WorldWideScience

Sample records for higgsless electroweak model

  1. A Three site Higgsless model

    International Nuclear Information System (INIS)

    Chivukula, R. Sekhar; Coleppa, Baradhwaj; Chiara, Stefano Di; Simmons, Elizabeth H.; He, Hong-Jian; Kurachi, Masafumi; Tanabashi, Masaharu

    2006-01-01

    We analyze the spectrum and properties of a highly deconstructed Higgsless model with only three sites. Such a model contains sufficient complexity to incorporate interesting physics issues related to fermion masses and electroweak observables, yet remains simple enough that it could be encoded in a Matrix Element Generator program for use with Monte Carlo simulations. The gauge sector of this model is equivalent to that of the Breaking Electroweak Symmetry Strongly (BESS) model; the new physics of interest here lies in the fermion sector. We analyze the form of the fermion Yukawa couplings required to produce the ideal fermion delocalization that causes tree-level precision electroweak corrections to vanish. We discuss the size of one-loop corrections to b→sγ, the weak-isospin violating parameter αT and the decay Z→bb. We find that the new fermiophobic vector states (the analogs of the gauge-boson Kaluza-Klein modes in a continuum model) can be reasonably light, with a mass as low as 380 GeV, while the extra (approximately vectorial) quark and lepton states (the analogs of the fermion Kaluza-Klein modes) must be heavier than 1.8 TeV

  2. Supersymmetry in a sector of Higgsless electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Knochel, Alexander Karl

    2009-05-11

    In this thesis we have investigated phenomenological implications which arise for cosmology and collider physics when the electroweak symmetry breaking sector of warped higgsless models is extended to include warped supersymmetry with conserved R parity. The goal was to find the simplest supersymmetric extension of these models which still has a realistic light spectrum including a viable dark matter candidate. To accomplish this, we have used the same mechanism which is already at work for symmetry breaking in the electroweak sector to break supersymmetry as well, namely symmetry breaking by boundary conditions. While supersymmetry in five dimensions contains four supercharges and is therefore directly related to 4D N=2 supersymmetry, half of them are broken by the background leaving us with ordinary N=1 theory in the massless sector after Kaluza-Klein expansion. We thus use boundary conditions to model the effects of a breaking mechanism for the remaining two supercharges. The simplest viable scenario to investigate is a supersymmetric bulk and IR brane without supersymmetry on the UV brane. Even though parts of the light spectrum are effectively projected out by this mechanism, we retain the rich phenomenology of complete N=2 supermultiplets in the Kaluza-Klein sector. While the light supersymmetric spectrum consists of electroweak gauginos which get their O(100 GeV) masses from IR brane electroweak symmetry breaking, the light gluinos and squarks are projected out on the UV brane. The neutralinos, as mass eigenstates of the neutral bino-wino sector, are automatically the lightest gauginos, making them LSP dark matter candidates with a relic density that can be brought to agreement withWMAP measurements without extensive tuning of parameters. For chargino masses close to the experimental lower bounds at around m{sub {chi}{sup +}}{approx}100.. 110 GeV, the dark matter relic density points to LSP masses of around m{sub {chi}}{approx}90 GeV. At the LHC, the

  3. Supersymmetry in a sector of Higgsless electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Knochel, Alexander Karl

    2009-01-01

    In this thesis we have investigated phenomenological implications which arise for cosmology and collider physics when the electroweak symmetry breaking sector of warped higgsless models is extended to include warped supersymmetry with conserved R parity. The goal was to find the simplest supersymmetric extension of these models which still has a realistic light spectrum including a viable dark matter candidate. To accomplish this, we have used the same mechanism which is already at work for symmetry breaking in the electroweak sector to break supersymmetry as well, namely symmetry breaking by boundary conditions. While supersymmetry in five dimensions contains four supercharges and is therefore directly related to 4D N=2 supersymmetry, half of them are broken by the background leaving us with ordinary N=1 theory in the massless sector after Kaluza-Klein expansion. We thus use boundary conditions to model the effects of a breaking mechanism for the remaining two supercharges. The simplest viable scenario to investigate is a supersymmetric bulk and IR brane without supersymmetry on the UV brane. Even though parts of the light spectrum are effectively projected out by this mechanism, we retain the rich phenomenology of complete N=2 supermultiplets in the Kaluza-Klein sector. While the light supersymmetric spectrum consists of electroweak gauginos which get their O(100 GeV) masses from IR brane electroweak symmetry breaking, the light gluinos and squarks are projected out on the UV brane. The neutralinos, as mass eigenstates of the neutral bino-wino sector, are automatically the lightest gauginos, making them LSP dark matter candidates with a relic density that can be brought to agreement withWMAP measurements without extensive tuning of parameters. For chargino masses close to the experimental lower bounds at around m χ + ∼100.. 110 GeV, the dark matter relic density points to LSP masses of around m χ ∼90 GeV. At the LHC, the standard particle content of our

  4. A flavor protection for warped Higgsless models

    International Nuclear Information System (INIS)

    Csaki, Csaba; Curtin, David

    2009-01-01

    We examine various possibilities for realistic 5D Higgsless models on a Randall-Sundrum (RS) background, and construct a full quark sector featuring next-to-minimal flavor violation (with an exact bulk SU(2) protecting the first two generations) which satisfies electroweak and flavor constraints. The 'new custodially protected representation' is used for the third generation to protect the light quarks from flavor violations induced due to the heavy top. A combination of flavor symmetries, and an 'RS-GIM' mechanism for the right-handed quarks suppresses flavor-changing neutral currents below experimental bounds, assuming Cabibbo-Kobayashi-Maskawa-type mixing on the UV brane. In addition to the usual Higgsless RS signals, this model predicts an exotic charge-5/3 quark with mass of about 0.5 TeV which should show up at the LHC very quickly, as well as nonzero flavor-changing neutral currents which could be detected in the next generation of flavor experiments. In the course of our analysis, we also find quantitative estimates for the errors of the fermion zero-mode approximation, which are significant for Higgsless-type models.

  5. Higgsless theory of electroweak symmetry breaking from warped space

    International Nuclear Information System (INIS)

    Nomura, Yasunori

    2003-01-01

    We study a theory of electroweak symmetry breaking without a Higgs boson, recently suggested by Csaki et al. The theory is formulated in 5D warped space with the gauge bosons and matter fields propagating in the bulk. In the 4D dual picture, the theory appears as the standard model without a Higgs field, but with an extra gauge group G which becomes strong at the TeV scale. The strong dynamics of G breaks the electroweak symmetry, giving the masses for the W and Z bosons and the quarks and leptons. We study corrections in 5D which are logarithmically enhanced by the large mass ratio between the Planck and weak scales, and show that they do not destroy the structure of the electroweak gauge sector at the leading order. We introduce a new parameter, the ratio between the two bulk gauge couplings, into the theory and find that it allows us to control the scale of new physics. We also present a potentially realistic theory accommodating quarks and leptons and discuss its implications, including the violation of universality in the W and Z boson couplings to matter and the spectrum of the Kaluza-Klein excitations of the gauge bosons. The theory reproduces many successful features of the standard model, although some cancellations may still be needed to satisfy constraints from the precision electroweak data. (author)

  6. Models of electroweak symmetry breaking

    CERN Document Server

    Pomarol, Alex

    2015-01-01

    This chapter present models of electroweak symmetry breaking arising from strongly interacting sectors, including both Higgsless models and mechanisms involving a composite Higgs. These scenarios have also been investigated in the framework of five-dimensional warped models that, according to the AdS/CFT correspondence, have a four-dimensional holographic interpretation in terms of strongly coupled field theories. We explore the implications of these models at the LHC.

  7. LHC phenomenology of the three-site Higgsless model

    Energy Technology Data Exchange (ETDEWEB)

    Speckner, Christian

    2009-07-01

    In the last years, extra dimensional models have been proposed which can evade these constraints by delocalizing the Standard Model fermions within the extra dimension, thus allowing to tune the couplings to the new resonances in order to avoid these constraints. This way, such models are a viable method of breaking the electroweak symmetry and retaining perturbative TeV scale unitarity without introducing a fundamental Higgs field. However, extra dimensional models (excluding trivial cases) are intrinsically nonrenormalizable and valid only below a cutoff scale, with most of the new resonances lying in fact above the cutoff. Conceptionally, a honest extension of the Standard Model should only contain the structure below this cutoff, incorporating the extra dimensional mechanism of breaking the symmetry and delaying unitarity violation without making assumptions on the high energy physics above the cutoff scale. The Three-Site Higgsless Model is a minimal implementation of this idea. While it can be motivated by extra dimensional Higgsless models of electroweak symmetry breaking, it in fact contains only one set of extra resonances which lies below the cutoff, delaying unitarity violation to {approx}2-3 TeV. The non-Standard Model part of the spectrum consists of a set of heavy partners for all Standard Model particles with the exception of photon and gluon. The analysis of the experimental constraints reveals that, while the model is consistent with the precision observables, the couplings between the new heavy gauge bosons and the Standard Model fermions have to be exceedingly small ({approx}1% of the isospin gauge coupling) while the new fermions are constrained to be rather heavy with masses above 1.8 TeV. In this thesis, we explored the LHC phenomenology of this scenario. To this end, we calculated the couplings and widths of all the new particles and implemented the model into the Monte-Carlo event generator and WHIZARD / O'Mega. With this implementation

  8. LHC phenomenology of the three-site Higgsless model

    International Nuclear Information System (INIS)

    Speckner, Christian

    2009-01-01

    In the last years, extra dimensional models have been proposed which can evade these constraints by delocalizing the Standard Model fermions within the extra dimension, thus allowing to tune the couplings to the new resonances in order to avoid these constraints. This way, such models are a viable method of breaking the electroweak symmetry and retaining perturbative TeV scale unitarity without introducing a fundamental Higgs field. However, extra dimensional models (excluding trivial cases) are intrinsically nonrenormalizable and valid only below a cutoff scale, with most of the new resonances lying in fact above the cutoff. Conceptionally, a honest extension of the Standard Model should only contain the structure below this cutoff, incorporating the extra dimensional mechanism of breaking the symmetry and delaying unitarity violation without making assumptions on the high energy physics above the cutoff scale. The Three-Site Higgsless Model is a minimal implementation of this idea. While it can be motivated by extra dimensional Higgsless models of electroweak symmetry breaking, it in fact contains only one set of extra resonances which lies below the cutoff, delaying unitarity violation to ∼2-3 TeV. The non-Standard Model part of the spectrum consists of a set of heavy partners for all Standard Model particles with the exception of photon and gluon. The analysis of the experimental constraints reveals that, while the model is consistent with the precision observables, the couplings between the new heavy gauge bosons and the Standard Model fermions have to be exceedingly small (∼1% of the isospin gauge coupling) while the new fermions are constrained to be rather heavy with masses above 1.8 TeV. In this thesis, we explored the LHC phenomenology of this scenario. To this end, we calculated the couplings and widths of all the new particles and implemented the model into the Monte-Carlo event generator and WHIZARD / O'Mega. With this implementation, we simulated

  9. Electroweak symmetry breaking beyond the Standard Model

    International Nuclear Information System (INIS)

    Bhattacharyya, Gautam

    2012-01-01

    In this paper, two key issues related to electroweak symmetry breaking are addressed. First, how fine-tuned different models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily elementary? After a brief introduction, the fine-tuning aspects of the MSSM, NMSSM, generalized NMSSM and GMSB scenarios shall be reviewed, then the little Higgs, composite Higgs and the Higgsless models shall be compared. Finally, a broad overview will be given on where we stand at the end of 2011. (author)

  10. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  11. A (critical) overview of electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Csaki, Csaba

    2010-01-01

    This presentation discusses the following points: The standard Higgs, big vs. little hierarchy; Electroweak Symmetry Breaking in supersymmetry and little hierarchy of Minimal Supersymmetric Standard Model (MSSM): Buried Higgs, Bigger quartic (D-terms, Next-to-Minimal Supersymmetric Standard Model (NMSSM), fat Higgs,..); Strong dynamics and related models: Technicolor, Monopole condensate, Warped extra dimensions, Realistic RS, Higgs-less, Composite Higgs, Little Higgs. In summary, we do not understand how Higgs is light and still no trace of new physics. In Supersymmetry (SUSY) it calls for extension of MSSM. In strong dynamics models: electroweak penguin (EWP) usually issue (Warped extra dimension - composite Higgs, Higgs-less, Little Higgs, Technicolor, monopole condensation,..). None of them is fully convincing but LHC should settle these

  12. Phenomenology of the Three Site Higgsless Model at the ATLAS Detector of the LHC

    CERN Document Server

    Bach, Fabian; Trefzger, Thomas M

    2009-01-01

    Im sogenannten Three Site Higgsless Model“ [1], das eine Er- ” weiterung des Standardmodells darstellt, wird die elektroschwache Symmetrie nicht durch ein fundamentales Skalarfeld wie das Hig- gsfeld, sondern durch eine erweiterte elektroschwache Eichgruppe SU(2) × SU(2) × U(1) im Sinne einer kompaktifizierten und auf drei Sites dekonstruierten f ̈nften Raumzeitdimension gebrochen. Das u Teilchenspektrum wird dadurch um drei schwere Eichbosonen W ′± und Z ′0 mit Massen zwischen 380 und 600 GeV sowie schwere Fermio- nen mit einer Massenskala von ≳ 3 TeV erweitert. In dieser Arbeit wird durch eine analytische Rechnung gezeigt, dass sich die Unitarit ̈tsgrenze der elastischen Streuung longitudinal pola- a risierter Eichbosonen durch die Beitr ̈ge der neuen Eichbosonen von a ∼ 1 TeV im higgslosen Standardmodell bis auf 2 TeV verschiebt. Weiterhin wird in einer Detektorstudie die M ̈glichkeit der Ent- o deckung der neuen Eichbosonen am ATLAS-Detektor [2, 3, 4, 5] des LHC durch Produktion im s-Ka...

  13. Electroweak breaking in supersymmetric models

    CERN Document Server

    Ibáñez, L E

    1992-01-01

    We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)

  14. Higgsless grand unified theory breaking and trinification

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Conroy, Justin M.

    2004-01-01

    Boundary conditions on an extra dimensional interval can be chosen to break bulk gauge symmetries and to reduce the rank of the gauge group. We consider this mechanism in models with gauge trinification. We determine the boundary conditions necessary to break the trinified gauge group directly down to that of the standard model. Working in an effective theory for the gauge-symmetry-breaking parameters on a boundary, we examine the limit in which the grand-unified theory-breaking-sector is Higgsless and show how one may obtain the low-energy particle content of the minimal supersymmetric standard model. We find that gauge unification is preserved in this scenario, and that the differential gauge coupling running is logarithmic above the scale of compactification. We compare the phenomenology of our model to that of four dimensional 'trinified' theories

  15. Electroweak Calibration of the Higgs Characterization Model

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    I will present the preliminary results of histogram fits using the Higgs Combine histogram fitting package. These fits can be used to estimate the effects of electroweak contributions to the p p -> H mu+ mu- Higgs production channel and calibrate Beyond Standard Model (BSM) simulations which ignore these effects. I will emphasize my findings' significance in the context of other research here at CERN and in the broader world of high energy physics.

  16. Electroweak baryogenesis and the standard model

    International Nuclear Information System (INIS)

    Huet, P.

    1994-01-01

    Electroweak baryogenesis is addressed within the context of the standard model of particle physics. Although the minimal standard model has the means of fulfilling the three Sakharov's conditions, it falls short to explaining the making of the baryon asymmetry of the universe. In particular, it is demonstrated that the phase of the CKM mixing matrix is an, insufficient source of CP violation. The shortcomings of the standard model could be bypassed by enlarging the symmetry breaking sector and adding a new source of CP violation

  17. The renormalization of the electroweak standard model

    International Nuclear Information System (INIS)

    Boehm, M.; Spiesberger, H.; Hollik, W.

    1984-03-01

    A renormalization scheme for the electroweak standard model is presented in which the electric charge and the masses of the gauge bosons, Higgs particle and fermions are used as physical parameters. The photon is treated such that quantum electrodynamics is contained in the usual form. Field renormalization respecting the gauge symmetry gives finite Green functions. The Ward identities between the Green functions of the unphysical sector allow a renormalization that maintains the simple pole structure of the propagators. Explicit results for the renormalization self energies and vertex functions are given. They can be directly used as building blocks for the evaluation of l-loop radiative corrections. (orig.)

  18. 3-3-1 models at electroweak scale

    International Nuclear Information System (INIS)

    Dias, Alex G.; Montero, J.C.; Pleitez, V.

    2006-01-01

    We show that in 3-3-1 models there exist a natural relation among the SU(3) L coupling constant g, the electroweak mixing angle θ W , the mass of the W, and one of the vacuum expectation values, which implies that those models can be realized at low energy scales and, in particular, even at the electroweak scale. So that, being that symmetries realized in Nature, new physics may be really just around the corner

  19. Higgsless superconductivity from topological defects in compact BF terms

    Directory of Open Access Journals (Sweden)

    M. Cristina Diamantini

    2015-02-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalisable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D−1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact low-energy effective BF theories. In the average field approximation, the corresponding uniform emergent charge creates a gap for the (D−2-dimensional branes via the Magnus force, the dual of the Lorentz force. One particular combination of intrinsic and emergent charge fluctuations that leaves the total charge distribution invariant constitutes an isolated gapless mode leading to superfluidity. The remaining massive modes organise themselves into a D-dimensional charged, massive vector. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D this type of superconductivity is explicitly realised as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  20. The global electroweak Standard Model fit after the Higgs discovery

    CERN Document Server

    Baak, Max

    2013-01-01

    We present an update of the global Standard Model (SM) fit to electroweak precision data under the assumption that the new particle discovered at the LHC is the SM Higgs boson. In this scenario all parameters entering the calculations of electroweak precision observalbes are known, allowing, for the first time, to over-constrain the SM at the electroweak scale and assert its validity. Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted from the global fit. The results are compatible with, and exceed in precision, the direct measurements. An updated determination of the S, T and U parameters, which parametrize the oblique vacuum corrections, is given. The obtained values show good consistency with the SM expectation and no direct signs of new physics are seen. We conclude with an outlook to the global electroweak fit for a future e+e- collider.

  1. Electroweak theory and the Standard Model

    CERN Multimedia

    CERN. Geneva; Giudice, Gian Francesco

    2004-01-01

    There is a natural splitting in four sectors of the theory of the ElectroWeak (EW) Interactions, at pretty different levels of development/test. Accordingly, the 5 lectures are organized as follows, with an eye to the future: Lecture 1: The basic structure of the theory; Lecture 2: The gauge sector; Lecture 3: The flavor sector; Lecture 4: The neutrino sector; Lecture 5: The EW symmetry breaking sector.

  2. Electroweak Physics

    OpenAIRE

    Erler, Jens; Langacker, Paul

    2008-01-01

    The results of high precision weak neutral current (WNC), Z-pole, and high energy collider electroweak experiments have been the primary prediction and test of electroweak unification. The electroweak program is briefly reviewed from a historical perspective. The current status and the implications for the standard model and beyond are discussed.

  3. The electroweak phase transition in minimal supergravity models

    CERN Document Server

    Nanopoulos, Dimitri V

    1994-01-01

    We have explored the electroweak phase transition in minimal supergravity models by extending previous analysis of the one-loop Higgs potential to include finite temperature effects. Minimal supergravity is characterized by two higgs doublets at the electroweak scale, gauge coupling unification, and universal soft-SUSY breaking at the unification scale. We have searched for the allowed parameter space that avoids washout of baryon number via unsuppressed anomalous Electroweak sphaleron processes after the phase transition. This requirement imposes strong constraints on the Higgs sector. With respect to weak scale baryogenesis, we find that the generic MSSM is {\\it not} phenomenologically acceptable, and show that the additional experimental and consistency constraints of minimal supergravity restricts the mass of the lightest CP-even Higgs even further to $m_h\\lsim 32\\GeV$ (at one loop), also in conflict with experiment. Thus, if supergravity is to allow for baryogenesis via any other mechanism above the weak...

  4. Systematics of quark mass matrices in the standard electroweak model

    International Nuclear Information System (INIS)

    Frampton, P.H.; Jarlskog, C.; Stockholm Univ.

    1985-01-01

    It is shown that the quark mass matrices in the standard electroweak model satisfy the empirical relation M = M' + O(lambda 2 ), where M(M') refers to the mass matrix of the charge 2/3 (-1/3) quarks normalized to the largest eigenvalue, msub(t) (msub(b)), and lambda = Vsub(us) approx.= 0.22. (orig.)

  5. Electroweak symmetry breaking in supersymmetric gauge-Higgs unification models

    International Nuclear Information System (INIS)

    Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi; Haba, Naoyuki; Shimizu, Yasuhiro; Yamaguchi, Masahiro

    2004-01-01

    We examine the Higgs mass parameters and electroweak symmetry breaking in supersymmetric orbifold field theories in which the 4-dimensional Higgs fields originate from higher-dimensional gauge supermultiplets. It is noted that such gauge-Higgs unification leads to a specific boundary condition on the Higgs mass parameters at the compactification scale, which is independent of the details of supersymmetry breaking mechanism. With this boundary condition, phenomenologically viable parameter space of the model is severely constrained by the condition of electroweak symmetry breaking for supersymmetry breaking scenarios which can be realized naturally in orbifold field theories. For instance, if it is assumed that the 4-dimensional effective theory is the minimal supersymmetric standard model with supersymmetry breaking parameters induced by the Scherk-Schwarz mechanism, a correct electroweak symmetry breaking can not be achieved for reasonable range of parameters of the model, even when one includes additional contributions to the Higgs mass parameters from the auxiliary component of 4-dimensional conformal compensator. However if there exists a supersymmetry breaking mediated by brane superfields, sizable portion of the parameter space can give a correct electroweak symmetry breaking. (author)

  6. CP violation and electroweak baryogenesis in the Standard Model

    Directory of Open Access Journals (Sweden)

    Brauner Tomáš

    2014-04-01

    Full Text Available One of the major unresolved problems in current physics is understanding the origin of the observed asymmetry between matter and antimatter in the Universe. It has become a common lore to claim that the Standard Model of particle physics cannot produce sufficient asymmetry to explain the observation. Our results suggest that this conclusion can be alleviated in the so-called cold electroweak baryogenesis scenario. On the Standard Model side, we continue the program initiated by Smit eight years ago; one derives the effective CP-violating action for the Standard Model bosons and uses the resulting effective theory in numerical simulations. We address a disagreement between two previous computations performed effectively at zero temperature, and demonstrate that it is very important to include temperature effects properly. Our conclusion is that the cold electroweak baryogenesis scenario within the Standard Model is tightly constrained, yet producing enough baryon asymmetry using just known physics still seems possible.

  7. Precision Electroweak Measurements and Constraints on the Standard Model

    CERN Document Server

    ,

    2010-01-01

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and DØ at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-$Q^2$ interactions, and used to predict results in low-$Q^2$ experiments, such as atomic parity violation, Møller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2009 are new combinations of results on the width of the W boson and the mass of the top quark.

  8. A few words about resonances in the electroweak effective Lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Rosell, Ignasi [Departamento de Ciencias Físicas, Matemáticas y de la Computación, Universidad CEU Cardenal Herrera, c/ Sant Bartomeu 55, 46115 Alfara del Patriarca, València (Spain); Pich, Antonio; Santos, Joaquín [Departament de Física Teòrica, IFIC, Universitat de València – CSIC, Apt. Correus 22085, 46071 València (Spain); Sanz-Cillero, Juan José [Departamento de Física Teórica and Instituto Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2016-01-22

    Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models including both a light Higgs-like boson and massive spin-1 resonances are not in conflict with experimental constraints on the oblique S and T parameters. We use an effective Lagrangian implementing the chiral symmetry breaking SU (2){sub L} ⊗ SU (2){sub R} → SU (2){sub L+R} that contains the Standard Model gauge bosons coupled to the electroweak Goldstones, one Higgs-like scalar state h with mass m{sub h} = 126 GeV and the lightest vector and axial-vector resonance multiplets V and A. We have considered the one-loop calculation of S and T in order to study the viability of these strongly-coupled scenarios, being short-distance constraints and dispersive relations the main ingredients of the calculation. Once we have constrained the resonance parameters, we do a first approach to the determination of the low energy constants of the electroweak effective theory at low energies (without resonances). We show this determination in the case of the purely Higgsless bosonic Lagrangian.

  9. The hierarchy problem of the electroweak standard model revisited

    International Nuclear Information System (INIS)

    Jegerlehner, Fred

    2013-05-01

    A careful renormalization group analysis of the electroweak Standard Model reveals that there is no hierarchy problem in the SM. In the broken phase a light Higgs turns out to be natural as it is self-protected and self-tuned by the Higgs mechanism. It means that the scalar Higgs needs not be protected by any extra symmetry, specifically super symmetry, in order not to be much heavier than the other SM particles which are protected by gauge- or chiral-symmetry. Thus the existence of quadratic cutoff effects in the SM cannot motivate the need for a super symmetric extensions of the SM, but in contrast plays an important role in triggering the electroweak phase transition and in shaping the Higgs potential in the early universe to drive inflation as supported by observation.

  10. The hierarchy problem of the electroweak standard model revisited

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-05-15

    A careful renormalization group analysis of the electroweak Standard Model reveals that there is no hierarchy problem in the SM. In the broken phase a light Higgs turns out to be natural as it is self-protected and self-tuned by the Higgs mechanism. It means that the scalar Higgs needs not be protected by any extra symmetry, specifically super symmetry, in order not to be much heavier than the other SM particles which are protected by gauge- or chiral-symmetry. Thus the existence of quadratic cutoff effects in the SM cannot motivate the need for a super symmetric extensions of the SM, but in contrast plays an important role in triggering the electroweak phase transition and in shaping the Higgs potential in the early universe to drive inflation as supported by observation.

  11. Electroweak amplitudes in chiral quark models

    International Nuclear Information System (INIS)

    Fiolhais, Manuel

    2004-01-01

    After referring to some basic features of chiral models for baryons, with quarks and mesons, we describe how to construct model states representing physical baryons. We consider soliton models such as the Linear Sigma Model or the Chromodielectric Model, and bag models such as the Cloudy Bag Model. These models are solved approximately using variational approaches whose starting point is a mean-field description. We go beyond the mean-field description by introducing quantum fluctuations in the mesonic degrees of freedom. This is achieved, in a first step, by using a quantum state to represent meson clouds and, secondly, by performing an angular momentum and isospin projection from the mean-field state (actually a coherent state). Model states for baryons (nucleon, Delta, Roper) constructed in this way are used to determine several physical properties. I this seminar we paid a particular attention to the nucleon-delta electromagnetic and weak transition, presenting the model predictions for the electromagnetic and axial amplitudes

  12. Vector condensate model of electroweak interactions

    International Nuclear Information System (INIS)

    Cynolter, G.; Pocsik, G.

    1997-01-01

    Motivated by the fact that the Higgs is not seen, a new version of the standard model is proposed where the scalar doublet is replaced by a vector doublet and its neutral member forms a nonvanishing condensate. Gauge fields are coupled to the new vector fields B in a gauge invariant way leading to mass terms for the gauge fields by condensation. The model is presented and some implications are discussed. (K.A.)

  13. Electroweak symmetry breaking beyond the Standard Model

    Indian Academy of Sciences (India)

    words, now that the gauge symmetry is established with a significant ..... picture, the Higgs is some kind of a composite bound state emerging from a strongly .... (i) Little Higgs vs. composite: Little Higgs models were introduced to solve the little ...

  14. First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model

    DEFF Research Database (Denmark)

    Sannino, Francesco; Virkajärvi, Jussi

    2015-01-01

    We analyse and compare the finite-temperature electroweak phase transition properties of classically (non)conformal extensions of the Standard Model. In the classically conformal scenarios the breaking of the electroweak symmetry is generated radiatively. The models feature new scalars coupled co...... the associated models are testable at the upcoming Large Hadron Collider run two experiments....

  15. Electroweak phase transition in two Higgs doublet models

    International Nuclear Information System (INIS)

    Cline, J.M.; Lemieux, P.

    1997-01-01

    We reexamine the strength of the first-order phase transition in the electroweak theory supplemented by an extra Higgs doublet. The finite-temperature effective potential V eff is computed to one-loop order, including the summation of ring diagrams, to study the ratio φ c /T c of the Higgs field VEV to the critical temperature. We make a number of improvements over previous treatments, including a consistent treatment of Goldstone bosons in V eff , an accurate analytic approximation to V eff valid for any mass-to-temperature ratios, and use of the experimentally measured top quark mass. For two-Higgs-doublet models, we identify a significant region of parameter space where φ c /T c is large enough for electroweak baryogenesis, and we argue that this identification should persist even at higher orders in perturbation theory. In the case of the minimal supersymmetric standard model, our results indicate that the extra Higgs bosons have little effect on the strength of the phase transition. copyright 1997 The American Physical Society

  16. New Models and Methods for the Electroweak Scale

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Linda [The Ohio State Univ., Columbus, OH (United States). Dept. of Physics

    2017-09-26

    This is the Final Technical Report to the US Department of Energy for grant DE-SC0013529, New Models and Methods for the Electroweak Scale, covering the time period April 1, 2015 to March 31, 2017. The goal of this project was to maximize the understanding of fundamental weak scale physics in light of current experiments, mainly the ongoing run of the Large Hadron Collider and the space based satellite experiements searching for signals Dark Matter annihilation or decay. This research program focused on the phenomenology of supersymmetry, Higgs physics, and Dark Matter. The properties of the Higgs boson are currently being measured by the Large Hadron collider, and could be a sensitive window into new physics at the weak scale. Supersymmetry is the leading theoretical candidate to explain the natural nessof the electroweak theory, however new model space must be explored as the Large Hadron collider has disfavored much minimal model parameter space. In addition the nature of Dark Matter, the mysterious particle that makes up 25% of the mass of the universe is still unknown. This project sought to address measurements of the Higgs boson couplings to the Standard Model particles, new LHC discovery scenarios for supersymmetric particles, and new measurements of Dark Matter interactions with the Standard Model both in collider production and annihilation in space. Accomplishments include new creating tools for analyses of Dark Matter models in Dark Matter which annihilates into multiple Standard Model particles, including new visualizations of bounds for models with various Dark Matter branching ratios; benchmark studies for new discovery scenarios of Dark Matter at the Large Hardon Collider for Higgs-Dark Matter and gauge boson-Dark Matter interactions; New target analyses to detect direct decays of the Higgs boson into challenging final states like pairs of light jets, and new phenomenological analysis of non-minimal supersymmetric models, namely the set of Dirac

  17. Tests of the standard electroweak model in beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Severijns, N.; Beck, M. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium); Naviliat-Cuncic, O. [Caen Univ., CNRS-ENSI, 14 (France). Lab. de Physique Corpusculaire

    2006-05-15

    We review the current status of precision measurements in allowed nuclear beta decay, including neutron decay, with emphasis on their potential to look for new physics beyond the standard electroweak model. The experimental results are interpreted in the framework of phenomenological model-independent descriptions of nuclear beta decay as well as in some specific extensions of the standard model. The values of the standard couplings and the constraints on the exotic couplings of the general beta decay Hamiltonian are updated. For the ratio between the axial and the vector couplings we obtain C{sub A},/C{sub V} = -1.26992(69) under the standard model assumptions. Particular attention is devoted to the discussion of the sensitivity and complementarity of different precision experiments in direct beta decay. The prospects and the impact of recent developments of precision tools and of high intensity low energy beams are also addressed. (author)

  18. Tests of the standard electroweak model in beta decay

    International Nuclear Information System (INIS)

    Severijns, N.; Beck, M.; Naviliat-Cuncic, O.

    2006-05-01

    We review the current status of precision measurements in allowed nuclear beta decay, including neutron decay, with emphasis on their potential to look for new physics beyond the standard electroweak model. The experimental results are interpreted in the framework of phenomenological model-independent descriptions of nuclear beta decay as well as in some specific extensions of the standard model. The values of the standard couplings and the constraints on the exotic couplings of the general beta decay Hamiltonian are updated. For the ratio between the axial and the vector couplings we obtain C A ,/C V = -1.26992(69) under the standard model assumptions. Particular attention is devoted to the discussion of the sensitivity and complementarity of different precision experiments in direct beta decay. The prospects and the impact of recent developments of precision tools and of high intensity low energy beams are also addressed. (author)

  19. The hadronic standard model for strong and electroweak interactions

    International Nuclear Information System (INIS)

    Raczka, R.

    1993-01-01

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of Λ-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e + + e - → hadrons, e + + e - → W + + W - , e + + e - → p + anti-p, e + p → e + p and p + anti-p → p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant α(M z ) and we predicted the top baryon mass M Λ t ≅ 240 GeV. Since in our model the proton, neutron, Λ-particles, vector mesons like ρ, ω, φ, J/ψ ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab

  20. Dispersion Relations for Electroweak Observables in Composite Higgs Models

    CERN Document Server

    Contino, Roberto

    2015-12-14

    We derive dispersion relations for the electroweak oblique observables measured at LEP in the context of $SO(5)/SO(4)$ composite Higgs models. It is shown how these relations can be used and must be modified when modeling the spectral functions through a low-energy effective description of the strong dynamics. The dispersion relation for the parameter $\\epsilon_3$ is then used to estimate the contribution from spin-1 resonances at the 1-loop level. Finally, it is shown that the sign of the contribution to the $\\hat S$ parameter from the lowest-lying spin-1 states is not necessarily positive definite, but depends on the energy scale at which the asymptotic behavior of current correlators is attained.

  1. Electroweak symmetry breaking in supersymmetric models with heavy scalar superpartners

    International Nuclear Information System (INIS)

    Chankowski, Piotr H.; Falkowski, Adam; Pokorski, Stefan; Wagner, Jakub

    2004-01-01

    We propose a novel mechanism of electroweak symmetry breaking in supersymmetric models, as the one recently discussed by Birkedal, Chacko and Gaillard, in which the Standard Model Higgs doublet is a pseudo-Goldstone boson of some global symmetry. The Higgs mass parameter is generated at one-loop level by two different, moderately fine-tuned sources of the global symmetry breaking. The mechanism works for scalar superpartner masses of order 10 TeV, but gauginos can be light. The scale at which supersymmetry breaking is mediated to the visible sector has to be low, of order 100 TeV. Fine-tuning in the scalar potential is at least two orders of magnitude smaller than in the MSSM with similar soft scalar masses. The physical Higgs boson mass is (for tanβ >> 1) in the range 120-135 GeV

  2. Electroweak Physics

    OpenAIRE

    Hollik, W.

    2005-01-01

    The status of precision electroweak measurements as of summer 2002 is reviewed. The recent results on the anomalous magnetic moment of the muon and on neutrino-nucleon scattering are discussed. Precision results on the electroweak interaction obtained by the experiments at the SLC, LEP and TEVATRON colliders are presented. The experimental results are compared with the predictions of the minimal Standard Model and are used to constrain its parameters, including the mass of the Higgs boson. Th...

  3. Aspects of radiative electroweak breaking in supergravity models

    International Nuclear Information System (INIS)

    Kelley, S.; Lopez, J.L.; Nanopoulos, D.V.; Pois, H.; Yuan, K.

    1993-01-01

    We discuss several aspects of state-of-the-art calculations of radiative electroweak symmetry breaking in supergravity models. These models have a five-dimensional parameter space in contrast with the 21-dimensional one of the MSSM. We examine the Higgs one-loop effective potential V 1 =V 0 +ΔV, in particular how its renormalization-scale (Q) independence is affected by the approximation used to calculate ΔV and by the presence of a Higgs-field-independent term which makes V 1 (0)≠0. We show that the latter must be subtracted out to achieve Q-independence. We also discuss our own approach to the exploration of the five-dimensional parameter space and the fine-tuning constraints within this approach. We apply our methods to the determination of the allowed region in parameter space of two models which we argue to be the prototypes for conventional (SSM) and string (SISM) unified models. To this end we impose the electroweak breaking constraint by minimizing the one-loop effective potential and study the shifts in μ and B relative to the values obtained using the tree-level potential. These shifts are most significant for small values of μ and B, and induce corresponding shifts on the lightest μ- and/or B-dependent particle masses, i.e., those of the lightest stau, neutralino, chargino, and Higgs boson states. Finally, we discuss the predictions for the squark, slepton, and one-loop corrected Higgs boson masses. (orig.)

  4. Survey of composite particle models of electroweak interaction

    International Nuclear Information System (INIS)

    Suzuki, Mahiko.

    1992-05-01

    Models of composite weak bosons, the top-condensate model of electroweak interaction and related models we surveyed. Composite weak bosons must be tightly bound with a high compositeness scale in order to generate approximate puge symmetry dynamically. However, naturalness argument suggests that the compositeness scale is low at least in toy models. In the top-condensate model, where a composite Higgs doublet is formed with a very high scale, the prediction of the model is insensitive to details of the model and almost model-independent Actually, the numerical prediction of the t-quark and Higgs boson masses does not test compositeness of the Higgs boson nor condensation of the t-quark field. To illustrate the point, a composite t R -quark model is discussed which leads to the same numerical prediction as the top-condensate model. However, different constraints an imposed on the structure of the Higgs sector, depending on which particles are composite. The attempt to account the large t-b mass splitting by the high compositeness scale of the top-condensate model is reinterpreted in terms of fine tuning of more than one vacuum expectation value. It is difficult to lower, without a fourth generation, the t-quark mass in the composite particle models in general because the Yukawa coupling of the i-quark to the Higgs boson, t2 /4π = 0.1 for m t = 200 GeV, is too small for a coupling of a composite particle

  5. The hadronic standard model for strong and electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Raczka, R. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1993-12-31

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.

  6. The hadronic standard model for strong and electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Raczka, R [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.

  7. Electroweak baryogenesis in extensions of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Fromme, L.

    2006-07-07

    We investigate the generation of the baryon asymmetry in two extensions of the Standard Model; these are the {phi}{sup 6} and the two-Higgs-doublet model. Analyzing the thermal potential in the presence of CP violation, we find a strong first order phase transition for a wide range of parameters in both models. We compute the relevant bubble wall properties which then enter the transport equations. In non-supersymmetric models electroweak baryogenesis is dominated by top transport, which we treat in the WKB approximation. We calculate the CP-violating source terms starting from the Dirac equation. We show how to resolve discrepancies between this treatment and the computation in the Schwinger-Keldysh formalism. Furthermore, we keep inelastic scatterings of quarks and W bosons at a finite rate, which considerably affects the amount of the generated baryon asymmetry depending on the bubble wall velocity. In addition, we improve the transport equations by novel source terms which are generated by CP-conserving perturbations in the plasma. It turns out that their effect is relatively small. Both models under consideration predict a baryon to entropy ratio close to the observed value for a large part of the parameter space without being in conflict with constraints on electric dipole moments. (orig.)

  8. Electroweak baryogenesis in extensions of the standard model

    International Nuclear Information System (INIS)

    Fromme, L.

    2006-01-01

    We investigate the generation of the baryon asymmetry in two extensions of the Standard Model; these are the Φ 6 and the two-Higgs-doublet model. Analyzing the thermal potential in the presence of CP violation, we find a strong first order phase transition for a wide range of parameters in both models. We compute the relevant bubble wall properties which then enter the transport equations. In non-supersymmetric models electroweak baryogenesis is dominated by top transport, which we treat in the WKB approximation. We calculate the CP-violating source terms starting from the Dirac equation. We show how to resolve discrepancies between this treatment and the computation in the Schwinger-Keldysh formalism. Furthermore, we keep inelastic scatterings of quarks and W bosons at a finite rate, which considerably affects the amount of the generated baryon asymmetry depending on the bubble wall velocity. In addition, we improve the transport equations by novel source terms which are generated by CP-conserving perturbations in the plasma. It turns out that their effect is relatively small. Both models under consideration predict a baryon to entropy ratio close to the observed value for a large part of the parameter space without being in conflict with constraints on electric dipole moments. (orig.)

  9. The electroweak phase transition in models with gauge singlets

    International Nuclear Information System (INIS)

    Ahriche, A.

    2007-01-01

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition Ω(T c )/T c >or similar 1, where Ω = (v 2 + (x - x 0 ) 2 ) ( 1)/(2) and x(x 0 ) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v c /T c >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  10. The electroweak phase transition in models with gauge singlets

    Energy Technology Data Exchange (ETDEWEB)

    Ahriche, A.

    2007-04-18

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition {omega}(T{sub c})/T{sub c} >or similar 1, where {omega} = (v{sup 2} + (x - x{sub 0}){sup 2}){sup (}1)/(2) and x(x{sub 0}) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v{sub c}/T{sub c} >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  11. Revisiting the Global Electroweak Fit of the Standard Model and Beyond with Gfitter

    CERN Document Server

    Flächer, Henning; Haller, J; Höcker, A; Mönig, K; Stelzer, J

    2009-01-01

    The global fit of the Standard Model to electroweak precision data, routinely performed by the LEP electroweak working group and others, demonstrated impressively the predictive power of electroweak unification and quantum loop corrections. We have revisited this fit in view of (i) the development of the new generic fitting package, Gfitter, allowing flexible and efficient model testing in high-energy physics, (ii) the insertion of constraints from direct Higgs searches at LEP and the Tevatron, and (iii) a more thorough statistical interpretation of the results. Gfitter is a modular fitting toolkit, which features predictive theoretical models as independent plugins, and a statistical analysis of the fit results using toy Monte Carlo techniques. The state-of-the-art electroweak Standard Model is fully implemented, as well as generic extensions to it. Theoretical uncertainties are explicitly included in the fit through scale parameters varying within given error ranges. This paper introduces the Gfitter projec...

  12. Electroweak phase transition in an extension of the standard model with scalar color octet

    International Nuclear Information System (INIS)

    Ham, S. W.; Shim, Seong-A; Oh, S. K.

    2010-01-01

    In an extension of the standard model with a scalar color octet, the possibility of the strongly first-order electroweak phase transition is studied by examining the finite-temperature effective Higgs potential at the one-loop level. It is found that there are wide regions in the parameter space that allow the strongly first-order electroweak phase transition, where the Higgs boson mass is larger than the experimental lower bound of 115 GeV, and the masses of the scalar color octet is around 200 GeV. The parameter regions may be explored at the LHC with respect to the electroweak phase transition.

  13. Electroweak precision observables in the minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Heinemeyer, S.; Hollik, W.; Weiglein, G.

    2006-01-01

    The current status of electroweak precision observables in the Minimal Supersymmetric Standard Model (MSSM) is reviewed. We focus in particular on the W boson mass, M W , the effective leptonic weak mixing angle, sin 2 θ eff , the anomalous magnetic moment of the muon (g-2) μ , and the lightest CP-even MSSM Higgs boson mass, m h . We summarize the current experimental situation and the status of the theoretical evaluations. An estimate of the current theoretical uncertainties from unknown higher-order corrections and from the experimental errors of the input parameters is given. We discuss future prospects for both the experimental accuracies and the precision of the theoretical predictions. Confronting the precision data with the theory predictions within the unconstrained MSSM and within specific SUSY-breaking scenarios, we analyse how well the data are described by the theory. The mSUGRA scenario with cosmological constraints yields a very good fit to the data, showing a clear preference for a relatively light mass scale of the SUSY particles. The constraints on the parameter space from the precision data are discussed, and it is shown that the prospective accuracy at the next generation of colliders will enhance the sensitivity of the precision tests very significantly

  14. Variations of little Higgs models and their electroweak constraints

    International Nuclear Information System (INIS)

    Csaki, Csaba; Hubisz, Jay; Meade, Patrick; Kribs, Graham D.; Terning, John

    2003-01-01

    We calculate the tree-level electroweak precision constraints on a wide class of little Higgs models including variations of the littlest Higgs SU(5)/SO(5), SU(6)/Sp(6), and SU(4) 4 /SU(3) 4 models. By performing a global fit to the precision data we find that for generic regions of the parameter space the bound on the symmetry breaking scale f is several TeV, where we have kept the normalization of f constant in the different models. For example, the 'minimal' implementation of SU(6)/Sp(6) is bounded by f>3.0 TeV throughout most of the parameter space, and SU(4) 4 /SU(3) 4 is bounded by f 2 ≡f 1 2 +f 2 2 >(4.2 TeV) 2 . In certain models, such as SU(4) 4 /SU(3) 4 , a large f does not directly imply a large amount of fine-tuning since the heavy-fermion masses that contribute to the Higgs boson mass can be lowered below f for a carefully chosen set of parameters. We also find that for certain models (or variations) there exist regions of parameter space in which the bound on f can be lowered into the range 1-2 TeV. These regions are typically characterized by a small mixing between heavy and standard model gauge bosons and a small (or vanishing) coupling between heavy U(1) gauge bosons and light fermions. Whether such a region of parameter space is natural or not is ultimately contingent on the UV completion

  15. Electroweak baryogenesis

    International Nuclear Information System (INIS)

    Trodden, Mark

    1999-01-01

    Contrary to naive cosmological expectations, all evidence suggests that the universe contains an abundance of matter over antimatter. This article reviews the currently popular scenario in which testable physics, present in the standard model of electroweak interactions and its modest extensions, is responsible for this fundamental cosmological datum. A pedagogical explanation of the motivations and physics behind electroweak baryogenesis is provided, and analytical approaches, numerical studies, up to date developments, and open questions in the field are also discussed. (c) 1999 The American Physical Society

  16. Electroweak chiral Lagrangian from a natural topcolor-assisted technicolor model

    International Nuclear Information System (INIS)

    Lang Junyi; Jiang Shaozhou; Wang Qing

    2009-01-01

    Based on previous studies on computing coefficients of the electroweak chiral Lagrangian from C. T. Hill's schematic topcolor-assisted technicolor model, we generalize the calculation to K. Lane's prototype natural topcolor-assisted technicolor model. We find that typical features of the model are qualitatively similar to those of Hill's, but Lane's model prefers a smaller technicolor group and the Z ' mass must be smaller than 400 GeV. Furthermore, the S parameter is around the order of +1, mainly due to the existence of three doublets of techniquarks. We obtain the values for all coefficients of the electroweak chiral Lagrangian up to the order p 4 . Apart from large negative four-fermion coupling values, the extended technicolor impacts on the electroweak chiral Lagrangian coefficients are small, since the techniquark self energy, which determines these coefficients, in general receives almost no influence from the extended technicolor induced four-fermion interactions except for its large momentum tail.

  17. Dark matter and electroweak phase transition in the mixed scalar dark matter model

    Science.gov (United States)

    Liu, Xuewen; Bian, Ligong

    2018-03-01

    We study the electroweak phase transition in the framework of the scalar singlet-doublet mixed dark matter model, in which the particle dark matter candidate is the lightest neutral Higgs that comprises the C P -even component of the inert doublet and a singlet scalar. The dark matter can be dominated by the inert doublet or singlet scalar depending on the mixing. We present several benchmark models to investigate the two situations after imposing several theoretical and experimental constraints. An additional singlet scalar and the inert doublet drive the electroweak phase transition to be strongly first order. A strong first-order electroweak phase transition and a viable dark matter candidate can be accomplished in two benchmark models simultaneously, for which a proper mass splitting among the neutral and charged Higgs masses is needed.

  18. Gauge Group Contraction of Electroweak Model and its Natural Energy Limits

    Directory of Open Access Journals (Sweden)

    Nikolai A. Gromov

    2015-09-01

    Full Text Available The low and higher energy limits of the Electroweak Model are obtained from first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. The very weak neutrino-matter interaction is explained by zero tending contraction parameter, which depends on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the Electroweak Model. At the infinite energy all particles lose masses, electroweak interactions become long-range and are mediated by the neutral currents. The limit model represents the development of the early Universe from the Big Bang up to the end of the first second.

  19. Natural limits of electroweak model as contraction of its gauge group

    International Nuclear Information System (INIS)

    Gromov, N A

    2015-01-01

    The low and higher energy limits of the electroweak model are obtained from the first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. Very weak neutrino–matter interactions are explained by zero tending contraction parameter, which depends on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the electroweak model. At the infinite energy all particles lose mass, electroweak interactions become long-range and are mediated by neutral currents. The limit model represents the development of the early Universe from the big bang up to the end of the first second. (paper)

  20. Prediction of the Cabibbo angle in the vector model for electroweak interactions

    International Nuclear Information System (INIS)

    Reifler, F.; Morris, R.

    1985-01-01

    In a recent paper we presented a vector model for the electroweak interactions which is similar to the Weinberg--Salam model but differs in the following features. (1) In the vector model all fermion wave functions are bispinors or equivalently isotropic Yang--Mills triplets (as opposed to a state vector composed of a spinor and bispinors in the Weinberg--Salam model). Particles are distinguished by their Higgs fields. (2) The vector model predicts that sin 2 theta/sub W/ = 1/4 , where theta/sub W/ is the Weinberg angle. (3) The vector model accounts for conservation of lepton number, electric charge, and baryon number. (4) In the vector model an antiparticle is characterized by opposite lepton number, electric charge, and baryon number; yet both particles and antiparticles propagate forward in time with positive energies. In this paper we extend the vector theory to include interactions between fermions and the gauge bosons mediating the electroweak force. We model the bosons as Yang--Mills fields with their own Higgs fields. We further propose a specific configuration of Higgs fields for the u,d,s, and c quarks. With these features, the model accounts for electroweak transitions of quarks and leptons and predicts that cos theta/sub C/ = 0.9744, where theta/sub C/ is the Cabibbo angle. We further show that the vector model accounts for the intrinsic parity of particles and antiparticles, and parity violations and CPT invariance for electroweak interactions

  1. Gfitter - Revisiting the global electroweak fit of the Standard Model and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Flaecher, H.; Hoecker, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Goebel, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Haller, J. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Moenig, K.; Stelzer, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-11-15

    The global fit of the Standard Model to electroweak precision data, routinely performed by the LEP electroweak working group and others, demonstrated impressively the predictive power of electroweak unification and quantum loop corrections. We have revisited this fit in view of (i) the development of the new generic fitting package, Gfitter, allowing flexible and efficient model testing in high-energy physics, (ii) the insertion of constraints from direct Higgs searches at LEP and the Tevatron, and (iii) a more thorough statistical interpretation of the results. Gfitter is a modular fitting toolkit, which features predictive theoretical models as independent plugins, and a statistical analysis of the fit results using toy Monte Carlo techniques. The state-of-the-art electroweak Standard Model is fully implemented, as well as generic extensions to it. Theoretical uncertainties are explicitly included in the fit through scale parameters varying within given error ranges. This paper introduces the Gfitter project, and presents state-of-the-art results for the global electroweak fit in the Standard Model, and for a model with an extended Higgs sector (2HDM). Numerical and graphical results for fits with and without including the constraints from the direct Higgs searches at LEP and Tevatron are given. Perspectives for future colliders are analysed and discussed. Including the direct Higgs searches, we find M{sub H}=116.4{sup +18.3}{sub -1.3} GeV, and the 2{sigma} and 3{sigma} allowed regions [114,145] GeV and [[113,168] and [180,225

  2. Semilocal and electroweak strings

    NARCIS (Netherlands)

    Achucarro, A; Vachaspati, T

    We review a class of non-topological defects in the standard electroweak model, and their implications. Starting with the semilocal string, which provides a counterexample to many well-known properties of topological vortices, we discuss electroweak strings and their stability with and without

  3. Gravitational waves from the first order electroweak phase transition in the Z3 symmetric singlet scalar model*

    Directory of Open Access Journals (Sweden)

    Matsui Toshinori

    2018-01-01

    Full Text Available Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.

  4. Substrantiation of the Weinberg angle value in 6-dimensional model of gravi-electroweak interactions

    International Nuclear Information System (INIS)

    Vladimirov, Yu.S.; Miroshnik, A.O.

    1988-01-01

    The 6-dimensional geometric theory combining the general relativity theory with the model of electroweak Weinberg-Salam interactions is suggested. The metric process of charged W ± -boson introduction when giving up the condition of metrics cylindricity according to additional coordinates is used. Mass mechanism of the Higgs type leads to correct relation between W ± - and Z-bozon masses. Total correspondence with the Weinberg-Salam model is shown. The value of the Weinberg angle is found theoretically

  5. Electroweak corrections

    International Nuclear Information System (INIS)

    Beenakker, W.J.P.

