcine lipase, and diets on carbohydrate, fat, and protein absorption in pancreatic-insufficient dogs. Dogs were given bacterial or porcine lipase and 3 diets: a 48% carbohydrate, 27% fat, and 25% protein standard diet; a high-carbohydrate, low-fat, and low-protein diet; or a low-carbohydrate, high-fat, and high-protein diet (66%/18%/16% and 21%/43%/36% calories). With the standard diet, coefficient of fat absorption increased dose-dependently with both lipases (P vs. low-fat and -protein diet). There were no interactions among carbohydrate, fat, and protein absorption. Correcting steatorrhea requires 75 times more porcine than bacterial lipase (18 vs. 240 mg). High-fat and high-protein diets optimize fat absorption with both enzymes. High-fat diets with bacterial or porcine lipase should be evaluated in humans with pancreatic steatorrhea.

  10. Absorption of acoustic waves in La3Ga5SiO14 monocrystals

    International Nuclear Information System (INIS)

    Mansfel'd, G.D.; Bezdelkin, V.V.; Freik, A.D.; Kucheryavaya, E.S.

    1995-01-01

    Frequency dependences of longitudinal and transverse acoustic wave absorption coefficient in the basic crystallographic La 3 Ga 5 SiO 14 directions are measured by composite resonator method. The obtained values of absorption coefficient for all directions appear to be lower or approximately equal to the values of absorption coefficient in quartz monocrystals. Application of the resonator methods allows one to study factors affecting the resonator high-quality as well. 9 refs., 4 figs

  11. Coefficient of Performance Optimization of Single-Effect Lithium-Bromide Absorption Cycle Heat Pumps

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    In this paper, we investigate the coefficient of performance (COP) of a LiBr absorption cycle heat pump under different operating conditions. The investigation is carried out using a dynamical model fitted against data recorded from an actual heat pump used for district heating in S......⊘nderborg, Denmark. Since the model is too complex to study analytically, we vary different input variables within the permissible operating range of the heat pump and evaluate COP at the resulting steady-state operating points. It is found that the best set-point for each individual input is located at an extreme......-state operation of the heat pump, while avoiding crystallization issues....

  12. Absorption and scattering coefficients estimation in two-dimensional participating media using the generalized maximum entropy and Levenberg-Marquardt methods

    International Nuclear Information System (INIS)

    Berrocal T, Mariella J.; Roberty, Nilson C.; Silva Neto, Antonio J.; Universidade Federal, Rio de Janeiro, RJ

    2002-01-01

    The solution of inverse problems in participating media where there is emission, absorption and dispersion of the radiation possesses several applications in engineering and medicine. The objective of this work is to estimative the coefficients of absorption and dispersion in two-dimensional heterogeneous participating media, using in independent form the Generalized Maximum Entropy and Levenberg Marquardt methods. Both methods are based on the solution of the direct problem that is modeled by the Boltzmann equation in cartesian geometry. Some cases testes are presented. (author)

  13. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    Science.gov (United States)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  14. ABSORPTION, SCATTERING, ATTENUATION COEFFICIENTS and Other Data from NOAA-11 SATELLITE and Other Platforms from 19950101 to 19951231 (NCEI Accession 9500020)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea surface topography, absorption, scattering, attenuation coefficients and other data in this accession was collected from NOAA-11 AVHRR satellite in East...

  15. Effects of High Hydrostatic Pressure on Water Absorption of Adzuki Beans

    Science.gov (United States)

    Ueno, Shigeaki; Shigematsu, Toru; Karo, Mineko; Hayashi, Mayumi; Fujii, Tomoyuki

    2015-01-01

    The effect of high hydrostatic pressure (HHP) treatment on dried soybean, adzuki bean, and kintoki kidney bean, which are low-moisture-content cellular biological materials, was investigated from the viewpoint of water absorption. The samples were vacuum-packed with distilled water and pressurized at 200 MPa and 25 °C for 10 min. After the HHP treatment, time courses of the moisture contents of the samples were measured, and the dimensionless moisture contents were estimated. Water absorption in the case of soybean could be fitted well by a simple water diffusion model. High pressures were found to have negligible effects on water absorption into the cotyledon of soybean and kintoki kidney bean. A non-linear least square method based on the Weibull equation was applied for the adzuki beans, and the effective water diffusion coefficient was found to increase significantly from 8.6 × 10−13 to 6.7 × 10−10 m2/s after HHP treatment. Approximately 30% of the testa of the adzuki bean was damaged upon HHP treatment, which was comparable to the surface area of the testa in the partially peeled adzuki bean sample. Thus, HHP was confirmed to promote mass transfer to the cotyledon of legumes with a tight testa. PMID:28231195

  16. Effects of High Hydrostatic Pressure on Water Absorption of Adzuki Beans

    Directory of Open Access Journals (Sweden)

    Shigeaki Ueno

    2015-05-01

    Full Text Available The effect of high hydrostatic pressure (HHP treatment on dried soybean, adzuki bean, and kintoki kidney bean, which are low-moisture-content cellular biological materials, was investigated from the viewpoint of water absorption. The samples were vacuum-packed with distilled water and pressurized at 200 MPa and 25 °C for 10 min. After the HHP treatment, time courses of the moisture contents of the samples were measured, and the dimensionless moisture contents were estimated. Water absorption in the case of soybean could be fitted well by a simple water diffusion model. High pressures were found to have negligible effects on water absorption into the cotyledon of soybean and kintoki kidney bean. A non-linear least square method based on the Weibull equation was applied for the adzuki beans, and the effective water diffusion coefficient was found to increase significantly from 8.6 × 10−13 to 6.7 × 10−10 m2/s after HHP treatment. Approximately 30% of the testa of the adzuki bean was damaged upon HHP treatment, which was comparable to the surface area of the testa in the partially peeled adzuki bean sample. Thus, HHP was confirmed to promote mass transfer to the cotyledon of legumes with a tight testa.

  17. Quenching of Einstein-coefficients by photons

    International Nuclear Information System (INIS)

    Aumayr, F.; Skinner, C.H.; Suckewer, S.; Princeton Univ., NJ; Lee, W.

    1991-02-01

    Experimental evidence is presented for the change of Einstein's A-coefficients for spontaneous transitions from the upper laser level of an argon ion laser discharge due to the presence of the high-intensity laser flux. To demonstrate that this quenching effect cannot be attributed to a reduction in self-absorption of the strong spontaneous emission line, absorption and line profile measurements have been performed. Computer modelling of the reduction of self absorption due to Rabi splitting also indicated that this effect is too small to explain the observed quenching of spontaneous line emissions. 13 refs., 11 figs

  18. Quenching of Einstein-coefficients by photons

    International Nuclear Information System (INIS)

    Aumayr, F.; Lee, W.; Skinner, C.H.; Suckewer, S.

    1991-03-01

    Experimental evidence is presented for the change of Einstein's A- coefficients for spontaneous transitions from the upper laser level of argon ion laser discharge due to the presence of the high- intensity laser flux. To demonstrate that this quenching effect cannot be attributed to a reduction in self-absorption of the strong spontaneous emission line, absorption and line profile measurements have been performed. Computer modelling of the reduction of self absorption due to Rabi splitting also indicated that this effect is too small to explain the observed quenching of spontaneous line emissions. 13 refs., 11 figs

  19. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 1. Monte-Carlo simulation of laser fluence distribution at the beam axis beneath the surface of a turbid medium

    International Nuclear Information System (INIS)

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-01-01

    A new method for measuring the local light absorption coefficient in turbid media, for example, biological tissues, is proposed. The method is based on the fact that the amplitude of the excited opto-acoustic (OA) signal is proportional to the absorbed laser power density (the product of the light absorption coefficient and the laser fluence) at the medium interface. In the first part of the paper, the influence of the laser beam diameter, the light absorption and reduced scattering coefficients on the maximal amplitude of the laser fluence at the laser beam axis in the near-surface layer of the turbid medium is studied by using the Monte-Carlo simulation. The conditions are predicted under which the amplitude of the OA signal detected in a transparent medium in contact with the scattering medium should remain proportional to the light absorption coefficient of the medium under study, when the scattering coefficient in it changes more than twice. The results of the numerical simulation are used for the theoretical substantiation of the OA method being proposed. (measurement of parametrs of laser radiation)

  20. X-ray absorption in atomic potassium

    International Nuclear Information System (INIS)

    Gomilsek, Jana Padeznik; Kodre, Alojz; Arcon, Iztok; Nemanic, Vincenc

    2008-01-01

    A new high-temperature absorption cell for potassium vapor is described. X-ray absorption coefficient of atomic potassium is determined in the energy interval of 600 eV above the K edge where thresholds for simultaneous excitations of 1s and outer electrons, down to [1s2p] excitation, appear. The result represents also the atomic absorption background for XAFS (X-ray absorption fine structure) structure analysis. The K ionization energy in the potassium vapor is determined and compared with theoretical data and with the value for the metal

  1. Analysis of the reactivity coefficients of the advanced high-temperature reactor for plutonium and uranium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zakova, Jitka [Department of Nuclear and Reactor Physics, Royal Institute of Technology, KTH, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)], E-mail: jitka.zakova@neutron.kth.se; Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, ANL, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: alby@anl.gov

    2008-05-15

    The conceptual design of the advanced high-temperature reactor (AHTR) has recently been proposed by the Oak Ridge National Laboratory, with the intention to provide and alternative energy source for very high temperature applications. In the present study, we focused on the analyses of the reactivity coefficients of the AHTR core fueled with two types of fuel: enriched uranium and plutonium from the reprocessing of light water reactors irradiated fuel. More precisely, we investigated the influence of the outer graphite reflectors on the multiplication factor of the core, the fuel and moderator temperature reactivity coefficients and the void reactivity coefficient for five different molten salts: NaF, BeF{sub 2}, LiF, ZrF{sub 4} and Li{sub 2}BeF{sub 4} eutectic. In order to better illustrate the behavior of the previous parameters for different core configurations, we evaluated the moderating ratio of the molten salts and the absorption rate of the key fuel nuclides, which, of course, are driven by the neutron spectrum. The results show that the fuel and moderator temperature reactivity coefficients are always negative, whereas the void reactivity coefficient can be set negative provided that the fuel to moderator ratio is optimized (the core is undermoderated) and the moderating ratio of the coolant is large.

  2. Analysis of the reactivity coefficients of the advanced high-temperature reactor for plutonium and uranium fuels

    International Nuclear Information System (INIS)

    Zakova, Jitka; Talamo, Alberto

    2008-01-01

    The conceptual design of the advanced high-temperature reactor (AHTR) has recently been proposed by the Oak Ridge National Laboratory, with the intention to provide and alternative energy source for very high temperature applications. In the present study, we focused on the analyses of the reactivity coefficients of the AHTR core fueled with two types of fuel: enriched uranium and plutonium from the reprocessing of light water reactors irradiated fuel. More precisely, we investigated the influence of the outer graphite reflectors on the multiplication factor of the core, the fuel and moderator temperature reactivity coefficients and the void reactivity coefficient for five different molten salts: NaF, BeF 2 , LiF, ZrF 4 and Li 2 BeF 4 eutectic. In order to better illustrate the behavior of the previous parameters for different core configurations, we evaluated the moderating ratio of the molten salts and the absorption rate of the key fuel nuclides, which, of course, are driven by the neutron spectrum. The results show that the fuel and moderator temperature reactivity coefficients are always negative, whereas the void reactivity coefficient can be set negative provided that the fuel to moderator ratio is optimized (the core is undermoderated) and the moderating ratio of the coolant is large

  3. Experimental and theoretical determination of the absorption coefficients of X-rays through barium plaster from 100 to 400 keV

    International Nuclear Information System (INIS)

    Joksimovicj, V.

    1976-01-01

    The absorption coefficients of X-rays from 100 to 400 keV through barium plaster of equivalent atomic number of 26 have been determined experimentally and theoretically. Calculated values are compared with experimental data. Matrix components of barium plaster were determined chemically and by X-ray fluorescence

  4. Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes

    International Nuclear Information System (INIS)

    Binzoni, T; Leung, T S; Ruefenacht, D; Delpy, D T

    2006-01-01

    Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware

  5. Anomalous x-ray attenuation coefficients around the absorption edges using Mn Ksub(α) and Cu Ksub(α) x-rays

    International Nuclear Information System (INIS)

    Kerur, B.R.; Thontadarya, S.R.; Hanumaiah, B.

    1994-01-01

    The x-ray attenuation coefficients for three elements and for eight compounds are determined, adopting the method developed by employing a proportional counter, with a view to study the effect of fine structure on the mass attenuation coefficient values using Mn K α and Cu K α x-rays derived from K x-ray emitters, 55 Fe and 65 Zn radioactive sources, by a differential absorption technique. It is experimentally established that a small difference in energy between K α1 and K α2 (11 eV in the case of Mn K α and 24 eV in the case of the Cu K α x-ray) is inconsequential by comparing the measured and theoretical values of μ/ρ for standard elements, aluminium, copper and tantalum. The effect of fine structure on μ/ρ values is studied using the compounds containing one element with its absorption edge close to the incident photon energy. Results obtained in the present investigation show the nonvalidity of the mixture rule above the edge and also below the edge, ranging from about 600 eV below the edge to about 1500 eV about the edge. The contribution of resonance Raman scattering to the attenuation coefficient and indications to the presence of pre-edge structure similar to EXAFS are discussed. (author)

  6. New naphthalene polyimide with unusual molar absorption coefficient and excited state properties: Synthesis, photophysics and electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ozser, Mustafa E. [Girne American University, Faculty of Engineering and Architecture, Department of Industrial Engineering, Girne, North Cyprus (Cyprus); Yucekan, Ilke; Bodapati, Jagadeesh B. [Eastern Mediterranean University, Faculty of Arts and Sciences, Department of Chemistry, Famagusta, North Cyprus (Cyprus); Icil, Huriye, E-mail: huriye.icil@emu.edu.tr [Eastern Mediterranean University, Faculty of Arts and Sciences, Department of Chemistry, Famagusta, North Cyprus (Cyprus)

    2013-11-15

    A high molecular weight 1,4,5,8-naphthalene polyimide (ENPI) by one-step polycondensation mechanism and for comparison its monomeric diimide (ENDI) were synthesized; the photophysical and electrochemical properties were studied in detail for ENPI. Monomer has shown unusual insolubility so that the characterization proven to be difficult, whereas ENPI has shown better solubility. The molecular weight data obtained by GPC for the polymer were M{sub n}=8240 and M{sub w}=34,000 g mol{sup −1} respectively with a polydispersity of 4.13. The polyimide exhibited outstandingly high molar absorption coefficients as 599,000, 1,021,000, and 972,700 M{sup −1} cm{sup −1}, which is first time reported in literature for the characteristic 0–2, 0–1, and 0–0 electronic transitions, respectively. ENPI showed concentration dependent and red shifted excimer emission in 1,1,2,2-tetrachloroethane (TCE). The polymer has undergone multielectron reductions in CHCl{sub 3} solution below 100 mV s{sup −1} scan rates which merged into two reversible one-electron reduction peaks at higher scan rates. In solid-state, similar scan rate dependent reduction peaks were noticed. The LUMO, HOMO and optical band gap values obtained for ENPI were −3.73, −6.91, and 3.18 eV respectively. ENDI polymer with striking features has great potential as new sensitizer for efficient dye sensitized organic cells. Highlights: • A high molecular weight naphthalene polyimide was synthesized (M{sub w}=34,000 g mol{sup −1}). • The oligoether polyimide exhibited outstanding molar absorptivity (972,700 M{sup −1} cm{sup −1}). • A red shifted excimer emission has been observed. • The polymer has undergone multielectron reductions.

  7. Measurement of X-ray attenuation coefficients around K-absorption edges using Fe Kα X-rays

    International Nuclear Information System (INIS)

    Kerur, B.R.; Thontadarya, S.R.; Hanumaiah, B.

    1993-01-01

    The x-ray mass attenuation coefficients were measured around the K-absorption edges of elements in the range 16 ≤ Z ≤ 30 using Fe Kα x-rays of energy 6.400 keV, which is the weighted average energy of Kα 1 and Kα 2 x-ray components from the 57 Co radioactive source. Kβ x-rays were almost eliminated by the differential absorption technique. The small difference in energy between Kα 1 and Kα 2 , 13 eV, was shown to be inconsequential by comparing the measured and theoretical values of μ/ρ for standard materials such as Al, Cu, Mo and Ta. The effect of fine structure of the K-absorption edge on μ/ρ was elucidated by using the compounds of elements in the range 16 ≤ X ≤ 30, containing one element with its K-absorption edge energy (E k ) close to the incident photon energy (E x ). The results clearly indicate the validity of the theoretical mixture rule for all those compounds whose K edge is far away from the incident energy but show deviations of as much as 10% for the manganese compound whose K edge is 140 eV above E x and about 12% for the chromium compound whose K edge is 410 eV below E x . These deviations are attributed to the possible influence of resonance Raman scattering when the incident photon energy E x is less than the edge and to the influence of EXAFS when E x is more than the edge energy. (Author)

  8. Determination of self-absorption coefficient in measurement of solid sample activity using 4π ionization chamber

    International Nuclear Information System (INIS)

    Dryak, P.

    1982-01-01

    Computation based on the Monte Carlo method was tested for a 4π cylindrical ionization chamber with a detection volume of 7 litres, filled with argon. The sources are placed in the geometrical centre. The correction coefficient for self-absorption was determined as being the ratio of ionization currents induced by a source of finite size and by a massless point source. A flowchart of the program is given. The computations were experimentally tested for cylindrical sources of aqueous 137 Cs and 57 Co solutions. (M.D.)

  9. Acoustic absorption behaviour of an open-celled aluminium foam

    CERN Document Server

    Han Fu Sheng; Zhao Yu Yuan; Gibbs, B

    2003-01-01

    Metal foams, especially close-celled foams, are generally regarded as poor sound absorbers. This paper studies the sound absorption behaviour of the open-celled Al foams manufactured by the infiltration process, and the mechanisms involved. The foams show a significant improvement in sound absorption compared with close-celled Al foams, because of their high flow resistance. The absorption performance can be further enhanced, especially at low frequencies, if the foam panel is backed by an appropriate air gap. Increasing the air-gap depth usually increases both the height and the width of the absorption peak and shifts the peak towards lower frequencies. The foam samples with the smallest pore size exhibit the best absorption capacities when there is no air gap, whereas those with medium pore sizes have the best overall performance when there is an air gap. The typical maximum absorption coefficient, noise reduction coefficient and half-width of the absorption peak are 0.96-0.99, 0.44-0.62 and 1500-3500 Hz, r...

  10. Absorption coefficient and refractive index changes of a quantum ring in the presence of spin-orbit couplings: Temperature and Zeeman effects

    Science.gov (United States)

    Zamani, A.; Azargoshasb, T.; Niknam, E.

    2017-10-01

    Effects of applied magnetic field, temperature and dimensions on the optical absorption coefficients (AC) and refractive index (RI) changes of a GaAs quantum ring are investigated in the presence of both Rashba and Dresselhaus spin-orbit interactions (SOI). To this end, the finite difference method (FDM) is used in order to numerically calculate the energy eigenvalues and eigenstates of the system while the compact density matrix approach is hired to calculate the optical properties. It is shown that application of magnetic field, temperature as well as the geometrical size in the presence of spin-orbit interactions, alter the electronic structure and consequently influence the linear and third-order nonlinear optical absorption coefficients as well as the refractive index changes of the system. Results show an obvious blue shift in optical curves with enhancing external magnetic field and temperature while the increment of dimensions result in red shift.

  11. Optical absorption of selenite single crystals subjected to high electric fields and irradiated with X-rays or γ-rays

    International Nuclear Information System (INIS)

    Mishra, Sakuntala; Rao, A.V.K.; Rao, K.V.

    1988-01-01

    Measurements of the optical absorption coefficient of selenite single crystals show two peaks at 236 and 400 nm when plotted as a function of wavelength. These peaks decrease with increasing irradiation time for both γ and X-rays. Subsequent thermal bleaching increases the absorption coefficient at all wavelengths and flattens out the peaks at 140 0 C and 330 0 C respectively. The imposition of an a.c. or d.c. field prior to irradiation preserves the thermal bleaching characteristics with an overall increase in absorption coefficient. These effects are attributed to two different types of bond formed by water of crystallization giving rise to the two absorption peaks. Irradiation may destroy some of the bands of loosely bound water molecules near defect regions leading to a decrease in absorption. Thermal bleaching removes water molecules reducing the transparency of the samples, the more strongly bound molecules being removed at the higher temperature. Irradiation after a.c. or d.c. field treatment may introduce more defect regions enabling the removal of more water molecules by bleaching and hence increasing the absorption. (U.K.)

  12. High-resolution Fourier transform measurements of air-induced broadening and shift coefficients in the 0002-0000 main isotopologue band of nitrous oxide

    Science.gov (United States)

    Werwein, Viktor; Li, Gang; Serdyukov, Anton; Brunzendorf, Jens; Werhahn, Olav; Ebert, Volker

    2018-06-01

    In the present study, we report highly accurate air-induced broadening and shift coefficients for the nitrous oxide (N2O) 0002-0000 band at 2.26 μm of the main isotopologue retrieved from high-resolution Fourier transform infrared (FTIR) measurements with metrologically determined pressure, temperature, absorption path length and chemical composition. Most of our retrieved air-broadening coefficients agree with previously generated datasets within the expanded (confidence interval of 95%) uncertainties. For the air-shift coefficients our results suggest a different rotational dependence compared to literature. The present study benefits from improved measurement conditions and a detailed metrological uncertainty description. Comparing to literature, the uncertainties of the previous broadening and shift coefficients are improved by a factor of up to 39 and up to 22, respectively.

  13. Absorption coefficient measurrement of monochromatized synchrotron radiation at 0.65 - 1.3 A interval for some biological objects

    International Nuclear Information System (INIS)

    Avakian, Ts.M.; Karabekov, I.P.; Martirossian, M.A.

    1977-01-01

    The results of the measurement of absorption coefficients for some biological objects such as pea (Pissum sativum), wheat (Triticum aestivum), tobacco (Nicotiana-tabacum-α) seeds, as well as the distilled water are presented. The measurement has been carried out on the Erevan Physical Institute Electron Accelerator synchrotron radiation beam. The good agreement of experimental and calculated data for water confirms the accuracy of the results related to other objects

  14. Methods for measuring nuclear properties of materials, Safety coefficient method and measurement of effective absorption coefficient of graphite by safety coefficient method; Razvijanje metoda merenja nuklearnih karakteristika materijala, Razrada metode koeficijenta opasnosti i merenje efektivnog apsorpcionog preseka grafita metodom koeficijenta opasnosti

    Energy Technology Data Exchange (ETDEWEB)

    Maglic, R [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1962-11-15

    Reactivity of a reactor depends on production, absorption and leaking of neutrons. Change of absorption causes reactivity change, and this fact is used for determining the neutron absorption cross section for the sample inserted in the reactor core. Method for determining the absorption cross section based on reactivity change is called method of safety coefficient. Measurements of neutron absorption cross section for graphite was done in the RA reactor vertical experimental channel VK-5. taking into account the results obtained for five types of graphite this method is considered to be reliable for use. Comparison of nuclear properties of different types of graphite was done as well. Reaktivnost reaktora zavisi od proizvodnje neutrona, apsorpcije i isticanja neutrona. Promena apsorpcije izaziva promene reaktivnosti reaktora pa se ova osobina koristi za odedjivanje neutronskog apsorpcionog preseka uzorka koji se unosi u reaktor. Metoda merenja apsorpcionog preseka na bazi promene reaktivnosti nazvana je metodom koeficijenta opasnosti. Merenje apsorpcionog preseka grafita uradjeno je na reaktoru RA u vertikalnom eksperimentalnom kanalu VK-5. S obzirom na rezultate koji su dobijeni za pet vrsta grafita moze se smatrati da je opravdano koriscenje ove metode. Izvrseno je i poredjenje nuklearnih osobina pomenutih tipova grafita.

  15. Correlation between octanol/water and liposome/water distribution coefficients and drug absorption of a set of pharmacologically active compounds.

    Science.gov (United States)

    Esteves, Freddy; Moutinho, Carla; Matos, Carla

    2013-06-01

    Absorption and consequent therapeutic action are key issues in the development of new drugs by the pharmaceutical industry. In this sense, different models can be used to simulate biological membranes to predict the absorption of a drug. This work compared the octanol/water and the liposome/water models. The parameters used to relate the two models were the distribution coefficients between liposomes and water and octanol and water and the fraction of drug orally absorbed. For this study, 66 drugs were collected from literature sources and divided into four groups according to charge and ionization degree: neutral; positively charged; negatively charged; and partially ionized/zwitterionic. The results show a satisfactory linear correlation between the octanol and liposome systems for the neutral (R²= 0.9324) and partially ionized compounds (R²= 0.9367), contrary to the positive (R²= 0.4684) and negatively charged compounds (R²= 0.1487). In the case of neutral drugs, results were similar in both models because of the high fraction orally absorbed. However, for the charged drugs (positively, negatively, and partially ionized/zwitterionic), the liposomal model has a more-appropriate correlation with absorption than the octanol model. These results show that the neutral compounds only interact with membranes through hydrophobic bonds, whereas charged drugs favor electrostatic interactions established with the liposomes. With this work, we concluded that liposomes may be a more-appropriate biomembrane model than octanol for charged compounds.

  16. Determination of the X-ray mass absorption coefficient by measurement of the intensity of AgKα Compton scattered radiation

    International Nuclear Information System (INIS)

    Franzini, M.; Leoni, L.; Saitta, M.

    1976-01-01

    By utilizing a reflection geometry, an accurate mass absorption coefficient of a sample can be determined by measuring the Ag Kα Compton intensity. Intensities of Ag Kα Compton scattered radiation have been collected by using either the usual reflection geometry of a Philips PW 1450 automatic x-ray spectrometer or a more refined reflection geometry, achieved on a Philips PW 1540/10A manual x-ray spectrometer. The experimental results have shown that the relationship between the Ag Kα Compton intensity and the mass absorption is a logarithmic function. The experimental results are not in agreement with those reported in literature, but a theoretical explanation to account for this fact has not been achieved as yet. (author)

  17. Distinct positive temperature coefficient effect of polymer-carbon fiber composites evaluated in terms of polymer absorption on fiber surface.

    Science.gov (United States)

    Zhang, Xi; Zheng, Shaodi; Zheng, Xiaofang; Liu, Zhengying; Yang, Wei; Yang, Mingbo

    2016-03-21

    In this article, the positive temperature coefficient (PTC) effect was studied for high-density polyethylene (HDPE)/carbon fiber (CF) composites. All of the samples showed a significant PTC effect during the heating processes without a negative temperature coefficient (NTC) effect, even at a temperature much higher than the melting point of the polymer matrix. An ever-increasing PTC intensity with increasing thermal cycles was observed in our study that had never been reported in previous research. The absence of a NTC effect resulted from the increased binding force between the matrix and fillers that contributed to the very special structure of CF surface. We incorporated thermal expansion theory and quantum tunneling effects to explain PTC effect. From the SEM micrographs for the HDPE/CF composites before and after the different thermal cycles, we found that the surface of CF was covered with a layer of polymer which resulted in a change in the gap length between CF and HDPE and its distribution. We believed that the gap change induced by polymer absorption on the fiber surface had a great effect on the PTC effect.

  18. Optical absorption of BaF2 crystals with different prehistory when irradiated by high-energy electrons

    International Nuclear Information System (INIS)

    Chinkov, E P; Stepanov, S A; Shtan'ko, V F; Ivanova, T S

    2016-01-01

    The spectra of stable optical absorption of BaF 2 crystals containing uncontrollable impurities after irradiation with 3 MeV electrons are studied at room temperature. The dependence of the efficiency of stable color accumulation in the region of emerging crossluminescence on the absorption coefficients measured near the fundamental absorption edge in unirradiated crystals of various prehistory is traced. (paper)

  19. AN EFFICIENT ANALYSIS FOR ABSORPTION AND GAIN COEFFICIENTS IN 'SINGLE STEP-INDEX WAVEGUIDE'S BY USING THE ALPHA METHOD

    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ

    2008-02-01

    Full Text Available In this study, some design parameters such as normalized frequency and especially normalized propagation constant have been obtained, depending on some parameters which are functions of energy eigenvalues of the carriers such as electrons and holes confined in a single step-index waveguide laser (SSIWGL or single stepindex waveguide (SSIWG. Some optical expressions about the optical power and probability quantities for the active region and cladding layers of the SSIWG or SSIWGL have been investigated. Investigations have been undertaken in terms of these parameters and also individually the optical even and odd electric field waves with the lowest-modes were theoretically computed. Especially absorption coefficients and loss coefficients addition to some important quantities of the single step-index waveguide lasers for the even and odd electric field waves are evaluated.

  20. Optical absorption analysis of quaternary molybdate- and tungstate-ordered double perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Tablero, C., E-mail: ctablero@etsit.upm.es

    2015-08-05

    Highlights: • These compounds present a high optical absorption. • The absorption coefficients using different DFT + U alternatives have been compared. • The absorption coefficients have been split into different contributions. • The maximum efficiency is near the maximum efficiency for multiple-gap solar cells. - Abstract: Quaternary-ordered double perovskite A{sub 2}MM′O{sub 6} (M = Mo,W) semiconductors are a group of materials with a variety of photocatalytic and optoelectronic applications. An analysis focused on the optoelectronic properties is carried out using first-principles density-functional theory with several U orbital-dependent one-electron potentials applied to different orbital subspaces. The structural non-equivalence of the atoms resulting from the symmetry has been taken in account. In order to analyze optical absorption in these materials deeply, the absorption coefficients have been split into inter- and intra-non-equivalent species contributions. The results indicate that the effect of the A and M′ atoms on the optical properties are minimal whereas the largest contribution comes from the non-equivalent O atoms to M transitions.

  1. Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: Electric and magnetic field effects

    Science.gov (United States)

    Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Suárez-López, J. R.; Duque, C. A.; Restrepo, R. L.

    2016-04-01

    In this work we present theoretical results for the electronic structure as well as for the absorption coefficient and relative refractive index change for an asymmetric double δ-doped like confining potential in the active region of a Multiple Independent Gate Field Effect Transistor (MIGFET) system. We model the potential profile as a double δ-doped like potential profile between two Schottky (parabolic) potential barriers that are just the main characteristics of the MIGFET configuration. We investigate the effect of external electromagnetic fields in this kind of quantum structures, in particular we applied a homogeneous constant electric field in the growth direction z as well as a homogeneous constant magnetic field in the x-direction. In general we conclude that by applying electromagnetic fields we can modulate the resonant peaks of the absorption coefficient as well as their energy position. Also with such probes it is possible to control the nodes and amplitude of the relative refractive index changes related to resonant intersubband optical transitions.

  2. Determination of the Mass Absorption Coefficient in Two-Layer Ti/V and V/Ti Thin Film Systems by the X-Ray Fluorescence Method

    Science.gov (United States)

    Mashin, N. I.; Chernyaeva, E. A.; Tumanova, A. N.; Gafarova, L. M.

    2016-03-01

    A new XRF procedure for the determination of the mass absorption coefficient in thin film Ti/V and V/Ti two-layer systems has been proposed. The procedure uses easy-to-make thin-film layers of sputtered titanium and vanadium on a polymer film substrate. Correction coefficients have been calculated that take into account attenuation of primary radiation of the X-ray tube, as well as attenuation of the spectral line of the bottom layer element in the top layer.

  3. ABSORPTION, SCATTERING, ATTENUATION COEFFICIENTS and Other Data from NOAA-11 SATELLITE From East Coast - US/Canada and Others from 19920201 to 19920331 (NCEI Accession 9200072)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea surface topography, absorption, scattering, attenuation coefficients and other data in this accession was collected from NOAA-11 satellite in East Coast...

  4. A neural network based approach for determination of optical scattering and absorption coefficients of biological tissue

    International Nuclear Information System (INIS)

    Warncke, D; Lewis, E; Leahy, M; Lochmann, S

    2009-01-01

    The propagation of light in biological tissue depends on the absorption and reduced scattering coefficient. The aim of this project is the determination of these two optical properties using spatially resolved reflectance measurements. The sensor system consists of five laser sources at different wavelengths, an optical fibre probe and five photodiodes. For these kinds of measurements it has been shown that an often used solution of the diffusion equation can not be applied. Therefore a neural network is being developed to extract the needed optical properties out of the reflectance data. Data sets for the training, validation and testing process are provided by Monte Carlo Simulations.

  5. Determination of scattering coefficient considering wavelength and absorption dependence of anisotropy factor measured by polarized beam for biological tissues

    Science.gov (United States)

    Fukutomi, D.; Ishii, K.; Awazu, K.

    2015-12-01

    Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.

  6. [Estimation of DOC concentrations using CDOM absorption coefficients: a case study in Taihu Lake].

    Science.gov (United States)

    Jiang, Guang-Jia; Ma, Rong-Hua; Duan, Hong-Tao

    2012-07-01

    Dissolved organic carbon (DOC) is the largest organic carbon stock in water ecosystems, which plays an important role in the carbon cycle in water. Chromophoric dissolved organic matter (CDOM), an important water color variation, is the colored fraction of DOC and its absorption controls the instruction of light under water. The available linkage between DOC concentration and CDOM absorptions enables the determination of DOC accumulations using remote sensing reflectance or radiance in lake waters. The present study explored the multi-liner relationship between CDOM absorptions [a(g) (250) and a(g) (365)] and DOC concentrations in Taihu Lake, based on the available data in 4 cruises (201005, 201101, 201103, 201105) (totally 183 sampling sites). Meanwhile, the results were validated with the data of the experiment carried out from August 29 to September 2, 2011 in Taihu Lake (n = 27). Furthermore, a universal pattern of modeling from remote sensing was built for lake waters. The results demonstrated that this method provided more satisfying estimation of DOC concentrations in Taihu Lake. Except the data obtained in January 2011, the fitted results of which were not conductive to the winter dataset (201101) in Taihu Lake, due to the diverse sources and sinks of DOC and CDOM, the multi-liner relationship was robust for the data collected in the other three cruises (R2 = 0.64, RMSE = 14.31%, n = 164), which was validated using the 201108 sampling dataset (R2 = 0.67, RMSE = 10.58%, n = 27). In addition, the form of the statistic model is universal, to some extent, for other water areas, however, there is difference in the modeling coefficients. Further research should be focused on the parameterization using local data from different lakes, which provides effective methodology for the estimation of DOC concentrations in lakes and other water regions.

  7. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River].

    Science.gov (United States)

    Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei

    2014-12-01

    Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of

  8. Acoustic absorption behaviour of an open-celled aluminium foam

    International Nuclear Information System (INIS)

    Han Fusheng; Seiffert, Gary; Zhao Yuyuan; Gibbs, Barry

    2003-01-01

    Metal foams, especially close-celled foams, are generally regarded as poor sound absorbers. This paper studies the sound absorption behaviour of the open-celled Al foams manufactured by the infiltration process, and the mechanisms involved. The foams show a significant improvement in sound absorption compared with close-celled Al foams, because of their high flow resistance. The absorption performance can be further enhanced, especially at low frequencies, if the foam panel is backed by an appropriate air gap. Increasing the air-gap depth usually increases both the height and the width of the absorption peak and shifts the peak towards lower frequencies. The foam samples with the smallest pore size exhibit the best absorption capacities when there is no air gap, whereas those with medium pore sizes have the best overall performance when there is an air gap. The typical maximum absorption coefficient, noise reduction coefficient and half-width of the absorption peak are 0.96-0.99, 0.44-0.62 and 1500-3500 Hz, respectively. The sound dissipation mechanisms in the open-celled foams are principally viscous and thermal losses when there is no air-gap backing and predominantly Helmholtz resonant absorption when there is an air-gap backing

  9. Absorption corrections for x-ray fluorescence analysis of environmental samples

    International Nuclear Information System (INIS)

    Bazan, F.; Bonner, N.A.

    1975-01-01

    The discovery of a very simple and useful relationship between the absorption coefficient of a particular element and the ratio of incoherent to coherent scattering by the sample containing the element is discussed. By measuring the absorption coefficients for a few elements in a few samples, absorption coefficients for many elements in an entire set of similar samples can be obtained. (auth)

  10. Absorption corrections for x-ray fluorescence analysis of environmental samples

    International Nuclear Information System (INIS)

    Bazan, F.; Bonner, N.A.

    1976-01-01

    The discovery of a very simple and useful relationship between the absorption coefficient of a particular element and the ratio of incoherent to coherent scattering by the sample containing the element is discussed. By measuring the absorption coefficients for a few elements in a few samples, absorption coefficients for many elements in an entire set of similar samples can be obtained

  11. Nonlinear Absorptions of CdSeTe Quantum Dots under Ultrafast Laser Radiation

    Directory of Open Access Journals (Sweden)

    Zhijun Chai

    2016-01-01

    Full Text Available The oil-soluble alloyed CdSeTe quantum dots (QDs are prepared by the electrostatic method. The basic properties of synthesized CdSeTe QDs are characterized by UV-Vis absorption spectroscopy, photoluminescence spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscope. The off-resonant nonlinear optical properties of CdSeTe QDs are studied by femtosecond Z-scan at 1 kHz (low-repetition rate and 84 MHz (high-repetition rate. Nonlinear absorption coefficients are calculated under different femtosecond laser excitations. Due to the long luminescent lifetime of CdSeTe QDs, under the conditions of high-repetition rate, for open-aperture curve, heat accumulation and bleaching of ground state are responsible for the decrease of two-photon absorption (TPA coefficient.

  12. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance.

    Science.gov (United States)

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), S cdm (units: nm -1 ), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving S cdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of S cdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  13. Absorption-reduced waveguide structure for efficient terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Pálfalvi, L., E-mail: palfalvi@fizika.ttk.pte.hu [Institute of Physics, University of Pécs, Ifjúság ú. 6, 7624 Pécs (Hungary); Fülöp, J. A. [MTA-PTE High-Field Terahertz Research Group, Ifjúság ú. 6, 7624 Pécs (Hungary); Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, 7624 Pécs (Hungary); Hebling, J. [Institute of Physics, University of Pécs, Ifjúság ú. 6, 7624 Pécs (Hungary); MTA-PTE High-Field Terahertz Research Group, Ifjúság ú. 6, 7624 Pécs (Hungary); Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, 7624 Pécs (Hungary)

    2015-12-07

    An absorption-reduced planar waveguide structure is proposed for increasing the efficiency of terahertz (THz) pulse generation by optical rectification of femtosecond laser pulses with tilted-pulse-front in highly nonlinear materials with large absorption coefficient. The structure functions as waveguide both for the optical pump and the generated THz radiation. Most of the THz power propagates inside the cladding with low THz absorption, thereby reducing losses and leading to the enhancement of the THz generation efficiency by up to more than one order of magnitude, as compared with a bulk medium. Such a source can be suitable for highly efficient THz pulse generation pumped by low-energy (nJ-μJ) pulses at high (MHz) repetition rates delivered by compact fiber lasers.