    1989-01-01

    The prospect of high accuracy measurements investigating the weak interactions, which are expected to take place at the electron-positron storage ring LEP at CERN and the linear collider SCL at SLAC, offers the possibility to study also the weak quantum effects. In order to distinguish if the measured weak quantum effects lie within the margins set by the standard model and those bearing traces of new physics one had to go beyond the lowest order and also include electroweak radiative corrections (EWRC) in theoretical calculations. These higher-order corrections also can offer the possibility of getting information about two particles present in the Glashow-Salam-Weinberg model (GSW), but not discovered up till now, the top quark and the Higgs boson. In ch. 2 the GSW standard model of electroweak interactions is described. In ch. 3 some special techniques are described for determination of integrals which are responsible for numerical instabilities caused by large canceling terms encountered in the calculation of EWRC effects, and methods necessary to get hold of the extensive algebra typical for EWRC. In ch. 4 various aspects related to EWRC effects are discussed, in particular the dependence of the unknown model parameters which are the masses of the top quark and the Higgs boson. The processes which are discussed are production of heavy fermions from electron-positron annihilation and those of the fermionic decay of the Z gauge boson. (H.W.). 106 refs.; 30 figs.; 6 tabs.; schemes

  6. Electroweak Results from CMS

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    We present recent CMS measurements on electroweak boson production including single, double, and triple boson final states. Electroweak processes span many orders of magnitude in production cross section. Measurements of high-rate processes provide stringent tests of the standard model. In addition, rare triboson proceses and final states produced through vector boson scattering are newly accessible with the large integrated luminosity provided by the LHC. If new physics lies just beyond the reach of the LHC, its effects may manifest as enhancements to the high energy kinematics in mulitboson production. We present limits on new physics signatures using an effective field theory which models these modifications as modifications of electroweak gauge couplings. Since electroweak measurements will continue to benefit from the increasing integrated luminosity provided by the LHC, the future prospects of electroweak physics are discussed.

  7. Electroweak monopoles and the electroweak phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Arunasalam, Suntharan; Kobakhidze, Archil [The University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia)

    2017-07-15

    We consider an isolated electroweak monopole solution within the Standard Model with a nonlinear Born-Infeld extension of the hypercharge gauge field. Monopole (and dyon) solutions in such an extension are regular and their masses are predicted to be proportional to the Born-Infeld mass parameter. We argue that cosmological production of electroweak monopoles may delay the electroweak phase transition and make it more strongly first order for monopole masses M >or similar 9.3 . 10{sup 3} TeV, while the nucleosynthesis constraints on the abundance of relic monopoles impose the bound M electroweak phase transition. (orig.)

  8. Precision electroweak tests of the minimal and flipped SU(5) supergravity models

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L.; Nanopoulos, D.V.; Park, G.T.; Pois, H.; Yuan, K. (Center for Theoretical Physics, Department of Physics, Texas A M University, College Station, Texas 77843-4242 (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, Texas 77381 (United States))

    1993-10-01

    We explore the one-loop electroweak radiative corrections in the minimal SU(5) and the no-scale flipped SU(5) supergravity models via explicit calculation of vacuum polarization contributions to the [epsilon][sub 1,2,3] parameters. Experimentally, [epsilon][sub 1,2,3] are obtained from a global fit to the CERN LEP observables, and [ital M][sub [ital W

  9. Electroweak vacuum stability in classically conformal B - L extension of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Das, Arindam; Okada, Nobuchika; Papapietro, Nathan [University of Alabama, Department of Physics and Astronomy, Alabama (United States)

    2017-02-15

    We consider the minimal U(1){sub B-L} extension of the standard model (SM) with the classically conformal invariance, where an anomaly-free U(1){sub B-L} gauge symmetry is introduced along with three generations of right-handed neutrinos and a U(1){sub B-L} Higgs field. Because of the classically conformal symmetry, all dimensional parameters are forbidden. The B - L gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, generating the mass for the U(1){sub B-L} gauge boson (Z{sup '} boson) and the right-handed neutrinos. Through a small negative coupling between the SM Higgs doublet and the B - L Higgs field, the negative mass term for the SM Higgs doublet is generated and the electroweak symmetry is broken. In this model context, we investigate the electroweak vacuum instability problem in the SM. It is well known that in the classically conformal U(1){sub B-L} extension of the SM, the electroweak vacuum remains unstable in the renormalization group analysis at the one-loop level. In this paper, we extend the analysis to the two-loop level, and perform parameter scans. We identify a parameter region which not only solve the vacuum instability problem, but also satisfy the recent ATLAS and CMS bounds from search for Z{sup '} boson resonance at the LHC Run-2. Considering self-energy corrections to the SM Higgs doublet through the right-handed neutrinos and the Z{sup '} boson, we derive the naturalness bound on the model parameters to realize the electroweak scale without fine-tunings. (orig.)

  10. Precision electroweak measurements

    International Nuclear Information System (INIS)

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro e + e - and p anti p colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct m t measurements. Using the world's electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs' mass are discussed

  11. CP violation for electroweak baryogenesis from mixing of standard model and heavy vector quarks

    International Nuclear Information System (INIS)

    McDonald, J.

    1996-01-01

    It is known that the CP violation in the minimal standard model is insufficient to explain the observed baryon asymmetry of the Universe in the context electroweak baryogenesis. In this paper we consider the possibility that the additional CP violation required could originate in the mixing of the standard model quarks and heavy vector quark pairs. We consider the baryon asymmetry in the context of the spontaneous baryogenesis scenario. It is shown that, in general, the CP-violating phase entering the mass matrix of the standard model and heavy vector quarks must be space dependent in order to produce a baryon asymmetry, suggesting that the additional CP violation must be spontaneous in nature. This is true for the case of the simplest models which mix the standard model and heavy vector quarks. We derive a charge potential term for the model by diagonalizing the quark mass matrix in the presence of the electroweak bubble wall, which turns out to be quite different from the fermionic hypercharge potentials usually considered in spontaneous baryogenesis models, and obtain the rate of baryon number generation within the wall. We find, for the particular example where the standard model quarks mix with weak-isodoublet heavy vector quarks via the expectation value of a gauge singlet scalar, that we can account for the observed baryon asymmetry with conservative estimates for the uncertain parameters of electroweak baryogenesis, provided that the heavy vector quarks are not heavier than a few hundred GeV and that the coupling of the standard model quarks to the heavy vector quarks and gauge singlet scalars is not much smaller than order of 1, corresponding to a mixing angle of the heavy vector quarks and standard model quarks not much smaller than order of 10 -1 . copyright 1996 The American Physical Society

  12. Continuons left-right symmetrical model of electroweak interactions

    International Nuclear Information System (INIS)

    Boyarkin, O.M.

    1993-01-01

    The left-right model (LR) is suggested which is characterized by the orientation angle of the SU(2) R generator in the group space. This model reproduces all the known LR models. The production processes of gauge bosons at electron-positron and hardon colliders are investigated

  13. On some dynamical properties of the subconstituent models of electroweak interactions

    International Nuclear Information System (INIS)

    Narison, S.

    1982-01-01

    We determine the order of magnitude value of the haplon vacuum condensate and the W-W' level spacing using spectral function sum rules for the electroweak constituent models of quantum haplo-dynamics (QHD). We also discuss some consequences of the QHD model with massive haplons. We conclude that the haplons of QHD which bind the W-boson are very similar to the u,d quarks of QCD. The models with massive haplons would imply the existence of exotic light pseudoscalar bosons. Some implications of these exotic particles for low-energy phenomenology are discussed

  14. Electroweak interactions

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1980-10-01

    A point of view of the electroweak interaction is presented. It begins phenomenologically and moves in stages toward the conventional gauge theory formalism containing elementary scalar Higgs-fields and then beyond. The purpose in so doing is that the success of the standard SU(2) x U(1) theory in accounting for low energy phenomena need not automatically imply success at high energies. It is deemed unlikely by most theorists that the predicted W +- or Z 0 does not exist or does not have the mass and/or couplings anticipated in the standard model. However, the odds that the standard predictions will work are not 100%. Therefore there is some reason to look at the subject as one would were he forced by a wrong experimental outcome - to go back to fundamentals and ascertain what is the minimal amount of theory necessary to account for the data

  15. A dual resonance model for high energy electroweak reactions

    International Nuclear Information System (INIS)

    Picard, Jean-Francois

    1995-01-01

    The aim of this work is to propose an original model for the weak interaction at high energy (about 1 TeV) that is inspired from resonance dual models established for hadron physics. The first chapter details the basis and assumptions of the standard model. The second chapter deals with various scenarios that go beyond the standard model and that involve a strong interaction and a perturbative approach to assess coupling. The third chapter is dedicated to the main teachings of hadron physics concerning resonances, the model of Regge poles and the concept of duality. We present our new model in the fourth chapter, we build a scenario in which standard fermions and the 3 massive gauge bosons would have a sub-structure alike that of hadrons. In order to give non-null values to the width of resonances we use the K matrix method, we describe this method in the last chapter and we apply it for the computation of the width of the Z 0 boson. Our model predicts a large spectra of states particularly with the 143-up-lets of ff-bar states. The K matrix method has allowed us to compute amplitudes for helicity, then to collapse them in amplitudes invariant with SU(2) and to project these amplitudes in partial waves of helicity. For most resonances partial widths are very low compared to their mass

  16. Automation of electroweak NLO corrections in general models

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Jean-Nicolas [Universitaet Wuerzburg (Germany)

    2016-07-01

    I discuss the automation of generation of scattering amplitudes in general quantum field theories at next-to-leading order in perturbation theory. The work is based on Recola, a highly efficient one-loop amplitude generator for the Standard Model, which I have extended so that it can deal with general quantum field theories. Internally, Recola computes off-shell currents and for new models new rules for off-shell currents emerge which are derived from the Feynman rules. My work relies on the UFO format which can be obtained by a suited model builder, e.g. FeynRules. I have developed tools to derive the necessary counterterm structures and to perform the renormalization within Recola in an automated way. I describe the procedure using the example of the two-Higgs-doublet model.

  17. A SU(3) x U(1) model for electroweak interactions

    International Nuclear Information System (INIS)

    Pisano, F.; Pleitez, V.

    1992-01-01

    We consider a gauge model based on a SU(3) vector U(1) symmetry in which the lepton number is violated explicitly by charged scalar and gauge boson, including a vector field with double electric charge. (author)

  18. Stability of the electroweak ground state in the Standard Model and its extensions

    International Nuclear Information System (INIS)

    Di Luzio, Luca; Isidori, Gino; Ridolfi, Giovanni

    2016-01-01

    We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  19. Stability of the electroweak ground state in the Standard Model and its extensions

    Energy Technology Data Exchange (ETDEWEB)

    Di Luzio, Luca, E-mail: diluzio@ge.infn.it [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Isidori, Gino [Department of Physics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy)

    2016-02-10

    We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  20. Stability of the electroweak ground state in the Standard Model and its extensions

    Directory of Open Access Journals (Sweden)

    Luca Di Luzio

    2016-02-01

    Full Text Available We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  1. The Sommerfeld enhancement in the scotogenic model with large electroweak scalar multiplets

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Talal Ahmed [Department of Physics, University of Dhaka, P.O. Box 1000, Dhaka (Bangladesh); Nasri, Salah, E-mail: talal@du.ac.bd, E-mail: snasri@uaeu.ac.ae [Department of Physics, UAE University, P.O. Box 17551, Al-Ain (United Arab Emirates)

    2017-01-01

    We investigate the Sommerfeld enhancement (SE) in the generalized scotogenic model with large electroweak multiplets. We focus on scalar dark matter (DM) candidate of the model and compare DM annihilation cross sections to WW , ZZ , γγ and γ Z at present day in the galactic halo for scalar doublet and its immediate generalization, the quartet in their respective viable regions of parameter space. We find that larger multiplet has sizable Sommerfeld enhanced annihilation cross section compared to the doublet and because of that it is more likely to be constrained by the current H.E.S.S. results and future CTA sensitivity limits.

  2. Developments in standard model: electroweak theory/phenomenology

    International Nuclear Information System (INIS)

    Deshpande, N.G.

    1986-01-01

    The authors review new developments in four topics. Higgs detection D in the intermediate mass range (100 GeV 2M/sub W/) is discussed in detail. It is found that the backgrounds are a serious problem in hadronic colliders except for purely leptonic signals, which unfortunately have low event rates. Recent work on topological solutions to standard model, with new states in TeV range are discussed. Large rate of BB vector production at SSC may allow determination of rare modes of B decay. The fourth topic concerns the feasibility of detecting Horizontal gauge bosons at SSC. 17 references, 9 figures

  3. Tadpole-induced electroweak symmetry breaking and pNGB Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Harnik, Roni; Howe, Kiel; Kearney, John [Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2017-03-22

    We investigate induced electroweak symmetry breaking (EWSB) in models in which the Higgs is a pseudo-Nambu-Goldstone boson (pNGB). In pNGB Higgs models, Higgs properties and precision electroweak measurements imply a hierarchy between the EWSB and global symmetry-breaking scales, v{sub H}≪f{sub H}. When the pNGB potential is generated radiatively, this hierarchy requires fine-tuning to a degree of at least ∼v{sub H}{sup 2}/f{sub H}{sup 2}. We show that if Higgs EWSB is induced by a tadpole arising from an auxiliary sector at scale f{sub Σ}≪v{sub H}, this tuning is significantly ameliorated or can even be removed. We present explicit examples both in Composite Higgs models based on SO(5)/SO(4) and in Twin Higgs models. For the Twin case, the result is a fully natural model with f{sub H}∼1 TeV and the lightest colored top partners at 2 TeV. These models also have an appealing mechanism to generate the scales of the auxiliary sector and Higgs EWSB directly from the scale f{sub H}, with a natural hierarchy f{sub Σ}≪v{sub H}≪f{sub H}∼TeV. The framework predicts modified Higgs coupling as well as new Higgs and vector states at LHC13.

  4. Electroweak evolution equations

    International Nuclear Information System (INIS)

    Ciafaloni, Paolo; Comelli, Denis

    2005-01-01

    Enlarging a previous analysis, where only fermions and transverse gauge bosons were taken into account, we write down infrared-collinear evolution equations for the Standard Model of electroweak interactions computing the full set of splitting functions. Due to the presence of double logs which are characteristic of electroweak interactions (Bloch-Nordsieck violation), new infrared singular splitting functions have to be introduced. We also include corrections related to the third generation Yukawa couplings

  5. Electroweak penguins at LHCb

    CERN Document Server

    AUTHOR|(CDS)2073177

    2016-01-01

    Electroweak penguin decays are flavour-changing neutral current processes, and are highly suppressed in the Stan- dard Model. They can only proceed via loop diagrams. Such decays may receive contributions from New Physics and change their decay behaviours like decay rate and angular distribution. Studying the properties of these decays thus provides a powerful method to probe for New Physics. In this contribution the most recent LHCb results on electroweak penguin decays are reported.

  6. Electroweak penguins at LHCb

    Science.gov (United States)

    He, Jibo; LHCb Collaboration

    2016-04-01

    Electroweak penguin decays are flavour-changing neutral current processes, and are highly suppressed in the Standard Model. They can only proceed via loop diagrams. Such decays may receive contributions from New Physics and change their decay behaviours like decay rate and angular distribution. Studying the properties of these decays thus provides a powerful method to probe for New Physics. In this contribution the most recent LHCb results on electroweak penguin decays are reported.

  7. Electroweak penguin decays as probes of physics beyond the Standard Model

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Electroweak penguin decays are sensitive to new, virtual particles and therefore offer a unique window on any physics beyond the Standard Model. In the B sector, penguin decays such as B0->K*0mu+mu- give a number of measurable quantities which can be precisely predicted by theory. The LHCb experiment has made the world's most precise measurements of this and several other related decays. These measurements give constraints on any new physics phenomena contributing to the relevant loop processes at mass scales well in excess of those that can be accessed by direct searches. The recent experimental progress of such measurements will be presented.

  8. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    Directory of Open Access Journals (Sweden)

    Suntharan Arunasalam

    2018-01-01

    Full Text Available We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T≲132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10−8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  9. Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking

    Directory of Open Access Journals (Sweden)

    Katsuya Hashino

    2016-01-01

    Full Text Available Classical scale invariance (CSI may be one of the solutions for the hierarchy problem. Realistic models for electroweak symmetry breaking based on CSI require extended scalar sectors without mass terms, and the electroweak symmetry is broken dynamically at the quantum level by the Coleman–Weinberg mechanism. We discuss discriminative features of these models. First, using the experimental value of the mass of the discovered Higgs boson h(125, we obtain an upper bound on the mass of the lightest additional scalar boson (≃543 GeV, which does not depend on its isospin and hypercharge. Second, a discriminative prediction on the Higgs-photon–photon coupling is given as a function of the number of charged scalar bosons, by which we can narrow down possible models using current and future data for the di-photon decay of h(125. Finally, for the triple Higgs boson coupling a large deviation (∼+70% from the SM prediction is universally predicted, which is independent of masses, quantum numbers and even the number of additional scalars. These models based on CSI can be well tested at LHC Run II and at future lepton colliders.

  10. Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Pich, A. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, I. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Departamento de Ciencias Físicas, Matemáticas y de la Computación,Universidad CEU Cardenal Herrera,c/ Sant Bartomeu 55, E-46115 Alfara del Patriarca, València (Spain); Sanz-Ciller, J.J. [Departamento de Física Teórica, Instituto de Física Teórica,Universidad Autónoma de Madrid - CSIC,c/ Nicolás Cabrera 13-15, E-28049 Cantoblanco, Madrid (Spain)

    2014-01-28

    Using a general effective Lagrangian implementing the chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, we present a one-loop calculation of the oblique S and T parameters within electroweak strongly-coupled models with a light scalar. Imposing a proper ultraviolet behaviour, we determine S and T at next-to-leading order in terms of a few resonance parameters. The constraints from the global fit to electroweak precision data force the massive vector and axial-vector states to be heavy, with masses above the TeV scale, and suggest that the W{sup +}W{sup −} and ZZ couplings of the Higgs-like scalar should be close to the Standard Model value. Our findings are generic, since they only rely on soft requirements on the short-distance properties of the underlying strongly-coupled theory, which are widely satisfied in more specific scenarios.

  11. 2004-2005 Academic Training Programme: Electroweak Theory and the Standard Model

    CERN Multimedia

    Françoise Benz

    2004-01-01

    6, 7, 8, 9 and 10 December LECTURE SERIES 6, 7, 8, 9, 10 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 on 6, 7, 8, 10 December, TH Auditorium, bldg. 4 3-006 on 9 December Electroweak Theory and the Standard Model R. BARBIERI / CERN-PH-TH There is a natural splitting in four sectors of the theory of the ElectroWeak (EW) Interactions, at pretty different levels of development /test. Accordingly, the 5 lectures are organized as follows, with an eye to the future: Lecture 1: The basic structure of the theory; Lecture 2: The gauge sector; Lecture 3: The flavor sector; Lecture 4: The neutrino sector; Lecture 5: The EW symmetry breaking sector. Transparencies available at: http://agenda.cern.ch/fullAgenda.php?ida=a042577 ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can ...

  12. 2004-2005 Academic Training Programme: Electroweak Theory and the Standard Model

    CERN Multimedia

    Françoise Benz

    2004-01-01

    6, 7, 8, 9 and 10 December LECTURE SERIES 6, 7, 8, 9, 10 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 on 6, 7, 8, 10 December, TH Auditorium, bldg. 4 3-006 on 9 December Electroweak Theory and the Standard Model R. BARBIERI / CERN-PH-TH There is a natural splitting in four sectors of the theory of the ElectroWeak (EW) Interactions, at pretty different levels of development /test. Accordingly, the 5 lectures are organized as follows, with an eye to the future: Lecture 1: The basic structure of the theory; Lecture 2: The gauge sector; Lecture 3: The flavor sector; Lecture 4: The neutrino sector; Lecture 5: The EW symmetry breaking sector. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch Si vous désirez participer à l'un des cours suivants, veuillez en discuter avec votre superviseur et vous inscrire électroniquement en direct depuis les pages de description des cours dans le Web que vous trouvez &ag...

  13. A model of neutrino and Higgs physics at the electroweak scale

    International Nuclear Information System (INIS)

    Aranda, Alfredo; Blanno, Omar; Diaz-Cruz, J. Lorenzo

    2008-01-01

    We present and explore the Higgs physics of a model that in addition to the Standard Model fields includes a lepton number violating singlet scalar field. Based on the fact that the only experimental data we have so far for physics beyond the Standard Model is that of neutrino physics, we impose a constraint for any addition not to introduce new higher scales. As such, we introduce right-handed neutrinos with an electroweak scale mass. We study the Higgs decay H→νν and show that it leads to different signatures compared to those in the Standard Model, making it possible to detect them and to probe the nature of their couplings

  14. Enhancement of neutral tc transitions in the model of dynamical breaking of electroweak symmetry

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Osipov, M.Yu.

    1999-01-01

    The problem of possible deviations from the standard model is considered in the framework of a variant of dynamical electroweak symmetry breaking. It comes clear, that the parameters of the theory, being obtained earlier and describing deviations from standard model in Z → b-barb decay, are also consistent with the existence of a nontrivial solution for vertex t-bar (Z, γ)c. The occurrence of this solution leads to a significant enhancement in neutral flavor changing transition t → c. The intensity of this transition is connected with the c-quark mass, that leads to estimates of probabilities of exotic decays t → c(Z, γ) and of the cross section of a single t-quark production in process e + e - → tc-bar, which threshold is already overcome at LEP2. The model is shown to be consistent with the totality of the existing data, the predictions allow its unambiguous check [ru

  15. An introduction to relativistic processes and the standard model of electroweak interactions

    CERN Document Server

    Becchi, Carlo Maria

    2006-01-01

    These notes are designed as a guide-line for a course in Elementary Particle Physics for undergraduate students. The purpose is providing a rigorous and self-contained presentation of the theoretical framework and of the phenomenological aspects of the physics of interactions among fundamental constituents of matter. The first part of the volume is devoted to the description of scattering processes in the context of relativistic quantum field theory. The use of the semi-classical approximation allows us to illustrate the relevant computation techniques in a reasonably small amount of space. Our approach to relativistic processes is original in many respects. The second part contains a detailed description of the construction of the standard model of electroweak interactions, with special attention to the mechanism of particle mass generation. The extension of the standard model to include neutrino masses is also described. We have included a number of detailed computations of cross sections and decay rates of...

  16. Electroweak radiative corrections in the SU(2) x U(1) standard model

    International Nuclear Information System (INIS)

    Hollik, W.

    1986-01-01

    This paper contains a discussion of the 1-loop renormalization of the standard model and applications of the radiative corrections to fermion processes. Thereby we restrict the discussion to leptonic processes since these allow the cleanest access to the more subtle parts of the theory avoiding theoretical uncertainties as far as possible. Actual measurements of the W +- ,Z masses and of sin 2 θ W already indicate the presence of higher order effects in electroweak processes between fermions. More accurate measurements in the near future colliders LEP and SLC will allow to test the standard model beyond the tree level. At the 1-loop level a big amount of work has already been done with a satisfactory agreement between the individual calculations for the standard processes: μ decays, ν-scattering, and e + e → μ + μ - . 38 refs

  17. Explaining the Higgs decays at the LHC with an extended electroweak model

    International Nuclear Information System (INIS)

    Alves, Alexandre; Ramirez Barreto, E.; Dias, A.G.; Pires, S.C.A. de; Rodrigues da Silva, P.S.; Queiroz, Farinaldo S.

    2013-01-01

    We show that the observed enhancement in the diphoton decays of the recently discovered new boson at the LHC, which we assume to be a Higgs boson, can be naturally explained by a new doublet of charged vector bosons from extended electroweak models with SU(3) C x SU(3) L x U(1) X symmetry. These models are also rather economical in explaining the measured signal strengths, within the current experimental errors, demanding fewer assumptions and less parameters tuning. Our results show a good agreement between the theoretical expected sensitivity to a 126-125 GeV Higgs boson, and the experimental significance observed in the diphoton channel at the 8 TeV LHC. Effects of an invisible decay channel for the Higgs boson are also taken into account, in order to anticipate a possible confirmation of deficits in the branching ratios into ZZ * , WW * , bottom quarks, and tau leptons. (orig.)

  18. VBFNLO. A patron level Monte Carlo for processes with electroweak bosons. Manual for Version 2.5.0

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, K.; Bellm, J. [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. fuer Theoretische Physik; Bozzi, G. [Milano-Bicocca Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Milano-Bicocca (IT)] (and others)

    2011-08-15

    VBFNLO is a flexible parton level Monte Carlo program for the simulation of vector boson fusion, double and triple vector boson production in hadronic collisions at next-to-leading order (NLO) in the strong coupling constant, as well as Higgs boson plus two jet production via gluon fusion at the one-loop level. In the new release - Version 2.5.0 - several new processes have been added at NLO QCD: vector boson fusion production of a Higgs boson plus a photon, vector boson fusion production of a photon, W{gamma} and WZ production plus a hadronic jet and the triboson production processes WW{gamma}, ZZ{gamma}, WZ{gamma}, W{gamma}{gamma}, Z{gamma}{gamma} and {gamma}{gamma}{gamma}. The code has been extended to run in the Minimal Supersymmetric Standard Model (MSSM), and electroweak corrections to Higgs boson production via weak boson fusion have been included. Anomalous gauge boson couplings can be used in new processes and the Three-Site Higgsless model has been implemented for several processes. The simulation of Higgs boson production via gluon fusion has been improved. (orig.)

  19. Fundamental composite electroweak dynamics

    DEFF Research Database (Denmark)

    Arbey, Alexandre; Cacciapaglia, Giacomo; Cai, Haiying

    2017-01-01

    Using the recent joint results from the ATLAS and CMS collaborations on the Higgs boson, we determine the current status of composite electroweak dynamics models based on the expected scalar sector. Our analysis can be used as a minimal template for a wider class of models between the two limitin...... space at the effective Lagrangian level. We show that a wide class of models of fundamental composite electroweak dynamics are still compatible with the present constraints. The results are relevant for the ongoing and future searches at the Large Hadron Collider....

  20. Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP-violation

    International Nuclear Information System (INIS)

    Jarlskog, C.

    1985-06-01

    The structure of the quark mass matrices in the Standard Electroweak Model is investigated. The commutator of the quark mass matrices is found to provide a conventional independent measure of CP-violation. The question of maximal CP-violation is discussed. The present experimental data indicate that CP is nowhere maximally violated. (author)

  1. Electroweak symmetry breaking and collider signatures in the next-to-minimal composite Higgs model

    Science.gov (United States)

    Niehoff, Christoph; Stangl, Peter; Straub, David M.

    2017-04-01

    We conduct a detailed numerical analysis of the composite pseudo-Nambu-Goldstone Higgs model based on the next-to-minimal coset SO(6)/SO(5) ≅ SU(4)/Sp(4), featuring an additional SM singlet scalar in the spectrum, which we allow to mix with the Higgs boson. We identify regions in parameter space compatible with all current exper-imental constraints, including radiative electroweak symmetry breaking, flavour physics, and direct searches at colliders. We find the additional scalar, with a mass predicted to be below a TeV, to be virtually unconstrained by current LHC data, but potentially in reach of run 2 searches. Promising indirect searches include rare semi-leptonic B decays, CP violation in B s mixing, and the electric dipole moment of the neutron.

  2. A bag model calculation of the electroweak s → dγ loop

    International Nuclear Information System (INIS)

    Eeg, J.O.; Ruud, J.Aa.

    1990-10-01

    The CP-conservering electroweak transitions s → dγ have been considered. In order to include confinement effects below the charm scale, the loop calculations within the bag model were performed. According to the calculations, confinement effects are rather important and give amplitudes three orders of magnitude larger than those obtained from the free quark loop, which is ∼eG F m c 2 /M W 2 . Moreover, the amplitude is of the same order of magnitude as the perturbative two-loop amplitude ∼eG F α s ln(m c /μ). For the decay mode Ω - → γΞ - , a branching ratio 4.4 x 10 -5 was obtained. Other radiative decays of strange baryons are known to be dominated by pole diagrams. 14 refs., 1 fig

  3. Electroweak symmetry breaking and collider signatures in the next-to-minimal composite Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Niehoff, Christoph; Stangl, Peter; Straub, David M. [Excellence Cluster Universe, TUM,Boltzmannstr. 2, 85748 Garching (Germany)

    2017-04-20

    We conduct a detailed numerical analysis of the composite pseudo-Nambu-Goldstone Higgs model based on the next-to-minimal coset SO(6)/SO(5)≅SU(4)/Sp(4), featuring an additional SM singlet scalar in the spectrum, which we allow to mix with the Higgs boson. We identify regions in parameter space compatible with all current experimental constraints, including radiative electroweak symmetry breaking, flavour physics, and direct searches at colliders. We find the additional scalar, with a mass predicted to be below a TeV, to be virtually unconstrained by current LHC data, but potentially in reach of run 2 searches. Promising indirect searches include rare semi-leptonic B decays, C P violation in B{sub s} mixing, and the electric dipole moment of the neutron.

  4. State of electroweak interactions

    International Nuclear Information System (INIS)

    Lane, K.

    1984-01-01

    I assess what we know and what we do not know about the electroweak interactions. In particular, I argue that existing data on the electroweak parameters rho, sin 2 theta/sub w/ and G/sub F/ and on the recently discovered W +- and Z 0 allow us reasonably to conclude that: (1) the W +- and Z 0 truly are the elementary massive gauge bosons of SU(2) x U(1) and not the composite bosons of a new strong interaction, and (2) the electroweak scalar sector consists of weak doublets only. The most important thing we do not know is everything else about the electroweak scalar sector. In the hope of soon shedding light on this issue, a new method of searching for electroweak scalars in existing p-barp colliders is proposed. The basis of this method is that the branching ratio of W +- to decay to a charged plus a neutral scalar (expected in non-minimal SU(2) x U(1) models) can be as large as 1-2%, with detectable rates up to scalar masses of approx.35 GeV

  5. A composite model of electroweak interactions and its manifestation at current collider energies

    International Nuclear Information System (INIS)

    Craigie, N.S.

    1984-05-01

    We present a preon model based on an ASF confining gauge theory, which has as a low energy effective Lagrangian, an electroweak gauge theory very close to the standard model. However, it is predicted that there are some specific and necessary deviations from the Glashow-Salam-Weinberg model. In this preon model, we assume a spontaneous breakdown (or an induced breakdown) of the left-right symmetry, which prevents spin-one composites made up of right-handed fermions propagating well below the composite scale of order 1 TeV. A consequence of this assumption is shown to be the existence of a pion-like scalar, in addition to the Higgs particle of the standard model. Such a particle - it is further claimed - can give rise to single photon events, through a large branching ratio into the channel π → Z γ or if lighter than the Z through Z → π(→νν-bar) + γ. The model also predicts a signal very similar to the associated gluino production one of supersymmetric grand unified theories. (author)

  6. Electroweak chiral Lagrangian from the topcolor-assisted technicolor model with nontrivial technicolor fermion condensation and walking

    International Nuclear Information System (INIS)

    Ge Fengjun; Jiang Shaozhou; Wang Qing

    2011-01-01

    The electroweak chiral Lagrangian for the topcolor-assisted technicolor model proposed by K. Lane, which uses nontrivial patterns of techniquark condensation and walking, was investigated in this study. We found that the features of the model are qualitatively similar to those of Lane's previous natural topcolor-assisted technicolor prototype model, but there is no limit on the upper bound of the Z ' mass. We discuss the phase structure and possible walking behavior of the model. We obtained the values of all coefficients of the electroweak chiral Lagrangian up to an order of p 4 . We show that although the walking effect reduces the S parameter to half its original value, it maintains an order of 2. Moreover, a special hypercharge arrangement is needed to achieve further reductions in its value.

  7. Z → bb-bar probability and asymmetry in a model of dynamical electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Osipov, M.Yu.

    1997-01-01

    The deviations from the standard model in the probability of Z → bb-bar decay and in the forward-backward asymmetry in the reaction e + e - → bb-bar are studied in the framework of the model of dynamical electroweak symmetry breaking, the basic point of which is the existence of a triple anomalous W-boson vertex in a region of momenta restricted by a cutoff. A set of equations for additional terms in the W b t-bar vertex is obtained and its solution to the process Z → bb-bar is applied. It is shown that it is possible to obtain a consistent description of both deviations, which is quite nontrivial because these effects are not simply correlated. The necessary value of the anomalous W interaction coupling, λ = -0.22 ± 0.01, is consistent with existing limitations and leads to definite predictions, e.g., for pair W production in e + e - collisions at LEP 200

  8. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  9. The complete electroweak effect and perfection of Bhabha scattering in the standard model

    International Nuclear Information System (INIS)

    Shi Chengye; Fang Zhenyun; Chen Xuewen

    2013-01-01

    In this paper, we make a close and systematic research on Bhabha scattering in the electroweak unification of the standard model (SM). In concrete research methods we make the quantum field theory of perturbation theory in a new computing mode -renormalization chain propagation theory, and do an application to the Bhabha scattering calculation research. In SM, in order to consider complete electrical weak effect about Bhabha scattering internal process, we seek out the complex renormalization mixing-loop chain propagators constituted by photon y and intermediate boson Z 0 , and then calculate the Bhabha scattering cross section about this kind of propagator by transfer complete electrical weak reaction. Within the observed errors, the calculation results are in good agreement with the experimental values. Also, the main research results not only confirm the action of the particle reaction accuracy by SM theory for describing the electrical weak effect; but also suggests the SM theory may be a per ect theory and that the theory prophecy's Higgs 'mysterious particles' (which is of particular concern in the field of academic) have the large possibility to be eventually found. (authors)

  10. Tests of the electroweak standard model and measurement of the weak mixing angle with the ATLAS detector

    CERN Document Server

    Goebel, Martin; Mnich, Joachim; Schleper, Peter

    In this thesis the global Standard Model (SM) fit to the electroweak precision observables is revisited with respect to newest experimental results. Various consistency checks are performed showing no significant deviation from the SM. The Higgs boson mass is estimated by the electroweak fit to be MH = 94+30−24 GeV without any information from direct Higgs searches at LEP, Tevatron, and the LHC and the result is MH = 125+8−10 GeV when including the direct Higgs mass constraints. The strong coupling constant is extracted at fourth perturbative order as αs(M2Z) = 0.1194 ± 0.0028 (exp) ± 0.0001 (theo). From the fit including the direct Higgs constraints the effective weak mixing angle is determined indirectly to be sin2 θleff = 0.23147+0.00012−0.00010. For the W mass the value of MW = 80.360+0.012−0.011 GeV is obtained indirectly from the fit including the direct Higgs constraints. The electroweak precision data is also exploited to constrain new physics models by using the concept of oblique paramet...

  11. Flavor physics in the Randall-Sundrum model I. Theoretical setup and electroweak precision tests

    International Nuclear Information System (INIS)

    Casagrande, S.; Goertz, F.; Haisch, U.; Neubert, M.; Pfoh, T.

    2008-01-01

    A complete discussion of tree-level flavor-changing effects in the Randall-Sundrum (RS) model with brane-localized Higgs sector and bulk gauge and matter fields is presented. The bulk equations of motion for the gauge and fermion fields, supplemented by boundary conditions taking into account the couplings to the Higgs sector, are solved exactly. For gauge fields the Kaluza-Klein (KK) decomposition is performed in a covariant R ξ gauge. For fermions the mixing between different generations is included in a completely general way. The hierarchies observed in the fermion spectrum and the quark mixing matrix are explained naturally in terms of anarchic five-dimensional Yukawa matrices and wave-function overlap integrals. Detailed studies of the flavor-changing couplings of the Higgs boson and of gauge bosons and their KK excitations are performed, including in particular the couplings of the standard W ± and Z 0 bosons. A careful analysis of electroweak precision observables including the S and T parameters and the Z 0 b b-bar couplings shows that the simplest RS model containing only Standard Model particles and their KK excitations is consistent with all experimental bounds for a KK scale as low as a few TeV, if one allows for a heavy Higgs boson (m h ∼ ± bosons, tree-level flavor-changing neutral current couplings of the Z 0 and Higgs bosons, the rare decays t → c(u)Z 0 and t → c(u)h, and the flavor mixing among KK fermions. The results obtained in this work form the basis for general calculations of flavor-changing processes in the RS model and its extensions.

  12. Electroweak Physics at the LHC

    CERN Document Server

    Sommer, Philip; The ATLAS collaboration

    2018-01-01

    With the large integrated luminosities recorded at the LHC and the excellent understanding of the LHC detectors, it is possible to measure electroweak observables to the highest precision. A review of the measurement of the $W$ boson mass by the ATLAS Collaboration as well as a new measurement of the electroweak mixing angle with the CMS detector are presented. Special emphasis is put on a discussion of the modelling uncertainties and the potential of the latest low-$\\mu$ runs, recorded at the end of 2017 by both collaboration. In addition, the latest measurements of multi-boson final states as well as the electroweak production of single gauge bosons at 13 TeV are summarised. The study of these processes can be used to constrain anomalous gauge couplings in an effective field theory approach, allowing to bridge tests of the electroweak sector of the Standard Models also to Higgs boson production.

  13. Electroweak Physics at the LHC

    CERN Document Server

    Sommer, Philip; The ATLAS collaboration

    2018-01-01

    With the high integrated luminosities recorded at the LHC and the very good understanding of the LHC detectors, it is possible to measure electroweak observables to the highest precision. In this talk, we review the measurement of the W boson mass by the ATLAS Collaboration as well as the new measurement of the electroweak mixing angle with the CMS detector. Special focus is drawn on a discussion of the modeling uncertainties and the physics potential of the latest low-mu runs, recorded at the end of 2017 by both collaboration. In addition, we will present the latest measurements of multi-boson final states as well as the electroweak production of single gauge bosons at 13 TeV. The study of these processes can be used to constrain anomalous gauge couplings in an effective field theory approach, allowing to bridge tests of the electroweak sector of the Standard Models also to the Higgs-boson production.

  14. A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model

    DEFF Research Database (Denmark)

    Hansen, Jørgen Beck

    2001-01-01

    This note presents a combination of published and preliminary electroweak results from the four LEP collaborations and the SLD collaboration which were prepared for the 2000 summer conferences. Averages from Z0 resonance results are derived for hadronic and leptonic cross sections, the leptonic f...

  15. Baryogenesis at the electroweak scale

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, A [Saha Inst. of Nuclear Physics, Calcutta (India); Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1995-10-01

    The generation of the baryon asymmetry of the universe is considered in the standard model of the electroweak theory with simple extensions of the Higgs sector. The propagation of quarks of masses up to about 5 GeV are considered, taking into account their markedly different dispersion relations due to propagation through the hot electroweak plasma. It is shown that the contribution of the b quark to the baryon asymmetry can be comparable to that for the t quark considered earlier. (orig.)

  16. Baryogenesis at the electroweak scale

    International Nuclear Information System (INIS)

    Kundu, A.; Mallik, S.

    1995-01-01

    The generation of the baryon asymmetry of the universe is considered in the standard model of the electroweak theory with simple extensions of the Higgs sector. The propagation of quarks of masses up to about 5 GeV are considered, taking into account their markedly different dispersion relations due to propagation through the hot electroweak plasma. It is shown that the contribution of the b quark to the baryon asymmetry can be comparable to that for the t quark considered earlier. (orig.)

  17. Quantum transport and electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Konstandin, Thomas

    2013-02-15

    We review the mechanism of electroweak baryogenesis. The main focus of the review lies on the development of quantum transport equations from first principles in the Kadanoff-Baym framework. We emphasize the importance of the semi-classical force that leads to reliable predictions in most cases. Besides, we discuss the status of electroweak baryogenesis in the light of recent electric dipole moment probes and collider experiments in a variety of models.

  18. Quantum transport and electroweak baryogenesis

    International Nuclear Information System (INIS)

    Konstandin, Thomas

    2013-02-01

    We review the mechanism of electroweak baryogenesis. The main focus of the review lies on the development of quantum transport equations from first principles in the Kadanoff-Baym framework. We emphasize the importance of the semi-classical force that leads to reliable predictions in most cases. Besides, we discuss the status of electroweak baryogenesis in the light of recent electric dipole moment probes and collider experiments in a variety of models.

  19. Electroweak physics at LEP2

    CERN Document Server

    Hemingway, Richard J

    2002-01-01

    On 2 November 2000 the LEP machine was finally closed after 12 years of glorious running. With the 4 operating detectors, ALEPH, DELPHI, L3, and OPAL, an enormous wealth of new data at the highest centre- of-mass energies has been recorded. These lectures will focus on aspects of electroweak physics within the energy span of LEP2, namely 130-209 GeV. All current data are in very good agreement with the electroweak standard model. (50 refs).

  20. Dynamical breakdown of the electroweak gauge symmetry

    International Nuclear Information System (INIS)

    Khosek, I.

    1983-01-01

    Fermion and gauge boson masses are calculated dynamically in the higgs-less Galshow-Weinberg-Salam model supplemented with a heavy neutral vector boson C. Fermion masses are determined by C-hypercharges of the left- and right-handed fermion fields. The W and Z-boson masses are related to the ferion masses and to the calculated fermion-would-be-Goldstone boson coupling constants by sum rules. Small deviation from the canonical relation msub(W)sup(2)/msub(Z)sup(2)cossup(2)thetasub(W)=1 is predicted. Fermion mixing is briefly discussed. Its necessary consequence is that the physical neutral current coupled to the C boson is nonuniversal and flavour changing

  1. Tests of the electroweak standard model and measurement of the weak mixing angle with the ATLAS detector

    International Nuclear Information System (INIS)

    Goebel, M.

    2011-09-01

    In this thesis the global Standard Model (SM) fit to the electroweak precision observables is revisted with respect to newest experimental results. Various consistency checks are performed showing no significant deviation from the SM. The Higgs boson mass is estimated by the electroweak fit to be M H =94 -24 +30 GeV without any information from direct Higgs searches at LEP, Tevatron, and the LHC and the result is M H =125 -10 +8 GeV when including the direct Higgs mass constraints. The strong coupling constant is extracted at fourth perturbative order as α s (M Z 2 )=0.1194±0.0028(exp)±0.0001 (theo). From the fit including the direct Higgs constraints the effective weak mixing angle is determined indirectly to be sin 2 θ l eff =0.23147 -0.00010 +0.00012 . For the W mass the value of M W =80.360 -0.011 +0.012 GeV is obtained indirectly from the fit including the direct Higgs constraints. The electroweak precision data is also exploited to constrain new physics models by using the concept of oblique parameters. In this thesis the following models are investigated: models with a sequential fourth fermion generation, the inert-Higgs doublet model, the littlest Higgs model with T-parity conservation, and models with large extra dimensions. In contrast to the SM, in these models heavy Higgs bosons are in agreement with the electroweak precision data. The forward-backward asymmetry as a function of the invariant mass is measured for pp→ Z/γ * →e + e - events collected with the ATLAS detector at the LHC. The data taken in 2010 at a center-of-mass energy of √(s)=7 TeV corresponding to an integrated luminosity of 37.4 pb -1 is analyzed. The measured forward-backward asymmetry is in agreement with the SM expectation. From the measured forward-backward asymmetry the effective weak mixing angle is extracted as sin 2 θ l eff =0.2204±.0071(stat) -0.0044 +0.0039 (syst). The impact of unparticles and large extra dimensions on the forward-backward asymmetry at large

  2. Tests of the electroweak standard model and measurement of the weak mixing angle with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, M.

    2011-09-15

    In this thesis the global Standard Model (SM) fit to the electroweak precision observables is revisted with respect to newest experimental results. Various consistency checks are performed showing no significant deviation from the SM. The Higgs boson mass is estimated by the electroweak fit to be M{sub H}=94{sub -24}{sup +30} GeV without any information from direct Higgs searches at LEP, Tevatron, and the LHC and the result is M{sub H}=125{sub -10}{sup +8} GeV when including the direct Higgs mass constraints. The strong coupling constant is extracted at fourth perturbative order as {alpha}{sub s}(M{sub Z}{sup 2})=0.1194{+-}0.0028(exp){+-}0.0001 (theo). From the fit including the direct Higgs constraints the effective weak mixing angle is determined indirectly to be sin{sup 2} {theta}{sup l}{sub eff}=0.23147{sub -0.00010}{sup +0.00012}. For the W mass the value of M{sub W}=80.360{sub -0.011}{sup +0.012} GeV is obtained indirectly from the fit including the direct Higgs constraints. The electroweak precision data is also exploited to constrain new physics models by using the concept of oblique parameters. In this thesis the following models are investigated: models with a sequential fourth fermion generation, the inert-Higgs doublet model, the littlest Higgs model with T-parity conservation, and models with large extra dimensions. In contrast to the SM, in these models heavy Higgs bosons are in agreement with the electroweak precision data. The forward-backward asymmetry as a function of the invariant mass is measured for pp{yields} Z/{gamma}{sup *}{yields}e{sup +}e{sup -} events collected with the ATLAS detector at the LHC. The data taken in 2010 at a center-of-mass energy of {radical}(s)=7 TeV corresponding to an integrated luminosity of 37.4 pb{sup -1} is analyzed. The measured forward-backward asymmetry is in agreement with the SM expectation. From the measured forward-backward asymmetry the effective weak mixing angle is extracted as sin{sup 2} {theta}{sup l

  3. Electroweak penguin B decays

    CERN Document Server

    Nikodem, Thomas

    2016-01-01

    Flavour Changing Neutral Currents (FCNC) are sensitive probes for physics beyond the Standard Model (SM), so-called New Physics. An example of a FCNC is the $b \\to s$ quark transition described by the electroweak penguin Feynman diagram shown in Figure 1. In the SM such FCNC are only allowed with a loop structure (as e:g: shown in the figure) and not by tree level processes. In the loops heavy particles appear virtually and do not need to be on shell. Therefore also not yet discovered heavy particles with up to a mass $\\mathcal{O}$(TeV) could virtually contribute significantly to observables. Several recent measurements of electroweak penguin B decays exhibit interesting tensions with SM predictions, most prominently in the angular observable $P'_5$ 5 of the decay $B^0 \\to K^{*0} \\mu^+ \\mu^1$[1], which triggered a lot of discussion in the theory community [2]-[14].

  4. Unanswered Questions in the Electroweak Theory

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris

    2009-11-01

    This article is devoted to the status of the electroweak theory on the eve of experimentation at CERN's Large Hadron Collider. A compact summary of the logic and structure of the electroweak theory precedes an examination of what experimental tests have established so far. The outstanding unconfirmed prediction of the electroweak theory is the existence of the Higgs boson, a weakly interacting spin-zero particle that is the agent of electroweak symmetry breaking, the giver of mass to the weak gauge bosons, the quarks, and the leptons. General arguments imply that the Higgs boson or other new physics is required on the TeV energy scale. Indirect constraints from global analyses of electroweak measurements suggest that the mass of the standard-model Higgs boson is less than 200 GeV. Once its mass is assumed, the properties of the Higgs boson follow from the electroweak theory, and these inform the search for the Higgs boson. Alternative mechanisms for electroweak symmetry breaking are reviewed, and the importance of electroweak symmetry breaking is illuminated by considering a world without a specific mechanism to hide the electroweak symmetry. For all its triumphs, the electroweak theory has many shortcomings.

  5. Unanswered Questions in the Electroweak Theory

    International Nuclear Information System (INIS)

    Quigg, Chris

    2009-01-01

    This article is devoted to the status of the electroweak theory on the eve of experimentation at CERN's Large Hadron Collider. A compact summary of the logic and structure of the electroweak theory precedes an examination of what experimental tests have established so far. The outstanding unconfirmed prediction of the electroweak theory is the existence of the Higgs boson, a weakly interacting spin-zero particle that is the agent of electroweak symmetry breaking, the giver of mass to the weak gauge bosons, the quarks, and the leptons. General arguments imply that the Higgs boson or other new physics is required on the TeV energy scale. Indirect constraints from global analyses of electroweak measurements suggest that the mass of the standard-model Higgs boson is less than 200 GeV. Once its mass is assumed, the properties of the Higgs boson follow from the electroweak theory, and these inform the search for the Higgs boson. Alternative mechanisms for electroweak symmetry breaking are reviewed, and the importance of electroweak symmetry breaking is illuminated by considering a world without a specific mechanism to hide the electroweak symmetry. For all its triumphs, the electroweak theory has many shortcomings.

  6. Freedom in electroweak symmetry breaking and mass matrix of fermions in dimensional deconstruction model

    International Nuclear Information System (INIS)

    Nojiri, Shin'ichi; Odintsov, Sergei D.; Sugamoto, Akio

    2004-01-01

    There exists a freedom in a class of four-dimensional electroweak theories proposed by Arkani-Hamed et al. relying on deconstruction and Coleman-Weinberg mechanism. The freedom comes from the winding modes of the link variable (Wilson operator) connecting non-nearest neighbours in the discrete fifth dimension. Using this freedom, dynamical breaking of SU(2) gauge symmetry, mass hierarchy patterns of fermions and Cabbibo-Kobayashi-Maskawa matrix may be obtained

  7. Electro-weak theory

    International Nuclear Information System (INIS)

    Deshpande, N.G.

    1980-01-01

    By electro-weak theory is meant the unified field theory that describes both weak and electro-magnetic interactions. The development of a unified electro-weak theory is certainly the most dramatic achievement in theoretical physics to occur in the second half of this century. It puts weak interactions on the same sound theoretical footing as quantum elecrodynamics. Many theorists have contributed to this development, which culminated in the works of Glashow, Weinberg and Salam, who were jointly awarded the 1979 Nobel Prize in physics. Some of the important ideas that contributed to this development are the theory of beta decay formulated by Fermi, Parity violation suggested by Lee and Yang, and incorporated into immensely successful V-A theory of weak interactions by Sudarshan and Marshak. At the same time ideas of gauge invariance were applied to weak interaction by Schwinger, Bludman and Glashow. Weinberg and Salam then went one step further and wrote a theory that is renormalizable, i.e., all higher order corrections are finite, no mean feat for a quantum field theory. The theory had to await the development of the quark model of hadrons for its completion. A description of the electro-weak theory is given

  8. Formulation of the low-energy effective theory of electroweak symmetry-breaking without a Higgs particle

    International Nuclear Information System (INIS)

    Hirn, J.

    2004-07-01

    The low-energy effective theory of electroweak symmetry-breaking without a Higgs particle is constructed using the methods of Chiral Perturbation Theory. Weinberg's power-counting formula demonstrates the consistency of the loop expansion, with the corresponding renormalization. We find that the suppression of effective operators by a mass scale, which was automatic in the case of the Standard Model, no longer holds in the Higgs-less case. Moreover, the incriminated operators appear at leading order in the chiral expansion, at variance with experiments. To account for their suppression, invariance under a larger symmetry is required, corresponding to the composite sector (which produces the three Goldstone modes) being decoupled from the elementary sector (quarks, leptons and Yang-Mills fields). The couplings are introduced via spurions: this reduces the symmetry to SU(2) x U(1). In the simultaneous expansion in powers of momenta and spurions, the aforementioned operators are relegated to higher orders. In addition, the method allows for a systematic treatment of weak isospin breaking. The Weinberg power-counting formula can be recovered, and small neutrino masses accounted for. The three right-handed neutrinos (lighter than the TeV), which are introduced in connection with the custodial symmetry, are quasi-sterile and stable. A constraint on the underlying theory is obtained by studying the anomaly-matching in the composite sector and generalizing the Wess-Zumino construction. The spurion formalism is also applied to open linear moose models, for which generalized Weinberg sum rules are derived. (author)

  9. The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC

    CERN Document Server

    Baak, M.

    2012-11-03

    In view of the discovery of a new boson by the ATLAS and CMS Collaborations at the LHC, we present an update of the global Standard Model (SM) fit to electroweak precision data. Assuming the new particle to be the SM Higgs boson, all fundamental parameters of the SM are known allowing, for the first time, to overconstrain the SM at the electroweak scale and assert its validity. Including the effects of radiative corrections and the experimental and theoretical uncertainties, the global fit exhibits a p-value of 0.07. The mass measurements by ATLAS and CMS agree within 1.3sigma with the indirect determination M_H=(94 +25 -22) GeV. Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted to be M_W=(80.359 +- 0.011) GeV and sin^2(theta_eff^ell)=(0.23150 +- 0.00010) from the global fit. These results are compatible with, and exceed in precision, the direct measurements. For the indirect determination of the top quark mass we find m_t=(175.8 +2.7 -2.4) GeV, in agreement with t...

  10. The electroweak fit of the standard model after the discovery of a new boson at the LHC

    International Nuclear Information System (INIS)

    Baak, M.; Hoecker, A.; Schott, M.; Goebel, M.; Kennedy, D.; Moenig, K.; Haller, J.; Kogler, R.; Stelzer, J.

    2012-09-01

    In view of the discovery of a new boson by the ATLAS and CMS Collaborations at the LHC, we present an update of the global Standard Model (SM) fit to electroweak precision data. Assuming the new particle to be the SM Higgs boson, all fundamental parameters of the SM are known allowing, for the first time, to overconstrain the SM at the electroweak scale and assert its validity. Including the effects of radiative corrections and the experimental and theoretical uncertainties, the global fit exhibits a p-value of 0.07. The mass measurements by ATLAS and CMS agree within 1.3σ with the indirect determination M H =94 +25 -22 GeV. Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted to be M W =80.359±0.011 GeV and sin 2 θ l eff =0.23150±0.00010 from the global fit. These results are compatible with, and exceed in precision, the direct measurements. For the indirect determination of the top quark mass we find m t =175.8 +2.7 -2.4 GeV, in agreement with the kinematic and cross-section based measurements.

  11. Electroweak physics with LEP

    International Nuclear Information System (INIS)

    Davier, M.

    1992-03-01

    The present status of electroweak physics at LEP is presented. The LEP machine and the detectors are described. The decays of Z neutral bosons in both leptonic and hadronic channels are studied. Neutral and charged sector are investigated, and a precise test of the Standard Model is given. Higgs boson searches and τ decay measurements are also described as well as quark mixing and B 0 B-bar 0 oscillations. All the seven contributions are individually indexed and abstracted for the INIS database. (K.A.) 100 refs

  12. Strong coupling electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Barklow, T.L.; Burdman, G.; Chivukula, R.S.

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models

  13. Strong coupling electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  14. TRISTAN electroweak working group report

    International Nuclear Information System (INIS)

    Hagiwara, K.

    1995-01-01

    Model-independent measurements of quantities sensitive to the electroweak physics at TRISTAN energies are proposed for the processes e + e - → e + e - , μ + μ - , τ + τ - , hadrons and heavy-quark (charm- and bottom-quark) jets. Factorization of the scattering amplitudes into the part which is sensitive to short-distance electroweak physics and the rest which is sensitive to long-distance QED and QCD corrections is made, and uncertainties in the latter are studied quantitatively by using existing programs. Electroweak observables are then chosen for each processes such that the uncertainty from the long-distance physics is small and that they can be updated when we reach a better understanding of the QED and QCD corrections. The new scheme will make the data from high luminosity TRISTAN experiments useful for particle physicists of the present as well as those of the future generation. (author)

  15. An introduction to relativistic processes and the standard model of electroweak interactions

    CERN Document Server

    Becchi, Carlo Maria

    2014-01-01

    These lectures are meant to be a reference and handbook for an introductory course in Theoretical Particle Physics, suitable for advanced undergraduates or beginning graduate students. Their purpose is to reconcile theoretical rigour and completeness with a careful analysis of more phenomenological aspects of the physics. They aim at filling the gap between quantum field theory textbooks and purely phenomenological treatments of fundamental interactions. The first part provides an introduction to scattering in relativistic quantum field theory. Thanks to an original approach to relativistic processes, the relevant computational techniques are derived cleanly and simply in the semi-classical approximation. The second part contains a detailed presentation of the gauge theory of electroweak interactions with particular focus to the processes of greatest phenomenological interest. The main novelties of the present second edition are a more complete discussion of relativistic scattering theory and an expansion of ...

  16. Testing Left-Right extensions of the standard model of electroweak interactions with double-beta decay and LHC measurements

    Science.gov (United States)

    Civitarese, O.; Suhonen, J.; Zuber, K.

    2015-07-01

    The minimal extension of the standard model of electroweak interactions allows for massive neutrinos, a massive right-handed boson WR, and a left-right mixing angle ζ. While an estimate of the light (electron) neutrino can be extracted from the non-observation of the neutrinoless double beta decay, the limits on the mixing angle and the mass of the righthanded (RH) boson may be extracted from a combined analysis of the double beta decay measurements (GERDA, EXO-200 and KamLAND-Zen collaborations) and ATLAS data on the two-jets two-leptons signals following the excitation of a virtual RH boson mediated by a heavy-mass neutrino. In this work we shall compare results of both types of experiments, and show that the estimates are not in tension.

  17. STANFORD (SLAC): Precision electroweak result

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Precision testing of the electroweak sector of the Standard Model has intensified with the recent publication* of results from the SLD collaboration's 1993 run on the Stanford Linear Collider, SLC. Using a highly polarized electron beam colliding with an unpolarized positron beam, SLD physicists measured the left-right asymmetry at the Z boson resonance with dramatically improved accuracy over 1992

  18. Spin and precision electroweak physics

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J. [Brookhaven National Lab., Upton, NY (United States)

    1994-12-01

    A perspective on fundamental parameters and precision tests of the Standard Model is given. Weak neutral current reactions are discussed with emphasis on those processes involving (polarized) electrons. The role of electroweak radiative corrections in determining the top quark mass and probing for {open_quotes}new physics{close_quotes} is described.

  19. Spin and precision electroweak physics

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1993-01-01

    A perspective on fundamental parameters and precision tests of the Standard Model is given. Weak neutral current reactions are discussed with emphasis on those processes involving (polarized) electrons. The role of electroweak radiative corrections in determining the top quark mass and probing for ''new physics'' is described

  20. A modification of projective spacetime by finite self-interaction models of virtual leptons and quarks and the electroweak GWS standard model

    International Nuclear Information System (INIS)

    Scheurich, H.

    1986-01-01

    From the projective Dirac equation in a six-dimensional Kleinian space R(3, 3) are derived finite-rotation-group models as self-interaction models of virtual leptons and quarks. The quaternion group underlying them is considered as a substructure group of projective spacetime. A finite hyperspherical carrier of the self-interaction models is embedded into projective spacetime by means of the Planck length L 0 = (hG/c 3 )/sup 1/2/ as a physical unit length. The corresponding modification of metrics in the Planck domain becomes apparent to be equivalent to the role of the Higgs field in the electroweak GWS standard model. (author)

  1. Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future

    Energy Technology Data Exchange (ETDEWEB)

    Blas, J. de [INFN, Sezione di Roma,Piazzale A. Moro 2, I-00185 Rome (Italy); Ciuchini, M. [INFN, Sezione di Roma Tre,Via della Vasca Navale 84, I-00146 Roma (Italy); Franco, E. [INFN, Sezione di Roma,Piazzale A. Moro 2, I-00185 Rome (Italy); Mishima, S. [Theory Center, Institute of Particle and Nuclear Studies (IPNS),High Energy Accelerator Research Organization (KEK),1-1 Oho, Tsukuba, 305-0801 (Japan); Pierini, M. [CERN,Geneva (Switzerland); Reina, L. [Physics Department, Florida State University,77 Chieftan Way, Tallahassee, FL 32306-4350 (United States); Kavli Institute for Theoretical Physics, University of California,Kohn Hall, Santa Barbara, CA 93106-4030 (United States); Silvestrini, L. [INFN, Sezione di Roma,Piazzale A. Moro 2, I-00185 Rome (Italy)

    2016-12-27

    We present results from a state-of-the-art fit of electroweak precision observables and Higgs-boson signal-strength measurements performed using 7 and 8 TeV data from the Large Hadron Collider. Based on the HEPfit package, our study updates the traditional fit of electroweak precision observables and extends it to include Higgs-boson measurements. As a result we obtain constraints on new physics corrections to both electroweak observables and Higgs-boson couplings. We present the projected accuracy of the fit taking into account the expected sensitivities at future colliders.

  2. Electroweak interactions in nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1984-06-01

    Topics include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms. 52 references

  3. Gravitationally coupled electroweak monopole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2016-10-10

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  4. Introduction to gauge theories of electroweak interactions

    International Nuclear Information System (INIS)

    Ecker, G.

    1982-01-01

    The author presents an introduction to electroweak gauge theories. Emphasis is placed on the properties of a general gauge theory. The standard model is discussed as the simplest example to illustrate these properties. (G.T.H.)

  5. Electroweak phase transitions

    International Nuclear Information System (INIS)

    Anderson, G.W.

    1991-01-01

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, left-angle φ right-angle T is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of left-angle φ right-angle T . In very minimal extensions of the standard model it is quite easy to increase left-angle φ right-angle T so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value left-angle φ right-angle = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state left-angle φ right-angle = 246 GeV unstable. The requirement that the state left-angle φ right-angle = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field

  6. Electron electric dipole moment in mirror fermion model with electroweak scale non-sterile right-handed neutrinos

    Directory of Open Access Journals (Sweden)

    Chia-Feng Chang

    2018-03-01

    Full Text Available The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.

  7. Electron electric dipole moment in mirror fermion model with electroweak scale non-sterile right-handed neutrinos

    Science.gov (United States)

    Chang, Chia-Feng; Hung, P. Q.; Nugroho, Chrisna Setyo; Tran, Van Que; Yuan, Tzu-Chiang

    2018-03-01

    The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a) right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b) a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.

  8. Precision electroweak physics at LEP

    Energy Technology Data Exchange (ETDEWEB)

    Mannelli, M.

    1994-12-01

    Copious event statistics, a precise understanding of the LEP energy scale, and a favorable experimental situation at the Z{sup 0} resonance have allowed the LEP experiments to provide both dramatic confirmation of the Standard Model of strong and electroweak interactions and to place substantially improved constraints on the parameters of the model. The author concentrates on those measurements relevant to the electroweak sector. It will be seen that the precision of these measurements probes sensitively the structure of the Standard Model at the one-loop level, where the calculation of the observables measured at LEP is affected by the value chosen for the top quark mass. One finds that the LEP measurements are consistent with the Standard Model, but only if the mass of the top quark is measured to be within a restricted range of about 20 GeV.

  9. The electroweak theory

    International Nuclear Information System (INIS)

    Chris Quigg

    2001-01-01

    After a short essay on the current state of particle physics, the author reviews the antecedents of the modern picture of the weak and electromagnetic interactions and then undertakes a brief survey of the SU(2) L (circle-times) U(1) Y electroweak theory. The authors reviews the features of electroweak phenomenology at tree level and beyond, presents an introduction to the Higgs boson and the 1-TeV scale, and examines arguments for enlarging the electroweak theory. The author concludes with a brief look at low-scale gravity

  10. Non-negligible electroweak penguin effects

    International Nuclear Information System (INIS)

    Guo Libo; Li Xingyi

    1999-01-01

    Starting from the leading logarithmic low energy effective Hamiltonian and the Bauer-Stech-Wirbe (BSW) model, the authors calculate the electroweak penguin effects in the two-body hadronic pure penguin processes of B-meson. In the case of B→PP and PV decay, the authors find that the processes involving external penguin diagrams receive large contribution from electroweak penguin effects which can even play dominant role

  11. Algebra of strong and electroweak interactions

    International Nuclear Information System (INIS)

    Bolokhov, S.V.; Vladimirov, Yu.S.

    2004-01-01

    The algebraic approach to describing the electroweak and strong interactions is considered within the frames of the binary geometrophysics, based on the principles of the Fokker-Feynman direct interparticle interaction theories of the Kaluza-Klein multidimensional geometrical models and the physical structures theory. It is shown that in this approach the electroweak and strong elementary particles interaction through the intermediate vector bosons, are characterized by the subtypes of the algebraic classification of the complex 3 x 3-matrices [ru

  12. A practical introduction to electroweak radiative corrections

    International Nuclear Information System (INIS)

    Drees, M.

    1991-05-01

    This is a brief introduction into electroweak radiative corrections within the Standard Model, with the emphasis on performing actual calculations. To this end, a complete set of expressions is given that allows the computation of the ρ parameter, the W mass, and Z→fanti f decays for massless fermions, where the anti Manti S scheme has been used. I conclude with an assessment of what we have learned so far from electroweak precision experiments, and a brief outlook. (orig.)

  13. One-loop analysis of the electroweak breaking in supersymmetric models and the fine-tuning problem

    CERN Document Server

    De Carlos, B

    1993-01-01

    We examine the electroweak breaking mechanism in the minimal supersymmetric standard model (MSSM) using the {\\em complete} one-loop effective potential $V_1$. First, we study what is the region of the whole MSSM parameter space (i.e. $M_{1/2},m_o,\\mu,...$) that leads to a succesful $SU(2)\\times U(1)$ breaking with an acceptable top quark mass. In doing this it is observed that all the one-loop corrections to $V_1$ (even the apparently small ones) must be taken into account in order to get reliable results. We find that the allowed region of parameters is considerably enhanced with respect to former "improved" tree level results. Next, we study the fine-tuning problem associated with the high sensitivity of $M_Z$ to $h_t$ (the top Yukawa coupling). Again, we find that this fine-tuning is appreciably smaller once the one-loop effects are considered than in previous tree level calculations. Finally, we explore the ambiguities and limitations of the ordinary criterion to estimate the degree of fine-tuning. As a r...

  14. Electroweak baryogenesis and low energy supersymmetry

    CERN Document Server

    Carena, M S; Riotto, Antonio; Vilja, I; Wagner, C E M

    1997-01-01

    Electroweak baryogenesis is an interesting theoretical scenario, which demands physics beyond the Standard Model at energy scales of the order of the weak boson masses. It has been recently emphasized that, in the presence of light stops, the electroweak phase transition can be strongly first order, opening the window for electroweak baryogenesis in the MSSM. For the realization of this scenario, the Higgs boson must be light, at the reach of the LEP2 collider. In this article, we compute the baryon asymmetry assuming the presence of non-trivial CP violating phases in the parameters associated with the left-right stop mixing term and the Higgsino mass $\\mu$. We conclude that a phase $|\\sin \\phi_{\\mu}| > 0.01$ and Higgsino and gaugino mass parameters $|\\mu| \\simeq M_2$, and of the order of the electroweak scale, are necessary in order to generate the observed baryon asymmetry.

  15. Electroweak form factors

    International Nuclear Information System (INIS)

    Singh, S.K.

    2002-01-01

    The present status of electroweak nucleon form factors and the N - Δ transition form factors is reviewed. Particularly the determination of dipole mass M A in the axial vector form factor is discussed

  16. Emergent Electroweak Symmetry Breaking with Composite W, Z Bosons

    CERN Document Server

    Cui, Yanou; Wells, James D

    2009-01-01

    We present a model of electroweak symmetry breaking in a warped extra dimension where electroweak symmetry is broken at the UV (or Planck) scale. An underlying conformal symmetry is broken at the IR (or TeV) scale generating masses for the electroweak gauge bosons without invoking a Higgs mechanism. By the AdS/CFT correspondence the W,Z bosons are identified as composite states of a strongly-coupled gauge theory, suggesting that electroweak symmetry breaking is an emergent phenomenon at the IR scale. The model satisfies electroweak precision tests with reasonable fits to the S and T parameter. In particular the T parameter is sufficiently suppressed since the model naturally admits a custodial SU(2) symmetry. The composite nature of the W,Z-bosons provide a novel possibility of unitarizing WW scattering via form factor suppression. Constraints from LEP and the Tevatron as well as discovery opportunities at the LHC are discussed for these composite electroweak gauge bosons.

  17. Electroweak interactions on the lattice

    International Nuclear Information System (INIS)

    Kieu, T.D.

    1994-07-01

    It is shown that the lattice fermion doubling phenomenon is connected to the chiral anomaly which is unique to the electroweak interactions. The chiral anomaly is the breaking of chiral gauge symmetry at the quantum level due to the quantum fluctuations. Such breaking, however, is undesirable and to be avoided. The preservation of gauge symmetry imposes stringent constraints on acceptable chiral gauge theory. It is argued that the constraints are unnecessary because the conventional quantization of chiral gauge theory has missed out some crucial contributions of the chiral interactions. The corrected quantization yields consistent theory in which there is no gauge anomaly and in which various mass terms can be introduced with neither the loss of gauge invariance nor the need for the Higgs mechanism. The new quantization also provide a solution to the difficulty of how to model the electroweak interactions on the lattice. 9 refs. 1 fig

  18. Electroweak bubble wall speed limit

    Energy Technology Data Exchange (ETDEWEB)

    Bödeker, Dietrich [Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld (Germany); Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany)

    2017-05-01

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.

  19. Lepton-mediated electroweak baryogenesis

    International Nuclear Information System (INIS)

    Chung, Daniel J. H.; Garbrecht, Bjorn; Ramsey-Musolf, Michael J.; Tulin, Sean

    2010-01-01

    We investigate the impact of the tau and bottom Yukawa couplings on the transport dynamics for electroweak baryogenesis in supersymmetric extensions of the standard model. Although it has generally been assumed in the literature that all Yukawa interactions except those involving the top quark are negligible, we find that the tau and bottom Yukawa interaction rates are too fast to be neglected. We identify an illustrative 'lepton-mediated electroweak baryogenesis' scenario in which the baryon asymmetry is induced mainly through the presence of a left-handed leptonic charge. We derive analytic formulas for the computation of the baryon asymmetry that, in light of these effects, are qualitatively different from those in the established literature. In this scenario, for fixed CP-violating phases, the baryon asymmetry has opposite sign compared to that calculated using established formulas.

  20. Higgs-boson contributions to gauge-boson mass shifts in extended electroweak models

    International Nuclear Information System (INIS)

    Moore, S.R.

    1985-10-01

    In the minimal standard model, the difference between the tree-level and one-loop-corrected predictions for the gauge-boson masses, known as the mass shifts, are of the order of 4%. The dominant contribution is from light-fermion loops. The Higgs-dependent terms are small, even if the Higgs boson is heavy. We have analyzed the mass shifts for models with a more complicated Higgs sector. We use the on-shell renormalization scheme, in which the parameters of the theory are the physical masses and couplings. We have considered the 2-doublet, n-doublet, triplet and doublet-triplet models. We have found that the Z-boson mass prediction has a strong dependence on the charged-Higgs mass. In the limit that the charged Higgs is much heavier than the gauge bosons, the Higgs-dependent terms become significant, and may even cancel the light-fermion terms. In the models with a Higgs triplet, there is also a strong dependence on the neutral-Higgs masses, although this contribution tends to be suppressed in realistic models. The W-boson mass shift does not have a strong Higgs dependence. If we use the Z mass as input in determining the parameters of the theory, a scenario which will become attractive as the mass of the Z is accurately measured in the next few years, we find that the W-boson mass shift exhibits the same sort of behavior, differing from the minimal model for the case of the charged Higgs being heavy. We have found that when radiative corrections are taken into account, models with extended Higgs sectors may differ significantly from the minimal standard model in their predictions for the gauge-boson masses. Thus, an accurate measurement of the masses will help shed light on the structure of the Higgs sector. 68 refs

  1. Higgs-boson contributions to gauge-boson mass shifts in extended electroweak models

    International Nuclear Information System (INIS)

    Moore, S.R.

    1985-01-01

    The author analyzed the mass shifts for models with a more complicated Higgs sector. He uses the on-shell renormalization scheme, in which the parameters of the theory are the physical masses and couplings. The author has considered the 2-doublet, n-doublet, triplet and doublet-triplet models. He has found that the Z-boson mass prediction has a strong dependence on the charged-Higgs mass. In the limit that the charged Higgs is much heavier than the gauge bosons, the Higgs-dependent terms become significant, and may even cancel the light-fermion terms. If the author uses the Z mass as input in determining the parameters of the theory, a scenario which will become attractive as the mass of the Z is accurately measured in the next few years, it is found that the W-boson mass shift exhibits the same sort of behavior, differing from the minimal model for the case of the charged Higgs being heavy. The author has found that when the radiative corrections are taken into account, models with extended Higgs sectors may differ significantly from the minimal standard model in this predictions for the gauge-boson masses. Thus, an accurate measurement of the masses will help shed light on the structure of the Higgs sector

  2. LHC phenomenology and higher order electroweak corrections in supersymmetric models with and without R-parity

    Energy Technology Data Exchange (ETDEWEB)

    Liebler, Stefan Rainer

    2011-09-15

    The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the {mu}{nu}SSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and

  3. LHC phenomenology and higher order electroweak corrections in supersymmetric models with and without R-parity

    International Nuclear Information System (INIS)

    Liebler, Stefan Rainer

    2011-09-01

    The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the μνSSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and leptons in

  4. Cancellation of leading divergences in left-right electroweak model and heavy particles

    International Nuclear Information System (INIS)

    Andrianov, A.A.; Romanenko, N.V.

    1997-01-01

    The fine-tuning principles are analyzed in search for estimation of heavy-particle masses in the left-right symmetric model. The modification of Veltman condition based on the hypothesis of the compression between fermion and boson energies within the left-right model multiples is proposed. The hypothesis is supplied with the requirement of the stability under rescaling. With regard to these requirements the necessity of existence of right-handed Majorana neutrinos with masses of order of right-handed gauge bosons is shown and estimations on the top-quark which are in a good agreement with the experimental value are obtained

  5. Breaking of electroweak symmetry: origin and effects

    International Nuclear Information System (INIS)

    Delaunay, C.

    2008-10-01

    The Higgs boson appears as the corner stone of high energy physics, it might be the cause of the excess of matter that led to the formation of the structures of the universe and it seems that it drives the breaking of the electroweak symmetry. Moreover, when the stability at low energies of the Higgs boson is assured by an extra space dimension, it appears that this extra dimension can explain most issues in the flavor physics that are not understood by the standard model. The first chapter presents the main tools of effective field theories, the role of experimental data in the construction of theories valid beyond the standard model is discussed. The second chapter focuses on the electroweak baryogenesis that allows the testing of new physics via the electroweak phase transition. We detail the calculation of a Higgs potential at finite temperature. We follow the dynamics of the phase transition including nucleation an supercooling. Finally we investigate the prospects of gravity wave detection to see the effects of a strong electroweak phase transition. The 2 last chapters are dedicated to the physics of extra-dimension. The properties of the dynamics of scalar, vector fields with a 1/2 spin plunged in a 5 d. Anti de Sitter geometry are reviewed. We present a model of lepton masses and mixings based on the A 4 non-Abelian discrete symmetry. It is shown that this model does not contradict the tests of electroweak precision. (A.C.)

  6. Finite energy electroweak dyon

    Energy Technology Data Exchange (ETDEWEB)

    Kimm, Kyoungtae [Seoul National University, Faculty of Liberal Education, Seoul (Korea, Republic of); Yoon, J.H. [Konkuk University, Department of Physics, College of Natural Sciences, Seoul (Korea, Republic of); Cho, Y.M. [Konkuk University, Administration Building 310-4, Seoul (Korea, Republic of); Seoul National University, School of Physics and Astronomy, Seoul (Korea, Republic of)

    2015-02-01

    The latest MoEDAL experiment at LHC to detect the electroweak monopole makes the theoretical prediction of the monopole mass an urgent issue. We discuss three different ways to estimate the mass of the electroweak monopole. We first present the dimensional and scaling arguments which indicate the monopole mass to be around 4 to 10 TeV. To justify this we construct finite energy analytic dyon solutions which could be viewed as the regularized Cho-Maison dyon, modifying the coupling strength at short distance. Our result demonstrates that a genuine electroweak monopole whose mass scale is much smaller than the grand unification scale can exist, which can actually be detected at the present LHC. (orig.)

  7. Electroweak Higgs boson production in the standard model effective field theory beyond leading order in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Degrande, Celine [CERN, Theory Division, Geneva 23 (Switzerland); Fuks, Benjamin [Sorbonne Universites, UPMC Univ. Paris 06, Paris (France); CNRS, Paris (France); Mawatari, Kentarou [Universite Grenoble-Alpes, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Vrije Universiteit Brussel, Theoretische Natuurkunde and IIHE/ELEM, International Solvay Institutes, Brussels (Belgium); Mimasu, Ken [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Universite catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); Sanz, Veronica [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-04-15

    We study the impact of dimension-six operators of the standard model effective field theory relevant for vector-boson fusion and associated Higgs boson production at the LHC. We present predictions at the next-to-leading order accuracy in QCD that include matching to parton showers and that rely on fully automated simulations. We show the importance of the subsequent reduction of the theoretical uncertainties in improving the possible discrimination between effective field theory and standard model results, and we demonstrate that the range of the Wilson coefficient values allowed by a global fit to LEP and LHC Run I data can be further constrained by LHC Run II future results. (orig.)

  8. Simulating the electroweak phase transition in the SU(2) Higgs model

    International Nuclear Information System (INIS)

    Fodor, Z.; Hein, J.; Jansen, K.; Jaster, A.; Montvay, I.

    1994-09-01

    Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and its strength is rapidly decreasing with increasing Higgs boson mass. In order to control the systematic errors, we also perform studies of scaling violations and of finite volume effects. (orig.)

  9. Electroweak radiative B-decays as a test of the Standard Model and beyond

    International Nuclear Information System (INIS)

    Tayduganov, A.

    2011-10-01

    Recently the radiative B-decay to strange axial-vector mesons, B → K 1 (1270)γ, was observed with a rather large branching ratio. This process is particularly interesting as the subsequent K 1 -decay into its three-body final state allows us to determine the polarization of the photon, which is mostly left(right)-handed for B-bar(B) in the Standard Model while various new physics models predict additional right(left)-handed components. In this thesis, a new method is proposed to determine the polarization, exploiting the full Dalitz plot distribution, which seems to reduce significantly the statistical errors on the polarization parameter λ γ measurement. This polarization measurement requires, however a detailed knowledge of the K 1 → Kππ strong interaction decays, namely, the complex pattern of various partial wave amplitudes into the several possible quasi-two-body channels as well as their relative phases. A number of experiments have been done to extract all these information while there remain various problems in the previous studies. In this thesis, we investigate the details of these problems. As a theoretical tool, we use the 3 P 0 quark-pair-creation model in order to improve our understanding of strong K 1 -decays. Finally we try to estimate some theoretical uncertainties: in particular, the one coming from the uncertainty on the K 1 mixing angle, and the effect of a possible 'off-set' phase in strong decay S-waves. According to our estimations, the systematic errors are found to be of the order of σ λ γ (th) ≤ 20%. On the other hand, we discuss the sensitivity of the future experiments, namely the SuperB factories and LHCb, to λ γ . Naively estimating the annual signal yields, we found the statistical error of the new method to be σ λ γ (stat) ≤ 10% which turns out to be reduced by a factor 2 with respect to using the simple angular distribution. We also discuss a comparison to the other methods of the polarization measurement using

  10. Search for physics beyond the standard electroweak model with the WITCH experiment

    CERN Document Server

    Van Gorp, Simon

    A measurement of the $\\beta$-neutrino angular correlation coefficient $a$ yields information on possible exotic couplings in the weak interaction. To this end the energy distribution of the recoiling daughter nucleus after $\\beta$-decay, which depends on $a$, is measured precisely. Any deviation of the measured distribution with the one expected from the Standard Model can reveal new physics. If no deviation is found stringent limits can be set on the possible presence of different types of new physics beyond the Standard Model. The WITCH experiment, located at ISOLDE, CERN aims to determine $a$ with a final precision below 1%. $\\\\$ Ion bunches are created with REXTRAP and injected in the WITCH setup. The energy of these ion bunches is pulsed down in the Pulsed Drift Tube section, prior to the capture of the ions in the first of two Penning traps. The motion of the radioactive ions is cooled before the transfer to a second Penning trap, the decay trap, which acts as the scattering-free sou...

  11. Electroweak phase transition in the economical 3-3-1 model

    Energy Technology Data Exchange (ETDEWEB)

    Phong, Vo Quoc; Van, Vo Thanh; Minh, Le Hoang [Ho Chi Minh City University of Science, Department of Theoretical Physics, Ho Chi Minh City (Viet Nam); Long, Hoang Ngoc [Vietnamese Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam)

    2015-07-15

    We consider the EWPT in the economical 3-3-1 (E331) model. Our analysis shows that the EWPT in the model is a sequence of two first-order phase transitions, SU(3) → SU(2) at the TeV scale and SU(2) → U(1) at the 100 GeV scale. The EWPT SU(3) → SU(2) is triggered by the new bosons and the exotic quarks; its strength is about 1-13 if the mass ranges of these new particles are 10{sup 2}-10{sup 3} GeV. The EWPT SU(2) → U(1) is strengthened by only the new bosons; its strength is about 1-1.15 if the mass parts of H{sub 1}{sup 0}, H{sub 2}{sup ±} and Y{sup ±} are in the ranges 10-10{sup 2} GeV. The contributions of H{sub 1}{sup 0} and H{sub 2}{sup ±} to the strengths of both EWPTs may make them sufficiently strong to provide large deviations from thermal equilibrium and B violation necessary for baryogenesis. (orig.)

  12. Formulation of the low-energy effective theory of electroweak symmetry-breaking without a Higgs particle; Formulation de la theorie effective a basse energie du secteur electrofaible sans particule de Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Hirn, J

    2004-07-01

    The low-energy effective theory of electroweak symmetry-breaking without a Higgs particle is constructed using the methods of Chiral Perturbation Theory. Weinberg's power-counting formula demonstrates the consistency of the loop expansion, with the corresponding renormalization. We find that the suppression of effective operators by a mass scale, which was automatic in the case of the Standard Model, no longer holds in the Higgs-less case. Moreover, the incriminated operators appear at leading order in the chiral expansion, at variance with experiments. To account for their suppression, invariance under a larger symmetry is required, corresponding to the composite sector (which produces the three Goldstone modes) being decoupled from the elementary sector (quarks, leptons and Yang-Mills fields). The couplings are introduced via spurions: this reduces the symmetry to SU(2) x U(1). In the simultaneous expansion in powers of momenta and spurions, the aforementioned operators are relegated to higher orders. In addition, the method allows for a systematic treatment of weak isospin breaking. The Weinberg power-counting formula can be recovered, and small neutrino masses accounted for. The three right-handed neutrinos (lighter than the TeV), which are introduced in connection with the custodial symmetry, are quasi-sterile and stable. A constraint on the underlying theory is obtained by studying the anomaly-matching in the composite sector and generalizing the Wess-Zumino construction. The spurion formalism is also applied to open linear moose models, for which generalized Weinberg sum rules are derived. (author)

  13. Split NMSSM with electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, S.V.; Gorbunov, D.S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Moscow Institute of Physics and Technology,Institutsky per. 9, Dolgoprudny 141700 (Russian Federation); Kirpichnikov, D.V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)

    2016-11-24

    In light of the Higgs boson discovery and other results of the LHC we reconsider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.

  14. Electroweak processes at Run 2

    CERN Document Server

    Spalla, Margherita; Sestini, Lorenzo

    2016-01-01

    We present a summary of the studies of the electroweak sector of the Standard Model at LHC after the first year of data taking of Run2, focusing on possible results to be achieved with the analysis of full 2015 and 2016 data. We discuss the measurements of W and Z boson production, with particular attention to the precision determination of basic Standard Model parameters, and the study of multi-boson interactions through the analysis of boson-boson final states. This work is the result of the collaboration between scientists from the ATLAS, CMS and LHCb experiments.

  15. One loop electro-weak radiative corrections in the standard model

    International Nuclear Information System (INIS)

    Kalyniak, P.; Sundaresan, M.K.

    1987-01-01

    This paper reports on the effect of radiative corrections in the standard model. A sensitive test of the three gauge boson vertices is expected to come from the work in LEPII in which the reaction e + e - → W + W - can occur. Two calculations of radiative corrections to the reaction e + e - → W + W - exist at present. The results of the calculations although very similar disagree with one another as to the actual magnitude of the correction. Some of the reasons for the disagreement are understood. However, due to the reasons mentioned below, another look must be taken at these lengthy calculations to resolve the differences between the two previous calculations. This is what is being done in the present work. There are a number of reasons why we must take another look at the calculation of the radiative corrections. The previous calculations were carried out before the UA1, UA2 data on W and Z bosons were obtained. Experimental groups require a computer program which can readily calculate the radiative corrections ab initio for various experimental conditions. The normalization of sin 2 θ w in the previous calculations was done in a way which is not convenient for use in the experimental work. It would be desirable to have the analytical expressions for the corrections available so that the renormalization scheme dependence of the corrections could be studied

  16. The electroweak polarization asymmetry: A guided tour

    International Nuclear Information System (INIS)

    Kennedy, D.C.

    1988-10-01

    A comprehensive review is provided of the electroweak polarization asymmetry at the Z 0 , a highly accurate measure of the Z 0 coupling to fermions. Its significance as a precision test of the Standard Model is explored in detail. Emphasized are the role of electroweak symmetry-breaking and radiative corrections; the non-decoupling of new physics beyond the Z 0 ; and the testing of extensions of the Standard Model, such as supersymmetry, technicolor, new generations of fermions, grand unification, and new gauge forces. Also discussed are the relationship of the polarization asymmetry to other electroweak observables and its superiority to other Z 0 asymmetries. Experimental issues are briefly presented, stressing the importance of polarization at the SLC and LEP e + e - colliders. 42 refs., 13 figs., 2 tabs

  17. O(5) x U(1) electroweak theory

    International Nuclear Information System (INIS)

    Mukku, C.; Sayed, W.A.

    1980-12-01

    An anomaly free O(5) x U(1) theory of electroweak interactions is described which provides a unified description of electroweak phenomena for two families of standard leptons and quarks. No ''new'' non-sequential type fermions of the standard model are introduced as has been the case for all past studies based on this group. The present scheme requires the introduction of two further charged and three more neutral gauge fields over and above the Wsup(+-), Z and photon fields of SU(2) x U(1) giving rise to new neutral and charged currents. In this note we outline our reasons for proposing the present electroweak scheme, give the basic structure of the model, discuss the symmetry breaking pattern which ensures that SU(2)sub(L) x U(1) is the low energy symmetry, point out the new interactions present in the extended framework and obtain limits on the masses of all the gauge fields. (author)

  18. What's new with the electroweak phase transition?

    CERN Document Server

    Laine, M.

    1999-01-01

    We review the status of non-perturbative lattice studies of the electroweak phase transition. In the Standard Model, the complete phase diagram has been reliably determined, and the conclusion is that there is no phase transition at all for the experimentally allowed Higgs masses. In the Minimal Supersymmetric Standard Model (MSSM), in contrast, there can be a strong first order transition allowing for baryogenesis. Finally, we point out possibilities for future simulations, such as the problem of CP-violation at the MSSM electroweak phase boundary.

  19. ELECTROWEAK PHYSICS AND PRECISION STUDIES

    International Nuclear Information System (INIS)

    MARCIANO, W.

    2005-01-01

    The utility of precision electroweak measurements for predicting the Standard Model Higgs mass via quantum loop effects is discussed. Current values of m W , sin 2 θ W (m Z ) # ovr MS# and m t imply a relatively light Higgs which is below the direct experimental bound but possibly consistent with Supersymmetry expectations. The existence of Supersymmetry is further suggested by a 2σ discrepancy between experiment and theory for the muon anomalous magnetic moment. Constraints from precision studies on other types of ''New Physics'' are also briefly described

  20. Electroweak precision measurements in CMS

    CERN Document Server

    Dordevic, Milos

    2017-01-01

    An overview of recent results on electroweak precision measurements from the CMS Collaboration is presented. Studies of the weak boson differential transverse momentum spectra, Z boson angular coefficients, forward-backward asymmetry of Drell-Yan lepton pairs and charge asymmetry of W boson production are made in comparison to the state-of-the-art Monte Carlo generators and theoretical predictions. The results show a good agreement with the Standard Model. As a proof of principle for future W mass measurements, a W-like analysis of the Z boson mass is performed.

  1. Opening the window for electroweak baryogenesis

    CERN Document Server

    Carena, M S; Wagner, C E M

    1996-01-01

    We perform an analysis of the behaviour of the electroweak phase transition in the Minimal Supersymmetric Standard Model, in the presence of light stops. We show that, in previously unexplored regions of parameter space, the order parameter v(T_c)/T_c can become significantly larger than one, for values of the Higgs and supersymmetric particle masses consistent with the present experimental bounds. This implies that baryon number can be efficiently generated at the electroweak phase transition. As a by-product of this study, we present an analysis of the problem of colour breaking minima at zero and finite temperature, and we use it to investigate the region of parameter space preferred by the best fit to the present precision electroweak measurement data, in which the left-handed stops are much heavier than the right-handed ones.

  2. Electroweak interactions at LEP

    International Nuclear Information System (INIS)

    Borgia, B.

    1991-01-01

    Electroweak interaction at LEP are a subject based on a wealth of data, given the success of the CERN e + e - storage ring. The author will report on the results from the four experiments, ALEPH, DELPHI, L3 and OPAL after the analysis of about 1/2 of the data collected in 1989 and 1990. The review will cover the electroweak aspects of the process e + e - → Z* → f bar f where the fermions can be either quarks or leptons. The analysis of experimental data is based on the determination of the cross section integrated on the solid angle and on the asymmetry of forward-backward leptons in the final state. In this game the knowledge of the center mass energy is fundamental as the determination of the luminosity by which the event rate is normalized to compute the absolute cross section. Therefore a specific attention is given to these subjects

  3. Electroweak unification and tree unitarity

    International Nuclear Information System (INIS)

    Horejsi, J.

    1993-01-01

    The monograph is an unconventional introduction into the theory of unification of weak and electromagnetic interactions, which is conceptually different from the exposition presented in standard textbooks. A detailed explanation is given of the way to the standard model of electroweak interactions which is based on a straightforward application of the requirement of renormalizability of the perturbation series expansion. The procedure to derive the model is interesting as it demonstrates the necessity of introducing vector bosons and Yang-Mills type interactions and at least one elementary scalar boson to obtain a renormalizable theory of weak and electromagnetic interactions. The book is divided into 5 chapters: introduction, problems encountered in a Fermi type theory, the intermediate vector boson, electrodynamics of vector bosons, tree unitarity, and electroweak interactions. Each chapter is completed with exercise problems to be solved by the reader. The text is supplemented with a number of appendices. The monograph is aimed at undergraduate and postgraduate students as well as at physicists interested in the theory of elementary particles. (Z.J.)

  4. Baryogenesis at the electroweak scale

    International Nuclear Information System (INIS)

    Dine, M.; Huet, P.; Singleton, R. Jr.

    1992-01-01

    We explore some issues involved in generating the baryon asymmetry at the electroweak scale. A simple two-dimensional model is analyzed which illustrates the role of the effective action in computing the asymmetry. We stress the fact that baryon production ceases at a very small value of the Higgs field; as a result, certain two-Higgs models which have been studied recently cannot produce sufficient asymmetry, while quite generally models with only doublets can barely produce the observed baryon density; models with gauge singlets are more promising. We also review limits on Higgs masses coming from the requirement that the baryon asymmetry not be wiped out after the phase transition. We note that there are a variety of uncertainties in these calculations, and that even in models with a single Higgs doublet one cannot rule out a Higgs mass below 55 GeV. (orig.)

  5. Estimation of standard model backgrounds to the search for electroweak production of supersymmetry in events with at least two tau leptons in the final state

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Sebastian

    2013-11-04

    This thesis presents a search for Supersymmetry in events with at least two hadronically decaying tau leptons and missing transverse energy. The analysis is focused on the electro-weak production of gaugino pairs. Electroweak production processes for SUSY particles are promising candidates for the discovery of Supersymmetry with R-parity conservation at hadron-hadron colliders. For the analysis a sample of proton-proton collisions at a center of mass energy of √(s)=8 TeV with an integrated luminosity of ∫ L dt=20.3 fb{sup -1} is used. The collisions have been recorded with the ATLAS detector at the LHC in the year 2012. In two different selections the Standard Model predictions are compared with the observations. The observation of 6 events in the first selection and 14 in the second does not deviate significantly from the Standard Model with an expectation of 11 events in the first selection and 17 in the second. These results are interpreted in a phenomenological Minimal Supersymmetric Standard Model and in simplified models. For a simplified model with a chargino-neutralino pair production scenario the parameter space for masses of the lightest neutralino up to 100 GeV and up to 350 GeV for the lightest chargino mass can be excluded. For a simplified model with chargino pair production processes the parameter space for the lightest neutralino mass up to 30-50 GeV in a range for the lightest chargino mass of 170-330 GeV can be excluded. This thesis is focused on the estimation techniques of Standard Model background processes. Different methods for the estimation of the background originating from Z-boson and top-quark decays are investigated.

  6. CMS results in Electroweak Physics

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    We present the results of electroweak studies performed using data collected in 2010 at a center-of-mass energy of 7 TeV by the CMS experiment at the LHC. Besides their intrinsic interest as unique samples to calibrate and understand the CMS detector response to leptons, jets and missing energy, events containing W and Z bosons appear as dominant components in many Higgs seaches and in most of the searches beyond the Standard Model, either as signal or as background. In addition, the excellent level of theoretical and experimental understanding of these processes allows electroweak tests at the LHC at an unprecendented level of precision. CMS uses a wide range of final states to measure cross sections, asymmetries, polarizations and differential distributions in general. The current integrated luminosity is already sufficient to perform not just inclusive measurements using W and Z decays into muons and electrons, but also precise studies of associated jet production and final states containing taus, as well...

  7. Towards a natural theory of electroweak interactions

    Science.gov (United States)

    Dobrescu, Bogdan A.

    1998-01-01

    I study theories of electroweak symmetry breaking that may describe naturally the electromagnetic and weak interactions of the elementary particles observed so far (quarks, leptons and gauge bosons). These theories should explain why the energy scale at which the electroweak symmetry is spontaneously broken (246 GeV), called the 'electroweak scale', is seventeen orders of magnitude smaller than the 'Planck scale', which is associated with the quantum origin of gravity. I discuss first theories where the electroweak symmetry is broken by the dynamics of new strong interactions, naturally producing the hierarchy between the Planck scale and the electroweak scale. I show that in a realistic class of models of this type, the new gauge bosons needed for generating the mass of the heaviest quark have couplings which require a careful adjustment in order to be compatible with experimental data. In the case where the strong dynamics produces a composite spinless particle ('Higgs boson') whose interactions break the electroweak symmetry, I derive an upper bound of 460 GeV on the Higgs boson mass from experimental constraints on processes sensitive to new physics. I also discuss a different type of theory that explains the hierarchy of energy scales, based on a special symmetry, called supersymmetry, which requires the existence of new particles ('superpartners'). No superpartners have been seen in experiments. Therefore, if they exist, they must have masses larger than the particles known so far, implying that supersymmetry is not exact. In the simplest models, supersymmetry breaking is transmitted to the superpartners by standard gauge interactions. I show that all known models of this type are likely to be unacceptable because they do not admit a stable and phenomenologically viable ground state of the universe ('vacuum'). I then construct modified versions of these models that permit viable stable vacua. Also, I present a new model in which supersymmetry breaking is

  8. String completion of an SU(3c⊗SU(3L⊗U(1X electroweak model

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2016-08-01

    Full Text Available The extended electroweak SU(3c⊗SU(3L⊗U(1X symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (unoriented open strings, on Calabi–Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron–antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.

  9. Lower bound on the electroweak wall velocity from hydrodynamic instability

    Energy Technology Data Exchange (ETDEWEB)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D., E-mail: megevand@mdp.edu.ar, E-mail: membiela@mdp.edu.ar, E-mail: sanchez@mdp.edu.ar [IFIMAR (CONICET-UNMdP), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes (7600) 3350 Mar del Plata (Argentina)

    2015-03-01

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.

  10. Lower bound on the electroweak wall velocity from hydrodynamic instability

    International Nuclear Information System (INIS)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D.

    2015-01-01

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis

  11. Lower bound on the electroweak wall velocity from hydrodynamic instability

    Energy Technology Data Exchange (ETDEWEB)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D. [IFIMAR (CONICET-UNMdP), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes (7600) 3350 Mar del Plata (Argentina)

    2015-03-27

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.

  12. Electroweak precision tests

    International Nuclear Information System (INIS)

    Monteil, St.

    2009-12-01

    This document aims at summarizing a dozen of years of the author's research in High Energy Physics, in particular dealing with precision tests of the electroweak theory. Parity violating asymmetries measurements at LEP with the ALEPH detector together with global consistency checks of the Kobayashi-Maskawa paradigm within the CKM-fitter group are gathered in the first part of the document. The second part deals with the unpublished instrumental work about the design, tests, productions and commissioning of the elements of the Pre-Shower detector of the LHCb spectrometer at LHC. Physics perspectives with LHCb are eventually discussed as a conclusion. (author)

  13. Electroweak form factors of the Skyrmion

    International Nuclear Information System (INIS)

    Braaten, E.; Sze-Man Tse; Willcox, C.

    1986-01-01

    The electroweak form factors of baryons are studied in the semiclassical approximation to the Skyrme model. General expressions for the form factors are given for arbitrary choices of the Skyrme-model Lagrangian. They are applied to the original two-parameter Skyrme model to compute the electric, magnetic, and axial-vector form factors of the nucleon and the electromagnetic nucleon-Δ transition form factors. The dependence of the form factors on the momentum transfer is compared with phenomenological dipole parametrizations

  14. Electroweak probes with ATLAS

    CERN Document Server

    Milov, Alexander; The ATLAS collaboration

    2018-01-01

    Measuring electroweak bosons in relativistic heavy ion collisions at high energy provide an opportunity to understand temporal evolution of the quark-gluon plasma created in such collisions by constraining the initial state of the interaction. Due to lack of colour charges the bosons and or particles produced in their leptonic decays are unaffected by the quark-gluon plasma and therefore preserve the information about the very early stage of the collision when they were born. This singles EW bosons as a unique and very interesting class of observables in HI collisions. The ATLAS experiment at LHC measures production of electroweak bosons in $pp$, $p$+Pb and Pb+Pb collisions systems. A review of the existing results is given in this proceeding that includes studies made with isolated photons to constraint kinematic properties and flavour composition of associated jets, measurements of $W$ and $Z$ bosons used to estimate nuclear modification of PDF and the production rates of the bosons used to verify geometric...

  15. Energy helps accuracy: electroweak precision tests at hadron colliders

    CERN Document Server

    Farina, Marco

    2017-09-10

    We show that high energy measurements of Drell-Yan at the LHC can serve as electroweak precision tests. Dimension-6 operators, from the Standard Model Effective Field Theory, modify the high energy behavior of electroweak gauge boson propagators. Existing measurements of the dilepton invariant mass spectrum, from neutral current Drell-Yan at 8 TeV, have comparable sensitivity to LEP. We propose measuring the transverse mass spectrum of charged current Drell-Yan, which can surpass LEP already with 8 TeV data. The 13 TeV LHC will elevate electroweak tests to a new precision frontier.

  16. Energy helps accuracy: Electroweak precision tests at hadron colliders

    Directory of Open Access Journals (Sweden)

    Marco Farina

    2017-09-01

    Full Text Available We show that high energy measurements of Drell–Yan at the LHC can serve as electroweak precision tests. Dimension-6 operators, from the Standard Model Effective Field Theory, modify the high energy behavior of electroweak gauge boson propagators. Existing measurements of the dilepton invariant mass spectrum, from neutral current Drell–Yan at 8 TeV, have comparable sensitivity to LEP. We propose measuring the transverse mass spectrum of charged current Drell–Yan, which can surpass LEP already with 8 TeV data. The 13 TeV LHC will elevate electroweak tests to a new precision frontier.

  17. Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Li Yingchuan [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)], E-mail: yli@physics.wisc.edu; Profumo, Stefano [Department of Physics and Santa Cruz Institute for Particle Physics, University of California, 1156 High St., Santa Cruz, CA 95064 (United States)], E-mail: profumo@scipp.ucsc.edu; Ramsey-Musolf, Michael [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)], E-mail: mjrm@physics.wisc.edu

    2009-03-09

    It is conventional wisdom that successful electroweak baryogenesis in the Minimal Supersymmetric extension of the Standard Model (MSSM) is in tension with the non-observation of electric dipole moments (EDMs), since the level of CP-violation responsible for electroweak baryogenesis is believed to generate unavoidably large EDMs. We show that CP-violation in the bino-Higgsino sector of the MSSM can account for successful electroweak baryogenesis without inducing large EDMs. This observation weakens the correlation between electroweak baryogenesis and EDMs, and makes the bino-driven electroweak baryogenesis scenario the least constrained by EDM limits. Taking this observation together with the requirement of a strongly first-order electroweak phase transition, we argue that a bino-driven scenario with a light stop is the most phenomenologically viable MSSM electroweak baryogenesis scenario.

  18. Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments

    International Nuclear Information System (INIS)

    Li Yingchuan; Profumo, Stefano; Ramsey-Musolf, Michael

    2009-01-01

    It is conventional wisdom that successful electroweak baryogenesis in the Minimal Supersymmetric extension of the Standard Model (MSSM) is in tension with the non-observation of electric dipole moments (EDMs), since the level of CP-violation responsible for electroweak baryogenesis is believed to generate unavoidably large EDMs. We show that CP-violation in the bino-Higgsino sector of the MSSM can account for successful electroweak baryogenesis without inducing large EDMs. This observation weakens the correlation between electroweak baryogenesis and EDMs, and makes the bino-driven electroweak baryogenesis scenario the least constrained by EDM limits. Taking this observation together with the requirement of a strongly first-order electroweak phase transition, we argue that a bino-driven scenario with a light stop is the most phenomenologically viable MSSM electroweak baryogenesis scenario

  19. Flavor universal dynamical electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Burdman, G.; Evans, N.

    1999-01-01

    The top condensate seesaw mechanism of Dobrescu and Hill allows electroweak symmetry to be broken while deferring the problem of flavor to an electroweak singlet, massive sector. We provide an extended version of the singlet sector that naturally accommodates realistic masses for all the standard model fermions, which play an equal role in breaking electroweak symmetry. The models result in a relatively light composite Higgs sector with masses typically in the range of (400 - 700) GeV. In more complete models the dynamics will presumably be driven by a broken gauged family or flavor symmetry group. As an example of the higher scale dynamics a fully dynamical model of the quark sector with a GIM mechanism is presented, based on an earlier top condensation model of King using broken family gauge symmetry interactions (that model was itself based on a technicolor model of Georgi). The crucial extra ingredient is a reinterpretation of the condensates that form when several gauge groups become strong close to the same scale. A related technicolor model of Randall which naturally includes the leptons too may also be adapted to this scenario. We discuss the low energy constraints on the massive gauge bosons and scalars of these models as well as their phenomenology at the TeV scale. copyright 1999 The American Physical Society

  20. Introduction to gauge theories of electroweak interactions

    International Nuclear Information System (INIS)

    Ecker, G.

    1982-01-01

    Intended as a lecture for physicists who are not familiar with the sophisticated theoretical models in particle physics. Starting with the standard gauge model of electromagnetic, weak and strong interactions the recent developments of a unified gauge theory of electroweak interactions are shown. Shortcomings in the unitarity problem of the V-A fermi theory of charged intermediate vector bosons. Presented are the spontaneous symmetry breaking in quantum mechanics, the abelian higgs model as an example of a spontaneously broken gauge field theory, the minimal gauge group of electroweak interactions, the fermion mass generation. Further on the anomalies in quantum field theory are discussed and the radiative corrections to the vector boson masses are considered. (H.B.)

  1. Concepts of electroweak symmetry breaking and Higgs physics

    International Nuclear Information System (INIS)

    Gomez-Bock, M.; Zerwas, P.M.; RWTH Aachen; Univ. Paris- Sud, Orsay

    2007-12-01

    We present an introduction to the basic concepts of electroweak symmetry breaking and Higgs physics within the Standard Model and its supersymmetric extensions. A brief overview will also be given on alternative mechanisms of electroweak symmetry breaking. In addition to the theoretical basis, the present experimental status of Higgs physics and prospects at the Tevatron, the LHC and e + e - linear colliders are discussed. (orig.)

  2. Concepts of electroweak symmetry breaking and Higgs physics

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Bock, M. [Benemerita Univ., Puebla (Mexico). Inst. de Fisica; Mondragon, M. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica; Muehlleitner, M. [Laboratoire d' Annecy-Le-Vieux de Physique Theorique, 74 (France)]|[CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Spira, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[RWTH Aachen (Germany). Inst. Theor. Physik E]|[Univ. Paris- Sud, Orsay (France). Laboratoire de Physique Theorique

    2007-12-15

    We present an introduction to the basic concepts of electroweak symmetry breaking and Higgs physics within the Standard Model and its supersymmetric extensions. A brief overview will also be given on alternative mechanisms of electroweak symmetry breaking. In addition to the theoretical basis, the present experimental status of Higgs physics and prospects at the Tevatron, the LHC and e{sup +}e{sup -} linear colliders are discussed. (orig.)