  14. Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy.

    Science.gov (United States)

    Kitamura, Ryunosuke; Inagaki, Tetsuya; Tsuchikawa, Satoru

    2016-02-22

    The true absorption coefficient (μa) and reduced scattering coefficient (μ´s) of the cell wall substance in Douglas fir were determined using time-of-flight near infrared spectroscopy. Samples were saturated with hexane, toluene or quinolone to minimize the multiple reflections of light on the boundary between pore-cell wall substance in wood. μ´s exhibited its minimum value when the wood was saturated with toluene because the refractive index of toluene is close to that of the wood cell wall substance. The optical parameters of the wood cell wall substance calculated were μa = 0.030 mm(-1) and μ´s= 18.4 mm(-1). Monte Carlo simulations using these values were in good agreement with the measured time-resolved transmittance profiles.

  15. Linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: Effects of hydrostatic pressure and aluminum concentration

    International Nuclear Information System (INIS)

    Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Restrepo, R.L.; Duque, C.A.

    2013-01-01

    The linear and nonlinear intra-band optical absorption coefficients in GaAs/Ga 1−x Al x As two-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and aluminum concentration the energies of the ground (n=1,l=0) and the first excited state (n=2,l=1) have been found using the effective mass approximation and the transfer matrix formalism. The energies of these states and the corresponding threshold energy of the intra-band optical transitions are examined as a function of hydrostatic pressure and aluminum concentration for different sizes of the structure. We also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as functions of the incident photon energy for different values of hydrostatic pressure, aluminum concentration, sizes of the structure, and incident optical intensity. Its is found that the effects of the hydrostatic pressure and the aluminum concentration lead to a shifting of the resonant peaks of the intra-band optical spectrum. - Highlights: ► Linear and nonlinear intra-band absorption in quantum rings. ► Threshold energy strongly depends on the hydrostatic pressure. ► Threshold energy strongly depends on the stoichiometry and sizes of structure. ► Optical absorption is affected by the incident optical intensity.

  16. Subgap absorption in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, M.; Seager, C.H. (Sandia National Labs., Albuquerque, NM (USA)); McBranch, D.; Heeger, A.J. (California Univ., Santa Barbara, CA (USA)); Baker, G.L. (Bell Communications Research, Inc., Red Bank, NJ (USA))

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination. 11 refs., 4 figs.

  17. Effect of water vapour absorption on hydroxyl temperatures measured from Svalbard

    Directory of Open Access Journals (Sweden)

    J. M. Chadney

    2017-03-01

    Full Text Available We model absorption by atmospheric water vapour of hydroxyl airglow emission using the HIgh-resolution TRANsmission molecular absorption database (HITRAN2012. Transmission coefficients are provided as a function of water vapour column density for the strongest OH Meinel emission lines in the (8–3, (5–1, (9–4, (8–4, and (6–2 vibrational bands. These coefficients are used to determine precise OH(8–3 rotational temperatures from spectra measured by the High Throughput Imaging Echelle Spectrograph (HiTIES, installed at the Kjell Henriksen Observatory (KHO, Svalbard. The method described in this paper also allows us to estimate atmospheric water vapour content using the HiTIES instrument.

  18. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems

    Science.gov (United States)

    Hu, Haiyang; Wang, Qiang

    2018-07-01

    A new strategy for grouping spectral absorption coefficients, considering the influences of both temperature and species mole ratio inhomogeneities on correlated-k characteristics of the spectra of gas mixtures, has been deduced to match the calculation method of spectral overlap parameter used in multiscale multigroup wide band k-distribution model. By comparison with current spectral absorption coefficient grouping strategies, for which only the influence of temperature inhomogeneity on the correlated-k characteristics of spectra of single species was considered, the improvements in calculation accuracies resulting from the new grouping strategy were evaluated using a series of 0D cases in which radiance under 3-5-μm wave band emitted by hot combustion gas of hydrocarbon fuel was attenuated by atmosphere with quite different temperature and mole ratios of water vapor and carbon monoxide to carbon dioxide. Finally, evaluations are presented on the calculation of remote sensing thermal images of transonic hot jet exhausted from a chevron ejecting nozzle with solid wall cooling system.

  19. A practical relation between atomic numbers and alpha coefficients

    International Nuclear Information System (INIS)

    Lachance, G.R.

    1980-01-01

    A first approximation indicates that fundamental alpha coefficients for a given analyte vary as a function of the ratio of their respective atomic number raised to a power. This simple rule applies mainly at the limits (i.e., when the weight fraction of analyte i, Wsub(i) is of the order of 0.0 or 1.0) in cases of absorption and weak enhancement. The relation thus provides a means of generating coefficients for the system i-k from experimental data obtained on system i-j and a means of verifying experimental alphas, since arrays of coefficients must show a high degree of concordance. (author)

  20. Two-phonon absorption spectra in CuInSe2

    International Nuclear Information System (INIS)

    Sobotta, H.; Neumann, H.; Kissinger, W.; Riede, V.; Kuehn, G.

    1981-01-01

    An attempt was made to measure and to analyse phonon combination mode spectra of CuInSe 2 and in this way to determine the phonon mode frequencies unknown so far. Considering the absorption coefficient spectra, there are to well-pronounced peaks at 405 and 428 cm -1 at room temperature which are shifted to 412 and 433 cm -1 , respectively, at 105 K. Accounting for the fact that the absorption peaks at 405 and 428 cm -1 show the same temperature shift, it seems to be not unreasonable to assume that all the phonon modes participating in these absorption processes are characterized by the same temperature dependence of the mode frequencies. The corresponding mode Grueneisen parameters have been estimated using the thermal expansion coefficients for CuInSe 2 . Values of 1.7 to 2.0 were obtained being nearly of the same magnitude as the values of the high-energy zone-center modes in CuAlS 2 and CuGaS 2 derived from high-pressure Raman scattering studies

  1. The use of a reference absorber for absorption measurements in a reverberation chamber

    DEFF Research Database (Denmark)

    Nolan, Melanie; Vercammen, Martijn; Jeong, Cheol-Ho

    2014-01-01

    The statistical incidence absorption coefficient is measured in a reverberation room according to ISO 354. This absorption coefficient is referred to as Sabine absorption coefficient, which assumes the chambe r to be completely diffuse. It is known that the reproducibility of these results is poo...

  2. Measurement of mass attenuation coefficients of moderate-to-high atomic-number elements at low photon energies

    International Nuclear Information System (INIS)

    Tajuddin, A.A.; Chong, C.S.; Shukri, A.; Bradley, D.A.

    1995-01-01

    Mass attenuation coefficients for 12 selected moderate-to-high atomic-number elements have been obtained from good-geometry measurements made at five 241 Am photon energies of significant emission intensity. Particular interest focuses on measured values for photon energies close to absorption edges. Comparisons with renormalized cross-section predictions indicate agreement to within stated error limits for the majority of cases. Significant discrepancies (> 10%) are noted for Ta at 17.8 and 26.3 keV and W at 59.5 keV. Some support for a discrepancy between measurement and theory for W in the region of 60 keV is found in the reported measurements of others. (author)

  3. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al_3Ni_2@Al nanoparticles as a high microwave absorption material

    International Nuclear Information System (INIS)

    Pang, Yu; Xie, Xiubo; Li, Da; Chou, Wusheng; Liu, Tong

    2017-01-01

    The Al_3Ni_2@Al nanoparticles (NPs) were prepared from Ni_4_5Al_5_5 master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m"2/g and big pore volume of 0.507 cc/g. The saturation magnetization (M_S) and coercivity (H_C) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of −86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤−10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance. - Graphical abstract: The microporous Ni/NiO nanoparticles prepared by chemically dealloying Al_3Ni_2@Al NPs exhibit high microwave absorption intensity (−86.9 dB) and wide absorption bandwidth (2.6 GHz for RC≤−10 dB). - Highlights: • Microporous Ni/NiO nanoparticals were prepared by chemically dealloying method. • They possessed micropores of 0.7–1.6 nm with a surface area of 69.5 m"2/g. • They showed high microwave absorption intensity and wide absorption bandwidth. • Microwave absorption mechanism was explained by micropore and core/shell structures.

  4. Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry

    International Nuclear Information System (INIS)

    Li Jingsong; Durry, Georges; Cousin, Julien; Joly, Lilian; Parvitte, Bertrand; Zeninari, Virginie

    2010-01-01

    The self-broadening coefficients of acetylene at room temperature have been measured for 10 lines in the P branch of the ν 1 +ν 3 (Σ u + )-0(Σ g + ) bands of 12 C 2 H 2 and 13 C 12 CH 2 near 1.533 μm, using a high resolution tunable diode laser spectrometer developed for the Martian space mission PHOBOS-Grunt. The collisional widths are obtained by fitting each recorded line with the Voigt profile as well as the Rautian profile accounting for the collisional Dicke narrowing effect. The standard Voigt model provides slightly smaller broadening coefficients than the Rautian model. Our data are thoroughly compared to the main atmospheric molecule database HITRAN and previous values in various bands of acetylene. Moreover, it is worth noting that a large number of new transitions not listed in the latest HITRAN08 were measured and identified for the first time.

  5. Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor

    Science.gov (United States)

    Fukutomi, Daichi; Ishii, Katsunori; Awazu, Kunio

    2016-04-01

    The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.

  6. Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles

    International Nuclear Information System (INIS)

    Liberman, V.; Sworin, M.; Kingsborough, R. P.; Geurtsen, G. P.; Rothschild, M.

    2013-01-01

    Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above ∼50 MW/cm 2 . Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficients for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.

  7. Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan.

    Science.gov (United States)

    Ferrero, L; Mocnik, G; Ferrini, B S; Perrone, M G; Sangiorgi, G; Bolzacchini, E

    2011-06-15

    Vertical profiles of aerosol number-size distribution and black carbon (BC) concentration were measured between ground-level and 500m AGL over Milan. A tethered balloon was fitted with an instrumentation package consisting of the newly-developed micro-Aethalometer (microAeth® Model AE51, Magee Scientific, USA), an optical particle counter, and a portable meteorological station. At the same time, PM(2.5) samples were collected both at ground-level and at a high altitude sampling site, enabling particle chemical composition to be determined. Vertical profiles and PM(2.5) data were collected both within and above the mixing layer. Absorption coefficient (b(abs)) profiles were calculated from the Aethalometer data: in order to do so, an optical enhancement factor (C), accounting for multiple light-scattering within the filter of the new microAeth® Model AE51, was determined for the first time. The value of this parameter C (2.05±0.03 at λ=880nm) was calculated by comparing the Aethalometer attenuation coefficient and aerosol optical properties determined from OPC data along vertical profiles. Mie calculations were applied to the OPC number-size distribution data, and the aerosol refractive index was calculated using the effective medium approximation applied to aerosol chemical composition. The results compare well with AERONET data. The BC and b(abs) profiles showed a sharp decrease at the mixing height (MH), and fairly constant values of b(abs) and BC were found above the MH, representing 17±2% of those values measured within the mixing layer. The BC fraction of aerosol volume was found to be lower above the MH: 48±8% of the corresponding ground-level values. A statistical mean profile was calculated, both for BC and b(abs), to better describe their behaviour; the model enabled us to compute their average behaviour as a function of height, thus laying the foundations for valid parametrizations of vertical profile data which can be useful in both remote sensing

  8. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.K. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India)

    2013-05-15

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.

  9. Ion competition effects on the selective absorption of radionuclides by komatsuna (Brassica rapa var. perviridis)

    International Nuclear Information System (INIS)

    Ambe, S.; Shinonaga, T.; Ozaki, T.; Enomoto, S.; Yasuda, H.; Uchida, S.

    1999-01-01

    The selective absorption coefficient, which is a parameter of an uptake model of radionuclides by plants, was determined for various radionuclides by a multitracer technique. Komatsuna, Brassica rapa var. perviridis, was hydroponically cultivated in a nutrient solution containing a multitracer for 1 day. Nutrient concentration dependence of the selective absorption coefficient of various elements from Be to Re was obtained separately for leaves and roots. The selective absorption coefficients of these elements were, in general, found to decrease with an increase in the concentration of nutrient solutions. Regression equations of the power function for the selective absorption coefficients and the concentration of nutrient solutions were obtained for the leaves and roots. The effects of photon flux and growth stage of plants on the selective absorption coefficients were also studied. It was found that the photon flux influenced the accumulation of radionuclides in the roots but had no significant effect on the selective absorption coefficients for the leaves in 1-day cultivation with the multitracer. The selective absorption coefficients of Mn and Zn in the leaves of the plants at the development stage were higher than those at the maturation stage. For the other elements, no significant effects of the growth stage on the selective absorption coefficients were observed. (author)

  10. Tuning the nonlinear optical absorption in Au/BaTiO3 nanocomposites with gold nanoparticle concentration

    Science.gov (United States)

    Bijeesh, M. M.; Shakhi, P. K.; Varier, Geetha K.; Nandakumar, P.

    2018-06-01

    We report on the nonlinear optical absorption coefficient of Au/BaTiO3 nanocomposite films and its dependence on gold nanoparticle concentration. Au/BaTiO3 nanocomposite films with different molar ratio of Au/Ba are prepared by sol-gel technique and characterized by X-ray diffraction, UV Visible absorption spectroscopy and high resolution transmission electron microscopy. An open aperture Z-scan technique is employed to study the third order nonlinear optical properties of Au/BaTiO3 thin films. An Nd:YAG laser operating at 532 nm wavelength having a pulse width of 5 ns is used for the measurements. The two-photon absorption coefficient of the films increases linearly with gold nanoparticle concentration and significant enhancement of nonlinear optical absorption is observed. This ability to fine tune the nonlinear optical coefficients of Au/BaTiO3 films would be handy in optical device applications.

  11. Sound absorption study on acoustic panel from kapok fiber and egg tray

    Science.gov (United States)

    Kaamin, Masiri; Mahir, Nurul Syazwani Mohd; Kadir, Aslila Abd; Hamid, Nor Baizura; Mokhtar, Mardiha; Ngadiman, Norhayati

    2017-12-01

    Noise also known as a sound, especially one that is loud or unpleasant or that causes disruption. The level of noise can be reduced by using sound absorption panel. Currently, the market produces sound absorption panel, which use synthetic fibers that can cause harmful effects to the health of consumers. An awareness of using natural fibers from natural materials gets attention of some parties to use it as a sound absorbing material. Therefore, this study was conducted to investigate the potential of sound absorption panel using egg trays and kapok fibers. The test involved in this study was impedance tube test which aims to get sound absorption coefficient (SAC). The results showed that there was good sound absorption at low frequency from 0 Hz up to 900 Hz where the maximum absorption coefficient was 0.950 while the maximum absorption at high frequencies was 0.799. Through the noise reduction coefficient (NRC), the material produced NRC of 0.57 indicates that the materials are very absorbing. In addition, the reverberation room test was carried out to get the value of reverberation time (RT) in unit seconds. Overall this panel showed good results at low frequencies between 0 Hz up to 1500 Hz. In that range of frequency, the maximum reverberation time for the panel was 3.784 seconds compared to the maximum reverberation time for an empty room was 5.798 seconds. This study indicated that kapok fiber and egg tray as the material of absorption panel has a potential as environmental and cheap products in absorbing sound at low frequency.

  12. Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs

    DEFF Research Database (Denmark)

    Dankowski, S. U.; Streb, D.; Ruff, M.

    1996-01-01

    coefficients at the band gap are twice as high as for high temperature grown materials. By annealing the samples, we obtained a drastic reduced absorption coefficient below as well as above the band gap. We observed absorption changes up to 17 000 cm(-1) for LT-GaAs and 9000 cm(-1) for LT-AlGaAs taking place......Room temperature absorption spectra of low temperature molecular beam epitaxy grown GaAs (LT-GaAs) and AlGaAs (LT-AlGaAs) are reported. We performed measurements in an extended spectral range from 0.8 eV to photon energies of 2.8 eV far above the band gap. For as-grown LT-materials, the absorption...

  13. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).

    Science.gov (United States)

    Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio

    2015-12-30

    An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.

  14. Measurement of polarization dependence of two-photon absorption coefficient in InP using extended Z-scan technique for thick materials

    Science.gov (United States)

    Oishi, Masaki; Shinozaki, Tomohisa; Hara, Hikaru; Yamamoto, Kazunuki; Matsusue, Toshio; Bando, Hiroyuki

    2018-03-01

    The two-photon absorption coefficient β in InP has been measured in the wavelength range of 1640 to 1800 nm by the Z-scan technique in relatively thick materials. The values of β have been evaluated from the fit to the equation including the spatial and temporal profiles of the focused Gaussian beam. The polarization dependence of β has also been measured. The dependence has been expressed very well by the expression of β with the imaginary part of the third-order nonlinear susceptibility tensor χ(3).

  15. Optical absorption and Faraday rotation in spin doped Cd1-xHgxSe : Mn crystals

    NARCIS (Netherlands)

    Savchuk, AI; Paranchich, SY; Paranchich, LD; Romanyuk, OS; Andriychuk, MD; Nikitin, PI; Tomlinson, RD; Hill, AE; Pilkington, RD

    1998-01-01

    Optical absorption spectra and the Faraday effect in crystals of Cd1-xHgxSe : Mn have been studied. The studied samples have been characterized abrupt absorption edge and transparency region with high transmission coefficient. The measured values of Verdet constant were considerably larger than in

  16. Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space

    Science.gov (United States)

    Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.

    2013-02-01

    A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows the separation of colored detrital matter (CDM) into CDOM and non-algal particles (NAP) through the determination of NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, which were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and coastal waters, respectively. A previous paper (Matsuoka et al., 2012) showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption in our study area (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  17. Aerosol absorption coefficient and Equivalent Black Carbon by parallel operation of AE31 and AE33 aethalometers at the Zeppelin station, Ny Ålesund, Svalbard

    Science.gov (United States)

    Eleftheriadis, Konstantinos; Kalogridis, Athina-Cerise; Vratolis, Sterios; Fiebig, Markus

    2016-04-01

    Light absorbing carbon in atmospheric aerosol plays a critical role in radiative forcing and climate change. Despite the long term measurements across the Arctic, comparing data obtained by a variety of methods across stations requires caution. A method for extracting the aerosol absorption coefficient from data obtained over the decades by filter based instrument is still under development. An IASOA Aerosol working group has been initiated to address this and other cross-site aerosol comparison opportunities. Continuous ambient measurements of EBC/light attenuation by means of a Magee Sci. AE-31 aethalometer operating at the Zeppelinfjellet station (474 m asl; 78°54'N, 11°53'E), Ny Ålesund, Svalbard, have been available since 2001 (Eleftheriadis et al, 2009), while a new aethalometer model (AE33, Drinovec et al, 2014) has been installed to operate in parallel from the same inlet since June 2015. Measurements are recorded by a Labview routine collecting all available parameters reported by the two instrument via RS232 protocol. Data are reported at 1 and 10 minute intervals as averages for EBC (μg m-3) and aerosol absorption coefficients (Mm-1) by means of routine designed to report Near Real Time NRT data at the EBAS WDCA database (ebas.nilu.no) Results for the first 6 month period are reported here in an attempt to evaluate comparative performance of the two instruments in terms of their response with respect to the variable aerosol load of light absorbing carbon during the warm and cold seasons found in the high arctic. The application of available conversion schemes for obtaining the absorption coefficient by the two instruments is found to demonstrate a marked difference in their output. During clean periods of low aerosol load (EBC origin was also conducted. Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A. The "dual-spot" Aethalometer: an

  18. Hopping absorption edge in silicon inversion layers

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1983-09-01

    The low frequency gap observed in the absorption spectrum of silicon inversion layers is related to the AC variable range hopping. The frequency dependence of the absorption coefficient is calculated. (author)

  19. Absorptive form factors for high-energy electron diffraction

    International Nuclear Information System (INIS)

    Bird, D.M.; King, Q.A.

    1990-01-01

    The thermal diffuse scattering contribution to the absorptive potential in high-energy electron diffraction is calculated in the form of an absorptive contribution to the atomic form factor. To do this, the Einstein model of lattice vibrations is used, with isotropic Debye-Waller factors. The absorptive form factors are calculated as a function of scattering vector s and temperature factor M on a grid which enables polynomial interpolation of the results to be accurate to better than 2% for much of the ranges 0≤Ms 2 ≤6 and 0≤M≤2 A 2 . The computed values, together with an interpolation routine, have been incorporated into a Fortran subroutine which calculates both the real and absorptive form factors for 54 atomic species. (orig.)

  20. An effective neodimium segregation coefficient in neodimium-doped yttrium-aluminum-garnet crystal growth by pulling method

    International Nuclear Information System (INIS)

    Shiroki, Ken-ichi; Kuwano, Yasuhiko

    1978-01-01

    Effective Nd segregation coefficient in the Nd:YAG (Nd-doped Y 3 Al 5 O 12 ) crystal growth by pulling method was determined precisely over 0 -- 1.3 atom% Nd concentration range at a 0.6 mm hr -1 growth rate. Two Nd:YAG crystals (-- 20 g) were grown from a large melt (-- 1 kg). Neodymium concentrations in the crystals and residual melts were estimated by fluorescent X-ray analysis, and a value of 0.21 was obtained as the effective segregation coefficient. Next, the optical absorption coefficient of Nd:YAG crystal at 5889 A absorption peak was measured in order to analyze a small specimen for Nd by optical absorption measurements. The optical absorption coefficient of 0.97 mm -1 .atom% -1 was determined in this way. The Nd concentrations, calculated by the segregation coefficient, agreed well with those obtained by optical absorption measurements at 5889 A for six successively grown Nd:YAG crystals. Therefore, the obtained segregation coefficient, 0.21, was confirmed as a reliable value for the Nd:YAG crystal growth by the pulling method. (auth.)

  1. Exciton molecule in semiconductors by two-photon absorption

    International Nuclear Information System (INIS)

    Arya, K.; Hassan, A.R.

    1976-07-01

    Direct creation of bi-exciton states by two-photon absorption in direct gap semiconductors is investigated theoretically. A numerical application to the case of CuCl shows that the two-photon absorption coefficient for bi-excitonic transitions is larger than that for two-photon interband transitions by three orders of magnitude. It becomes comparable to that for one-photon excitonic transitions for available laser intensities. The main contribution to this enhancement of the absorption coefficient for the transitions to the bi-exciton states is found to be from the resonance effect

  2. Development and comparison of different advanced absorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Arh, S; Gaspersic, B [Faculty of Mechanical Engineering, Ljubjana (YU)

    1990-01-01

    A method for the calculation of the coefficient of performance for any absorption cycle is described. This method was used for the evaluation of different advanced absorption cycles working between four temperature and two or three pressure levels. Similar cycles were compared in the same temperature range with regard to the coefficient of performance, exergy efficiency and two working fluid pairs, NH{sub 3}-H{sub 2}O and H{sub 2}O-LiBr. Cycles and numerical results are presented and a computer-aided absorption cycle development system described. (author).

  3. Linear and nonlinear optical absorption coefficients in GaAs/Ga{sub 1-x}Al{sub x}As concentric double quantum rings: Effects of hydrostatic pressure and aluminum concentration

    Energy Technology Data Exchange (ETDEWEB)

    Baghramyan, H.M. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Barseghyan, M.G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Escuela de Ingenieria de Antioquia, AA 7516 Medellin (Colombia); Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)

    2013-02-15

    The linear and nonlinear intra-band optical absorption coefficients in GaAs/Ga{sub 1-x}Al{sub x}As two-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and aluminum concentration the energies of the ground (n=1,l=0) and the first excited state (n=2,l=1) have been found using the effective mass approximation and the transfer matrix formalism. The energies of these states and the corresponding threshold energy of the intra-band optical transitions are examined as a function of hydrostatic pressure and aluminum concentration for different sizes of the structure. We also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as functions of the incident photon energy for different values of hydrostatic pressure, aluminum concentration, sizes of the structure, and incident optical intensity. Its is found that the effects of the hydrostatic pressure and the aluminum concentration lead to a shifting of the resonant peaks of the intra-band optical spectrum. - Highlights: Black-Right-Pointing-Pointer Linear and nonlinear intra-band absorption in quantum rings. Black-Right-Pointing-Pointer Threshold energy strongly depends on the hydrostatic pressure. Black-Right-Pointing-Pointer Threshold energy strongly depends on the stoichiometry and sizes of structure. Black-Right-Pointing-Pointer Optical absorption is affected by the incident optical intensity.

  4. Spectral effects on some physical coefficients of x-Ray interaction with materials of low atomic number

    International Nuclear Information System (INIS)

    EL-Kazzaz, S.A.; Youssef, M.; EL-Hadad, S.; and EL-Nadi, L.M.

    1988-01-01

    X-ray spectra were measured before and after passing through some materials of medical importance applying X-ray diffraction. The mass absorption coefficients of these materials were determined at X-ray peak voltages 27, 30 and 42 kV-p making use the measured spectrum and also by using the direct beam absorption. It has been found that the mass absorption coefficients calculated from the X-ray spectral distribution analysis are in general lower than those obtained considering the direct beam method. From the study of the atomic number and energy dependence of the mass absorption coefficients it has been found that the dependence of the coefficients calculated from the spectral distribution is good agreement with the previously studied data for monoenergetic x-ray beam. Also the roentgen - to - Rad conversion factors were determined at the different used energies and materials. The value of the mass absorption coefficients calculated from the spectral distribution is recommended for use in dose calculation

  5. Phytoplankton absorption predicts patterns in primary productivity in Australian coastal shelf waters

    Science.gov (United States)

    Robinson, C. M.; Cherukuru, N.; Hardman-Mountford, N. J.; Everett, J. D.; McLaughlin, M. J.; Davies, K. P.; Van Dongen-Vogels, V.; Ralph, P. J.; Doblin, M. A.

    2017-06-01

    The phytoplankton absorption coefficient (aPHY) has been suggested as a suitable alternate first order predictor of net primary productivity (NPP). We compiled a dataset of surface bio-optical properties and phytoplankton NPP measurements in coastal waters around Australia to examine the utility of an in-situ absorption model to estimate NPP. The magnitude of surface NPP (0.20-19.3 mmol C m-3 d-1) across sites was largely driven by phytoplankton biomass, with higher rates being attributed to the microplankton (>20 μm) size class. The phytoplankton absorption coefficient aPHY for PAR (photosynthetically active radiation; āPHY)) ranged from 0.003 to 0.073 m-1, influenced by changes in phytoplankton community composition, physiology and environmental conditions. The aPHY coefficient also reflected changes in NPP and the absorption model-derived NPP could explain 73% of the variability in measured surface NPP (n = 41; RMSE = 2.49). The absorption model was applied to two contrasting coastal locations to examine NPP dynamics: a high chlorophyll-high variation (HCHV; Port Hacking National Reference Station) and moderate chlorophyll-low variation (MCLV; Yongala National Reference Station) location in eastern Australia using the GIOP-DC satellite aPHY product. Mean daily NPP rates between 2003 and 2015 were higher at the HCHV site (1.71 ± 0.03 mmol C m-3 d-1) with the annual maximum NPP occurring during the austral winter. In contrast, the MCLV site annual NPP peak occurred during the austral wet season and had lower mean daily NPP (1.43 ± 0.03 mmol C m-3 d-1) across the time-series. An absorption-based model to estimate NPP is a promising approach for exploring the spatio-temporal dynamics in phytoplankton NPP around the Australian continental shelf.

  6. Determination of total sulfur in agricultural samples by high-resolution continuum source flame molecular absorption spectrometry.

    Science.gov (United States)

    Virgilio, Alex; Raposo, Jorge L; Cardoso, Arnaldo A; Nóbrega, Joaquim A; Gomes Neto, José A

    2011-03-23

    The usefulness of molecular absorption was investigated for the determination of total sulfur (S) in agricultural samples by high-resolution continuum source flame molecular absorption spectrometry. The lines for CS at 257.595, 257.958, and 258.056 nm and for SH at 323.658, 324.064, and 327.990 nm were evaluated. Figures of merit, such as linear dynamic range, sensitivity, linear correlation, characteristic concentration, limit of detection, and precision, were established. For selected CS lines, wavelength-integrated absorbance equivalent to 3 pixels, analytical curves in the 100-2500 mg L(-1) (257.595 nm), 250-2000 mg L(-1) (257.958 nm), and 250-5000 mg L(-1) (258.056 nm) ranges with a linear correlation coefficient better than 0.9980 were obtained. Results were in agreement at a 95% confidence level (paired t test) with those obtained by gravimetry. Recoveries of S in fungicide and fertilizer samples were within the 84-109% range, and the relative standard deviation (n=12) was typically <5%.

  7. Gold analysis by the gamma absorption technique

    International Nuclear Information System (INIS)

    Kurtoglu, Arzu; Tugrul, A.B.

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement

  8. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering.

    Science.gov (United States)

    Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20  mm-1 at reduced scattering coefficients of 1 and 11.5  mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime

  9. Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for Southern Beaufort Sea (Canadian Arctic) waters: application to deriving concentrations of dissolved organic carbon from space

    Science.gov (United States)

    Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.

    2012-10-01

    A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for Southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows to separate colored detrital matter (CDM) into CDOM and non-algal particles (NAP) by determining NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, that were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and turbid waters, respectively. In situ measurements showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the Southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  10. Estimating absorption coefficients of colored dissolved organic matter (CDOM using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space

    Directory of Open Access Journals (Sweden)

    A. Matsuoka

    2013-02-01

    Full Text Available A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM, has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM was developed for southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows the separation of colored detrital matter (CDM into CDOM and non-algal particles (NAP through the determination of NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, which were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and coastal waters, respectively. A previous paper (Matsuoka et al., 2012 showed that dissolved organic carbon (DOC concentrations were tightly correlated with CDOM absorption in our study area (r2 = 0.97. By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  11. High accuracy experimental determination of copper and zinc mass attenuation coefficients in the 100 eV to 30 keV photon energy range

    Science.gov (United States)

    Ménesguen, Y.; Gerlach, M.; Pollakowski, B.; Unterumsberger, R.; Haschke, M.; Beckhoff, B.; Lépy, M.-C.

    2016-02-01

    The knowledge of atomic fundamental parameters such as mass attenuation coefficients with low uncertainties, is of decisive importance in elemental quantification using x-ray fluorescence analysis techniques. Several databases are accessible and frequently used within a large community of users. These compilations are most often in good agreement for photon energies in the hard x-ray ranges. However, they significantly differ for low photon energies and around the absorption edges of any element. In a joint cooperation of the metrology institutes of France and Germany, mass attenuation coefficients of copper and zinc were determined experimentally in the photon energy range from 100 eV to 30 keV by independent approaches using monochromatized synchrotron radiation at SOLEIL (France) and BESSY II (Germany), respectively. The application of high-accuracy experimental techniques resulted in mass attenuation coefficient datasets determined with low uncertainties that are directly compared to existing databases. The novel datasets are expected to enhance the reliability of mass attenuation coefficients.

  12. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  13. Disorder-induced enhancement of indirect absorption in a GeSn photodetector grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Li, H.; Chang, C.; Cheng, H. H.; Sun, G.; Soref, R. A.

    2016-01-01

    We report an investigation on the absorption mechanism of a GeSn photodetector with 2.4% Sn composition in the active region. Responsivity is measured and absorption coefficient is calculated. Square root of absorption coefficient linearly depends on photon energy indicating an indirect transition. However, the absorption coefficient is found to be at least one order of magnitude higher than that of most other indirect materials, suggesting that the indirect optical absorption transition cannot be assisted only by phonon. Our analysis of absorption measurements by other groups on the same material system showed the values of absorption coefficient on the same order of magnitude. Our study reveals that the strong enhancement of absorption for the indirect optical transition is the result of alloy disorder from the incorporation of the much larger Sn atoms into the Ge lattice that are randomly distributed.

  14. Efficient Sub-Bandgap Light Absorption and Signal Amplification in Silicon Photodetectors

    Science.gov (United States)

    Liu, Yu-Hsin

    This thesis focuses on two areas in silicon photodetectors, the first being enhancing the sub-bandgap light absorption of IR wavelenghts in silicon, and the second being intrinsic signal amplification in silicon photodetectors. Both of these are achieved using heavily doped p-n junction devices which create localized states that relax the k-selection rule of indirect bandgap material. The probability of transitions between impurity band and the conduction/valence band would be much more efficient than the one between band-to-band transition. The waveguide-coupled epitaxial p-n photodetector was demonstrated for 1310 nm wavelength detection. Incorporated with the Franz-Keldysh effect and the quasi-confined epitaxial layer design, an absorption coefficient around 10 cm-1 has been measured and internal quantum efficiency nearly 100% at -2.5V. The absorption coefficient is calculated from the wave function of the electron and hole in p-n diode. The heavily doped impurity wave function can be formulated as a delta function, and the quasi-confined conduction band energy states, and the wave function on each level can be obtained from the Silvaco software. The calculated theoretical absorption coefficient increases with the increasing applied bias and the doping concentration, which matches the experimental results. To solve the issues of large excess noise and high operation bias for avalanche photodiodes based on impact ionization, I presented a detector using the Cycling Excitation Process (CEP) for signal amplification. This can be realized in a heavily doped and highly compensated Si p-n junction, showing ultra high gain about 3000 at very low bias (<4 V), and possessing an intrinsic, phonon-mediated regulation process to keep the device stable without any quenching device required in today's Geiger-mode avalanche detectors. The CEP can be formulated with the rate equations in conduction bands and impurity states. The gain expression, which is a function of the

  15. A Review: Characteristics of Noise Absorption Material

    Science.gov (United States)

    Amares, S.; Sujatmika, E.; Hong, T. W.; Durairaj, R.; Hamid, H. S. H. B.

    2017-10-01

    Noise is always treated as a nuisance to human and even noise pollution appears in the environmental causing discomfort. This also concerns the engineering design that tends to cultivate this noise propagation. Solution such as using material to absorb the sound have been widely used. The fundamental of the sound absorbing propagation, sound absorbing characteristics and its factors are minimally debated. Furthermore, the method in order to pertain sound absorbing related to the sound absorption coefficient is also limited, as many studies only contributes in result basis and very little in literature aspect. This paper revolves in providing better insight on the importance of sound absorption and the materials factors in obtaining the sound absorption coefficient.

  16. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    Science.gov (United States)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  17. Equivalent Black Carbon measurements and spectral analysis of absorption coefficient during a biomass burning episode in the city of Bogotá, Colombia.

    Science.gov (United States)

    Quirama, M.; Morales, R.

    2016-12-01

    Light-absorbing carbonaceous aerosol is recognized as a significant short lived climate pollutant that can contribute to direct and indirect radiative forcing. In urban environments, black carbon is an important contributor to the deterioration of local air quality. In this study, we report measurements of equivalent Black Carbon performed during the months of January, February, and March 2016 in the city of Bogotá, Colombia. During this period, a persistent condition of atmospheric stability lead to high concentrations of particulate matter throughout the city. During the month of February, the city was further impacted by a series of small-scale forest fires that took place on hills neighboring the city center. Equivalent Black Carbon (eBC) concentrations were monitored before, during, and after a mayor forest fire episode with a 7-wavelength Aethalometer. The monitoring instruments were located at a traffic impacted site, 18.3 km from the forest fire. To evaluate the contribution of biomass burning to the light-absorbing aerosol particle concentration, spectral analysis of the absorption coefficient of the sampled aerosol particles was performed. When the biomass burning plume directly impacted the monitoring station during the night of February 4, eBC concentrations of up to 40 µg/m3 were observed at nighttime. This concentration was significantly higher than average nighttime concentrations of eBC, observed to be 4 µg/m3 at the site. However, during the period most intensely affected by the biomass burning plume, the angstrom exponent computed between the 450nm and the 970 nm channel, was found to be close to 1. Angstrom exponent close to 1 is an indication that the contribution from traffic generated black carbon is dominant compared to the contribution of biomass burning. The data set collected during this period suggests that despite the significant contribution of the fresh biomass burning plume to the particulate matter concentration in the city, the

  18. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al{sub 3}Ni{sub 2}@Al nanoparticles as a high microwave absorption material

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yu; Xie, Xiubo; Li, Da [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191 (China); Chou, Wusheng [School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Liu, Tong, E-mail: tongliu@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191 (China)

    2017-03-15

    The Al{sub 3}Ni{sub 2}@Al nanoparticles (NPs) were prepared from Ni{sub 45}Al{sub 55} master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m{sup 2}/g and big pore volume of 0.507 cc/g. The saturation magnetization (M{sub S}) and coercivity (H{sub C}) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of −86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤−10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance. - Graphical abstract: The microporous Ni/NiO nanoparticles prepared by chemically dealloying Al{sub 3}Ni{sub 2}@Al NPs exhibit high microwave absorption intensity (−86.9 dB) and wide absorption bandwidth (2.6 GHz for RC≤−10 dB). - Highlights: • Microporous Ni/NiO nanoparticals were prepared by chemically dealloying method. • They possessed micropores of 0.7–1.6 nm with a surface area of 69.5 m{sup 2}/g. • They showed high microwave absorption intensity and wide absorption bandwidth. • Microwave absorption mechanism was explained by micropore and core/shell structures.

  19. UV laser long-path absorption spectroscopy

    Science.gov (United States)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  20. Characterization of light absorption by chromophoric dissolved organic matter (CDOM) in the upper layer of the Red Sea

    KAUST Repository

    Kheireddine, Malika; Ouhssain, Mustapha; Calleja, Maria Ll.; Moran, Xose Anxelu G.; Sarma, Y.V.B; Tiwari, Surya Prakash; Jones, Burton

    2018-01-01

    distribution of the absorption coefficient of CDOM. The spectral absorption coefficients were determined from 400nm to 740nm using a WETLabs ac-s hyper-spectral spectrophotometer. In general, we found a latitudinal gradient in the CDOM absorption coefficient

  1. A new method for the direct measurement of the energy absorption coefficient of gamma rays

    International Nuclear Information System (INIS)

    Bradley, D.A.; Chong, C.S.; Shukri, A.; Tajuddin, A.A.; Ghose, A.M.