  3. Hyperscaling violation and electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Elander, Daniel, E-mail: pelander@purdue.edu [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States); Lawrance, Robert; Piai, Maurizio [Department of Physics, College of Science, Swansea University, Singleton Park, Swansea, Wales (United Kingdom)

    2015-08-15

    We consider a class of simplified models of dynamical electroweak symmetry breaking built in terms of their five-dimensional weakly-coupled gravity duals, in the spirit of bottom-up holography. The sigma-model consists of two abelian gauge bosons and one real, non-charged scalar field coupled to gravity in five dimensions. The scalar potential is a simple exponential function of the scalar field. The background metric resulting from solving the classical equations of motion exhibits hyperscaling violation, at least at asymptotically large values of the radial direction. We study the spectrum of scalar composite states of the putative dual field theory by fluctuating the sigma-model scalars and gravity, and discuss in which cases we find a parametrically light scalar state in the spectrum. We model the spontaneous breaking of the (weakly coupled) gauge symmetry to the diagonal subgroup by the choice of IR boundary conditions. We compute the mass spectrum of spin-1 states, and the precision electroweak parameter S as a function of the hyperscaling coefficient. We find a general bound on the mass of the lightest spin-1 resonance, by requiring that the indirect bounds on the precision parameters be satisfied, that implies that precision electroweak physics excludes the possibility of a techni-rho meson with mass lighter than several TeV.

  4. PRECISION ELECTROWEAK MEASUREMENTS AND THE HIGGS MASS

    International Nuclear Information System (INIS)

    MARCIANO, W.J.

    2004-01-01

    The utility of precision electroweak measurements for predicting the Standard Model Higgs mass via quantum loop effects is discussed. Current constraints from m w and sin 2 θ w (m z ) ovr MS imply a relatively light Higgs ∼< 154 GeV which is consistent with Supersymmetry expectations. The existence of Supersymmetry is further suggested by a discrepancy between experiment and theory for the muon anomalous magnetic moment. Constraints from precision studies on other types of ''New Physics'' are also briefly described

  5. On stability of electroweak vacuum during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Shkerin, A., E-mail: andrey.shkerin@epfl.ch [Institut de Théorie des Phénomènes Physiques, EPFL, CH-1015 Lausanne (Switzerland); Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, 117312 Moscow (Russian Federation); Sibiryakov, S. [Institut de Théorie des Phénomènes Physiques, EPFL, CH-1015 Lausanne (Switzerland); Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, 117312 Moscow (Russian Federation); CERN Theory Division, CH-1211 Geneva 23 (Switzerland)

    2015-06-30

    We study Coleman–De Luccia tunneling of the Standard Model Higgs field during inflation in the case when the electroweak vacuum is metastable. We verify that the tunneling rate is exponentially suppressed. The main contribution to the suppression is the same as in flat space–time. We analytically estimate the corrections due to the expansion of the universe and an effective mass term in the Higgs potential that can be present at inflation.

  6. On stability of electroweak vacuum during inflation

    International Nuclear Information System (INIS)

    Shkerin, A.; Sibiryakov, S.

    2015-01-01

    We study Coleman–De Luccia tunneling of the Standard Model Higgs field during inflation in the case when the electroweak vacuum is metastable. We verify that the tunneling rate is exponentially suppressed. The main contribution to the suppression is the same as in flat space–time. We analytically estimate the corrections due to the expansion of the universe and an effective mass term in the Higgs potential that can be present at inflation

  7. On stability of electroweak vacuum during inflation

    CERN Document Server

    Shkerin, Andrey

    2015-01-01

    We study Coleman-De Luccia tunneling of the Standard Model Higgs field during inflation in the case when the electroweak vacuum is metastable. We verify that the tunneling rate is exponentially suppressed. The main contribution to the suppression is the same as in flat space-time. We analytically estimate the corrections due to the expansion of the universe and an effective mass term in the Higgs potential that can be present at inflation.

  8. Electroweak physics and electron scattering

    International Nuclear Information System (INIS)

    Henley, E.M.; Hwang, W.Y.P.

    1988-01-01

    The electroweak theory is developed and applied to electron scattering from nucleons and light nuclei. It is shown that these scatterings can be used to test the standard theory and probe structure effects. 33 refs., 5 figs

  9. Search for electroweak production of supersymmetric states in Non-Universal Higgs Mass model with two extra parameters compressed scenario with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00529728

    The ATLAS and CMS collaborations announced the discovery of the Higgs boson in July 2012, completing the particle content of the Standard Model. Although the Standard Model is a great triumph, it is not considered to be the complete theory of particle physics. Several new theories have been proposed which seek to move beyond the Standard Model. Among the newly-developed theories, Supersymmetry (SUSY) is one of the most promising ones. SUSY predicts the existence of supersymmetric partner particles and it is one of the best-motivated extensions of the space-time symmetry of particle interactions. There are supersymmetric partner particles associated with each SM particles in which the spin differs by 1/2. This dissertation focuses on a search for electroweak production of supersymmetric particles with compressed mass spectra in the final states with exactly two low-momentum leptons and missing transverse momentum. The proton-proton collision data is recorded by the ATLAS detector at the Large Hadron Collider i...

  10. Holographic theories of electroweak symmetry breaking without a Higgs Boson

    International Nuclear Information System (INIS)

    Burdman, Gustavo; Nomura, Yasunori

    2003-01-01

    Recently, realistic theories of electroweak symmetry breaking have been constructed in which the electroweak symmetry is broken by boundary conditions imposed at a boundary of higher dimensional spacetime. These theories have equivalent 4D dual descriptions, in which the electroweak symmetry is dynamically broken by non-trivial infrared dynamics of some gauge interaction, whose gauge coupling (tilde g) and size N satisfy (tilde g) 2 N ∼> 16π 2 . Such theories allow one to calculate electroweak radiative corrections, including the oblique parameters S, T and U, as long as (tilde g) 2 N/16π 2 and N are sufficiently larger than unity. We study how the duality between the 4D and 5D theories manifests itself in the computation of various physical quantities. In particular, we calculate the electroweak oblique parameters in a warped 5D theory where the electroweak symmetry is broken by boundary conditions at the infrared brane. We show that the value of S obtained in the minimal theory exceeds the experimental bound if the theory is in a weakly coupled regime. This requires either an extension of the minimal model or departure from weak coupling. A particularly interesting scenario is obtained if the gauge couplings in the 5D theory take the largest possible values--the value suggested by naive dimensional analysis. We argue that such a theory can provide a potentially consistent picture for dynamical electroweak symmetry breaking: corrections to the electroweak observables are sufficiently small while realistic fermion masses are obtained without conflicting with bounds from flavor violation. The theory contains only the standard model quarks, leptons and gauge bosons below ≅2 TeV, except for a possible light scalar associated with the radius of the extra dimension. At ≅2 TeV increasingly broad string resonances appear. An analysis of top-quark phenomenology and flavor violation is also presented, which is applicable to both the weakly-coupled and strongly

  11. Electroweak results from the tevatron

    International Nuclear Information System (INIS)

    Wood, D.

    1997-01-01

    Electroweak results are presented from the CDF and DO experiments based on data collected in recent runs of the Fermilab Tevatron Collider. The measurements include the mass and width of the W boson, the production cross sections of the W and Z bosons, and the W charge asymmetry. Additional results come from studies of events with pairs of electroweak gauge bosons and include limits on anomalous couplings

  12. Electroweak results from the tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D. [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    1997-01-01

    Electroweak results are presented from the CDF and DO experiments based on data collected in recent runs of the Fermilab Tevatron Collider. The measurements include the mass and width of the W boson, the production cross sections of the W and Z bosons, and the W charge asymmetry. Additional results come from studies of events with pairs of electroweak gauge bosons and include limits on anomalous couplings.

  13. Electroweak boson production at LHCb

    CERN Document Server

    Sestini, Lorenzo

    2018-01-01

    The LHCb experiment offers a complementary phase space to ATLAS and CMS to study electroweak processes, thanks to the forward acceptance and the large bandwidth of the trigger allowing low energy thresholds. For this reason electroweak measurements at LHCb can provide unique constraints to the Parton Distribution Functions. Moreover these measurements can be used to validate reconstruction techniques. In these proceedings the latest measurements on W and Z bosons production performed during the LHC Run I and Run II data taking are presented.

  14. Electroweak baryogenesis with primordial hypermagnetic fields

    International Nuclear Information System (INIS)

    Ayala, Alejandro; Pallares, Gabriel; Besprosvany, Jaime; Piccinelli, Gabriella

    2002-01-01

    Primordial magnetic fields, independently of their origin, could have had a significant influence over several physical processes that took place during the evolution of the early universe, in particular baryogenesis. Recall that for temperatures above the electroweak phase transition (T > 100 GeV), the symmetry of the standard model corresponded to the U(1)y hypercharge group, instead of the U(1)em electromagnetic group and are therefore properly called hypermagnetic fields. In this work, we show that during a first order electroweak phase transition, the presence of hypermagnetic fields produces an axial charge segregation in the reflection and transmission of fermions off the true vacuum bubbles. We also comment on the possible consequences that these processes have for the generation of baryon number during the phase transition

  15. R2SM: a package for the analytic computation of the R2 Rational terms in the Standard Model of the Electroweak interactions

    International Nuclear Information System (INIS)

    Garzelli, M.V.

    2011-01-01

    The analytical package written in FORM presented in this paper allows the computation of the complete set of Feynman Rules producing the Rational terms of kind R 2 contributing to the virtual part of NLO corrections in the Standard Model of the Electroweak interactions. Building block topologies filled by means of generic scalars, vectors and fermions, allowing to build these Feynman Rules in terms of specific elementary particles, are explicitly given in the R ξ gauge class, together with the automatic dressing procedure to obtain the Feynman Rules from them. The results in more specific gauges, like the 't Hooft Feynman one, follow as particular cases, in both the HV and the FDH dimensional regularization schemes. As a check on our formulas, the gauge independence of the total Rational contribution (R 1 +R 2 ) to renormalized S-matrix elements is verified by considering the specific example of the H →γγ decay process at 1-loop. This package can be of interest for people aiming at a better understanding of the nature of the Rational terms. It is organized in a modular way, allowing a further use of some its files even in different contexts. Furthermore, it can be considered as a first seed in the effort towards a complete automation of the process of the analytical calculation of the R 2 effective vertices, given the Lagrangian of a generic gauge theory of particle interactions. (orig.)

  16. The serendipity of electroweak baryogenesis

    Science.gov (United States)

    Servant, Géraldine

    2018-01-01

    The origin of the matter-antimatter asymmetry of the universe remains unexplained in the Standard Model (SM) of particle physics. The origin of the flavour structure is another major puzzle of the theory. In this article, we report on recent work attempting to link the two themes through the appealing framework of electroweak (EW) baryogenesis. We show that Yukawa couplings of SM fermions can be the source of CP violation for EW baryogenesis if they vary at the same time as the Higgs is acquiring its vacuum expectation value, offering new avenues for EW baryogenesis. The advantage of this approach is that it circumvents the usual severe bounds from electric dipole moments. These ideas apply if the mechanism explaining the flavour structure of the SM is connected to EW symmetry breaking, as motivated for instance in Randall-Sundrum or Composite Higgs models. We compute the resulting baryon asymmetry for different configurations of the Yukawa coupling variation across the bubble wall and show that it can naturally be of the right order. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  17. The serendipity of electroweak baryogenesis.

    Science.gov (United States)

    Servant, Géraldine

    2018-03-06

    The origin of the matter-antimatter asymmetry of the universe remains unexplained in the Standard Model (SM) of particle physics. The origin of the flavour structure is another major puzzle of the theory. In this article, we report on recent work attempting to link the two themes through the appealing framework of electroweak (EW) baryogenesis. We show that Yukawa couplings of SM fermions can be the source of CP violation for EW baryogenesis if they vary at the same time as the Higgs is acquiring its vacuum expectation value, offering new avenues for EW baryogenesis. The advantage of this approach is that it circumvents the usual severe bounds from electric dipole moments. These ideas apply if the mechanism explaining the flavour structure of the SM is connected to EW symmetry breaking, as motivated for instance in Randall-Sundrum or Composite Higgs models. We compute the resulting baryon asymmetry for different configurations of the Yukawa coupling variation across the bubble wall and show that it can naturally be of the right order.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  18. Precision electroweak physics at the Tevatron

    International Nuclear Information System (INIS)

    James, Eric B.

    2006-01-01

    An overview of Tevatron electroweak measurements performed by the CDF and Dφ experiments is presented. The current status and future prospects for high precision measurements of electroweak parameters and detailed studies of boson production are highlighted. (author)

  19. Supersymmetric electro-weak effects on gsub(μ)-2

    International Nuclear Information System (INIS)

    Yuan, T.C.; Arnowitt, R.; Chamseddine, A.H.; Nath, P.

    1984-01-01

    A model independent analysis of the supersymmetric electroweak contribution to gsub(μ)-2 is discussed within the framework of N=1 Supergravity unified theory. A detailed comparison with existing experiment of two models (R.G. and T.B.) is carried out. The supersymmetric electro-weak contributions are found to be characteristically different and generally larger than the electro-weak contributions of the standard theory, and in many cases significantly larger. Effects of the hidden sector and the photino mass dependence of gsub(μ)-2 are also investigated. Present data already eliminates some choices of parameters. Reduction of existing experimental errors by a factor of 3 will make contact with most R.G. models and by a factor of 10 with most T.B. models. (orig.)

  20. Electroweak Symmetry Breaking (3/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The focus of the lectures will be on the role of the Higgs boson in the mechanism of electroweak symmetry breaking, both in the Standard Model and in models of New Physics. In particular, I will discuss how a determination of its couplings to matter and gauge fields can give important information on the nature and origin of the Higgs boson. I will thus review the picture on Higgs couplings implied by the current experimental data and examine further interesting processes that can be measured in the future.

  1. Electroweak Symmetry Breaking (2/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The focus of the lectures will be on the role of the Higgs boson in the mechanism of electroweak symmetry breaking, both in the Standard Model and in models of New Physics. In particular, I will discuss how a determination of its couplings to matter and gauge fields can give important information on the nature and origin of the Higgs boson. I will thus review the picture on Higgs couplings implied by the current experimental data and examine further interesting processes that can be measured in the future.

  2. Electroweak Symmetry Breaking (1/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The focus of the lectures will be on the role of the Higgs boson in the mechanism of electroweak symmetry breaking, both in the Standard Model and in models of New Physics. In particular, I will discuss how a determination of its couplings to matter and gauge fields can give important information on the nature and origin of the Higgs boson. I will thus review the picture on Higgs couplings implied by the current experimental data and examine further interesting processes that can be measured in the future.

  3. Electroweak results from hadron colliders

    International Nuclear Information System (INIS)

    Demarteau, Marcel

    1997-01-01

    A review of recent electroweak results from hadron colliders is given. Properties of the W ± and Z 0 gauge bosons using final states containing electrons and muons based on large integrated luminosities are presented. The emphasis is placed on the measurement of the mass of the W boson and the measurement of trilinear gauge boson couplings

  4. Electroweak physics from D0

    International Nuclear Information System (INIS)

    Roe, N.A.

    1993-05-01

    The D0 detector was recently commissioned at the Tevatron p bar p collider and is presently taking data. Preliminary results from D0 are presented on properties of the W and Z electroweak gauge bosons, using final states containing electrons and muons

  5. Constraining Lorentz Violation in Electroweak Physics

    Science.gov (United States)

    Lehnert, Ralf

    2018-01-01

    For practical reasons, the majority of past Lorentz tests has involved stable or quasistable particles, such as photons, neutrinos, electrons, protons, and neutrons. Similar efforts in the electroweak sector have only recently taken shape. Within this context, Lorentz-violation searches in the Standard-Model Extension’s Z-Boson sector will be discussed. It is argued that existing precision data on polarized electron-electron scattering can be employed to extract the first conservative two-sided limits on Lorentz breakdown in this sector at the level of 10-7.

  6. On neutrino and charged lepton masses and mixings: a view from the electroweak-scale right-handed neutrino model

    Energy Technology Data Exchange (ETDEWEB)

    Hung, P.Q.; Le, Trinh [Department of Physics, University of Virginia,Charlottesville, VA 22904-4714 (United States)

    2015-09-01

    We present a model of neutrino masses within the framework of the EW-ν{sub R} model in which the experimentally desired form of the PMNS matrix is obtained by applying an A{sub 4} symmetry to the Higgs singlet sector responsible for the neutrino Dirac mass matrix. This mechanism naturally avoids potential conflict with the LHC data which severely constrains the Higgs sector, in particular the Higgs doublets. Moreover, by making a simple ansa{sup ¨}tz we extract M{sub l}M{sub l}{sup †} for the charged lepton sector. A similar ansa{sup ¨}tz is proposed for the quark sector. The sources of masses for the neutrinos are entirely different from those for the charged leptons and for the quarks and this might explain why U{sub PMNS} is very different from V{sub CKM}.

  7. Phenomenology of the spontaneous C P violation in SU(3)L x U(1)Y electroweak models

    International Nuclear Information System (INIS)

    Epele, Luis N.; Gomez Dumm, Daniel A.

    1994-01-01

    This work studies the phenomenological consequence of the spontaneous C P violation in a SU(3) L x U(1) Y model with three Higgs triplets and one sextuplet, which has been recently proposed. Since this C P-violating effects are due to the presence of complex vacuum expectation values in the Higgs sector, our analysis requires a detailed study of the enlarged potential

  8. Supersymmetric contribution to the electroweak ρ parameter

    International Nuclear Information System (INIS)

    Drees, M.; Hagiwara, K.

    1990-01-01

    Contributions to the electroweak ρ parameter, the ratio of the neutral- and charged-current strengths at zero-momentum transfer, are studied in the minimal extension of the standard model (SM) with softly broken supersymmetry. The effects of the extended Higgs sector, the gaugino-Higgsino sector, the light-squark--slepton sector and that of the stop-sbottom sector are studied separately, and the role of the custodial SU(2) V symmetry in each sector is clarified. The stop-sbottom sector is found to give potentially a most significant contribution to δρ which can double the standard-model contribution from the top-bottom sector, whereas all the remaining sectors contribute to δρ at the level of at most a few x10 -3 . In the supergravity model with radiative electroweak gauge symmetry breaking there are no extra sources of the SU(2) V breaking at the grand unification scale other than those present already in the SM, and the resulting δρ is found to be significantly smaller than in the general case. Constraints on the allowed range of δρ in the supergravity models are given by taking account of existing and prospective experimental mass limits of additional particles at CERN LEP and Sp bar pS and Fermilab Tevatron

  9. Electroweak symmetry breaking: Higgs/whatever

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1990-01-01

    In these two lectures the author discusses electroweak symmetry breaking from a general perspective, stressing properties that are model independent and follow just from the assumption that the electroweak interactions are described by a spontaneously broken gauge theory. This means he assumes the Higgs mechanism though not necessarily the existence of Higgs bosons. The first lecture presents the general framework of a spontaneously broken gauge theory: (1) the Higgs mechanism sui generis, with or without Higgs boson(s) and (2) the implications of symmetry and unitarity for the mass scale and interaction strength of the new physics that the Higgs mechanism requires. In addition he reviews a softer theoretical argument based on the naturalness problem which leads to a prejudice against Higgs bosons unless they are supersymmetric. This is a prejudice, not a theorem, and it could be overturned in the future by a clever new idea. In the second lecture he illustrates the general framework by reviewing some specific models: (1) the Weinberg-Salam model of the Higgs sector; (2) the minimal supersymmetric extension of the Weinberg-Salam model; and (3) technicolor as an example of the Higgs mechanism without Higgs bosons. He concludes the second lecture with a discussion of strong WW scattering that must occur if L SB lives above 1 TeV. In particular he describes some of the experimental signals and backgrounds at the SSC. 57 refs., 12 figs

  10. Combined QCD and electroweak analysis of HERA data

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max-Planck-Institute for Physics, Munich (Germany); Abt, I. [Max-Planck-Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science; Collaboration: ZEUS Collaboration; and others

    2016-03-15

    A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.

  11. Studying the Electroweak Sector with the ATLAS Detector

    CERN Document Server

    Bittrich, Carsten; The ATLAS collaboration

    2018-01-01

    The large integrated luminosities that are available at the LHC, allow to test the gauge structure of the electroweak sector of the Standard Model to highest precision. In this talk, we review the latest results of the ATLAS collaboration involving di-boson and multiboson final states as well as the corresponding limits on anomalous gauge couplings. Moreover, we discuss the electroweak production of vector boson at 13 TeV. Another approach to test the consistency of the electroweak sector is via precision measurements. ATLAS has recently published a measurement of the tau-polarization in Z events as well as a three dimensional cross-section measurement of the Drell-Yan process. The latter allows for the extraction of the forward-backward asymmetry that can be interpreted as a measurement of the weak mixing angle. Both results will be presented and discussed.

  12. Combined QCD and electroweak analysis of HERA data

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2016-03-01

    A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.

  13. Combined QCD and electroweak analysis of HERA data

    CERN Document Server

    Abramowicz, H; Adamczyk, L; Adamus, M; Antonelli, S; Aushev, V; Behnke, O; Behrens, U; Bertolin, A; Bloch, I; Boos, EG; Brock, I; Brook, NH; Brugnera, R; Bruni, A; Bussey, PJ; Caldwell, A; Capua, M; Catterall, CD; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cooper-Sarkar, AM; Corradi, M; Dementiev, RK; Devenish, RCE; Dusini, S; Foster, B; Gach, G; Gallo, E; Garfagnini, A; Geiser, A; Gizhko, A; Gladilin, LK; Golubkov, Yu A; Grzelak, G; Guzik, M; Hain, W; Hochman, D; Hori, R; Ibrahim, ZA; Iga, Y; Ishitsuka, M; Januschek, F; Jomhari, NZ; Kadenko, I; Kananov, S; Karshon, U; Kaur, P; Kisielewska, D; Klanner, R; Klein, U; Korzhavina, IA; Kotański, A; Kötz, U; Kovalchuk, N; Kowalski, H; Krupa, B; Kuprash, O; Kuze, M; Levchenko, BB; Levy, A; Limentani, S; Lisovyi, M; Lobodzinska, E; Löhr, B; Lohrmann, E; Longhin, A; Lontkovskyi, D; Lukina, OYu; Makarenko, I; Malka, J; Mohamad Idris, F; Mohammad Nasir, N; Myronenko, V; Nagano, K; Nobe, T; Nowak, RJ; Onishchuk, Yu; Paul, E; Perlański, W; Pokrovskiy, NS; Przybycien, M; Roloff, P; Ruspa, M; Saxon, DH; Schioppa, M; Schneekloth, U; Schörner-Sadenius, T; Shcheglova, LM; Shevchenko, R; Shkola, O; Shyrma, Yu; Singh, I; Skillicorn, IO; Słomiński, W; Solano, A; Stanco, L; Stefaniuk, N; Stern, A; Stopa, P; Sztuk-Dambietz, J; Tassi, E; Tokushuku, K; Tomaszewska, J; Tsurugai, T; Turcato, M; Turkot, O; Tymieniecka, T; Verbytskyi, A; Wan Abdullah, WAT; Wichmann, K; Wing, M; Yamada, S; Yamazaki, Y; Zakharchuk, N; Żarnecki, AF; Zawiejski, L; Zenaiev, O; Zhautykov, BO; Zotkin, DS; Bhadra, S; Gwenlan, C; Hlushchenko, O; Polini, A; Mastroberardino, A

    2016-05-03

    A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.

  14. Testing the electroweak model using semileptonic decays of b quarks in the L3 detector at LEP

    International Nuclear Information System (INIS)

    Hebert, M.

    1992-01-01

    The partial decay width Γ bbar b for Z 0 → b bar b, the forward-backward asymmetry A bbar b , and the B 0 -bar B 0 mixing parameter χ B are determined using a sample of 430K hadronic Z 0 decay events collected by the L3 detector at LEP during 1990 and 1991. The partial width Γ cbar c and asymmetry A cbar c for charm are also determined. Heavy quarks are tagged via their semileptonic decays into high momentum and high p perpendicular muons or electrons. The decay lepton's charge is used to determine the charge of the parent quark. An unbinned, maximum-likelihood fit to the two-dimensional p and p perpendicular distributions in single-lepton events and the four-dimensional p and p perpendicular distributions for dilepton events yields the values Γ bbar b = 382 ± 3 (stat) ± (sys) GeV; Γ cbar c = 293 ± 10 (stat) ± 98 (sys) GeV A bbar b = 0.090 ± 0.015 (stat) ± 0.007 (sys); A cbar c = 0.083 ± 0.038 (stat) ± 0.027 (sys) and χ B = 0.124 ± 0.017 (stat) ± 0.010 (sys). All of these values are seen to be consistent with Standard Model expectations

  15. Towards a nonequilibrium quantum field theory approach to electroweak baryogenesis

    International Nuclear Information System (INIS)

    Riotto, A.

    1996-01-01

    We propose a general method to compute CP violating observables from extensions of the standard model in the context of electroweak baryogenesis. It is an alternative to the one recently developed by Huet and Nelson and relies on a nonequilibrium quantum field theory approach. The method is valid for all shapes and sizes of the bubble wall expanding in the thermal bath during a first-order electroweak phase transition. The quantum physics of CP violation and its suppression coming from the incoherent nature of thermal processes are also made explicit. copyright 1996 The American Physical Society

  16. On stability of the electroweak vacuum and the Higgs portal

    International Nuclear Information System (INIS)

    Lebedev, Oleg

    2012-03-01

    In the Standard Model (SM), the Higgs mass around 125 GeV implies that the electroweak vacuum is metastable since the quartic Higgs coupling turns negative at high energies. I point out that an arbitrarily small mixing of the Higgs with a heavy singlet can make the electroweak vacuum completely stable. This is due to a tree level correction to the Higgs mass, which survives in the zero--mixing/heavy--singlet limit. Such a situation is experimentally indistinguishable from the SM, unless the Higgs self--coupling can be measured. As a result, Higgs inflation and its variants can still be viable.

  17. Production of electroweak bosons at hadron colliders: theoretical aspects

    CERN Document Server

    Mangano, Michelangelo L.

    2016-01-01

    Since the W and Z discovery, hadron colliders have provided a fertile ground, in which continuously improving measurements and theoretical predictions allow to precisely determine the gauge boson properties, and to probe the dynamics of electroweak and strong interactions. This article will review, from a theoretical perspective, the role played by the study, at hadron colliders, of electroweak boson production properties, from the better understanding of the proton structure, to the discovery and studies of the top quark and of the Higgs, to the searches for new phenomena beyond the Standard Model.

  18. On stability of the electroweak vacuum and the Higgs portal

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg

    2012-03-15

    In the Standard Model (SM), the Higgs mass around 125 GeV implies that the electroweak vacuum is metastable since the quartic Higgs coupling turns negative at high energies. I point out that an arbitrarily small mixing of the Higgs with a heavy singlet can make the electroweak vacuum completely stable. This is due to a tree level correction to the Higgs mass, which survives in the zero--mixing/heavy--singlet limit. Such a situation is experimentally indistinguishable from the SM, unless the Higgs self--coupling can be measured. As a result, Higgs inflation and its variants can still be viable.

  19. Towards Reviving Electroweak Baryogenesis with a Fourth Generation

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    universe. However, it does not work within the standard model due to two reasons: (1 the strength of CP violation from the Kobayashi-Maskawa mechanism with three generations is too small; (2 the electroweak phase transition is not first order for the experimentally allowed Higgs boson mass. We discuss possibilities to solve these problems by introducing a fourth generation of fermions and how electroweak baryogenesis might be revived. We also discuss briefly the recent observation of a Higgs-like boson with mass around 125 GeV, which puts the fourth generation in a difficult situation, and the possible way out.

  20. Phenomenology of induced electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Chang, Spencer; Galloway, Jamison; Luty, Markus A.; Salvioni, Ennio; Tsai, Yuhsin

    2015-01-01

    We study the phenomenology of models of electroweak symmetry breaking where the Higgs potential is destabilized by a tadpole arising from the coupling to an “auxiliary” Higgs sector. The auxiliary Higgs sector can be either perturbative or strongly coupled, similar to technicolor models. Since electroweak symmetry breaking is driven by a tadpole, the cubic and quartic Higgs couplings can naturally be significantly smaller than their values in the standard model. The theoretical motivation for these models is that they can explain the 125 GeV Higgs mass in supersymmetry without fine-tuning. The auxiliary Higgs sector contains additional Higgs states that cannot decouple from standard model particles, so these models predict a rich phenomenology of Higgs physics beyond the standard model. In this paper we analyze a large number of direct and indirect constraints on these models. We present the current constraints after the 8 TeV run of the LHC, and give projections for the sensitivity of the upcoming 14 TeV run. We find that the strongest constraints come from the direct searches A 0 →Zh, A 0 →tt-bar, with weaker constraints from Higgs coupling fits. For strongly-coupled models, additional constraints come from ρ + →WZ where ρ + is a vector resonance. Our overall conclusion is that a significant parameter space for such models is currently open, allowing values of the Higgs cubic coupling down to 0.4 times the standard model value for weakly coupled models and vanishing cubic coupling for strongly coupled models. The upcoming 14 TeV run of the LHC will stringently test this scenario and we identify several new searches with discovery potential for this class of models.

  1. Enabling electroweak baryogenesis through dark matter

    International Nuclear Information System (INIS)

    Lewicki, Marek; Rindler-Daller, Tanja; Wells, James D.

    2016-01-01

    We study the impact on electroweak baryogenesis from a swifter cosmological expansion induced by dark matter. We detail the experimental bounds that one can place on models that realize it, and we investigate the modifications of these bounds that result from a non-standard cosmological history. The modifications can be sizeable if the expansion rate of the Universe increases by several orders of magnitude. We illustrate the impact through the example of scalar field dark matter, which can alter the cosmological history enough to enable a strong-enough first-order phase transition in the Standard Model when it is supplemented by a dimension six operator directly modifying the Higgs boson potential. We show that due to the modified cosmological history, electroweak baryogenesis can be realized, while keeping deviations of the triple Higgs coupling below HL-LHC sensitivies. The required scale of new physics to effectuate a strong-enough first order phase transition can change by as much as twenty percent as the expansion rate increases by six orders of magnitude.

  2. Electroweak Baryogenesis in R-symmetric Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin

    2013-03-01

    We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.

  3. Fit to Electroweak Precision Data

    International Nuclear Information System (INIS)

    Erler, Jens

    2006-01-01

    A brief review of electroweak precision data from LEP, SLC, the Tevatron, and low energies is presented. The global fit to all data including the most recent results on the masses of the top quark and the W boson reinforces the preference for a relatively light Higgs boson. I will also give an outlook on future developments at the Tevatron Run II, CEBAF, the LHC, and the ILC

  4. Precision measurements of electroweak parameters

    CERN Document Server

    Savin, Alexander

    2017-01-01

    A set of selected precise measurements of the SM parameters from the LHC experiments is discussed. Results on W-mass measurement and forward-backward asymmetry in production of the Drell--Yan events in both dielectron and dimuon decay channels are presented together with results on the effective mixing angle measurements. Electroweak production of the vector bosons in association with two jets is discussed.

  5. LHCb: Electroweak studies at LHCb

    CERN Multimedia

    Salustino Guimaraes, V

    2012-01-01

    Results on the measurement of the $W^{\\pm}$ and $Z^{0}$ cross-sections are presented using final state leptons with pseudorapidities between 2 and 4.5. Due to its acceptance, LHCb can probe a regime of low low-x electroweak boson production, where parton distribution functions are not well constrained. We summarize the $W^{\\pm}$ measurements performed in the decay $\\mu^{\\pm}\

  6. Quantum chromodynamics effects in electroweak and Higgs physics

    Indian Academy of Sciences (India)

    Several examples of the often intricate effects of higher-order quantum chromodynamics (QCD) corrections on predictions for hadron-collider observables, are discussed, using the production of electroweak gauge boson and the Standard Model Higgs boson as examples. Particular attention is given to the interplay of QCD ...

  7. Measurement of Electroweak Top Quark Production at {D\\O}

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yun-Tse [Univ. of Rochester, NY (United States)

    2013-01-01

    We present a new model-independent measurement of the electroweak single top-quark production cross section in proton-antiproton (p- $\\bar{p}$) collisions at √s = 1.96 TeV in 9.7 fb-1 of integrated luminosity collected with the DØ detector.

  8. Anomalous U(1)A and electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Gogoladze, I.; Tsulaya, M.

    2000-01-01

    A new mechanism for electroweak symmetry breaking in the supersymmetric Standard Model is suggested. Our suggestion is based on the presence of an anomalous U(1) A gauge symmetry, which naturally arises in the four-dimensional superstring theory, and heavily relies on the corresponding Fayet-Illiopoulos ξ-term

  9. Anomalous U(1)A and electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Gogoladze, Ilia

    2000-10-01

    We suggest a mechanism for electroweak symmetry breaking in the Supersymmetric Standard Model. Our suggestion is based on the presence of an anomalous U(1) A gauge symmetry, which naturally arises in the four dimensional superstring theory, and heavily relies on the value of the corresponding Fayet-Illiopoulos ξ-term. (author)

  10. Tests of the electroweak theory at LEP

    International Nuclear Information System (INIS)

    Schaile, D.

    1994-01-01

    LEP offers a rich choice of tests of the electroweak theory such as the measurement of hadronic and leptonic cross sections, leptonic forward-backward asymmetries, τ polarization asymmetries, partial widths and forward-backward asymmetries of heavy quark flavours, of the inclusive q anti q charge asymmetry and of final state radiation in hadronic events. We discuss experimental aspects of these measurements and their theoretical parametrization and summarize the results available so far. We present several analyses which reveal specific aspects of the results, such as their constraints on Standard Model parameters and on new particles, the sensitivity to deviations from the Standard Model multiplet structure and an analysis in a framework which provides a model independent search for new physics. (orig.)

  11. Strong electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Panico, G.

    2014-01-01

    In the view of the recent LHC discovery of an Higgs-like scalar particle, I review the phenomenological aspects of the Composite Higgs scenarios which can be used to probe this class of models, namely the distortion of the Higgs couplings and the presence of new resonances. (author)

  12. Natural cold baryogenesis from strongly interacting electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Konstandin, Thomas; Servant, Géraldine, E-mail: tkonstan@cern.ch, E-mail: geraldine.servant@cern.ch [CERN Physics Department, Theory Division, CH-1211 Geneva 23 (Switzerland)

    2011-07-01

    The mechanism of ''cold electroweak baryogenesis'' has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on any particular UV completion but only on a stage of supercooling ended by a first-order phase transition in the evolution of the universe, which can be natural if there is nearly conformal dynamics at the TeV scale. Besides, baryon-number violation originates from the Standard Model only.

  13. Natural cold baryogenesis from strongly interacting electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Konstandin, Thomas; Servant, Géraldine

    2011-01-01

    The mechanism of ''cold electroweak baryogenesis'' has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on any particular UV completion but only on a stage of supercooling ended by a first-order phase transition in the evolution of the universe, which can be natural if there is nearly conformal dynamics at the TeV scale. Besides, baryon-number violation originates from the Standard Model only

  14. Electroweak vacuum geometry

    International Nuclear Information System (INIS)

    Lepora, N.; Kibble, T.

    1999-01-01

    We analyse symmetry breaking in the Weinberg-Salam model paying particular attention to the underlying geometry of the theory. In this context we find two natural metrics upon the vacuum manifold: an isotropic metric associated with the scalar sector, and a squashed metric associated with the gauge sector. Physically, the interplay between these metrics gives rise to many of the non-perturbative features of Weinberg-Salam theory. (author)

  15. Electroweak interaction parameters

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1984-01-01

    After a presentation of the experimentally determined parameters of the standard SU(3) x SU(2) x U(1) model the author discusses the definition of the Weinberg angle. Then masses and widths of the intermediate vector bosons are considered in the framework of the Weinberg-Salam theory with radiative corrections. Furthermore the radiative decays of these bosons are discussed. Then the relations between the masses of the Higgs boson and the top quark are considered. Thereafter grand unification is briefly discussed with special regards to the SU(5) prediction of some observable parameters. Finally some speculations are made concerning the observation of radiative decays in the UA1 experiments. (HSI)

  16. Thermal equilibrium during the electroweak phase transition

    International Nuclear Information System (INIS)

    Tetradis, N.

    1991-12-01

    The effective potential for the standard model develops a barrier, at temperatures around the electroweak scale, which separates the minimum at zero field and a deeper non-zero minimum. This could create out of equilibrium conditions by inducing the localization of the Higgs field in a metastable state around zero. In this picture vacuum decay would occur through bubble nucleation. I show that there is an upper bound on the Higgs mass for the above scenario to be realized. The barrier must be high enough to prevent thermal fluctuations of the Higgs expectation value from establishing thermal equilibrium between the two minima. The upper bound is estimated to be lower than the experimental lower limit. This is also imposes constraints on extensions of the standard model constructed in order to generate a strongly first order phase transition. (orig.)

  17. Electroweak baryogenesis, large Yukawas and dark matter

    International Nuclear Information System (INIS)

    Provenza, Alessio; Quiros, Mariano; Ullio, Piero

    2005-01-01

    It has recently been shown that the electroweak baryogenesis mechanism is feasible in Standard Model extensions containing extra fermions with large Yukawa couplings. We show here that the lightest of these fermionic fields can naturally be a good candidate for cold dark matter. We find regions in the parameter space where the thermal relic abundance of this particle is compatible with the dark matter density of the Universe as determined by the WMAP experiment. We study direct and indirect dark matter detection for this model and compare with current experimental limits and prospects for upcoming experiments. We find, contrary to the standard lore, that indirect detection searches are more promising than direct ones, and they already exclude part of the parameter space

  18. Electroweak interactions in a relativistic Fermi gas

    International Nuclear Information System (INIS)

    Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.

    2006-01-01

    We present a relativistic model for computing the neutrino mean free path in neutron matter. In this model, neutron matter is described as a noninteracting Fermi gas in β equilibrium. We present results for the neutrino mean free path for temperatures of 0 to 50 MeV and a broad range of neutrino energies. We show that relativistic effects cause a considerable enhancement of neutrino-scattering cross sections in neutron matter. The influence of the Q 2 dependence in the electroweak form factors and the inclusion of a weak-magnetic term in the hadron current is discussed. The weak-magnetic term in the hadron current is at the origin of some selective spin dependence for the nucleons that are subject to neutrino interactions

  19. Electroweak symmetry breaking: Higgs/whatever

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1989-01-01

    In the first of these two lectures the Higgs mechanism is reviewed in its most general form, which does not necessarily require the existence of Higgs bosons. The general consequences of the hypothesis that electroweak symmetry breaking is due to the Higgs mechanism are deduced just from gauge invariance and unitarity. In the second lecture the general properties are illustrated with three specific models: the Weinberg-Salam model, its minimal supersymmetric extension, and technicolor. The second lecture concludes with a discussion of the experiment signals for strong WW scattering, whose presence or absence will allow us to determine whether the symmetry breaking sector lies above or below 1 TeV. 57 refs

  20. Superconductivity in dense electroweak system

    International Nuclear Information System (INIS)

    Ferrer, E.J.; De La Incera, V.; Shabad, A.E.

    1988-01-01

    The spectrum of fermions in the presence of the W-boson-condensed electro-weak liquid is obtained and nonvanishing spatial component of the fermionic polarization operator is calculated for zero 4-momentum. The manifestation of the Meissner effect is studied. The London penetration depthλ/sub L/ is calculated in the limit of small W-condensate amplitude. The possibility of a special phenomenon of partial magnetic screening due to the mixing angle dependence on the leptonic density is discussed in connection with the magnetic mass problem

  1. History of electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Kibble, T W B

    2015-01-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012. (paper)

  2. Numerical tests of the electroweak phase transition and thermodynamics of the electroweak plasma

    CERN Document Server

    Csikor, Ferenc; Hein, J; Jaster, A; Montvay, István

    1996-01-01

    The finite temperature phase transition in the SU(2) Higgs model at a Higgs boson mass M_H \\simeq 34 GeV is studied in numerical simulations on four-dimensional lattices with time-like extensions up to L_t=5. The effects of the finite volume and finite lattice spacing on masses and couplings are studied in detail. The errors due to uncertainties in the critical hopping parameter are estimated. The thermodynamics of the electroweak plasma near the phase transition is investigated by determining the relation between energy density and pressure.

  3. Natural Cold Baryogenesis from Strongly Interacting Electroweak Symmetry Breaking

    CERN Document Server

    Konstandin, Thomas

    2011-01-01

    The mechanism of "cold electroweak baryogenesis" has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on...

  4. Precision electroweak heavy flavor results from LEP and SLC

    International Nuclear Information System (INIS)

    Brown, D.

    1993-11-01

    The traditional Electroweak measurements made at Z factories using undifferentiated hadronic and leptonic Z decays will soon be reaching their asymptotic limits in precision. Consequently, much attention has recently been focused on extracting electroweak parameters from hadronic decays differentiated through heavy flavor tagging. This paper gives an overview of the various techniques used at LEP and SLC to tag heavy flavors. The measurements of the forward backward asymmetries and the partial widths for Z→b anti b and Z→c anti c decays are briefly described. The most recent results for these are presented, and are interpreted within the framework of the Standard Model. The precision of the electroweak parameters extracted from these measurements is shown to be comparable to that from other techniques. Assembling all the LEP electroweak data, constraints on the top and Higgs masses are found. The heavy flavor results, and in particular the new, very accurate Z→b anti b partial width measurements, are shown to play a key role in these limits. (orig.)

  5. QCD-Electroweak First-Order Phase Transition in a Supercooled Universe

    Science.gov (United States)

    Iso, Satoshi; Serpico, Pasquale D.; Shimada, Kengo

    2017-10-01

    If the electroweak sector of the standard model is described by classically conformal dynamics, the early Universe evolution can be substantially altered. It is already known that—contrarily to the standard model case—a first-order electroweak phase transition may occur. Here we show that, depending on the model parameters, a dramatically different scenario may happen: A first-order, six massless quark QCD phase transition occurs first, which then triggers the electroweak symmetry breaking. We derive the necessary conditions for this dynamics to occur, using the specific example of the classically conformal B -L model. In particular, relatively light weakly coupled particles are predicted, with implications for collider searches. This scenario is also potentially rich in cosmological consequences, such as renewed possibilities for electroweak baryogenesis, altered dark matter production, and gravitational wave production, as we briefly comment upon.

  6. QCD-Electroweak First-Order Phase Transition in a Supercooled Universe.

    Science.gov (United States)

    Iso, Satoshi; Serpico, Pasquale D; Shimada, Kengo

    2017-10-06

    If the electroweak sector of the standard model is described by classically conformal dynamics, the early Universe evolution can be substantially altered. It is already known that-contrarily to the standard model case-a first-order electroweak phase transition may occur. Here we show that, depending on the model parameters, a dramatically different scenario may happen: A first-order, six massless quark QCD phase transition occurs first, which then triggers the electroweak symmetry breaking. We derive the necessary conditions for this dynamics to occur, using the specific example of the classically conformal B-L model. In particular, relatively light weakly coupled particles are predicted, with implications for collider searches. This scenario is also potentially rich in cosmological consequences, such as renewed possibilities for electroweak baryogenesis, altered dark matter production, and gravitational wave production, as we briefly comment upon.

  7. Precision experiments in electroweak interactions

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1990-03-01

    The electroweak theory of Glashow, Weinberg, and Salam (GWS) has become one of the twin pillars upon which our understanding of all particle physics phenomena rests. It is a brilliant achievement that qualitatively and quantitatively describes all of the vast quantity of experimental data that have been accumulated over some forty years. Note that the word quantitatively must be qualified. The low energy limiting cases of the GWS theory, Quantum Electrodynamics and the V-A Theory of Weak Interactions, have withstood rigorous testing. The high energy synthesis of these ideas, the GWS theory, has not yet been subjected to comparably precise scrutiny. The recent operation of a new generation of proton-antiproton (p bar p) and electron-positron (e + e - ) colliders has made it possible to produce and study large samples of the electroweak gauge bosons W ± and Z 0 . We expect that these facilities will enable very precise tests of the GWS theory to be performed in the near future. In keeping with the theme of this Institute, Physics at the 100 GeV Mass Scale, these lectures will explore the current status and the near-future prospects of these experiments

  8. Electroweak scale physics & exotic searches at LHCb

    CERN Document Server

    Lupton, Olli

    2018-01-01

    The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range 2–5 that is principally designed for the study of b- and c-hadrons, but which is well-suited to a wide variety of electroweak scale measurements and exotic searches that are highly complementary to other experiments at the LHC and elsewhere. Several features of the detector that are crucial for the core flavour physics programme, such as excellent vertex and momentum resolution, and a powerful trigger system, contribute to excellent jet tagging performance and sensitivity to low mass exotic states. LHCb operates at a substantially lower instantaneous luminosity than the general purpose detectors at the LHC, ATLAS and CMS, which results in a clean, low pile-up environment in which to search for physics beyond the Standard Model (SM).

  9. Metastable electroweak vacuum. Implications for inflation

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg; Westphal, Alexander [DESY Theory Group, Hamburg (Germany)

    2012-10-15

    Within the Standard Model, the current Higgs and top quark data favor metastability of the electroweak vacuum, although the uncertainties are still significant. The true vacuum is many orders of magnitude deeper than ours and the barrier separating the two is tiny compared to the depth of the well. This raises a cosmological question: how did the Higgs field get trapped in the shallow minimum and why did it stay there during inflation? The Higgs initial conditions before inflation must be fine-tuned to about one part in 10{sup 8} in order for the Higgs field to end up in the right vacuum. In this note, we show that these problems can be resolved if there is a small positive coupling between the Higgs and the inflaton.

  10. Electroweak Precision Measurements with the ATLAS Detector

    CERN Document Server

    Zhang, Zhiqing; The ATLAS collaboration

    2018-01-01

    With the high integrated luminosities recorded at the LHC and the very good understanding of the ATLAS detector, it is possible to measure electroweak observables to the highest precision. In this talk, we review the measurement of the W boson mass using data, collected at 7 TeV. Special focus is drawn on a discussion of the modeling uncertainties and the physics potential of the latest low-mu runs, recorded at a center of mass energy of 5 and 13 TeV at the end of 2017. The talk will also review the measurement of the triple differential Drell-Yan cross-section at 8 TeV, which can be used to extract the weak mixing angle. We conclude with a presentation of the tau polarization, measured in Z->tautau using 20.3/fb of proton proton collision data collected at a center of mass energy of 8 TeV.

  11. Metastable electroweak vacuum. Implications for inflation

    International Nuclear Information System (INIS)

    Lebedev, Oleg; Westphal, Alexander

    2012-10-01

    Within the Standard Model, the current Higgs and top quark data favor metastability of the electroweak vacuum, although the uncertainties are still significant. The true vacuum is many orders of magnitude deeper than ours and the barrier separating the two is tiny compared to the depth of the well. This raises a cosmological question: how did the Higgs field get trapped in the shallow minimum and why did it stay there during inflation? The Higgs initial conditions before inflation must be fine-tuned to about one part in 10 8 in order for the Higgs field to end up in the right vacuum. In this note, we show that these problems can be resolved if there is a small positive coupling between the Higgs and the inflaton.

  12. Electroweak symmetry breaking from a holographic fourth generation

    International Nuclear Information System (INIS)

    Burdman, Gustavo; Rold, Leandro Da

    2007-01-01

    We consider a model with four generations of standard model fermions propagating in an extra dimension with an AdS background metric. We show that if the zero modes of the fourth generation are highly localized towards the infrared brane, it is possible to break the electroweak symmetry via their condensation, partly driven by their interactions with the Kaluza-Klein excitations of the gauge bosons, as well as by the presence of bulk higher-dimensional operators. This dynamical mechanism results in a composite Higgs, which is highly localized and generally heavy. The localization of fermions in the five-dimensional bulk naturally leads to the standard model Yukawa couplings via the action of the bulk higher-dimensional operators, which are suppressed by the Planck scale. We obtain the spectrum of the model and explore some of its phenomenological consequences, both for electroweak precision constraints as well as at the Large Hadron Collider

  13. Electroweak splitting functions and high energy showering

    Science.gov (United States)

    Chen, Junmou; Han, Tao; Tweedie, Brock

    2017-11-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.

  14. On the Possible Links Between Electroweak Symmetry Breaking and Dark Matter

    International Nuclear Information System (INIS)

    Hambye, Thomas; Tytgat, Michel H. G.

    2009-01-01

    The mechanism behind electroweak symmetry breaking (EWSB) and the nature of dark matter (DM) are currently very important issues in particle physics. Usually, in most models, these two issues are not or poorly connected. However, since a natural dark matter candidate is a weakly interacting massive particle or WIMP, with mass around the electroweak scale, it is clearly of interest to investigate the possibility that DM and EWSB are closely related. In the context of a very simple extension of the Standard Model, the Inert Doublet Model, we show that dark matter could play a crucial role in the breaking of the electroweak symmetry. In this model, dark matter is the lightest component of an inert scalar doublet which can induce dynamically electroweak symmetry breaking at one loop level. Moreover, in a large fraction of the parameter space of this model, the mass of the dark matter particle is essentially determined by the electroweak scale, so that the fact that the WIMP DM mass is around the electroweak scale is not a coincidence.

  15. Radiatively Generating the Higgs Potential and Electroweak Scale via the Seesaw Mechanism.

    Science.gov (United States)

    Brivio, Ilaria; Trott, Michael

    2017-10-06

    The minimal seesaw scenario can radiatively generate the Higgs potential to induce electroweak symmetry breaking while supplying an origin of the Higgs vacuum expectation value from an underlying Majorana scale. If the Higgs potential and (derived) electroweak scale have this origin, the heavy SU(3)×SU(2)×U(1)_{Y} singlet states are expected to reside at m_{N}∼10-500  PeV for couplings |ω|∼10^{-4.5}-10^{-6} between the Majorana sector and the standard model. In this framework, the usual challenge of the electroweak scale hierarchy problem with a classically assumed potential is absent as the electroweak scale is not a fundamental scale. The new challenge is the need to generate or accommodate PeV Majorana mass scales while simultaneously suppressing tree-level contributions to the potential in ultraviolet models.

  16. On the nature of the electroweak phase sition and its cosmological consequences

    International Nuclear Information System (INIS)

    Servant, Geraldine

    2011-01-01

    Full text: The Large Hadron Collider will take experiments into a new energy domain beyond the standard model of strong and electroweak interactions. As the LHC will unveil the mysteries of the electroweak symmetry breaking, this will also have far-reaching implications for cosmology. This concerns in particular the fundamental question of the matter-antimatter asymmetry of the Universe. One of the best-motivated mechanism for generating the baryon asymmetry of the universe relies on a first-order electroweak phase transition. I will present some well-motivated extensions of the standard model that naturally lead to a first-order phase transition. Interestingly, this has strong implications for gravity wave physics. I will discuss how a gravity wave detector and space interferometer such as Lisa, which would turn out to be a completely independent window on the electroweak scale, could complement the information provided by the LHC. (author)

  17. Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector

    CERN Document Server

    Carra, Sonia; The ATLAS collaboration

    2018-01-01

    Supersymmetry is one of the most motivated Standard Model extensions. Despite the meticulous search during the LHC Run I, there is no evidence supporting this theory. Starting from 2015, LHC is performing a second data taking run with a higher center of mass energy (13 TeV), providing a great occasion for the search of beyond the Standard Model physics. An important sector is the direct production of supersymmetric electroweak particles, such as sleptons and charginos. Electroweak production cross section is lower compared to strong production, but searches performed by the ATLAS and CMS experiments during LHC Run 2 excluded squark and gluinos with masses up to 2 TeV, making electroweak production an increasingly promising probe for SUSY signals at the LHC. Results obtained with the 2015-2016 ATLAS detector data will be presented. Direct production of electroweak particles like sleptons, charginos and neutralinos, with different signatures, will be considered. A good sensitivity is obtained in the signal regi...

  18. A strong electroweak phase transition from the inflaton field

    Energy Technology Data Exchange (ETDEWEB)

    Tenkanen, Tommi; Tuominen, Kimmo [Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki (Finland); Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki (Finland); Vaskonen, Ville [Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki (Finland); Department of Physics, University of Jyvaskyla, P.O.Box 35 (YFL), FI-40014 University of Jyvaskyla (Finland)

    2016-09-22

    We study a singlet scalar extension of the Standard Model. The singlet scalar is coupled non-minimally to gravity and assumed to drive inflation, and also couple sufficiently strongly with the SM Higgs field in order to provide for a strong first order electroweak phase transition. Requiring the model to describe inflation successfully, be compatible with the LHC data, and yield a strong first order electroweak phase transition, we identify the regions of the parameter space where the model is viable. We also include a singlet fermion with scalar coupling to the singlet scalar to probe the sensitivity of the constraints on additional degrees of freedom and their couplings in the singlet sector. We also comment on the general feasibility of these fields to act as dark matter.