    1988-01-01

    The most important primary interaction cross section of gamma radiation which is of interest in radiation dosimetry and health physics is the energy absorption coefficient μ en of the medium under study. Direct measurement of μ en is, however, difficult and recourse is t aken to theoretical computations for its estimation. In this study a new, simple and direct method for the determination of μ en is reported. The method is based on paraxial sphere transmission using a proportional-response gamma detector. The bremsstrahlung originating from photoelectrons in the absorbing medium and fluorescence radiations from shielding etc. have been suppressed by using suitable filters. The effects of nonparaxiality of finite sample thickness have been accounted for, using extrapolation procedures. The deviation from nonproportionality and other corrections have been shown to be small. The measured value of μ en for paraffin has been determined as (3.3+-0.2)x10 -3 m 2 /Kg. This compares favourably with the theoretically computed value of 3.35 x 10 -3 m 2 /Kg given by Hubbell et al [pt

  2. Absorption of water and lubricating oils into porous nylon

    Science.gov (United States)

    Bertrand, P. A.

    1995-01-01

    Oil and water absorption from air into sintered porous nylon can be described by infiltration into the pores of the material. This process can be modeled by a diffusion-like mechanism. For water absorption, we find a formal diffusion coefficient of 1.5 x 10(exp -4)sq cm/min when the nylon is initially dry. The diffusion coefficient is 4 x 10(exp -6)sq cm/min when the nylon is oil-impregnated prior to air exposure. In a 52% RH atmosphere, dry nylon absorbs 3% w/w water, and oil-impregnated nylon absorbs 0.6% w/w water. For oil absorption there are three steps: (1) surface absorption and infiltration into (2) larger and (3) smaller pores. Surface absorption is too fast to be measured in these experiments. The diffusion coefficient for the second step is 6 x 10(exp -4)sq cm/min for SRG-60 oil into dry nylon and 4 x 10(exp -4)sq cm/min for air-equilibrated nylon. The diffusion coefficient for the third step is about 1 x 10(exp -6)sq cm/min for both cases. The total amount of oil absorbed is 31% w/w. The interaction between water and nylon is not as strong as that between water and cotton-phenolic: oil can replace water, and only a small amount of water can enter previously oil-impregnated nylon.

  3. Effect of optical pumping on absorption spectra for the doppler broadened rubidium

    International Nuclear Information System (INIS)

    Shin, Seo Ro; Noh, Heung Ryoul

    2008-01-01

    The absorption of a laser beam in the Doppler broadened atomic vapor cell is one of the simplest problems in atomic physics. Although many reports on theoretical and experimental studies of linear absorption have been reported, the effect of optical pumping on the absorption coefficient has not been studied in detail. In this presentation, we present a theoretical and experimental study on linear absorption for the Doppler broadened rubidium vapor cell. The absorption coefficient of a σ"+"(or π)polarized laser beam was calculated as a function of the laser frequency for the various laser intensities. The calculated results were compared with the experimental results. Figure 1(a) shows the calculated absorption coefficient of the π polarized laser beam for the transition F"g"=1→F"e"=0,1,2 of the "87"Rb atom. The diameter of the laser beam was 3mm and the intensity was I=0 and I=0.1I"8"(I"8"=16.2W/m"2"). The peak values for various intensities are shown in Fig. 1(b). We found that the absorption coefficient for the transition from the lower hyperfine state decreased with the increased laser intensity, whereas that for the transition from the upper hyperfine state increased(decreased)for the σ"+"(π)polarized laser beam

  4. Specific absorption and backscatter coefficient signatures in southeastern Atlantic coastal waters

    Science.gov (United States)

    Bostater, Charles R., Jr.

    1998-12-01

    Measurements of natural water samples in the field and laboratory of hyperspectral signatures of total absorption and reflectance were obtained using long pathlength absorption systems (50 cm pathlength). Water was sampled in Indian River Lagoon, Banana River and Port Canaveral, Florida. Stations were also occupied in near coastal waters out to the edge of the Gulf Stream in the vicinity of Kennedy Space Center, Florida and estuarine waters along Port Royal Sound and along the Beaufort River tidal area in South Carolina. The measurements were utilized to calculate natural water specific absorption, total backscatter and specific backscatter optical signatures. The resulting optical cross section signatures suggest different models are needed for the different water types and that the common linear model may only appropriate for coastal and oceanic water types. Mean particle size estimates based on the optical cross section, suggest as expected, that particle size of oceanic particles are smaller than more turbid water types. The data discussed and presented are necessary for remote sensing applications of sensors as well as for development and inversion of remote sensing algorithms.

  5. Bent Electro-Absorption Modulator

    DEFF Research Database (Denmark)

    2002-01-01

    by applying a variable electric or electronmagnetic field. The modulation of the complex refractive index results in a modulation of the refractive index contrast and the absorption coefficient for the waveguide at the frequency of the light. By carefully adjusting the composition of the semiconducting...... components and the applied electric field in relation to the frequency of the modulated radiation, the bending losses (and possibly coupling losses) will provide extinction of light guided by the bent waveguide section. The refractive index contract may be modulated while keeping the absorption coefficient......The present invention relates to a method and a device for modulating optical signals based on modulating bending losses in bend, quantum well semiconductor waveguide sections. The complex refractive index of the optical active semiconducting components of the waveguide section is modulated...

  6. Characterization of light absorption by chromophoric dissolved organic matter (CDOM) in the upper layer of the Red Sea

    Science.gov (United States)

    Kheireddine, Malika; Ouhssain, Mustapha; Calleja, Maria Ll.; Morán, Xosé Anxelu G.; Sarma, Y. V. B.; Tiwari, Surya P.; Jones, Burton H.

    2018-03-01

    The absorption coefficient of chromophoric dissolved organic matter (CDOM) is a major variable used in developing robust bio-optical models and understanding biogeochemical processes. Over the last decade, the optical properties of CDOM in the open sea have been intensely studied. However, their variations in clear water are poorly documented, particularly in the Red Sea, owing to the absence of in situ measurements. We performed several cruises in the Red Sea to investigate the spatial distribution of the absorption coefficient of CDOM. The spectral absorption coefficients were determined from 400 nm to 740 nm using a WETLabs ac-s hyper-spectral spectrophotometer. In general, we found a latitudinal gradient in the CDOM absorption coefficient at 443 nm (aCDOM(443)) from south to north that is likely influenced by the exchange of water through the strait of Bab-el-Mandeb and the thermohaline circulation of the Red Sea. However, high aCDOM(443) values were observed in the northern Red Sea due to the existence of a sub-mesoscale feature that may induce an increase in phytoplankton production and lead to CDOM production. The aCDOM(443) covaried with the chlorophyll a concentration ([Chl a],) despite a high scatter. Furthermore, the aCDOM(443) for a given [Chl a] concentration was higher than those predicted by global ocean bio-optical models. This study advances our understanding of CDOM concentration in the Red Sea and may help improve the accuracy of the algorithms used to obtain CDOM absorption from ocean color.

  7. Characterization of light absorption by chromophoric dissolved organic matter (CDOM) in the upper layer of the Red Sea

    KAUST Repository

    Kheireddine, Malika

    2018-02-07

    The absorption coefficient of chromophoric dissolved organic matter (CDOM) is a major variable used in developing robust bio‐optical models and understanding biogeochemical processes. Over the last decade, the optical properties of CDOM in the open sea have been intensely studied. However, their variations in clear water are poorly documented, particularly in the Red Sea, owing to the absence of in situ measurements. We performed several cruises in the Red Sea to investigate the spatial distribution of the absorption coefficient of CDOM. The spectral absorption coefficients were determined from 400nm to 740nm using a WETLabs ac-s hyper-spectral spectrophotometer. In general, we found a latitudinal gradient in the CDOM absorption coefficient at 443nm (aCDOM(443)) from south to north that is likely influenced by the exchange of water through the strait of Bab-el-Mandeb and the thermohaline circulation of the Red Sea. However, high aCDOM(443) values were observed in the northern Red Sea due to the existence of a sub-mesoscale feature that may induce an increase in phytoplankton production and lead to CDOM production. The aCDOM(443) covaried with the chlorophyll a concentration ([Chl a],) despite a high scatter. Furthermore, the aCDOM(443) for a given [Chl a] concentration was higher than those predicted by global ocean bio-optical models. This study advances our understanding of CDOM concentration in the Red Sea and may help improve the accuracy of the algorithms used to obtain CDOM absorption from ocean color.

  8. Determination of the quasi-TE mode (in-plane) graphene linear absorption coefficient via integration with silicon-on-insulator racetrack cavity resonators.

    Science.gov (United States)

    Crowe, Iain F; Clark, Nicholas; Hussein, Siham; Towlson, Brian; Whittaker, Eric; Milosevic, Milan M; Gardes, Frederic Y; Mashanovich, Goran Z; Halsall, Matthew P; Vijayaraghaven, Aravind

    2014-07-28

    We examine the near-IR light-matter interaction for graphene integrated cavity ring resonators based on silicon-on-insulator (SOI) race-track waveguides. Fitting of the cavity resonances from quasi-TE mode transmission spectra reveal the real part of the effective refractive index for graphene, n(eff) = 2.23 ± 0.02 and linear absorption coefficient, α(gTE) = 0.11 ± 0.01dBμm(-1). The evanescent nature of the guided mode coupling to graphene at resonance depends strongly on the height of the graphene above the cavity, which places limits on the cavity length for optical sensing applications.

  9. Photoelectric absorption cross sections with variable abundances

    Science.gov (United States)

    Balucinska-Church, Monika; Mccammon, Dan

    1992-01-01

    Polynomial fit coefficients have been obtained for the energy dependences of the photoelectric absorption cross sections of 17 astrophysically important elements. These results allow the calculation of X-ray absorption in the energy range 0.03-10 keV in material with noncosmic abundances.

  10. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    International Nuclear Information System (INIS)

    Sakamoto, Yukio

    2005-01-01

    Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of these data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality factors to consider the consistency between radiation weighting factors and Q-L relationship. The effective dose conversion coefficients obtained in this work were in good agreement with those recently evaluated by using FLUKA code for photons and electrons with all energies, and neutrons and protons below 500 MeV. There were some discrepancy between two data owing to the difference of cross sections in the nuclear reaction models. The dose conversion coefficients of effective dose equivalents for high energy radiations based on Q-L relation in ICRP Publication 60 were evaluated only in this work. The previous comparison between effective dose and effective dose equivalent made it clear that the radiation weighting factors for high energy neutrons and protons were overestimated and the modification was required. (author)

  11. Harnessing Multiple Internal Reflections to Design Highly Absorptive Acoustic Metasurfaces

    Science.gov (United States)

    Shen, Chen; Cummer, Steven A.

    2018-05-01

    The rapid development of metasurfaces has enabled numerous intriguing applications with acoustically thin sheets. Here we report the theory and experimental realization of a nonresonant sound-absorbing strategy using metasurfaces by harnessing multiple internal reflections. We theoretically and numerically show that the higher-order diffraction of thin gradient-index metasurfaces is tied to multiple internal reflections inside the unit cells. Highly absorbing acoustic metasurfaces can be realized by enforcing multiple internal reflections together with a small amount of loss. A reflective gradient-index acoustic metasurface is designed based on the theory, and we further experimentally verify the performance using a three-dimensional printed prototype. Measurements show over 99% energy absorption at the peak frequency and a 95% energy absorption bandwidth of around 600 Hz. The proposed mechanism provides an alternative route for sound absorption without the necessity of high absorption of the individual unit cells.

  12. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials.

    Science.gov (United States)

    Chen, Min; Singh, Leena; Xu, Ningning; Singh, Ranjan; Zhang, Weili; Xie, Lijuan

    2017-06-26

    Terahertz sensing of highly absorptive aqueous solutions remains challenging due to strong absorption of water in the terahertz regime. Here, we experimentally demonstrate a cost-effective metamaterial-based sensor integrated with terahertz time-domain spectroscopy for highly absorptive water-methanol mixture sensing. This metamaterial has simple asymmetric wire structures that support multiple resonances including a fundamental Fano resonance and higher order dipolar resonance in the terahertz regime. Both the resonance modes have strong intensity in the transmission spectra which we exploit for detection of the highly absorptive water-methanol mixtures. The experimentally characterized sensitivities of the Fano and dipole resonances for the water-methanol mixtures are found to be 160 and 305 GHz/RIU, respectively. This method provides a robust route for metamaterial-assisted terahertz sensing of highly absorptive chemical and biochemical materials with multiple resonances and high accuracy.

  13. Brown carbon absorption in the red and near-infrared spectral region

    Science.gov (United States)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  14. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    Science.gov (United States)

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  15. Guideline for Adopting the Local Reaction Assumption for Porous Absorbers in Terms of Random Incidence Absorption Coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2011-01-01

    resistivity and the absorber thickness on the difference between the two surface reaction models are examined and discussed. For a porous absorber backed by a rigid surface, the assumption of local reaction always underestimates the random incidence absorption coefficient and the local reaction models give...... incidence acoustical characteristics of typical building elements made of porous materials assuming extended and local reaction. For each surface reaction, five well-established wave propagation models, the Delany-Bazley, Miki, Beranek, Allard-Champoux, and Biot model, are employed. Effects of the flow...... errors of less than 10% if the thickness exceeds 120 mm for a flow resistivity of 5000 Nm-4s. As the flow resistivity doubles, a decrease in the required thickness by 25 mm is observed to achieve the same amount of error. For an absorber backed by an air gap, the thickness ratio between the material...

  16. Seasonal variation in chromophoric dissolved organic matter and relationships among fluorescent components, absorption coefficients and dissolved organic carbon in the Bohai Sea, the Yellow Sea and the East China Sea

    Science.gov (United States)

    Zhu, Wen-Zhuo; Zhang, Hong-Hai; Zhang, Jing; Yang, Gui-Peng

    2018-04-01

    The absorption coefficient and fluorescent components of chromophoric dissolved organic matter (CDOM) in the Bohai Sea (BS), Yellow Sea (YS), and East China Sea (ECS) in spring and autumn were analyzed in this study. Excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC) identified three components, namely, humic-like C1, tyrosine-like C2 and tryptophan-like C3. The seasonal variations in the vertical patterns of the CDOM absorption coefficient (aCDOM(355)) and fluorescent components were influenced by the seasonal water mass except for the terrestrial input. The relationship between aCDOM(355) and dissolved organic matter (DOC) was attributed to their own mixing behavior. The correlation of the fluorescent components with DOC was disturbed by other non-conservative processes during the export of CDOM to the open ocean. The different chemical compositions and origins of DOC and CDOM led to variability in carbon-specific CDOM absorption (a*CDOM(355)) and fluorescent component ratios (ICn/IC1). The relationship between a*CDOM(355) and aCDOM(355) demonstrated that dissolved organic matter (DOM) in the BS, but not in the ECS, highly contributed non-absorbing DOC to the total DOC concentration. The photodegradation of dominant terrestrially derived CDOM in the ECS contributed to the positive relationship between a*CDOM(355) and ICn/IC1. By contrast, the abundant autochthonous CDOM in the YS was negatively correlated with ICn/IC1 in autumn. Our established box models showed that water exchange is a potentially important source of the aromatic components in the BS, YS, and ECS. Hence, the seasonal variations in water exchange might contribute to the variability of CDOM chemical composition in the BS, YS, and ECS, and significantly influence the structure and function of their ecosystems.

  17. A contribution of black and brown carbon to the aerosol light absorption

    Science.gov (United States)

    Kim, Sang-Woo; Cho, Chaeyoon; Jo, Duseong; Park, Rokjin

    2017-04-01

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols and is typically dominated by soot-like elemental carbon (EC). Organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC; Alexander et al., 2008). These two aerosols contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer, but most optical instruments that quantify light absorption are unable to distinguish one type of absorbing aerosol from another (Moosmüller et al. 2009). In this study, we separate total aerosol absorption from these two different light absorbers from co-located simultaneous in-situ measurements, such as Continuous Soot Monitoring System (COSMOS), Continuous Light Absorption Photometer (CLAP) and Sunset EC/OC analyzer, at Gosan climate observatory, Korea. We determine the mass absorption cross-section (MAC) of BC, and then estimate the contribution of BC and BrC on aerosol light absorption, together with a global 3-D chemical transport model (GEOS-Chem) simulation. At 565 nm wavelength, BC MAC is found to be about 5.4±2.8 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements during January-May 2012. This value is similar to those from Alexander et al. (2008; 4.3 ˜ 4.8 m2 g-1 at 550 nm) and Chung et al. (2012; 5.1 m2 g-1 at 520 nm), but slightly lower than Bond and Bergstrom (2006; 7.5±1.2 m2 g-1 at 550 nm). The COMOS BC mass concentration calculated with 5.4 m2 g-1 of BC MAC shows a good agreement with thermal EC concentration, with a good slope (1.1). Aerosol absorption coefficient and BC mass concentration from COSMOS, meanwhile, are approximately 25 ˜ 30 % lower than those of CLAP. This difference can be attributable to the contribution of volatile light-absorbing aerosols (i.e., BrC). The absorption coefficient of BrC, which is determined by the difference of

  18. Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites

    Science.gov (United States)

    Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2018-02-01

    This article investigates the electromagnetic absorption behaviours of carbon helical yarn fabric reinforced composites and manganese-zinc (Mn-Zn) ferrite particles loaded 3 phase fabric composites. A carbon helical yarn having stainless steel core was prepared and made into single jersey knitted fabric. The composite was prepared by sandwiching a fabric with polypropylene films and thermal pressed. The absorption values of helical yarn fabric composite was observed to be less in the C band region (4-8 GHz). For improving the absorption coefficients of composite, Mn-Zn ferrite particles were dispersed in the polypropylene (PP) composite. The ferrite loaded PP composites exhibited better permittivity and permeability values, hence the absorption loss of the composite was improved. The helical yarn fabric reinforced with Mn-Zn ferrite/PP composite showed larger absorption coefficients than virgin PP/fabric composite. The change in thermal stability and particle size distribution in the Mn-Zn ferrite/PP composite was also analyzed. At higher ferrite concentration, bimodal particle distribution was observed which increased the conductivity and shielding effectiveness (SE) of the composite. In addition, complex permittivity value was also increased for higher incident frequency (4-8 GHz). As the ferrite content increases, the dielectric loss and magnetic permeability of PP/ferrite increases due to increased magnetic loss. Hence, ferrite loaded PP composite showed the total SE of -14.2 dB with the absorption coefficients of 0.717. The S1C7 fabric composite having ferrite dispersion showed the better absorption loss and lower reflection coefficient of 14.2 dB and 0.345 respectively compared to virgin PP/helical yarn fabric composite. The increasing ferrite content (45 wt%) improved the absorption loss and total SE. Though, ferrite based fabric composite exhibits moderate absorptive shielding, it can be used as shielding panels in the electronic industries.

  19. On the absorption of a sound in helium 2

    International Nuclear Information System (INIS)

    Matveev, Yu.A.

    1977-01-01

    A theory is developed which describes the propagation of high frequency sound in helium 2 at low temperatures (T 15 atm.) pressures when the phonon energy spectrum becomes stable. The absorption and sound dispersion coefficients under these conditions are calculated. The dependence of the velocity of second sound on frequency is determined. The resonance properties of the solution obtained are discussed

  20. Coefficient of restitution of model repaired car body parts

    OpenAIRE

    D. Hadryś; M. Miros

    2008-01-01

    Purpose: The qualification of influence of model repaired car body parts on the value of coefficient of restitution and evaluation of impact energy absorption of model repaired car body parts.Design/methodology/approach: Investigation of plastic strain and coefficient of restitution of new and repaired model car body parts with using impact test machine for different impact energy.Findings: The results of investigations show that the value of coefficient of restitution changes with speed (ene...

  1. Absorption by Spinning Dust: A Contaminant for High-redshift 21 cm Observations

    Science.gov (United States)

    Draine, B. T.; Miralda-Escudé, Jordi

    2018-05-01

    Spinning dust grains in front of the bright Galactic synchrotron background can produce a weak absorption signal that could affect measurements of high-redshift 21 cm absorption. At frequencies near 80 MHz where the Experiment to Detect the Global EoR Signature (EDGES) has reported 21 cm absorption at z≈ 17, absorption could be produced by interstellar nanoparticles with radii a≈ 50 \\mathringA in the cold interstellar medium (ISM), with rotational temperature T ≈ 50 K. Atmospheric aerosols could contribute additional absorption. The strength of the absorption depends on the abundance of such grains and on their dipole moments, which are uncertain. The breadth of the absorption spectrum of spinning dust limits its possible impact on measurement of a relatively narrow 21 cm absorption feature.

  2. Sensitivity of light interaction computer model to the absorption properties of skin

    Science.gov (United States)

    Karsten, A. E.; Singh, A.

    2011-06-01

    Light based treatments offer major benefits to patients. Many of the light based treatments or diagnostic techniques need to penetrate the skin to reach the site of interest. Human skin is a highly scattering medium and the melanin in the epidermal layer of the skin is a major absorber of light in the visible and near infrared wavelength bands. The effect of increasing absorption in the epidermis is tested on skin simulating phantoms as well as on a computer model. Changing the absorption coefficient between 0.1 mm-1 and 1.0 mm-1 resulted in a decrease of light reaching 1 mm into the sample. Transmission through a 1 mm thick sample decreased from 48% to 13% and from 31% to 2% for the different scattering coefficients.

  3. Scattering and absorption of electromagnetic waves by a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Fabbri, R.

    1975-01-01

    The scattering and absorption of electromagnetic waves by a spherically symmetric nonrotating black hole is studied in the Schwarzschild background, by means of the known expansion of the modified Debye potentials in partial waves. The power reflection coefficients and the phase shifts of the partial waves are evaluated at both high and low frequencies. Then the scattering and absorption cross sections of the black hole are determined. It is shown that the black hole is almost unable to absorb electromagnetic waves when the wave length of the radiation is greater than the Schwarzschild radius

  4. Porous Graphene Microflowers for High-Performance Microwave Absorption

    Science.gov (United States)

    Chen, Chen; Xi, Jiabin; Zhou, Erzhen; Peng, Li; Chen, Zichen; Gao, Chao

    2018-06-01

    Graphene has shown great potential in microwave absorption (MA) owing to its high surface area, low density, tunable electrical conductivity and good chemical stability. To fully realize graphene's MA ability, the microstructure of graphene should be carefully addressed. Here we prepared graphene microflowers (Gmfs) with highly porous structure for high-performance MA filler material. The efficient absorption bandwidth (reflection loss ≤ -10 dB) reaches 5.59 GHz and the minimum reflection loss is up to -42.9 dB, showing significant increment compared with stacked graphene. Such performance is higher than most graphene-based materials in the literature. Besides, the low filling content (10 wt%) and low density (40-50 mg cm-3) are beneficial for the practical applications. Without compounding with magnetic materials or conductive polymers, Gmfs show outstanding MA performance with the aid of rational microstructure design. Furthermore, Gmfs exhibit advantages in facile processibility and large-scale production compared with other porous graphene materials including aerogels and foams.

  5. Drag power kite with very high lift coefficient

    NARCIS (Netherlands)

    Bauer, F.; Kennel, R.M.; Hackl, C.M.; Campagnolo, F.; Patt, M.; Schmehl, R.

    2018-01-01

    As an alternative to conventional wind turbines, this study considered kites with onboard wind turbines driven by a high airspeed due to crosswind flight (“drag power”). The hypothesis of this study was, that if the kite's lift coefficient is maximized, then the power, energy yield, allowed costs

  6. An in silico skin absorption model for fragrance materials.

    Science.gov (United States)

    Shen, Jie; Kromidas, Lambros; Schultz, Terry; Bhatia, Sneha

    2014-12-01

    Fragrance materials are widely used in cosmetics and other consumer products. The Research Institute for Fragrance Materials (RIFM) evaluates the safety of these ingredients and skin absorption is an important parameter in refining systemic exposure. Currently, RIFM's safety assessment process assumes 100% skin absorption when experimental data are lacking. This 100% absorption default is not supportable and alternate default values were proposed. This study aims to develop and validate a practical skin absorption model (SAM) specific for fragrance material. It estimates skin absorption based on the methodology proposed by Kroes et al. SAM uses three default absorption values based on the maximum flux (J(max)) - namely, 10%, 40%, and 80%. J(max) may be calculated by using QSAR models that determine octanol/water partition coefficient (K(ow)), water solubility (S) and permeability coefficient (K(p)). Each of these QSAR models was refined and a semi-quantitative mechanistic model workflow is presented. SAM was validated with a large fragrance-focused data set containing 131 materials. All resulted in predicted values fitting the three-tiered absorption scenario based on Jmax ranges. This conservative SAM may be applied when fragrance material lack skin absorption data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    International Nuclear Information System (INIS)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-01-01

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  8. On the Decrease of the Oceanic Drag Coefficient in High Winds

    Science.gov (United States)

    Donelan, Mark A.

    2018-02-01

    The sheltering coefficient - prefixing Jeffreys' concept of the exponential wave growth rate at a gas-liquid interface - is shown to be Reynolds number dependent from laboratory measurements of waves and Reynolds stresses. There are two turbulent flow regimes: wind speed range of 2.5 to 30 m/s where the drag coefficients increase with wind speed, and wind speed range of 30 to 50 m/s where sheltering/drag coefficients decrease/saturate with wind speed. By comparing model calculations of drag coefficients - using a fixed sheltering coefficient - with ocean observations over a wind speed range of 1 to 50 m/s a similar Reynolds number dependence of the oceanic sheltering coefficient is revealed. In consequence the drag coefficient is a function of Reynolds number and wave age, and not just wind speed as frequently assumed. The resulting decreasing drag coefficient above 30 m/s is shown to be critical in explaining the rapid intensification so prominent in the climatology of Atlantic hurricanes. The Reynolds number dependence of the sheltering coefficient, when employed in coupled models, should lead to significant improvements in the prediction of intensification and decay of tropical cyclones. A calculation of curvature at the wave crest suggests that at wind speeds above 56.15 m/s all waves-breaking or not-induce steady flow separation leading to a minimum in the drag coefficient. This is further evidence of the veracity of the observations of the oceanic drag coefficient at high winds.

  9. Sustainable Absorption Panels from Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    Ismail F.Z.

    2014-01-01

    Full Text Available Noise has become a serious environmental problem and there are demands for alternative sustainable materials which capable to reduce the noise level at various frequency ranges. Therefore, the aim of this research is to study the potential of turning the agricultural waste and waste paper into a sound absorption panel. For the purpose of this study, combination of two materials was under studied; coconut coir fibre from agriculture waste and shredded waste paper from the office. There were two main objective of the research; first is to develop absorption panels from coconut coir powder that available locally with a combination of shredded paper at different percentage of mixture. Second objective is to identify the absorption rate of the panels. The study encompasses the fabrication of the particle board using the coconut husk powder mix with shredded waste paper and using the gypsum powder as the binder for the two materials. Four acoustic panels of size 0.5m x 0.5m and 0.012 m thick were fabricated with different mix ratio; 25% of coconut coir powder mixed with 75% of shredded waste papers for sample 1, 50% both of the material for sample 2, 75% of coconut coir powder mixed with 25% of shredded waste paper for sample 3, and lastly 100% of coconut coir powder for sample 4. The absorption coefficient of the panels was tested in a reverberation chamber and in accordance with ISO 354:1985 standards. Based on the results, sample 1 gave the highest absorption coefficient compared to sample 2, 3 and 4. It can be concluded that the acoustic panel made from a mixture of 25% coconut coir powder with 75% shredded waste paper provided higher absorption coefficient compared to the performance of the other samples. This might be caused by the size of the coir powder which is very small, creating less void space in between the panel and thus causing it to absorb less sound. Since sound absorption is very much affected by the availability of void space of

  10. Absorption factor for cylindrical samples

    International Nuclear Information System (INIS)

    Sears, V.F.

    1984-01-01

    The absorption factor for the scattering of X-rays or neutrons in cylindrical samples is calculated by numerical integration for the case in which the absorption coefficients of the incident and scattered beams are not equal. An extensive table of values having an absolute accuracy of 10 -4 is given in a companion report [Sears (1983). Atomic Energy of Canada Limited, Report No. AECL-8176]. In the present paper an asymptotic expression is derived for the absorption factor which can be used with an error of less than 10 -3 for most cases of interest in both neutron inelastic scattering and neutron diffraction in crystals. (Auth.)

  11. Vacuum ultraviolet (VUV) absorption spectra of chromatin and its components

    International Nuclear Information System (INIS)

    Dodonova, N.Y.; Kiseleva, M.N.; Petrov, M.Y.; Tsyganenko, N.M.; Bubyakina, V.V.; Chikhirzhina, G.I.

    1984-01-01

    The electron absorption spectra of thin films of chromatin and chromatin components in the ultraviolet region (140-280 nm) were investigated. The absorption coefficients μ(lambda) of chromatin, nucleosomes with and without histone H1, total histones (TH), and DNA were compared. The spectra of nucleosomes differ from the sum-spectrum of DNA plus TH. The chromatin and nucleosome spectra are not similar in the spectral region of 190-160 nm. The lack of additivity of absorption coefficients at different wavelengths may be explained by different conformational changes of DNA, TH in nucleosomes and chromatin during the process of drying aqueous solutions for the preparation of thin films. The μ(lambda) values are useful for an estimate of the DNA and TH absorption in chromatin and nucleosomes in discussing UV and VUV irradiation damages. (Auth.)

  12. Temperature-dependent optical absorption of SrTiO3

    International Nuclear Information System (INIS)

    Kok, Dirk J.; Irmscher, Klaus; Naumann, Martin; Guguschev, Christo; Galazka, Zbigniew; Uecker, Reinhard

    2015-01-01

    The optical absorption edge and near infrared absorption of SrTiO 3 were measured at temperatures from 4 to 1703 K. The absorption edge decreases from 3.25 eV at 4 K to 1.8 eV at 1703 K and is extrapolated to approximately 1.2 eV at the melting point (2350 K). The transmission in the near IR decreases rapidly above 1400 K because of free carrier absorption and is about 50% of the room temperature value at 1673 K. The free carriers are generated by thermal excitation of electrons over the band gap and the formation of charged vacancies. The observed temperature-dependent infrared absorption can be well reproduced by a calculation based on simple models for the intrinsic free carrier concentration and the free carrier absorption coefficient. The measured red shift of the optical absorption edge and the rising free carrier absorption strongly narrow the spectral range of transmission and impede radiative heat transport through the crystal. These effects have to be considered in high temperature applications of SrTiO 3 -based devices, as the number of free carriers rises considerably, and in bulk crystal growth to avoid growth instabilities. Temperature dependent optical absorption edge of SrTiO 3 , measured, fitted, and extrapolated to the melting point. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  14. Subgap Absorption in Conjugated Polymers

    Science.gov (United States)

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  15. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    CERN Document Server

    Sakamoto, Y; Sato, O; Tanaka, S I; Tsuda, S; Yamaguchi, Y; Yoshizawa, N

    2003-01-01

    In the International Commission on Radiological Protection (ICRP) 1990 Recommendations, radiation weighting factors were introduced in the place of quality factors, the tissue weighting factors were revised, and effective doses and equivalent doses of each tissues and organs were defined as the protection quantities. Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of theses data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality fact...

  16. Determination of the Rb atomic number density in dense rubidium vapors by absorption measurements of Rb2 triplet bands

    International Nuclear Information System (INIS)

    Horvatic, Vlasta; Veza, Damir; Niemax, Kay; Vadla, Cedomil

    2008-01-01

    A simple and accurate way of determining atom number densities in dense rubidium vapors is presented. The method relies on the experimental finding that the reduced absorption coefficients of the Rb triplet satellite bands between 740 nm and 750 nm and the triplet diffuse band between 600 nm and 610 nm are not temperature dependent in the range between 600 K and 800 K. Therefore, the absolute values of the reduced absorption coefficients of these molecular bands can provide accurate information about atomic number density of the vapor. The rubidium absorption spectrum was measured by spatially resolved white-light absorption in overheated rubidium vapor generated in a heat pipe oven. The absolute values for the reduced absorption coefficients of the triplet bands were determined at lower vapor densities, by using an accurate expression for the reduced absorption coefficient in the quasistatic wing of the Rb D1 line, and measured triplet satellite bands to the resonance wing optical depth ratio. These triplet satellite band data were used to calibrate in absolute scale the reduced absorption coefficients of the triplet diffuse band at higher temperatures. The obtained values for the reduced absorption coefficient of these Rb molecular features can be used for accurate determination of rubidium atomic number densities in the range from about 5 x 10 16 cm -3 to 1 x 10 18 cm -3

  17. Absorption dynamics and delay time in complex potentials

    Science.gov (United States)

    Villavicencio, Jorge; Romo, Roberto; Hernández-Maldonado, Alberto

    2018-05-01

    The dynamics of absorption is analyzed by using an exactly solvable model that deals with an analytical solution to Schrödinger’s equation for cutoff initial plane waves incident on a complex absorbing potential. A dynamical absorption coefficient which allows us to explore the dynamical loss of particles from the transient to the stationary regime is derived. We find that the absorption process is characterized by the emission of a series of damped periodic pulses in time domain, associated with damped Rabi-type oscillations with a characteristic frequency, ω = (E + ε)/ℏ, where E is the energy of the incident waves and ‑ε is energy of the quasidiscrete state of the system induced by the absorptive part of the Hamiltonian; the width γ of this resonance governs the amplitude of the pulses. The resemblance of the time-dependent absorption coefficient with a real decay process is discussed, in particular the transition from exponential to nonexponential regimes, a well-known feature of quantum decay. We have also analyzed the effect of the absorptive part of the potential on the dynamical delay time, which behaves differently from the one observed in attractive real delta potentials, exhibiting two regimes: time advance and time delay.

  18. Determination of kinetic coefficients for proton-nucleus collisions at high energy

    International Nuclear Information System (INIS)

    Rizzato, C.M.

    1987-01-01

    From the effective proton dynamics, the approximations in the context of high energy collisions which lead to the Boltzmann equation, are established. From this equation, general expressions for the kinetic coefficients are deduced. Using a simple model, analytical expressions for kinetic coefficients are obtained. The importance of the effect of Pauli blocking is also shown. (author) [pt

  19. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)

    2012-05-15

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black

  20. Optical absorption of charged excitons in semiconducting carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2012-01-01

    In this article we examine the absorption coefficient of charged excitons in carbon nanotubes. We investigate the temperature and damping dependence of the absorption spectra. We show that the trion peak in the spectrum is asymmetric for temperatures greater than approximately 1 K whereas...

  1. Thin-film limit formalism applied to surface defect absorption.

    Science.gov (United States)

    Holovský, Jakub; Ballif, Christophe

    2014-12-15

    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.

  2. Transport coefficients in high-temperature ionized air flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  3. Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, J.P. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.

  4. Quasinormal modes, stability analysis and absorption cross section for 4-dimensional topological Lifshitz black hole

    International Nuclear Information System (INIS)

    Gonzalez, P.A.; Moncada, Felipe; Vasquez, Yerko

    2012-01-01

    We study scalar perturbations in the background of a topological Lifshitz black hole in four dimensions. We compute analytically the quasinormal modes and from these modes we show that topological Lifshitz black hole is stable. On the other hand, we compute the reflection and transmission coefficients and the absorption cross section and we show that there is a range of modes with high angular momentum which contributes to the absorption cross section in the low frequency limit. Furthermore, in this limit, we show that the absorption cross section decreases if the scalar field mass increases, for a real scalar field mass. (orig.)

  5. Quasinormal modes, stability analysis and absorption cross section for 4-dimensional topological Lifshitz black hole

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A. [Universidad Central de Chile, Escuela de Ingenieria Civil en Obras Civiles, Facultad de Ciencias Fisicas y Matematicas, Santiago (Chile); Universidad Diego Portales, Santiago (Chile); Moncada, Felipe; Vasquez, Yerko [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Temuco (Chile)

    2012-12-15

    We study scalar perturbations in the background of a topological Lifshitz black hole in four dimensions. We compute analytically the quasinormal modes and from these modes we show that topological Lifshitz black hole is stable. On the other hand, we compute the reflection and transmission coefficients and the absorption cross section and we show that there is a range of modes with high angular momentum which contributes to the absorption cross section in the low frequency limit. Furthermore, in this limit, we show that the absorption cross section decreases if the scalar field mass increases, for a real scalar field mass. (orig.)

  6. Optical absorptions of an exciton in a quantum ring: Effect of the repulsive core

    International Nuclear Information System (INIS)

    Xie, Wenfang

    2013-01-01

    We study the optical absorptions of an exciton in a quantum ring. The quantum ring is described as a circular quantum dot with a repulsive core. The advantage of our methodology is that one can investigate the influence of the repulsive core by varying two parameters in the confinement potential. The linear, third-order nonlinear and total optical absorption coefficients have been examined with the change of the confinement potential. The results show that the optical absorptions are strongly affected by the repulsive core. Moreover, the repulsive core can influence the oscillation in the resonant peak of the absorption coefficients.

  7. Laser absorption spectroscopy - Method for monitoring complex trace gas mixtures

    Science.gov (United States)

    Green, B. D.; Steinfeld, J. I.

    1976-01-01

    A frequency stabilized CO2 laser was used for accurate determinations of the absorption coefficients of various gases in the wavelength region from 9 to 11 microns. The gases investigated were representative of the types of contaminants expected to build up in recycled atmospheres. These absorption coefficients were then used in determining the presence and amount of the gases in prepared mixtures. The effect of interferences on the minimum detectable concentration of the gases was measured. The accuracies of various methods of solution were also evaluated.

  8. Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles

    Science.gov (United States)

    Miskevich, Alexander A.; Loiko, Valery A.

    2015-12-01

    Enhancement of the performance of photovoltaic cells through increasing light absorption due to optimization of an active layer is considered. The optimization consists in creation of particulate structure of active layer. The ordered monolayers and multilayers of submicron crystalline silicon (c-Si) spherical particles are examined. The quasicrystalline approximation (QCA) and the transfer matrix method (TMM) are used to calculate light absorption in the wavelength range from 0.28 μm to 1.12 μm. The integrated over the terrestial solar spectral irradiance "Global tilt" ASTM G173-03 absorption coefficient is calculated. In the wavelength range of small absorption index of c-Si (0.8-1.12 μm) the integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plane-parallel plate of the equivalent volume of material. In the overall considered range (0.28-1.12 μm) the enhancement factor up to ~1.45 for individual monolayer is observed. Maximum value of the spectral absorption coefficient approaches unity for multilayers consisting of large amount of sparse monolayers of small particles. Multilayers with variable concentration and size of particles in the monolayer sequences are considered. Absorption increasing by such gradient multilayers as compared to the non-gradient ones is illustrated. The considered structures are promising for creation of high efficiency thin-film solar cells.