  19. Singlet Higgs phenomenology and the electroweak phase transition

    International Nuclear Information System (INIS)

    Profumo, Stefano; Ramsey-Musolf, Michael J.; Shaughnessy, Gabe

    2007-01-01

    We study the phenomenology of gauge singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. We determine the conditions on the scalar potential parameters that lead to a strong first order phase transition as needed to produce the observed baryon asymmetry of the universe. We analyze the constraints on the potential parameters derived from Higgs boson searches at LEP and electroweak precision observables. For models that satisfy these constraints and that produce a strong first order phase transition, we discuss the prospective signatures in future Higgs studies at the Large Hadron Collider and a Linear Collider. We argue that such studies will provide powerful probes of phase transition dynamics in models with an extended scalar sector

  20. Tests of electroweak interactions at CERN's LEP Collider

    Science.gov (United States)

    Fearnley, T. A.

    1995-08-01

    Precision measurements of electroweak interactions at the Z0 energy are performed at four experiments at the Large Electron Positron (LEP) Collider at CERN in Geneva, Switzerland. The large amount of data obtained from 1989 until today allows detailed comparisons with the predictions made by the Standard Model. Within the experimental errors the agreement with the Standard Model is good. Fits to the LEP data allow an indirect determination of the mass of the top quark: Mt=173+12+18-13-20 GeV, assuming a Higgs boson mass of 300 GeV. The first errors reflect the experimental errors (systematic and statistical) on the measurements. The second errors correspond to the variation of the central value when varying the Higgs mass between 60 and 1000 GeV. This paper reviews the results of the measurements of electroweak interactions, and compares the results with predictions made by the Standard Model.

  1. Top down electroweak dipole operators

    Science.gov (United States)

    Fuyuto, Kaori; Ramsey-Musolf, Michael

    2018-06-01

    We derive present constraints on, and prospective sensitivity to, the electric dipole moment (EDM) of the top quark (dt) implied by searches for the EDMs of the electron and nucleons. Above the electroweak scale v, the dt arises from two gauge invariant operators generated at a scale Λ ≫ v that also mix with the light fermion EDMs under renormalization group evolution at two-loop order. Bounds on the EDMs of first generation fermion systems thus imply bounds on |dt |. Working in the leading log-squared approximation, we find that the present upper bound on |dt | is 10-19 e cm for Λ = 1 TeV, except in regions of finely tuned cancellations that allow for |dt | to be up to fifty times larger. Future de and dn probes may yield an order of magnitude increase in dt sensitivity, while inclusion of a prospective proton EDM search may lead to an additional increase in reach.

  2. Implications of the discovery of a Higgs triplet on electroweak right-handed neutrinos

    International Nuclear Information System (INIS)

    Aranda, Alfredo; Hernandez-Sanchez, J.; Hung, P.Q.

    2008-01-01

    Electroweak scale active right-handed neutrinos such as those proposed in a recent model necessitate the enlargement of the SM Higgs sector to include Higgs triplets with doubly charged scalars. The search for and constraints on such Higgs sector has implications not only on the nature of the electroweak symmetry breaking but also on the possibility of testing the seesaw mechanism at colliders such as the LHC and the ILC.

  3. The role of electroweak penguin and magnetic dipole QCD penguin on hadronic b Quark Decays

    Directory of Open Access Journals (Sweden)

    H Mehrban

    2010-03-01

    Full Text Available This research, works with the effective Hamiltonian and the quark model. Using, the decay rates of matter-antimatter of b quark was investigated. We described the effective Hamiltonian theory which was applied to the calculation of current-current (Q1,2, QCD penguin (Q3,…,6, magnetic dipole (Q8 and electroweak penguin (Q7,…,10 decay rates. The gluonic penguin structure of hadronic decays b→qkg→qkqiqj was studied through the Wilson coefficients of the effective Hamiltonian. The branching ratios of the Tree-Level, effective Hamiltonian, effective Hamiltonian including electroweak penguin, effective Hamiltonian including magnetic dipole and the effective Hamiltonian including electroweak penguin and magnetic dipole b quark decays b→qiqkqj, qi{u,c}, qk{d,s}, qj{u,c} have been calculated. It was shown that, the electroweak penguin and magnetic dipole contributions in b quark decays are small and current-current operators are dominated.

  4. Searches for electroweak production of higgsinos with ATLAS

    CERN Document Server

    El Kosseifi, Rima; The ATLAS collaboration

    2018-01-01

    Searches for light higgsinos are motivated by "natural" SUSY models. Three new ATLAS electroweak higgsinos searches results, with 36.1 fb-1 pp collision data at √s= 13 TeV are presented in this talk. Both, the interpretations in SUSY scenarios assuming GMSB (with Gravitino the LSP) and the "Compressed SUSY" searches( with Higgsino the LSP) are covered. No significant excess over expected SM background seen, exclusion limits surpassing the LEP limits are set.

  5. Electroweak contributions to SUSY particle production processes at the LHC

    International Nuclear Information System (INIS)

    Mirabella, Edoardo

    2009-01-01

    In this thesis we have computed the electroweak contributions of O(α s α), O(α 2 ) and O(α s 2 ) to three different classes of processes leading to the hadronic production of the SUSY partners of quarks and gluons, i.e. squarks and gluinos. The theoretical framework is the Minimal Supersymmetric extension of the Standard Model, the MSSM. The three processes are gluino pair production, diagonal squark-antisquark and associated squark-gluino production.

  6. New strong interactions above the electroweak scale

    International Nuclear Information System (INIS)

    White, A.R.

    1994-01-01

    Theoretical arguments for a new higher-color quark sector, based on Pomeron physics in QCD, are briefly described. The electroweak symmetry-breaking, Strong CP conservation, and electroweak scale CP violation, that is naturally produced by this sector is also outlined. A further consequence is that above the electroweak scale there will be a radical change in the strong interaction. Electroweak states, in particular multiple W's and Z's, and new, semi-stable, very massive, baryons, will be commonly produced. The possible correlation of expected phenomena with a wide range of observed Cosmic Ray effects at and above the primary spectrum knee is described. Related phenomena that might be seen in the highest energy hard scattering events at the Fermilab Tevatron, some of which could be confused with top production, are also briefly discussed

  7. An electroweak enigma: Hyperon radiative decays

    Energy Technology Data Exchange (ETDEWEB)

    Vorobyov, A., (spokesperson); /St. Petersburg, INP; Jastrzembski, E.; Lach, J.; Marriner, J.; /Fermilab; Golovtsov, V.; Krivshich, A.; Schegelsky, V.; Smirnov, N.; Terentiev, N.K.; Uvarov, L.; /St. Petersburg, INP; McCliment, E.; Newsom, C.; Norbeck, E.; /Iowa U.; Cooper, P.S.; /Yale U.

    1985-04-03

    The main thrust of this experiment will be to measure the asymmetry parameter for the electroweak decay {Sigma}{sup +} {yields} p{gamma} and verify its branching ratio. As a secondary goal they will measure, or set new upper limits for, the branching ratio of the electroweak decay {Xi}{sup -} {yields} {Sigma}{sup -}{gamma}. Since the {Xi}{sup -} are expected to be polarized, information on the asymmetry parameter may also be available.

  8. Electroweak boson production with jets at CMS

    CERN Document Server

    Hortiangtham, Apichart

    2017-01-01

    The production of electroweak bosons (W, Z or gamma) in association with jets is a stringent test of perturbative QCD and is a background process in searches for new physics. Total and differential cross-section measurements of electroweak bosons produced in association with jets (and heavy flavour quarks) in proton-proton collisions are presented. The data have been recorded with the CMS detector at the LHC and are compared to the predictions of event generators and theoretical calculations.

  9. Electroweak measurements with the ATLAS detector

    CERN Document Server

    Krasnopevtsev, Dimitriy; The ATLAS collaboration

    2015-01-01

    Electroweak measurements with the ATLAS detector -First Run 2 measurements of electroweak processes -Run 1 measurements of SM parameters, i.e. W mass and weak mixing angle -Recent Run 1 measurements of di- and multi-boson production cross-sections as well as vector boson fusion and scattering processes at 8 TeV -Recent Run 1 measurements of exclusive di-lepton and WW production

  10. Toward verification of electroweak baryogenesis by electric dipole moments

    International Nuclear Information System (INIS)

    Fuyuto, Kaori; Hisano, Junji; Senaha, Eibun

    2016-01-01

    We study general aspects of the CP-violating effects on the baryon asymmetry of the Universe (BAU) and electric dipole moments (EDMs) in models extended by an extra Higgs doublet and a singlet, together with electroweak-interacting fermions. In particular, the emphasis is on the structure of the CP-violating interactions and dependences of the BAU and EDMs on masses of the relevant particles. In a concrete mode, we investigate a relationship between the BAU and the electron EDM for a typical parameter set. As long as the BAU-related CP violation predominantly exists, the electron EDM has a strong power in probing electroweak baryogenesis. However, once a BAU-unrelated CP violation comes into play, the direct correlation between the BAU and electron EDM can be lost. Even in such a case, we point out that verifiability of the scenario still remains with the help of Higgs physics.

  11. Electroweak Phase Transition and Baryogenesis in the nMSSM

    CERN Document Server

    Huber, S J; Prokopec, T; Schmidt, M G; Huber, Stephan J.; Konstandin, Thomas; Prokopec, Tomislav; Schmidt, Michael G.

    2006-01-01

    We analyze the nMSSM with CP violation in the singlet sector. We study the static and dynamical properties of the electroweak phase transition. We conclude that electroweak baryogenesis in this model is generic in the sense that if the present limits on the mass spectrum are applied, no severe additional tuning is required to obtain a strong first-order phase transition and to generate a sufficient baryon asymmetry. For this we determine the shape of the nucleating bubbles, including the profiles of CP-violating phases. The baryon asymmetry is calculated using the advanced transport theory to first and second order in gradient expansion presented recently. Still, first and second generation sfermions must be heavy to avoid large electric dipole moments.

  12. Top and Higgs masses from dynamical electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Kahana, D.E.

    1993-01-01

    The standard model of electroweak interactions, with the gauge and Higgs bosons appearing as composites, is derived from a Nambu-Jona-Lasinio-type four-fermion interaction, assumed to be valid above a high scale μ. Simple relationships are found for the composite boson top quark mass ratios and for the weak angle. Assuming three generations and a 'desert' hypothesis, these relationships are evolved with the full renormalization group down to present experimental energies, yielding predictions for the top quark and Higgs-boson masses, near 155 GeV for the former and near 140 GeV for the latter. In this fashion, fermion-antifermion condensates can be shown to yield a top mass consistent with that indicated from electroweak loop corrections for LEP data. (author) 23 refs

  13. Toward verification of electroweak baryogenesis by electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Fuyuto, Kaori, E-mail: fuyuto@th.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Hisano, Junji, E-mail: hisano@eken.phys.nagoya-u.ac.jp [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kavli IPMU (WPI), University of Tokyo, Kashiwa, Chiba 277-8584 (Japan); Senaha, Eibun, E-mail: senaha@ncu.edu.tw [Department of Physics and Center for Mathematics and Theoretical Physics, National Central University, Taoyuan, 32001, Taiwan (China)

    2016-04-10

    We study general aspects of the CP-violating effects on the baryon asymmetry of the Universe (BAU) and electric dipole moments (EDMs) in models extended by an extra Higgs doublet and a singlet, together with electroweak-interacting fermions. In particular, the emphasis is on the structure of the CP-violating interactions and dependences of the BAU and EDMs on masses of the relevant particles. In a concrete mode, we investigate a relationship between the BAU and the electron EDM for a typical parameter set. As long as the BAU-related CP violation predominantly exists, the electron EDM has a strong power in probing electroweak baryogenesis. However, once a BAU-unrelated CP violation comes into play, the direct correlation between the BAU and electron EDM can be lost. Even in such a case, we point out that verifiability of the scenario still remains with the help of Higgs physics.

  14. Gravitational waves from the electroweak phase transition

    International Nuclear Information System (INIS)

    Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D.

    2012-01-01

    We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10 −4 Hz, and give intensities as high as h 2 Ω GW ∼ 10 −8

  15. BREM5 electroweak Monte Carlo

    International Nuclear Information System (INIS)

    Kennedy, D.C. II.

    1987-01-01

    This is an update on the progress of the BREMMUS Monte Carlo simulator, particularly in its current incarnation, BREM5. The present report is intended only as a follow-up to the Mark II/Granlibakken proceedings, and those proceedings should be consulted for a complete description of the capabilities and goals of the BREMMUS program. The new BREM5 program improves on the previous version of BREMMUS, BREM2, in a number of important ways. In BREM2, the internal loop (oblique) corrections were not treated in consistent fashion, a deficiency that led to renormalization scheme-dependence; i.e., physical results, such as cross sections, were dependent on the method used to eliminate infinities from the theory. Of course, this problem cannot be tolerated in a Monte Carlo designed for experimental use. BREM5 incorporates a new way of treating the oblique corrections, as explained in the Granlibakken proceedings, that guarantees renormalization scheme-independence and dramatically simplifies the organization and calculation of radiative corrections. This technique is to be presented in full detail in a forthcoming paper. BREM5 is, at this point, the only Monte Carlo to contain the entire set of one-loop corrections to electroweak four-fermion processes and renormalization scheme-independence. 3 figures

  16. Fermions on the electroweak string

    CERN Document Server

    Moreno, J M; Quirós, Mariano; Moreno, J M; Oaknin, D H; Quiros, M

    1995-01-01

    We construct a simple class of exact solutions of the electroweak theory including the naked Z--string and fermion fields. It consists in the Z--string configuration (\\phi,Z_\\theta), the {\\it time} and z components of the neutral gauge bosons (Z_{0,3},A_{0,3}) and a fermion condensate (lepton or quark) zero mode. The Z--string is not altered (no feed back from the rest of fields on the Z--string) while fermion condensates are zero modes of the Dirac equation in the presence of the Z--string background (no feed back from the {\\it time} and z components of the neutral gauge bosons on the fermion fields). For the case of the n--vortex Z--string the number of zero modes found for charged leptons and quarks is (according to previous results by Jackiw and Rossi) equal to |n|, while for (massless) neutrinos is |n|-1. The presence of fermion fields in its core make the obtained configuration a superconducting string, but their presence (as well as that of Z_{0,3},A_{0,3}) does not enhance the stability of the Z--stri...

  17. Studying the Electroweak Sector with the ATLAS Detector

    CERN Document Server

    Spalla, Margherita; The ATLAS collaboration

    2018-01-01

    (as received from the Speaker Committee. W mass removed from the presentation later on, as discussed in separate talk.) The large integrated luminosities that are available at the LHC, allow to test the gauge structure of the electroweak sector of the Standard Model to highest precision. In this talk, we review the latest results of the ATLAS collaboration involving di-boson and multiboson final states, the electroweak production of vector bosons as well as their constraints of effective field theory operators. Another approach to test the consistency of the electroweak sector is via precision measurements. ATLAS has published a first high precision measurement of the W boson mass, a first measurement of the tau-polarization in Z events as well as a three dimensional cross-section measurement of the Drell-Yan process. The latter allows for the extraction of the forward-backward asymmetry that can be interpreted as a measurement of the weak mixing angle. These results will be presented and discussed.

  18. Nonperturbative QCD corrections to electroweak observables

    Energy Technology Data Exchange (ETDEWEB)

    Dru B Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-12-01

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we will examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We will then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we will mention applications to the Adler function, the determination of the strong coupling constant and QCD corrections to muonic-hydrogen.

  19. Nonperturbative QCD corrections to electroweak observables

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus)

    2012-06-15

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements, effective field theory techniques and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we mention applications to the Adler function, which can be used to determine the strong coupling constant, and QCD corrections to muonic-hydrogen.

  20. Neutrino helicity flips via electroweak interactions

    International Nuclear Information System (INIS)

    Gaemers, K.J.F.; Gandhi, R.; Lattimer, J.M.; Department of Earth and Space Sciences, State University of New York, Stony Brook, New York 11794)

    1989-01-01

    Electroweak mechanisms via which neutrinos may flip helicity are examined in detail. Exact and approximate expressions for a variety of flip processes relevant in astrophysics and cosmology, mediated by W, Z, and γ exchange, including their interference, are derived for both Dirac and Majorana neutrinos (with emphasis on the former). It is shown that in general flip and nonflip cross sections differ by more than just a multiplicative factor of m/sub ν/ 2 /4E/sub ν/ 2 contrary to what might be expected and that this additional dependence on helicities can be significant. It is also shown that within the context of the standard model with massive neutrinos, for νe yields νe scattering, σ/sub Z//sup flip//σ/sub γ//sup flip/ ∼ 10 4 , independent of particle masses and energies to a good approximation. As an application, using some general considerations and the fact that the observed bar nu/sub e/ burst from SN 1987A lasted several seconds, these weak-interaction flip cross sections are used to rule out μ and tau neutrino masses above 30 keV. Finally, some other consequences for astrophysics in general and supernovae in particular are briefly discussed

  1. Electroweak vacuum stability in the Higgs-Dilaton theory

    Energy Technology Data Exchange (ETDEWEB)

    Shkerin, A. [Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL),CH-1015, Lausanne (Switzerland); Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary prospect 7a, 117312, Moscow (Russian Federation)

    2017-05-30

    We study the stability of the Electroweak (EW) vacuum in a scale-invariant extension of the Standard Model and General Relativity, known as a Higgs-Dilaton theory. The safety of the EW vacuum against possible transition towards another vacuum is a necessary condition for the model to be phenomenologically acceptable. We find that, within a wide range of parameters of the theory, the decay rate is significantly suppressed compared to that of the Standard Model. We also discuss properties of a tunneling solution that are specific to the Higgs-Dilaton theory.

  2. Breaking of electroweak symmetry: origin and effects; Brisure de symetrie electrobaible: origine et consequence

    Energy Technology Data Exchange (ETDEWEB)

    Delaunay, C

    2008-10-15

    The Higgs boson appears as the corner stone of high energy physics, it might be the cause of the excess of matter that led to the formation of the structures of the universe and it seems that it drives the breaking of the electroweak symmetry. Moreover, when the stability at low energies of the Higgs boson is assured by an extra space dimension, it appears that this extra dimension can explain most issues in the flavor physics that are not understood by the standard model. The first chapter presents the main tools of effective field theories, the role of experimental data in the construction of theories valid beyond the standard model is discussed. The second chapter focuses on the electroweak baryogenesis that allows the testing of new physics via the electroweak phase transition. We detail the calculation of a Higgs potential at finite temperature. We follow the dynamics of the phase transition including nucleation an supercooling. Finally we investigate the prospects of gravity wave detection to see the effects of a strong electroweak phase transition. The 2 last chapters are dedicated to the physics of extra-dimension. The properties of the dynamics of scalar, vector fields with a 1/2 spin plunged in a 5 d. Anti de Sitter geometry are reviewed. We present a model of lepton masses and mixings based on the A{sub 4} non-Abelian discrete symmetry. It is shown that this model does not contradict the tests of electroweak precision. (A.C.)

  3. Workshop on electroweak symmetry breaking: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hinchliffe, I. (ed.)

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.

  4. Workshop on electroweak symmetry breaking: proceedings

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented

  5. Recent results on Electroweak measurements from ATLAS

    Directory of Open Access Journals (Sweden)

    Benekos Nektarios Chr.

    2015-01-01

    Full Text Available ATLAS measurements of multiboson production processes involving combinations of W,Z and isolated photons are summarized. Measurements using data at 7 TeV and at 8 TeV are presented. The measurements are performed using leptonic decay modes, including the invisible decay Z → v v̅, as well as semileptonic channels. Measurements of single and diboson production in association with two forward jets is sensitive to electroweak vector boson fusion and scattering processes. An observation of the electroweak production of the Z boson and an evidence of same sign WW production are reported.

  6. O(5) x U(1) electroweak theory

    International Nuclear Information System (INIS)

    Mukku, C.; Sayed, W.A.

    1981-01-01

    An anomaly-free O(5) x U(1) theory of electroweak interactions is described which provides a unified description of electroweak phenomena for two families of standard leptons and quarks. No ''new'' nonsequential-type fermions are introduced, unlike the case for all past studies based on this group. The present scheme requires the introduction of two further charged and three more neutral gauge fields over and above those of SU(2) x U(1) giving rise to new neutral and charged currents

  7. Comments on the electroweak phase transition

    International Nuclear Information System (INIS)

    Dine, M.; Leigh, R.G.; Huet, P.; Linde, A.; Linde, D.

    1992-01-01

    We report on an investigation of various problems related to the theory of the electroweak phase transition. This includes a determination of the nature of the phase transition, a discussion of the possible role of higher order radiative corrections and the theory of the formation and evolution of the bubbles of the new phase. We find in particular that no dangerous linear terms appear in the effective potential. However, the strength of the first-order phase transition is 2/3 times less than what follows from the one-loop approximation. This rules out baryogenesis in the minimal version of the electroweak theory with light Higgs bosons. (orig.)

  8. Top and Electroweak Measurements at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, P. [Comenius U.

    2016-01-01

    In this report, we summarize the latest results of the top-quark mass and electroweak measurements from the Tevatron. Since the world combination of top-quark mass measurements was done, CDF and D0 experiments improved the precision of several results. Some of them reach the relative precition below 1% for a single measurement. From the electroweak results, we report on the WW and WZ production cross section, measurements of the weak mixing angle and indirect measurements of W boson mass. The Tevatron results of the weak mixing angle are still the most precise ones of hadron colliders.

  9. Conformal dynamics for electroweak symmetry breaking, from LHC to cosmology

    International Nuclear Information System (INIS)

    Sannino, Francesco

    2009-01-01

    Full text. I will first introduce dynamical electroweak symmetry breaking and then present how to resolve some of the long-standing problems using (near) conformal dynamics. In order to construct sensible extension of DEWSB I will then review the state-of-the-art of the phase diagram of gauge theories of fundamental interactions as function of the number of colors, flavors and matter representation. Finally I will introduce recent models known as minimal walking models and show how they lead to natural candidates of dark matter. (author)

  10. Minimal but non-minimal inflation and electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Marzola, Luca [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Institute of Physics, University of Tartu,Ravila 14c, 50411 Tartu (Estonia); Racioppi, Antonio [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia)

    2016-10-07

    We consider the most minimal scale invariant extension of the standard model that allows for successful radiative electroweak symmetry breaking and inflation. The framework involves an extra scalar singlet, that plays the rôle of the inflaton, and is compatibile with current experimental bounds owing to the non-minimal coupling of the latter to gravity. This inflationary scenario predicts a very low tensor-to-scalar ratio r≈10{sup −3}, typical of Higgs-inflation models, but in contrast yields a scalar spectral index n{sub s}≃0.97 which departs from the Starobinsky limit. We briefly discuss the collider phenomenology of the framework.

  11. Higgs mass implications on the stability of the electroweak vacuum: a NNLO analysis

    International Nuclear Information System (INIS)

    Elias-Miro, J.

    2014-01-01

    The mass range M n ≅ 124.5 - 126.5 GeV, of the discovered Higgs-like particle is a specially interesting range from the stability of the electroweak vacuum point of view. As we will show, for such mass range and assuming a Standard Model Higgs, the electroweak vacuum lies almost in between being absolutely stable up to the Planck scale and unstable, i.e. the Standard Mode effective potential presents a second minimum, deeper than the electroweak one, below the Planck scale. This observation motivates a higher order precision analysis of the Standard Model effective potential. We will review the first complete next-to-next-to-leading order analysis of the Standard Model Higgs potential made recently. Then, we will be able to conclude whether or not the SM can be consistently extrapolated up to the Planck scale. (author)

  12. Electroweak properties of particle physics. Volume 2

    International Nuclear Information System (INIS)

    Aleksan, R.; Ellis, N.; Falvard, A.; Fayard, L.; Frere, J.M.; Kuehn, J.H.; Le Yaouanc, A.; Roudeau, P.; Wormser, G.

    1991-01-01

    The 23th GIf school was held at Ecole Polytechnique, Palaiseau, France from 16 to 20 September 1991. The subject was large: Electroweak properties of heavy quarks. The second part has been devoted to B physics at hadron machines, search for Top, Charm particle physics and Quarkonium physics

  13. Prospects on electroweak physics from the LHC

    International Nuclear Information System (INIS)

    Vikas, Pratibha

    2001-01-01

    The abundant production of gauge bosons, gauge boson pairs and top quarks at the LHC will offer the opportunity for comprehensive and challenging tests of theoretical predictions in the electroweak sector. Some issues which influence these measurements followed by prospects on some possible measurements by the ATLAS and CMS experiments at the Large Hadron Collider (LHC), at CERN are discussed. (author)

  14. Electroweak Physics in the Forward Region

    CERN Multimedia

    Sirendi, Marek

    2015-01-01

    LHCb has an active electroweak physics programme with measurements of inclusive processes such as Z and W production in leptonic final states already published. The EW working group is also branching into jet physics with completed Z+jet and Z+b-jet analyses. Recent results in this field are presented.

  15. The Higgs vacuum uplifted. Revisiting the electroweak phase transition with a second Higgs doublet

    Energy Technology Data Exchange (ETDEWEB)

    Dorsch, G.C. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Huber, S.J. [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Mimasu, K. [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Louvain Univ. Catholique, Louvain-la-Neuve (Belgium). Center for Cosmology, Particle Physics and Phenomenology; No, J.M. [King' s College, London (United Kingdom). Dept. of Physics; Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy

    2017-05-25

    The existence of a second Higgs doublet in Nature could lead to a cosmological first order electroweak phase transition and explain the origin of the matter-antimatter asymmetry in the Universe. We explore the parameter space of such a two-Higgs-doublet-model and show that a first order electroweak phase transition strongly correlates with a significant uplifting of the Higgs vacuum w.r.t. its Standard Model value. We then obtain the spectrum and properties of the new scalars H{sub 0}, A{sub 0} and H{sup ±} that signal such a phase transition, showing that the decay A{sub 0}→H{sub 0}Z at the LHC and a sizable deviation in the Higgs self-coupling λ{sub hhh} from its SM value are sensitive indicators of a strongly first order electroweak phase transition in the 2HDM.

  16. Study of electroweak vacuum stability from extended Higgs portal of dark matter and neutrinos

    Science.gov (United States)

    Ghosh, Purusottam; Saha, Abhijit Kumar; Sil, Arunansu

    2018-04-01

    We investigate the electroweak vacuum stability in an extended version of the Standard Model that incorporates two additional singlet scalar fields and three right-handed neutrinos. One of these extra scalars plays the role of dark matter, while the other scalar not only helps make the electroweak vacuum stable but also opens up the low-mass window of the scalar singlet dark matter (<500 GeV ). We consider the effect of large neutrino Yukawa coupling on the running of Higgs quartic coupling. We have analyzed the constraints on the model and identified the range of parameter space that is consistent with the neutrino mass, appropriate relic density, and direct search limits from the latest XENON 1T preliminary result as well as realized the stability of the electroweak vacuum up to the Planck scale.

  17. Electroweak symmetry breaking: to Higgs or not to Higgs” (3/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    How do elementary particles acquire their mass? What is making the photon different from the Z boson? In a word: How is electroweak symmetry broken? This is one of the pressing questions in particle physics that the LHC will answer soon. The aim of this lectures is, after briefly introducing SM physics and the conventional Higgs mechanism, to give a survey of recent attempts to go beyond a simple elementary Higgs. In particular, I will describe composite models (where the Higgs boson emerges from a strongly-interacting sector) and Higsless models. Distinctive signatures at the LHC are expected and will reveal the true nature of the electroweak symmetry sector.

  18. Electroweak symmetry breaking: to Higgs or not to Higgs” (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    How do elementary particles acquire their mass? What is making the photon different from the Z boson? In a word: How is electroweak symmetry broken? This is one of the pressing questions in particle physics that the LHC will answer soon. The aim of this lectures is, after briefly introducing SM physics and the conventional Higgs mechanism, to give a survey of recent attempts to go beyond a simple elementary Higgs. In particular, I will describe composite models (where the Higgs boson emerges from a strongly-interacting sector) and Higsless models. Distinctive signatures at the LHC are expected and will reveal the true nature of the electroweak symmetry sector.

  19. Electroweak symmetry breaking: to Higgs or not to Higgs” (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    How do elementary particles acquire their mass? What is making the photon different from the Z boson? In a word: How is electroweak symmetry broken? This is one of the pressing questions in particle physics that the LHC will answer soon. The aim of this lectures is, after briefly introducing SM physics and the conventional Higgs mechanism, to give a survey of recent attempts to go beyond a simple elementary Higgs. In particular, I will describe composite models (where the Higgs boson emerges from a strongly-interacting sector) and Higsless models. Distinctive signatures at the LHC are expected and will reveal the true nature of the electroweak symmetry sector.

  20. Extra generations and discrepancies of electroweak precision data

    OpenAIRE

    Novikov, V. A.; Okun, L. B.; Rozanov, A. N.; Vysotsky, M. I.

    2001-01-01

    It is shown that additional chiral generations are not excluded by the latest electroweak precision data if one assumes that there is no mixing with the known three generations. In the case of ``heavy extra generations'', when all four new particles are heavier than $Z$ boson, quality of the fit for the one new generation is as good as for zero new generations (Standard Model). In the case of neutral leptons with masses around 50 GeV (``partially heavy extra generations'') the minimum of $\\ch...

  1. Upper bound on the cutoff in lattice electroweak theory

    International Nuclear Information System (INIS)

    Veselov, A.I.; Zubkov, M.A.

    2008-01-01

    We investigate numerically lattice Weinberg-Salam model without fermions for realistic values of the fine structure constant and the Weinberg angle. We also analyze the data of the previous numerical investigations of lattice Electroweak theory. We have found that moving along the line of constant physics when the lattice spacing a is decreased, one should leave the physical Higgs phase of the theory at a certain value of a. Our estimate of the minimal value of the lattice spacing is a c = [430 ± 40 GeV] -1 .

  2. Electroweak contributions to SUSY particle production processes at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Mirabella, Edoardo

    2009-07-22

    In this thesis we have computed the electroweak contributions of O({alpha}{sub s}{alpha}), O({alpha}{sup 2}) and O({alpha}{sub s}{sup 2}) to three different classes of processes leading to the hadronic production of the SUSY partners of quarks and gluons, i.e. squarks and gluinos. The theoretical framework is the Minimal Supersymmetric extension of the Standard Model, the MSSM. The three processes are gluino pair production, diagonal squark-antisquark and associated squark-gluino production.

  3. After the Higgs: status and prospects of the electroweak fit of the SM and beyond -- with Gfitter

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    models are also obtained, through an analysis of the so-called oblique parameters. We discuss the impact of the electroweak fit on Higgs coupling studies and vice versa. Future measurements at the Large Hadron Collider and the International Linear Collider promise to improve the experimental precision of key observables used in the fit. We present the prospects of the global electroweak fit in view of these improvements.

  4. Bounds on dark matter interactions with electroweak gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Cotta, R. C.; Hewett, J. L.; Le, M. -P.; Rizzo, T. G.

    2013-12-01

    We investigate scenarios in which dark matter interacts with the Standard Model primarily through electroweak gauge bosons. We employ an effective field theory framework wherein the Standard Model and the dark matter particle are the only light states in order to derive model-independent bounds. Bounds on such interactions are derived from dark matter production by weak boson fusion at the LHC, indirect detection searches for the products of dark matter annihilation and from the measured invisible width of the Z 0 . We find that limits on the UV scale, Λ , reach weak scale values for most operators and values of the dark matter mass, thus probing the most natural scenarios in the weakly interacting massive particle dark matter paradigm. Our bounds suggest that light dark matter ( m χ ≲ m Z / 2 or m χ ≲ 100 – 200 GeV , depending on the operator) cannot interact only with the electroweak gauge bosons of the Standard Model, but rather requires additional operator contributions or dark sector structure to avoid overclosing the Universe.

  5. Exclusive radiative and electroweak b→d and b→s penguin decays at NLO

    International Nuclear Information System (INIS)

    Beneke, M.; Seidel, D.; Feldmann, T.

    2005-01-01

    We provide standard model expectations for the rare radiative decays B→K * γ, B→ργ and B→ωγ, and the electroweak penguin decays B→K * l + l - and B→ρl + l - at the next-to-leading order (NLO), extending our previous results to b→d transitions. We consider branching fractions, isospin asymmetries and direct CPasymmetries. For the electroweak penguin decays, the lepton-invariant mass spectrum and forward-backward asymmetry is also included. Radiative and electroweak penguin transitions in b→d are mainly interesting in the search for new flavor-changing neutral current interactions, but in addition the B→ργ decays provide constraints on the CKM parameters (anti ρ, anti η). The potential impact of these constraints is discussed. (orig.)

  6. Towards the theory of the electroweak phase transition

    International Nuclear Information System (INIS)

    Dine, M.; Leigh, R.G.; Huet, P.; Linde, A.; Linde, D.

    1992-01-01

    We investigate various problems related to the theory of the electroweak phase transition. This includes determination of the nature of the phase transition, discussion of the possible role of the higher-order radiative corrections, and the theory of the formation and evolution of bubbles of the new phase. We show, in particular, that no dangerous linear terms in the scalar field φ appear in the expression for the effective potential. We have found that, for the Higgs-boson mass smaller than the masses of W and Z bosons, the phase transition is of the first order. However, its strength is approximately 2/3 times less than what follows from the one-loop approximation. The phase transition occurs due to production and expansion of critical bubbles. Subcritical bubbles may be important only if the phase transition is very weakly first order. A general analytic expression for the probability of the bubble formation is obtained, which may be used for study of tunneling in a wide class of theories. The bubble-wall velocity depends on many factors, including the ratio of the mean free path of the particles to the thickness of the wall. Thin walls in the electroweak theory have a nonrelativistic velocity, whereas thick walls may be relativistic. A decrease of the cubic term by the factor 2/3 rules our baryogenesis in the minimal version of the electroweak theory. Even though we concentrate in this paper on the phase transition in this theory, most of our results can be applied to more general models as well, where baryogenesis is possible

  7. Electroweak penguin contributions in charmless B→VV decays beyond leading logarithms

    International Nuclear Information System (INIS)

    Dongsheng Du; Libo Guo

    1997-01-01

    Using the next-to-leading-order, low-energy effective Hamiltonian for vertical bar ΔB vertical bar = 1, ΔC = ΔU = 0 transitions, the contributions of electroweak penguin operators in charmless B→VV decays are estimated in the standard model. We find that, for some channels, the electroweak penguin effects can enhance or reduce the QCD penguin and/or tree-level contributions by at least 20%, and can even play a dominant role in decay widths and CP-asymmetries, but the corrections to the angular distribution are negligible. (author)

  8. A determination of electroweak parameters at HERA

    Science.gov (United States)

    H1 Collaboration; Aktas, A.; Andreev, V.; Anthonis, T.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bähr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Brown, D. P.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; de Roeck, A.; Desch, K.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Fleming, Y. H.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Henshaw, O.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Keller, N.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Kückens, J.; Landon, M. P. J.; Lange, W.; Laštovička, T.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lüke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauvan, E.; Schätzel, S.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sedlák, K.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Tomasz, F.; Traynor, D.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, M.; Usik, A.; Utkin, D.; Valkár, S.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    Using the deep inelastic ep and ep charged and neutral current scattering cross sections previously published, a combined electroweak and QCD analysis is performed to determine electroweak parameters accounting for their correlation with parton distributions. The data used have been collected by the H1 experiment in 1994 2000 and correspond to an integrated luminosity of 117.2 pb. A measurement is obtained of the W propagator mass in charged current ep scattering. The weak mixing angle sinθ is determined in the on-mass-shell renormalisation scheme. A first measurement at HERA is made of the light quark weak couplings to the Z boson and a possible contribution of right-handed isospin components to the weak couplings is investigated.

  9. A Determination of Electroweak Parameters at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Keller, N.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxeld, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sedlak, K.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    Using the deep inelastic e^+p and e^-p charged and neutral current scattering cross sections previously published, a combined electroweak and QCD analysis is performed to determine electroweak parameters accounting for their correlation with parton distributions. The data used have been collected by the H1 experiment in 1994-2000 and correspond to an integrated luminosity of 117.2 pb^{-1}. A measurement is obtained of the W propagator mass in charged current ep scattering. The weak mixing angle sin^2 theta_W is determined in the on-mass-shell renormalisation scheme. A first measurement at HERA is made of the light quark weak couplings to the Z^0 boson and a possible contribution of right-handed isospin components to the weak couplings is investigated.

  10. Electroweak vacuum stability and finite quadratic radiative corrections

    Energy Technology Data Exchange (ETDEWEB)

    Masina, Isabella [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Sezione di Ferrara (Italy); Southern Denmark Univ., Odense (Denmark). CP3-Origins; Southern Denmark Univ., Odense (Denmark). DIAS; Nardini, Germano [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quiros, Mariano [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); IFAE-IAB, Barcelona (Spain)

    2015-07-15

    If the Standard Model (SM) is an effective theory, as currently believed, it is valid up to some energy scale Λ to which the Higgs vacuum expectation value is sensitive throughout radiative quadratic terms. The latter ones destabilize the electroweak vacuum and generate the SM hierarchy problem. For a given perturbative Ultraviolet (UV) completion, the SM cutoff can be computed in terms of fundamental parameters. If the UV mass spectrum involves several scales the cutoff is not unique and each SM sector has its own UV cutoff Λ{sub i}. We have performed this calculation assuming the Minimal Supersymmetric Standard Model (MSSM) is the SM UV completion. As a result, from the SM point of view, the quadratic corrections to the Higgs mass are equivalent to finite threshold contributions. For the measured values of the top quark and Higgs masses, and depending on the values of the different cutoffs Λ{sub i}, these contributions can cancel even at renormalization scales as low as multi-TeV, unlike the case of a single cutoff where the cancellation only occurs at Planckian energies, a result originally obtained by Veltman. From the MSSM point of view, the requirement of stability of the electroweak minimum under radiative corrections is incorporated into the matching conditions and provides an extra constraint on the Focus Point solution to the little hierarchy problem in the MSSM. These matching conditions can be employed for precise calculations of the Higgs sector in scenarios with heavy supersymmetric fields.

  11. Probing electroweak gauge boson scattering with the ATLAS detector at the large hadron collider

    International Nuclear Information System (INIS)

    Anger, Philipp

    2014-01-01

    Electroweak gauge bosons as central components of the Standard Model of particle physics are well understood theoretically and have been studied with high precision at past and present collider experiments. The electroweak theory predicts the existence of a scattering process of these particles consisting of contributions from triple and quartic bosonic couplings as well as Higgs boson mediated interactions. These contributions are not separable in a gauge invariant way and are only unitarized in the case of a Higgs boson as it is described by the Standard Model. The process is tied to the electroweak symmetry breaking which introduces the longitudinal modes for the massive electroweak gauge bosons. A study of this interaction is also a direct verification of the local gauge symmetry as one of the fundamental axioms of the Standard Model. With the start of the Large Hadron Collider and after collecting proton-proton collision data with an integrated luminosity of 20.3 fb -1 at a center-of-mass energy of √(s)=8 TeV with the ATLAS detector, first-ever evidence for this process could be achieved in the context of this work. A study of leptonically decaying W ± W ± jj, same-electric-charge diboson production in association with two jets resulted in an observation of the electroweak W ± W ± jj production with same electric charge of the W bosons, inseparably comprising W ± W ± →W ± W ± electroweak gauge boson scattering contributions, with a significance of 3.6 standard deviations. The measured production cross section is in agreement with the Standard Model prediction. In the course of a study for leptonically decaying WZ productions, methods for background estimation, the extraction of systematic uncertainties and cross section measurements were developed. They were extended and applied to the WZjj final state whereof the purely electroweakly mediated contribution is intrinsically tied to the scattering of all Standard Model electroweak gauge bosons: W

  12. Structure functions of electroweak boson and leptons

    International Nuclear Information System (INIS)

    Slominski, W.; Szwed, J.

    1996-01-01

    The QCD structure of the electroweak bosons is reviewed and the lepton structure function is defined and calculated. The leading order splitting functions of electron into quarks are extracted, showing an important contribution from γ-Z interference. Leading logarithmic QCD evolution equations are constructed and solved in the asymptotic region where log 2 behavior of the Parton densities is observed. Possible applications with clear manifestation of ''resolved'' photon and weak bosons are discussed. 8 refs., 3 figs

  13. Electroweak Precision Measurements with the ATLAS Detector

    CERN Document Server

    Linck, Rebecca Anne; The ATLAS collaboration

    2018-01-01

    As part of its ongoing exploration into the nature of the particles produced in high energy proton-proton collisions, the ATLAS detector has been used to perform a number of new precision electroweak measurements. In this talk the recent measurements of the W-boson mass, the Drell-Yan triple-differential cross-section and the polarisation of tau leptons in Z/γ* → ττ decays will be discussed.

  14. Optimal tests for electroweak loop effects

    International Nuclear Information System (INIS)

    Aoki, Kenichi; Aoyama, Hideaki; Harvard Univ., Cambridge, MA

    1986-01-01

    A statistical analysis is given for the experimental precision necessary for establishing loop effects in the electroweak theory. Cases with three observables, gauge boson masses and the Weinberg angle, is analyzed by an optimised test. An information on the Weinberg angle with even 5% error (+-.01 in sin 2 thetasub(W)) is shown to reduce the requirement for the measurements of gauge boson masses significantly. (orig.)

  15. Electroweak measurements with the ATLAS detector

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The seminar presents an overview of the ATLAS electroweak physics programme. Recent measurements of di-boson and multi-boson production processes involving combinations of W, Z and isolated photons, associated with up to two jets, at 8 TeV proton-proton collisions are discussed. Inclusive, fiducial and differential production cross sections are presented, including vector-boson fusion and vector-boson scattering processes. These measurements allow to derive constraints on anomalous triple and quartic gauge couplings.

  16. Signatures of CP-Violating Electroweak Penguins in K and B Decays

    International Nuclear Information System (INIS)

    Schwab, Felix

    2007-01-01

    The B->πK decays with significant electroweak penguin contributions show a puzzling pattern. We explore this ''B->πK puzzle'' through a systematic strategy. The starting point, which is essentially unaffected by electroweak penguins, is the determination of the angle γ of the unitarity triangle through the CP-violating B d 0 ->π + π - , B d 0 ->π - K + asymmetries, yielding γ=(73.9 -6.5 +5.8 ) o , and the extraction of hadronic parameters through the measured B->ππ branching ratios. Using arguments related to the SU(3) flavor symmetry, we convert the hadronic B->ππ parameters into their B->πK counterparts, allowing us to predict the B->πK observables in the Standard Model. We find agreement with the data for those quantities that are only marginally affected by electroweak penguins, while this is not the case for the observables with sizeable electroweak penguin contributions. Since we may also perform a couple of internal consistency checks of our working assumptions, which are nicely satisfied for the current data, and find a small sensitivity of our results to large non-factorizable SU(3)-breaking corrections, the ''B->πK'' puzzle may be due to new physics in the electroweak penguin sector. We show that it can indeed be resolved through such a kind of new physics with a large CP-violating phase. Further insights into the electroweak penguins are provided by the B + ->π 0 K + and B d 0 ->π 0 K S CP asymmetries, and in particular through correlations with various rare K and B decays

  17. Electroweak boson production in Pb+Pb

    CERN Document Server

    Balestri, T; The ATLAS collaboration

    2013-01-01

    Lead-lead collisions at the LHC are capable of producing a system of deconfined quarks and gluons at unprecedented energy density and temperature. Partonic-level interactions and energy-loss mechanisms in the medium can be studied with the aid of electroweak bosons which carry important information about the properties of the medium. Electroweak bosons form a class of unique high-$p_{T}$ probes because their decay products do not interact with the strongly-coupled medium, providing a benchmark for a variety of other phenomena measured with strongly interacting particles. The ATLAS experiment measures isolated high-$p_{T}$ photons, W and Z bosons via different decay channels. New analyses of experimental data obtained at the LHC with lead-lead beams at $\\sqrt{s_{NN}}$ = 2.76 TeV. This talk will present a comprehensive study of the scaling properties of electroweak bosons showing linear proportionality of production rates to the nuclear thickness function; rapidity distributions W-decays directly sensitivity to...

  18. Fundamental Physics with Electroweak Probes of Nuclei

    Science.gov (United States)

    Pastore, Saori

    2018-02-01

    The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.

  19. Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian

    Science.gov (United States)

    Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.

    2018-03-01

    Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.

  20. The Continuum Limit of a Fermion System Involving Leptons and Quarks: Strong, Electroweak and Gravitational Interactions

    OpenAIRE

    Finster, Felix

    2014-01-01

    The causal action principle is analyzed for a system of relativistic fermions composed of massive Dirac particles and neutrinos. In the continuum limit, we obtain an effective interaction described by classical gravity as well as the strong and electroweak gauge fields of the standard model.

  1. Electroweak interaction: Standard and beyond

    International Nuclear Information System (INIS)

    Harari, H.

    1987-02-01

    Several important topics within the standard model raise questions which are likely to be answered only by further theoretical understanding which goes beyond the standard model. In these lectures we present a discussion of some of these problems, including the quark masses and angles, the Higgs sector, neutrino masses, W and Z properties and possible deviations from a pointlike structure. 44 refs

  2. Dirichlet Higgs in Extra-Dimension Consistent with Electroweak Data

    International Nuclear Information System (INIS)

    Naoyuki Habay; Kin-ya Odaz; Ryo Takahashi

    2011-01-01

    We propose a simple five-dimensional extension of the Standard Model (SM) without any Higgs potential nor any extra fields. A Higgs doublet lives in the bulk of a flat line segment and its boundary condition is Dirichlet at the ends of the line, which causes the electroweak symmetry breaking without Higgs potential. The vacuum expectation value of the Higgs is induced from the Dirichlet boundary condition which is generally allowed in higher dimensional theories. The lightest physical Higgs has non-flat profile in the extra dimension even though the vacuum expectation value is flat. As a consequence, we predict a maximal top Yukawa deviation (no coupling between top and Higgs) for the brane-localized fermion and a small deviation, a multiplication of 2√2/π ≅ 0.9 to the Yukawa coupling, for the bulk fermion. The latter is consistent with the electroweak precision data within 90% C.L. for 430 GeV ≤ m KK ≤ 500 GeV. (authors)

  3. Hadronic electroweak processes in a finite volume

    International Nuclear Information System (INIS)

    Agadjanov, Andria

    2017-01-01

    In the present thesis, we study a number of hadronic electroweak processes in a finite volume. Our work is motivated by the ongoing and future lattice simulations of the strong interaction theory called quantum chromodynamics. According to the available computational resources, the numerical calculations are necessarily performed on lattices with a finite spatial extension. The first part of the thesis is based on the finite volume formalism which is a standard method to investigate the processes with the final state interactions, and in particular, the elastic hadron resonances, on the lattice. Throughout the work, we systematically apply the non-relativistic effective field theory. The great merit of this approach is that it encodes the low-energy dynamics directly in terms of the effective range expansion parameters. After a brief introduction into the subject, we formulate a framework for the extraction of the ΔNγ * as well as the B→K * transition form factors from lattice data. Both processes are of substantial phenomenological interest, including the search for physics beyond the Standard Model. Moreover, we provide a proper field-theoretical definition of the resonance matrix elements, and advocate it in comparison to the one based on the infinitely narrow width approximation. In the second part we consider certain aspects of the doubly virtual nucleon Compton scattering. The main objective of the work is to answer the question whether there is, in the Regge language, a so-called fixed pole in the process. To answer this question, the unknown subtraction function, which enters one of the dispersion relations for the invariant amplitudes, has to be determined. The external field method provides a feasible approach to tackle this problem on the lattice. Considering the nucleon in a periodic magnetic field, we derive a simple relation for the ground state energy shift up to a second order in the field strength. The obtained result encodes the value of the

  4. Hadronic electroweak processes in a finite volume

    Energy Technology Data Exchange (ETDEWEB)

    Agadjanov, Andria

    2017-11-07

    In the present thesis, we study a number of hadronic electroweak processes in a finite volume. Our work is motivated by the ongoing and future lattice simulations of the strong interaction theory called quantum chromodynamics. According to the available computational resources, the numerical calculations are necessarily performed on lattices with a finite spatial extension. The first part of the thesis is based on the finite volume formalism which is a standard method to investigate the processes with the final state interactions, and in particular, the elastic hadron resonances, on the lattice. Throughout the work, we systematically apply the non-relativistic effective field theory. The great merit of this approach is that it encodes the low-energy dynamics directly in terms of the effective range expansion parameters. After a brief introduction into the subject, we formulate a framework for the extraction of the ΔNγ{sup *} as well as the B→K{sup *} transition form factors from lattice data. Both processes are of substantial phenomenological interest, including the search for physics beyond the Standard Model. Moreover, we provide a proper field-theoretical definition of the resonance matrix elements, and advocate it in comparison to the one based on the infinitely narrow width approximation. In the second part we consider certain aspects of the doubly virtual nucleon Compton scattering. The main objective of the work is to answer the question whether there is, in the Regge language, a so-called fixed pole in the process. To answer this question, the unknown subtraction function, which enters one of the dispersion relations for the invariant amplitudes, has to be determined. The external field method provides a feasible approach to tackle this problem on the lattice. Considering the nucleon in a periodic magnetic field, we derive a simple relation for the ground state energy shift up to a second order in the field strength. The obtained result encodes the

  5. A re-interpretation of $\\sqrt{s}=8~$TeV ATLAS results on electroweak supersymmetry production to explore general gauge mediated models

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    This document determines the constraints placed by the ATLAS experiment on general gauge mediated (GGM) supersymmetric models. The GGM parameters are chosen in such a way that the constraints from the observed Higgs mass are satisfied. Three varied parameters ($\\mu$, $M_{2}$ and $\\tan\\beta$) determine the phenomenology at the LHC, featuring the lightest wino-higgsino mixture neutralinos and charginos decaying to the gravitino and $W$, $Z$, Higgs bosons or photons. Constraints from existing ATLAS searches using the full Run 1 dataset of 20.3 fb$^{-1}$ at $\\sqrt{s} =8~$TeV and targeting a variety of final states with multiple leptons or photons are evaluated. Results of different analyses are statistically combined, providing stringent limits on the three theoretical parameters.

  6. The global electroweak fit at NNLO and prospects for the LHC and ILC

    International Nuclear Information System (INIS)

    Baak, M.; Hoecker, A.; Cuth, J.; Schott, M.; Haller, J.; Kogler, R.; Moenig, K.; Stelzer, J.

    2014-01-01

    For a long time, global fits of the electroweak sector of the standard model (SM) have been used to exploit measurements of electroweak precision observables at lepton colliders (LEP, SLC), together with measurements at hadron colliders (Tevatron, LHC) and accurate theoretical predictions at multi-loop level, to constrain free parameters of the SM, such as the Higgs and top masses. Today, all fundamental SM parameters entering these fits are experimentally determined, including information on the Higgs couplings, and the global fits are used as powerful tools to assess the validity of the theory and to constrain scenarios for new physics. Future measurements at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) promise to improve the experimental precision of key observables used in the fits. This paper presents updated electroweak fit results using the latest NNLO theoretical predictions and prospects for the LHC and ILC. The impact of experimental and theoretical uncertainties is analysed in detail. We compare constraints from the electroweak fit on the Higgs couplings with direct LHC measurements, and we examine present and future prospects of these constraints using a model with modified couplings of the Higgs boson to fermions and bosons. (orig.)