  9. Experimental study on the sound absorption characteristics of continuously graded phononic crystals

    Directory of Open Access Journals (Sweden)

    X. H. Zhang

    2016-10-01

    Full Text Available Novel three-dimensional (3D continuously graded phononic crystals (CGPCs have been designed, and fabricated by 3D printing. Each of the CGPCs is an entity instead of a combination of several other samples, and the porosity distribution of the CGPC along the incident direction is nearly linear. The sound absorption characteristics of CGPCs were experimentally investigated and compared with those of uniform phononic crystals (UPCs and discretely stepped phononic crystals (DSPCs. Experimental results show that CGPCs demonstrate excellent sound absorption performance because of their continuously graded structures. CGPCs have higher sound absorption coefficients in the large frequency range and more sound absorption coefficient peaks in a specific frequency range than UPCs and DSPCs. In particular, the sound absorption coefficients of the CGPC with a porosity of 0.6 and thickness of 30 mm are higher than 0.56 when the frequency is 1350–6300 Hz and are all higher than 0.2 in the studied frequency range (1000–6300 Hz. CGPCs are expected to have potential application in noise control, especially in the broad frequency and low-frequency ranges.

  10. Optical gain coefficients of silicon: a theoretical study

    Science.gov (United States)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model is presented and an explicit formula is derived for calculating the optical gain coefficients of indirect band-gap semiconductors. This model is based on the second-order time-dependent perturbation theory of quantum mechanics by incorporating all the eight processes of photon/phonon emission and absorption between the band edges of the conduction and valence bands. Numerical calculation results are given for Si. The calculated absorption coefficients agree well with the existing fitting formula of experiment data with two modes of phonons: optical phonons with energy of 57.73 meV and acoustic phonons with energy of 18.27 meV near (but not exactly at) the zone edge of the X-point in the dispersion relation of phonons. These closely match with existing data of 57.5 meV transverse optical (TO) phonons at the X4-point and 18.6 meV transverse acoustic (TA) phonons at the X3-point of the zone edge. The calculated results show that the material optical gain of Si will overcome free-carrier absorption if the energy separation of quasi-Fermi levels between electrons and holes exceeds 1.15 eV.

  11. Spectral Dependence of the Scattering Coefficient in Case 1 and Case 2 Waters

    Science.gov (United States)

    Gould, Richard W., Jr.; Arnone, Robert A.; Martinolich, Paul M.

    1999-04-01

    An approximate linear relationship between the scattering coefficient and the wavelength of light in the visible is found in case 1 and case 2 waters. From this relationship, we estimate scattering at an unknown wavelength from scattering at a single measured wavelength. This approximation is based on measurements in a 1.5-m-thick surface layer collected with an AC9 instrument at 63 stations in the Arabian Sea, northern Gulf of Mexico, and coastal North Carolina. The light-scattering coefficient at 412 nm ranged from 0.2 to 15.1 m 1 in these waters, and the absorption coefficient at 412 nm ranged from 0.2 to 4.0 m 1 . A separate data set for 100 stations from Oceanside, California, and Chesapeake Bay, Virginia, was used to validate the relationship. Although the Oceanside waters were considerably different from the developmental data set (based on absorption-to-scattering ratios and single-scattering albedos), the average error between modeled and measured scattering values was 6.0% for the entire test data set over all wavelengths (without regard to sign). The slope of the spectral scattering relationship decreases progressively from high-scattering, turbid waters dominated by suspended sediments to lower-scattering, clear waters dominated by phytoplankton.

  12. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant

    2015-07-21

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  13. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P.; Bakr, Osman; Sargent, Edward H.

    2015-01-01

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  14. Derivation of linear attenuation coefficients from CT numbers for low-energy photons

    International Nuclear Information System (INIS)

    Watanabe, Y.

    1999-01-01

    One can estimate photon attenuation properties from the CT number. In a standard method one assumes that the linear attenuation coefficient is proportional to electron density and ignores its nonlinear dependence on atomic number. When the photon energy is lower than about 50 keV, such as for brachytherapy applications, however, photoelectric absorption and Rayleigh scattering become important. Hence the atomic number must be explicitly considered in estimating the linear attenuation coefficient. In this study we propose a method to more accurately estimate the linear attenuation coefficient of low-energy photons from CT numbers. We formulate an equation that relates the CT number to the electron density and the effective atomic number. We use a CT calibration phantom to determine unknown coefficients in the equation. The equation with a given CT number is then solved for the effective atomic number, which in turn is used to calculate the linear attenuation coefficient for low-energy photons. We use the CT phantom to test the new method. The method significantly improves the standard method in estimating the attenuation coefficient at low photon energies (20keV≤E≤40keV) for materials with high atomic numbers. (author)

  15. The empirical Gaia G-band extinction coefficient

    Science.gov (United States)

    Danielski, C.; Babusiaux, C.; Ruiz-Dern, L.; Sartoretti, P.; Arenou, F.

    2018-06-01

    Context. The first Gaia data release unlocked the access to photometric information for 1.1 billion sources in the G-band. Yet, given the high level of degeneracy between extinction and spectral energy distribution for large passbands such as the Gaia G-band, a correction for the interstellar reddening is needed in order to exploit Gaia data. Aims: The purpose of this manuscript is to provide the empirical estimation of the Gaia G-band extinction coefficient kG for both the red giants and main sequence stars in order to be able to exploit the first data release DR1. Methods: We selected two samples of single stars: one for the red giants and one for the main sequence. Both samples are the result of a cross-match between Gaia DR1 and 2MASS catalogues; they consist of high-quality photometry in the G-, J- and KS-bands. These samples were complemented by temperature and metallicity information retrieved from APOGEE DR13 and LAMOST DR2 surveys, respectively. We implemented a Markov chain Monte Carlo method where we used (G - KS)0 versus Teff and (J - KS)0 versus (G - KS)0, calibration relations to estimate the extinction coefficient kG and we quantify its corresponding confidence interval via bootstrap resampling. We tested our method on samples of red giants and main sequence stars, finding consistent solutions. Results: We present here the determination of the Gaia extinction coefficient through a completely empirical method. Furthermore we provide the scientific community with a formula for measuring the extinction coefficient as a function of stellar effective temperature, the intrinsic colour (G - KS)0, and absorption.

  16. High-Temperature Gas-Cooled Reactor Critical Experiment and its Application to Thorium Absorption Rates

    International Nuclear Information System (INIS)

    Bardes, R.G.; Brown, J.R.; Drake, M.K.; Fischer, P.U.; Pound, D.C.; Sampson, J.B.; Stewart, H.B.

    1964-01-01

    In developing the concept of the HTGR and its first prototype at Peach Bottom, General Atomic made the decision that a critical experiment was required to provide adequately certain necessary input data for the nuclear analysis. The specific needs of the nuclear design theory for input data relating to thorium absorptions led to an experimental design consisting of a central lattice-type critical assembly with surrounding buffer and driver regions. This type of assembly, in which the spectrum of interest can be established in the relatively small central lattice having a desired geometry, provides a useful tool for obtaining a variety of input data for nuclear analysis surveys of new concepts. The particular advantages of this approach over that of constructing a mock-up assembly will be discussed, as well as the role of the theory in determining what experiments are most useful and how these experiments are then used in verifying design techniques. Two relatively new techniques were developed for use in the lattice assembly. These were a reactivity oscillation technique for determining the thorium Doppler coefficient, and an activation technique for determining both the resonance integral of thorium dispersed in graphite and its temperature dependence (activation Doppler coefficient). The Doppler coefficient measurement by reactivity oscillation utilized the entire central fuel element in a technique which permitted heating this fuel element to 800°F and accurately subtracting experimentally the thermal-base effects, that is, those effects not contributing to the thorium resonance capture. Comparison of results with theory for a range of conditions shows excellent agreement. The measurement of the thorium resonance integral and its temperature dependence will be described. The technique developed for measuring resonance capture makes use of gold as the standard and vanadium as die material giving the 1/v absorption rate. This technique is dictated by the fact

  17. Ultra-Short Laser Absorption In Solid Targets

    International Nuclear Information System (INIS)

    Harfouche, A.; Bendib, A.

    2008-01-01

    With the rapid development and continuously improving technology of subpicosecond laser pulse generation, new interesting physical problems are now investigated. Among them the laser light absorption in solid targets. During the interaction with solid targets, high intensity laser pulses are absorbed by electrons in optical skin depths, leading to rapid ionization before that significant ablation of solid material takes place. The ultra-short laser is absorbed in the overdense plasma through the electron-ion collisions (normal skin effect) or collisionless mechanisms (anomalous skin effect or sheath inverse bremsstrahlung). These two regimes depend on the laser intensity, the plasma temperature and the ionization state Z. In this work we solve numerically the Fokker-Planck equation to compute the electron distribution function in the skin layer. In the second step we compute the surface impedance and we deduce the absorption coefficient.

  18. Electron cyclotron absorption in Tokamak plasmas in the presence of radial transport of particles

    International Nuclear Information System (INIS)

    Rosa, Paulo R. da S.; Ziebell, Luiz F.

    1998-01-01

    We use quasilinear theory to study effects of particle radial transport on the electron cyclotron absorption coefficient by a current carrying plasma, in a tokamak modelated as a plasma slab. Our numerical results indicate significant modification in the profile of the electron cyclotron absorption coefficient when transport is taken into account relative to the situation without transport. (author)

  19. Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin.

    Science.gov (United States)

    Khalil, Omar S; Yeh, Shu-Jen; Lowery, Michael G; Wu, Xiaomao; Hanna, Charles F; Kantor, Stanislaw; Jeng, Tzyy-Wen; Kanger, Johannes S; Bolt, Rene A; de Mul, Frits F

    2003-04-01

    We determine temperature effect on the absorption and reduced scattering coefficients (mu(a) and mu(s)(')) of human forearm skin. Optical and thermal simulation data suggest that mu( a) and mu(s)(') are determined within a temperature-controlled depth of approximately 2 mm. Cutaneous mu(s)(') change linearly with temperature. Change in mu(a) was complex and irreversible above body normal temperatures. Light penetration depth (delta) in skin increased on cooling, with considerable person-to-person variations. We attribute the effect of temperature on mu(s)(') to change in refractive index mismatch, and its effect on mu(a) to perfusion changes. The reversible temperature effect on mu (s)(' ) was maintained during more than 90 min. contact between skin and the measuring probe, where temperature was modulated between 38 and 22 degrees C for multiple cycles While temperature modulated mu(s)(' ) instantaneously and reversibly, mu(a) exhibited slower response time and consistent drift. There was a statistically significant upward drift in mu(a) and a mostly downward drift in mu( s)(') over the contact period. The drift in temperature-induced fractional change in mu(s)(') was less statistically significant than the drift in mu(s)('). Deltamu( s)(') values determined under temperature modulation conditions may have less nonspecific drift than mu(s)(') which may have significance for noninvasive determination of analytes in human tissue.

  20. Thermodynamic analysis into a heat exchanger for absorption at high temperatures

    International Nuclear Information System (INIS)

    Márquez-Nolasco, A.; Huicochea, A.; Torres-Merino, J.; Siqueiros, J.; Hernández, J.A.

    2016-01-01

    Highlights: • Energy and exergy analyses for split absorber inside an AHT were developed. • The coefficient of operation for energy and exergy were improved above 30%. • A split absorber can reduce the irreversibility up to 28%. - Abstract: The residual heat or renewable energy can be used to activate a thermodynamic cycle inside a heat transformer by absorption (AHT), in order to obtain heat with a higher temperature in whole equipment. The performance of the AHT is mainly influenced by the absorber, since the useful heat is obtained here at different operating conditions. According to this study, a split absorber can improve the performance of the AHT because of the existing absorption processes in accordance with the first and second law of thermodynamics. The proposal is to divide the heat transfer area in equal sections, where the steam supplied is equal and the strong working solution is increased for all sections, in order to diminish the irreversibility in the absorber. With respect to the basic absorber, the best results are found when the absorber has two sections, because COP can be improved from 0.307 to 0.415, while the ECOP from 0.118 to 0.160, besides the irreversibility can reduce up to almost 28%.

  1. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  2. Errors in instumental neutron activation analysis caused by matrix absorption

    International Nuclear Information System (INIS)

    Croudace, I.W.

    1979-01-01

    Instrumental neutron activation analysis of the geochemically important rare earth elements, together with Ta, Hf and U involves energies below 150 keV where absorption of radiation by the sample becomes inceasingly important. Determinations of the total mass absorption coefficients have been made. (C.F.)

  3. Nonlinear Relationships Between Particulate Absorption and Chlorophyll: Detritus or Pigment Packaging

    Science.gov (United States)

    1993-06-15

    for another polar area. For samples from Antartic waters, the mean a*pan(4 3 5 ), normalized to chl a + pheo, was 0.0 18 m2 (mg chl a)-I (Mitchell and...specific absorption coefficients, was suggested as the cause of relatively low mean specific absorption coefficients in the Antartic . The values of c1...moored optical sensors in the Sargasso Sea. J. Geophys. Res. 97, 7399-7412. Mitchell, B.G., and 0. Holm-Hansen 1991. Bio-optical properties of Antartic

  4. Steady state simulation of a double-effect steam absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.S.A.M.S.; Gilani, S.I.U.H. [Universiti Teknologi Petronas, Tronoh, Perak (Malaysia). Dept. of Mechanical Engineering

    2011-07-01

    Absorption cooling systems have become increasingly popular in recent years from the viewpoint of energy and environment. Despite a lower coefficient of performance (COP) as compared to the vapor compression, absorption refrigeration systems are attractive for using inexpensive waste heat, solar, geothermal or biomass energy sources for which the cost of supply is negligible in many cases. In addition absorption refrigeration uses natural substances which do not contribute towards ozone depletion and global warming. Owing to the serious environmental problems and the price of the traditional energy resources, the use of industrial waste heat or renewable energy as the driving force for vapor absorption cooling systems is continuously increasing. A steady-state model is developed to predict the performance of an absorption refrigeration system using LiBr-water as working pair. Each component of the cycle is modelled based on mass and energy balances. The design point parameters are determined. The refrigeration effect, coefficient of performance and load factor are analyzed for different heat input. Simulation is carried out and the results are compared with actual data and showed good agreement.

  5. Band shape of IR-absorption of complex molecules and restricted rotational diffusion

    International Nuclear Information System (INIS)

    Ivanov, E.N.; Umidulaev, Sh.U.

    1989-01-01

    The development of the theory of band shape (and Breadth) IR-absorption of complex molecules (regarding the molecules inside motions) is considered. It is supposed that a molecule fragment being responsible for IR-absorption takes part in the restricted rotational diffusion (RRD) with respect to the frame, and the molecule itself in general makes rotational motion (RM). Both kinds of motions are discussed in accordance with the theory of group motions representations. On the basis of correlative functions calculations of dipole moment a simple expression for the IR-absorption band shape have been obtained, which in itself uses to be the super position of two Lorencians with the semibreadths 2D 1 and 2D 1 +ν 2 0 (ν 2 0 +1D R accordingly (here D 1 is the coefficient of RM, D 2 is the coefficient of RRD, ν 2 0 is the well known function of RRD-cone divergence angle) in case of symmetric rotary abrasive disc. Analysis of experimental band shape of IR-absorption on the basis of the expression obtained allows to get information of MR-molecule parameters in general and RRD. It is really possible to determine the RRD-cone divergency angle from experimental weights of Lorencians. In accordance with experimental semibreadths the coefficient of RM D 1 and the coefficient of RRD D 2 are obtained. In conclusion it is noted that D 1 →0 (in the expression for the band shape of IR-absorption obtained), one of the Lorencians turns to the δ-function and finally there is an expression which describes IR-absorption band shape of molecules in polymer-mats. (author)

  6. Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Piotr Kowalczuk

    2010-09-01

    Full Text Available This study presents results from field surveys performed in 2008 and 2009 in the southern Baltic in different seasons. The main goal of these measurements was to identify the empirical relationships between DOM optical properties and DOC. CDOM absorption and fluorescence and DOC concentrations were measured during thirteen research cruises. The values of the CDOM absorption coefficient at 370 nm aCDOM(370 ranged from 0.70 m-1 to 7.94 m-1, and CDOM fluorescence intensities (ex./em. 370/460 IFl, expressed in quinine sulphate equivalent units, ranged from 3.88 to 122.97 (in filtered samples. Dissolved organic carbon (DOC concentrations ranged from 266.7 to 831.7 µM C. There was a statistically significant linear relationship between the fluorescence intensity measured in the filtered samples and the CDOM absorption coefficient aCDOM(370, R2 = 0.87. There was much more scatter in the relationship between the fluorescence intensity measured in situ (i.e. in unprocessed water samples and the CDOM absorption coefficient aCDOM(370, resulting in a slight deterioration in the coefficient of determination R2 = 0.85. This indicated that the presence of particles could impact fluorometer output during in situ deployment. A calibration experiment was set up to quantify particle impact on the instrument output in raw marine water samples relative to readings from filtered samples. The bias calculated for the absolute percentage difference between fluorescence intensities measured in raw and filtered water was low (-2.05%, but the effect of particle presence expressed as the value of the RMSE was significant and was as high as 35%. Both DOM fluorescence intensity (in raw water and filtered samples and the CDOM absorption coefficient aCDOM(370 are highly correlated with DOC concentration. The relationship between DOC and the CDOM absorption coefficient aCDOM(370 was better (R2 = 0.76 than the relationship between DOC and the respective fluorescence intensities

  7. Determination of ash content of coal by mass absorption coefficient measurements at two X-ray energies

    International Nuclear Information System (INIS)

    Fookes, R.A.; Gravitis, V.L.; Watt, J.S.

    1977-01-01

    A method for determining the ash content of coal is proposed. It involves measurements proportional to mass absorption coefficients of coal at two X-ray energies. These measurements can be made using X-ray transmission or scatter techniques. Calculations based on transmission of narrow beams of X-rays have shown that ash can be determined to about 1wt%(1 sigma) in coal of widely varying ash content and composition. Experimentally, ash content was determined to 0.67wt% by transmission techniques and 1.0wt% by backscatter techniques in coal samples from the Bulli seam, NSW, Australia, having ash in the range 11-34wt%. For samples with a much wider range of coal composition (7-53wt% ash and 0-25wt% iron in the ash), ash content was determined by backscatter measurements to 1.62wt%. The method produced ash determinations at least as accurate as those produced by the established technique which compensates for variation in iron content of the ash by X-ray fluorescence analysis for iron. Compared with the established technique, it has the advantage of averaging analysis over much larger volumes of coal, but the disadvantage that much more precise measurements of X-ray intensities are required. (author)

  8. Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States

    Science.gov (United States)

    Nelson, James R.; Guarda, Sonia

    1995-05-01

    Visible absorption spectra of particulate and dissolved materials were characterized on the continental shelf off the southeastern United States (the South Atlantic Bight), emphasizing cross-shelf and seasonal variability. A coastal front separates turbid coastal waters from clearer midshelf waters. Spatial and seasonal patterns were evident in absorption coefficients for phytoplankton, detritus, and colored dissolved organic matter (CDOM); spectral shape parameters for CDOM and detritus; and phytoplankton chlorophyll-specific absorption. The magnitude of CDOM absorption reflected seasonal differences in freshwater discharge and the salinity of the midshelf waters. In the spring of 1993 (high discharge), CDOM absorption at 443 nm was >10 times that of total particulate absorption between 12 and 50 km offshore (0.28-0.69 m-1 versus 0.027-0.062 m-1) and up to 10 times the CDOM absorption measured in the previous summer (low discharge). Phytoplankton chlorophyll-specific absorption in the blue increased with distance from shore (from shift in phytoplankton species composition (from predominantly diatoms inshore to a cyanobacteria-dominated assemblage midshelf in summer), pigment packaging, and higher carotenoid:chlorophyll with distance from shore.

  9. Simulation of solar-powered absorption cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Atmaca, I.; Yigit, A. [Uludag Univ., Bursa (Turkey). Dept. of Mechanical Engineering

    2003-07-01

    With developing technology and the rapid increase in world population, the demand for energy is ever increasing. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling. In this study, a solar-powered, single stage, absorption cooling system, using a water-lithium bromide solution, is simulated. A modular computer program has been developed for the absorption system to simulate various cycle configurations and solar energy parameters for Antalya, Turkey. So, the effects of hot water inlet temperatures on the coefficient of performance (COP) and the surface area of the absorption cooling components are studied. In addition, reference temperatures which are the minimum allowable hot water inlet temperatures are determined and their effect on the fraction of the total load met by non-purchased energy (FNP) and the coefficient of performance are researched. Also, the effects of the collector type and storage tank mass are investigated in detail. (author)

  10. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    Science.gov (United States)

    Zhang, Qi-Xian; Wei, Wen-Sheng; Ruan, Fang-Ping

    2011-04-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV-4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.

  11. Triplet--Triplet Absorption Spectra of Organic Molecules in Condensed Phases

    International Nuclear Information System (INIS)

    Carmichael, I.; Hug, G.L.

    1986-01-01

    We present a compilation of spectral parameters associated with triplet--triplet absorption of organic molecules in condensed media. The wavelengths of maximum absorbance and the corresponding extinction coefficients, where known, have been critically evaluated. Other data, for example, lifetimes, energies and energy transfer rates, relevant to the triplet states of these molecules are included by way of comments but have not been subjected to a similar scrutiny. Work in the gas phase has been omitted, as have theoretical studies. We provide an introduction to triplet state processes in solution and solids, developing the conceptual background and offering an historical perspective on the detection and measurement of triplet state absorption. Techniques employed to populate the triplet state are reviewed and the various approaches to the estimation of the extinction coefficient of triplet--triplet absorption are critically discussed. A statistical analysis of the available data is presented and recommendations for a hierarchical choice of extinction coefficients are made. Data collection is expected to be complete through the end of 1984. Compound name, molecular formula and author indexes are appended

  12. [Similarities and differences in absorption characteristics and composition of CDOM between Taihu Lake and Chaohu Lake].

    Science.gov (United States)

    Shi, Kun; Li, Yun-mei; Wang, Qiao; Yang, Yu; Jin, Xin; Wang, Yan-fei; Zhang, Hong; Yin, Bin

    2010-05-01

    Field experiments are conducted separately in Taihu Lake and Chaohu Lake on Apr. and Jun. 2009. The changes in absorption spectra of chromophoric dissolved organic matter (CDOM) characteristics are analyzed using spectral differential analysis technology. According the spectral differential characteristic of absorption coefficient; absorption coefficient from 240 to 450 nm is divided into different stages, and the value of spectral slope S is calculated in each stage. In Stage A, S value of CDOM in Taihu Lake and Chaohu Lake are 0.0166-0.0102 nm(-1) [average (0.0132 +/- 0.0017) nm(-1)], 0.029-0.017 nm(-1) [average (0.0214 +/- 0.0024) nm(-1)]. In Stage B, S values are 0.0187-0.0148 nm(-1) [average (0.0169 +/- 0.001) nm(-1)], 0.0179-0.0055 nm(-1) [average (0.0148 +/- 0.002) nm(-1)]. In Stage C, S values are 0.0208-0.0164 nm(-1) [average (0.0186 +/- 0.0009) nm(-1)], 0.0253-0.0161 nm(-1) [average (0.0197 +/- 0.002) nm(-1)]. The results can be concluded as: (1) Absorption coefficient of water in Taihu Lake, and its contribution to absorption of each component is less than that of water in Chaohu Lake, however the standardized absorption coefficient is larger than that in Chaohu Lake. (2) Both in Taihu Lake and Chaohu Lake, derivative spectra of CDOM absorption coefficient reached valley at 260nm, then rise to top at 290 nm, CDOM absorption coefficient can be delivered into three stages. (3) Generally speaking, content of CDOM in Taihu Lake is less than in Chaohu Lake. (4) pectrum slope (S value) of CDOM is related to composition of CDOM, when content of humic acid in CDOM gets higher, S value of Stage B is the most sensitive value, then is the S value of Stage C. Oppositely, S value of Stage B gets the most sensitive value, then is the S value of Stage A; the least sensitive value is in Stage B.

  13. Landsat-8/OLI images has the potential to estimate the CDOM absorption coefficient in tropical inland water

    Science.gov (United States)

    Alcantara, E.; Bernardo, N.

    2016-12-01

    Colored dissolved organic matter (CDOM) is the most abundant dissolved organic matter (DOM) in many natural waters and can affect the water quality, such as the light penetration and the thermal properties of water system. So the objective of this letter was to estimate the colored dissolved organic matter (CDOM) absorption coefficient at 440 nm, aCDOM(440), in Barra Bonita Reservoir (São Paulo State, Brazil) using OLI/Landsat-8 images. For this two field campaigns were conducted in May and October 2014. During the field campaigns remote sensing reflectance (Rrs) were measured using a TriOS hyperspectral radiometer. Water samples were collected and analyzed to obtain the aCDOM(440). To predict the aCDOM(440) from Rrs at two key wavelengths (650 and 480 nm) were regressed against laboratory derived aCDOM(440) values. The validation using in situ data of aCDOM(440) algorithm indicated a goodness of fit, R2 = 0.70, with a root-mean-square error (RMSE) of 10.65%. The developed algorithm was applied to the OLI/Lansat-8 images. Distribution maps were created with OLI/Landsat-8 images based on the adjusted algorithm.

  14. Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole

    Science.gov (United States)

    Huang, Lu; Chen, Juhua; Wang, Yongjiu

    2018-06-01

    In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.

  15. Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering

    KAUST Repository

    Mondal, Rajib; Ko, Sangwon; Norton, Joseph E.; Miyaki, Nobuyuki; Becerril, Hector A.; Verploegen, Eric; Toney, Michael F.; Bré das, Jean-Luc; McGehee, Michael D.; Bao, Zhenan

    2009-01-01

    Removing the adjacent thiophene groups around the acceptor core in low band gap polymers significantly enhances solar cell efficiency through increasing the optical absorption and raising the ionization potential of the polymer. © 2009 The Royal Society of Chemistry.

  16. Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements

    International Nuclear Information System (INIS)

    El Sherbini, A.M.; El Sherbini, Th.M.; Hegazy, H.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In quantitative Laser Induced Breakdown Spectroscopy (LIBS) measurements it is essential to account for the effect of self-absorption on the emission lines intensity. In order to quantify this effect, in this paper we propose a simple method for evaluating the ratio between the actual measured line intensity and the intensity expected in absence of self-absorption and, if necessary, correcting the effect of self-absorption on line intensity. The method, based on a homogeneous plasma model, is applicable when the plasma electron density is known and in particular to lines whose Stark broadening parameter is available

  17. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    International Nuclear Information System (INIS)

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs

  18. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues.

    Science.gov (United States)

    Liu, Peipei; Zhu, Zhirong; Zeng, Changchun; Nie, Guang

    2012-12-01

    Hemoglobin (Hb), as one of main components of blood, has a unique quaternary structure. Its release of oxygen is controlled by oxygen partial pressure (PO2). We investigate the specific spectroscopic changes in Hb under different PO2 levels to optimize clinical methods of measuring tissue PO2. The transmissivity of Hb under different PO2 levels is measured with a UV/Vis fiber optic spectrometer. Its plotted absorption spectral curve shows two high absorption peaks at 540 and 576 nm and an absorption valley at 560 nm when PO2 is higher than 100 mm Hg. The two high absorption peaks decrease gradually with a decrease in PO2, whereas the absorption valley at 560 nm increases. When PO2 decreases to approximately 0 mm Hg, the two high absorption peaks disappear completely, while the absorption valley has a hypochromic shift (8 to 10 nm) and forms a specific high absorption peak at approximately 550 nm. The same phenomena can be observed in visible reflectance spectra of finger-tip microcirculation. Specific changes in extinction coefficient and absorption spectra of Hb occur along with variations in PO2, which could be used to explain pathological changes caused by tissue hypoxia and for early detection of oxygen deficiency diseases in clinical monitoring.

  19. Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot

    International Nuclear Information System (INIS)

    Jbara, Ahmed S; Othaman, Zulkafli; Saeed, M A

    2016-01-01

    Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients. (paper)

  20. Highly selective population of two excited states in nonresonant two-photon absorption

    International Nuclear Information System (INIS)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization. (atomic and molecular physics)

  1. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L.; Saito, M.

    2003-01-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, 237 Np, 238 Pu, 231 Pa, 232 U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations

  2. Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database

    International Nuclear Information System (INIS)

    Simeckova, Marie; Jacquemart, David; Rothman, Laurence S.; Gamache, Robert R.; Goldman, Aaron

    2006-01-01

    This paper describes the calculation of the statistical weights and the Einstein A-coefficients for the 39 molecules and their associated isotopologues/isotopomers currently present in the line-by-line portion of the HITRAN database. Calculation of the Einstein A-coefficients was carried out using the HITRAN line intensities and the necessary statistical weights. The Einstein A-coefficient and the statistical weights of the upper and lower levels of the transition were added in the new format of the line parameters for the most recent edition of the HITRAN database

  3. Photon absorption of calcium phosphate-based dental biomaterials

    International Nuclear Information System (INIS)

    Singh, V. P.; Badiger, N. M.; Tekin, H. O.; Kara, U.; Vega C, H. R.; Fernandes Z, M. A.

    2017-10-01

    Effective atomic number and mass energy absorption buildup factors for four calcium phosphate-based biomaterials used in dental treatments were calculated for 0.015 to 15 MeV photons. The mass energy absorption coefficients were calculated for 0.5 to 40 mean free paths of photons. In the energy region important for dental radiology the Zeff for all studied biomaterials are larger in comparison to larger energies. In x-rays for dental radiology and the energy absorption buildup factors are low, however CbMDI bio material shows a resonance at 80 keV. (Author)

  4. Something new: a new approach to correcting theoretical emitted intensities for absorption effects

    International Nuclear Information System (INIS)

    Willis, J.P.; Lachance, G.R.

    2002-01-01

    Full text: For monochromatic incident radiation of wavelength λ, absorption only (no enhancement), and ignoring such effects as the absorption edge jump ratio, the fluorescence yield, and the probability that a Kα line will be emitted instead of a Kβ line, a simplified view of the theoretical emitted intensity of a characteristic line of element >i= from a layer in a specimen is given by a familiar equation which involves mass absorption coefficients. While this equation allows for the calculation of the theoretical emitted intensity, it is cumbersome to use when trying to explain X-ray excitation in a step-wise manner. It is therefore proposed that the mass attenuation coefficients (μ iλ , and the sum of μ sλ ' + μ sλi '' , in the numerator and denominator of this equation be replaced by the product of two coefficients correcting for absorption, namely aN H aO. The advantages of using the proposed equation in the stepwise calculation of theoretical intensities (in a similar manner to Monte Carlo calculations) will be discussed. Copyright (2002) Australian X-ray Analytical Association Inc

  5. A three-color absorption/scattering imaging technique for simultaneous measurements on distributions of temperature and fuel concentration in a spray

    Science.gov (United States)

    Qi, Wenyuan; Zhang, Yuyin

    2018-04-01

    A three-color imaging technique was proposed for simultaneous measurements on distributions of fuel/air mixture temperature and fuel vapor/liquid concentrations in evaporating sprays. The idea is based on that the vapor concentration is proportional to the absorption of vapor to UV light, the liquid-phase concentration is related to the light extinction due to scattering of droplet to visible light, and the mixture temperature can be correlated to the absorbance ratio at two absorbing wavelengths or narrow bands. For verifying the imaging system, the molar absorption coefficients of p-xylene at the three narrow bands, which were centered respectively at 265, 289, and 532 nm with FWHM of 10 nm, were measured in a specially designed calibration chamber at different temperatures (423-606 K) and pressure of 3.6 bar. It was found that the ratio of the molar absorption coefficients of p-xylene at the two narrow bands centered at the two UV wavelengths is sensitive to the mixture temperature. On the other hand, the distributions of fuel vapor/liquid concentrations can be obtained by use of absorbance due to ultraviolet absorption of vapor and visible light scattering of droplets. Combining these two methods, a simultaneous measurement on distributions of mixture temperature and fuel vapor/liquid concentrations can be realized. In addition, the temperature field obtained from the ratio of the two absorbing narrow bands can be further used to improve the measurement accuracy of vapor/liquid concentrations, because the absorption coefficients depend on temperature. This diagnostic was applied to an evaporating spray inside a high-temperature and high-pressure constant volume chamber.

  6. Strength and Biot's coefficient for high-porosity oil- or water-saturated chalk

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling

    . The Biot coefficient states the degree of cementation or how the pore pressure contributes to the strain resulting from an external load for a porous material. It is here calculated from dynamic measurements and correlated with the strength of outcrop chalk characterized by the onset of pore collapse...... during hydrostatic loading. The hypothesis is that the Biot coefficient and the theory of poroelasticity may cover the fluid effect by including the increased fluid bulk modulus from oil to water. A high number of test results for both oil- and water-saturated high-porosity outcrop chalk show correlation......In the petroleum industry it is relevant to know the Biot coefficient for establishing the effective stresses present in both the overburden and for the reservoir interval. When depleting a reservoir it is important to estimate the settlement through the strain imposed by the effective stress. Also...

  7. Absorption of high-frequency electromagnetic energy in a high-temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeyev, R S; Shafranov, V D

    1958-07-01

    In this paper an analysis of the cyclotron and Cherenkov mechanisms is given. These are two fundamental mechanisms for noncollisional absorption of electromagnetic radiation by plasma in a magnetic field. The expressions for the dielectric permeability tensor, for plasma with a nonisotropic temperature distribution in a magnetic field, are obtained by integrating the kinetic equation with Lagrangian particle co-ordinates in a form suitable to allow a comprehensive physical interpretation of the absorption mechanisms. The oscillations of a plasma column stabilized by a longitudinal field have been analyzed. For uniform plasma, the frequency spectrum has been obtained together with the direction of electromagnetic wave propagation when both the cyclotron and Cherenkov absorption mechanisms take place. The influence of nonlinear effects on the electromagnetic wave absorption and the part which cyclotron and Cherenkov absorption play in plasma heating have also been investigated.

  8. Influence of solvent absorption on the migration of Irganox 1076 from LDPE

    NARCIS (Netherlands)

    Helmroth, I.E.; Dekker, M.; Hankemeier, T.

    2002-01-01

    The effect of solvent absorption on additive migration was studied by relating the diffusion coefficient (D) of Irganox 1076 to the maximum solvent absorption of different solvents in low-density polyethylene (LDPE) film. Solvents tested were ethanol, isopropanol, isooctane, ethylacetate,

  9. Effect of microplastic deformation on the electron ultrasonic absorption in high-purity molybdenum monocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Pal' -Val' , P.P.; Kaufmann, Kh.J.

    1983-03-01

    The low temperature (100-6 K) linear absorption of ultrasound (88 kHz) by high purity molybdenum single crystals have been studied. Both unstrained samples and samples sub ected to microplastic deformation (epsilon<=0.45%) were used. Unstrained samples displayed at T<30 K a rapid increase in the absorption with lowering temperature which is interpreted as an indication of electron viscosity due to electron-phonon collisions. After deformation this part of absorption disappeared. This seems to suggest that microplastic deformation brings about in the crystal a sufficiently large number of defects that can compete with phonons in restricting the electron mean free path. A low temperature dynamic annealing has been revealed in strained samples, that is almost complete recovery of the absorption nature under irradiation with high amplitude sound, epsilon/sub 0/ approximately 10/sup -4/, during 10 min, at 6 K. A new relaxation peak of absorption at 10 K has been found in strained samples.

  10. Effect of microplastic deformation on the electron ultrasonic absorption in high-purity molybdenum monocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Pal' -Val' , P.P. (AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur); Kaufmann, Kh.J. (Akademie der Wissenschaften der DDR, Berlin)

    1983-03-01

    The low temperature (100-6 K) linear absorption of ultrasound (88 kHz) by high purity molybdenum single crystals have been studied. Both unstrained samples and samples subjected to microplastic deformation (epsilon<=0.45%) were used. Unstrained samples displayed at T<30 K a rapid increase in the absorption with lowering temperature which is interpreted as an indication of electron viscosity due to electron-phonon collisions. After deformation this part of absorption disappeared. This seems to suggest that microplastic deformation brings about in the crystal a sufficiently large number of defects that can compete with phonons in restricting the electron mean free path. A low temperature ''dynamic annealing'' has been revealed in strained samples, that is, almost complete recovery of the absorption nature under irradiation with high amplitude sound, epsilon/sub 0/ approximately 10/sup -4/, during 10 min, at 6 K. A new relaxation peak of absorption at 10 K has been found in strained samples.

  11. Sub-band-gap absorption of Cu(In,Ga)Se{sub 2} thin film semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Meessen, Max; Brueggemann, Rudolf; Bauer, Gottfried H. [Carl von Ossietzky University Oldenburg (Germany)

    2012-07-01

    The sub-band-gap absorption of Cu(In,Ga)Se{sub 2} thin films has been studied by photothermal deflection spectroscopy (PDS) in conjunction with optical transmittance spectroscopy. The resulting absorption coefficients are compared to those calculated from photoluminescence spectra using Planck's generalized law. Quantities related to the absorption like Urbach energy and defect densities are derived from the absorption curves. This concept has been applied to a series of bromine-methanol etched Cu(In{sub x-1},Ga{sub x})Se{sub 2} (x=0.3) absorbers with varying thicknesses. A shift in the band gap is observed with both methods and can be related to the gallium gradient in the samples. In contrast, the Urbach energy and defect absorption values are not substantially affected by the etching process. The influence of CdS buffer layers or highly thermally conductive metallic back contacts on PDS results is studied by measuring nominally identical samples with and without those layers.

  12. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    International Nuclear Information System (INIS)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-01-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material

  13. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    Science.gov (United States)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  14. Electronic absorption spectrum of copper-doped magnesium potassium phosphate hexahydrate

    Science.gov (United States)

    Rao, S. N.; Sivaprasad, P.; Reddy, Y. P.; Rao, P. S.

    1992-04-01

    The optical absorption and EPR spectra of magnesium potassium phosphate hexahydrate (MPPH) doped with copper ions are recorded both at room and liquid nitrogen temperatures. The spectrum is characteristic of Cu2+ in tetragonal symmetry. The spin-Hamiltonian parameters and molecular orbital coefficients are evaluated. A correlation between EPR and optical absorption studies is drawn.

  15. Analytic descriptions of ion cyclotron absorption

    International Nuclear Information System (INIS)

    Bers, A.; Francis, G.; Fuchs, V.; Lashmore-Davies, C.N.; Ram, A.K.

    1987-05-01

    Analysis of energy propagation and absorption in ion-cyclotron heating of tokamak plasmas has relied on numerical solutions of fourth (and sixth) order differential equations for slab models of the plasma (poloidal) cross section. Realistic two-dimensional and fully toroidal geometry analyses would become quite unwieldy. It is shown here that the analysis of the slab model can be simplified considerably. A first-order differential equation is shown to describe the transmission coefficient for the fast wave, and it is solved analytically. A second order differential equation is shown to adequately describe both transmission and reflection. Conditions for ion absorption or mode conversion are derived. Including toroidal effects in propagation, conditions for electron absorption on the mode-converted ion-Bernstein waves are also described analytically

  16. Nonlinear absorption properties of some 1,4,8,11,15,18,22,25-octaalkylphthalocyanines and their metallated derivatives

    OpenAIRE

    BLAU, WERNER

    2003-01-01

    PUBLISHED The third-order nonlinear optical properties of a series of 15 unmetallated and metallated 1,4,8,11,15,18,22,25-octaalkylphthalocyanines have been investigated. The palladium-metallated compound is the strongest nonlinear absorber of the series, but, due to its comparatively high linear absorption coefficient, it exhibits a relatively low ratio of excited- to ground-state absorption cross-sections (?) when compared to the other compounds. The highest values for ? were found for d...

  17. Self-absorption corrections for well-type germanium detectors

    International Nuclear Information System (INIS)

    Appleby, P.G.; Richardson, N.; Nolan, P.J.

    1992-01-01

    Corrections for self-absorption are of vital importance to accurate determination by gamma spectrometry of radionuclides such as 210 Pb, 241 Am and 234 Th which emit low energy gamma radiation. A simple theoretical model for determining the necessary corrections for well-type germanium detectors is presented. In this model, self-absorption factors are expressed in terms of the mass attenuation coefficient of the sample and a parameter characterising the well geometry. Experimental measurements of self-absorption are used to evaluate the model and to determine a semi-empirical algorithm for improved estimates of the geometrical parameter. (orig.)

  18. Determination of the diffusion coefficient and solubility of radon in plastics.

    Science.gov (United States)

    Pressyanov, D; Georgiev, S; Dimitrova, I; Mitev, K; Boshkova, T

    2011-05-01

    This paper describes a method for determination of the diffusion coefficient and the solubility of radon in plastics. The method is based on the absorption and desorption of radon in plastics. Firstly, plastic specimens are exposed for controlled time to referent (222)Rn concentrations. After exposure, the activity of the specimens is followed by HPGe gamma spectrometry. Using the mathematical algorithm described in this report and the decrease of activity as a function of time, the diffusion coefficient can be determined. In addition, if the referent (222)Rn concentration during the exposure is known, the solubility of radon can be determined. The algorithm has been experimentally applied for different plastics. The results show that this approach allows the specified quantities to be determined with a rather high accuracy-depending on the quality of the counting equipment, it can be better than 10 %.

  19. The influence of high iron diet on rat lung manganese absorption

    International Nuclear Information System (INIS)

    Thompson, Khristy; Molina, Ramon; Donaghey, Thomas; Brain, Joseph D.; Wessling-Resnick, Marianne

    2006-01-01

    Individuals chronically exposed to manganese are at high risk for neurotoxic effects of this metal. A primary route of exposure is through respiration, although little is known about pulmonary uptake of metals or factors that modify this process. High dietary iron levels inversely affect intestinal uptake of manganese, and a major goal of this study was to determine if dietary iron loading could increase lung non-heme iron levels and alter manganese absorption. Rats were fed a high iron (1% carbonyl iron) or control diet for 4 weeks. Lung non-heme iron levels increased ∼2-fold in rats fed the high iron diet. To determine if iron-loading affected manganese uptake, 54 Mn was administered by intratracheal (it) instillation or intravenous (iv) injection for pharmacokinetic studies. 54 Mn absorption from the lungs to the blood was lower in it-instilled rats fed the 1% carbonyl iron diet. Pharmacokinetics of iv-injected 54 Mn revealed that the isotope was cleared more rapidly from the blood of iron-loaded rats. In situ analysis of divalent metal transporter-1 (DMT1) expression in lung detected mRNA in airway epithelium and bronchus-associated lymphatic tissue (BALT). Staining of the latter was significantly reduced in rats fed the high iron diet. In situ analysis of transferrin receptor (TfR) mRNA showed staining in BALT alone. These data demonstrate that manganese absorption from the lungs to the blood can be modified by iron status and the route of administration

  20. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L. [Moscow Engineering Physics Institute (State University) (Russian Federation); Saito, M. [Tokyo Institute of Technology (Japan)

    2003-07-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, {sup 237}Np, {sup 238}Pu, {sup 231}Pa, {sup 232}U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations.

  1. [Near ultraviolet absorption spectral properties of chromophoric dissolved organic matter in the north area of Yellow Sea].

    Science.gov (United States)

    Wang, Lin; Zhao, Dong-Zhi; Yang, Jian-Hong; Chen, Yan-Long

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) near ultraviolet absorption spectra contains CDOM molecular structure, composition and other important physical and chemical information. Based on the measured data of CDOM absorption coefficient in March 2009 in the north area of Yellow Sea, the present paper analyzed near ultraviolet absorption spectral properties of CDOM. The results showed that due to the impact of near-shore terrigenous input, the composition of CDOM is quite different in the north area of Yellow Sea, and this area is a typical case II water; fitted slope with specific range of spectral band and absorption coefficient at specific band can indicate the relative size of CDOM molecular weight, correlation between spectral slope of the Sg,275-300), Sg,300-350, Sg,350-400 and Sg,250-275 and the relative size of CDOM molecular weight indicative parameter M increases in turn and the highest is up to 0.95. Correlation between a(g)(lambda) and M value increases gradually with the increase in wavelength, and the highest is up to 0.92 at 400 nm; being correlated or not between spectral slope and absorption coefficient is decided by the fitting-band wavelength range for the spectra slope and the wavelength for absorption coefficient. Correlation between Sg,275-300 and a(g)(400) is the largest, up to 0.87.

  2. High sensitivity probe absorption technique for time-of-flight ...

    Indian Academy of Sciences (India)

    Abstract. We report on a phase-sensitive probe absorption technique with high sen- sitivity, capable of detecting a few hundred ultra-cold atoms in flight in an observation time of a few milliseconds. The large signal-to-noise ratio achieved is sufficient for reliable measurements on low intensity beams of cold atoms.

  3. Power absorption of high-frequency electromagnetic waves in a partially ionized magnetized plasma

    International Nuclear Information System (INIS)

    Guo Bin; Wang Xiaogang

    2005-01-01

    Power absorption of high-frequency electromagnetic waves in a uniformly magnetized plasma layer covering a highly conducting surface is studied under atmosphere conditions. It is assumed that the system consists of not only electrons and positive ions but negative ions as well. By a general formula derived in our previous work [B. Guo and X. G. Wang, Plasma Sci. Tech. 7, 2645 (2005)], the total power absorption in the plasma layer with multiple reflections between an air-plasma interface and the conducting surface is computed. The results show that although the existence of negative ions greatly reduces the total power absorption, the magnetization of the plasma can, however, partially enhance it. Parameter dependence of the effects is calculated and discussed

  4. Linear and nonlinear optical absorption coefficients and refractive index changes in GaN/Al{sub x}Ga{sub (1−x)}N double quantum wells operating at 1.55 μm

    Energy Technology Data Exchange (ETDEWEB)

    Dakhlaoui, Hassen [Department of Physics, College of Science for Girls, University of Dammam (UOD), Saudi Arabia and Department of Physics, Faculty of Sciences of Bizerte, University of Carthage (Tunisia)

    2015-04-07

    In the present paper, the linear and nonlinear optical absorption coefficients and refractive index changes between the ground and the first excited states in double GaN/Al{sub x}Ga{sub (1−x)}N quantum wells are studied theoretically. The electronic energy levels and their corresponding wave functions are obtained by solving Schrödinger-Poisson equations self-consistently within the effective mass approximation. The obtained results show that the optical absorption coefficients and refractive index changes can be red- and blue-shifted through varying the left quantum well width and the aluminum concentration x{sub b2} of the central barrier, respectively. These structural parameters are found to present optimum values for carrying out the transition of 0.8 eV (1.55 μm). Furthermore, we show that the desired transition can also be achieved by replacing the GaN in the left quantum well with Al{sub y}Ga{sub (1−y)}N and by varying the aluminum concentration y{sub Al}. The obtained results give a new degree of freedom in optoelectronic device applications such as optical fiber telecommunications operating at (1.55 μm)

  5. Absorption/desorption in sprays

    International Nuclear Information System (INIS)

    Naimpally, A.

    1987-01-01

    This survey paper shall seek to present the present state of knowledge concerning absorption and desorption in spray chambers. The first part of the paper presents the theories and formulas for the atomization and break-up of sprays in nozzles. Formulas for the average (sauter-mean) diameters are then presented. For the case of absorption processes, the formulas for the dimensionless mass transfer coefficients is in drops. The total; mass transfer is the total of the transfer in individual drops. For the case of desorption of sparingly soluble gases from liquids in a spray chamber, the mass transfer occurs in the spray just at the point of break-up of the jet. Formulas for the desorption of gases are presented

  6. Modification of Einstein A Coefficient in Dissipative Gas Medium

    Science.gov (United States)

    Cao, Chang-Qi; Cao, Hui; Qin, Ke-Cheng

    1996-01-01

    Spontaneous radiation in dissipative gas medium such as plasmas is investigated by Langevin equations and the modified Weisskopf-Wigner approximation. Since the refractive index of gas medium is expected to be nearly unity, we shall first neglect the medium polarization effect. We show that absorption in plasmas may in certain case modify the Einstein A coefficient significantly and cause a pit in the A coefficient-density curves for relatively low temperature plasmas and also a pit in the A coefficient-temperature curves. In the next, the effect of medium polarization is taken into account in addition. To our surprise, its effect in certain case is quite significant. The dispersive curves show different behaviors in different region of parameters.

  7. Acoustic absorption of natural gas compression facility enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, P.; Wong, G. [Noise Management Ltd., Calgary, AB (Canada)

    2009-07-01

    Noise sources at gas compressor facilities include the enclosure/building housing a gas engine and compressor, the ventilation openings, doors and windows for the enclosure, the engine air intake and exhaust, and a cooler. Accurate predictions of the noise levels inside the enclosure, the breakout noise from open windows and doors and ventilation, as well as the transmission through the walls, is necessary in order to determine cost effective noise mitigation for the facility. In order to accurately predict the sound breakout from these facilities it is necessary to know the acoustic absorption of the interior of these equipment enclosures. Although the acoustic absorption data of the wall systems may be available, the absorption attributable to the non-enclosure surfaces, the equipment and fittings, is not usually known and is difficult to predict. Since piping, instrumentation and mechanical equipment often take on a typical arrangement, shape, volumetric density and material composition, it is useful to know the typical acoustic absorption attributable to these items. In this study, reverberation time (RT) measurements were taken at 2 decommissioned gas compressor facilities in order to determine the absorption characteristics of the enclosure. The RT was measured according to ASTM C423-02a. The overall absorption coefficient of a compressor enclosure with a solid liner was found to be similar to that of steel decking. Fittings within the enclosure did not increase the high frequency absorption of the enclosure. It was concluded that room modes, structural vibrations, and fittings may serve to increase the effective absorption at frequencies below 630 Hz. Because of the small dimensions of the enclosure, low-frequency response of the room affected the reliability of the data below 160Hz. Structural vibration of the enclosure was investigated, and may considerably influence the noise breakout from the enclosure apart from the interior acoustical considerations. 4

  8. Acoustic absorption of natural gas compression facility enclosures

    International Nuclear Information System (INIS)

    Lassen, P.; Wong, G.

    2009-01-01

    Noise sources at gas compressor facilities include the enclosure/building housing a gas engine and compressor, the ventilation openings, doors and windows for the enclosure, the engine air intake and exhaust, and a cooler. Accurate predictions of the noise levels inside the enclosure, the breakout noise from open windows and doors and ventilation, as well as the transmission through the walls, is necessary in order to determine cost effective noise mitigation for the facility. In order to accurately predict the sound breakout from these facilities it is necessary to know the acoustic absorption of the interior of these equipment enclosures. Although the acoustic absorption data of the wall systems may be available, the absorption attributable to the non-enclosure surfaces, the equipment and fittings, is not usually known and is difficult to predict. Since piping, instrumentation and mechanical equipment often take on a typical arrangement, shape, volumetric density and material composition, it is useful to know the typical acoustic absorption attributable to these items. In this study, reverberation time (RT) measurements were taken at 2 decommissioned gas compressor facilities in order to determine the absorption characteristics of the enclosure. The RT was measured according to ASTM C423-02a. The overall absorption coefficient of a compressor enclosure with a solid liner was found to be similar to that of steel decking. Fittings within the enclosure did not increase the high frequency absorption of the enclosure. It was concluded that room modes, structural vibrations, and fittings may serve to increase the effective absorption at frequencies below 630 Hz. Because of the small dimensions of the enclosure, low-frequency response of the room affected the reliability of the data below 160Hz. Structural vibration of the enclosure was investigated, and may considerably influence the noise breakout from the enclosure apart from the interior acoustical considerations. 4

  9. The true absorption of 131I, and its transfer to milk in cows given different stable iodine diets

    International Nuclear Information System (INIS)

    Vandecasteele, C.M.; Van Hees, M.; Hardeman, F.; Voigt, G.; Howard, B.J.

    2000-01-01

    The influence of the stable iodine content in the diet on the absorption of radioiodine and its transfer to cow's milk was investigated for cows at different stages of lactation. Three different rates of stable iodine: a low intake rate of 4 mg d -1 , a moderate intake of 35 mg d -1 and a high rate of 75 mg d -1 were fed to two groups of three lactating cows in mid- and late-lactation. The transfer to milk of a single oral administration of radioiodine was measured for the three different intake rates. The lactation phase had no significant effect on iodine transfer to milk; therefore, the data from the two lactation groups were pooled for further statistical analyses. The mean transfer coefficient values for oral radioiodine to milk increased from 0.020 d l -1 for the low treatment to 0.024 d l -1 for the moderate stable iodine rate. There was a statistically significant decrease in the transfer to milk for the high stable dietary iodine intake rate (mean transfer coefficient=0.018 d l -1 ) compared with the moderate treatment. These differences were not due to effects on absorption since true absorption was complete for all three stable iodine treatments, but rather to differential affinities and saturation levels of the thyroid and milk pathways competing for the available iodine. The same behaviour and comparable values of transfer coefficients (range 0.015-0.020 d l -1 ) were observed for stable iodine

  10. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97

  11. Measurements of the Absorption by Auditorium SEATING—A Model Study

    Science.gov (United States)

    BARRON, M.; COLEMAN, S.

    2001-01-01

    One of several problems with seat absorption is that only small numbers of seats can be tested in standard reverberation chambers. One method proposed for reverberation chamber measurements involves extrapolation when the absorption coefficient results are applied to actual auditoria. Model seat measurements in an effectively large model reverberation chamber have allowed the validity of this extrapolation to be checked. The alternative barrier method for reverberation chamber measurements was also tested and the two methods were compared. The effect on the absorption of row-row spacing as well as absorption by small numbers of seating rows was also investigated with model seats.

  12. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    International Nuclear Information System (INIS)

    Zhang Qi-Xian; Ruan Fang-Ping; Wei Wen-Sheng

    2011-01-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO 2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV–4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-04-30

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  14. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    International Nuclear Information System (INIS)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-01-01

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the ∼10 3 - 5×10 4 W cm -2 range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  15. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    Science.gov (United States)

    Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Solomakhin, V. B.

    2012-04-01

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the ~103 — 5×104 W cm-2 range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene — ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  16. Validation of phenol red versus gravimetric method for water reabsorption correction and study of gender differences in Doluisio's absorption technique.

    Science.gov (United States)

    Tuğcu-Demiröz, Fatmanur; Gonzalez-Alvarez, Isabel; Gonzalez-Alvarez, Marta; Bermejo, Marival

    2014-10-01

    The aim of the present study was to develop a method for water flux reabsorption measurement in Doluisio's Perfusion Technique based on the use of phenol red as a non-absorbable marker and to validate it by comparison with gravimetric procedure. The compounds selected for the study were metoprolol, atenolol, cimetidine and cefadroxil in order to include low, intermediate and high permeability drugs absorbed by passive diffusion and by carrier mediated mechanism. The intestinal permeabilities (Peff) of the drugs were obtained in male and female Wistar rats and calculated using both methods of water flux correction. The absorption rate coefficients of all the assayed compounds did not show statistically significant differences between male and female rats consequently all the individual values were combined to compare between reabsorption methods. The absorption rate coefficients and permeability values did not show statistically significant differences between the two strategies of concentration correction. The apparent zero order water absorption coefficients were also similar in both correction procedures. In conclusion gravimetric and phenol red method for water reabsorption correction are accurate and interchangeable for permeability estimation in closed loop perfusion method. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  18. Bulk damage and absorption in fused silica due to high-power laser applications

    Science.gov (United States)

    Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J.

    2015-11-01

    Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and

  19. [Chromophoric dissolved organic matter absorption characteristics with relation to fluorescence in typical macrophyte, algae lake zones of Lake Taihu].

    Science.gov (United States)

    Zhang, Yun-lin; Qin, Bo-qiang; Ma, Rong-hua; Zhu, Guang-wei; Zhang, Lu; Chen, Wei-min

    2005-03-01

    Chromophoric dissolved organic matter (CDOM) represents one of the primary light-absorbing species in natural waters and plays a critical in determining the aquatic light field. CDOM shows a featureless absorption spectrum that increases exponentially with decreasing wavelength, which limits the penetration of biologically damaging UV-B radiation (wavelength from 280 to 320 nm) in the water column, thus shielding aquatic organisms. CDOM absorption measurements and their relationship with dissolved organic carbon (DOC), and fluorescence are presented in typical macrophyte and algae lake zone of Lake Taihu based on a field investigation in April in 2004 and lab analysis. Absorption spectral of CDOM was measured from 240 to 800 nm using a Shimadzu UV-2401PC UV-Vis recording spectrophotometer. Fluorescence with an excitation wavelength of 355 nm, an emission wavelength of 450 nm is measured using a Shimadzu 5301 spectrofluorometer. Concentrations of DOC ranged from 6.3 to 17.2 mg/L with an average of 9.08 +/- 2.66 mg/L. CDOM absorption coefficients at 280 nm and 355 nm were in the range of 11.2 - 32.6 m(-1) (average 17.46m(-1) +/- 5.75 m(-1) and 2.4 - 8.3 m(-1) (average 4.17m(-1) +/- 1.47 m(-l)), respectively. The values of the DOC-specific absorption coefficient at 355 nm ranged from 0.31 to 0.64 L x (mg x m)-1. Fluorescence emission at 450 nm, excited at 355 nm, had a mean value of 1.32nm(-1) +/- 0.84 nm(-1). A significant lake zone difference is found in DOC concentration, CDOM absorption coefficient and fluorescence, but not in DOC-specific absorption coefficient and spectral slope coefficient. This regional distribution pattern is in agreement with the location of sources of yellow substance: highest concentrations close to river mouth under the influence of river inflow, lower values in East Lake Taihu. The values of algae lake zone are obvious larger than those of macrophyte lake zone. In Meiliang Bay, CDOM absorption, DOC concentration and fluorescence tend to

  20. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.; Aziz, Michael J.; Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Rekemeyer, Paul H.; Gradečak, Silvija [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-12-14

    Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintaining high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.

  1. Low-temperature MIR to submillimeter mass absorption coefficient of interstellar dust analogues. II. Mg and Fe-rich amorphous silicates

    Science.gov (United States)

    Demyk, K.; Meny, C.; Leroux, H.; Depecker, C.; Brubach, J.-B.; Roy, P.; Nayral, C.; Ojo, W.-S.; Delpech, F.

    2017-10-01

    Context. To model the cold dust emission observed in the diffuse interstellar medium, in dense molecular clouds or in cold clumps that could eventually form new stars, it is mandatory to know the physical and spectroscopic properties of this dust and to understand its emission. Aims: This work is a continuation of previous studies aiming at providing astronomers with spectroscopic data of realistic cosmic dust analogues for the interpretation of observations. The aim of the present work is to extend the range of studied analogues to iron-rich silicate dust analogues. Methods: Ferromagnesium amorphous silicate dust analogues were produced by a sol-gel method with a mean composition close to Mg1-xFexSiO3 with x = 0.1, 0.2, 0.3, 0.4. Part of each sample was annealed at 500 °C for two hours in a reducing atmosphere to modify the oxidation state of iron. We have measured the mass absorption coefficient (MAC) of these eight ferromagnesium amorphous silicate dust analogues in the spectral domain 30-1000 μm for grain temperature in the range 10-300 K and at room temperature in the 5-40 μm range. Results: The MAC of ferromagnesium samples behaves in the same way as the MAC of pure Mg-rich amorphous silicate samples. In the 30-300 K range, the MAC increases with increasing grain temperature whereas in the range 10-30 K, we do not see any change of the MAC. The MAC cannot be described by a single power law in λ- β. The MAC of the samples does not show any clear trend with the iron content. However the annealing process has, on average, an effect on the MAC that we explain by the evolution of the structure of the samples induced by the processing. The MAC of all the samples is much higher than the MAC calculated by dust models. Conclusions: The complex behavior of the MAC of amorphous silicates with wavelength and temperature is observed whatever the exact silicate composition (Mg vs. Fe amount). It is a universal characteristic of amorphous materials, and therefore of

  2. Enhancement of absorption and bioavailability of echinacoside by verapamil or clove oil

    Directory of Open Access Journals (Sweden)

    Shen JY

    2015-08-01

    Full Text Available Jin-Yang Shen,1,* Xiao-Lin Yang,2,* Zhong-Lin Yang,1 Jun-Ping Kou,1 Fei Li11State Key Laboratory of Natural Medicines, China Pharmaceutical University, 2Key Laboratory of Pharmaceutical and Biological Marine Resources Research and Development of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China*These authors contributed equally to this workPurpose: This present study investigated the absorption kinetics of echinacoside (ECH in situ and in vitro and its oral bioavailability in rats. Additional aim was to find an agent(s to promote ECH absorption and oral bioavailability among two efflux proteins and three absorption promoters.Methods: ECH absorption behaviors were investigated by everted gut sac model in vitro and single-pass intestinal perfusion model in situ. Pharmacokinetics study was performed to investigate the influences of verapamil and clove oil on ECH bioavailability in vivo. All samples were measured at different time intervals by high performance liquid chromatography.Results: The results showed that the effective permeability coefficient (Peff and apparent permeability coefficient of ECH were 0.83×10-6–3.23×10-6 cm/s and 2.99×10-6–9.86×10-6 cm/s, respectively. The Peff among duodenum, jejunum, and ileum were not statistically different, but they were higher than colon (P<0.01, which demonstrated that intestinal ECH absorption was poor and site dependent. Additionally, verapamil and clove oil significantly increased the jejunal Peff of ECH both in situ and in vitro. Moreover, the bioavailability of ECH in combination with verapamil and clove oil were increased by 1.37-fold (P<0.05 and 2.36-fold (P<0.001, respectively, when compared to ECH group. Overall, verapamil and clove oil facilitated ECH absorption and oral bioavailability.Conclusion: The absorption and bioavailability of ECH were enhanced by verapamil and clove oil, respectively, both in vitro and in vivo. Consequently

  3. Control of interior surface materials for speech privacy in high-speed train cabins.

    Science.gov (United States)

    Jang, H S; Lim, H; Jeon, J Y

    2017-05-01

    The effect of interior materials with various absorption coefficients on speech privacy was investigated in a 1:10 scale model of one high-speed train cabin geometry. The speech transmission index (STI) and privacy distance (r P ) were measured in the train cabin to quantify speech privacy. Measurement cases were selected for the ceiling, sidewall, and front and back walls and were classified as high-, medium- and low-absorption coefficient cases. Interior materials with high absorption coefficients yielded a low r P , and the ceiling had the largest impact on both the STI and r P among the interior elements. Combinations of the three cases were measured, and the maximum reduction in r P by the absorptive surfaces was 2.4 m, which exceeds the space between two rows of chairs in the high-speed train. Additionally, the contribution of the interior elements to speech privacy was analyzed using recorded impulse responses and a multiple regression model for r P using the equivalent absorption area. The analysis confirmed that the ceiling was the most important interior element for improving speech privacy. These results can be used to find the relative decrease in r P in the acoustic design of interior materials to improve speech privacy in train cabins. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. TRANSMISSION AND ABSORPTION OF MICROWAVES BY AN INHOMOGENEOUS SPHERE PLASMA

    Institute of Scientific and Technical Information of China (English)

    SONG Falun; CAO Jinxiang; WANG Ge

    2004-01-01

    The numerical calculation of the transmission and absorption of microwaves at an arbitrarily incident angle to the inhomogeneous spherically symmetric plasma is presented.The nonuniform sphere is modeled by a series of concentric spherical shells, and the electron density is constant in each shell. The overall density profile follows any given distribution function. By using the geometrical optics approximation and considering the propagation coefficient is complex, as well as the attenuation and phase coefficients are vectors, the detailed evaluation shows that the transmission and absorption of microwaves in the inhomogeneous spherically symmetric plasma depend on the electron and neutral particle collision frequency, central density, incident angle of the microwaves and density distribution profiles.

  5. Study of the L2,3 edges of 3d transition metals by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Akguel, G.; Aksoy, F.; Bozduman, A.; Ozkendir, O.M.; Ufuktepe, Y.; Luening, J.

    2008-01-01

    In the soft X-rays energy region, near edge X-ray absorption fine structure (NEXAFS) spectra are generally recorded by monitoring yield signals of secondary particles. These secondary particles, electrons or fluorescence photons, follow from the decay of the core hole excited in the primary absorption process. In general the yield signals are, to a good approximation, proportional to the absorption coefficient. However, in several applications it would be desirable to measure the absorption coefficient quantitatively. To derive the absorption coefficient quantitatively from a yield spectrum, one needs to know the escape depth of the emitted electrons (λ e ) of the applied yield technique in the material of interest. Since this quantity is difficult to calculate, it is unknown for most materials. In this paper we present the first results of our systematic investigation of the total electron-yield (TEY) escape depth of the 3d transition metals (Fe, Co and Cu). In addition our results gave important information on the variation of the TEY escape depth with the filling of the 3d band

  6. Study of the L2,3 Edges of 3d Transition Metals By X-Ray Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Akgul, G.; Aksoy, F.; Bozduman, A.; Ozkendir, O.M.; Ufuktepe, Y.; Luning, J.

    2008-01-01

    In the soft X-rays energy region, near edge X-ray absorption fine structure (NEXAFS) spectra are generally recorded by monitoring yield signals of secondary particles. These secondary particles, electrons or fluorescence photons, follow from the decay of the core hole excited in the primary absorption process. In general the yield signals are, to a good approximation, proportional to the absorption coefficient. However, in several applications it would be desirable to measure the absorption coefficient quantitatively. To derive the absorption coefficient quantitatively from a yield spectrum, one needs to know the escape depth of the emitted electrons (λ e ) of the applied yield technique in the material of interest. Since this quantity is difficult to calculate, it is unknown for most materials. In this paper we present the first results of our systematic investigation of the total electron-yield (TEY) escape depth of the 3d transition metals (Fe, Co and Cu). In addition our results gave important information on the variation of the TEY escape depth with the filling of the 3d band.

  7. Molar extinction coefficients of solutions of some organic compounds

    Indian Academy of Sciences (India)

    (C4H8O2), succinimide (C4H5NO2) as estimated from the measured absorbance of. 7 radiations in their ... species in the solution and ε is called the molar absorptivity or extinction coefficient. (l mol-1cm-1 or ... Integration of eq. (4) leads to.

  8. Evolution of absorption machines; Evolution des machines a absorption

    Energy Technology Data Exchange (ETDEWEB)

    Soide, I; Klemsdal, E [Gaz de France (GDF), 75 - Paris (France); Le Goff, P; Hornut, J M [LSGC-ENSIC, 54 - Nancy (France)

    1998-12-31

    Most of todays absorption air-conditioning machineries use the lithium bromide-water pair. The most performing can operate at a 150-160 deg. C, the temperature being limited by the corrosion resistance of metals with respect to LiBr solutions. Also, there is a revival of interest for water-ammonia systems. These systems require the use of a rectification column which reduces the coefficient of performance. Higher thermal performances are reached with hydrocarbon pairs and ternary mixtures (water-methanol-LiBr etc..). This paper presents different schemes of refrigerating heat pumps based on these different systems. (J.S.)

  9. Evolution of absorption machines; Evolution des machines a absorption

    Energy Technology Data Exchange (ETDEWEB)

    Soide, I.; Klemsdal, E. [Gaz de France (GDF), 75 - Paris (France); Le Goff, P.; Hornut, J.M. [LSGC-ENSIC, 54 - Nancy (France)

    1997-12-31

    Most of todays absorption air-conditioning machineries use the lithium bromide-water pair. The most performing can operate at a 150-160 deg. C, the temperature being limited by the corrosion resistance of metals with respect to LiBr solutions. Also, there is a revival of interest for water-ammonia systems. These systems require the use of a rectification column which reduces the coefficient of performance. Higher thermal performances are reached with hydrocarbon pairs and ternary mixtures (water-methanol-LiBr etc..). This paper presents different schemes of refrigerating heat pumps based on these different systems. (J.S.)

  10. High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application

    Science.gov (United States)

    Zhou, Peng; Zheng, Gaige

    2018-04-01

    The efficiency of graphene-based optoelectronic devices is typically limited by the poor absolute absorption of light. A hybrid structure of monolayer graphene with cylindrical titanium dioxide (TiO2) array and aluminum oxide (Al2O3) spacer layer on aluminum (Al) substrate has been proposed to enhance the absorption for two-dimensional (2D) materials. By combining dielectric array with metal substrate, the structure achieves multiple absorption peaks with near unity absorbance at near-infrared wavelengths due to the resonant effect of dielectric array. Completed monolayer graphene is utilized in the design without any demand of manufacture process to form the periodic patterns. Further analysis indicates that the near-field enhancement induced by surface modes gives rise to the high absorption. This favorable field enhancement and tunability of absorption not only open up new approaches to accelerate the light-graphene interaction, but also show great potential for practical applications in high-performance optoelectronic devices, such as modulators and sensors.

  11. Theoretical Influence Coefficients For X-Ray Fluorescence Analysis Of Alloys

    International Nuclear Information System (INIS)

    Okunade, I.O.

    2004-01-01

    The problem of quantifications in X-ray fluorescence analysis has over the years been narrowed down to matrix effects arising from the presence of other elements in the sample, which may either lead to the reduction or enhancement in the measured intensities of the analytic element. This paper describes a mathematical matrix correction method, which yield certain fundamental coefficients that account for the inter-element effects. The application of these influence coefficients in quantitative analysis however relies on the knowledge of pure element intensities of the analyse element, its mass absorption coefficients (for exciting and fluorescent radiation) of other elements in the sample that are responsible for the matrix effects. The quantification method using these coefficients are thereafter established for binary systems and further extended to multi-component systems such as ternary and quaternary alloys

  12. Determination of trace concentrations of chlorine in aqueous solutions by high-resolution continuum source graphite furnace molecular absorption spectrometry

    Science.gov (United States)

    Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest

    2016-11-01

    Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.

  13. High energy X-ray phase and dark-field imaging using a random absorption mask.

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  14. Absorption spectroscopy of colored dissolved organic carbon in Georgia (USA rivers: the impact of molecular size distribution

    Directory of Open Access Journals (Sweden)

    Michelle McELVAINE

    2003-02-01

    Full Text Available Dissolved organic carbon (DOC was collected in six rivers that transect the coastal plain of Georgia in July 1999 and February 2000. DOC concentrations ranged from 4.9 to 40.7 g m-3 and from 7.1 to 40.5 g m-3, respectively. The absorption coefficient at 440 nm was highly correlated with DOC concentration, suggesting that the optical parameter may be utilized for rapid estimation of DOC in these waters. The isolated DOC was separated into fractions of operationally defined molecular size, using an ultrafiltration technique that yielded three fractions: 50 ("large" kilodalton. The smallest fraction was the most abundant (>50% in 4 rivers in July and in all rivers in February, and considerably more abundant than in previous years. The wavelength-dependent absorption of the total DOC and its fractions showed approximately uniform shape of a curve declining exponentially with the increase of wavelength. The average slope of logarithmically transformed curves was 0.0151 and 0.0159 nm-1, for the material collected in July and February, respectively and showed a dependence on DOC molecular size. In unfractionated DOC samples, the mass-specific light absorption determined at 440 nm was on average 0.33 m2 g-1 in July, and 0.26 m2 g-1 in February. The mass-specific absorption coefficient in all fractions ranged between 0.085 and 1.347 m2 g-1 in July and between 0.085 and 1.877 m2 g-1 in February, and was positively correlated with the molecular size of the measured samples. The results of the reported study clearly suggest that the specific absorption coefficient of the yellow substance is an outcome of the relative contribution of its different size fractions.

  15. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    International Nuclear Information System (INIS)

    Jalali, Majid; Mohammadi, Ali

    2008-01-01

    The compounds Na 2 B 4 O 7 , H 3 BO 3 , CdCl 2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H 3 BO 3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds

  16. Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction.

    Science.gov (United States)

    Shi, Hongfei; Wang, Can; Sun, Zhipei; Zhou, Yueliang; Jin, Kuijuan; Redfern, Simon A T; Yang, Guozhen

    2014-08-11

    Reduced graphene oxides with varying degrees of reduction have been produced by hydrazine reduction of graphene oxide. The linear and nonlinear optical properties of both graphene oxide as well as the reduced graphene oxides have been measured by single beam Z-scan measurement in the picosecond region. The results reveal both saturable absorption and two-photon absorption, strongly dependent on the intensity of the pump pulse: saturable absorption occurs at lower pump pulse intensity (~1.5 GW/cm2 saturation intensity) whereas two-photon absorption dominates at higher intensities (≥5.7 GW/cm2). Intriguingly, we find that the two-photon absorption coefficient (from 1.5 cm/GW to 4.5cm/GW) and the saturation intensity (from 1 GW/cm2 to 2 GW/cm2) vary with chemical reduction, which is ascribed to the varying concentrations of sp2 domains and sp2 clusters in the reduced graphene oxides. Our results not only provide an insight into the evolution of the nonlinear optical coefficient in reduced graphene oxide, but also suggest that chemical engineering techniques may usefully be applied to tune the nonlinear optical properties of various nano-materials, including atomically thick graphene sheets.

  17. Measurement of attenuation coefficients of the fundamental and second harmonic waves in water

    Science.gov (United States)

    Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing

    2016-02-01

    Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.

  18. Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data

    Science.gov (United States)

    Saturno, Jorge; Pöhlker, Christopher; Massabò, Dario; Brito, Joel; Carbone, Samara; Cheng, Yafang; Chi, Xuguang; Ditas, Florian; Hrabě de Angelis, Isabella; Morán-Zuloaga, Daniel; Pöhlker, Mira L.; Rizzo, Luciana V.; Walter, David; Wang, Qiaoqiao; Artaxo, Paulo; Prati, Paolo; Andreae, Meinrat O.

    2017-08-01

    Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June-September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 ± 2.1 Mm-1, with a maximum of 15.9 Mm-1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption Ångström exponent (åABS) retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct åABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the åABS retrieved from offline MWAA measurements.

  19. Re-evaluation of SiC permeation coefficients at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yasushi, E-mail: yama3707@kansai-u.ac.jp [Faculty of Engineering Science, Kansai Univ., Yamate-cho, Suita, Osaka 564-8680 (Japan); Murakami, Yuichiro; Yamaguchi, Hirosato; Yamamoto, Takehiro; Yonetsu, Daigo [Faculty of Engineering Science, Kansai Univ., Yamate-cho, Suita, Osaka 564-8680 (Japan); Noborio, Kazuyuki [Hydrogen Isotope Research Center, Univ. of Toyama, Toyama, Toyama 930-8555 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto Univ., Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • The deuterium permeation coefficients of CVD-SiC at 600–950 °C were evaluated. • The wraparound flow was reduced to less than 1/100th of the permeation flow. • CVD-SiC materials are very effective as hydrogen isotope permeation barriers. - Abstract: Since 2007, our group has studied the deuterium permeation and diffusion coefficients for SiC materials at temperatures above 600 °C as a means of evaluating the tritium inventory and permeation in fusion blankets. During such measurements, control and evaluation of the wraparound flow through the sample holder are important, and so the heated sample holder is enclosed by a glass tube and kept under vacuum during experimental trials. However, detailed studies regarding the required degree of vacuum based on model calculations have shown that the wraparound flow is much larger than expected, and so can affect measurements at high temperatures. We therefore modified the measurement apparatus based on calculations involving reduced pressure in the glass tube, and are now confident that the measurement error is only several percent, even at 950 °C. In this paper, recent experimental results obtained with a chemical vapor deposition (CVD)-SiC sample over the temperature range of 600–950 °C are presented, showing that the permeation coefficient for CVD-SiC is more than three orders of magnitude smaller than that for stainless steel (SS316) at 600 °C, and that at 950 °C, the coefficient for CVD-SiC is almost equal to that for SUS316 at 550 °C.

  20. Accurate on-chip measurement of the Seebeck coefficient of high mobility small molecule organic semiconductors

    Science.gov (United States)

    Warwick, C. N.; Venkateshvaran, D.; Sirringhaus, H.

    2015-09-01

    We present measurements of the Seebeck coefficient in two high mobility organic small molecules, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and 2,9-didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C10-DNTT). The measurements are performed in a field effect transistor structure with high field effect mobilities of approximately 3 cm2/V s. This allows us to observe both the charge concentration and temperature dependence of the Seebeck coefficient. We find a strong logarithmic dependence upon charge concentration and a temperature dependence within the measurement uncertainty. Despite performing the measurements on highly polycrystalline evaporated films, we see an agreement in the Seebeck coefficient with modelled values from Shi et al. [Chem. Mater. 26, 2669 (2014)] at high charge concentrations. We attribute deviations from the model at lower charge concentrations to charge trapping.