  7. Electroweak physics prospects for CDF in Run II

    International Nuclear Information System (INIS)

    Eric James

    2003-01-01

    The CDF collaboration will vigorously pursue a comprehensive program of electroweak physics during Run II at the Tevatron based strongly on the successful Run I program. The Run IIa integrated luminosity goal of 2 fb -1 will lead to a CDF dataset twenty times larger than that collected in Run I. In addition, an increase in the energy of the colliding beams from √s = 1.80 TeV to √s = 1.96 TeV for Run II provides a 10% increase in the W and Z boson production cross sections and a corresponding enlargement of the electroweak event samples. In the near term, CDF expects to collect a dataset with 2-3 times the integrated luminosity of Run I by September of 2003. Utilizing these new datasets CDF will be able to make improved, precision measurements of Standard Model electroweak parameters including M W , M top , Λ W , and sin 2 θ W eff . The goal of these measurements will be to improve our understanding of the self-consistency of the Standard Model and knowledge of the Higgs boson mass within the model. The top plot in Fig. 1 illustrates our current knowledge of the Standard Model Higgs mass based on measurements of M W and M top . The constraints imposed by combined CDF and D0 Run I measurements of M W (80.456 ± 0.059GeV/c 2 ) and M top (174.3 ± 5.1GeV/c 2 ) are illustrated by the shaded oval region on the plot. The hatched rectangle shows the additional constraint imposed by the recent LEP2 measurement of M W . The bottom plot in Fig. 1 illustrates the expected improvement in these constraints based on Run II CDF measurements utilizing a 2 fb -1 dataset. The shaded oval region in this plot is based on current estimates of a 40 MeV/c 2 uncertainty for measuring M W and a 2-3 GeV/c 2 uncertainty for measuring M top

  8. The electroweak symmetry breaking riddle

    International Nuclear Information System (INIS)

    Altarelli, G.

    2010-01-01

    I present a concise review of the Higgs problem which plays a central role in particle physics today. The Higgs of the minimal Standard Model is so far just a conjecture that needs to be verified or discarded at the LHC. Probably the reality is more complicated. I will summarize the motivation for New Physics that should accompany or even replace the Higgs discovery and a number of its possible forms that could be revealed by the LHC. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Looking hard at the electroweak force

    International Nuclear Information System (INIS)

    Baur, Ulrich; Errede, Steven; Mueller, Thomas

    1995-01-01

    While recent experiments have beautifully confirmed many of the predictions of the electroweak unification of electromagnetism and the weak nuclear force, some direct consequences of the electroweak symmetry involve special properties of the three force carriers - the electrically charged W and neutral Z carrying the weak force and the photon of electromagnetism. These special properties have yet to be measured accurately. In the electroweak picture these force carriers (vector bosons) can interact with each other. These properties are 'non-abelian' - they are dependent on the order in which they are applied. [Most operations can be applied in any order, for example simple arithmetic: 6x(3+2) = (6x3)+(6x2). These are 'abelian'. An example of a non-abelian operator is the logarithm: log(x+y) does not equal log(x) + log(y).] Summarizing the current theoretical and experimental understanding of these self-interactions, and discussing the prospects of measuring them in future experiments, was the purpose of the ''International Symposium on Vector Boson Self-Interactions'' held earlier this year at UCLA, the first meeting entirely devoted to this topic. Progress in measuring the selfcouplings of vector bosons has been fueled recently by the CDF and DO Collaborations at Fermilab's protonantiproton collider. Using data from vector boson pair production, these studies are extracting information on the WW-photon, WWZ and ZZphoton interactions, as well as the magnetic and electric quadrupole moments of the W boson. At UCLA, Hiro Aihara (Berkeley) and Theresa Fuess (Argonne) summarized the CDF and DO results from the 1992-93 run. Information on potential ZZ-gamma interactions can also be gained from single photon production at CERN's LEP electronpositron collider, as detailed by Peter Maettig (Bonn), and from rare B meson decays, reviewed by Steve Playfer (Syracuse)

  10. Electroweak Higgs production with HiggsPO at NLO QCD

    International Nuclear Information System (INIS)

    Greljo, Admir; Isidori, Gino; Zhang, Hantian; Lindert, Jonas M.; Marzocca, David

    2017-01-01

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available. (orig.)

  11. Electroweak Higgs production with HiggsPO at NLO QCD

    Science.gov (United States)

    Greljo, Admir; Isidori, Gino; Lindert, Jonas M.; Marzocca, David; Zhang, Hantian

    2017-12-01

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p_T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available.

  12. Electroweak Higgs production with HiggsPO at NLO QCD

    Energy Technology Data Exchange (ETDEWEB)

    Greljo, Admir [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Johannes Gutenberg-Universitaet Mainz, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); University of Sarajevo, Faculty of Science, Sarajevo (Bosnia and Herzegovina); Isidori, Gino; Zhang, Hantian [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Lindert, Jonas M. [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Marzocca, David [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); INFN, Sezione di Trieste(Italy); SISSA, Trieste (Italy)

    2017-12-15

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p{sub T} for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available. (orig.)

  13. Electroweak physics at the Tevatron collider

    International Nuclear Information System (INIS)

    Aihara, H.

    1993-08-01

    Preliminary results on electroweak physics from the 1992--1993 run with the CDF and D0 detectors at the Tevatron collider are presented. New measurements of the ratio of the W and Z production cross sections times the branching fractions for subsequent decay into leptons are shown. The W width, Γ(W), and a limit on the top-quark mass independent of decay mode are extracted. The status of a measurement of the charge asymmetry of electrons from W decay is given. Also shown are a study of diboson (Wγ, Zγ and WZ) production and a search for a new neutral gauge boson (Z')

  14. Theory of precision electroweak measurements

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1990-03-01

    In these lectures, I will review the theoretical concepts needed to understand the goals and implications of experiments in this new era of weak interactions. I will explain how to compute the most important order-α radiative corrections to weak interaction processes and discuss the physical implications of these correction terms. I hope that this discussion will be useful to those --- experimentalists and theorists --- who will try to interpret the new data that we will soon receive. This paper is organized as follows: I will review the structure of the standard weak interaction model at zeroth order. I will discuss the measurement of the Z 0 boson mass in e + e - annihilation. This measurement is affected by radiative correction to the form of the Z 0 resonance, and so I will review the theory of the resonance line shape. I will briefly review the modifications of the properties of the Z 0 which would be produced by additional neutral gauge bosons. I will review the theory of the renormalization of weak interaction parameters such as sin 2 θ ω , concentrating especially on the contributions of the top quark and other heavy, undiscovered particles

  15. Electroweak interactions in the Standard Model

    CERN Document Server

    Pich, Antonio

    1993-01-01

    The nuclear predicament or nuclear option. Synopsis of three lectures :1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separation of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl.3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

  16. ((ε')/(ε)) and the electroweak penguin contribution

    International Nuclear Information System (INIS)

    Cirigliano, V.; Donoghue, J.F.; Golowich, E.; Maltman, K.

    2003-01-01

    Our dispersive sum rule calculation of the electroweak penguin contribution to ((ε')/(ε)) is reviewed. A more recent analysis based on the finite-energy sum rule approach is described. Finally, a new determination of the electroweak penguin contribution to ((ε')/(ε)) is presented

  17. Searches for Electroweak SUSY by ATLAS and CMS

    CERN Document Server

    Khoo, Teng Jian; The ATLAS collaboration

    2018-01-01

    While strongly-produced SUSY and third-generation squark searches have already breached the TeV mass range, direct production of electroweak gauginos is less tightly constrained. New searches are presented, showcasing novel strategies for filling in the gaps in sensitivity to electroweak SUSY at ATLAS and CMS.

  18. Recent progress for Linear Collider SM/BSM Higgs/electroweak symmetry breaking calculations

    International Nuclear Information System (INIS)

    Reuter, Juergen

    2012-01-01

    In this paper I review the calculations (and partially simulations and theoretical studies) that have been made and published during the last two to three years focusing on the electroweak symmetry breaking sector and the Higgs boson(s) within the Standard Model and models beyond the Standard Model (BSM) at or relevant for either the International Linear Collider (ILC) or the Compact Linear Collider (CLIC), commonly abbreviated as Linear Collider (LC). (orig.)

  19. Precision electroweak measurements on the $Z$ resonance

    CERN Document Server

    Schael, S; Brunelière, R; Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Jézéquel, S; Lees, J P; Lucotte, A; Martin, F; Merle, E; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Trocmé, B; Bravo, S; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Orteu, S; Pacheco, A; Park, I C; Perlas, J; Riu, I; Ruiz, H; Sánchez, F; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Iaselli, G; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Bazarko, A; Becker, U; Boix, G; Bird, F; Blucher, E; Bonvicini, B; Bright-Thomas, P; Barklow, T; Cattaneo, M; Cerutti, F; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Greening, T C; Hagelberg, R; Halley, A W; Gianotti, F; Girone, M; Hansen, J B; Harvey, J; Jacobsen, R; Hutchcroft, D E; Janot, P; Jost, B; Knobloch, J; Kado, M; Lehraus, Ivan; Lazeyras, Pierre; Maley, P; Mato, P; May, J; Moutoussi, A; Pepé-Altarelli, M; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, B; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Veenhof, R; Valassi, A; Wiedenmann, W; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Dessagne, S; Falvard, A; Ferdi, C; Fayolle, D; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Pascolo, J M; Perret, P; Podlyski, F; Bertelsen, H; Fernley, T; Hansen, J D; Hansen, J R; Hansen, P H; Kraan, A C; Lindahl, A; Møllerud, R; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, E; Siotis, I; Vayaki, A; Blondel, A; Bonneaud, G; Brient, J C; Machefert, F; Rougé, A; Rumpf, M; Swynghedauw, M; Tanaka, R; Verderi, M; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Antonelli, A; Antonelli, M; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Picchi, P; Colrain, P; ten Have, I; Hughes, I S; Kennedy, J; Knowles, I G; Lynch, J G; Morton, W T; Negus, P; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Turnbull, R M; Wasserbaech, S R; Buchmüller, O L; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, W; Wunsch, M; Beuselinck, R; Binnie, D M; Cameron, W; Davies, G; Dornan, P J; Goodsir, S M; Marinelli, N; Martin, E; Nash, J; Nowell, J; Rutherford, S A; Sedgbeer, J K; Thompson, J C; White, R; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Buck, P G; Clarke, D P; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Keemer, N R; Pearson, M R; Robertson, N A; Sloan, T; Smizanska, M; Snow, S W; Williams, M I; van der Aa, O; Delaere, C; Leibenguth, G; Lemaître, V; Bauerdick, L A T; Blumenschein, U; Van Gemmeren, P; Giehl, I; Hölldorfer, F; Jakobs, K; Kasemann, M; Kayser, F; Kleinknecht, K; Müller, A S; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmeling, S; Wachsmuth, H W; Wanke, R; Zeitnitz, C; Ziegler, T; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Curtil, C; Ealet, A; Etienne, F; Fouchez, D; Motsch, F; Payre, P; Rousseau, D; Talby, M; Thulasidas, M; Aleppo, M; Ragusa, F; Büscher, V; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Settles, R; Seywerd, H; Stenzel, H; Villegas, M; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Le Diberder, F R; Lefrançois, J; Mutz, A M; Schune, M H; Serin, L; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Fidecaro, F; Foà, L; Giammanco, A; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, F; Rizzo, G; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Spagnolo, P; Steinberger, J; Tenchini, R; Vannini, C; Venturi, A; Verdini, P G; Awunor, O; Blair, G A; Cowan, G; García-Bellido, A; Green, M G; Medcalf, T; Strong, J A; Teixeira-Dias, P; Botterill, David R; Clifft, R W; Edgecock, T R; Edwards, M; Haywood, S J; Norton, P R; Ward, J J; Bloch-Devaux, B; Boumediene, D E; Colas, P; Emery, S; Fabbro, B; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Tuchming, B; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Affholderbach, K; Barberio, E; Böhrer, A; Brandt, S; Burkhardt, H; Feigl, E; Grupen, C; Hess, J; Lutters, G; Meinhard, H; Minguet-Rodríguez, J A; Mirabito, L; Misiejuk, A; Neugebauer, E; Ngac, A; Prange, G; Rivera, F; Saraiva, P; Schäfer, U; Sieler, U; Smolik, L; Stephan, F; Trier, H; Apollonio, M; Borean, C; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pitis, L; He, H; Kim, H; Pütz, J; Rothberg, J E; Armstrong, S R; Bellantoni, L; Berkelman, K; Cinabro, D; Conway, J S; Cranmer, K; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; Jin, S; Johnson, R P; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Sharma, V; Walsh, A M; Walsh, J; Wear, J; Von Wimmersperg-Töller, J H; Wu, J; Wu, S L; Wu, X; Yamartino, J M; Zobernig, G; Dissertori, G; Abdallah, J; Abreu, P; Adam, W; Adye, T; Adzic, P; Ajinenko, I; Albrecht, T; Alderweireld, T; Alekseev, G D; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barão, F; Barbiellini, G; Barbier, R; Bardin, D; Barker, G; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Beillière, P; Belokopytov, Yu A; Belous, K S; Ben-Haim, E; Benekos, N; Benvenuti, A C; Bérat, C; Berggren, M; Berntzon, L; Bertini, D; Bertrand, D; Besançon, M; Besson, N; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Bracko, M; Branchini, P; Brenke, T; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschbeck, Brigitte; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, C; Castillo-Gimenez, M V; Castro, N; Cattai, A; Cavallo, F; Chabaud, V; Chapkin, M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Costa, M J; Cowell, J H; Crawley, H B; Crennell, D J; Crépé, S; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Hondt, J; D'Almagne, B; Dalmau, J; Damgaard, G; Davenport, M; Da Silva, T; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L; Dijkstra, H; Di Ciaccio, L; Di Diodato, A; Di Simone, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, G; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, M; Fenyuk, A; Fernández, J; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E; Gelé, D; Gerber, J P; Gerdyukov, L N; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, G; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Grimm, H J; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Haag, C; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hamilton, K; Hansen, J; Harris, F J; Haug, S; Hauler, F; Hedberg, V; Heising, S; Hennecke, M; Henriques, R; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Hoffman, J; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huber, M; Huet, K; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Juillot, P; Jungermann, L; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kernel, G; Kersevan, B P; Kerzel, U; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B T; Kinvig, A; Kjaer, N J; Klapp, O; Klein, H; Kluit, P; Knoblauch, D; Kokkinias, P; Konoplyannikov, A K; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, M; Kreuter, C; Kriznic, E; Krstic, J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kucharczyk, M; Kurowska, J; Kurvinen, K; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, G; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, G; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liebig, W; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Lokajícek, M; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreau, X; Moreno, S; Morettini, P; Morton, G; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Mundim, L; Muresan, R; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Naraghi, F; Nassiakou, M; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Niezurawski, P; Nikolaenko, V; Nikolenko, M; Nomokonov, V P; Normand, A; Nygren, A; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Orazi, G; Österberg, K; Ouraou, A; Oyanguren, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J P; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pavel, T; Pegoraro, M; Peralta, L; Perepelitsa, V F; Pernicka, M; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Polycarpo, E; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, A; Radojicic, D; Ragazzi, S; Rahmani, H; Rakoczy, D; Rames, J; Ramler, L; Ratoff, P N; Read, A; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Ripp-Baudot, I; Rivero, M; Rodríguez, D; Rohne, O; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, P; Rovelli, T; Royon, C; Ruhlmann-Kleider, V; Ruiz, A; Ryabtchikov, D; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salmi, L; Salt, J; Sampsonidis, D; Sannino, M; Savoy-Navarro, A; Scheidle, T; Schneider, H; Schwemling, P; Schwering, B; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A; Seibert, N; Sekulin, R L; Shellard, R C; Sheridan, A; Siebel, M; Silvestre, R; Simard, L; Simonetto, F; Sisakian, A; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O; Smith, G R; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stanitzki, M; Stapnes, S; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tinti, N; Tkatchev, L G; Tobin, M; Todorov, T; Todorovova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tortosa, P; Tranströmer, G; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Trombini, A; Troncon, C; Tsirou, A; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van den Boeck, W; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I; Vassilopoulos, N; Vegni, G; Veloso, F; Ventura, L; Venus, W; Verbeure, F; Verdier, P; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vollmer, C; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Washbrook, A J; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Wlodek, T; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zevgolatakos, E; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zoller, P; Zucchelli, G C; Zumerle, G; Zupan, M; Acciarri, M; Achard, P; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Balandras, A; Baldew, S V; Ball, R C; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, M; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Button, A J; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, L; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; Cozzoni, B; de la Cruz, B; Csilling, A; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Debreczeni, J; Deglon, P; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, M; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duda, M; Duinker, P; Durán, I; Dutta, S; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, P; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Innocente, V; Jin, B N; Jindal, P; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Koffeman, E; Kopal, M; Kopp, A; Koutsenko, V F; Kraber, M; Krämer, R W; Krenz, W; Krüger, A; Kuijten, H; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lassila-Perini, K M; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lu, W; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lugnier, L; Lustermann, W; Ma, W G; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Merk, M; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Oulianov, A; Pal, I; Palomares, C; Pandoulas, D; Paoletti, S; Paoloni, A; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, F; Peach, D; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Ruschmeier, D; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Sciarrino, D; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Siedenburg, T; Son, D; Smith, B; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, G; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, Q; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M; Abbiendi, G; Ainsley, C; Åkesson, P F; Alexander, G; Allison, J; Altekamp, N; Amaral, P; Ametewee, K A; Anagnostou, G; Anderson, K J; Anderson, S; Arcelli, S; Armitage, J C; Asai, S; Ashby, S F; Ashton, P; Astbury, A; Axen, D; Azuelos, Georges; Bahan, G A; Bailey, I; Baines, J T M; Ball, A H; Banks, J; Barillari, T; Barker, G J; Barlow, R J; Barnett, S; Bartoldus, R; Batley, J Richard; Beaudoin, G; Bechtle, P; Bechtluft, J; Beck, A; Becker, J; Beeston, C; Behnke, T; Bell, A N; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bentvelsen, Stanislaus Cornelius Maria; Berlich, P; Bethke, Siegfried; Biebel, O; Binder, U; Blobel, Volker; Bloodworth, Ian J; Bloomer, J E; Bock, P; Boden, B; Böhme, J; Boeriu, O; Bonacorsi, D; Bosch, H M; Bougerolle, S; Boutemeur, M; Bouwens, B T; Brabson, B B; Braibant, S; Breuker, H; Brigliadori, L; Brown, R M; Brun, R; Bürgin, R; Büsser, K; Burckhart, H J; Burgard, C; Cammin, J; Campana, S; Capiluppi, P; Carnegie, R K; Caron, B; Carter, A A; Carter, J R; Chang, C Y; Charlesworth, C; Charlton, D G; Chrin, J T M; Chrisman, D; Chu, S L; Ciocca, C; Clarke, P E L; Clay, E; Clayton, J C; Cohen, I; Collins, W J; Conboy, J E; Cooke, O C; Cooper, M; Couch, M; Couchman, J; Coupland, M; do Couto e Silva, E; Coxe, R L; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; Dallison, S; Darling, C; De Jong, S; de Roeck, A; De Wolf, E A; Debu, P; Deng, H; Deninno, M M; Dervan, P; Desch, Klaus; Dieckmann, A; Dienes, B; Dixit, M S; Donkers, M; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Dumas, D J P; Eckerlin, G; Edwards, J E G; Elcombe, P A; Estabrooks, P G; Evans, H G; Evans, M; Fabbri, F; Fanti, M; Fath, P; Feld, L; Fiedler, F; Fierro, M; Fincke-Keeler, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Ford, M; Foucher, M; Frey, A; Fürtjes, A; Fukui, H; Fukunaga, C; Futyan, D I; Gagnon, P; Gaidot, A; Ganel, O; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Gaycken, G; Geddes, N I; Geich-Gimbel, C; Gensler, S W; Gentit, F X; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gillies, James D; Gingrich, D M; Giunta, M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Graham, K; Grandi, C; Grant, F C; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hagemann, J; Hajdu, C; Hamann, M; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Harel, A; Hargrove, C K; Harin-Dirac, M; Harrison, P F; Hart, P A; Hartmann, C; Hattersley, P M; Hauschild, M; Hawkes, C M; Hawkings, R; Heflin, E; Hemingway, R J; Hensel, C; Herten, G; Heuer, R D; Hill, J C; Hillier, S J; Hilse, T; Hinshaw, D A; Ho, C; Hoare, J; Hobbs, J D; Hobson, P R; Hochman, D; Höcker, Andreas; Hoffman, K; Holl, B; Homer, R J; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Howarth, C P; Hüntemeyer, P; Hughes-Jones, R E; Humbert, R; Igo-Kemenes, P; Ihssen, H; Imrie, D C; Ingram, M R; Ishii, K; Jacob, F R; Janissen, A C; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, M; Jobes, M; Joly, A; Jones, C R; Jones, G; Jones, M; Jost, U; Jovanovic, P; Jui, C; Kanaya, N; Kanzaki, J; Karapetian, G V; Karlen, D; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kim, D H; King, B J; Kirk, J; Klein, K; Kleinwort, C; Klem, D E; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Köpke, L; Koetke, D S; Kokott, T P; Komamiya, S; Kormos, L; Kowalewski, R V; Kramer, T; Kral, J F; Kress, T; Kreutzmann, H; Krieger, P; Von Krogh, J; Kroll, J; Krop, D; Krüger, K; Kühl, T; Kupper, M; Kuwano, M; Kyberd, P; Lafferty, G D; Lafoux, H; Lahmann, R; Lai, W P; Lamarche, F; Landsman, H; Lanske, D; Larson, W J; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Le Dû, P; Leblanc, P; Lee, A M; Lefebvre, E; Leins, A; Lellouch, D; Lennert, P; Leroy, C; Lessard, L; Letts, J; Levegrün, S; Levinson, L; Lewis, C; Liebisch, R; Lillich, J; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Lorah, J M; Lorazo, B; Losty, Michael J; Lou, X C; Lü, J; Ludwig, A; Ludwig, J; Luig, A; Macchiolo, A; MacPherson, A; Mader, W; Mättig, P; Malik, A; Mannelli, M; Marcellini, S; Marchant, T E; Maringer, G; Markus, C; Martin, A J; Martínez, G; Masetti, G; Mashimo, T; Matthews, W; Maur, U; McDonald, W J; McGowan, R F; McKenna, J; McKigney, E A; McMahon, T J; McNab, A I; McNutt, J R; McPherson, A C; McPherson, R A; Meijers, F; Méndez-Lorenzo, P; Menges, W; Menke, S; Menszner, D; Merritt, F S; Mes, H; Meyer, J; Meyer, N; Michelini, A; Middleton, R P; Mihara, S; Mikenberg, G; Mildenberger, J; Miller, D J; Milstene, C; Mir, R; Moed, S; Mohr, W; Moisan, C; Montanari, A; Mori, T; Moss, M W; Mouthuy, T; Murphy, P G; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nellen, B; Nguyen, H H; Nijjhar, B; Nisius, R; Nozaki, M; Oakham, F G; Odorici, F; Ogg, M; Ögren, H O; Oh, A; Oh, H; Okpara, A; Oldershaw, N J; Omori, T; O'Neale, S W; O'Neill, B P; Oram, C J; Oreglia, M J; Orito, S; Pahl, C; Pálinkás, J; Palmonari, F; Pansart, J P; Panzer-Steindel, B; Paschievici, P; Pásztor, G; Pater, J R; Patrick, G N; Pawley, S J; Paz-Jaoshvili, N; Pearce, M J; Petzold, S; Pfeifenschneider, P; Pfister, P; Pilcher, J E; Pinfold, J L; Pitman, D; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Pooth, O; Posthaus, A; Pouladdej, A; del Pozo, L A; Prebys, E; Pritchard, T W; Przybycien, M B; Przysiezniak, H; Quadt, A; Rabbertz, K; Raith, B; Redmond, M W; Rees, D L; Rembser, C; Renkel, P; Richards, G E; Rick, H; Rigby, D; Robins, S A; Robinson, D; Rodning, N; Rollnik, A; Roney, J M; Rooke, A M; Ros, E; Rosati, S; Roscoe, K; Rossberg, S; Rossi, A M; Rosvick, M; Routenburg, P; Rozen, Y; Runge, K; Runólfsson, O; Ruppel, U; Rust, D R; Rylko, R; Sachs, K; Saeki, T; Sahr, O; Sanghera, S; Sarkisyan-Grinbaum, E; Sasaki, M; Sbarra, C; Schaile, A D; Schaile, O; Schappert, W; Scharf, F; Scharff-Hansen, P; Schenk, P; Schieck, J; von der Schmitt, H; Schmitt, S; Schörner-Sadenius, T; Schreiber, S; Schröder, M; Schütz, P; Schultz-Coulon, H C; Schulz, M; Schumacher, M; Schwarz, J; Schwick, C; Scott, W G; Settles, M; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Shypit, R; Simon, A; Singh, P; Siroli, G P; Sittler, A; Skillman, A; Skuja, A; Smith, A M; Smith, T J; Snow, G A; Sobie, R J; Söldner-Rembold, S; Spagnolo, S; Spanó, F; Springer, R W; Sproston, M; Starks, M; Steiert, M; Stephens, K; Steuerer, J; Stier, H E; Stockhausen, B; Stoll, K; Ströhmer, R; Strom, D; Strumia, F; Stumpf, L; Surrow, B; Szymanski, P; Tafirout, R; Takeda, H; Takeshita, T; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Tasevsky, M; Taylor, R J; Tecchio, M; Tesch, N; Teuscher, R; Thackray, N J; Thiergen, M; Thomson, M A; Von Törne, E; Towers, S; Toya, D; Trócsányi, Z L; Tran, P; Trefzger, T; Tresilian, N J; Trigger, I; Tscheulin, M; Tsukamoto, T; Tsur, E; Turcot, A S; Turner-Watson, M F; Tysarczyk-Niemeyer, G; Ueda, I; Ujvári, B; Utzat, P; Vachon, B; Van den Plas, D; Van Kooten, R; VanDalen, G J; Vannerem, P; Vasseur, G; Vertesi, R; Verzocchi, M; Vikas, P; Vincter, M G; Virtue, C J; Vokurka, E H; Vollmer, C F; Voss, H; Vossebeld, Joost Herman; Wäckerle, F; Wagner, A; Wagner, D L; Wahl, C; Walker, J P; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Weber, P; Weisz, S; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; Weymann, M; Whalley, M A; White, J S; Wilkens, B; Wilson, J A; Wilson, G W; Wingerter, Isabelle; Winterer, V H; Wood, N C; Wotton, S; Wyatt, T R; Yaari, R; Yamashita, S; Yang, Y; Yeaman, A; Yekutieli, G; Yurko, M; Zacek, V; Zacharov, I E; Zer-Zion, D; Zeuner, W; Zivkovic, L; Zorn, G T; Abe, Kenji; Abe, Koya; Abe, T; Abt, I; Acton, P D; Adam, I; Agnew, G; Akagi, T; Akimoto, H; Allen, N J; Ash, W W; Aston, D; Bacchetta, N; Baird, K G; Baltay, C; Band, H R; Barakat, M B; Baranko, G J; Bardon, O; Barklow, T L; Bashindzhagian, G L; Bauer, J M; Bazarko, A O; Bean, A; Bellodi, G; Ben-David, R; Berger, R; Bienz, T; Bilei, G M; Bisello, D; Blaylock, G; Bogart, J R; Bolen, B; Bolton, T; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Busza, W; Calcaterra, A; Caldwell, D O; Camanzi, B; Carpinelli, M; Cassell, R; Castaldi, R; Castro, A; Cavalli-Sforza, M; Chadwick, George B; Chou, A; Church, E; Claus, R; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cotton, R; Cowan, R F; Coyne, D G; Crawford, G; de Oliveira, A; Damerell, C J S; Daoudi, M; Dasu, S; De Groot, N; De Sangro, R; De Simone, P; De Simone, S; Dervan, P J; Dima, M; Dong, D N; Doser, Michael; Du, P Y C; Dubois, R; Duboscq, J E; Eisenstein, B I; Elia, R; Erdos, E; Erofeeva, I; Eschenburg, V; Etzion, E; Fahey, S; Falciai, D; Fan, C; Fernández, J P; Fero, M J; Flood, K; Frey, R; Friedman, Jerome Isaac; Furuno, K; Garwin, E L; Gillman, T; Gladding, G; Hallewell, G D; Hart, E L; Hasegawa, Y; Hasuko, K; Hedges, S; Hertzbach, S S; Hildreth, M D; Hitlin, D G; Honma, A; Huber, J S; Huffer, M E; Hughes, E W; Huynh, X; Hwang, H; Iwasaki, M; Iwasaki, Y; Izen, J M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Johnson, R A; Junk, T R; Kajikawa, R; Kalelkar, M; Kamyshkov, Yu A; Kang, H J; Karliner, I; Kawahara, H; Kelsey, M H; Kendall, H W; Kim, Y D; King, M; King, R; Kofler, R R; Krishna, N M; Kwon, Y; Labs, J F; Kroeger, R S; Langston, M; Lath, A; Lauber, J A; Leith, D W G S; Lia, V; Lin, C; Liu, M X; Loreti, M; Lu, A; Lynch, H L; Ma, J; Mancinelli, G; Manly, S; Mantovani, G C; Markiewicz, T W; Maruyama, T; Masuda, H; Mazzucato, E; McGowan, J F; McKemey, A K; Meadows, B T; Messner, R; Mockett, P M; Moffeit, K C; Moore, T B; Morii, M; Mours, B; Müller, D; Müller, G; Murzin, V; Nagamine, T; Narita, S; Nauenberg, U; Neal, H; Nesom, G; Nussbaum, M; Ohnishi, Y; Oishi, N; Onoprienko, D; Osborne, L S; Panvini, R S; Park, C H; Park, H; Pavel, T J; Peruzzi, I; Pescara, L; Piccolo, M; Piemontese, L; Pieroni, E; Pitts, K T; Plano, R J; Prepost, R; Prescott, C Y; Punkar, G; Quigley, J; Ratcliff, B N; Reeves, K; Reeves, T W; Reidy, J; Reinertsen, P L; Rensing, P E; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T; Schindler, R H; Schneekloth, U; Schumm, B A; Schwiening, J; Seiden, A; Sen, S; Serbo, V V; Shaevitz, M H; Shank, J T; Shapiro, G; Sherden, D J; Shmakov, K D; Simopoulos, C; Sinev, N B; Smith, S R; Smy, M B; Snyder, J A; Sokoloff, M D; Stängle, H; Stahl, A; Stamer, P; Steiner, H; Steiner, R; Strauss, M G; Su, D; Suekane, F; Sugiyama, A; Suzuki, A; Suzuki, S; Swartz, M; Szumilo, A; Takahashi, T; Taylor, F E; Thaler, J J; Thom, J; Torrence, E; Trandafir, A I; Turk, J D; Usher, T; Vavra, J; Vella, E; Venuti, J P; Verdier, R; Wagner, S R; Waite, A P; Walston, S; Wang, J; Watts, S J; Weidemann, A W; Weiss, E R; Whitaker, J S; White, S L; Wickens, F J; Williams, D A; Williams, D C; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Word, G B; Wright, T R; Wyss, J; Yamamoto, R K; Yang, X Q; Yashima, J; Yellin, S J; Young, C C; Yuta, H; Zapalac, G; Zdarko, R W; Zeitlin, C; Zhou, J

    2006-01-01

    We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, $MZ$ and $GZ$, and its couplings to fermions, for example the $ ho$ parameter and the effective electroweak mixing angle for leptons, are precisely measured: egin{eqnarray*} MZ & = & 91.1875 pm 0.0021~GeV \\ GZ & = & 2.4952 pm 0.0023~GeV \\ ho_ell & = & 1.0050 pm 0.0010 \\ swsqeffl & =& 0.23153 pm 0.00016 ,. end{eqnarray*} The number of light neutrino species is determined to be $2.9840pm0.0082$, in agreement with the three observed generations of fundamental fermions. The results are compared to the pr...

  20. Electroweak processes in external active media

    CERN Document Server

    Kuznetsov, Alexander

    2013-01-01

    Expanding on the concept of the authors’ previous book “Electroweak Processes in External Electromagnetic Fields,” this new book systematically describes the investigation methods for the effects of external active media, both strong electromagnetic fields and hot dense plasma, in quantum processes. Solving the solar neutrino puzzle in a unique experiment conducted with the help of the heavy-water detector at the Sudbery Neutrino Observatory, along with another neutrino experiments, brings to the fore electroweak physics in an active external medium. It is effectively demonstrated that processes of neutrino interactions with active media of astrophysical objects may lead, under some physical conditions, to such interesting effects as neutrino-driven shockwave revival in a supernova explosion, a “cherry stone shooting” mechanism for pulsar natal kick, and a neutrino pulsar. It is also shown how poor estimates of particle dispersion in external active media sometimes lead to confusion. The book...

  1. Neutrino helicity flips via electroweak interactions and SN1987a

    International Nuclear Information System (INIS)

    Gaemers, K.J.F.; Gandhi, R.; Lattimer, J.M.

    1988-10-01

    Electroweak mechanisms via which neutrinos may flip helicity and become sterile are examined in detail. Exact and approximate expressions for a variety of flip processes relevant in astrophysics and cosmology, mediated by W,Z, and γ exchange, including their interference, are derived. It is shown that within the context of the Standard Model with massive neutrinos, for νe→νe scattering, σ Z flip /σ γ flip ∼ 6 X 10 3 , independent of particle masses and energies to a good approximation. It is also shown that using some general considerations and the fact that the observed anti ν e burst from SN1987a lasted several seconds, these weak interaction flip cross-sections can be used to derive an upper limit on μ and τ neutrino masses of ∼ 40 keV. Finally, some other consequences for astrophysics in general and supernovae in particular are briefly discussed. 29 refs.; 47 schemes

  2. Indication for Light Sneutrinos and Gauginos from Precision Electroweak Data

    CERN Document Server

    Altarelli, Guido; Giudice, Gian Francesco; Gambino, Paolo; Ridolfi, G

    2001-01-01

    The present Standard Model fit of precision data has a low confidence level, and is characterized by a few inconsistencies. We look for supersymmetric effects that could improve the agreement among the electroweak precision measurements and with the direct lower bound on the Higgs mass. We find that this is the case particularly if the 3.6 sigma discrepancy between sin^2 theta_eff from leptonic and hadronic asymmetries is finally settled more on the side of the leptonic ones. After the inclusion of all experimental constraints, our analysis selects light sneutrinos, with masses in the range 55-80 GeV, and charged sleptons with masses just above their experimental limit, possibly with additional effects from light gauginos. The phenomenological implications of this scenario are discussed.

  3. Constraints of dynamical symmetry breaking mechanisms from electroweak data

    International Nuclear Information System (INIS)

    Ali, A.; Degrassi, G.

    1991-04-01

    Consistency of the Salam-Weinberg theory, including quantum corrections, with high precision data from LEP and elsewhere imposes non-trivial bounds on the parameters of this theory, in particular the top quark mass. We take stock of the available experimental information in the electroweak sector with the view of constraining possible additional interactions, such as present in dynamical symmetry breaking scenarios. Using the Peskin-Takeuchi isospin conserving, S and -violating, T, parametrization of new physics contribution to vacuum polarization corrections, we show here that the full one family technicolor models are ruled out at the 95% C.L. from the LEP data and m W -measurements alone. We stress the role of improved precision measurements of the W-boson mass and the decay width Γ(Z→banti b) in the enhanced sensitivity gained on such interactions. (orig.)

  4. Measurement of the electroweak asymmetry of the b-quarks

    International Nuclear Information System (INIS)

    Knapp, J.

    1987-02-01

    The prompt electron and muon yield was measured in hadronic events of e + e - annihilation at energies of √s ≅ 44 GeV using the CELLO detector at PETRA. A cut in the transverse momentum of the lepton was used to enrich the lepton signals from b-quarks from which the semileptonic branching ratio of the b decay and the electroweak induced charge asymmetry of the banti b production was measured. One finds: Br (b → e + anti ν e + X) = 0.11 ± 0.05 ± 0.05, Br (b → μ + anti ν μ + X) = 0.03 ± 0.04 ± 0.04, A b (e) =- 0.70 ± 0.52 ± 0.11, A b (μ) =- 0.55 ± 0.59 ± 0.17. The results are found to be well compatible with the expectation of the standard model. (orig.) [de

  5. Bounds from LEP on unparticle interactions with electroweak bosons

    International Nuclear Information System (INIS)

    Kathrein, Scott; Knapen, Simon; Strassler, Matthew J.

    2011-01-01

    A conformally invariant hidden sector is considered, with a scalar operator O of low dimension that couples to the electroweak gauge bosons of the standard model, via terms such as F μν F μν O. By examining single photon production at LEP, we bound the strength of these interactions. We apply our results, along with those of Delgado and Strassler [A. Delgado and M. J. Strassler, Phys. Rev. D 81, 056003(2010).] and of Caracciolo and Rychkov [F. Caracciolo and S. Rychkov, Phys. Rev. D 81, 085037 (2010).], to improve the bound on 4γ production through 'unparticle self-interactions', as proposed by Feng et al.[J. L. Feng, A. Rajaraman, and H. Tu, Phys. Rev. D 77, 075007 (2008).]. We find the maximum allowable cross section is of order a few tens of femtobarns at the 14 TeV LHC, and lies well below 1 fb for a wide range of parameters.

  6. CP-violating profile of the electroweak bubble wall

    Energy Technology Data Exchange (ETDEWEB)

    Funakubo, Koichi [Saga Univ. (Japan). Dept. of Physics; Kakuto, Akira; Otsuki, Shoichiro; Takenaga, Kazunori; Toyoda, Fumihiko

    1995-11-01

    In any scenario of the electroweak baryogenesis, the profile of the CP violating bubble wall, created at the first-order phase transition, plays an essential role. We attempt to determine it by solving the equations of motion for the scalars in the two-Higgs-doublet model at the transition temperature. According to the parameters in the potential, we found three solutions. Two of them smoothly connect the CP-violating broken phase and the symmetric phase, while the other connects CP-conserving vacua but violates CP in the intermediate region. We also estimate the chiral charge flux, which will be turned into the baryon density in the symmetric phase by the sphaleron process. (author).

  7. Electric dipole moment constraints on minimal electroweak baryogenesis

    CERN Document Server

    Huber, S J; Ritz, A; Huber, Stephan J.; Pospelov, Maxim; Ritz, Adam

    2007-01-01

    We study the simplest generic extension of the Standard Model which allows for conventional electroweak baryogenesis, through the addition of dimension six operators in the Higgs sector. At least one such operator is required to be CP-odd, and we study the constraints on such a minimal setup, and related scenarios with minimal flavor violation, from the null results of searches for electric dipole moments (EDMs), utilizing the full set of two-loop contributions to the EDMs. The results indicate that the current bounds are stringent, particularly that of the recently updated neutron EDM, but fall short of ruling out these scenarios. The next generation of EDM experiments should be sufficiently sensitive to provide a conclusive test.

  8. Probing Electroweak Phase Transition via Enhanced Di-Higgs Production

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela [Chicago U., KICP; Liu, Zhen [Fermilab; Riembau, Marc [DESY

    2018-01-02

    We consider a singlet extension of the Standard Model (SM) with a spontaneous $Z_2$ breaking and study the gluon-gluon fusion production of the heavy scalar, with subsequent decay into a pair of SM-like Higgs bosons. We find that an on-shell interference effect can notably enhance the resonant di-Higgs production rate up to 40\\%. In addition, consistently taking into account both the on-shell and off-shell interference effects between the heavy scalar and the SM di-Higgs diagrams significantly improves the HL-LHC and HE-LHC reach in this channel. As an example, within an effective field theory analysis in an explicitly $Z_2$ breaking scenario, we further discuss the potential to probe the parameter region compatible with a first order electroweak phase transition. Our analysis is applicable for general potentials of the singlet extension of the SM as well as for more general resonance searches.

  9. Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Santoyo Castillo Itzebelt

    2015-01-01

    Full Text Available Results from the searches for electroweak production of gauginos or sleptons decaying into leptonic final states performed using 20.3 fb−1 of proton-proton collision data at √S = 8 TeV recorded with the ATLAS experiment at the Large Hadron Collider are presented. No significant excesses are observed with respect to the prediction from Standard Model processes. Limits are set on a wide range of SUSY models.

  10. Recent Results from CMS and ATLAS: Electroweak Symmetry, Breaking and Beyond

    CERN Document Server

    Azzurri, Paolo

    2016-01-01

    The discovery of the Higgs boson, announced by the CMS and ATLAS collaborations in 2012, unearthed the final cornerstone of the standard electroweak model of particle physics, and repre- sents the main legacy of the LHC Run 1. With Run 1 data the mass of the Higgs boson has been determined with 0.2pct precision, while coupling properties are only established at the 10pct level or worse. As the picture of the minimal standard model is now complete, unsettled difficulties and open questions remain on its stage. The LHC Run 2 has successfully started in 2015, opening a new period of particle physics exploration, at higher energy and intensity it will undoubtedly de- liver more insight on the electroweak model, its symmetry breaking mechanism, and on possible solutions to its difficulties.

  11. Next-to-leading-order QCD and electroweak corrections to WWW production at proton-proton colliders

    Science.gov (United States)

    Dittmaier, Stefan; Huss, Alexander; Knippen, Gernot

    2017-09-01

    Triple-W-boson production in proton-proton collisions allows for a direct access to the triple and quartic gauge couplings and provides a window to the mechanism of electroweak symmetry breaking. It is an important process to test the Standard Model (SM) and might be background to physics beyond the SM. We present a calculation of the next-to-leading order (NLO) electroweak corrections to the production of WWW final states at proton-proton colliders with on-shell W bosons and combine the electroweak with the NLO QCD corrections. We study the impact of the corrections to the integrated cross sections and to kinematic distributions of the W bosons. The electroweak corrections are generically of the size of 5-10% for integrated cross sections and become more pronounced in specific phase-space regions. The real corrections induced by quark-photon scattering turn out to be as important as electroweak loops and photon bremsstrahlung corrections, but can be reduced by phase-space cuts. Considering that prior determinations of the photon parton distribution function (PDF) involve rather large uncertainties, we compare the results obtained with different photon PDFs and discuss the corresponding uncertainties in the NLO predictions. Moreover, we determine the scale and total PDF uncertainties at the LHC and a possible future 100 TeV pp collider.

  12. Electroweak Precision Measurements with the ATLAS Detector

    CERN Document Server

    Zhang, Zhiqing; The ATLAS collaboration

    2018-01-01

    With the high integrated luminosities recorded at the LHC and the very good understanding of the ATLAS detector, it is possible to measure electroweak observables to the highest precision. In this talk, we present the tau polarisation, measured in $Z\\to \\tau\\tau$ using 20.3 fb$^{-1}$ of proton proton collision data collected at a centre of mass energy of 8 TeV. The talk also reviews the measurement of forward-background asymmetry based on the triple differential Drell-Yan cross-section obtained with the same data sample, which can be used to extract the weak mixing angle. We conclude with a presentation of the measurement of the $W$-boson mass using 4.6 fb$^{-1}$ data, collected at 7 TeV.

  13. Electroweak effective couplings for future precision experiments

    International Nuclear Information System (INIS)

    Jegerlehner, F.

    2011-01-01

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic α em (s)and the SU(2) L coupling α 2 (s). I will report on my recent package alphaQED, which besides the effective fine structure constant α em (s) also allows for a fairly precise calculation of the SU(2) L gauge coupling α 2 (s). I will briefly review the role, future requirements and possibilities. Applied together with the R had package by Harlander and Steinhauser, the package allows to calculate all SM running couplings as well as running sin 2 Θ versions with state-of-the-art accuracy.

  14. Electroweak effective couplings for future precision experiments

    International Nuclear Information System (INIS)

    Jegerlehner, F.; Humboldt-Universitaet, Berlin

    2011-07-01

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic α em (s) and the SU(2) L coupling α 2 (s). I report on my recent package alphaQED [1], which besides the effective fine structure constant α em (s) also allows for a fairly precise calculation of the SU(2) L gauge coupling α 2 (s). I will briefly review the role, future requirements and possibilities. Applied together with the Rhad package by Harlander and Steinhauser [2], the package allows to calculate all SM running couplings as well as running sin 2 Θ versions with state-of-the-art accuracy. (orig.)

  15. Fixed target electroweak and hard scattering physics

    International Nuclear Information System (INIS)

    Brock, R.; Brown, C.N.; Montgomery, H.E.; Corcoran, M.D.

    1990-02-01

    The possibilities for future physics and experiments involving weak and electromagnetic interactions, neutrino oscillations, general hard scattering and experiments involving nuclear targets were explored. The studies were limited to the physics accessible using fixed target experimentation. While some of the avenues explored turn out to be relatively unrewarding in the light of competition elsewhere in the world, there are a number of positive conclusions reached about experimentation in the energy range available to the Main Injector and Tevatron. Some of the experiments would benefit from the increased intensity available from the Tevatron utilizing the Main Injector, while some require this increase. Finally, some of the experiments would use the Main Injector low energy, high intensity extracted beams directly. A program of electroweak and hard scattering experiments at fixed target energies retains the potential for important contributions to physics. The key to major parts of this program would appear to be the existence of the Main Injector. 115 refs, 17 figs

  16. Chiral charge flux and electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Funakubo, Koichi [Saga Univ. (Japan). Dept. of Physics; Kakuto, Akira; Otsuki, Shoichiro; Takenaga, Kazunori; Toyoda, Fumihiko

    1995-06-01

    By treating CP-violating interaction of the electroweak bubble wall as a perturbative term, chiral charge flux through the bubble wall is estimated. It is found that the absolute value of the flux F{sub Q} has a sharp peak at m{sub 0} - a - T with F{sub Q}/(uT{sup 3}) - 10{sup -3}(Q{sub L}-Q{sub R}){Delta}{theta}. Here m{sub 0} is the fermion mass, 1/a is the wall thickness, T is the temperature at which the bubbles are growing, u is the wall velocity, Q{sub L(R)} is the chiral charge of the relevant left (right)-handed fermion and {Delta}{theta} is the measure of CP violation. (author).

  17. Updated status of the global electroweak fit and constraints on new physics

    Energy Technology Data Exchange (ETDEWEB)

    Baak, M.; Hoecker, A.; Schott, M. [CERN, Geneva (Switzerland); Goebel, M.; Ludwig, D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Haller, J. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Goettingen Univ. (Germany). II. Physikalisches Inst.; Moenig, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Stelzer, J. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy

    2011-07-15

    We present an update of the Standard Model fit to electroweak precision data. We include newest experimental results on the top quark mass, the W mass and width, and the Higgs boson mass bounds from LEP, Tevatron and the LHC. We also include a new determination of the electromagnetic coupling strength at the Z pole. We find for the Higgs boson mass 96{sub -24}{sup +31} GeV and 120{sub -5}{sup +12} GeV when not including and including the direct Higgs searches, respectively. From the latter fit we indirectly determine the W mass to be (80.362{+-} 0.013)GeV. We exploit the data to determine experimental constraints on the oblique vacuum polarisation parameters, and confront these with predictions from the Standard Model (SM) and selected SM extensions. By fitting the oblique parameters to the electroweak data we derive allowed regions in the BSM parameter spaces. We revisit and consistently update these constraints for a fourth fermion generation, two Higgs doublet, inert Higgs and littlest Higgs models, models with large, universal or warped extra dimensions and technicolour. In most of the models studied a heavy Higgs boson can be made compatible with the electroweak precision data. (orig.)

  18. Integrating out resonances in strongly-coupled electroweak scenarios

    Directory of Open Access Journals (Sweden)

    Rosell Ignasi

    2017-01-01

    Full Text Available Accepting that there is a mass gap above the electroweak scale, the Electroweak Effective Theory (EWET is an appropriate tool to describe this situation. Since the EWET couplings contain information on the unknown high-energy dynamics, we consider a generic strongly-coupled scenario of electroweak symmetry breaking, where the known particle fields are coupled to heavier states. Then, and by integrating out these heavy fields, we study the tracks of the lightest resonances into the couplings. The determination of the low-energy couplings (LECs in terms of resonance parameters can be made more precise by considering a proper short-distance behaviour on the Lagrangian with heavy states, since the number of resonance couplings is then reduced. Notice that we adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs.

  19. Atomic parity nonconservation: Electroweak parameters and nuclear structure

    International Nuclear Information System (INIS)

    Pollock, S.J.; Fortson, E.N.; Wilets, L.

    1992-01-01

    There have been suggestions to measure atomic parity nonconservation (PNC) along an isotopic chain, by taking ratios of observables in order to cancel complicated atomic-structure effects. Precise atomic PNC measurements could make a significant contribution to tests of the standard model at the level of one-loop radiative corrections. However, the results also depend upon certain features of nuclear structure, such as the spatial distribution of neutrons in the nucleus. To examine the sensitivity to nuclear structure, we consider the case of Pb isotopes using various recent relativistic and nonrelativistic nuclear model calculations. Contributions from nucleon internal weak structure are included, but found to be fairly negligible. The spread among present models in predicted sizes of nuclear-structure effects may preclude using Pb isotope ratios to test the standard model at better than a 1% level, unless there are adequate independent tests of the nuclear models by various alternative strong and electroweak nuclear probes. On the other hand, sufficiently accurate atomic PNC experiments would provide a unique method to measure neutron distributions in heavy nuclei

  20. New searches for supersymmetry in electroweak production with CMS

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The large set of proton-proton collision data recorded in 2016 at a centre-of-mass energy of 13 TeV is the basis for first results on electroweak production of supersymmetric particles in LHC Run 2. CMS results on the production of chargino / neutralino pairs are presented based on the analysis of final states with one or more leptons and interpreted under several assumptions for the decay modes of the electroweak gauginos.

  1. Theory Overview of Electroweak Physics at Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John M. [Fermilab

    2016-09-03

    This contribution summarizes some of the important theoretical progress that has been made in the arena of electroweak physics at hadron colliders. The focus is on developments that have sharpened theoretical predictions for final states produced through electroweak processes. Special attention is paid to new results that have been presented in the last year, since LHCP2015, as well as on key issues for future measurements at the LHC.

  2. Electroweak and strong penguins in B±,0 →ππ,πK and KK decays

    International Nuclear Information System (INIS)

    Kramer, G.; Palmer, W.F.

    1995-01-01

    We calculate CP-violating rates and asymmetry parameters in charged and neutral B→ππ, πK and anti KK decays arising from the interference of tree and penguin (strong and electroweak) amplitudes with different strong and CKM phases. The perturbative strong (electroweak) phases develop at order α s (α em ) from absorptive parts of one-loop matrix elements of the next-to-leading (leading) logarithm corrected effective Hamiltonian. The BSW model is used to estimate the hadronic matrix elements. Based on this model, we find that the effect of strong phases and penguins is substantial in most channels, drastic in many. However, a measurement of the time dependence parameter α ε+ε' in the π + π - channel is only influenced at the 20% level by the complication of the penguins. Recent flavor sum rules developed for B 0,± →ππ, πK, K anti K amplitudes are tested in this model. Some are well satisfied, others badly violated, when electroweak penguins are included. (orig.)

  3. Measurements of Properties of the Strong and Electroweak forces with the ATLAS detector at the LHC

    CERN Document Server

    Gregersen, Kristian; The ATLAS collaboration

    2015-01-01

    The Standard Model of particle physics is built around the idea of local gauge symmetries, leading to the existence of vector bosons, mediators of the strong and electroweak forces. The production of single and multiple electroweak vector bosons in p-p collisions in LHC Run-1 has been extensively studied by the ATLAS Collaboration. The production of charged and neutral weak gauge bosons via the Drell Yan process, is sensitive to high-order effects in the strong force, the proton structure and electroweak corrections. Cross section measurements of a W or Z boson in association with up to seven jets are reported. Interference effects between the exchange of photons and Z bosons can be used for the measurements of Standard Model parameters with high precision, such as the weak mixing angle from the forward-backward asymmetry. The Standard Model makes detailed predictions on the production of multiple W, Z and isolated photons, which are fixed by the gauge symmetry. Measurements involving two or three bosons in t...

  4. Measurements of Properties of the Strong and Electroweak forces with the ATLAS detector at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236292; The ATLAS collaboration

    2016-01-01

    The Standard Model of particle physics is built around the idea of local gauge symmetries, leading to the existence of vector bosons, mediators of the strong and electroweak forces. The production of single and multiple electroweak vector bosons in p-p collisions in LHC Run-1 has been extensively studied by the ATLAS Collaboration. The production of charged and neutral weak gauge bosons via the Drell Yan process, is sensitive to high-order effects in the strong force, the proton structure and electroweak corrections. Cross section measurements of a W or Z boson in association with up to seven jets are reported. Interference effects between the exchange of photons and Z bosons can be used for the measurements of Standard Model parameters with high precision, such as the weak mixing angle from the forward-backward asymmetry. The Standard Model makes detailed predictions on the production of multiple W, Z and isolated photons, which are fixed by the gauge symmetry. Measurements involving two or three bosons in t...

  5. An electroweak basis for neutrinoless double β decay

    Science.gov (United States)

    Graesser, Michael L.