  1. A fast neutron and dual-energy gamma-ray absorption method (NEUDEG) for investigating materials using a 252Cf source

    International Nuclear Information System (INIS)

    Bartle, C. Murray

    2014-01-01

    DEXA (dual-energy X-ray absorption) is widely used in airport scanners, industrial scanners and bone densitometers. DEXA determines the properties of materials by measuring the absorption differences of X-rays from a bremsstrahlung tube source with and without filtering. Filtering creates a beam with a higher mean energy, which causes lower material absorption. The absorption difference between measurements (those with a filter subtracted from those without a filter) is a positive number that increases with the effective atomic number of the material. In this paper, the concept of using a filter to create a dual beam and an absorption difference in materials is applied to radiation from a 252 Cf source, called NEUDEG (neutron and dual-energy gamma absorption). NEUDEG includes absorptions for fast neutrons as well as the dual photon beams and thus an incentive for developing the method is that, unlike DEXA, it is inherently sensitive to the hydrogen content of materials. In this paper, a model for the absorption difference and absorption sum in NEUDEG is presented using the combined gamma ray and fast neutron mass attenuation coefficients. Absorption differences can be either positive or negative in NEUDEG, increasing with increases in the effective atomic number and decreasing with increases in the hydrogen content. Sample sets of absorption difference curves are calculated for materials with typical gamma-ray and fast neutron mass attenuation coefficients. The model, which uses tabulated mass attenuated coefficients, agrees with experimental data for porcelain tiles and polyethylene sheets. The effects of “beam hardening” are also investigated. - Highlights: • Creation of a dual neutron/gamma beam from 252 Cf is described. • An absorption model is developed using mass attenuation coefficients. • A graphical method is used to show sample results from the model. • The model is successfully compared with experimental results. • The importance of

  2. Experimental assessment of ammonia adiabatic absorption into ammonia-lithium nitrate solution using a flat fan nozzle

    International Nuclear Information System (INIS)

    Zacarias, A.; Venegas, M.; Ventas, R.; Lecuona, A.

    2011-01-01

    This paper presents the experimental evaluation of the adiabatic absorption of ammonia vapour into ammonia-lithium nitrate solution using a flat fan nozzle and an upstream single-pass subcooler. Data are representative of the working conditions of adiabatic absorbers in absorption chillers. The nozzle was located at the top of the absorption chamber, separated 205 mm from the bottom surface. The diluted solution mass flow rate was modified between 0.04 and 0.08 kg/s and the solution inlet temperature between 24.5 and 29.7 o C. The influence of these variables on the absorption ratio, mass transfer coefficient, outlet subcooling and approach to equilibrium factor is analysed in the present paper. A linear relation between the inlet subcooling and the absorption ratio is observed. The approach to equilibrium factor for the conditions essayed is always between 0.81 and 0.89. Mass transfer coefficients and correlations for the approach to equilibrium factor and the Sherwood number are obtained. Results are compared with other ones reported in the literature. - Highlights: → Adiabatic absorption of NH 3 vapour into NH 3 -LiNO 3 using flat fan nozzle created spray. → A linear relation exists between solution inlet subcooling and absorption ratio. → The approach to equilibrium factor is always between 0.81 and 0.89 at 205 mm height. → Experimental values of mass transfer coefficient and outlet subcooling are presented. → Correlations for the approach to equilibrium factor and the Sherwood number are given.

  3. Laser absorption spectroscopy of oxygen confined in highly porous hollow sphere xerogel.

    Science.gov (United States)

    Yang, Lin; Somesfalean, Gabriel; He, Sailing

    2014-02-10

    An Al2O3 xerogel with a distinctive microstructure is studied for the application of laser absorption spectroscopy of oxygen. The xerogel has an exceptionally high porosity (up to 88%) and a large pore size (up to 3.6 µm). Using the method of gas-in-scattering media absorption spectroscopy (GASMAS), a long optical path length (about 3.5m) and high enhancement factor (over 300 times) are achieved as the result of extremely strong multiple-scattering when the light is transmitted through the air-filled, hollow-sphere alumina xerogel. We investigate how the micro-physical feature influences the optical property. As part of the optical sensing system, the material's gas exchange dynamics are also experimentally studied.

  4. Wine absorption by cork stoppers research in foods

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Adrados, J. R.; Gonzalez-Hernandez, F.; Garcia de Ceca, J. L.; Caceres-Esteban, M. J.; Garcia-Vallejo, M. C.

    2008-07-01

    To evaluate the magnitude of wine absorption by cork under conditions as close to reality as possible and its evolution in time, ready-to-use natural cork stoppers and ''1+1'' cork stoppers were used to close bottles filled with red wine. Stoppers were removed after 3, 6, 12 and 24 months of contact to determine absorption of liquid and liquid progression along the lateral surface of the cork stopper.Variation of absorption with contact time was studied by adjusting the model Absorption = a {radical} t(R{sup 2}: 82.19 - 93.63%). A scheme of the evolution of wine absorption with time is proposed, differentiating liquid flow along cork-glass interface, diffusion in cell walls and liquid flow through the cell lumens. In conditions of use, a value of 4.48.10{sup 1}3 m{sup 2} s{sup -}1 was obtained for non-radial diffusion coefficient (D). (Author) 13 refs.

  5. Computation of Clebsch-Gordan and Gaunt coefficients using binomial coefficients

    International Nuclear Information System (INIS)

    Guseinov, I.I.; Oezmen, A.; Atav, Ue

    1995-01-01

    Using binomial coefficients the Clebsch-Gordan and Gaunt coefficients were calculated for extremely large quantum numbers. The main advantage of this approach is directly calculating these coefficients, instead of using recursion relations. Accuracy of the results is quite high for quantum numbers l 1 , and l 2 up to 100. Despite direct calculation, the CPU times are found comparable with those given in the related literature. 11 refs., 1 fig., 2 tabs

  6. Negative absorption in an anisotropic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, R.V.

    1976-02-01

    We consider the absorption of electromagnetic waves in a plasma with electron drift for an arbitrary relation between the electron thermal and drift velocities and also for an arbitrary angle between the polarization vector of the wave and the direction of drift. Using a kinetic equation describing the influence of an external field on the collision of plasma particles, we find an expression for the work done on the plasma by a high-frequency electromagnetic field of arbitrary intensity. We show that in the weak-field limit under certain conditions the sign of the work becomes negative; i.e., a plasma with electron drift can amplify electromagnetic waves propagating through it. An expression is obtained for the amplification coefficient and a numerical estimate is given. (AIP)

  7. Distribution of temperature coefficient density for muons in the atmosphere

    Directory of Open Access Journals (Sweden)

    Kuzmenko V.S.

    2017-12-01

    Full Text Available To date, several dozens of new muon detectors have been built. When studying cosmic-ray intensity variations with these detectors, located deep in the atmosphere, it is necessary to calculate all characteristics, including the distribution of temperature coefficient density for muons in the atmosphere, taking into account their specific geometry. For this purpose, we calculate the density of temperature coefficients of muon intensity in the atmosphere at various zenith angles of detection at sea level and at various depths underground for different absorption ranges of primary protons and pions in the atmosphere.

  8. Self-shielding coefficient and thermal flux depression factor of voluminous sample in neutron activation analysis

    International Nuclear Information System (INIS)

    Noorddin Ibrahim; Rosnie Akang

    2009-01-01

    Full text: One of the major problems encountered during the irradiation of large inhomogeneous samples in performing activation analysis using neutron is the perturbation of the neutron field due to absorption and scattering of neutron within the sample as well as along the neutron guide in the case of prompt gamma activation analysis. The magnitude of this perturbation shown by self-shielding coefficient and flux depression depend on several factors including the average neutron energy, the size and shape of the sample, as well as the macroscopic absorption cross section of the sample. In this study, we use Monte Carlo N-Particle codes to simulate the variation of neutron self-shielding coefficient and thermal flux depression factor as a function of the macroscopic thermal absorption cross section. The simulation works was carried out using the high performance computing facility available at UTM while the experimental work was performed at the tangential beam port of Reactor TRIGA PUSPATI, Malaysia Nuclear Agency. The neutron flux measured along the beam port is found to be in good agreement with the simulated data. Our simulation results also reveal that total flux perturbation factor decreases as the value of absorption increases. This factor is close to unity for low absorbing sample and tends towards zero for strong absorber. In addition, sample with long mean chord length produces smaller flux perturbation than the shorter mean chord length. When comparing both the graphs of self-shielding factor and total disturbance, we can conclude that the total disturbance of the thermal neutron flux on the large samples is dominated by the self-shielding effect. (Author)

  9. Stack emission monitoring using non-dispersive infrared spectroscopy with an optimized nonlinear absorption cross interference correction algorithm

    Directory of Open Access Journals (Sweden)

    Y. W. Sun

    2013-08-01

    Full Text Available In this paper, we present an optimized analysis algorithm for non-dispersive infrared (NDIR to in situ monitor stack emissions. The proposed algorithm simultaneously compensates for nonlinear absorption and cross interference among different gases. We present a mathematical derivation for the measurement error caused by variations in interference coefficients when nonlinear absorption occurs. The proposed algorithm is derived from a classical one and uses interference functions to quantify cross interference. The interference functions vary proportionally with the nonlinear absorption. Thus, interference coefficients among different gases can be modeled by the interference functions whether gases are characterized by linear or nonlinear absorption. In this study, the simultaneous analysis of two components (CO2 and CO serves as an example for the validation of the proposed algorithm. The interference functions in this case can be obtained by least-squares fitting with third-order polynomials. Experiments show that the results of cross interference correction are improved significantly by utilizing the fitted interference functions when nonlinear absorptions occur. The dynamic measurement ranges of CO2 and CO are improved by about a factor of 1.8 and 3.5, respectively. A commercial analyzer with high accuracy was used to validate the CO and CO2 measurements derived from the NDIR analyzer prototype in which the new algorithm was embedded. The comparison of the two analyzers show that the prototype works well both within the linear and nonlinear ranges.

  10. Effects of Nonlinear Absorption in BK7 and Color Glasses at 355 nm

    International Nuclear Information System (INIS)

    Adams, J J; McCarville, T; Bruere, J; McElroy, J; Peterson, J

    2003-01-01

    We have demonstrated a simple experimental technique that can be used to measure the nonlinear absorption coefficients in glasses. We determine BK7, UG1, and UG11 glasses to have linear absorption coefficients of 0.0217 ± 10% cm -1 , 1.7 ± 10% cm -1 , and 0.82 ± 10% cm -1 , respectively, two-photon absorption cross-sections of 0.025 ± 20% cm/GW, 0.035 ± 20% cm/GW, and 0.047 ± 20% cm/GW, respectively, excited-state absorption cross-sections of 8.0 x 10 -18 ± 20% cm 2 , 2.8 x 10 -16 ± 20% cm 2 , and 5 x 10 -17 ± 20% cm 2 , respectively, and solarization coefficients of 8.5 x 10 -20 ± 20% cm 2 , 2.5 x 10 -18 ± 20% cm 2 , and 1.3 x 10 -19 ± 20% cm 2 , respectively. For our application, nonlinear effects in 10-cm of BK7 are small ((le) 2%) for 355-nm fluences 2 for flat-top pulses. However, nonlinear effects are noticeable for 355-nm fluences at 0.8 J/cm 2 . In particular, we determine a 20% increase in the instantaneous absorption from linear, a solarization rate of 4% per 100 shots, and a 10% temporal droop introduced in the pulse, for 355-nm flat-top pulses at a fluence of 0.8 J/cm 2 . For 0.5-cm of UG1 absorbing glass the non-linear absorption has a similar effect as that from 10-cm of BK7 on the pulse shape; however, the effects in UG11 are much smaller

  11. Dual-energy X-ray analysis using synchrotron computed tomography at 35 and 60 keV for the estimation of photon interaction coefficients describing attenuation and energy absorption.

    Science.gov (United States)

    Midgley, Stewart; Schleich, Nanette

    2015-05-01

    A novel method for dual-energy X-ray analysis (DEXA) is tested using measurements of the X-ray linear attenuation coefficient μ. The key is a mathematical model that describes elemental cross sections using a polynomial in atomic number. The model is combined with the mixture rule to describe μ for materials, using the same polynomial coefficients. Materials are characterized by their electron density Ne and statistical moments Rk describing their distribution of elements, analogous to the concept of effective atomic number. In an experiment with materials of known density and composition, measurements of μ are written as a system of linear simultaneous equations, which is solved for the polynomial coefficients. DEXA itself involves computed tomography (CT) scans at two energies to provide a system of non-linear simultaneous equations that are solved for Ne and the fourth statistical moment R4. Results are presented for phantoms containing dilute salt solutions and for a biological specimen. The experiment identifies 1% systematic errors in the CT measurements, arising from third-harmonic radiation, and 20-30% noise, which is reduced to 3-5% by pre-processing with the median filter and careful choice of reconstruction parameters. DEXA accuracy is quantified for the phantom as the mean absolute differences for Ne and R4: 0.8% and 1.0% for soft tissue and 1.2% and 0.8% for bone-like samples, respectively. The DEXA results for the biological specimen are combined with model coefficients obtained from the tabulations to predict μ and the mass energy absorption coefficient at energies of 10 keV to 20 MeV.

  12. Photographic guidance for selecting flow resistance coefficients in high-gradient channels

    Science.gov (United States)

    Steven E. Yochum; Francesco Comiti; Ellen Wohl; Gabrielle C. L. David; Luca Mao

    2014-01-01

    Photographic guidance is presented to assist with the estimation of Manning’s n and Darcy-Weisbach f in high-gradient plane-bed, step-pool, and cascade channels. Reaches both with and without instream wood are included. These coefficients are necessary for the estimation of reachaverage velocity, energy loss, and...

  13. Second law analysis of double effect vapour absorption cooler system

    International Nuclear Information System (INIS)

    Gomri, Rabah; Hakimi, Riad

    2008-01-01

    In this paper, exergy analysis of double effect lithium bromide/water absorption refrigeration system is presented. The system consists of a second effect generator between the generator and condenser of the single effect absorption refrigeration system, including two solution heat exchangers between the absorber and the two generators. In order to simulate the refrigeration system by using a computer, a new set of computationally efficient formulations of thermodynamic properties of lithium bromide/water solution developed is used. The exergy analysis is carried out for each component of the system. All exergy losses that exist in double effect lithium bromide/water absorption system are calculated. In addition to the coefficient of performance and the exergetic efficiency of the system, the number of exergy of each component of the system is also estimated. This study suggests the component of the absorption refrigeration system that should be developed. The results show that the performance of the system increases with increasing low pressure generator (LPG) temperature, but decreases with increasing high pressure generator (HPG) temperature. The highest exergy loss occurs in the absorber and in the HPG, which therefore makes the absorber and HPG the most important components of the double effect refrigeration system

  14. Absorption of UV-B to blue light radiation by leaf cuticles of selected crop plants

    International Nuclear Information System (INIS)

    Baur, P.; Stulle, K.; Schönherr, J.; Uhlig, B.

    1998-01-01

    Plants have protective pigments absorbing destructive shortwave radiation. These pigments have been found in the epidermis and mesophyll of leaves. We studied the absorption characteristics of the leaf cuticle, the outermost part of the epidermis that is directly exposed to radiation. Adaxial leaf cuticles of apple, pear, sour cherry, strawberry, cauliflower, sugarbeet, and 13 other plant species were tested. The UV-B absorption was highest in Citrus aurantium and Citrus maxima (<3 % transmittance) and lowest in sugarbeet and peach (>64 % transmittance). The absorption maxima are at wavelenghts below 320 nm. Significant absorption was also determined at 500 nm, which correlated with cuticle thickness of the plant species (r(2)=0.72). The absorption in the range of 250 to 350 nm is caused by pigments with a high extinction coefficient. This absorption is species dependent and the patterns were designated to three different types. The highest absorption was found in evergreen species. The extraction of cuticular waxes had little effect on absorption. The specific absorption of shortwave radiation by plant cuticles is probably caused by pigments covalently bound to cut in. It is known for some plant species that cuticles can contain the phenolics p-coumaric acid, ferulic acid, and vanillic acid. Mixtures of these phenolics had spectra similar to cuticles. For most species absorption of shortwave radiation by the cuticle alone does not give complete protection

  15. Accurate on-chip measurement of the Seebeck coefficient of high mobility small molecule organic semiconductors

    Directory of Open Access Journals (Sweden)

    C. N. Warwick

    2015-09-01

    Full Text Available We present measurements of the Seebeck coefficient in two high mobility organic small molecules, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT and 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (C10-DNTT. The measurements are performed in a field effect transistor structure with high field effect mobilities of approximately 3 cm2/V s. This allows us to observe both the charge concentration and temperature dependence of the Seebeck coefficient. We find a strong logarithmic dependence upon charge concentration and a temperature dependence within the measurement uncertainty. Despite performing the measurements on highly polycrystalline evaporated films, we see an agreement in the Seebeck coefficient with modelled values from Shi et al. [Chem. Mater. 26, 2669 (2014] at high charge concentrations. We attribute deviations from the model at lower charge concentrations to charge trapping.

  16. Absorption Refrigeration Cycles with Ammonia-Ionic Liquid Working Pairs Studied by Molecular Simulation.

    Science.gov (United States)

    Becker, Tim M; Wang, Meng; Kabra, Abhishek; Jamali, Seyed Hossein; Ramdin, Mahinder; Dubbeldam, David; Infante Ferreira, Carlos A; Vlugt, Thijs J H

    2018-04-18

    For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf 2 N], and [emim][SCN]. As refrigerant NH 3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance.

  17. Absorption Refrigeration Cycles with Ammonia–Ionic Liquid Working Pairs Studied by Molecular Simulation

    Science.gov (United States)

    2018-01-01

    For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf2N], and [emim][SCN]. As refrigerant NH3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance. PMID:29749996

  18. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, Majid [Isfahan Nuclear Science and Technology Research Institute (NSTRT), Reactor and Accelerators Research and Development School, Atomic Energy Organization (Iran, Islamic Republic of)], E-mail: m_jalali@entc.org.ir; Mohammadi, Ali [Faculty of Science, Department of Physics, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)

    2008-05-15

    The compounds Na{sub 2}B{sub 4}O{sub 7}, H{sub 3}BO{sub 3}, CdCl{sub 2} and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the {gamma} rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H{sub 3}BO{sub 3} with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds.

  19. Accelerated Electron-Beam Formation with a High Capture Coefficient in a Parallel Coupled Accelerating Structure

    Science.gov (United States)

    Chernousov, Yu. D.; Shebolaev, I. V.; Ikryanov, I. M.

    2018-01-01

    An electron beam with a high (close to 100%) coefficient of electron capture into the regime of acceleration has been obtained in a linear electron accelerator based on a parallel coupled slow-wave structure, electron gun with microwave-controlled injection current, and permanent-magnet beam-focusing system. The high capture coefficient was due to the properties of the accelerating structure, beam-focusing system, and electron-injection system. Main characteristics of the proposed systems are presented.

  20. Simulation of photon attenuation coefficients for high effective shielding material Lead-Boron Polyethyene

    Science.gov (United States)

    Zhang, L.; Jia, M. C.; Gong, J. J.; Xia, W. M.

    2017-12-01

    The mass attenuation coefficient of various Lead-Boron Polyethylene samples which can be used as the photon shielding materials in marine reactor, have been simulated using the MCNP-5 code, and compared with the theoretical values at the photon energy range 0.001MeV—20MeV. A good agreement has been observed. The variations of mass attenuation coefficient, linear attenuation coefficient and mean free path with photon energy between 0.001MeV to 100MeV have been plotted. The result shows that all the coefficients strongly depends on the photon energy, material atomic composition and density. The dose transmission factors for source Cesium-137 and Cobalt-60 have been worked out and their variations with the thickness of various sample materials have also been plotted. The variations show that with the increase of materials thickness the dose transmission factors decrease continuously. The results of this paper can provide some reference for the use of the high effective shielding material Lead-Boron Polyethyene.

  1. Absorption properties of water-in-oil emulsions in the low THz frequency range

    DEFF Research Database (Denmark)

    Møller, Uffe; Folkenberg, Jacob Riis; Jepsen, Peter Uhd

    We use transmission THz spectroscopy to investigate the absorption properties of water-in-oil emulsions with water content varying in the 0-20% range, relevant for a range of food products. We find that at low frequencies the effective absorption coefficient of the emulsion is suppressed compared...... to bulk water....

  2. Water absorption and biodegradation kinetics of highly filled EOC-FS biocomposites

    Science.gov (United States)

    Zykova, A. K.; Pantyukhov, P. V.; Platov, Yu. T.; Bobojonova, G. A.; Ramos, C. Chaverri; Popov, A. A.

    2017-12-01

    The paper analyzes the water absorption and biodegradation kinetics in highly filled biocomposites based on ethylene-octene copolymer (EOC) and oil flax straw (FS). It is shown that adding the filler to EOC increases the water absorption from 0 to 22%. The tendency can be explained both by the low interfacial adhesion of EOC to FS and by the hydrophilic nature of the filler. According to biodegradation tests (10 months), the mass of pure EOC remains unchanged, suggesting that it fails to biodegrade in the environment. Increasing the filler content increases the weight loss of the composites and the degree of microbiological contamination (fungi filaments, bacteria) as evidenced by optical microscopy.

  3. Determination of re-aeration coefficients on high mountain rivers using nuclear techniques

    International Nuclear Information System (INIS)

    Fajardo, Marco

    2001-01-01

    The rivers Machangara and Guayllabamba in Quito, Ecuador, currently are highly polluted, mainly due to human and industrial residues from the city. The objective of this survey is to establish the dynamics of dissolved oxygen in these rivers using the Krypton 85 method to determine the re aeration coefficient in representative sectors of the rivers. In addition, conventional test tracers establish mean flow speed and flow longitudinal dispersion coefficients. The results of this study will be useful for future water quality modelling of these rivers, in order to define their behaviour and auto depurative capacity to treat sludge waters from Quito

  4. Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic instruments for measurement of light absorption by aerosols

    International Nuclear Information System (INIS)

    Arnott, W. Patrick; Moosmu''ller, Hans; Walker, John W.

    2000-01-01

    A nitrogen dioxide calibration method is developed to evaluate the theoretical calibration for a photoacoustic instrument used to measure light absorption by atmospheric aerosols at a laser wavelength of 532.0 nm. This method uses high concentrations of nitrogen dioxide so that both a simple extinction and the photoacoustically obtained absorption measurement may be performed simultaneously. Since Rayleigh scattering is much less than absorption for the gas, the agreement between the extinction and absorption coefficients can be used to evaluate the theoretical calibration, so that the laser gas spectra are not needed. Photoacoustic theory is developed to account for strong absorption of the laser beam power in passage through the resonator. Findings are that the photoacoustic absorption based on heat-balance theory for the instrument compares well with absorption inferred from the extinction measurement, and that both are well within values represented by published spectra of nitrogen dioxide. Photodissociation of nitrogen dioxide limits the calibration method to wavelengths longer than 398 nm. Extinction and absorption at 532 and 1047 nm were measured for kerosene-flame soot to evaluate the calibration method, and the single scattering albedo was found to be 0.31 and 0.20 at these wavelengths, respectively

  5. Effect of microplastic deformation on the electron ultrasonic absorption in high-purity molybdenum monocrystals

    International Nuclear Information System (INIS)

    Pal'-Val', P.P.; Kaufmann, Kh.-J.

    1983-01-01

    The low temperature (100-6 K) linear absorption of ultrasound (88 kHz) by high purity molybdenum single crystals have been studied. Both unstrained samples and samples sub ected to microplastic deformation (epsilon 0 approximately 10 -4 , during 10 min, at 6 K. A new relaxation peak of absorption at 10 K has been found in strained samples

  6. Sensitivity of MENA Tropical Rainbelt to Dust Shortwave Absorption: A High Resolution AGCM Experiment

    KAUST Repository

    Bangalath, Hamza Kunhu; Stenchikov, Georgiy L.

    2016-01-01

    Shortwave absorption is one of the most important, but the most uncertain, components of direct radiative effect by mineral dust. It has a broad range of estimates from different observational and modeling studies and there is no consensus on the strength of absorption. To elucidate the sensitivity of the Middle East and North Africa (MENA) tropical summer rainbelt to a plausible range of uncertainty in dust shortwave absorption, AMIP-style global high resolution (25 km) simulations are conducted with and without dust, using the High-Resolution Atmospheric Model (HiRAM). Simulations with dust comprise three different cases by assuming dust as a very efficient, standard and inefficient absorber. Inter-comparison of these simulations shows that the response of the MENA tropical rainbelt is extremely sensitive to the strength of shortwave absorption. Further analyses reveal that the sensitivity of the rainbelt stems from the sensitivity of the multi-scale circulations that define the rainbelt. The maximum response and sensitivity are predicted over the northern edge of the rainbelt, geographically over Sahel. The sensitivity of the responses over the Sahel, especially that of precipitation, is comparable to the mean state. Locally, the response in precipitation reaches up to 50% of the mean, while dust is assumed to be a very efficient absorber. Taking into account that Sahel has a very high climate variability and is extremely vulnerable to changes in precipitation, the present study suggests the importance of reducing uncertainty in dust shortwave absorption for a better simulation and interpretation of the Sahel climate.

  7. Sensitivity of MENA Tropical Rainbelt to Dust Shortwave Absorption: A High Resolution AGCM Experiment

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-06-13

    Shortwave absorption is one of the most important, but the most uncertain, components of direct radiative effect by mineral dust. It has a broad range of estimates from different observational and modeling studies and there is no consensus on the strength of absorption. To elucidate the sensitivity of the Middle East and North Africa (MENA) tropical summer rainbelt to a plausible range of uncertainty in dust shortwave absorption, AMIP-style global high resolution (25 km) simulations are conducted with and without dust, using the High-Resolution Atmospheric Model (HiRAM). Simulations with dust comprise three different cases by assuming dust as a very efficient, standard and inefficient absorber. Inter-comparison of these simulations shows that the response of the MENA tropical rainbelt is extremely sensitive to the strength of shortwave absorption. Further analyses reveal that the sensitivity of the rainbelt stems from the sensitivity of the multi-scale circulations that define the rainbelt. The maximum response and sensitivity are predicted over the northern edge of the rainbelt, geographically over Sahel. The sensitivity of the responses over the Sahel, especially that of precipitation, is comparable to the mean state. Locally, the response in precipitation reaches up to 50% of the mean, while dust is assumed to be a very efficient absorber. Taking into account that Sahel has a very high climate variability and is extremely vulnerable to changes in precipitation, the present study suggests the importance of reducing uncertainty in dust shortwave absorption for a better simulation and interpretation of the Sahel climate.

  8. Intrinsic defect oriented visible region absorption in zinc oxide films

    Science.gov (United States)

    Rakhesh, V.; Shankar, Balakrishnan

    2018-05-01

    Zinc Oxide films were deposited on the glass substrate using vacuum arc sputtering technology. Films were prepared in oxygen ambience for 10mA and 15 mA deposition current separately. The UV-Visible spectroscopy of the samples showed that both samples possess sharp absorption near 3.5eV which is the characteristic band gap absorption energy of ZnO films. The absorption coefficient were calculated for the samples and the (αℎϑ)2 vs energy plot is drawn. The plot suggested that in addition to the sharp band edge absorption, the sample prepared at 10mA deposition current showed sharp absorption edge near 1.51eV and that at 15 mA showed absorption edge near 1.47eV. This refers to the presence of an intrinsic defect level which is likely to be deep in the band gap.

  9. Atmospheric-water absorption features near 2.2 micrometers and their importance in high spectral resolution remote sensing

    Science.gov (United States)

    Kruse, F. A.; Clark, R. N.

    1986-01-01

    Selective absorption of electromagnetic radiation by atmospheric gases and water vapor is an accepted fact in terrestrial remote sensing. Until recently, only a general knowledge of atmospheric effects was required for analysis of remote sensing data; however, with the advent of high spectral resolution imaging devices, detailed knowledge of atmospheric absorption bands has become increasingly important for accurate analysis. Detailed study of high spectral resolution aircraft data at the U.S. Geological Survey has disclosed narrow absorption features centered at approximately 2.17 and 2.20 micrometers not caused by surface mineralogy. Published atmospheric transmission spectra and atmospheric spectra derived using the LOWTRAN-5 computer model indicate that these absorption features are probably water vapor. Spectral modeling indicates that the effects of atmospheric absorption in this region are most pronounced in spectrally flat materials with only weak absorption bands. Without correction and detailed knowledge of the atmospheric effects, accurate mapping of surface mineralogy (particularly at low mineral concentrations) is not possible.

  10. [Determination of equilibrium solubility and n-octanol/water partition coefficient of pulchinenosiden D by HPLC].

    Science.gov (United States)

    Rao, Xiao-Yong; Yin, Shan; Zhang, Guo-Song; Luo, Xiao-Jian; Jian, Hui; Feng, Yu-Lin; Yang, Shi-Lin

    2014-05-01

    To determine the equilibrium solubility of pulchinenosiden D in different solvents and its n-octanol/water partition coefficients. Combining shaking flask method and high performance liquid chromatography (HPLC) to detect the n-octanol/water partition coefficients of pulchinenosiden D, the equilibrium solubility of pulchinenosiden D in six organic solvents and different pH buffer solution were determined by HPLC analysis. n-Octanol/water partition coefficients of pulchinenosiden D in different pH were greater than zero, the equilibrium solubility of pulchinenosiden D was increased with increase the pH of the buffer solution. The maximum equilibrium solubility of pulchinenosiden D was 255.89 g x L(-1) in methanol, and minimum equilibrium solubility of pulchinenosiden D was 0.20 g x L(-1) in acetonitrile. Under gastrointestinal physiological conditions, pulchinenosiden D exists in molecular state and it has good absorption but poor water-solubility, so increasing the dissolution rate of pulchinenosiden D may enhance its bioavailability.

  11. Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data

    Directory of Open Access Journals (Sweden)

    J. Saturno

    2017-08-01

    Full Text Available Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA, which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June–September 2014. The mean absorption coefficient (at 637 nm during this period was 1.8 ± 2.1 Mm−1, with a maximum of 15.9 Mm−1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption Ångström exponent (åABS retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct åABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the åABS retrieved from offline MWAA measurements.

  12. Extended x-ray absorption fine structure (EXAFS): a novel probe for local structure of glassy solids

    International Nuclear Information System (INIS)

    Wong, J.

    1979-01-01

    The extended x-ray absorption fine structure (EXAFS) is the oscillation in the absorption coefficient extending a few hundred eVs on the high energy side of an x-ray absorption edge. This mode of spectroscopy has recently been realized to be a powerful tool in probing the local atomic structure of all states of matter, particularly with the advent of intense synchrotron radiation. More importantly is the unique ability of EXAFS to probe the structure and dynamics around individual atomic species in a multi-atomic system. In this paper, the physical processes associated with the EXAFS phenomenon will be discussed. Experimental results obtained at the Stanford Synchrotron Radiation Laboratory on some oxide and metallic glasses will be presented. The local structure in these materials are elucidated using a Fourier transform technique

  13. A liquid-He cryostat for structural and thermal disorder studies by X-ray absorption.

    Science.gov (United States)

    Bouamrane, F; Ribbens, M; Fonda, E; Adjouri, C; Traverse, A

    2003-07-01

    A new device operating from 4.2 to 300 K is now installed on the hard X-ray station of the DCI ring in LURE in order to measure absorption coefficients. This liquid-He bath device has three optical windows. One allows the incident beam to impinge on the sample, one located at 180 degrees with respect to the sample allows transmitted beams to be detected, and another located at 90 degrees is used to detect emitted photons. Total electron yield detection mode is also possible thanks to a specific sample holder equipped with an electrode that collects the charges created by the emitted electrons in the He gas brought from the He bath around the sample. The performance of the cryostat is described by measurements of the absorption coefficients versus the temperature for Cu and Co foils. For comparison, the absorption coefficient is also measured for Cu clusters. As expected from dimension effects, the Debye temperature obtained for the clusters is lower than that of bulk Cu.

  14. Temperature and isotope effects on the shape of the optical absorption spectrum of solvated electrons in water

    International Nuclear Information System (INIS)

    Jou, F.Y.; Freeman, G.R.

    1979-01-01

    The optical absorption spectra of solvated electrons in H 2 O and D 2 O have been measured at 274, 298, 340, and 380 K. All the spectra were fitted very well with the Gaussian and Lorentzian shape functions at the low- and high-energy sides of the absorption maximum, respectively, excluding the high-energy tail. The spectrum does not shift uniformly with temperature. The temperature coefficient of absorption decreases rapidly with increasing energy on the low-energy side of the absorption maximum, while it changes only slightly on the high-energy side. When the temperature increases the Lorentzian width remains constant, the Gaussian width varies proportionally to T/sup 1/2/, and the spectrum becomes more symmetrical. On going from H 2 O to D 2 O we found that the spectrum at a given A/A/sub max/ shows a shift of +0.05 eV in the low-energy wing. The shift decreases with increasing energy, reaching 0.03 eV at the absorption maximum. On the high-energy side of the band the shift becomes negative at hν > 2.2 eV. The shift on the low-energy side seems to be related to the difference of the zero-point energies of the inter- and intramolecular vibrations. The wavelength dependence of the temperature and isotope effects is consistent with the model that different types of excitation occur on the low- and high-energy sides of the absorption band. The temperature and isotopic dependence of the low-energy side are consistent with its width being due to phonon interactions

  15. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    Science.gov (United States)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  16. High Pressure X-ray Absorption Studies on Correlated-Electron Systems

    International Nuclear Information System (INIS)

    Cornelius, Andrew L.

    2016-01-01

    This project used high pressure to alter the electron-electron and electron-lattice interactions in rare earth and actinide compounds. Knowledge of these properties is the starting points for a first-principles understanding of electronic and electronically related macroscopic properties. The research focused on a systematic study of x-ray absorption measurements on rare earth and actinide compounds.

  17. Effect of water absorption by the aggregate on properties of high-strength lightweight concrete

    Energy Technology Data Exchange (ETDEWEB)

    Punkki, J

    1996-12-31

    Recently, high-strength lightweight concrete has become an interesting building material for the offshore oil industry. This doctoral thesis presents an experimental investigation of the effect of water absorption by three different types of lightweight aggregates. One type did not show any water absorption ability at all and so represented no problem to the concrete production. For the two other high-strength aggregates, which were of more conventional types, the water absorption depended not only on the properties of the aggregates, but also on the concrete mixing procedure and the properties of the fresh cement paste. When water absorbing lightweight aggregate was used in a dry condition, the workability of the concrete was significantly reduced by the water absorption of the aggregate. This effect was not present when prewetted aggregate was used. The water absorption by the lightweight aggregate also affected the early compressive strength of concrete. After one day, dry aggregate gave on the average 10 MPa higher compressive strength than did prewetted aggregate. The strength-density ratio was affected by the moisture condition of the aggregate. Dry lightweight aggregate gave 9 MPa higher compressive strength at a density of 2000 kg/m{sup 3} compared to that of prewetted aggregate. The water absorption by the lightweight also affected the microstructure of the hardened concrete. Dry lightweight aggregate gave a slightly better microstructure than normal weight aggregate. The results indicate that the use of prewetted aggregate adversely affected the transition zone between the aggregate and the cement paste. 69 refs., 58 figs., 42 tabs.

  18. Effect of water absorption by the aggregate on properties of high-strength lightweight concrete

    Energy Technology Data Exchange (ETDEWEB)

    Punkki, J.

    1995-12-31

    Recently, high-strength lightweight concrete has become an interesting building material for the offshore oil industry. This doctoral thesis presents an experimental investigation of the effect of water absorption by three different types of lightweight aggregates. One type did not show any water absorption ability at all and so represented no problem to the concrete production. For the two other high-strength aggregates, which were of more conventional types, the water absorption depended not only on the properties of the aggregates, but also on the concrete mixing procedure and the properties of the fresh cement paste. When water absorbing lightweight aggregate was used in a dry condition, the workability of the concrete was significantly reduced by the water absorption of the aggregate. This effect was not present when prewetted aggregate was used. The water absorption by the lightweight aggregate also affected the early compressive strength of concrete. After one day, dry aggregate gave on the average 10 MPa higher compressive strength than did prewetted aggregate. The strength-density ratio was affected by the moisture condition of the aggregate. Dry lightweight aggregate gave 9 MPa higher compressive strength at a density of 2000 kg/m{sup 3} compared to that of prewetted aggregate. The water absorption by the lightweight also affected the microstructure of the hardened concrete. Dry lightweight aggregate gave a slightly better microstructure than normal weight aggregate. The results indicate that the use of prewetted aggregate adversely affected the transition zone between the aggregate and the cement paste. 69 refs., 58 figs., 42 tabs.

  19. Light absorption properties of CDOM in the Changjiang (Yangtze) estuarine and coastal waters: An alternative approach for DOC estimation

    Science.gov (United States)

    Yu, Xiaolong; Shen, Fang; Liu, Yangyang

    2016-11-01

    Field measurements of CDOM absorption properties and DOC concentrations were collected in the Changjiang estuarine and coastal waters from 2011 to 2013. CDOM absorption coefficient at 355 nm (ag (355)) was found to be inversely correlated with salinity, with Pearson's coefficients r of -0.901 and -0.826 for summer and winter observations, respectively. Analysis results of the relationships between salinity and CDOM optical properties (i.e., absorption coefficient and spectral slope) suggested that terrigenous inputs dominated CDOM sources in the Changjiang estuary, but the proportion of terrigenous CDOM declined with increasing salinity. The level of CDOM in the Changjiang estuary was lower compared to some of the major estuaries in the world, which could be attributed to several controlling factors such as vegetation cover in the drainage basin, the origin of recharged streams and high sediment load in the Changjiang estuary. We further evaluated the relationships between CDOM and DOC and their mixing behavior among world's major estuaries. An empirical model was finally developed to estimate DOC concentration from ag (355) and spectral slope S275-295 using a non-linear regression. This empirical relationship was calibrated using the Cal dataset, and was validated with the Val dataset, resulting in an acceptable error with the R2 of 0.746, the RMSE of 20.99 μmol/L and the rMAD of 14.46%.

  20. Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration

    International Nuclear Information System (INIS)

    Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Restrepo, R.L.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga 1−x Al x As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption

  1. Development of a self-absorption correction method used for a HPGe detector by means of a Monte Carlo simulation

    International Nuclear Information System (INIS)

    Itadzu, Hidesuke; Iguchi, Tetsuo; Suzuki, Toshikazu

    2013-01-01

    Quantitative analysis for food products and natural samples, to determine the activity of each radionuclide, can be made by using a high-purity germanium (HPGe) gamma-ray spectrometer system. The analysis procedure is, in general, based upon the guidelines established by the Nuclear Safety Division of the Ministry of Education, Culture, Sports, Science and Technology in Japan (JP MEXT). In the case of gamma-ray spectrum analysis for large volume samples, re-entrant (marinelli) containers are commonly used. The effect of photon attenuation in a large-volume sample, so-called “self-absorption”, should be corrected for precise determination of the activity. As for marinelli containers, two accurate geometries are shown in the JP MEXT guidelines for 700 milliliter and 2 liter volumes. In the document, the functions to obtain the self-absorption coefficients for these specific shapes are also shown. Therefore, self-absorption corrections have been carried out only for these two containers with practical media. However, to measure radioactivity for samples in containers of volumes other than those described in the guidelines, the self-absorption correction functions must be obtained by measuring at least two standard multinuclide volume sources, which consist of different media or different linear attenuation coefficients. In this work, we developed a method to obtain these functions over a wide range of linear attenuation coefficients for self-absorption in various shapes of marinelli containers using a Monte Carlo simulation. This method was applied to a 1-liter marinelli container, which is widely used for the above quantitative analysis, although its self-absorption correction function has not yet been established. The validity of this method was experimentally checked through an analysis of natural samples with known activity levels. (author)

  2. Determination of X-ray photoelectric absorption of Ge and Si avoiding solid-state effects

    International Nuclear Information System (INIS)

    Baltazar-Rodrigues, J.; Cusatis, C.

    2001-01-01

    X-ray linear attenuation coefficients of germanium and silicon were measured with precision between 0.1% and 0.3% for six characteristic wavelengths: copper, molybdenum and silver K lines. The linear photoelectric absorption coefficients were determined from the values of the measured attenuation coefficients by subtracting the calculated Compton and thermal diffuse scattering involved. It is shown that in order to compare calculated values of X-ray absorption coefficients based on the isolated atom assumption with experimental results obtained from solid samples it is necessary to take into consideration the solid-state effects. Before the measurements the sample's angular positions were scanned to search for Bragg scattering and the measurements of the transmitted intensities were done far from these angular positions. The measurements were performed in three samples of each element with different thickness and in different angular positions for each sample in order to check the consistency of the measured attenuation coefficients. Several instrumental and experimental details were considered in order to achieve the final asserted precision

  3. Rate Coefficients of the Reaction of OH with Allene and Propyne at High Temperatures

    KAUST Repository

    Es-sebbar, Et-touhami

    2016-09-28

    Allene (H2C═C═CH2; a-C3H4) and propyne (CH3C≡CH; p-C3H4) are important species in various chemical environments. In combustion processes, the reactions of hydroxyl radicals with a-C3H4 and p-C3H4 are critical in the overall fuel oxidation system. In this work, rate coefficients of OH radicals with allene (OH + H2C═C═CH2 → products) and propyne (OH + CH3C≡CH → products) were measured behind reflected shock waves over the temperature range of 843–1352 K and pressures near 1.5 atm. Hydroxyl radicals were generated by rapid thermal decomposition of tert-butyl hydroperoxide ((CH3)3–CO–OH), and monitored by narrow line width laser absorption of the well-characterized R1(5) electronic transition of the OH A–X (0,0) electronic system near 306.7 nm. Results show that allene reacts faster with OH radicals than propyne over the temperature range of this study. Measured rate coefficients can be expressed in Arrhenius form as follows: kallene+OH(T) = 8.51(±0.03) × 10–22T3.05 exp(2215(±3)/T), T = 843–1352 K; kpropyne+OH(T) = 1.30(±0.07) × 10–21T3.01 exp(1140(±6)/T), T = 846–1335 K.

  4. Broadband Two-Photon Absorption Characteristics of Highly Photostable Fluorenyl-Dicyanoethylenylated [60]Fullerene Dyads

    Directory of Open Access Journals (Sweden)

    Seaho Jeon

    2016-05-01

    Full Text Available We synthesized four C60-(light-harvesting antenna dyads C60 (>CPAF-Cn (n = 4, 9, 12, or 18 1-Cn for the investigation of their broadband nonlinear absorption effect. Since we have previously demonstrated their high function as two-photon absorption (2PA materials at 1000 nm, a different 2PA wavelength of 780 nm was applied in the study. The combined data taken at two different wavelength ranges substantiated the broadband characteristics of 1-Cn. We proposed that the observed broadband absorptions may be attributed by a partial π-conjugation between the C60 > cage and CPAF-Cn moieties, via endinitrile tautomeric resonance, giving a resonance state with enhanced molecular conjugation. This transient state could increase its 2PA and excited-state absorption at 800 nm. In addition, a trend of concentration-dependent 2PA cross-section (σ2 and excited-state absorption magnitude was detected showing a higher σ value at a lower concentration that was correlated to increasing molecular separation with less aggregation for dyads C60(>CPAF-C18 and C60(>CPAF-C9, as better 2PA and excited-state absorbers.

  5. An Improved Method of Predicting Extinction Coefficients for the Determination of Protein Concentration.

    Science.gov (United States)

    Hilario, Eric C; Stern, Alan; Wang, Charlie H; Vargas, Yenny W; Morgan, Charles J; Swartz, Trevor E; Patapoff, Thomas W

    2017-01-01

    Concentration determination is an important method of protein characterization required in the development of protein therapeutics. There are many known methods for determining the concentration of a protein solution, but the easiest to implement in a manufacturing setting is absorption spectroscopy in the ultraviolet region. For typical proteins composed of the standard amino acids, absorption at wavelengths near 280 nm is due to the three amino acid chromophores tryptophan, tyrosine, and phenylalanine in addition to a contribution from disulfide bonds. According to the Beer-Lambert law, absorbance is proportional to concentration and path length, with the proportionality constant being the extinction coefficient. Typically the extinction coefficient of proteins is experimentally determined by measuring a solution absorbance then experimentally determining the concentration, a measurement with some inherent variability depending on the method used. In this study, extinction coefficients were calculated based on the measured absorbance of model compounds of the four amino acid chromophores. These calculated values for an unfolded protein were then compared with an experimental concentration determination based on enzymatic digestion of proteins. The experimentally determined extinction coefficient for the native proteins was consistently found to be 1.05 times the calculated value for the unfolded proteins for a wide range of proteins with good accuracy and precision under well-controlled experimental conditions. The value of 1.05 times the calculated value was termed the predicted extinction coefficient. Statistical analysis shows that the differences between predicted and experimentally determined coefficients are scattered randomly, indicating no systematic bias between the values among the proteins measured. The predicted extinction coefficient was found to be accurate and not subject to the inherent variability of experimental methods. We propose the use of a

  6. Multiple scattering theory of X-ray absorption. A review

    International Nuclear Information System (INIS)

    Fonda, L.

    1991-11-01

    We review the basic elements of the theory of X-ray absorption using the tools provided by the theory of multiple scattering. A momentum space approach of clear physical insight is used where the final formulas expressing EXAFS and XANES, i.e. the structures appearing in the absorption coefficient above the edge of a deep core level threshold, are given in terms of eigenstates of the photoelectron momentum. A simple graphic representation is given for the multiple scattering function. (author). 38 refs, 4 figs, 1 tab

  7. Sound Absorption Properties Of Single-Hole Hollow Polyester Fiber Reinforced Hydrogenated Carboxyl Nitrile Rubber Composites

    Directory of Open Access Journals (Sweden)

    Jie Hong

    2017-09-01

    Full Text Available A series of single-hole hollow polyester fiber (SHHPF reinforced hydrogenated carboxyl nitrile rubber (HXNBR composites were fabricated. In this study, the sound absorption property of the HXNBR/SHHPF composite was tested in an impedance tube, the composite morphology was characterized by scanning electron microscope (SEM, and the tensile mechanical property was measured by strength tester. The results demonstrated that a remarkable change in sound absorption can be observed by increasing the SHHPF content from 0% to 40%. In the composite with 40% SHHPF in 1 mm thickness, the sound absorption coefficient reached 0.671 at 2,500 Hz; the effective bandwidth was 1,800-2,500 Hz for sound absorption coefficient larger than 0.2. But the sound absorption property of the composite deteriorated when the SHHPF content increased to 50% in 1 mm thickness. While with 20% SHHPF proportion, the sound absorption property was improved by increasing the thickness of composites from 1 to 5 mm. Compared with the pure HXNBR of the same thickness, the tensile mechanical property of the composite improved significantly by increasing the SHHPF proportion. As a lightweight composite with excellent sound absorption property, the HXNBR/SHHPF composite has potential practical application value in the fields of engineering.

  8. Shock tube/laser absorption studies of the decomposition of methyl formate

    KAUST Repository

    Ren, Wei; Lam, Kingyiu; Pyun, Sunghyun; Farooq, Aamir; Davidson, David Frank; Hanson, Ronald Kenneth

    2013-01-01

    Reaction rate coefficients for the major high-temperature methyl formate (MF, CH3OCHO) decomposition pathways, MF → CH3OH + CO (1), MF →CH2O+CH2O (2), and MF→ CH4 + CO2 (3), were directly measured in a shock tube using laser absorption of CO (4.6 μm), CH2O (306 nm) and CH4 (3.4 μm). Experimental conditions ranged from 1202 to 1607 K and 1.36 to 1.72 atm, with mixtures varying in initial fuel concentration from 0.1% to 3% MF diluted in argon. The decomposition rate coefficients were determined by monitoring the formation rate of each target species immediately behind the reflected shock waves and modeling the species time-histories with a detailed kinetic mechanism [12]. The three measured rate coefficients can be well-described using two-parameter Arrhenius expressions over the temperature range in the present study: k1 = 1.1 × 1013 exp(-29556/T, K) s -1, k2 = 2.6 × 1012 exp(-32052/T, K) s-1, and k3 = 4.4 × 1011 exp(-29 078/T, K) s-1, all thought to be near their high-pressure limits. Uncertainties in the k1, k2 and k3 measurements were estimated to be ±25%, ±35%, and ±40%, respectively. We believe that these are the first direct high-temperature rate measurements for MF decomposition and all are in excellent agreement with the Dooley et al. [12] mechanism. In addition, by also monitoring methanol (CH3OH) and MF concentration histories using a tunable CO2 gas laser operating at 9.67 and 9.23 μm, respectively, all the major oxygen-carrying molecules were quantitatively detected in the reaction system. An oxygen balance analysis during MF decomposition shows that the multi-wavelength laser absorption strategy used in this study was able to track more than 97% of the initial oxygen atoms in the fuel. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  9. Relationship between the Kubelka-Munk scattering and radiative transfer coefficients.

    Science.gov (United States)

    Thennadil, Suresh N

    2008-07-01

    The relationship between the Kubelka-Munk (K-M) and the transport scattering coefficient is obtained through a semi-empirical approach. This approach gives the same result as that given by Gate [Appl. Opt.13, 236 (1974)] when the incident beam is diffuse. This result and those given by Star et al. [Phys. Med. Biol.33, 437 (1988)] and Brinkworth [Appl. Opt.11, 1434 (1972)] are compared with the exact solution of the radiative transfer equation over a large range of optical properties. It is found that the latter expressions, which include an absorption component, do not give accurate results over the range considered. Using the semi-empirical approach, the relationship between the K-M and the transport scattering coefficient is derived for the case where the incident light is collimated. It is shown that although the K-M equation is derived based on diffuse incident light, it can also represent very well the reflectance from a slab of infinite thickness when the incident light is collimated. However, in this case the relationship between the coefficients has to include a function that is dependent on the anisotropy factor. Analysis indicates that the K-M transform achieves the objective of obtaining a measure that gives the ratio of absorption to scattering effects for both diffuse and collimated incident beams over a large range of optical properties.

  10. Influence of the particle size dispersion on gamma-raidation absorption

    International Nuclear Information System (INIS)

    Bonchev, Ts.; Amin, S.S.

    1985-01-01

    The dependence of the value of the Moessbauer absorption on the patricle size of the absorbing material was investigated. It was assumed that: a) the investigated substance is with homogenious composition and that it consists of spherical particles; b) the particles are considered to be uniformly distributed in a matter practically negligible mass-absorption coefficient. The experiment was performed by using X-rays of Ni and Cu generated by the 14,4125 KeV resonance radiation of 57 Co

  11. Electromagnetic wave absorption in high-Tc superconductors and its application

    International Nuclear Information System (INIS)

    Porjesz, T.; Khatiashvili, N.; Kovacs, Gy.; Leppavuori, S.; Uusimaki, A.; Kokkomaki, T.; Hagberg, J.

    1995-08-01

    The experimental study of the electromagnetic wave absorption of high-Tc superconductors subjected to small magnetic fields has been extended to a wide frequency range. The results obtained show an almost frequency independent behaviour in the 4 MHz - 20 GHz region. The measurement technique for the high frequency regime was developed in such a way that the sensitivity increased so much that the sample under investigation could be used as a very sensitive magnetic field detector, too. (author). 4 refs, 8 figs, 1 tab

  12. The influence of water mixtures on the dermal absorption of glycol ethers

    International Nuclear Information System (INIS)

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M.

    2007-01-01

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a corresponding increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents

  13. Coefficients of sliding friction of single crystals of high explosives under different rubbing conditions

    International Nuclear Information System (INIS)

    Wu, Y Q; Chaudhri, M Munawar

    2013-01-01

    The coefficients of sliding friction of single crystals of commonly used high explosives pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX) and beta-cyclotetramethylene tetranitramine (β-HMX) under several rubbing configurations and at a relative sliding speed of 0.22 mm s -1 were measured. The sliding configurations were (1) crystal-polished steel pairs, (2) like-crystal pairs and (3) unlike-crystal pairs. For every rubbing configuration the friction force showed oscillations, which are thought to be caused by the formation and shearing of the adhesive junctions formed at the surface of the rubbing crystals. This shearing of the adhesive junctions led to the formation of microscopic and sub-microscopic particles, which were confirmed by an environmental scanning electron microscope study. For every rubbing configuration and for relatively high normal loads pressing the rubbing crystals together, the coefficient of friction was generally in the range 0.2-0.25 and it has been concluded that the coefficient of friction is controlled by the adhesion with almost negligible contribution from the ploughing component. From a knowledge of the coefficient of friction and the uniaxial yield stress values of single crystals of RDX and β-HMX, the shear strength of these crystals were determined to be ∼13.4 MPa and ∼16.8 MPa, respectively.

  14. Impact of line parameter database and continuum absorption on GOSAT TIR methane retrieval

    Science.gov (United States)

    Yamada, A.; Saitoh, N.; Nonogaki, R.; Imasu, R.; Shiomi, K.; Kuze, A.

    2017-12-01

    The current methane retrieval algorithm (V1) at wavenumber range from 1210 cm-1 to 1360 cm-1 including CH4 ν 4 band from the thermal infrared (TIR) band of Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse Gases Observing Satellite (GOSAT) uses LBLRTM V12.1 with AER V3.1 line database and MT CKD 2.5.2 continuum absorption model to calculate optical depth. Since line parameter databases have been updated and the continuum absorption may have large uncertainty, the purpose of this study is to assess the impact on {CH}4 retrieval from the choice of line parameter databases and the uncertainty of continuum absorption. We retrieved {CH}4 profiles with replacement of line parameter database from AER V3.1 to AER v1.0, HITRAN 2004, HITRAN 2008, AER V3.2, or HITRAN 2012 (Rothman et al. 2005, 2009, and 2013. Clough et al., 2005), we assumed 10% larger continuum absorption coefficients and 50% larger temperature dependent coefficient of continuum absorption based on the report by Paynter and Ramaswamy (2014). We compared the retrieved CH4 with the HIPPO CH4 observation (Wofsy et al., 2012). The difference from HIPPO observation of AER V3.2 was the smallest and 24.1 ± 45.9 ppbv. The differences of AER V1.0, HITRAN 2004, HITRAN 2008, and HITRAN 2012 were 35.6 ± 46.5 ppbv, 37.6 ± 46.3 ppbv, 32.1 ± 46.1 ppbv, and 35.2 ± 46.0 ppbv, respectively. Maximum {CH}4 retrieval differences were -0.4 ppbv at the layer of 314 hPa when we used 10% larger absorption coefficients of {H}2O foreign continuum. Comparing AER V3.2 case to HITRAN 2008 case, the line coupling effect reduced difference by 8.0 ppbv. Line coupling effects were important for GOSAT TIR {CH}4 retrieval. Effects from the uncertainty of continuum absorption were negligible small for GOSAT TIR CH4 retrieval.

  15. Determination of bromide in aqueous solutions via the TlBr molecule using high-resolution continuum source graphite furnace molecular absorption spectrometry

    Science.gov (United States)

    Cacho, Frantisek; Machynak, Lubomir; Nemecek, Martin; Beinrohr, Ernest

    2018-06-01

    The paper describes the determination of bromide by evaluating the molecular absorption of thallium mono-bromide (TlBr) at the rotational line at 342.9815 nm by making use a high-resolution continuum source graphite furnace atomic absorption spectrometer. The effects of variables such as the wavelength, graphite furnace program, amount of Tl and the use of a modifier were investigated and optimized. Various chemical modifiers have been studied, such as Pd, Mg, Ag and a mixture of Pd/Mg. It was found that best results were obtained by using Ag which prevents losses of bromide during pyrolysis step through precipitation of bromide as AgBr. In this way, a maximum pyrolysis temperature of 400 °C could be used. The optimum molecule forming temperature was found to be 900 °C. Bromide concentrations in various water samples (CRM, bottled drinking water and tap water) were determined. The quantification was made by both linear calibration and standard addition techniques. The results were matched well those of the reference method. The calibration curve was linear in the range between 1 and 1000 ng Br with a correlation coefficient R = 0.999. The limit of detection and characteristic mass of the method were 0.3 ng and 4.4 ng of Br.

  16. Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings

    Science.gov (United States)

    Chen, X. W.; Zhao, C. Y.; Wang, B. X.

    2018-05-01

    Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.

  17. Water vapor spectroscopy in the 815-nm wavelength region for Differential Absorption Lidar measurements

    Science.gov (United States)

    Ponsardin, Patrick; Browell, Edward V.

    1995-01-01

    The differential absorption lidar (DIAL) technique was first applied to the remote measurement of atmospheric water vapor profiles from airborne platforms in 1981. The successful interpretation of the lidar profiles relies strongly on an accurate knowledge of specific water vapor absorption line parameters: line strength, pressure broadening coefficient, pressure-induced shift coefficient and the respective temperature-dependence factors. NASA Langley Research Center has developed and is currently testing an autonomous airborne water vapor lidar system: LASE (Lidar Atmospheric Sensing Experiment). This DIAL system uses a Nd:YAG-pumped Ti:Sapphire laser seeded by a diode laser as a lidar transmitter. The tunable diode has been selected to operate in the 813-818 nm wavelength region. This 5-nm spectral interval offers a large distribution of strengths for temperature-insensitive water vapor absorption lines. In support of the LASE project, a series of spectroscopic measurements were conducted for the 16 absorption lines that have been identified for use in the LASE measurements. Prior to this work, the experimental data for this water vapor absorption band were limited - to our knowledge - to the line strengths and to the line positions.

  18. Absorption and scattering coefficients estimation in two-dimensional participating media using the generalized maximum entropy and Levenberg-Marquardt methods; Estimacion del coeficiente de absorcion y dispersion en medios participantes bidimensionales utilizando el metodo de maxima entropia generalizada y el metodo Levenberg-Marquardt

    Energy Technology Data Exchange (ETDEWEB)

    Berrocal T, Mariella J. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]|[Universidad Nacional de Ingenieria, Lima (Peru); Roberty, Nilson C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear; Silva Neto, Antonio J. [Universidade do Estado, Nova Friburgo, RJ (Brazil). Instituto Politecnico. Dept. de Engenharia Mecanica e Energia]|[Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    The solution of inverse problems in participating media where there is emission, absorption and dispersion of the radiation possesses several applications in engineering and medicine. The objective of this work is to estimative the coefficients of absorption and dispersion in two-dimensional heterogeneous participating media, using in independent form the Generalized Maximum Entropy and Levenberg Marquardt methods. Both methods are based on the solution of the direct problem that is modeled by the Boltzmann equation in cartesian geometry. Some cases testes are presented. (author)

  19. The diffusion coefficient for 239Pu, 241Am, 99Tc and 137Cs in highly compacted buffer materials

    International Nuclear Information System (INIS)

    Zhou Kanghan; Li Guoding

    1998-01-01

    Based on one-dimension diffusion model, the diffusion coefficients of Pu, Am, Tc and Cs in highly compacted sodium-bentonite generally used as buffer materials in geologic disposal system for high-level radioactive waste have been determined at room temperature in the atmosphere of nitrogen. The results show that the diffusion coefficients of Am, Pu and Tc and about 10 -13 ∼10 -15 m 2 /s, and that of Cs about 10 -12 m 2 /s. The diffusion coefficients of these elements decrease with the increasing of the dry density of buffer materials. From the relationship of diffusion coefficient, retardation coefficient and dry density of bentonite, it has been concluded that Am and Pu transfer predominately by diffusion in solid phase, however, Cs and Tc by diffusion in pore water

  20. Nonlinear absorption and receptivity of the third order in InAs infrared region

    International Nuclear Information System (INIS)

    Musayev, M.A.

    2005-01-01

    Nonlinear absorption and receptivity of the third order and coefficient nonlinear absorption in InAs n-type with different degree of alloying was measured. Obtained score considerably exceed sense, calculated on the basis of the models describing nonlinear receptivity of electrons, situated in the nonparabolic area of conductivity. It was shown that, observable deviations withdraw; if in the calculation apply energy dissipation of electrons. Growth of the efficiency under four-wave interaction in low-energy-gap semiconductors confines nonlinear absorption of interacting waves

  1. Bismuth as a general internal standard for lead in atomic absorption spectrometry.

    Science.gov (United States)

    Bechlin, Marcos A; Fortunato, Felipe M; Ferreira, Edilene C; Gomes Neto, José A; Nóbrega, Joaquim A; Donati, George L; Jones, Bradley T

    2014-06-11

    Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A(Pb)/A(Bi)versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52-118% (without IS) to 97-109% (IS, LS FAAS); 74-231% (without IS) to 96-109% (IS, HR-CS FAAS); and 36-125% (without IS) to 96-110% (IS, LS GFAAS). The relative standard deviations (n=12) were reduced from 0.6-9.2% (without IS) to 0.3-4.3% (IS, LS FAAS); 0.7-7.7% (without IS) to 0.1-4.0% (IS, HR-CS FAAS); and 2.1-13% (without IS) to 0.4-5.9% (IS, LS GFAAS). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A new term 'Jzeff' derived from measured total attenuation coefficients of photons near the absorption edges of some compounds

    International Nuclear Information System (INIS)

    Polat, Recep; Icelli, Orhan

    2010-01-01

    In order to determine the effect of XAFS (X-ray absorption fine structure) on J zeff , we have measured μ/ρ values of compounds, which are determined by the mixture rule or the independent atomic model. Also, we want to obtain both XAFS effect and non-applicability or applicability of mixture rule. The most crucial finding in this study is that measurement of the effective atomic number is not appropriate near the absorption edge and the effective atomic number is affected by near the absorption edge. The results obtained have been compared with theoretical values. Also, the objective of this study is to show that there is a term 'J zeff ' between effective atomic numbers and absorption jump factor.

  3. Absorption of low-frequency electromagnetic waves by plasma in electromagnetic trap

    International Nuclear Information System (INIS)

    D'yakov, V.E.

    1984-01-01

    Absorption of electromagnetic waves in plasma of the electromagnetic trap is investigated. An integro-differential equation describing the behaviour of the electrical and magnetic fields of the wave is obtained. The wave has a component along the plasma inhomogeneity axis. Solution of this equation is found within the low frequency range corresponding to the anomalous skin-effect. The possibility of ion-acoustic waves excitation is demonstrated. Expressions are found for reflection, absorption and transformation coefficients

  4. Fabrication of Porous Ceramic-Geopolymer Based Material to Improve Water Absorption and Retention in Construction Materials: A Review

    Science.gov (United States)

    Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.

    2017-06-01

    Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.

  5. Novel and facile microwave-assisted synthesis of Mo-doped hydroxyapatite nanorods: Characterization, gamma absorption coefficient, and bioactivity.

    Science.gov (United States)

    Abutalib, M M; Yahia, I S

    2017-09-01

    In the current work, the authors report the microwave-assisted synthesis Molybdenum-doped (from 0.05 to 5wt%) hydroxyapatite (HAp) for the first time. The morphology of Mo-doped HAp is nanorods of diameter in the range of 25-70nm and length in the range of 25nm to 200nm. The good crystalline nature was confirmed from X-ray diffraction patterns and also lattice parameters, grain size, strain and dislocation density were determined. The crystallite size was found to be in the range 16 to 30nm and crystallinity was found to be enhanced from 0.5 to 0.7 with doping. The field emission SEM micrographs show that the morphology of the synthesized nanostructures of pure and Mo-doped HAp are nanorods of few nanometers. The vibrational modes were identified using the FT-Raman and FT-IR spectroscopy. The dielectric properties were studied and the AC electrical conductivity was found to be increased with increasing the concentration of Mo ions doping in HAp. Moreover, antimicrobial studies were also carried out to understand the anti-bacterial and anti-fungi properties. The results suggest that it may be a good bio-ceramics material for bio-medical applications. Mo-doped HAp was subjected to the gamma irradiation produced from Cs-137 (662keV) and its related parameters such as linear absorption coefficient, the half-value layer (HVL) and the tenth value layer TVL were calculated and analyzed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    Science.gov (United States)

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  7. Optical absorption in a disk-shaped quantum dot in the presence of an impurity

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail, I.F.I., E-mail: ifi_mikhail@hotmail.com [Department of Mathematics, Faculty of Science, Ain Shams University, Cairo (Egypt); Shafee, A.M. [Department of Mathematics, Faculty of Girls, Art, Science and Education, Ain Shams University, Cairo (Egypt)

    2017-02-15

    The linear and third order nonlinear optical absorption coefficients have been calculated in a two dimensional disk quantum dot. The confinement potential has been taken to be a combination of a parabolic and inverse squared part. The study has been performed in the presence of a perpendicular static magnetic field and a central or off-central impurity. The resulting Schrödinger equation has been solved by applying the variational method. It has been found that the presence of impurity causes a huge increase in the square of the transition matrix and in the absorption coefficients, in particular in the third order coefficient. Moreover, the asymmetry which results in the case of off-central impurity has been dealt with carefully by taking into consideration the transition matrices which vanish in other cases. - Highlights: • The optical absorption in a two dimensional disk-shaped quantum dot is investigated. • A static magnetic field is applied perpendicular to the plane of the disk. • The study is performed in the presence of central or off- central impurity. • The variational approach has been applied to find the energies and wave functions. • The presence and location of impurity play effective roles.

  8. Prediction of Molar Extinction Coefficients of Proteins and Peptides Using UV Absorption of the Constituent Amino Acids at 214 nm To Enable Quantitative Reverse Phase High-Performance Liquid Chromatography-Mass Spectrometry Analysis

    NARCIS (Netherlands)

    Kuipers, B.J.H.; Gruppen, H.

    2007-01-01

    The molar extinction coefficients of 20 amino acids and the peptide bond were measured at 214 nm in the presence of acetonitrile and formic acid to enable quantitative comparison of peptides eluting from reversed-phase high-performance liquid chromatography, once identified with mass spectrometry

  9. Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications

    Science.gov (United States)

    Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.

    2013-08-01

    The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.

  10. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    Directory of Open Access Journals (Sweden)

    Otanicar Todd

    2011-01-01

    Full Text Available Abstract Suspensions of nanoparticles (i.e., particles with diameters < 100 nm in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm. A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power increase.

  11. High speed friction microscopy and nanoscale friction coefficient mapping

    International Nuclear Information System (INIS)

    Bosse, James L; Lee, Sungjun; Huey, Bryan D; Andersen, Andreas Sø; Sutherland, Duncan S

    2014-01-01

    As mechanical devices in the nano/micro length scale are increasingly employed, it is crucial to understand nanoscale friction and wear especially at technically relevant sliding velocities. Accordingly, a novel technique has been developed for friction coefficient mapping (FCM), leveraging recent advances in high speed AFM. The technique efficiently acquires friction versus force curves based on a sequence of images at a single location, each with incrementally lower loads. As a result, true maps of the coefficient of friction can be uniquely calculated for heterogeneous surfaces. These parameters are determined at a scan velocity as fast as 2 mm s −1 for microfabricated SiO 2 mesas and Au coated pits, yielding results that are identical to traditional speed measurements despite being ∼1000 times faster. To demonstrate the upper limit of sliding velocity for the custom setup, the friction properties of mica are reported from 200 µm s −1 up to 2 cm s −1 . While FCM is applicable to any AFM and scanning speed, quantitative nanotribology investigations of heterogeneous sliding or rolling components are therefore uniquely possible, even at realistic velocities for devices such as MEMS, biological implants, or data storage systems. (paper)

  12. Approach for determining the contributions of phytoplankton, colored organic material, and nonalgal particles to the total spectral absorption in marine waters.

    Science.gov (United States)

    Lin, Junfang; Cao, Wenxi; Wang, Guifeng; Hu, Shuibo

    2013-06-20

    Using a data set of 1333 samples, we assess the spectral absorption relationships of different wave bands for phytoplankton (ph) and particles. We find that a nonlinear model (second-order quadratic equations) delivers good performance in describing their spectral characteristics. Based on these spectral relationships, we develop a method for partitioning the total absorption coefficient into the contributions attributable to phytoplankton [a(ph)(λ)], colored dissolved organic material [CDOM; a(CDOM)(λ)], and nonalgal particles [NAP; a(NAP)(λ)]. This method is validated using a data set that contains 550 simultaneous measurements of phytoplankton, CDOM, and NAP from the NASA bio-Optical Marine Algorithm Dataset. We find that our method is highly efficient and robust, with significant accuracy: the relative root-mean-square errors (RMSEs) are 25.96%, 38.30%, and 19.96% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively. The performance is still satisfactory when the method is applied to water samples from the northern South China Sea as a regional case. The computed and measured absorption coefficients (167 samples) agree well with the RMSEs, i.e., 18.50%, 32.82%, and 10.21% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively. Finally, the partitioning method is applied directly to an independent data set (1160 samples) derived from the Bermuda Bio-Optics Project that contains relatively low absorption values, and we also obtain good inversion accuracy [RMSEs of 32.37%, 32.57%, and 11.52% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively]. Our results indicate that this partitioning method delivers satisfactory performance for the retrieval of a(ph), a(CDOM), and a(NAP). Therefore, this may be a useful tool for extracting absorption coefficients from in situ measurements or remotely sensed ocean-color data.

  13. Discharge Coefficient of Rectangular Short-Crested Weir with Varying Slope Coefficients

    Directory of Open Access Journals (Sweden)

    Yuejun Chen

    2018-02-01

    Full Text Available Rectangular short-crested weirs are widely used for simple structure and high discharge capacity. As one of the most important and influential factors of discharge capacity, side slope can improve the hydraulic characteristics of weirs at special conditions. In order to systemically study the effects of upstream and downstream slope coefficients S1 and S2 on overflow discharge coefficient in a rectangular short-crested weir the Volume of Fluid (VOF method and the Renormalization Group (RNG κ-ε turbulence model are used. In this study, the slope coefficient ranges from V to 3H:1V and each model corresponds to five total energy heads of H0 ranging from 8.0 to 24.0 cm. Comparisons of discharge coefficients and free surface profiles between simulated and laboratory results display a good agreement. The simulated results show that the difference of discharge coefficients will decrease with upstream slopes and increase with downstream slopes as H0 increases. For a given H0, the discharge coefficient has a convex parabolic relation with S1 and a piecewise linearity relation with S2. The maximum discharge coefficient is always obtained at S2 = 0.8. There exists a difference between upstream and downstream slope coefficients in the influence range of free surface curvatures. Furthermore, a proposed discharge coefficient equation by nonlinear regression is a function of upstream and downstream slope coefficients.

  14. Moderator temperature coefficient in BWR core

    International Nuclear Information System (INIS)

    Naito, Yoshitaka

    1977-01-01

    Temperature dependences of infinite multiplication factor k sub(infinity) and neutron leakage from the core must be examined for estimation of moderator temperature coefficient. Temperature dependence on k sub(infinity) has been investigated by many researchers, however, the dependence on neutron leakage of a BWR with cruciformed control rods has hardly been done. Because there are difficulties and necessity on calculations of three space dimensional and multi-energy groups neutron distribution in a BWR core. In this study, moderator temperature coefficients of JPDR-II (BWR) core were obtained by calculation with DIFFUSION-ACE, which is newly developed three-dimensional multi-group computer code. The results were compared with experimental data measured from 20 to 275 0 C of the moderator temperature and the good agreement was obtained between calculation and measurement. In order to evaluate neutron leakage from the core, the other two calculations were carried out, adjusting criticality by uniform absorption rate and by material buckling. The former underestimated neutron leakage and the latter overestimated it. Discussion on the results shows that in order to estimate the temperature coefficient of BWR, neutron leakage must be evaluated precisely, therefore the calculation at actual pattern of control rods is necessary. (auth.)

  15. Interplay between absorption, dispersion and refraction in high-order harmonic generation

    International Nuclear Information System (INIS)

    Dachraoui, H; Helmstedt, A; Bartz, P; Michelswirth, M; Mueller, N; Pfeiffer, W; Heinzmann, U; Auguste, T; Salieres, P

    2009-01-01

    We report a detailed experimental and theoretical study on high-order harmonic generation of a femtosecond Ti-sapphire laser focused at an intensity of around 10 15 W cm -2 onto a high-pressure (50-210 mbar) neon gas cell of variable length (1-3 mm). Using thorough three-dimensional simulations, we discuss the interplay between the different factors influencing the harmonic-generation efficiency, i.e. phase matching determined by the electronic and atomic dispersions, re-absorption of the harmonics by the medium and refraction of the generating laser beam. Generically, we find that, in our generation conditions, the emission yield of harmonics from the plateau region of the spectrum is absorption limited, whereas the emission from harmonics in the cut-off is strongly reduced due to both electron dispersion and ionization-induced refraction of the laser beam. A good agreement between the numerical results and the experimental data is obtained for the harmonic yield dependence on the various generation parameters (gas pressure, medium length and laser intensity).

  16. Chemical effect on total mass attenuation coefficients of V, Cr, Mn, Co and Ni

    International Nuclear Information System (INIS)

    Soeguet, Oe.; Colak, S.; Bueyuekkasap, E.; Kuecuekoender, A.

    2002-01-01

    Detailed interpretation of data obtained from X-ray transmission measurements usually depends on the assumption that the contribution of each element is additive. This assumption yields the mixture rule for X-ray attenuation coefficients which is valid if molecular and chemical effects are negligible. Total mass attenuation coefficients of V, Cr, Mn, Co and Ni in various their compounds was measured. Absorption corrections were carried on data for ligands in the compounds. It was found that V, Cr, Mn, Co and Ni had different total mass attenuation coefficients in the different compounds. Results were compared with theoretical values of HUBBELL and SELTZER. (author)

  17. X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation

    International Nuclear Information System (INIS)

    Seres, Enikoe; Seres, Jozsef; Spielmann, Christian

    2006-01-01

    By irradiating He and Ne atoms with 3 mJ, 12 fs, near infrared laser pulses from a tabletop laser system, the authors generated spatially and temporally coherent x rays up to a photon energy of 3.5 keV. With this source it is possible to use high-harmonic radiation for x-ray absorption spectroscopy in the keV range. They were able to clearly resolve the L absorption edges of titanium and copper and the K edges of aluminum and silicon. From the fine structure of the x-ray absorption they estimated the interatomic distances

  18. Optical nonlinear absorption characteristics of Sb2Se3 nanoparticles

    Science.gov (United States)

    Muralikrishna, Molli; Kiran, Aditha Sai; Ravikanth, B.; Sowmendran, P.; Muthukumar, V. Sai; Venkataramaniah, Kamisetti

    2014-04-01

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb2Se3) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10 - 40 nm. Elemental analysis was performed using EDAX. By employing open aperture z-scan technique, we have evaluated the effective two-photon absorption coefficient of Sb2Se3 nanoparticles to be 5e-10 m/W at 532 nm. These nanoparticles exhibit strong intensity dependent nonlinear optical absorption and hence could be considered to have optical power limiting applications in the visible range.

  19. Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M; Berthe, L; Fabbro, R; Muller, M [Laboratoire pour l' Application des Lasers de Puissance, UPR CNRS no1578, 16 Bis, Avenue Prieur de la Cote D' Or, 94114 Arcueil Cedex (France)], E-mail: matthieu.schneider@gmail.com

    2008-08-07

    Laser drilling in the percussion regime is commonly used in the aircraft industry to drill sub-millimetre holes in metallic targets. Characteristic laser intensities in the range of 10 MW cm{sup -2} are typically employed for drilling metallic targets. With these intensities the temperature of the irradiated matter is above the vaporization temperature and the drilling process is led by hydrodynamic effects. Although the main physical processes involved are identified, this process is not correctly understood or completely controlled. A major characteristic coefficient of laser-matter interaction for this regime, which is the absorptivity of the laser on the irradiated surface, is still unknown, because of the perturbing effects due to laser beam geometrical trapping inside the drilled hole. So, by using time resolved experiments, this study deals with the direct measurement of the variation of the intrinsic absorption of aluminium, nickel and steel materials, as a function of the incident laser intensity up to 20 MW cm{sup -2}. We observe that for this incident intensity, the absorptivity can reach up to 80%. This very high and unexpected value is discussed by considering the microscopic behaviour of the heated matter near the vapour-liquid interface that undergoes possible Rayleigh-Taylor instability or volume absorption.

  20. Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime

    Science.gov (United States)

    Schneider, M.; Berthe, L.; Fabbro, R.; Muller, M.