    2017-08-01

    A discovery of neutrinoless double- β decay would be profound, providing the first direct experimental evidence of Δ L = 2 lepton number violating processes. While a natural explanation is provided by an effective Majorana neutrino mass, other new physics interpretations should be carefully evaluated. At low-energies such new physics could man-ifest itself in the form of color and SU(2) L × U(1) Y invariant higher dimension operators. Here we determine a complete set of electroweak invariant dimension-9 operators, and our analysis supersedes those that only impose U(1) em invariance. Imposing electroweak invariance implies: 1) a significantly reduced set of leading order operators compared to only imposing U(1) em invariance; and 2) other collider signatures. Prior to imposing electroweak invariance we find a minimal basis of 24 dimension-9 operators, which is reduced to 11 electroweak invariant operators at leading order in the expansion in the Higgs vacuum expectation value. We set up a systematic analysis of the hadronic realization of the 4-quark operators using chiral perturbation theory, and apply it to determine which of these operators have long-distance pion enhancements at leading order in the chiral expansion. We also find at dimension-11 and dimension-13 the electroweak invariant operators that after electroweak symmetry breaking produce the remaining Δ L = 2 operators that would appear at dimension-9 if only U(1) em is imposed.

  6. Measurement of branching fractions, isospin asymmetries and angular observables in exclusive electroweak penguin decays

    CERN Document Server

    Owen, Patrick Haworth

    This thesis describes measurements of rare electroweak penguin decays performed with data collected by the Large Hadron Collider beauty experiment corresponding to 3 $\\rm{fb}^{-1}$ of integrated luminosity. The purpose of these measurements is to search for physics beyond the theoretical framework known as the Standard Model (SM). Electroweak penguin decays are sensitive to virtual particles in extensions to the SM whose influence on the decay amplitude can be of similar strength to the SM contribution. The particular measurements that are described in this thesis are the differential branching fractions and isospin asymmetries of $B\\to K^{(*)}\\mu^{+}\\mu^{-}$ decays as well as the angular observables in $B\\to K\\mu^{+}\\mu^{-}$ decays. Although results are consistent with the SM, all the branching fractions of $B\\to K^{(*)}\\mu^{+}\\mu^{-}$ decays tend to favour a lower value than theoretical predictions.

  7. From electroweak theory to the primordial universe. A synthesis of some experimental results

    International Nuclear Information System (INIS)

    Ealet, A.

    2004-12-01

    Particle physic is based on a theory which can be tested on the current large colliders. Measurements are in a very good agreement with this electroweak theory and no deviation is observed to indicate new physics. What is surprising today is that none of its results agrees with what is known from our universe, neither to explain the primordial baryogenesis, neither to explain the acceleration of the expansion of the Universe. In this work, I come back on some results obtained in the Lep collider, to test the electroweak theory (Higgs and W boson production) and on some measurements of CP violation. I compare them with what can be extrapolated in term of primordial baryogenesis and dark energy density and show that there is no possible agreement in the Standard Model. I finish by some experimental and theoretical views to answer this fundamental question. (author)

  8. Analyticity in a phenomenology of electro-weak structure of hadrons

    International Nuclear Information System (INIS)

    Dubnicka, S.; Dubnickova, A. Z.

    2010-01-01

    The utility of an application of the analyticity in a phenomenology of electro-weak structure of hadrons is demonstrated in a number of obtained new and experimentally verifiable results. With this aim first the problem of an inconsistency of the asymptotic behavior of vector-meson-dominance model with the asymptotic behavior of form factors of baryons and nuclei is solved generally and a general approach for determination of the lowest normal and anomalous singularities of form factors from the corresponding Feynman diagrams is reviewed. Then many useful applications by making use of the analytic properties of electro-weak form factors and amplitudes of various electromagnetic processes of hadrons are carried out. (Author)

  9. Dynamical Electroweak Symmetry Breaking with a Heavy Fermion in Light of Recent LHC Results

    Directory of Open Access Journals (Sweden)

    Pham Q. Hung

    2013-01-01

    Full Text Available The recent announcement of a discovery of a possible Higgs-like particle—its spin and parity are yet to be determined—at the LHC with a mass of 126 GeV necessitates a fresh look at the nature of the electroweak symmetry breaking, in particular if this newly-discovered particle will turn out to have the quantum numbers of a Standard Model Higgs boson. Even if it were a 0+ scalar with the properties expected for a SM Higgs boson, there is still the quintessential hierarchy problem that one has to deal with and which, by itself, suggests a new physics energy scale around 1 TeV. This paper presents a minireview of one possible scenario: the formation of a fermion-antifermion condensate coming from a very heavy fourth generation, carrying the quantum number of the SM Higgs field, and thus breaking the electroweak symmetry.

  10. Review of electroweak fits of the SM and beyond, after the Higgs discovery -- with Gfitter

    CERN Document Server

    Baak, M

    2014-01-01

    We present an update of the global Standard Model (SM) fit to electroweak precision data under the assumption that the new particle discovered at the LHC is the SM Higgs boson. In this scenario all parameters entering the calculations of electroweak precision observables are known, allowing to over-constrain the SM at the electroweak scale and to assert its validity. Within the SM the W boson mass and the effective weak mixing angle can now be accurately predicted from the global fit. Their results exceed in precision the direct measurements. A determination of the S , T and U parameters, which parametrize the oblique vacuum corrections, is given. We examine the impact of the STU observables on a model of modified couplings of the Higgs boson to gauge bosons, and compare this with the corresponding analysis of LHC measurements of the signal strength of Higgs channels. Future measurements at the International Linear Collider (ILC) promise to improve significantly the experimental precision of key observables u...

  11. Next-to-leading order electroweak corrections to off-shell WWW production at the LHC arXiv

    CERN Document Server

    Schönherr, Marek

    Triboson processes allow for a measurement of the triple and quartic couplings of the Standard Model gauge bosons, which can be used to constrain anomalous gauge couplings. In this paper we calculate the next-to-leading order electroweak corrections to fully off-shell $W^-W^+W^+$ production, namely the production of a $\\ell_1^-\\ell_2^+\\ell_3^+\\bar{\

  12. Gravitational waves from a very strong electroweak phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Leonardo; Mégevand, Ariel, E-mail: lleitao@mdp.edu.ar, E-mail: megevand@mdp.edu.ar [IFIMAR (UNMdP-CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales, UNMdP, Deán Funes 3350, (7600) Mar del Plata (Argentina)

    2016-05-01

    We investigate the production of a stochastic background of gravitational waves in the electroweak phase transition. We consider extensions of the Standard Model which can give very strongly first-order phase transitions, such that the transition fronts either propagate as detonations or run away. To compute the bubble wall velocity, we estimate the friction with the plasma and take into account the hydrodynamics. We track the development of the phase transition up to the percolation time, and we calculate the gravitational wave spectrum generated by bubble collisions, magnetohydrodynamic turbulence, and sound waves. For the kinds of models we consider, we find parameter regions for which the gravitational waves are potentially observable at the planned space-based interferometer eLISA. In such cases, the signal from sound waves is generally dominant, while that from bubble collisions is the least significant of them. Since the sound waves and turbulence mechanisms are diminished for runaway walls, the models with the best prospects of detection at eLISA are those which do not have such solutions. In particular, we find that heavy extra bosons provide stronger gravitational wave signals than tree-level terms.

  13. Golden Probe of Electroweak Symmetry Breaking

    CERN Document Server

    Chen, Yi; Spiropulu, Maria; Stolarski, Daniel; Vega-Morales, Roberto

    2016-12-09

    The ratio of the Higgs couplings to $WW$ and $ZZ$ pairs, $\\lambda_{WZ}$, is a fundamental parameter in electroweak symmetry breaking as well as a measure of the (approximate) custodial symmetry possessed by the gauge boson mass matrix. We show that Higgs decays to four leptons are sensitive, via tree level/1-loop interference effects, to both the magnitude and, in particular, overall sign of $\\lambda_{WZ}$. Determining this sign requires interference effects, as it is nearly impossible to measure with rate information. Furthermore, simply determining the sign effectively establishes the custodial representation of the Higgs boson. We find that $h\\to4\\ell$ ($4\\ell \\equiv 2e2\\mu, 4e, 4\\mu$) decays have excellent prospects of directly establishing the overall sign at a high luminosity 13 TeV LHC. We also examine the ultimate LHC sensitivity in $h\\to4\\ell$ to the magnitude of $\\lambda_{WZ}$. Our results are independent of other measurements of the Higgs boson couplings and, in particular, largely free of assumpti...

  14. Gravitational wave signals of electroweak phase transition triggered by dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Wei [Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing, 100875 (China); Guo, Huai-Ke; Shu, Jing, E-mail: chaowei@bnu.edu.cn, E-mail: ghk@itp.ac.cn, E-mail: jshu@itp.ac.cn [CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-09-01

    We study in this work a scenario that the universe undergoes a two step phase transition with the first step happened to the dark matter sector and the second step being the transition between the dark matter and the electroweak vacuums, where the barrier between the two vacuums, that is necessary for a strongly first order electroweak phase transition (EWPT) as required by the electroweak baryogenesis mechanism, arises at the tree-level. We illustrate this idea by working with the standard model (SM) augmented by a scalar singlet dark matter and an extra scalar singlet which mixes with the SM Higgs boson. We study the conditions for such pattern of phase transition to occur and especially for the strongly first order EWPT to take place, as well as its compatibility with the basic requirements of a successful dark matter, such as observed relic density and constraints of direct detections. We further explore the discovery possibility of this pattern EWPT by searching for the gravitational waves generated during this process in spaced based interferometer, by showing a representative benchmark point of the parameter space that the generated gravitational waves fall within the sensitivity of eLISA, DECIGO and BBO.

  15. Is radiative electroweak symmetry breaking consistent with a 125 GeV Higgs mass?

    Science.gov (United States)

    Steele, T G; Wang, Zhi-Wei

    2013-04-12

    The mechanism of radiative electroweak symmetry breaking occurs through loop corrections, and unlike conventional symmetry breaking where the Higgs mass is a parameter, the radiatively generated Higgs mass is dynamically predicted. Padé approximations and an averaging method are developed to extend the Higgs mass predictions in radiative electroweak symmetry breaking from five- to nine-loop order in the scalar sector of the standard model, resulting in an upper bound on the Higgs mass of 141 GeV. The mass predictions are well described by a geometric series behavior, converging to an asymptotic Higgs mass of 124 GeV consistent with the recent ATLAS and CMS Collaborations observations. Similarly, we find that the Higgs self-coupling converges to λ=0.23, which is significantly larger than its conventional symmetry breaking counterpart for a 124 GeV Higgs mass. In addition to this significant enhancement of the Higgs self-coupling and HH→HH scattering, we find that Higgs decays to gauge bosons are unaltered and the scattering processes WL(+)WL(+)→HH, ZLZL→HH are also enhanced, providing signals to distinguish conventional and radiative electroweak symmetry breaking mechanisms.

  16. Proceedings of the Summer institute on particle physics: The top quark and the electroweak interaction

    Energy Technology Data Exchange (ETDEWEB)

    Burke, D.; Dixon, L.; Leith, D.W.G.S.

    1997-01-01

    The XXIII SLAC Summer Institute on Particle Physics addressed the physics of the recently discovered top quark, and its connection to the electroweak interaction and to physics beyond the Standard Model. The seven-day school portion of the Institute covered many avenues for studying the top quark, from its direct production at hadron colliders and at future electron-positron colliders, to its virtual effects in precision electroweak quantities, in heavy flavor physics, and in the renormalization of supersymmetric theories, Vertex detectors - critical for identifying the b quark decay products of the top - and Cherenkov techniques for particle identification were also reviewed. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment; this year, the highlights were the CDF and D0 top quark discovery. Also featured were updated precision electroweak measurements from SLC, LEP, and the Tevatron, heavy quark results from these facilities as well as CLEO, and new photoproduction and deep-inelastic scattering data from HERA. Separate abstracts have been submitted to the energy database for articles from this proceedings.

  17. Proceedings of the Summer institute on particle physics: The top quark and the electroweak interaction

    International Nuclear Information System (INIS)

    Burke, D.; Dixon, L.; Leith, D.W.G.S.

    1997-01-01

    The XXIII SLAC Summer Institute on Particle Physics addressed the physics of the recently discovered top quark, and its connection to the electroweak interaction and to physics beyond the Standard Model. The seven-day school portion of the Institute covered many avenues for studying the top quark, from its direct production at hadron colliders and at future electron-positron colliders, to its virtual effects in precision electroweak quantities, in heavy flavor physics, and in the renormalization of supersymmetric theories, Vertex detectors - critical for identifying the b quark decay products of the top - and Cherenkov techniques for particle identification were also reviewed. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment; this year, the highlights were the CDF and D0 top quark discovery. Also featured were updated precision electroweak measurements from SLC, LEP, and the Tevatron, heavy quark results from these facilities as well as CLEO, and new photoproduction and deep-inelastic scattering data from HERA. Separate abstracts have been submitted to the energy database for articles from this proceedings

  18. Magnetic Fields at First Order Phase Transition: A Threat to Electroweak Baryogenesis

    CERN Document Server

    De Simone, Andrea; Quiros, Mariano; Riotto, Antonio

    2011-01-01

    The generation of the observed baryon asymmetry may have taken place during the electroweak phase transition, thus involving physics testable at LHC, a scenario dubbed electroweak baryogenesis. In this paper we point out that the magnetic field which is produced in the bubbles of a first order phase transition endangers the baryon asymmetry produced in the bubble walls. The reason being that the produced magnetic field couples to the sphaleron magnetic moment and lowers the sphaleron energy; this strengthens the sphaleron transitions inside the bubbles and triggers a more effective wash out of the baryon asymmetry. We apply this scenario to the Minimal Supersymmetric extension of the Standard Model (MSSM) where, in the absence of a magnetic field, successful electroweak baryogenesis requires the lightest CP-even Higgs and the right-handed stop masses to be lighter than about 127 GeV and 120 GeV, respectively. We show that even for moderate values of the magnetic field, the Higgs mass required to preserve the ...

  19. Effective field theory, electric dipole moments and electroweak baryogenesis

    International Nuclear Information System (INIS)

    Balazs, Csaba; White, Graham; Yue, Jason

    2017-01-01

    Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.

  20. Effective field theory, electric dipole moments and electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Csaba; White, Graham [ARC Centre of Excellence for Particle Physics at the Terascale School of Physics and Astronomy,Monash University,Victoria 3800 (Australia); Yue, Jason [Department of Physics, National Taiwan Normal University,Taipei 116, Taiwan (China); ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics,The University of Sydney,NSW 2006 (Australia)

    2017-03-07

    Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.

  1. Invisible axionlike dark matter from the electroweak bosonic seesaw mechanism

    Science.gov (United States)

    Ishida, Hiroyuki; Matsuzaki, Shinya; Yamaguchi, Yuya

    2016-11-01

    We explore a model based on the classically scale-invariant standard model (SM) with a strongly coupled vectorlike dynamics, which is called hypercolor (HC). The scale symmetry is dynamically broken by the vectorlike condensation at the TeV scale, so that the SM Higgs acquires the negative mass squared by the bosonic seesaw mechanism to realize the electroweak symmetry breaking. An elementary pseudoscalar S is introduced to give masses for the composite Nambu-Goldstone bosons (HC pions): The HC pion can be a good target to explore through a diphoton channel at the LHC. As a consequence of the bosonic seesaw, the fluctuating mode of S , which we call s , develops tiny couplings to the SM particles and is predicted to be very light. The s predominantly decays to a diphoton and can behave as invisible axionlike dark matter. The mass of the s dark matter is constrained by currently available cosmological and astrophysical limits to be 10-4 eV ≲ms≲1 eV . We find that a sufficient amount of relic abundance for the s dark matter can be accumulated via the coherent oscillation. The detection potential in microwave cavity experiments is also addressed.

  2. Pursuing the origin of electroweak symmetry breaking: a 'Bayesian Physics' argument for a √s ∼+e- collider

    International Nuclear Information System (INIS)

    Kane, G.L.; Wells, James D.

    2000-01-01

    High-energy data has been accumulating over the last ten years, and it should not be ignored when making decisions about the future experimental program. In particular, we argue that the electroweak data collected at LEP, SLC and Tevatron indicate a light scalar particle with mass less than 500 GeV. This result is based on considering a wide variety of theories including the Standard Model, supersymmetry, large extra dimensions, and composite models. We argue that a high luminosity, 600 GeV e + e - collider would then be the natural choice to feel confident about finding and studying states connected to electroweak symmetry breaking. We also argue from the data that worrying about resonances at multi-TeV energies as the only signal for electroweak symmetry breaking is not as important a discovery issue for the next generation of colliders. Such concerns should perhaps be replaced with more relevant discovery issues such as a Higgs boson that decays invisibly, and ''new physics'' that could conspire with a heavier Higgs boson to accommodate precision electroweak data. An e + e - collider with √s ∼< 600 GeV is ideally suited to cover these possibilities

  3. Study of electroweak gauge boson scattering in the WZ channel with the ATLAS detector at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Socher, Felix

    2016-07-15

    The Standard Model of particle physics is a very well tested gauge theory describing the strong, weak and electromagnetic interactions between elementary particles through the exchange of force carriers called gauge bosons. Its high predictive power stems from its ability to derive the properties of the interactions it describes from fundamental symmetries of nature. Yet, it is not a final theory as there are several phenomena it cannot explain. Furthermore, not all of its predictions have been studied with sufficient precision, e.g. the properties of the newly discovered Higgs boson. Therefore, further probing of the Standard Model is necessary and may result in finding possible indications for new physics. The non-abelian SU(2){sub L} x U(1){sub Y} symmetry group determines the properties of the electromagnetic and weak interactions giving rise to self-couplings between the electroweak gauge bosons, i.e. the massive W and Z boson, and the massless photon, via triple and quartic gauge couplings. Studies carried out over the past 20 years at various particle accelerator experiments have shed light on the structure of the triple gauge couplings but few results on quartic gauge couplings are available. The electroweak self-couplings are intertwined with the electroweak symmetry breaking and thus the Higgs boson through the scattering of massive electroweak gauge bosons. Both the W and Z boson couple to the Higgs boson and may interact with each other by exchanging it. Theory predictions yield physical results at high energies only if either both the self-couplings and Higgs boson properties are as described by the Standard Model or if they deviate from its predictions and contributions from new physics are present to render the calculations finite. This makes electroweak gauge boson scattering a powerful tool to probe the Standard Model and search for possible effects of new physics. The small cross section of massive electroweak gauge boson scattering necessitates

  4. Study of electroweak gauge boson scattering in the WZ channel with the ATLAS detector at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Socher, Felix

    2016-01-01

    The Standard Model of particle physics is a very well tested gauge theory describing the strong, weak and electromagnetic interactions between elementary particles through the exchange of force carriers called gauge bosons. Its high predictive power stems from its ability to derive the properties of the interactions it describes from fundamental symmetries of nature. Yet, it is not a final theory as there are several phenomena it cannot explain. Furthermore, not all of its predictions have been studied with sufficient precision, e.g. the properties of the newly discovered Higgs boson. Therefore, further probing of the Standard Model is necessary and may result in finding possible indications for new physics. The non-abelian SU(2)_L x U(1)_Y symmetry group determines the properties of the electromagnetic and weak interactions giving rise to self-couplings between the electroweak gauge bosons, i.e. the massive W and Z boson, and the massless photon, via triple and quartic gauge couplings. Studies carried out over the past 20 years at various particle accelerator experiments have shed light on the structure of the triple gauge couplings but few results on quartic gauge couplings are available. The electroweak self-couplings are intertwined with the electroweak symmetry breaking and thus the Higgs boson through the scattering of massive electroweak gauge bosons. Both the W and Z boson couple to the Higgs boson and may interact with each other by exchanging it. Theory predictions yield physical results at high energies only if either both the self-couplings and Higgs boson properties are as described by the Standard Model or if they deviate from its predictions and contributions from new physics are present to render the calculations finite. This makes electroweak gauge boson scattering a powerful tool to probe the Standard Model and search for possible effects of new physics. The small cross section of massive electroweak gauge boson scattering necessitates high centre

  5. Higher order effects in electroweak theory 1981-12 (KEK)

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1982-01-01

    This is a brief report on the higher order or loop effects in electroweak theory. The discussion is based on the Weinberg Salam model and QCD. The loop correction to weak interaction is described. The renormalization conditions were applied to physical parameters, α(QED), M(W) and M(Z). It is expected to obtain experimentally the values of M(W) and M(Z) with the accuracy of 0.1 percent. In this scheme, the parameters were fixed loop by loop. The correction was evaluated along the present on-shell scheme. The general estimation of the order of correction was performed. The evaluation of the size of terms in one-loop correction was made. The examples of one loop analysis are presented. The leading logarithmic correction such as α ln(m 2 q 2 /M 2 ) is discussed. The system was described by H(eff) with the local operator O(i), in which the propagator of heavy particles was contracted. The effective interaction was obtained as C(i) (q 2 ) O(i), where C(i)(q 2 ) satisfies a proper equation of a renormalization group. As the practical examples, μ-decay, charged current and neutral current were studied. The correction to electron neutral current and the shift of M(W) and M(Z) were numerically obtained. Comments on quark mass and the uncertainty of sin 2 (theta) from the νN reaction are presented. (Kato, T.)

  6. Precision measurements of electroweak observables with the ATLAS Detector

    CERN Document Server

    Vittori, Camilla; The ATLAS collaboration

    2017-01-01

    Measurements of the Drell-Yan production of W and Z/gamma bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration measured the di-lepton mass range up to the TeV scale as well as the triple differential cross-section measurement as a function of Mll, dilepton rapidity and cosθ defined in the Collins-Soper frame. This measurement provides sensitivity to the PDFs and the weak mixing angle. The latest results of the ATLAS collaboration will be presented. A second important observable in the electroweak sector is the W boson mass in order to test the overall consistency of the Standard Model. Since the discovery of a Higgs Boson, the the W boson mass is predicted to 7 MeV precision, while the world average of all measurements is 15 MeV, making the improved measurement an important goal. Large samples of leptonic decays of W and Z bosons were collected with efficient single lepton triggers in the 7 TeV data set correspo...

  7. Latest LHCb measurements of Electroweak Boson Production in Run-1

    CERN Document Server

    CERN. Geneva

    2015-01-01

    We present the latest LHCb measurements of forward Electroweak Boson Production using proton-proton collisions recorded in LHC Run-1. The seminar shall discuss measurements of the 8 TeV W & Z boson production cross-sections. These results make use of LHCb's excellent integrated luminosity determination to provide constraints on the parton distribution functions which describe the inner structure of the proton. These LHCb measurements probe a region of phase space at low Bjorken-x where the other LHC experiments have limited sensitivity. We also present measurements of cross-section ratios, and ratios of results in 7 TeV and 8 TeV proton-proton collisions. These results provide precision tests of the Standard Model. The seminar shall also present a measurement of the forward-backward asymmetry (A_FB) in Z boson decays to two muons. This result allows for precision tests of the coupling of the Z boson to left and right handed particles, providing sensitivity to the effective weak mixing angle (...

  8. Higgs mass implications on the stability of the electroweak vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Elias-Miro, Joan [IFAE and Dep. de Fisica, Univ. Aut. de Barcelona, 08193 Bellaterra, Barcelona (Spain); Espinosa, Jose R. [IFAE and Dep. de Fisica, Univ. Aut. de Barcelona, 08193 Bellaterra, Barcelona (Spain); ICREA, Institucio Catalana de Recerca i Estudis Avancats, Barcelona (Spain); Giudice, Gian F. [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Isidori, Gino, E-mail: gino.isidori@lnf.infn.it [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, Frascati (Italy); Riotto, Antonio [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padua (Italy); Strumia, Alessandro [Dipartimento di Fisica dell' Universita di Pisa and INFN (Italy); National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia)

    2012-03-19

    We update instability and metastability bounds of the Standard Model electroweak vacuum in view of the recent ATLAS and CMS Higgs results. For a Higgs mass in the range 124-126 GeV, and for the current central values of the top mass and strong coupling constant, the Higgs potential develops an instability around 10{sup 11} GeV, with a lifetime much longer than the age of the Universe. However, taking into account theoretical and experimental errors, stability up to the Planck scale cannot be excluded. Stability at finite temperature implies an upper bound on the reheat temperature after inflation, which depends critically on the precise values of the Higgs and top masses. A Higgs mass in the range 124-126 GeV is compatible with very high values of the reheating temperature, without conflict with mechanisms of baryogenesis such as leptogenesis. We derive an upper bound on the mass of heavy right-handed neutrinos by requiring that their Yukawa couplings do not destabilize the Higgs potential.

  9. Electroweak and Higgs Measurements Using Tau Final States

    CERN Document Server

    INSPIRE-00258006; McNulty, Ronan

    Spin correlations for $\\tau$ lepton decays are included in the PYTHIA 8 event generation software with a framework which can be expanded to include the decays of particles other than the $\\tau$ lepton. The spin correlations for the decays of $\\tau$ leptons produced from electroweak and Higgs bosons are calculated. Decays of the $\\tau$ lepton using sophisticated resonance models are included in PYTHIA 8 for all channels with experimentally observed branching fractions greater than $0.04\\%$. The mass distributions for the decay products of these channels calculated with PYTHIA 8 are validated against the equivalent distributions from the HERWIG++ and TAUOLA event generators. The technical implementation of the $\\tau$ lepton spin correlations and decays in PYTHIA 8 is described. A measurement of the inclusive ${Z \\rightarrow \\tau\\tau}$ cross-section using ${1.0~\\mathrm{fb}^{-1}}$ of data from $pp$ collisions at $\\sqrt{s} = 7~\\mathrm{Te\\kern -0.1em V}$ collected with the LHCb detector is presented. Reconstructed ...

  10. Higgs mass implications on the stability of the electroweak vacuum

    CERN Document Server

    Elias-Miro, Joan; Giudice, Gian F; Isidori, Gino; Riotto, Antonio; Strumia, Alessandro

    2012-01-01

    We update instability and metastability bounds of the Standard Model electroweak vacuum in view of the recent ATLAS and CMS Higgs results. For a Higgs mass in the range 124--126 GeV, and for the current central values of the top mass and strong coupling constant, the Higgs potential develops an instability around $10^{11}$ GeV, with a lifetime much longer than the age of the Universe. However, taking into account theoretical and experimental errors, stability up to the Planck scale cannot be excluded. Stability at finite temperature implies an upper bound on the reheat temperature after inflation, which depends critically on the precise values of the Higgs and top masses. A Higgs mass in the range 124--126 GeV is compatible with very high values of the reheating temperature, without conflict with mechanisms of baryogenesis such as leptogenesis. We derive an upper bound on the mass of heavy right-handed neutrinos by requiring that their Yukawa couplings do not destabilize the Higgs potential.

  11. Symmetries and symmetry breaking beyond the electroweak theory

    International Nuclear Information System (INIS)

    Grojean, Ch.

    1999-01-01

    The Glashow-Salam-Weinberg theory describing electroweak interactions is one of the best successes of quantum field theory; it has passed all the experimental tests of particles physics with a high accuracy. However, this theory suffers from some deficiencies in the sense that some parameters, especially those involved in the generation of the mass of the elementary particles, are fixed to unnatural values. Moreover gravitation whose quantization cannot be achieved in ordinary quantum filed theory is hot taken into account. The aim of this PhD dissertation is to study some theories beyond the Standard Model and inspired by superstring theories. My endeavour has been to develop theoretical aspects of an effective dynamical description of one of the soltonic states of the strongly coupled strings. An important part of my results is also devoted to a more phenomenological analysis of the low energy effects of the symmetries that assure the coherence of the theories at high energy: these symmetries could explain the fermion mass hierarchy and could be directly observable in collider experiments. It is also shown how the geometrical properties of compactified spaces characterize the vacuum of string theory in a non-perturbative regime; such a vacuum can be used to construct a unified theory of gauge and gravitational interactions with a supersymmetry softy broken at a TcV scale. (author)

  12. Radiative electroweak breaking with pseudo Goldstone Higgs doublets

    International Nuclear Information System (INIS)

    Ananthanarayan, B.; Shafi, Q.

    1996-01-01

    We consider a realistic example of supersymmetric grand unification based on SU(3) c xSU(3) L xSU(3) R in which the electroweak (EW) Higgs doublets are open-quote open-quote light close-quote close-quote as a consequence of the open-quote open-quote pseudo Goldstone close-quote close-quote mechanism. We discuss radiative EW breaking in this model, exploring in particular the open-quote open-quote small close-quote close-quote (order unity) and open-quote open-quote large close-quote close-quote (≅m t /m b ) tanβ regions by studying the variations of r 2 (≡μ 1,2 2 /μ 2 3 ), where μ 1,2,3 2 are the well-known MSSM parameters evaluated at the GUT scale. For |r| sufficiently close to unity the quantity tanβ can be of order unity, but the converse is not always true. copyright 1996 The American Physical Society

  13. Electroweak Structure of Three- and Four-Body Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Marcucci, Laura Elisa [Old Dominion Univ., Norfolk, VA (United States)

    2000-06-01

    This work reports results for (i) the elastic electromagnetic form factors of the trin- of ucleons; (ii) the nuclear response functions of interest in ~ experiments, 3 He(~e; e 0 ) experiments, at VERSITY excitation energies below the deuteron breakup threshold; (iii) the astrophysical ark S-factor for proton weak capture on 3 He (the hep reaction). The initial and nal using state wave functions are calculated using the correlated hyperspherical harmonics onsisting method, from a realistic Hamiltonian consisting of the Argonne v 18 two-nucleon uclear and Urbana IX three-nucleon interactions. The nuclear electroweak charge and ts. current operators include one- and many-body components. The predicted mag- netic form factor of 3 H, charge form factors and static properties of both 3 H and ntal 3 He, are in satisfactory agreement with the experimental data. However, the po- sition of the zero in the magnetic form factor of 3 He is underpredicted by theory. disintegration The calculated nuclear response functions in 3 He electrodisintegration at thresh- er old are in good agreement with the experimental data, which have however rather s large errors. Finally, the astrophysical S-factor for the hep reaction is predicted ortant ' 4.5 larger than the value adopted in the standard-solar-model, with important consequences for the solar neutrino spectrum measured by the Super-Kamiokande collaboration.

  14. A simple connection of the (electroweak) anapole moment with the (electroweak) charge radius of a massless left-handed Dirac neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Rosado, A. [Universidad Autonoma de Puebla, Puebla (Mexico)

    2001-04-01

    Assuming that the neutrino is a massless left-handed Dirac particle, we show that the neutrino anapole moment and the neutrino charge radius satisfy the simple relation a{sub v} =(r{sup 2}{sub v}) /6, in the context of the Standard Model of the electroweak interactions. We also show that the neutrino electroweak anapole moment a{sub v}l{sup E}W and the neutrino electroweak charge radius (r{sup 2}{sub v}){sup E}W, which have been defined through the v{sub l}l' scattering at the one-loop level and are physical quantities, also obey the relation a{sub v}l{sup E}W =(r{sup 2}{sub v}){sup E}W/6. [Spanish] Suponiendo que el neutrino es una particula de Dirac, sin masa y con helicidad izquierda, mostramos que el momento anapolar a{sub v} y el radio de carga (r{sub v}{sup 2}) del neutrino satisfacen la relacion simple a{sub v} =(r{sup 2}{sub v}) /6, en el contexto del Modelo Estandar de las interacciones electrodebiles. Ademas, mostramos que el momento anapolar electrodebil a{sub v}l{sup E}W y el radio de carga electrodebil (r{sup 2}{sub v}){sup E}W del neutrino, los cuales han sido definidos a traves de la dispersion v{sub l}l' a nivel de un lazo y que son cantidades fisicas, tambien obedecen la relacion a{sub v}l{sup E}W =(r{sup 2}{sub v}){sup E}W/6.

  15. Electroweak Physics at the Tevatron and LHC: Theoretical Status and Perspectives

    OpenAIRE

    Baur, U.

    2005-01-01

    I review the status of theoretical calculations relevant for electroweak physics at the Tevatron and LHC and discuss future directions. I also give a brief overview of current electroweak data and discuss future expectations.

  16. Electroweak penguin diagrams and two-body B decays

    International Nuclear Information System (INIS)

    Gronau, M.; Hernandez, O.F.; London, D.; Rosner, J.L.

    1995-01-01

    We discuss the role of electroweak penguin diagrams in B decays to two light pseudoscalar mesons. We confirm that the extraction of the weak phase α through the isospin analysis involving B→ππ decays is largely unaffected by such operators. However, the methods proposed to obtain weak and strong phases by relating B→ππ, B→πK, and B→K bar K decays through flavor SU(3) will be invalidated if eletroweak penguin diagrams are large. We show that, although the introduction of electroweak penguin contributions introduces no new amplitudes of flavor SU(3), there are a number of ways to experimentally measure the size of such effects. Finally, using SU(3) amplitude relations we present a new way of measuring the weak angle γ which holds even in the presence of electroweak penguin diagrams

  17. Strong Electroweak Symmetry Breaking and Spin-0 Resonances

    International Nuclear Information System (INIS)

    Evans, Jared; Luty, Markus A.

    2009-01-01

    We argue that theories of the strong electroweak symmetry breaking sector necessarily contain new spin 0 states at the TeV scale in the tt and tb/bt channels, even if the third generation quarks are not composite at the TeV scale. These states couple sufficiently strongly to third generation quarks to have significant production at LHC via gg→φ 0 or gb→tφ - . The existence of narrow resonances in QCD suggests that the strong electroweak breaking sector contains narrow resonances that decay to tt or tb/bt, with potentially significant branching fractions to 3 or more longitudinal W and Z bosons. These may give new 'smoking gun' signals of strong electroweak symmetry breaking.

  18. Gravitational waves from a first-order electroweak phase transition: a brief review.

    Science.gov (United States)

    Weir, David J

    2018-03-06

    We review the production of gravitational waves by an electroweak first-order phase transition. The resulting signal is a good candidate for detection at next-generation gravitational wave detectors, such as LISA. Detection of such a source of gravitational waves could yield information about physics beyond the Standard Model that is complementary to that accessible to current and near-future collider experiments. We summarize efforts to simulate and model the phase transition and the resulting production of gravitational waves.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  19. Non-perturbative effects in the transverse momentum distribution of electroweak bosons at the LHC

    CERN Document Server

    Siodmok, Andrzej; Seymour, Michael H

    2009-01-01

    The transverse momentum of electroweak bosons in a Drell-Yan process is an important quantity for the experimental program at the LHC. The new model of non-perturbative gluon emission in an initial state parton shower presented in this note gives a good description of this quantity for the data taken in previous experiments over a wide range of CM energy. The model's prediction for the transverse momentum distribution of Z bosons for the LHC is presented and used for a comparison with other approaches.

  20. Electroweak Supersymmetry with an Approximate U(1)_PQ

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.J.; Watari, T.

    2004-05-12

    A predictive framework for supersymmetry at the TeV scale is presented, which incorporates the Ciafaloni-Pomarol mechanism for the dynamical determination of the \\mu parameter of the MSSM. It is replaced by (\\lambda S), where S is a singlet field, and the axion becomes a heavy pseudoscalar, G, by adding a mass, m_G, by hand. The explicit breaking of Peccei-Quinn (PQ) symmetry is assumed to be sufficiently weak at the TeV scale that the only observable consequence is the mass m_G. Three models for the explicit PQ breaking are given; but the utility of this framework is that the predictions for all physics at the electroweak scale are independent of the particular model for PQ breaking. Our framework leads to a theory similar to the MSSM, except that \\mu is predicted by the Ciafaloni-Pomarol relation, and there are light, weakly-coupled states in the spectrum. The production and cascade decay of superpartners at colliders occurs as in the MSSM, except that there is one extra stage of the cascade chain, with the next-to-LSP decaying to its"superpartner" and \\tilde{s}, dramatically altering the collider signatures for supersymmetry. The framework is compatible with terrestrial experiments and astrophysical observations for a wide range of m_G and. If G is as light as possible, 300 keV< m_G< 3 MeV, it can have interesting effects on the radiation energy density during the cosmological eras of nucleosynthesis and acoustic oscillation, leading to predictions for N_{\

  1. Uncovering the single top: observation of electroweak top quark production

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Jorge Armando [Michigan State Univ., East Lansing, MI (United States)

    2009-01-01

    The top quark is generally produced in quark and anti-quark pairs. However, the Standard Model also predicts the production of only one top quark which is mediated by the electroweak interaction, known as 'Single Top'. Single Top quark production is important because it provides a unique and direct way to measure the CKM matrix element Vtb, and can be used to explore physics possibilities beyond the Standard Model predictions. This dissertation presents the results of the observation of Single Top using 2.3 fb-1 of Data collected with the D0 detector at the Fermilab Tevatron collider. The analysis includes the Single Top muon+jets and electron+jets final states and employs Boosted Decision Tress as a method to separate the signal from the background. The resulting Single Top cross section measurement is: (1) σ(p$\\bar{p}$→ tb + X, tqb + X) = 3.74-0.74+0.95 pb, where the errors include both statistical and systematic uncertainties. The probability to measure a cross section at this value or higher in the absence of signal is p = 1.9 x 10-6. This corresponds to a standard deviation Gaussian equivalence of 4.6. When combining this result with two other analysis methods, the resulting cross section measurement is: (2) σ(p$\\bar{p}$ → tb + X, tqb + X) = 3.94 ± 0.88 pb, and the corresponding measurement significance is 5.0 standard deviations.

  2. Significant Enhancement of Neutralino Dark Matter Annihilation from Electroweak Bremsstrahlung

    NARCIS (Netherlands)

    Bringmann, T.; Calore, F.

    2014-01-01

    ndirect searches for the cosmological dark matter have become ever more competitive during the past years. Here, we report the first full calculation of leading electroweak corrections to the annihilation rate of supersymmetric neutralino dark matter. We find that these corrections can be huge,

  3. Measurements of Z0 Electroweak Couplings at SLD

    International Nuclear Information System (INIS)

    Mancinelli, Giampero

    1999-01-01

    In this paper we report a summary of the results of several electroweak measurements performed by the SLD experiment at the Stanford Linear Collider (SLC). Most of these results are preliminary and are based, unless otherwise indicated, on the full 1993-1998 dataset of 560,000 hadronic Z 0 decays, produced with an average electron beam polarization of 73%

  4. Electroweak Higgs plus three jet production at NLO QCD

    International Nuclear Information System (INIS)

    Campanario, Francisco; Figy, Terrance M.; Plaetzer, Simon; Sjoedahl, Malin

    2013-11-01

    We calculate next-to-leading order (NLO) QCD corrections to electroweak Higgs plus three jet production. Both vector boson fusion (VBF) and Higgs-strahlung type contributions are included along with all interferences. The calculation is implemented within the Matchbox NLO framework of the Herwig++ event generator.

  5. Electroweak and Higgs boson production at the LHC

    Directory of Open Access Journals (Sweden)

    Lazopoulos Achilleas

    2013-05-01

    Full Text Available I summarize very briefly the status of theory predictions for the production of electroweak and Higgs bosons at the LHC, highlighting recent developments and issues that have attracted the interest of the theory community. The focus is on inclusive and fixed order differential computations and related developments in parton showers are not discussed at all in this contribution.

  6. Electroweak symmetry breaking: Unitarity, dynamics, and experimental prospects

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1988-01-01

    A review of what is known about the unexplained mechanism that breaks the electroweak symmetry and thereby gives mass to the W and Z gauge bosons while leaving the photon massless is given. Symmetry, unitarity, technicolor, supersymmetry, higgs sector dynamics, and experimental status and prospects are discussed

  7. Martinus Veltman, the Electroweak Theory, and Elementary Particle Physics

    Science.gov (United States)

    Particle Physics Resources with Additional Information Martinus Veltman Courtesy University of Michigan Martinus J.G. Veltman, the John D. MacArthur Professor Emeritus of Physics at the University of Michigan , was awarded the 1999 Nobel Prize in physics "for elucidating the quantum structure of electroweak

  8. Fingerprints of heavy scales in electroweak effective Lagrangians

    Science.gov (United States)

    Pich, Antonio; Rosell, Ignasi; Santos, Joaquín; Sanz-Cillero, Juan José

    2017-04-01

    The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2) L ⊗ SU(2) R → SU(2) L+ R , which couples the known particle fields to heavier states with bosonic quantum numbers J P = 0± and 1±. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.

  9. Fingerprints of heavy scales in electroweak effective Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    Pich, Antonio [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, Ignasi [Departamento de Matemáticas, Física y Ciencias Tecnológicas,Universidad CEU Cardenal Herrera, E-46115 Alfara del Patriarca, València (Spain); Santos, Joaquín [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Sanz-Cillero, Juan José [Departamento de Física Teórica I, Universidad Complutense de Madrid,E-28040 Madrid (Spain)

    2017-04-04

    The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, which couples the known particle fields to heavier states with bosonic quantum numbers J{sup P}=0{sup ±} and 1{sup ±}. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.

  10. EXECUTIVE SUMMARY OF THE SNOWMASS 2001 WORKING GROUP : ELECTROWEAK SYMMETRY BREAKING

    International Nuclear Information System (INIS)

    CARENA, M.; GERDES, D.W.; HABER, H.E.; TURCOT, A.S.; ZERWAS, P.M.

    2001-01-01

    In this summary report of the 2001 Snowmass Electroweak Symmetry Breaking Working Group, the main candidates for theories of electroweak symmetry breaking are surveyed, and the criteria for distinguishing among the different approaches are discussed. The potential for observing electroweak symmetry breaking phenomena at the upgraded Tevatron and the LHC is described. We emphasize the importance of a high-luminosity e + e - linear collider for precision measurements to clarify the underlying electroweak symmetry breaking dynamics. Finally, we note the possible roles of the μ + μ - collider and VLHC for further elucidating the physics of electroweak symmetry breaking

  11. On the origin of mass and the electroweak mass spectrum without Higgs

    International Nuclear Information System (INIS)

    Souza, Manoelito Martins de

    1994-01-01

    Full text: In a Causality Preserving Manifold Formalism, (CPMF), which is based on a model of spacetime with geometric and strict implementation of causality, masses are consequences of the spacetime symmetries. The mass spectrum of a set of non Abelian fields is solely determined from its Lagrangian kinematics term, in a way independent of any kind of interactions and without any extra field (no Higgs, no Yukawa coupling). The origin and meaning of mass in this formalism is discussed and then illustrated with the vector boson sector of the standard SU(2)x U(1) electroweak theory. (author)

  12. On the origin of mass and the electroweak mass spectrum without Higgs

    International Nuclear Information System (INIS)

    Souza, Manoelita Martins

    1995-01-01

    In a Causality Preserving Manifold Formalism (CPMF), which is based on a new model of spacetime, masses are consequences of spacetime structure symmetries. The mass spectrum of a set of non Abelian fields is solely determined from its Lagrangian kinematic term, in a way independent of any kind of interactions and without any extra field (no Higgs, no Yukawa couplings etc). After a brief review about this CPMF, the origin and meaning of mass is discussed and then illustrated with the vector boson sector of the SU(2) x U(1) electroweak theory. (author)

  13. Effects of isodoublet colour-octet scalar bosons on oblique electroweak parameters

    International Nuclear Information System (INIS)

    Bhattacharyya, G.; Kundu, A.; De, T.; Dutta-Roy, B.

    1995-01-01

    Isodoublet colour-octet scalar bosons appear in a natural extension of the minimal dynamical symmetry breaking model triggered by a tt condensate, which is geared to yield the top mass in the phenomenologically expected region. We study the effect of these bosons on oblique electroweak parameters S and T, and constrain the mass splitting between the neutral and the charged member of the colour octet. It is also shown that S can be substantially negative, depending on the way the masses in the coloured doublet are split. (author)

  14. Combination of the CDF and D0 Effective Leptonic Electroweak Mixing Angles

    Energy Technology Data Exchange (ETDEWEB)

    The Tevatron Electroweak Working Group

    2016-07-31

    CDF and D0 have measured the effective leptonic weak mixing angle $sin^2 \\theta^{lept}_{eff}$ , using their full Tevatron datasets. This note describes the Tevatron combination of these measurements, and the zfitter standard model-based inference of the on-shell electroweak mixing angle $sin^2 \\theta_W$, or equivalently, the W-boson mass. The combination of CDF and D0 results yields: $sin^2 \\theta^{lept}_ {eff}$ = 0.23179 ± 0.00035, and $sin^2 \\theta_W$ = 0.22356 ± 0.00035, or equivalently, $M_W$(indirect) = 80.351 ± 0.018 GeV/$c^2$.

  15. Hadronic corrections to electroweak observables from twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Pientka, Grit

    2015-01-01

    For several benchmark quantities investigated to detect signs for new physics beyond the standard model of elementary particle physics, lattice QCD currently constitutes the only ab initio approach available at small momentum transfers for the computation of non-perturbative hadronic contributions. Among those observables are the lepton anomalous magnetic moments and the running of the electroweak coupling constants. We compute the leading QCD contribution to the muon anomalous magnetic moment by performing lattice QCD calculations on ensembles incorporating N f =2+1+1 dynamical twisted mass fermions. Considering active up, down, strange, and charm quarks, admits for the first time a direct comparison of the lattice data for the muon anomaly with phenomenological results because both the latter as well as the experimentally obtained values are sensitive to the complete first two generations of quarks at the current level of precision. Recently, it has been noted that improved measurements of the electron and tau anomalous magnetic moments might also provide ways of detecting new physics contributions. Therefore, we also compute their leading QCD contributions, which simultaneously serve as cross-checks of the value obtained for the muon. Additionally, we utilise the obtained data to compute the leading hadronic contribution to the running of the fine structure constant, which enters all perturbative QED calculations. Furthermore, we show that even for the weak mixing angle the leading QCD contribution can be computed from this data. In this way, we identify a new prime observable in the search for new physics whose hadronic contributions can be obtained from lattice QCD. With the results obtained in this thesis, we are able to exclude unsuitable phenomenologically necessary flavour separations and thus directly assist the presently more precise phenomenological determinations of this eminent quantity.

  16. Strongly first-order electroweak phase transition and classical scale invariance

    Science.gov (United States)

    Farzinnia, Arsham; Ren, Jing

    2014-10-01

    In this work, we examine the possibility of realizing a strongly first-order electroweak phase transition within the minimal classically scale-invariant extension of the standard model (SM), previously proposed and analyzed as a potential solution to the hierarchy problem. By introducing one complex gauge-singlet scalar and three (weak scale) right-handed Majorana neutrinos, the scenario was successfully rendered capable of achieving a radiative breaking of the electroweak symmetry (by means of the Coleman-Weinberg mechanism), inducing nonzero masses for the SM neutrinos (via the seesaw mechanism), presenting a pseudoscalar dark matter candidate (protected by the CP symmetry of the potential), and predicting the existence of a second CP-even boson (with suppressed couplings to the SM content) in addition to the 125 GeV scalar. In the present treatment, we construct the full finite-temperature one-loop effective potential of the model, including the resummed thermal daisy loops, and demonstrate that finite-temperature effects induce a first-order electroweak phase transition. Requiring the thermally driven first-order phase transition to be sufficiently strong at the onset of the bubble nucleation (corresponding to nucleation temperatures TN˜100-200 GeV) further constrains the model's parameter space; in particular, an O(0.01) fraction of the dark matter in the Universe may be simultaneously accommodated with a strongly first-order electroweak phase transition. Moreover, such a phase transition disfavors right-handed Majorana neutrino masses above several hundreds of GeV, confines the pseudoscalar dark matter masses to ˜1-2 TeV, predicts the mass of the second CP-even scalar to be ˜100-300 GeV, and requires the mixing angle between the CP-even components of the SM doublet and the complex singlet to lie within the range 0.2≲sinω ≲0.4. The obtained results are displayed in comprehensive exclusion plots, identifying the viable regions of the parameter space

  17. Updated Status of the Global Electroweak Fit and Constraints on New Physics

    CERN Document Server

    Baak, M; Haller, J; Hoecker, A; Kennedy, D; Moenig, K; Schott, M; Stelzer, J

    2012-01-01

    We present an update of the Standard Model fit to electroweak precision data. We include newest experimental results on the top quark mass, the W mass and width, and the Higgs boson mass bounds from LEP, Tevatron and the LHC. We also include a new determination of the electromagnetic coupling strength at the Z pole. We find for the Higgs boson mass (96 +31 -24) GeV and (120 +12 -5) GeV when not including and including the direct Higgs searches, respectively. From the latter fit we indirectly determine the W mass to be (80.362 +- 0.013) GeV. We exploit the data to determine experimental constraints on the oblique vacuum polarisation parameters, and confront these with predictions from the Standard Model (SM) and selected SM extensions. By fitting the oblique parameters to the electroweak data we derive allowed regions in the BSM parameter spaces. We revisit and consistently update these constraints for a fourth fourth fermion generation, two Higgs doublet, inert Higgs and littlest Higgs models, models with lar...

  18. Updated Status of the Global Electroweak Fit and Constraints on New Physics

    CERN Document Server

    Baak, Max; Haller, Johannes; Hoecker, Andreas; Ludwig, Doerthe; Moenig, Klaus; Schott, Matthias; Stelzer, Joerg

    2011-01-01

    We present an update of the Standard Model fit to electroweak precision data. We include newest experimental results on the top quark mass, the W mass and width, and the Higgs boson mass bounds from LEP, Tevatron and the cLHC. We also include a new determination of the electromagnetic coupling strength at the Z pole. We find for the Higgs boson mass (96 +31 -24) GeV and (120 +12 -5) GeV when not including and including the direct Higgs searches, respectively. From the latter fit we indirectly determine the W mass to be (80.359 +0.017 -0.010) GeV. We exploit the data to determine experimental constraints on the oblique vacuum polarisation parameters, and confront these with predictions from the Standard Model (SM) and selected SM extensions. By fitting the oblique parameters to the electroweak data we derive allowed regions in the BSM parameter spaces. We revisit and consistently update these constraints for a fourth family, two Higgs doublet, inert Higgs and littlest Higgs models, models with large,...

  19. A unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures

    International Nuclear Information System (INIS)

    Chala, Mikael; Nardini, Germano; Sobolev, Ivan; Moscow State Univ.

    2016-05-01

    A minimal extension of the Standard Model that provides both a dark matter candidate and a strong first-order electroweak phase transition (EWPT) consists of two additional Lorentz and gauge singlets. In this paper we work out a composite Higgs version of this scenario, based on the coset SO(7)/SO(6). We show that by embedding the elementary fermions in appropriate representations of SO(7), all dominant interactions are described by only three free effective parameters. Within the model dependencies of the embedding, the theory predicts one of the singlets to be stable and responsible for the observed dark matter abundance. At the same time, the second singlet introduces new CP-violation phases and triggers a strong first-order EWPT, making electroweak baryogenesis feasible. It turns out that this scenario does not conflict with current observations and it is promising for solving the dark matter and baryon asymmetry puzzles. The tight predictions of the model will be accessible at the forthcoming dark matter direct detection and gravitational wave experiments.

  20. Electroweak-charged bound states as LHC probes of hidden forces

    Science.gov (United States)

    Li, Lingfeng; Salvioni, Ennio; Tsai, Yuhsin; Zheng, Rui

    2018-01-01

    We explore the LHC reach on beyond-the-standard model (BSM) particles X associated with a new strong force in a hidden sector. We focus on the motivated scenario where the SM and hidden sectors are connected by fermionic mediators ψ+,0 that carry SM electroweak charges. The most promising signal is the Drell-Yan production of a ψ±ψ¯ 0 pair, which forms an electrically charged vector bound state ϒ± due to the hidden force and later undergoes resonant annihilation into W±X . We analyze this final state in detail in the cases where X is a real scalar ϕ that decays to b b ¯, or a dark photon γd that decays to dileptons. For prompt X decays, we show that the corresponding signatures can be efficiently probed by extending the existing ATLAS and CMS diboson searches to include heavy resonance decays into BSM particles. For long-lived X , we propose new searches where the requirement of a prompt hard lepton originating from the W boson ensures triggering and essentially removes any SM backgrounds. To illustrate the potential of our results, we interpret them within two explicit models that contain strong hidden forces and electroweak-charged mediators, namely λ -supersymmetry (SUSY) and non-SUSY ultraviolet extensions of the twin Higgs model. The resonant nature of the signals allows for the reconstruction of the mass of both ϒ± and X , thus providing a wealth of information about the hidden sector.

  1. Probing new physics in electroweak penguins through Bd and Bs decays

    International Nuclear Information System (INIS)

    Hofer, Lars; Scherer, Dominik; Vernazza, Leonardo

    2011-01-01

    An enhanced electroweak penguin amplitude due to the presence of unknown new physics can explain the discrepancies found between theory and experiment in the B → πK decays, in particular in A CP (B - → π 0 K - ) - A CP ( B-bar 0 → π + K - ), but the current precision of the theoretical and experimental results does not allow to draw a firm conclusion. We argue that the B-bar s → φρ 0 and B-bar s → φπ 0 decays offer an additional tool to investigate this possibility. These purely isospin-violating decays are dominated by electroweak penguins and we show that in presence of a new physics contribution their branching ratio can be enhanced by about an order of magnitude, without violating any constraints from other hadronic B decays. This makes them very interesting modes for LHCb and future B factories. In [1] we have performed both a model-independent analysis and a study within realistic New Physics models such as a modified-Z 0 -penguin scenario, a model with an additional Z' boson and the MSSM. In this article we summarise the most important results of our study.

  2. Two-loop mass splittings in electroweak multiplets: Winos and minimal dark matter

    Science.gov (United States)

    McKay, James; Scott, Pat

    2018-03-01

    The radiatively-induced splitting of masses in electroweak multiplets is relevant for both collider phenomenology and dark matter. Precision two-loop corrections of O (MeV ) to the triplet mass splitting in the wino limit of the minimal supersymmetric standard model can affect particle lifetimes by up to 40%. We improve on previous two-loop self-energy calculations for the wino model by obtaining consistent input parameters to the calculation via two-loop renormalization-group running, and including the effect of finite light quark masses. We also present the first two-loop calculation of the mass splitting in an electroweak fermionic quintuplet, corresponding to the viable form of minimal dark matter (MDM). We place significant constraints on the lifetimes of the charged and doubly-charged fermions in this model. We find that the two-loop mass splittings in the MDM quintuplet are not constant in the large-mass limit, as might naively be expected from the triplet calculation. This is due to the influence of the additional heavy fermions in loop corrections to the gauge boson propagators.

  3. Top-squark mixing effects in the supersymmetric electroweak corrections to top-quark production at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Yang, J.M.; Li, C.S.

    1996-01-01

    Taking into account the mixing effects between left- and right-handed top squarks, we calculate the genuine supersymmetric electroweak correction to top-quark production at the Fermilab Tevatron in the minimal supersymmetric model. The analytic expressions of the corrections to both the parton level cross section and the total hadronic cross section are presented. Some numerical examples are also given to show the size of the corrections. copyright 1996 The American Physical Society

  4. Electroweak and flavor dynamics at hadron colliders - I

    International Nuclear Information System (INIS)

    Elchtent, E.; Lane, K.

    1998-02-01

    This is the first of two reports cataloging the principal signatures of electroweak and flavor dynamics at anti pp and pp colliders. Here, we discuss some of the signatures of dynamical electroweak and flavor symmetry breaking. The framework for dynamical symmetry breaking we assume is technicolor, with a walking coupling α TC , and extended technicolor. The reactions discussed occur mainly at subprocess energies √s approx-lt 1 TeV. They include production of color-singlet and octet technirhos and their decay into pairs of technipions, longitudinal weak bosons, or jets. Technipions, in turn, decay predominantly into heavy fermions. This report will appear in the Proceedings of the 1996 DPF/DPB Summer Study on New Directions for High Energy Physics (Snowmass 96)

  5. String-mediated electroweak baryogenesis a critical analysis

    CERN Document Server

    Cline, J M; Moore, G D; Riotto, Antonio; Cline, Jim; Espinosa, Jose; Moore, Guy D.; Riotto, Antonio

    1999-01-01

    We study the scenario of electroweak baryogenesis mediated by nonsuperconducting cosmic strings. This idea relies upon electroweak symmetry being restored in a region around the core of the topological defect so that, within this region, the rate of baryon number violation is enhanced. We compute numerically how effectively baryon number is violated along a cosmic string, at an epoch when the baryon number violation rate elsewhere is negligible. We show that B-violation along nonsuperconducting strings is quite inefficient. When proper accounting is taken of the velocity dependence of the baryon number production by strings, it proves too small to explain the observed abundance by at least ten orders of magnitude, whether the strings are in the friction dominated or the scaling regime.

  6. Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations

    CERN Document Server

    Riotto, Antonio

    1998-01-01

    The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...

  7. Basics of introduction to Feynman diagrams and electroweak interactions physics

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Mikhov, S.G.

    1994-01-01

    The Feynman diagrams are the main computational method for the evaluation of the matrix elements of different processes. Although it is a perturbative method, its significance is not restricted to perturbation theory only. In this book, the elements of quantum field theory, the Feynman diagram method, the theory of electroweak interactions and other topics are discussed. A number of classical weak and electroweak processes are considered in details. This involves, first of all, the construction of the matrix elements of the process using both the Feynman diagram method (when perturbation theory can be applied) and the invariance principles (when perturbation theory fails). Then the cross sections and the decay probabilities are computed. The text is providing widely used computational techniques and some experimental data. (A.B.). 32 refs., 7 appendix

  8. Strong first order electroweak phase transition in the CP-conserving 2HDM revisited

    International Nuclear Information System (INIS)

    Basler, P.; Krause, M.; Mühlleitner, M.; Wittbrodt, J.; Wlotzka, A.

    2017-01-01

    The discovery of the Higgs boson by the LHC experiments ATLAS and CMS has marked a milestone for particle physics. Yet, there are still many open questions that cannot be answered within the Standard Model (SM). For example, the generation of the observed matter-antimatter asymmetry in the universe through baryogenesis can only be explained qualitatively in the SM. A simple extension of the SM compatible with the current theoretical and experimental constraints is given by the 2-Higgs-Doublet Model (2HDM) where a second Higgs doublet is added to the Higgs sector. We investigate the possibility of a strong first order electroweak phase transition in the CP-conserving 2HDM type I and type II where either of the CP-even Higgs bosons is identified with the SM-like Higgs boson. The renormalisation that we apply on the loop-corrected Higgs potential allows us to efficiently scan the 2HDM parameter space and simultaneously take into account all relevant theoretical and up-to-date experimental constraints. The 2HDM parameter regions found to be compatible with the applied constraints and a strong electroweak phase transition are analysed systematically. Our results show that there is a strong interplay between the requirement of a strong phase transition and collider phenomenology with testable implications for searches at the LHC.

  9. Precision electroweak physics with the SLD/SLC: The left-right polarization asymmetry

    International Nuclear Information System (INIS)

    Rowson, P.C.

    1994-12-01

    Following a brief review of a commonly used general framework for the analysis of radiative corrections and possible new physics, the recent precision results from the SLD/SLC are discussed and used to test the standard electroweak model. In the 1993 SLD/SLC run, the SLD recorded 50,000 Z events produced by the collision of longitudinally polarized electrons on unpolarized positrons at a center-of-mass energy of 91.26 GeV. The luminosity-weighted average polarization of the SLC electron beam was (63.0 ± 1.1)%. We measure the left-right cross-section asymmetry in Z boson production, A LR , to be 0.1628 ± 0.0071 (stat) ± 0.0028 (syst) which determines the effective weak mixing angle to be sin 2 θ W eff = 0.2292 ± 0.0009 (stat) ± 0.0004 (syst). When averaged with our 1992 result, we obtain sin 2 θ W eff = 0.2294 ± 0. 0010. This result differs from analogous LEP results at the level of about 2.5 σ. The world averages of electroweak data are comfortably in agreement with the standard model

  10. Gravitational waves from a supercooled electroweak phase transition and their detection with pulsar timing arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kobakhidze, Archil; Lagger, Cyril; Manning, Adrian [University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia); Yue, Jason [National Taiwan Normal University, Department of Physics, Taipei (China)

    2017-08-15

    We investigate the properties of a stochastic gravitational wave background produced by a first-order electroweak phase transition in the regime of extreme supercooling. We study a scenario whereby the percolation temperature that signifies the completion of the transition, T{sub p}, is as low as a few MeV (nucleosynthesis temperature), while most of the true vacuum bubbles are formed much earlier at the nucleation temperature, T{sub n} ∝ 50 GeV. This implies that the gravitational wave spectrum is mainly produced by the collisions of large bubbles and characterised by a large amplitude and a peak frequency as low as f ∝ 10{sup -9}-10{sup -7} Hz. We show that such a scenario can occur in (but not limited to) a model based on a non-linear realisation of the electroweak gauge group, so that the Higgs vacuum configuration is altered by a cubic coupling. In order to carefully quantify the evolution of the phase transition of this model over such a wide temperature range we go beyond the usual fast transition approximation, taking into account the expansion of the Universe as well as the behaviour of the nucleation probability at low temperatures. Our computation shows that there exists a range of parameters for which the gravitational wave spectrum lies at the edge between the exclusion limits of current pulsar timing array experiments and the detection band of the future Square Kilometre Array observatory. (orig.)

  11. Indirect Probe of Electroweak-Interacting Particles at Future Lepton Colliders

    International Nuclear Information System (INIS)

    Harigaya, Keisuke

    2015-04-01

    Various types of electroweak-interacting particles, which have non-trivial charges under the SU(2) L x U(1) Y gauge symmetry, appear in various extensions of the Standard Model. These particles are good targets of future lepton colliders, such as the International Linear Collider (ILC), the Compact LInear Collider (CLIC) and the Future Circular Collider of electrons and positrons (FCC-ee). An advantage of the experiments is that, even if their beam energies are below the threshold of the production of the new particles, quantum effects of the particles can be detected through high precision measurements. We estimate the capability of future lepton colliders to probe electroweak-interacting particles through the quantum effects, with particular focus on the wino, the Higgsino and the so-called minimal dark matters, and found that a particle whose mass is greater than the beam energy by 100-1000 GeV is detectable by measuring di-fermion production cross sections with O(0.1)% accuracy. In addition, with the use of the same analysis, we also discuss the sensitivity of the future colliders to model independent higher dimensional operators, and found that the cutoff scales corresponding to the operators can be probed up to a few ten TeV.

  12. Indirect probe of electroweak-interacting particles at future lepton colliders

    International Nuclear Information System (INIS)

    Harigaya, Keisuke; Ichikawa, Koji; Kundu, Anirban; Matsumoto, Shigeki; Shirai, Satoshi

    2015-01-01

    Various types of electroweak-interacting particles, which have non-trivial charges under the SU(2)_L×U(1)_Y gauge symmetry, appear in various extensions of the Standard Model. These particles are good targets of future lepton colliders, such as the International Linear Collider (ILC), the Compact LInear Collider (CLIC) and the Future Circular Collider of electrons and positrons (FCC-ee). An advantage of the experiments is that, even if their beam energies are below the threshold of the production of the new particles, quantum effects of the particles can be detected through high precision measurements. We estimate the capability of future lepton colliders to probe electroweak-interacting particles through the quantum effects, with particular focus on the wino, the Higgsino and the so-called minimal dark matters, and found that a particle whose mass is greater than the beam energy by 100–1000 GeV is detectable by measuring di-fermion production cross sections with O(0.1)% accuracy. In addition, with the use of the same analysis, we also discuss the sensitivity of the future colliders to model independent higher dimensional operators, and found that the cutoff scales corresponding to the operators can be probed up to a few ten TeV.

  13. Strong first order electroweak phase transition in the CP-conserving 2HDM revisited

    Energy Technology Data Exchange (ETDEWEB)

    Basler, P.; Krause, M.; Mühlleitner, M. [Institute for Theoretical Physics, Karlsruhe Institute of Technology,Wolfgang-Gaede-Str. 1, 76131 Karlsruhe (Germany); Wittbrodt, J. [Institute for Theoretical Physics, Karlsruhe Institute of Technology,Wolfgang-Gaede-Str. 1, 76131 Karlsruhe (Germany); Deutsches Elektronen-Synchrotron DESY,Notkestraße 85, D-22607 Hamburg (Germany); Wlotzka, A. [Institute for Theoretical Physics, Karlsruhe Institute of Technology,Wolfgang-Gaede-Str. 1, 76131 Karlsruhe (Germany)

    2017-02-23

    The discovery of the Higgs boson by the LHC experiments ATLAS and CMS has marked a milestone for particle physics. Yet, there are still many open questions that cannot be answered within the Standard Model (SM). For example, the generation of the observed matter-antimatter asymmetry in the universe through baryogenesis can only be explained qualitatively in the SM. A simple extension of the SM compatible with the current theoretical and experimental constraints is given by the 2-Higgs-Doublet Model (2HDM) where a second Higgs doublet is added to the Higgs sector. We investigate the possibility of a strong first order electroweak phase transition in the CP-conserving 2HDM type I and type II where either of the CP-even Higgs bosons is identified with the SM-like Higgs boson. The renormalisation that we apply on the loop-corrected Higgs potential allows us to efficiently scan the 2HDM parameter space and simultaneously take into account all relevant theoretical and up-to-date experimental constraints. The 2HDM parameter regions found to be compatible with the applied constraints and a strong electroweak phase transition are analysed systematically. Our results show that there is a strong interplay between the requirement of a strong phase transition and collider phenomenology with testable implications for searches at the LHC.

  14. Search for Electroweak Single-Top Quark Production with the CDF II Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Buehler, Matthias; /Karlsruhe U., EKP

    2006-08-01

    The CDF II experiment and the Tevatron proton-antiproton collider are parts of the Fermi National Laboratories (Fermilab). The Fermilab is located in the vicinity of Chicago, USA. Today, the Tevatron is the only collider which is able to produce the heaviest known elementary particle, the top quark. The top quark was discovered at the Tevatron by the CDF and the D0 collaborations in 1995 [1]. So far, all the top quarks found are produced via the strong interaction as top-antitop pairs. The Standard Model of elementary particle physics also predicts single-top quark production via the electroweak interaction. This production mode has not yet been observed. The CDF and the D0 collaborations have set upper limits on the cross section for that process in Run I [2, 3] and improved those results in Run II [4, 5]. Single-top quark production is one of the major interests in Run II of the Tevatron as it offers several ways to test the Standard Model and to search for potential physics beyond the Standard Model. The measurement of the cross section of singly produced top quarks via the electroweak interaction offers the possibility to determine the Cabbibo-Kobayashi-Maskawa (CKM) matrix element V{sub tb} directly. The CKM matrix defines the transformation from the eigenstates of the electroweak interactions to the mass eigenstates of the quarks. V{sub tb} gives the strength of the coupling at the Wtb vertex. The single-top quark is produced at this vertex and therefore the cross section of the single-top quark production is directly proportional to |V{sub tb}|{sup 2}. In the Standard Model, three generations of quarks and the unitarity of the CKM matrix are predicted. This leads to V{sub tb} {approx} 1. Up to now, there is no possibility to measure V{sub tb} without using the assumption that there are a certain number of quark generations. Since the measurement of the cross section of single-top quark production is independent of this assumption it could verify another

  15. Usage of machine learning for the separation of electroweak and strong Zγ production at the LHC experiments

    Science.gov (United States)

    Petukhov, A. M.; Soldatov, E. Yu

    2017-12-01

    Separation of electroweak component from strong component of associated Zγ production on hadron colliders is a very challenging task due to identical final states of such processes. The only difference is the origin of two leading jets in these two processes. Rectangular cuts on jet kinematic variables from ATLAS/CMS 8 TeV Zγ experimental analyses were improved using machine learning techniques. New selection variables were also tested. The expected significance of separation for LHC experiments conditions at the second datataking period (Run2) and 120 fb-1 amount of data reaches more than 5σ. Future experimental observation of electroweak Zγ production can also lead to the observation physics beyond Standard Model.

  16. QCD corrections, virtual heavy quark effects and electroweak precision measurements

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Kuehn, J.H.; Stuart, R.G.

    1988-01-01

    QCD corrections to virtual heavy quark effects on electroweak parameters are calculated, which may affect planned precision measurements at SLC and LEP. The influence of toponium and T b resonances is incorporated as well as the proper threshold behaviour of the imaginary part of the vacuum polarization function. The shift of the W-boson mass from these corrections and their influence on the polarization asymmetry are calculated and compared to the envisaged experimental precision. (orig.)

  17. Electroweak corrections to H->ZZ/WW->4 leptons

    International Nuclear Information System (INIS)

    Bredenstein, A.; Denner, A.; Dittmaier, S.; Weber, M.M.

    2006-01-01

    We provide predictions for the decays H->ZZ->4-bar and H->WW->4-bar including the complete electroweak O(α) corrections and improvements by higher-order final-state radiation and two-loop corrections proportional to G μ 2 M H 4 . The gauge-boson resonances are described in the complex-mass scheme. We find corrections at the level of 1-8% for the partial widths

  18. Searches for electroweak SUSY with ATLAS at HL-LHC

    CERN Document Server

    Amoroso, Simone; The ATLAS collaboration

    2018-01-01

    The High Luminosity-Large Hadron Collider (HL-LHC) is expected to start in 2026 and to pro- vide an integrated luminosity of 3000 fb$^{−1}$ in ten years, a factor 10 more than what will be collected by 2023. This high statistics will allow ATLAS to improve searches for new physics at the TeV scale. In this talk search prospects for the electroweak production of supersymmetric particles are presented.

  19. Electroweak gauge anomaly and the new physics scale

    International Nuclear Information System (INIS)

    Akama, K.; Hattori, T.

    1992-01-01

    It is argued that chiral anomalies in the effective gauge theories are allowed, as far as the new physics scale is not too large. In this paper, the authors estimate the anomaly-induced masses of the weak bosons, when the anomalies exist in the electroweak gauge theory, and compare them with the experimental results to extract the upper bound on the new-physics scale

  20. Implementation of electroweak corrections in the POWHEG BOX: single W production

    CERN Document Server

    Barzè, L; Nason, P; Nicrosini, O; Piccinini, F

    2012-01-01

    We present a fully consistent implementation of electroweak and strong radiative corrections to single W hadroproduction in the POWHEG BOX framework, treating soft and collinear photon emissions on the same ground as coloured parton emissions. This framework can be easily extended to more complex electroweak processes. We describe how next-to-leading order (NLO) electroweak corrections are combined with the NLO QCD calculation, and show how they are interfaced to QCD and QED shower Monte Carlo. The resulting tool fills a gap in the literature and allows to study comprehensively the interplay of QCD and electroweak effects to W production using a single computational framework. Numerical comparisons with the predictions of the electroweak generator HORACE, as well as with existing results on the combination of electroweak and QCD corrections to W production, are shown for the LHC energies, to validate the reliability and accuracy of the approach

  1. Electroweak bosons in Pb+Pb and $p$+Pb collisions

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356981; The ATLAS collaboration

    2016-01-01

    Electroweak boson ( W , Z , γ ) measurements in Pb+Pb collisions at sNN=2.76 TeV and in p +Pb collisions at sNN=5.02 TeV are presented with the ATLAS detector at the LHC. In Pb+Pb, electroweak boson yields are shown to be independent of centrality. Differential measurements in absolute pseudorapidity are used to investigate nuclear effects to the free-proton parton distribution function (PDF). The distributions lack the experimental precision to unambiguously identify the presence of nuclear modifications. In p +Pb, the Z boson cross section is measured as a function of center-of-mass rapidity yZ⁎ and the momentum fraction of the lead-going parton (Bjorken xPb ). The distributions are asymmetric and model predictions underestimate the data at large xPb . The overall shape is best described by including nuclear effects. The differential cross section is also measured in different centrality classes and shows evidence of spatially-dependent nuclear PDFs. The Z boson production yields are measured as a functi...

  2. Electroweak bosons in Pb+Pb and p+Pb collisions from ATLAS

    CERN Document Server

    INSPIRE-00356981

    2015-01-01

    Electroweak boson ($W$, $Z$, $\\gamma$) measurements in Pb+Pb collisions at $\\sqrt{s_{NN}}=2.76$ TeV and in $p$+Pb collisions at $\\sqrt{s_{NN}}=5.02$ TeV are presented with the ATLAS detector at the LHC. In Pb+Pb, electroweak boson yields are shown to be independent of centrality. Differential measurements in absolute pseudorapidity are used to investigate nuclear effects to the free-proton parton distribution function (PDF). The distributions lack the experimental precision to unambiguously identify the presence of nuclear modifications. In $p$+Pb, the $Z$ boson cross section is measured as a function of center-of-mass rapidity $y_{Z}^{*}$ and the momentum fraction of the lead-going parton (Bjorken $x_{Pb}$). The distributions are asymmetric and model predictions underestimate the data at large $x_{Pb}$. The overall shape is best described by including nuclear effects. The differential cross section is also measured in different centrality classes and shows evidence of spatially-dependent nuclear PDFs. The $Z...

  3. A demonstration that electroweak theory can violate parity automatically (leptonic case)

    Science.gov (United States)

    Furey, C.

    2018-02-01

    We bring to light an electroweak model which has been reappearing in the literature under various guises.1-5 In this model, weak isospin is shown to act automatically on states of only a single chirality (left). This is achieved by building the model exclusively from the raising and lowering operators of the Clifford algebra ℂl(4). That is, states constructed from these ladder operators mimic the behaviour of left- and right-handed electrons and neutrinos under unitary ladder operator symmetry. This ladder operator symmetry is found to be generated uniquely by su(2)L and u(1)Y. Crucially, the model demonstrates how parity can be maximally violated, without the usual step of introducing extra gauge and extra Higgs bosons, or ad hoc projectors.

  4. Vector boson scattering and electroweak production of two like-charge W bosons and two jets at the current and future ATLAS detector

    International Nuclear Information System (INIS)

    Schnoor, Ulrike

    2015-01-01

    The scattering of electroweak gauge bosons is closely connected to the electroweak gauge symmetry and its spontaneous breaking through the Brout-Englert-Higgs mechanism. Since it contains triple and quartic gauge boson vertices, the measurement of this scattering process allows to probe the self-interactions of weak bosons. The contribution of the Higgs boson to the weak boson scattering amplitude ensures unitarity of the scattering matrix. Therefore, the scattering of massive electroweak gauge bosons is sensitive to deviations from the Standard Model prescription of the electroweak interaction and of the properties of the Higgs boson. At the Large Hadron Collider (LHC), the scattering of massive electroweak gauge bosons is accessible through the measurement of purely electroweak production of two jets and two gauge bosons. No such process has been observed before. Being the channel with the least amount of background from QCD-mediated production of the same final state, the most promising channel for the first measurement of a process containing massive electroweak gauge boson scattering is the one with two like-charge W bosons and two jets in the final state. This thesis presents the first measurement of electroweak production of two jets and two identically charged W bosons, which yields the first observation of a process with contributions from quartic gauge interactions of massive electroweak gauge bosons. An overview of the most important issues in Monte Carlo simulation of vector boson scattering processes with current Monte Carlo generators is given in this work. The measurement of the final state of two jets and two leptonically decaying same-charge W bosons is conducted based on proton-proton collision data with a center-of-mass energy of √(s)=8 TeV, taken in 2012 with the ATLAS experiment at the LHC. The cross section of electroweak production of two jets and two like-charge W bosons is measured with a significance of 3.6 standard deviations to be

  5. Next-to-leading-order electroweak corrections to the production of three charged leptons plus missing energy at the LHC

    Science.gov (United States)

    Biedermann, Benedikt; Denner, Ansgar; Hofer, Lars

    2017-10-01

    The production of a neutral and a charged vector boson with subsequent decays into three charged leptons and a neutrino is a very important process for precision tests of the Standard Model of elementary particles and in searches for anomalous triple-gauge-boson couplings. In this article, the first computation of next-to-leading-order electroweak corrections to the production of the four-lepton final states μ + μ -e+ ν e, {μ}+{μ}-{e}-{\\overline{ν}}e , μ + μ - μ + ν μ , and {μ}+{μ}-{μ}-{\\overline{ν}}_{μ } at the Large Hadron Collider is presented. We use the complete matrix elements at leading and next-to-leading order, including all off-shell effects of intermediate massive vector bosons and virtual photons. The relative electroweak corrections to the fiducial cross sections from quark-induced partonic processes vary between -3% and -6%, depending significantly on the event selection. At the level of differential distributions, we observe large negative corrections of up to -30% in the high-energy tails of distributions originating from electroweak Sudakov logarithms. Photon-induced contributions at next-to-leading order raise the leading-order fiducial cross section by +2%. Interference effects in final states with equal-flavour leptons are at the permille level for the fiducial cross section, but can lead to sizeable effects in off-shell sensitive phase-space regions.

  6. The Price of an Electroweak Monopole

    CERN Document Server

    Ellis, John; You, Tevong

    2016-01-01

    In a recent paper, Cho, Kim and Yoon (CKY) have proposed a version of the SU(2) $\\times$ U(1) Standard Model with finite-energy monopole and dyon solutions. The CKY model postulates that the effective U(1) gauge coupling $\\to \\infty$ very rapidly as the Englert-Brout-Higgs vacuum expectation value $\\to 0$, but in a way that is incompatible with LHC measurements of the Higgs boson $H \\to \\gamma \\gamma$ decay rate. We construct generalizations of the CKY model that are compatible with the $H \\to \\gamma \\gamma$ constraint, and calculate the corresponding values of the monopole and dyon masses. We find that the monopole mass could be $< 5.5$ TeV, so that it could be pair-produced at the LHC and accessible to the MoEDAL experiment.

  7. Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

    International Nuclear Information System (INIS)

    Artymowski, Michał; Lewicki, Marek; Wells, James D.

    2017-01-01

    We consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wave searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.

  8. Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Artymowski, Michał [Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Lewicki, Marek [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Michigan Center for Theoretical Physics, University of Michigan,Ann Arbor MI 48109 (United States); Wells, James D. [Michigan Center for Theoretical Physics, University of Michigan,Ann Arbor MI 48109 (United States); Deutsches Elektronen-Synchrotron DESY, Theory Group,D-22603 Hamburg (Germany)

    2017-03-13

    We consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wave searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.

  9. Production of electroweak bosons at colliders

    Indian Academy of Sciences (India)

    of diboson production are usually framed as comparison of measured couplings to SM predictions and interpreted as limits on ... the Standard Model, λγ and λZ vanish, while the others have a value of 1. ... small (Wγ) or zero (Zγ) as these final states are predominantly produced by initial- and final-state radiation of photons.

  10. Electroweak measurements with the ATLAS detector.

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00349845; The ATLAS collaboration

    2015-01-01

    ATLAS measurements of multi-boson production processes involving combinations of W, Z and isolated photons at 8 TeV are summarized. Standard Model cross section are measured with high precision by ATLAS and are compared to world averages. Production processes sensitive to vector-boson fusion and vector-boson scattering are also presented and used for the triple and quartic gauge boson couplings limits setting.

  11. Study of electroweak parameters at LEP

    International Nuclear Information System (INIS)

    Blum, W.

    1991-10-01

    The measurement of the line shape and asymmetry parameters of the Z 0 in its leptonic and hadronic decays are reviewed. Progress is reported about a considerable increase in measurement accuracy. Several tests of the Standard Model confirm it to better than one per cent. New values for the effective mixing parameter are derived from the line shape parameters averaged over the four LEP experiments. The corresponding limits on the top mass are presented. (orig.)

  12. Holography and the Electroweak Phase Transition

    CERN Document Server

    Creminelli, Paolo; Rattazzi, Riccardo; Creminelli, Paolo; Nicolis, Alberto; Rattazzi, Riccardo

    2002-01-01

    We study through holography the compact Randall-Sundrum (RS) model at finite temperature. In the presence of radius stabilization, the system is described at low enough temperature by the RS solution. At high temperature it is described by the AdS-Schwarzshild solution with an event horizon replacing the TeV brane. We calculate the transition temperature T_c between the two phases and we find it to be somewhat smaller than the TeV scale. Assuming that the Universe starts out at T >> T_c and cools down by expansion, we study the rate of the transition to the RS phase. We find that the transition is too slow and the Universe ends up in an old inflation scenario unless tight bounds are satisfied by the model parameters. In particular we find that the AdS curvature must be comparable to the 5D Planck mass and that the radius stabilization mechanism must lead to a sizeable distortion of the basic RS metric.

  13. Theoretical aspects of electroweak and other interactions in medium energy nuclear physics. Interim progress report

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1994-01-01

    Significant progress has been made in the current project year in the development of chiral soliton model and its applications to the electroweak structure of the nucleon and the Delta (1232) resonance. Further progress also has been made in the application of the perturbative QCD (pQCD) and the study of physics beyond the standard model. The postdoctoral associate and the graduate student working towards his Ph.D. degree have both made good progress. The review panel of the DOE has rated this program as a ''strong, high priority'' one. A total of fifteen research communications -- eight journal papers and, conference reports and seven other communications -- have been made during the project year so far. The principal investigator is a member of the Physics Advisory Committee of two nuclear accelerator facilities

  14. Overview of Measurements with Electroweak Gauge Bosons at the ATLAS Detector

    CERN Document Server

    Baldin, Evgenii; The ATLAS collaboration

    2017-01-01

    In this talk, we will give an overview of several recent measurements, performed at the ATLAS detector, which test the electroweak sector of the Standard Model to highest precision and allow for precision tests of perturbative QCD predictions. Cross section measurements of multi boson final states test the gauge structure of the Standard Model. Differential cross-section measurements of single vector bosons in the final state, also in association with jets, have been performed at all available center of mass energies and provide important information for advanced theoretical predictions as well as the parton density functions of the boson. These measurements build the basis for the first precision measurement of the W boson mass at the LHC.

  15. LEP precision electroweak measurements from the Z{sup 0} resonance

    Energy Technology Data Exchange (ETDEWEB)

    Strom, D. [Univ. of Oregon, Eugene, OR (United States)

    1997-01-01

    Preliminary electroweak measurements from the LEP Collaboration from data taken at the Z{sup 0} resonance are presented. Most of the results presented are based on a total data sample of 12 x 10{sup 6} recorded Z{sup 0} events which included data from the 1993 and 1994 LEP runs. The Z{sup 0} resonance parameters, including hadronic and leptonic cross sections and asymmetries, {tau} polarization and its asymmetry, and heavy-quark asymmetries and partial widths, are evaluated and confronted with the predictions of the Standard Model. This comparison incorporates the constraints provided by the recent determination of the top-quark mass at the Tevatron. The Z{sup 0} resonance parameters are found to be in good agreement with the Standard Model prediction using the Tevatron top-quark mass, with the exception of the partial widths for Z{sup 0} decays to pairs of b and c quarks.

  16. Precision determinations of electroweak parameters from ep-collisions at Hera-energies

    International Nuclear Information System (INIS)

    Weber, A.

    1990-01-01

    The authors have studied HERA's capability of precisely measuring various parameters of the electroweak standard model. The analysis was performed in kinematical regions, x ≥ 0.01 and x ≥ 0.1, where systematic errors are expected to be under control. The statistical precision reachable for standard model parameters, extracted from R ≡ σ NC /σ CC and NC asymmetries A for polarized e ± beams, was estimated for both regions. Heavy flavor contributions, which amount up to 15% to the cross sections, were included via the boson-gluon fusion process. Furthermore the influence of various uncertainties (parton distributions, quark masses, σ L /σ T , fixing input parameters) was estimated. For x ≥ 0.01 the uncertainties due to parton densities are sizeable, the total rates (cross sections), however, increase strongly in contrast to the region x ≥ 0.1

  17. Academic Training: An Introduction to the Standard Theory of Electroweak Interactions

    CERN Multimedia

    PH Department

    2011-01-01

    27, 28 and 29 April 2011 An introduction to the standard theory of electroweak interactions by Giovanni Ridolfi (INFN, Genova) 27, 28 and 29 April from 11:00 to 12:00, 28 April from 14:30 to 15:30 at CERN ( 222-R-001 - Filtration Plant )  The construction and experimental foundations of the unified theory of weak and electromagnetic interactions will be reviewed. Special attention will be given to the Standard Model symmetry properties and how symmetries must be broken in order to obtain a realistic theory for the observed pattern of masses and mixing among generations and to accommodate longitudinal degrees of freedom for the vector bosons. A careful discussion of the Higgs sector, both in the perturbative and in the strongly interacting regime, will be presented. Finally, the motivations towards extensions of the standard model will be discussed.

  18. Top-quark and top-squark production at hadron colliders at electroweak NLO

    Energy Technology Data Exchange (ETDEWEB)

    Kollar, M.

    2007-05-31

    In this work, the impact of electroweak (EW) contributions on the cross sections for the top-quark pair production within the Standard Model (SM) and for the top-squark pair production within the Minimal Supersymmetric Standard Model (MSSM) is investigated. For these processes, the EW-QCD interference leads to additional contributions which are not present at Born-level. In addition, parton densities at next-to-leading-order (NLO) in QED give rise to non-zero photon density in the proton. It is shown that the size of photon-induced production rates is comparable to other EW NLO contributions. The cross sections differential in invariant mass and transverse momentum of final state particles are studied and discussed in kinematic ranges accessible at the LHC and at the Tevatron. The NLO EW contributions become significant at high transverse momentum and high invariant mass and should be included in the numerical analysis. (orig.)

  19. Precision electroweak physics with neutrinos at Los Alamos

    International Nuclear Information System (INIS)

    Sanders, G.H.

    1989-01-01

    We review the status of current efforts at Los Alamos to measure the mass of /bar /nu///sub e/ with tritium beta decay and to search for oscillation of /bar /nu///sub μ/ to /bar /nu///sub e/. A new proposal to carry out a precision measurement of the electroweak mixing angle, θ/sub W/, using neutrino-electron scattering measured in a 7000-ton water /hacek C/erenkov detector, the Large /hacek C/erenkov Detector (LCD), is described. 17 refs., 6 figs., 1 tab

  20. Vacuum structure of the electroweak theory in high magnetic fields

    International Nuclear Information System (INIS)

    Olesen, P.

    1991-05-01

    In the electroweak theory one can reach the unbroken phase SU(2) x U y (1) by pumping enough magnetic energy into the system. The whole energy is then carried by the fields associated with U y (1), whereas the fields corresponding to SU(2) are in a vacuum state. We show that the vacuum is non-trivial in the sense that it consists of a condensate of zero-field twists which arise in a smooth way from a condensate of vortex lines existing in the broken phase. An explicit vacuum solution is constructed in terms of Weierstrass' elliptic function. (orig.)

  1. Electroweak and b-physics at the Tevatron collider

    International Nuclear Information System (INIS)

    Hara, K.

    1994-04-01

    The CDF and D0 experiments have collected integrated luminosities of 21 pb -1 and 16 pb -1 , respectively, in the 1992--1993 run (Run Ia) at the Fermilab Tevatron. Preliminary results on electroweak physics are reported from both experiments: the W mass, the leptonic branching ratios Τ(W → ell ν), the total W width, gauge boson couplings, W decay asymmetry and W'/Z' search. Preliminary new results on b physics are presented: B o - bar B o mixing from D0, and masses and lifetimes of B-mesons from CDF

  2. Searches for Electroweak Signatures of Supersymmetry at ATLAS and CMS

    CERN Document Server

    Khoo, Teng Jian; The ATLAS collaboration

    2018-01-01

    Searches for strongly-produced superparticles at the Large Hadron Collider have excluded gluinos and squarks of all generations up to the TeV scale. While limited by statistics, electroweak signatures remain less thoroughly explored, and in particular the Higgsino sector has proven challenging. Conventional searches for leptons associated with missing transverse momentum do not fully cover the phase space, requiring new approaches to extend experimental sensitivity. Dedicated reconstruction techniques address the challenge posed by mass-degenerate spectra. By looking beyond the assumption of leptonic signatures, searches for gauge-mediated supersymmetry have broken new ground.

  3. Scheme and scale dependences of leading electroweak corrections

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Sirlin, A.

    1996-01-01

    The scheme and scale dependences of leading M t -dependent contributions to Δρ, Δr, and τ, which arise because of the truncation of the perturbative series, are investigated by comparing expressions in the on-shell and MS schemes of renormalization, and studying their scale variations. Starting from the conventional on-shell formulae, we find rather large scheme and scale dependences. We then propose a simple, physically motivated modification of the conventional expressions and show that it leads to a sharp reduction in the scheme and scale dependences. Implications for electroweak physics are discussed. (orig.)

  4. Kinematics of electroweak single top quark production

    International Nuclear Information System (INIS)

    Lueck, Jan; Karlsruhe U., EKP

    2006-01-01

    In this thesis, the t-channel matching procedure of two single-top signal Monte Carlo samples is optimized. The s- and matched t-channel samples, generated by MadEvent, are validated by comparing to ZTOP next-to-leading-order calculations. We find good agreement for all kinematic distributions we investigate, except for softer light quark jets due to gluon radiation. Since this has only minor impact on the s-channel, the corresponding MadEvent sample performs its task as expected. For the t-channel, we can conclude that the applied matching procedure leads to a MadEvent sample that successfully describes the kinematic distributions and rates of the 2nd-b quark. However, small differences remain. The discrepancy in the p T -ordered 2nd-leading light jets is mainly due to the absence of initial state gluon splitting and initial and final state gluon radiation matrix elements in the MadEvent sample production. The subsequent PYTHIA showering of the partons is apparently inappropriate for modeling those contributions and not intended for this purpose. The proper way would be to produce all relevant NLO matrix elements and match them as proposed in reference [15]. At present, an NLO-MC-generator for single-top is in preparation [41]. Probably it will be available for future iterations of single-top analyses and will redundantize further matching procedures. We estimate the systematic uncertainty on the single-top acceptance due to the Monte Carlo modeling and find an uncertainty of about 1% on the t-channel acceptance. We obtain a negligible uncertainty well below 1% on the s-channel acceptance. These acceptance uncertainties are very well acceptable for the single-top analyses that are currently under way. A sensitivity study of the simultaneous cross section measurement of the s- and t-channel single-top production modes is conducted. For this purpose, only statistical uncertainties are included. For a future integrated luminosity of 1 fb -1 , we expect to obtain an s

  5. ATLAS measurement of Electroweak Vector Boson production

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00453010; The ATLAS collaboration

    2017-01-01

    The measurements of the Drell-Yan production of W and Z/γ⁎ bosons at the LHC provide a benchmark of our understanding of the perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements of the double differential cross-sections as a function of the dilepton mass and rapidity. The measurements are compared to state of calculations at NNLO in QCD and constrain the photon content of the proton. The angular distributions of the Drell-Yan lepton pairs around the Z-boson mass peak probe the underlying QCD dynamics of the Z-boson production mechanisms. The complete set of angular coefficients describing these distributions is presented and compared to theoretical predictions highlighting different approaches of the QCD and EW modelling. First precise inclusive measurements of W and Z production at 13 TeV are presented. $W/Z$ and $W^{+}/W^{−}$ ratios profit from a cancellation of experimental uncertainties.

  6. Production of heavy flavors at the Z0 and electroweak couplings

    International Nuclear Information System (INIS)

    Wagner, S.R.

    1997-09-01

    The LEP experiments and SLD have measured the electroweak couplings of the b and c quarks using various tags of B and D hadron decays. The current status of these measurements is discussed, and is contrasted with other electroweak measurements at the Z 0

  7. Clean test of the electroweak theory by measuring weak boson masses

    International Nuclear Information System (INIS)

    Hioki, Zenro

    1985-01-01

    Role of the weak boson masses in the studies of electroweak higher order effects is surveyed. It is shown that precise measurements of these masses give us quite useful information for performing a clean test of the electroweak theory, and for a heavy fermion search. Effects of supersymmetric particles in these studies are also discussed. (author)

  8. Gamma-ray constraints on dark-matter annihilation to electroweak gauge and Higgs bosons

    Energy Technology Data Exchange (ETDEWEB)

    Fedderke, Michael A.; Kolb, Edward W.; Lin, Tongyan; Wang, Lian-Tao, E-mail: mfedderke@uchicago.edu, E-mail: Rocky.Kolb@uchicago.edu, E-mail: tongyan@kicp.uchicago.edu, E-mail: liantaow@uchicago.edu [Enrico Fermi Institute and Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, Illinois, 60637-1433 (United States)

    2014-01-01

    Dark-matter annihilation into electroweak gauge and Higgs bosons results in γ-ray emission. We use observational upper limits on the fluxes of both line and continuum γ-rays from the Milky Way Galactic Center and from Milky Way dwarf companion galaxies to set exclusion limits on allowed dark-matter masses. (Generally, Galactic Center γ-ray line search limits from the Fermi-LAT and the H.E.S.S. experiments are most restrictive.) Our limits apply under the following assumptions: a) the dark matter species is a cold thermal relic with present mass density equal to the measured dark-matter density of the universe; b) dark-matter annihilation to standard-model particles is described in the non-relativistic limit by a single effective operator O∝J{sub DM}⋅J{sub SM}, where J{sub DM} is a standard-model singlet current consisting of dark-matter fields (Dirac fermions or complex scalars), and J{sub SM} is a standard-model singlet current consisting of electroweak gauge and Higgs bosons; and c) the dark-matter mass is in the range 5 GeV to 20 TeV. We consider, in turn, the 34 possible operators with mass dimension 8 or lower with non-zero s-wave annihilation channels satisfying the above assumptions. Our limits are presented in a large number of figures, one for each of the 34 possible operators; these limits can be grouped into 13 classes determined by the field content and structure of the operators. We also identify three classes of operators (coupling to the Higgs and SU(2){sub L} gauge bosons) that can supply a 130 GeV line with the desired strength to fit the putative line signal in the Fermi-LAT data, while saturating the relic density and satisfying all other indirect constraints we consider.

  9. High energy instanton induced processes in electroweak theory

    International Nuclear Information System (INIS)

    McLerran, L.

    1992-01-01

    It is well known that in electroweak theory, baryon plus lepton number is conserved by the classical equations of motion. This is of course consistent with the lack of experimental observation of such processes. It is a little less well known that when quantum corrections are included in electroweak theory, baryon plus lepton number is not conserved. This was first discovered as a consequence of the Adler-Bardeen-Bell-Jackiw triangle anomaly. It is perhaps most easily understood as a consequence of vacuum degeneracy, fermion energy level crossing and filling of the negative energy Dirac sea upon second quantization. To understand how baryon plus lepton number is not conserved upon second quantization, consider the situation shown in the energy of the system is shown as a function of a parameter which characterizes the gauge fields, the Chern-Simons charge. The Chern-Simons charge is a function only of the gauge fields, and the B + L change is equal to the change in Chern-Simons charge, ΔQ B+L = ΔQ CS

  10. Supplies in gravitational dynamics and electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Soldate, M.

    1988-01-01

    During the past few years, my research interests have centered on physics associated with the Planck and electroweak scales. In each instance there is a physical issue which has motivated my work. The first is the dynamical determination of the observed geometry of spacetime. Typically, in a theory of quantum gravity, the topology and long-distance geometry of spacetime are not fixed uniquely by the field equations. One would like to be able to determine them through a dynamical principle for predictive power. The matter is of particular relevance to superstring theories, as they are most simply formulated in 10-dimensional Minkowski space. The second topic is the origin of electroweak symmetry breaking (EWSB). My work here has tended to be more phenomenological; it appears unlikely that a complete understanding of the gauge hierarchy problem can be obtained without some experimental knowledge of particles rather directly related to EWSB. I feel that both of these issues are of broad interest. In this paper, I will describe my future research plans in these areas after motivating and summarizing my previous work on them. 22 refs

  11. Complete one-loop electroweak corrections to ZZZ production at the ILC

    International Nuclear Information System (INIS)

    Su Jijuan; Ma Wengan; Zhang Renyou; Wang Shaoming; Guo Lei

    2008-01-01

    We study the complete O(α ew ) electroweak (EW) corrections to the production of three Z 0 bosons in the framework of the standard model (SM) at the ILC. The leading-order and the EW next-to-leading-order corrected cross sections are presented, and their dependence on the colliding energy √(s) and Higgs-boson mass m H is analyzed. We investigate also the LO and one-loop EW corrected distributions of the transverse momentum of the final Z 0 boson, and the invariant mass of the Z 0 Z 0 pair. Our numerical results show that the EW one-loop correction generally suppresses the tree-level cross section, and the relative correction with m H =120 GeV(150 GeV) varies between -15.8%(-13.9%) and -7.5%(-6.2%) when √(s) goes up from 350 GeV to 1 TeV.

  12. Constraints on the minimal N=1 supergravity theory from electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Giudice, G.F.; Ridolfi, G.

    1988-01-01

    We reanalyze the constraints on the minimal N=1 supergravity extension of the standard model arising from the requirement of a correct spontaneous breakdown of the electroweak symmetry. Driven by recent experimental results, we devote special attention to the case of a top quark much heavier than the conventional choice of 40 GeV, used in previous analyses. Our results are stated in a space of phenomenologically meaningful parameters, providing a direct comparison between the constraints from SU(2) x U(1) breaking and the predictions for supersymmetric particle production. Moreover, an upper bound for the ratio of the two Higgs vacuum expectation values is given, for any value of the top quark mass. (orig.)

  13. On the catalysis of the electroweak vacuum decay by black holes at high temperature

    Science.gov (United States)

    Canko, D.; Gialamas, I.; Jelic-Cizmek, G.; Riotto, A.; Tetradis, N.

    2018-04-01

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum at high temperature. We base our analysis on the assumption that, at temperatures much higher than the Hawking temperature, the main effect of the black hole is to distort the Higgs configuration dominating the transition to the new vacuum. We estimate the barrier for the transition by the ADM mass of this configuration, computed through the temperature-corrected Higgs potential. We find that the exponential suppression of the nucleation rate can be reduced significantly, or even eliminated completely, in the black-hole background if the Standard Model Higgs is coupled to gravity through the renormalizable term ξ R h^2.

  14. Neutralino-stop co-annihilation into electroweak gauge and Higgs bosons at one loop

    Energy Technology Data Exchange (ETDEWEB)

    Harz, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Herrmann, B. [Univ. Savoie/CNRS, Annecy-le-Vieux (France). LAPTh; Klasen, M. [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Kovarik, K. [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Theoretical Physics; Le Boulc' h, Q. [Grenoble Univ. (France). CNRS-IN2P3/INPG

    2012-12-15

    We compute the full O({alpha}{sub s}) supersymmetric QCD corrections for neutralino-stop co-annihilation into electroweak gauge and Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM). We show that these annihilation channels are phenomenologically relevant within the so-called phenomenological MSSM, in particular in the light of the observation of a Higgs-like particle with a mass of about 126 GeV at the LHC. We present in detail our calculation, including the renormalization scheme, the infrared treatment, and the kinematical subtleties to be addressed. Numerical results for the co-annihilation cross sections and the predicted neutralino relic density are presented. We demonstrate that the impact of including the corrections on the cosmologically preferred region of parameter space is larger than the current experimental uncertainty from WMAP data.

  15. Probing the electroweak phase transition via enhanced di-Higgs boson production

    Science.gov (United States)

    Carena, Marcela; Liu, Zhen; Riembau, Marc

    2018-05-01

    We consider a singlet extension of the standard model (SM) with a spontaneous Z2 breaking and study the gluon-gluon fusion production of the heavy scalar, with subsequent decay into a pair of SM-like Higgs bosons. We find that an on-shell interference effect can notably enhance the resonant di-Higgs production rate up to 40%. In addition, consistently taking into account both the on-shell and off-shell interference effects between the heavy scalar and the SM di-Higgs diagrams significantly improves the HL-LHC and HE-LHC reach in this channel. As an example, within an effective field theory analysis in an explicitly Z2 breaking scenario, we further discuss the potential to probe the parameter region compatible with a first-order electroweak phase transition. Our analysis is applicable for general potentials of the singlet extension of the SM as well as for more general resonance searches.

  16. Measurement of the parity violation in quasi-elastic electroweak electron-scattering from 9Be

    International Nuclear Information System (INIS)

    Achenbach, W.; Andresen, H.G.

    1987-01-01

    Measurement of the Parity Violation in Quasi-Elastic Electroweak Electron-Scattering from 9 Be in the energy range of about 300 MeV is fulfilled. The measurement of the parity violating asymmetry is obtained by a comparison of scattering for a + helicity beam to that for a - helicity beams. To permit a meaningful comparison required that the + helicity and the - helicity beams being identical in all other respects. Measurements at different energies and targets (hydrogen, deuterium) in the medium energy region will allow to determine α, β, γ, δ in a model-independent way. Regarding future experiments at the Mainz microtron cw accelerator, coincidence experiments will open new experimental possibilities for large solid angle detector systems

  17. Electroweak symmetry breaking and mass spectra in six-dimensional gauge-Higgs grand unification

    Science.gov (United States)

    Hosotani, Yutaka; Yamatsu, Naoki

    2018-02-01

    The mass spectra of the standard model particles are reproduced in the SO(11) gauge-Higgs grand unification in six-dimensional warped space without introducing exotic light fermions. Light neutrino masses are explained by the gauge-Higgs seesaw mechanism. We evaluate the effective potential of the four-dimensional Higgs boson appearing as a fluctuation mode of the Aharonov-Bohm phase θ_H in the extra-dimensional space, and show that the dynamical electroweak symmetry breaking takes place with the Higgs boson mass m_H ˜ 125 GeV and θ_H ˜ 0.1. The Kaluza-Klein mass scale in the fifth dimension is approximately given by m_KK ˜ 1.230 TeV/sin θ_H.

  18. Search for supersymmetry in {tau} final states at ATLAS and constraints on new physics using electroweak precision data

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Doerthe

    2012-08-15

    In this thesis, various models beyond the Standard Model (SM) offering different solutions to some of the shortcomings of the SM are studied: Supersymmetry, the two Higgs doublet model, and models with warped extra dimensions. A search for events with large missing transverse momentum, jets, and at least two {tau} leptons using 2 fb{sup -1} of proton-proton collision data recorded at {radical}(s)=7 TeV with the ATLAS detector at the Large Hadron Collider is performed. No excess above the SM background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set. A 95% CL lower limit of 32 TeV is set on the Gauge Mediated Supersymmetry Breaking scale {Lambda} independent of the ratio of tan{beta}. These limits provide the most stringent tests to date in a large part of the considered parameter space. By using the results of the oblique vacuum polarization parameters from a fit to the electroweak precision data indirect constraints on model parameters are set. While in the two Higgs doublet model as well as in models with warped extra dimensions a heavy Higgs boson is compatible with the electroweak precision data, models with warped extra dimensions featuring custodial symmetry cannot accommodate a heavy Higgs.

  19. Search for supersymmetry in τ final states at ATLAS and constraints on new physics using electroweak precision data

    International Nuclear Information System (INIS)

    Kennedy, Doerthe

    2012-08-01

    In this thesis, various models beyond the Standard Model (SM) offering different solutions to some of the shortcomings of the SM are studied: Supersymmetry, the two Higgs doublet model, and models with warped extra dimensions. A search for events with large missing transverse momentum, jets, and at least two τ leptons using 2 fb -1 of proton-proton collision data recorded at √(s)=7 TeV with the ATLAS detector at the Large Hadron Collider is performed. No excess above the SM background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set. A 95% CL lower limit of 32 TeV is set on the Gauge Mediated Supersymmetry Breaking scale Λ independent of the ratio of tanβ. These limits provide the most stringent tests to date in a large part of the considered parameter space. By using the results of the oblique vacuum polarization parameters from a fit to the electroweak precision data indirect constraints on model parameters are set. While in the two Higgs doublet model as well as in models with warped extra dimensions a heavy Higgs boson is compatible with the electroweak precision data, models with warped extra dimensions featuring custodial symmetry cannot accommodate a heavy Higgs.

  20. Gravity waves from the non-renormalizable electroweak vacua phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Eric [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics; Vaudrevange, Pascal M. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    It is currently believed that the Standard Model is an effective low energy theory which in principle may contain higher dimensional non-renormalizable operators. These operators may modify the standard model Higgs potential in many ways, one of which being the appearance of a second vacuum. For a wide range of parameters, this new vacuum becomes the true vacuum. It is then assumed that our universe is currently sitting in the false vacuum. Thus the usual second-order electroweak phase transition at early times will be followed by a second, first-order phase transition. In cosmology, a first-order phase transition is associated with the production of gravity waves. In this paper we present an analysis of the production of gravitational waves during such a second electroweak phase transition. We find that, for one certain range of parameters, the stochastic background of gravitational waves generated by bubble nucleation and collision have an amplitude which is estimated to be of order {omega}{sub GW}h{sup 2}{proportional_to}10{sup -11} at f=3 x 10{sup -4} Hz, which is within reach of the planned sensitivity of LISA. For another range of parameters, we find that the amplitude is estimated to be of order {omega}{sub GW}h{sup 2}{proportional_to} 0{sup -25} around f=10{sup 3} Hz, which is within reach of LIGO. Hence, it is possible to detect gravity waves from such a phase transition at two different detectors, with completely different amplitude and frequency ranges. (orig.)