    2008-08-01

    Laser drilling in the percussion regime is commonly used in the aircraft industry to drill sub-millimetre holes in metallic targets. Characteristic laser intensities in the range of 10 MW cm-2 are typically employed for drilling metallic targets. With these intensities the temperature of the irradiated matter is above the vaporization temperature and the drilling process is led by hydrodynamic effects. Although the main physical processes involved are identified, this process is not correctly understood or completely controlled. A major characteristic coefficient of laser-matter interaction for this regime, which is the absorptivity of the laser on the irradiated surface, is still unknown, because of the perturbing effects due to laser beam geometrical trapping inside the drilled hole. So, by using time resolved experiments, this study deals with the direct measurement of the variation of the intrinsic absorption of aluminium, nickel and steel materials, as a function of the incident laser intensity up to 20 MW cm-2. We observe that for this incident intensity, the absorptivity can reach up to 80%. This very high and unexpected value is discussed by considering the microscopic behaviour of the heated matter near the vapour-liquid interface that undergoes possible Rayleigh-Taylor instability or volume absorption.

  1. Quantitative x-ray absorption imaging with a broadband source: application to high-intensity discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)], E-mail: jjcurry@nist.gov

    2008-07-21

    The case of x-ray absorption imaging in which the x-ray source is broadband and the detector does not provide spectral resolution is analysed. The specific motivation is observation of the Hg vapour distribution in high-intensity discharge (HID) lamps. When absorption by the vapour is small, the problem can be couched accurately in terms of a mean absorption cross section averaged over the x-ray spectral distribution, weighted by the energy-dependent response of the detector. The method is tested against a Au foil standard and then applied to Hg. The mean absorption cross section for Hg is calculated for a Ag-anode x-ray tube at accelerating voltages of 25, 30 and 35 kV, and for HIDs in fused silica or polycrystalline alumina arc tubes.

  2. Energy dependent saturable and reverse saturable absorption in cube-like polyaniline/polymethyl methacrylate film

    Energy Technology Data Exchange (ETDEWEB)

    Thekkayil, Remyamol [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, C.V. Raman Avenue, Bangalore 560 080 (India); Gopinath, Pramod [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India)

    2014-08-01

    Solid films of cube-like polyaniline synthesized by inverse microemulsion polymerization method have been fabricated in a transparent PMMA host by an in situ free radical polymerization technique, and are characterized by spectroscopic and microscopic techniques. The nonlinear optical properties are studied by open aperture Z-scan technique employing 5 ns (532 nm) and 100 fs (800 nm) laser pulses. At the relatively lower laser pulse energy of 5 μJ, the film shows saturable absorption both in the nanosecond and femtosecond excitation domains. An interesting switchover from saturable absorption to reverse saturable absorption is observed at 532 nm when the energy of the nanosecond laser pulses is increased. The nonlinear absorption coefficient increases with increase in polyaniline concentration, with low optical limiting threshold, as required for a good optical limiter. - Highlights: • Synthesized cube-like polyaniline nanostructures. • Fabricated polyaniline/PMMA nanocomposite films. • At 5 μJ energy, saturable absorption is observed both at ns and fs regime. • Switchover from SA to RSA is observed as energy of laser beam increases. • Film (0.1 wt % polyaniline) shows high β{sub eff} (230 cm GW{sup −1}) and low limiting threshold at 150 μJ.

  3. Parameterization of light absorption by components of seawater in optically complex coastal waters of the Crimea Peninsula (Black Sea).

    Science.gov (United States)

    Dmitriev, Egor V; Khomenko, Georges; Chami, Malik; Sokolov, Anton A; Churilova, Tatyana Y; Korotaev, Gennady K

    2009-03-01

    The absorption of sunlight by oceanic constituents significantly contributes to the spectral distribution of the water-leaving radiance. Here it is shown that current parameterizations of absorption coefficients do not apply to the optically complex waters of the Crimea Peninsula. Based on in situ measurements, parameterizations of phytoplankton, nonalgal, and total particulate absorption coefficients are proposed. Their performance is evaluated using a log-log regression combined with a low-pass filter and the nonlinear least-square method. Statistical significance of the estimated parameters is verified using the bootstrap method. The parameterizations are relevant for chlorophyll a concentrations ranging from 0.45 up to 2 mg/m(3).

  4. Near-infrared free carrier absorption in heavily doped silicon

    International Nuclear Information System (INIS)

    Baker-Finch, Simeon C.; McIntosh, Keith R.; Yan, Di; Fong, Kean Chern; Kho, Teng C.

    2014-01-01

    Free carrier absorption in heavily doped silicon can have a significant impact on devices operating in the infrared. In the near infrared, the free carrier absorption process can compete with band to band absorption processes, thereby reducing the number of available photons to optoelectronic devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate and precise measurement of the free carrier absorptance. We measure and model reflectance and transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient that applies in the wavelength range between 1000 and 1500 nm, and the range of dopant densities between ∼10 18 and 3 × 10 20  cm −3 . Our measurements indicate that previously published parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other hand, published parameterisations are generally consistent with our measurements and model for boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine device analysis

  5. Effect of Nitrogen Fertilizer on Light Interception and Light Extinction Coefficient in Different Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    F Samadiyan

    2016-07-01

    Full Text Available Introduction Wheat (Triticum aestivum is a cereal grain, originated from the levant region of the near east and Ethiopian highlands, currently cultivated worldwide. Light extinction coefficient K is a coefficient that represents the amount of light reduced by the plant. Light or radiation extinction coefficient is a concept that expresses the light penetration decrease into the canopy in the way the upper leaves of the canopy with less angles have lower amount of K in comparison with the horizontal leaves. Green et al., (2003 stated that nitrogen fertilizer increased light absorption by plant leaves; and affects the yield. The distribution patterns of nitrogen allocation in leaves are more exposed therefore photosynthesis rate per unit leaf area and canopy were optimized. Differences in canopy structure by the light extinction coefficient (k of the Act Lambert - Beer is described, along LAI differing due to different species and genotypes which are important factors in absorption and light use efficiency. This experiment was performed to evaluate the maximum light absorption and light extinction coefficient in different levels of nitrogen usage and wheat cultivars. Materials and Methods An experiment was conducted during 2011-2012 on a research farm of Islamic Azad University, Isfahan Branch, located in Khatoon Abad Village (northern latitude of 320 and 40´ and eastern longitude of 510 and 48´ with altitude of 1555 m above sea level. A split plot layout within randomized complete block design was used with three replications. Main plots were consisted in four levels of N fertilizer (0, 50, 100 and 150 kg ha-1 from an urea source in main plots and different cultivars of wheat included Pishtaz, Sepahan and SW-486 in sub plots. Planting was performed on 14 November 2011 and at a density of 400 plants per square meter. In order to strengthen the land and required elements for plant regarding soil test and treatments based on the test plan, the

  6. Infrared-laser spectroscopy using a long-pathlength absorption cell

    International Nuclear Information System (INIS)

    Kim, K.C.; Briesmeister, R.A.

    1983-01-01

    The absorption measurements in an ordinary cell may require typically a few torr pressure of sample gas. At these pressures the absorption lines are usually pressure-broadened and, therefore, closely spaced transitions are poorly resolved even at diode-laser resolution. This situation is greatly improved in Doppler-limited spectroscopy at extremely low sample pressures. Two very long-pathlength absorption cells were developed to be used in conjunction with diode lasers. They were designed to operate at controlled temperatures with the optical pathlength variable up to approx. 1.5 km. Not only very low sample pressures are used for studies with such cells but also the spectroscopic sensitivity is enhanced over conventional methods by a factor of 10 3 to 10 4 , improving the analytical capability of measuring particle densities to the order of 1 x 10'' molecules/cm 3 . This paper presents some analytical aspects of the diode laser spectroscopy using the long-pathlength absorption cells in the areas of absorption line widths, pressure broadening coefficients, isotope composition measurements and trace impurity analysis

  7. Absorption heat cycles. An experimental and theoretical study

    International Nuclear Information System (INIS)

    Abrahamsson, K.

    1993-09-01

    A flow sheeting programme, SHPUMP, was developed for simulating different absorption heat cycles. The programme consists of ten different modules which allow the user to construct his own absorption cycle. The ten modules configurate evaporators, absorbers, generators, rectifiers, condensers, solution heat exchangers, pumps, valves, mixers and splitters. Seven basic and well established absorption cycles are available in the configuration data base of the programme. A new Carnot model is proposed heat cycles. Together with exergy analysis, general equations for the Carnot coefficient of performance and equations for thermodynamic efficiency, exergetic efficiency and exergy index, are derived, discussed and compared for both absorption heat pumps and absorption heat transformers. Utilizing SHPUMP, simulation results are presented for different configurations where absorption heat cycles are suggested to be incorporated in three different unit operations within both pulp and paper and oleochemical industries. One of the application studies reveled that an absorption heat transformer incorporated with an evaporation plant in a major pulp and paper industry, would save 18% of the total prime energy consumption in one of the evaporation plants. It was also concluded that installing an absorption heat pump in a paper drying plant would result in steam savings equivalent to 12 MW. An experimental absorption heat transformer unit operating with self-circulation has been modified and thoroughly tested. A reference heat transformer plant has been designed and installed in a major pulp and paper mill where it is directly incorporated with one of the evaporation plants. Preliminary plant operation data are presented. 72 refs, 63 figs, 33 tabs

  8. Recombination coefficients in extrinsic n-InSb

    International Nuclear Information System (INIS)

    Schneider, W.; Groh, H.; Huebner, K.

    1976-01-01

    The bulk recombination coefficients for linear recombination via recombination centers as well as for direct recombination have been determined measuring the conductivity decay after two-photon absorption with a CO 2 laser. The Suhl effect was applied to measure the surface recombination velocity. The corresponding literature is discussed and compared with our results. We conclude that two different kinds of recombination centers are possible in n-InSb, with energy levels (0.1-0.12)eV above the valence band, or (0.14-0.2)eV respectively. (orig.) [de

  9. Radiation damage of light guide fibers in gamma radiation field - on-line monitoring of absorption centers formation

    International Nuclear Information System (INIS)

    Blaha, J.; Simane, C.; Finger, M.; Slunecka, M.; Finger, M. Jr.; Sluneckova, V.; Janata, A.; Vognar, M.; Sulc, M.

    2004-01-01

    The kinetics of radiation-induced changes of absorption coefficient was studied by online transmission spectra measurement for two different Kuraray light guide fibers. The samples were irradiated by bremsstrahlung gamma radiation, dose rates were from 2 Gy/s to 25 Gy/s. The kinetic coefficients both for absorption centers formation and for recovery processes were calculated. Good agreement of experimental data and simple one-short-lived absorption center model were received for radiation-hard light guide Kuraray (KFC). The more complicated process was observed on Kuraray (PSM) clear fiber. It was caused by the reaction of the oxygen dissolved in fiber and created radicals. The results are very useful for prediction of an optical fibers response in conditions of new nuclear and particle physics experiments. (author)

  10. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    Science.gov (United States)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  11. Commercializing potassium terbium fluoride, KTF (KTb3F10) faraday crystals for high laser power optical isolator applications

    Science.gov (United States)

    Schlichting, Wolfgang; Stevens, Kevin; Foundos, Greg; Payne, Alexis

    2017-10-01

    Many scientific lasers and increasingly industrial laser systems operate in manufacture. However, for high-power laser applications TGG is limited by its absorption at 1064nm and its thermo-optic coefficient, dn/dT. Specifically, thermal lensing and depolarization effects become a limiting factor at high laser powers. While TGG absorption has improved significantly over the past few years, there is an intrinsic limit. Now, SYNOPTICS is commercializing the enhanced new crystal Potassium Terbium Fluoride KTF (KTb3F10) that exhibits much smaller nonlinear refractive index and thermo-optic coefficients, and still exhibits a Verdet constant near that of TGG. This cubic crystal has relatively low absorption and thermo-optic coefficients. It is now fully characterized and available for select production orders. At OPTIFAB in October 2017 we present recent results comparing the performance of KTF to TGG in optical isolators and show SYNOPTICS advances in large volume crystal growth and the production ramp up.

  12. Effective photons in weakly absorptive dielectric media and the Beer–Lambert–Bouguer law

    International Nuclear Information System (INIS)

    Judge, A C; Brownless, J S; Martijn de Sterke, C; Bhat, N A R; Sipe, J E; Steel, M J

    2014-01-01

    We derive effective photon modes that facilitate an intuitive and convenient picture of photon dynamics in a structured Kramers–Kronig dielectric in the limit of weak absorption. Each mode is associated with a mode field distribution that includes the effects of both material and structural dispersion, and an effective line-width that determines the temporal decay rate of the photon. These results are then applied to obtain an expression for the Beer–Lambert–Bouguer law absorption coefficient for unidirectional propagation in structured media consisting of dispersive, weakly absorptive dielectric materials

  13. Two-channel cryostat for investigation of optical absorption on the UR-20 spectrophotometer

    International Nuclear Information System (INIS)

    Zhdanovich, N.S.; Kozlov, Yu.I.; Rodkin, E.A.

    1977-01-01

    A construction of two-channel cryostat for analysing absorption spectra in solids at 300 and 77 K is described. Measurements are made by the differential method. A specimen to be studied is placed in one of the channels and a reference specimen of the same thickness in the other. A spectral dependence of the absorption coefficient of Si alloyed with S has been obtained. Changes in the absorption are due to phototransitions of electrons from various levels of sulphur to the conduction band as the temperature is lowered from 300 to 77 K

  14. Synchrotron radiation and absorption at electron cyclotron harmonics in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Hu, Jian-Long.

    1993-01-01

    In order to understand fully the absorption, emission and conversion phenomena for any electron cyclotron harmonic, one must include all relevant mode conversion processes and a finite parallel wave number k parallel . Relativistic plasma mode conversion and tunneling equations at the second and third electron cyclotron harmonics have been derived analytically. A finite k parallel has been introduced which keeps the coupling between the O-mode, the X-mode and the Bernstein wave in the mode conversion problems without absorption have been obtained, and the connection formulas between different wave branches have been established. The corresponding transmission, reflection and conversion coefficients have also been given. Mode conversion problem at any harmonic has been generalized to either a three branch or a five branch problem. A comparison between the coupled equation and the uncoupled equation has been made. The effort has been directed at the third harmonic since the adsorption at ω = 2ω ce is known to be very strong in virtually every fusion case. Both the low density limit and the high density limit cases have been studied separately. The relativistic effects on the mode conversion and absorption problem has been analyzed. The mode conversion equation with absorption has been solved by using the Green function method. The electron cyclotron emission experiments have already begun at 3ω ce , and the third harmonic is the first nontrivial case of importance

  15. High stability of palladium/kieselguhr composites during absorption/desorption cycling for hydrogen isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yang, E-mail: lei.y@outlook.com; Liu, Xiaopeng; Li, Shuo; Jiang, Lijun; Zhang, Chao; Li, Shuai; He, Di; Wang, Shumao

    2016-12-15

    Highlights: • Pd/K composites with as high as 57 wt.% of Pd have been successfully prepared. • Palladium particles can be effectively packed into the pores of kieselguhr substrates. • Variation of heat-treatment temperatures hardly affect hydrogen absorption capacity and hydrogen saturation time of the Pd/K. • Anti-pulverization property of Pd/K can be improved by packing palladium into the kieselguhr internal pores and heating at 1300 °C. - Abstract: Palladium/kieselguhr (Pd/K) composites with 57 wt.% of Pd were prepared by an improved dipping and thermal decomposition method and heated at elevated temperature to reduce breakdown during hydrogenation-dehydrogenation cycles. The hydrogen absorption kinetic properties of the samples heated at different temperatures were tested under the condition of 20 °C with 100 kPa hydrogen pressure. The 1300 °C heated Pd/K composites were repeated up to 4010 absorption and desorption cycles at temperature ranges between −40 °C and 200 °C. The results show that the phase structure, hydrogen absorption capacity and hydrogen saturation time of the Pd/K were not affected by the change of heat-treated temperatures. And after heat treatment at 1300 °C, the Pd/K particles were strengthened and fraction of larger than 80 mesh were as high as 93.4%.

  16. Determination of electromagnetic absorption parameters by reflection measurements

    International Nuclear Information System (INIS)

    Vittitoe, C.N.

    1975-09-01

    The method described is for determining the electromagnetic absorption parameters of a material by measuring the optical reflection from a thick sample. With linearly polarized incident light (both perpendicular to and parallel to the plane of incidence), the ratio of the reflected intensities at three or more angles of incidence offers promise for determining the complex index of refraction of a material for a broad range of parameter values. The method may be applicable to molten materials, such as UO 2 , where high temperatures cause corrosion and containment difficulties. A method is given for extending the data to neighboring frequencies. Use of the method was successful for all portions of the complex index of refraction plane except for small values of the extinction coefficient

  17. Chromatographic determination of the rate and extent of absorption of air pollutants by sea water

    International Nuclear Information System (INIS)

    Nikolakaki, S.; Vassilakos, C.; Katsanos, N.A.

    1994-01-01

    A simple chromatographic method is developed to determine the rate constant for expulsion of an air pollutant from water or its diffusion parameter in the liquid, the rate constant for chemical reaction of the pollutant with water, its mass transfer coefficient in the liquid, and the partition coefficient between liquid water and air. From these physicochemical parameters, the absorption rate by sea water and, therefore, the depletion rate of a polluting substance from the air can be calculated, together with the equilibrium state of this absorption. The method has been applied to nitrogen dioxide being absorbed by triple-distilled water and by sea water, at various temperatures. From the temperature variation of the reaction rate constant and of the partition coefficient, the activation energy for the reaction and the differential heat of solution were determined. (orig.)

  18. Absorber performance of a water/lithium-bromide absorption chiller

    International Nuclear Information System (INIS)

    Xie Guozhen; Sheng Guogang; Bansal, Pradeep Kumar; Li, Guang

    2008-01-01

    An absorber is one of the most important components of a lithium-bromide absorption chiller (LBAC) as its absorbing characteristics directly influence the performance of the whole chiller. It has been indicated that the absorbing efficiency and cooling capacity could be improved by increasing the solution concentration. In this paper, based on the mechanism of falling film absorption on horizontal tubes, the theoretical models of falling film absorption on horizontal tubes have been established. A series of programs used for computing the theoretical mathematical models, including simulation of LBAC cycle and falling film absorption, have been programmed. The models have been validated reasonably by the experimental data. The results show that the cooling capacity of the LBAC varies in parabola shape of curve with the solution concentration from 52.5% to 58.5%, and that the best coefficient of performance (COP) occurs at concentration of 57%. The investigation proposes the absorbing process of sub-steady thermodynamic equilibrium for the duality solution under increase absorbing pressure

  19. Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton

    OpenAIRE

    McKee, D.; Röttgers, R.; Neukermans, G.; Calzado, V.S.; Trees, C.; Ampolo-Rella, M.; Neil, C.; Cunningham, A.

    2014-01-01

    Understanding variability in the chlorophyll-specific absorption of marine phytoplankton, aph*Chl (λ), is essential for primary production modelling, calculation of underwater light field characteristics, and development of algorithms for remote sensing of chlorophyll concentrations. Previous field and laboratory studies have demonstrated significant apparent variability in aph*Chl (λ) for natural samples and algal cultures. However, the potential impact of measurement uncertain...

  20. Assessment of the crossflow loss coefficient in Very High Temperature Reactor core - 15338

    International Nuclear Information System (INIS)

    Lee, S.N.; Tak, N.I.; Kim, M.H.; Noh, J.M.

    2015-01-01

    The Very High Temperature Reactor (VHTR) is a helium gas cooled and graphite moderated reactor. It was chosen as one of the Gen-4 reactors owing to its inherent safety. Various researches for prismatic gas-cooled reactors have been conducted for efficient and safe use. The prismatic VHTR consists of vertically stacked fuel blocks. Between the vertical fuel blocks, there is cross gap because of manufacturing tolerance or graphite change during the operation. This cross gap changes the coolant flow path, called a crossflow, which may affect the fuel temperature. Various tests and numerical studies have been conducted to predict the crossflow and loss coefficient. In the present study, the CFD calculation is conducted to draw the loss coefficient, and compared with Groehn, Kaburaki and General Atomics (GA) correlations. The results of the Groehn and Kaburaki correlations tend to decrease as the gap size increases, whereas the data of GA show the opposite. The loss coefficient given by the CFD calculation tends to maintain the regular value without regard to the gap size for the standard fuel block, like the Groehn correlation. However, the loss coefficient of the control fuel block increases as the gap size widens, like the GA results

  1. Finite difference method calculations of X-ray absorption fine structure for copper

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia); Chantler, C.T. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)]. E-mail: chantler@physics.unimelb.edu.au; Witte, C. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)

    2007-01-15

    The finite difference method is extended to calculate X-ray absorption fine structure (XAFS) for solid state copper. These extensions include the incorporation of a Monte Carlo frozen phonon technique to simulate the effect of thermal vibrations under a correlated Debye-Waller model, and the inclusion of broadening effects from inelastic processes. Spectra are obtained over an energy range in excess of 300 eV above the K absorption edge-more than twice the greatest energy range previously reported for a solid state calculation using this method. We find this method is highly sensitive to values of the photoelectron inelastic mean free path, allowing us to probe the accuracy of current models of this parameter, particularly at low energies. We therefore find that experimental data for the photoelectron inelastic mean free path can be obtained by this method. Our results compare favourably with high precision measurements of the X-ray mass attenuation coefficient for copper, reaching agreement to within 3%, and improving previous results using the finite difference method by an order of magnitude.

  2. Determination of the rate coefficients of the CH{sub 4} + O{sub 2} → HO{sub 2}+CH{sub 3} and HCO+O{sub 2} → HO{sub 2} + CO reactions at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Si Ok [School of Chemical Engineering, Yeungnam University, Gyeongsan (Korea, Republic of); Shin, Kuan Soo [Dept. of Chemistry, Soongsil University, Seoul (Korea, Republic of); Hwang, Soon Muk [Science Applications International Corp oration, 3000 Aerospace Park way, Brook Park, Ohio (United States)

    2017-02-15

    Rate coefficients of the title reactions, R1 (CH{sub 4} + O{sub 2} → HO{sub 2}+CH{sub 3}) and R{sub 2} (HCO+O{sub 2} → HO{sub 2} + CO) were obtained over T = 1610 ⁓ 1810 K and T = 200 ⁓ 1760 K, respectively, and at ρ = 7.1 μmol/cm{sup 3}. A lean CH{sub 4}/O{sub 2}/Ar mixture (0.1% CH{sub 4}, ϕ = 0.02) was heated behind reflected shock waves and the temporal OH absorption profiles were measured using a laser absorption spectroscopy. Reaction rate coefficients were elucidated by matching the experimental profiles via optimization of k1 and k2 values in the reaction simulation. The rate coefficient expressions derived are k{sub 1} = 1.46 × 10{sup 14} exp (−26 210 K/T) cm{sup 3}/mol/s, T = 1610 ⁓ 1810 K and k{sub 2} = 1.9 × 10{sup 12} T{sup 0.1{sup 6}} exp (−245 K/T) cm{sup 3}/mol/s, T = 200 ⁓ 1760 K.

  3. Breakthrough characteristics of gas absorption in a packed column

    International Nuclear Information System (INIS)

    Shitanda, Shoji; Fukada, Satoshi; Koto, Kenji; Mitsuishi, Nobuo

    1979-01-01

    In nuclear industries, the operations to collect or recover various radioactive and non-radioactive gases with a number of absorption or adsorption reagents are practically utilized or planned. Specifically in the operations of recovering hydrogen isotopes, the direct collecting method with active metals such as uranium, zirconium (Zr) and yttrium is watched with keen interest. In this study, the capability of recovering hydrogen by means of Zr was investigated through the estimation of rate-determining step, by flowing the gas mixture of hydrogen and argon after activating metallic Zr under the condition of high temperature and high vacuum, and by determining overall mass transfer coefficient from the absorption breakthrough curves. The details of a packed column and the flowsheet are also described, and the deterioration of Zr powder is considered. That is, the diffusion speed and absorbing reaction speed of hydrogen in Zr particles are supposed to be slow and dominant in mass transfer speed. Further, since gas mixture does not simply diffuse in Zr particles, but the reaction plane seems to move toward the center from the surface in the case of Zr, different from general adsorbents, the moving speed seems to give large effect on the rate-determining step. It is ensured that the hydrogen absorption with Zr powder is so active that hydrogen in gas flow can easily be recovered, and its separation from other gases can be effectively carried out by the desorption of hydrogen from Zr powder by heating it in vacuum. (Wakatsuki, Y.)

  4. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential

    International Nuclear Information System (INIS)

    Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I.; Mora-Ramos, M.E.; Duque, C.A.

    2013-01-01

    In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions

  5. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)

    2013-09-01

    In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions.

  6. Importance of collisional rates for anomalous absorption in H2CO molecule

    International Nuclear Information System (INIS)

    Sharma, Monika; Sharma, M.K.; Chandra, Suresh

    2012-01-01

    Formaldehyde (H 2 CO) is the first organic molecule identified in a number of galactic and extragalactic radio sources through its transition 1 10 –1 11 at 4.830 GHz in absorption. Later on, this transition was found in anomalous absorption. In some cosmic objects, this transition however was found in emission and even as a maser radiation. Since the transition 1 10 –1 11 of ortho-H 2 CO is considered as a unique probe of high density gas at low temperature, the study of H 2 CO has always been of great importance for astrophysicists as well as for spectroscopists. In view of the availability of better input data required for such investigation, it is worth while to investigate again about the radiations from ortho-H 2 CO. In the present study, we have investigated anomalous absorption of 1 10 –1 11 , 2 11 –2 12 and 3 12 –3 13 transitions of ortho-H 2 CO. The present results are more reliable as compared to those obtained earlier. -- Highlights: ► Accurate rotational levels and A-coefficients for H 2 CO are calculated. ► Transitions 1 10 –1 11 , 2 11 –2 12 and 3 12 –3 13 show anomalous absorption. ► Anomalous absorption is found to increase with kinetic temperature. ► Anomalous absorption may be found for n H 2 ≈10 4 cm −3 . ► Colliding partner para-H 2 may be approximated as He atom.

  7. Study of an absorption machine for an ammonia-water system ...

    African Journals Online (AJOL)

    This paper deals with Study of an absorption machine for an ammonia-water system decentralized trigeneration. The effects of evaporator, absorber and boiler temperature on the coefficient of performance of this cycle investigate. Simulation results show that with increasing the evaporator and absorber temperature the ...

  8. Investigation of ammonia/water hybrid absorption/compression heat pumps for heat supply temperatures above 100 °C

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Reinholdt, Lars; Markussen, Wiebke Brix

    2014-01-01

    The hybrid absorption/compression heat pump (HACHP) using ammonia-water as working fluid is a promising technology for development of a high temperature industrial heat pump. This is due to two properties inherent to the use of zeotropic mixtures: non-isothermal phase change and reduced vapour...... using these components. A technically and economically feasible solution is defined as one that satisfies constraints on the coefficient of performance (COP), low and high pressure, compressor discharge temperature and volumetric heat capacity. The ammonia mass fraction of the rich solution...

  9. High-temperature measurements of methane and acetylene using quantum cascade laser absorption near 8μm

    KAUST Repository

    Sajid, M.B.

    2015-04-01

    The mid-infrared wavelength region near 8 mu m contains absorption bands of several molecules such as water vapor, hydrogen peroxide, nitrous oxide, methane and acetylene. A new laser absorption sensor based on the v(4) band of methane and the v(4)+v(5) band of acetylene is reported for interference-free, time-resolved measurements under combustion-relevant conditions. A detailed line-selection procedure was used to identify optimum transitions. Methane and acetylene were measured at the line centers of Q12 (1303.5 cm(-1)) and P23 (1275.5 cm(-1)) transitions, respectively. High-temperature absorption cross sections of methane and acetylene were measured at peaks (on-line) and valleys (off-line) of the selected absorption transitions. The differential absorption strategy was employed to eliminate interference absorption from large hydrocarbons. Experiments were performed behind reflected shock waves over a temperature range of 1200-2200 K, between pressures of 1-4 atm. The diagnostics were then applied to measure the respective species time-history profiles during the shock-heated pyrolysis of n-pentane. (C) 2015 Elsevier Ltd. All rights reserved.

  10. Nonlinear effects in collective absorption

    International Nuclear Information System (INIS)

    Uenoyama, Takeshi; Mima, Kunioki; Watanabe, Tsuguhiro.

    1981-01-01

    The collective absorption of high intensity laser radiation is analyzed numerically. Density profile modification due to the ponderomotive force associating laser radiation and the excited electron plasma waves is self-consistently taken into account, and the intensity dependences of the absorption efficiency are obtained. In the high intensity regime, the absorption efficiency is found to be strongly enhanced in the plasma without flow, but reduced with supersonic flow. (author)

  11. Measurements of NH3 linestrengths and collisional broadening coefficients in N2, O2, CO2, and H2O near 1103.46cm-1

    KAUST Repository

    Owen, Kyle

    2013-05-01

    Laser-based ammonia gas sensors have useful applications in many fields including combustion, atmospheric monitoring, and medical diagnostics. Calibration-free trace gas sensors require the spectroscopic parameters including linestrengths and collisional broadening coefficients to be known. Ammonia\\'s strong ν2 vibrational band between 9 - 12 μm has the high absorption strength needed for sensing small concentrations. Within this band, the 1103.46cm-1 feature is one of the strongest and has minimal interference from CO2 and H2O. However, the six rotational transitions that make up this feature have not been studied previously with absorption spectroscopy due to their small line spacing ranging from 0.004 to 0.029cm-1. A tunable quantum cascade laser was used to accurately study these six transitions. A retrieval program was used to determine the linestrengths and collisional broadening coefficients based on Voigt and Galatry profiles. The experiments were performed with ammonia mixtures in nitrogen, oxygen, water vapor, and carbon dioxide at room temperature in an optical cell. These data are going to aid in the development of quantitative ammonia sensors utilizing this strong absorption feature. © 2013 Elsevier Ltd.

  12. Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties

    International Nuclear Information System (INIS)

    Liu, Tong; Pang, Yu; Xie, Xiubo; Qi, Wen; Wu, Ying; Kobayashi, Satoru; Zheng, Jie; Li, Xingguo

    2016-01-01

    The fabrication of microporous metal materials with many potential applications is challenging due to their high chemical activities and the difficulty in controlling the pore size. By adjusting the reaction condition and the composition of the Ni–Al nanoparticle precursor, we have successfully produced the microporous Ni nanoparticles (NPs) of 22 nm by chemical dealloying method. During the passivation process, the microporous Ni NPs covered with NiO shell are generated as the result of surface oxidation. The micropores range from 0.6 to 1.2 nm in diameter with a large surface area of 68.9 m"2/g. Due to the elimination of Al atoms during dealloying process, the crystalline size of the microporous Ni NPs is sharply decreased to 2–5 nm. The specific architecture offers the microporous Ni/NiO NPs a small microwave reflection coefficient (RC) and a wide absorption bandwidth (RC ≤ −10 dB) of −49.1 dB and 5.8 GHz, much better than the nonporous counterpart of −24.1 dB and 3.7 GHz. The enhanced microwave absorption performance has been interpreted in terms of the micropore structure, core/shell structure and nanostructure effects. - Highlights: • Microporous Ni/NiO nanoparticles are prepared by chemical dealloying method. • They possess micropores of 0.6–1.2 nm with a surface area of 68.9 m"2/g. • They show minimum microwave reflection coefficient of −49.1 dB and bandwidth of 5.8 GHz. • Microwave absorption mechanism is explained by micropore and core/shell structures.

  13. Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong, E-mail: tongliu@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 (China); Pang, Yu; Xie, Xiubo [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 (China); Qi, Wen; Wu, Ying [China Iron & Steel Research Institute Group, Advanced Technology & Materials Co., Ltd, No.76 Xueyuannanlu, Haidian District, Beijing, 100081 (China); Kobayashi, Satoru [Faculty of Engineering, Iwate University, Ueda, Morioka, 020-8551 (Japan); Zheng, Jie; Li, Xingguo [Beijing National Laboratory for Molecular Sciences (BNLMS), The State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 (China)

    2016-05-15

    The fabrication of microporous metal materials with many potential applications is challenging due to their high chemical activities and the difficulty in controlling the pore size. By adjusting the reaction condition and the composition of the Ni–Al nanoparticle precursor, we have successfully produced the microporous Ni nanoparticles (NPs) of 22 nm by chemical dealloying method. During the passivation process, the microporous Ni NPs covered with NiO shell are generated as the result of surface oxidation. The micropores range from 0.6 to 1.2 nm in diameter with a large surface area of 68.9 m{sup 2}/g. Due to the elimination of Al atoms during dealloying process, the crystalline size of the microporous Ni NPs is sharply decreased to 2–5 nm. The specific architecture offers the microporous Ni/NiO NPs a small microwave reflection coefficient (RC) and a wide absorption bandwidth (RC ≤ −10 dB) of −49.1 dB and 5.8 GHz, much better than the nonporous counterpart of −24.1 dB and 3.7 GHz. The enhanced microwave absorption performance has been interpreted in terms of the micropore structure, core/shell structure and nanostructure effects. - Highlights: • Microporous Ni/NiO nanoparticles are prepared by chemical dealloying method. • They possess micropores of 0.6–1.2 nm with a surface area of 68.9 m{sup 2}/g. • They show minimum microwave reflection coefficient of −49.1 dB and bandwidth of 5.8 GHz. • Microwave absorption mechanism is explained by micropore and core/shell structures.

  14. Strong saturable absorption of black titanium oxide nanoparticle films

    Science.gov (United States)

    Zhang, Rong-Fang; Guo, Deng-Zhu; Zhang, Geng-Min

    2017-12-01

    Nonlinear optical materials with strong saturable absorption (SA) properties play an essential role in passive mode-locking generation of ultrafast lasers. Here we report black TiO2-x nanoparticles are promising candidate for such an application. Black TiO2-x nanoparticles are synthesized by using cathodic plasma electrolysis, and nanoparticle films are deposited on optical glass plates via natural sedimentation and post annealing. Characterization of the samples with TEM, SEM, XRD and XPS reveal that nanoparticles have diameters of 8-70 nm, and are in polycrystalline structure and co-existence of anatase, rutile and abundant oxygen-deficient phases. Optical transmittance and reflectance measurements with a UV/VIS/NIR spectrophotometer evidence an excellent wide-spectral optical absorption property. The nonlinear optical properties of the samples were measured by using open-aperture Z-scan technique with picosecond 532-nm laser, and verified by direct transmission measurements using nanosecond 1064-nm laser. Strong SA behavior was detected, and the nonlinear absorption coefficient is as high as β = - 4.9 × 10-8 m/W, at least two orders larger than most previous reports on ordinary TiO2. The strong SA behaviors are ascribed to the existence of plenty surface states and defect states within bandgap, and the relaxation rates of electrons from upper energy levels to lower ones are much slower than excitation rates.

  15. Absorption of fast waves at moderate to high ion cyclotron harmonics on DIII-D

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Porkolab, M.; Heidbrink, W.W.; Luo, Y.; Petty, C.C.; Prater, R.; Choi, M.; Schaffner, D.A.; Baity, F.W.; Fredd, E.; Hosea, J.C.; Harvey, R.W.; Smirnov, A.P.; Murakami, M.; Zeeland, M.A. Van

    2006-01-01

    The absorption of fast Alfven waves (FW) by ion cyclotron harmonic damping in the range of harmonics from 4th to 8th is studied theoretically and with experiments in the DIII-D tokamak. A formula for linear ion cyclotron absorption on ions with an arbitrary distribution function which is symmetric about the magnetic field is used to estimate the single-pass damping for various cases of experimental interest. It is found that damping on fast ions from neutral beam injection can be significant even at the 8th harmonic if the fast ion beta, the beam injection energy and the background plasma density are high enough and the beam injection geometry is appropriate. The predictions are tested in several L-mode experiments in DIII-D with FW power at 60 MHz and at 116 MHz. It is found that 4th and 5th harmonic absorption of the 60 MHz power on the beam ions can be quite strong, but 8th harmonic absorption of the 116 MHz power appears to be weaker than expected. The linear modelling predicts a strong dependence of the 8th harmonic absorption on the initial pitch-angle of the injected beam, which is not observed in the experiment. Possible explanations of the discrepancy are discussed

  16. Coefficient of restitution and plastic strain for impact of elements welded with micro-jet cooling

    Directory of Open Access Journals (Sweden)

    Damian HADRYŚ

    2014-06-01

    Full Text Available The main purpose of investigations is the qualification how post-accident repair of model car body parts influence on the value of coefficient of restitution. Evaluation of impact energy absorption by model car body parts repaired with MIG welding (with and without micro-jet cooling was carried out. The results of investigations present that the value of coefficient of restitution changes with speed of impact. Coefficient of restitution is bigger for elements welded with micro-jet cooling than for element welded with ordinary method. This could have influence on passive safety of vehicle.

  17. Effect of the refraction factor of a plastic fiber shell on the internal reflection coefficient

    International Nuclear Information System (INIS)

    Pkrksypkin, A.I.; Ponomarev, L.I.

    1992-01-01

    Results of pilot studies of the effect of refraction factor of plastic fiber shell on the coefficient of light internal reflection in the fiber are presented. It is pointed, that the shell does not absorb the light, but effects the surface layer of the fiber centre so, that dependence of the coefficient of internal reflection on refraction factor of the shell may be described using Fresnel formulae. It is shown, that coefficient of internal reflection decreases with the increase of refraction factor. Technique to determine volume length of scintillation light absorption in the fiber is suggested

  18. Optical radiative properties of ablating polymers exposed to high-power arc plasmas

    Science.gov (United States)

    Becerra, Marley; Pettersson, Jonas

    2018-03-01

    The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer

  19. Spectral absorption of unpolarized light through nano-materials in the absence of a magnetic field

    Directory of Open Access Journals (Sweden)

    Luminosu I.

    2008-01-01

    Full Text Available A study of optical properties, such as light absorption, of a colloidal nano-material, provides information on the biphasic, solid - liquid system microstructure. The nano-material under study is a magnetic liquid (ferrofluid. The disperser agent is petroleum mineral oil and the dispersed material is a brown spar powder (nano-particles. The stabilizer is oleic acid. Light absorption through ferrofluid samples reveals the tendency of solid particles in a colloidal solution to form aggregates. The paper emphasizes the linear dependence between the spectral absorption coefficient, concentration and wavelength. The aggregates cause deviations of the extinction coefficient from values according to the Bouger-Lambert-Beer law. Fe3O4 aggregates sized 58.76 nm are formed in the system. The average number of nano-particles forming aggregates is 6. The magnetic liquid to be studied is secure stable and, thus, trustful in technological and biological applications.

  20. Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga{sub 1−x}Al{sub x}As concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration

    Energy Technology Data Exchange (ETDEWEB)

    Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia)

    2014-01-15

    The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga{sub 1−x}Al{sub x}As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption.