WorldWideScience

Sample records for higgs doublet electroweak

  1. The Higgs vacuum uplifted. Revisiting the electroweak phase transition with a second Higgs doublet

    Energy Technology Data Exchange (ETDEWEB)

    Dorsch, G.C. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Huber, S.J. [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Mimasu, K. [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Louvain Univ. Catholique, Louvain-la-Neuve (Belgium). Center for Cosmology, Particle Physics and Phenomenology; No, J.M. [King' s College, London (United Kingdom). Dept. of Physics; Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy

    2017-05-25

    The existence of a second Higgs doublet in Nature could lead to a cosmological first order electroweak phase transition and explain the origin of the matter-antimatter asymmetry in the Universe. We explore the parameter space of such a two-Higgs-doublet-model and show that a first order electroweak phase transition strongly correlates with a significant uplifting of the Higgs vacuum w.r.t. its Standard Model value. We then obtain the spectrum and properties of the new scalars H{sub 0}, A{sub 0} and H{sup ±} that signal such a phase transition, showing that the decay A{sub 0}→H{sub 0}Z at the LHC and a sizable deviation in the Higgs self-coupling λ{sub hhh} from its SM value are sensitive indicators of a strongly first order electroweak phase transition in the 2HDM.

  2. Electroweak phase transition in two Higgs doublet models

    International Nuclear Information System (INIS)

    Cline, J.M.; Lemieux, P.

    1997-01-01

    We reexamine the strength of the first-order phase transition in the electroweak theory supplemented by an extra Higgs doublet. The finite-temperature effective potential V eff is computed to one-loop order, including the summation of ring diagrams, to study the ratio φ c /T c of the Higgs field VEV to the critical temperature. We make a number of improvements over previous treatments, including a consistent treatment of Goldstone bosons in V eff , an accurate analytic approximation to V eff valid for any mass-to-temperature ratios, and use of the experimentally measured top quark mass. For two-Higgs-doublet models, we identify a significant region of parameter space where φ c /T c is large enough for electroweak baryogenesis, and we argue that this identification should persist even at higher orders in perturbation theory. In the case of the minimal supersymmetric standard model, our results indicate that the extra Higgs bosons have little effect on the strength of the phase transition. copyright 1997 The American Physical Society

  3. A tale of twin Higgs: natural twin two Higgs doublet models

    International Nuclear Information System (INIS)

    Yu, Jiang-Hao

    2016-01-01

    In original twin Higgs model, vacuum misalignment between electroweak and new physics scales is realized by adding explicit ℤ 2 breaking term. Introducing additional twin Higgs could accommodate spontaneous ℤ 2 breaking, which explains origin of this misalignment. We introduce a class of twin two Higgs doublet models with most general scalar potential, and discuss general conditions which trigger electroweak and ℤ 2 symmetry breaking. Various scenarios on realising the vacuum misalignment are systematically discussed in a natural composite two Higgs double model framework: explicit ℤ 2 breaking, radiative ℤ 2 breaking, tadpole-induced ℤ 2 breaking, and quartic-induced ℤ 2 breaking. We investigate the Higgs mass spectra and Higgs phenomenology in these scenarios.

  4. Radiative electroweak breaking with pseudo Goldstone Higgs doublets

    International Nuclear Information System (INIS)

    Ananthanarayan, B.; Shafi, Q.

    1996-01-01

    We consider a realistic example of supersymmetric grand unification based on SU(3) c xSU(3) L xSU(3) R in which the electroweak (EW) Higgs doublets are open-quote open-quote light close-quote close-quote as a consequence of the open-quote open-quote pseudo Goldstone close-quote close-quote mechanism. We discuss radiative EW breaking in this model, exploring in particular the open-quote open-quote small close-quote close-quote (order unity) and open-quote open-quote large close-quote close-quote (≅m t /m b ) tanβ regions by studying the variations of r 2 (≡μ 1,2 2 /μ 2 3 ), where μ 1,2,3 2 are the well-known MSSM parameters evaluated at the GUT scale. For |r| sufficiently close to unity the quantity tanβ can be of order unity, but the converse is not always true. copyright 1996 The American Physical Society

  5. Partially natural Two Higgs Doublet Models

    Energy Technology Data Exchange (ETDEWEB)

    Draper, Patrick [Department of Physics, University of California,Broida Hall, Santa Barbara, CA 93106 (United States); Haber, Howard E. [Santa Cruz Institute for Particle Physics, University of California,1156 High Street, Santa Cruz, CA 95064 (United States); Kavli Institute for Theoretical Physics, University of California,Kohn Hall, Santa Barbara, CA 93106 (United States); Ruderman, Joshua T. [Center for Cosmology and Particle Physics, Department of Physics, New York University,4 Washington Pl. New York, NY 10003 (United States)

    2016-06-21

    It is possible that the electroweak scale is low due to the fine-tuning of microscopic parameters, which can result from selection effects. The experimental discovery of new light fundamental scalars other than the Standard Model Higgs boson would seem to disfavor this possibility, since generically such states imply parametrically worse fine-tuning with no compelling connection to selection effects. We discuss counterexamples where the Higgs boson is light because of fine-tuning, and a second scalar doublet is light because a discrete symmetry relates its mass to the mass of the Standard Model Higgs boson. Our examples require new vectorlike fermions at the electroweak scale, and the models possess a rich electroweak vacuum structure. The mechanism that we discuss does not protect a small CP-odd Higgs mass in split or high-scale supersymmetry-breaking scenarios of the MSSM due to an incompatibility between the discrete symmetries and holomorphy.

  6. A tale of twin Higgs: natural twin two Higgs doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiang-Hao [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts Amherst,710 North Pleasant St., Amherst, MA 01002 (United States)

    2016-12-28

    In original twin Higgs model, vacuum misalignment between electroweak and new physics scales is realized by adding explicit ℤ{sub 2} breaking term. Introducing additional twin Higgs could accommodate spontaneous ℤ{sub 2} breaking, which explains origin of this misalignment. We introduce a class of twin two Higgs doublet models with most general scalar potential, and discuss general conditions which trigger electroweak and ℤ{sub 2} symmetry breaking. Various scenarios on realising the vacuum misalignment are systematically discussed in a natural composite two Higgs double model framework: explicit ℤ{sub 2} breaking, radiative ℤ{sub 2} breaking, tadpole-induced ℤ{sub 2} breaking, and quartic-induced ℤ{sub 2} breaking. We investigate the Higgs mass spectra and Higgs phenomenology in these scenarios.

  7. High-scale validity of a two-Higgs-doublet scenario: metastability included

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Nabarun; Mukhopadhyaya, Biswarup [Harish-Chandra Research Institute, Regional Centre for Accelerator-based Particle Physics, Allahabad (India)

    2017-03-15

    We identify regions in a Type-II two-Higgs-doublet model which correspond to a metastable electroweak vacuum with lifetime larger than the age of the universe. We analyse scenarios which retain perturbative unitarity up to grand unification and Planck scales. Each point in the parameter space is restricted using data from the Large Hadron Collider (LHC) as well as flavour and precision electroweak constraints. We find that substantial regions of the parameter space are thus identified as corresponding to metastability, which complement the allowed regions for absolute stability, for top quark mass at the high as well as low end of its currently allowed range. Thus, a two-Higgs-doublet scenario with the electroweak vacuum, either stable or metastable, can sail through all the way up to the Planck scale without facing any contradiction. (orig.)

  8. Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model

    International Nuclear Information System (INIS)

    Ivanov, Igor P.; Vdovin, E.

    2013-01-01

    Symmetries play a crucial role in electroweak symmetry breaking models with non-minimal Higgs content. Within each class of these models, it is desirable to know which symmetry groups can be implemented via the scalar sector. In N-Higgs-doublet models, this classification problem was solved only for N=2 doublets. Very recently, we suggested a method to classify all realizable finite symmetry groups of Higgs-family transformations in the three-Higgs-doublet model (3HDM). Here, we present this classification in all detail together with an introduction to the theory of solvable groups, which play the key role in our derivation. We also consider generalized-CP symmetries, and discuss the interplay between Higgs-family symmetries and CP-conservation. In particular, we prove that presence of the Z 4 symmetry guarantees the explicit CP-conservation of the potential. This work completes classification of finite reparametrization symmetry groups in 3HDM. (orig.)

  9. Two Higgs doublets in SO(10) model

    International Nuclear Information System (INIS)

    Asatryan, G.M.

    1989-01-01

    An SO(10) grand unification model is suggested with two light Higgs doublets, whose vacuum expectation values are connected with the SU(2) L xU(1) Y electroweak group breaking. Taking into account the naturality condition associated with absence of flavor changing neutral currents, a certain form of the quark mass matrices. As a result, the proton lifetime in the SO(10) model turns to be strongly restrained

  10. Dirichlet Higgs in Extra-Dimension Consistent with Electroweak Data

    International Nuclear Information System (INIS)

    Naoyuki Habay; Kin-ya Odaz; Ryo Takahashi

    2011-01-01

    We propose a simple five-dimensional extension of the Standard Model (SM) without any Higgs potential nor any extra fields. A Higgs doublet lives in the bulk of a flat line segment and its boundary condition is Dirichlet at the ends of the line, which causes the electroweak symmetry breaking without Higgs potential. The vacuum expectation value of the Higgs is induced from the Dirichlet boundary condition which is generally allowed in higher dimensional theories. The lightest physical Higgs has non-flat profile in the extra dimension even though the vacuum expectation value is flat. As a consequence, we predict a maximal top Yukawa deviation (no coupling between top and Higgs) for the brane-localized fermion and a small deviation, a multiplication of 2√2/π ≅ 0.9 to the Yukawa coupling, for the bulk fermion. The latter is consistent with the electroweak precision data within 90% C.L. for 430 GeV ≤ m KK ≤ 500 GeV. (authors)

  11. Higgs boson couplings in multi-doublet models with natural flavour conservation

    Directory of Open Access Journals (Sweden)

    Kei Yagyu

    2016-12-01

    Full Text Available We investigate the deviation in the couplings of the standard model (SM like Higgs boson (h with a mass of 125 GeV from the prediction of the SM in multi-doublet models within the framework where flavour changing neutral currents at the tree level are naturally forbidden. After we present the general expressions for the modified gauge and Yukawa couplings for h, we show the correlation between the deviation in the Yukawa coupling for the tau lepton hτ+τ− and that for the bottom quark hbb¯ under the assumption of a non-zero deviation in the hVV (V=W,Z couplings in two Higgs doublet models (2HDMs and three Higgs doublet models (3HDMs as simple examples. We clarify the possible allowed prediction of the deviations in the 3HDMs which cannot be explained in the 2HDMs even taking into account the one-loop electroweak corrections to the Yukawa coupling.

  12. Global fits of the two-loop renormalized Two-Higgs-Doublet model with soft Z 2 breaking

    Science.gov (United States)

    Chowdhury, Debtosh; Eberhardt, Otto

    2015-11-01

    We determine the next-to-leading order renormalization group equations for the Two-Higgs-Doublet model with a softly broken Z 2 symmetry and CP conservation in the scalar potential. We use them to identify the parameter regions which are stable up to the Planck scale and find that in this case the quartic couplings of the Higgs potential cannot be larger than 1 in magnitude and that the absolute values of the S-matrix eigenvalues cannot exceed 2 .5 at the electroweak symmetry breaking scale. Interpreting the 125 GeV resonance as the light CP -even Higgs eigenstate, we combine stability constraints, electroweak precision and flavour observables with the latest ATLAS and CMS data on Higgs signal strengths and heavy Higgs searches in global parameter fits to all four types of Z 2 symmetry. We quantify the maximal deviations from the alignment limit and find that in type II and Y the mass of the heavy CP -even ( CP -odd) scalar cannot be smaller than 340 GeV (360 GeV). Also, we pinpoint the physical parameter regions compatible with a stable scalar potential up to the Planck scale. Motivated by the question how natural a Higgs mass of 125 GeV can be in the context of a Two-Higgs-Doublet model, we also address the hierarchy problem and find that the Two-Higgs-Doublet model does not offer a perturbative solution to it beyond 5 TeV.

  13. The top right coupling in the aligned two-Higgs-doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, Cesar [Departament de Física Teòrica, Universitat de València & Instituto de Física Corpuscular (IFIC),Centro Mixto Universitat de València-CSIC,E-46100 Burjassot, València (Spain); Department of Physics, Universidad Técnica Federico Santa María,Casilla 110-V, Valparaíso (Chile); González-Sprinberg, Gabriel A. [Instituto de Física, Facultad de Ciencias, Universidad de la República,Iguá 4225, Montevideo 11600 (Uruguay); Martinez, R. [Departamento de Física, Universidad Nacional de Colombia,Bogotá Distrito Capital (Colombia); Vidal, Jordi [Departament de Física Teòrica, Universitat de València & Instituto de Física Corpuscular (IFIC),Centro Mixto Universitat de València-CSIC,E-46100 Burjassot, València (Spain)

    2017-03-24

    We compute the top quark right coupling in the aligned two-Higgs-doublet model. In the Standard Model the real part of this coupling is dominated by QCD-gluon-exchange diagram, but the imaginary part, instead, is purely electroweak at one loop. Within this model we show that values for the imaginary part of the coupling up to one order of magnitude larger than the electroweak prediction can be obtained. For the real part of the electroweak contribution we find that it can be of the order of 2×10{sup −4}. We also present detailed results of the one loop analytical computation.

  14. A second Higgs doublet in the early universe. Baryogenesis and gravitational waves

    International Nuclear Information System (INIS)

    Dorsch, G.C.; Konstandin, T.; Huber, S.J.; No, J.M.; King's College, London

    2016-11-01

    We show that simple Two Higgs Doublet models still provide a viable explanation for the matter-antimatter asymmetry of the Universe via electroweak baryogenesis, even after taking into account the recent order-of-magnitude improvement on the electron-EDM experimental bound by the ACME Collaboration. Moreover we show that, in the region of parameter space where baryogenesis is possible, the gravitational wave spectrum generated at the end of the electroweak phase transition is within the sensitivity reach of the future space-based interferometer LISA.

  15. A second Higgs doublet in the early universe. Baryogenesis and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Dorsch, G.C.; Konstandin, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Huber, S.J. [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; No, J.M. [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; King' s College, London (United Kingdom). Dept. of Physics

    2016-11-15

    We show that simple Two Higgs Doublet models still provide a viable explanation for the matter-antimatter asymmetry of the Universe via electroweak baryogenesis, even after taking into account the recent order-of-magnitude improvement on the electron-EDM experimental bound by the ACME Collaboration. Moreover we show that, in the region of parameter space where baryogenesis is possible, the gravitational wave spectrum generated at the end of the electroweak phase transition is within the sensitivity reach of the future space-based interferometer LISA.

  16. A second Higgs doublet in the early universe: baryogenesis and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Dorsch, G.C.; Konstandin, T. [DESY, Notkestraße 85, D-22607 Hamburg (Germany); Huber, S.J.; No, J.M., E-mail: glauber.dorsch@desy.de, E-mail: s.huber@sussex.ac.uk, E-mail: thomas.konstandin@desy.de, E-mail: jose_miguel.no@kcl.ac.uk [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2017-05-01

    We show that simple Two Higgs Doublet models might still provide a viable explanation for the matter-antimatter asymmetry of the Universe via electroweak baryogenesis, even after taking into account the recent order-of-magnitude improvement on the electron-EDM experimental bound by the ACME Collaboration. Moreover we show that, in the region of parameter space where baryogenesis may be possible, the gravitational wave spectrum generated at the end of the electroweak phase transition is within the sensitivity reach of the future space-based interferometer LISA.

  17. The flavor-locked flavorful two Higgs doublet model

    Science.gov (United States)

    Altmannshofer, Wolfgang; Gori, Stefania; Robinson, Dean J.; Tuckler, Douglas

    2018-03-01

    We propose a new framework to generate the Standard Model (SM) quark flavor hierarchies in the context of two Higgs doublet models (2HDM). The `flavorful' 2HDM couples the SM-like Higgs doublet exclusively to the third quark generation, while the first two generations couple exclusively to an additional source of electroweak symmetry breaking, potentially generating striking collider signatures. We synthesize the flavorful 2HDM with the `flavor-locking' mechanism, that dynamically generates large quark mass hierarchies through a flavor-blind portal to distinct flavon and hierarchon sectors: dynamical alignment of the flavons allows a unique hierarchon to control the respective quark masses. We further develop the theoretical construction of this mechanism, and show that in the context of a flavorful 2HDM-type setup, it can automatically achieve realistic flavor structures: the CKM matrix is automatically hierarchical with | V cb | and | V ub | generically of the observed size. Exotic contributions to meson oscillation observables may also be generated, that may accommodate current data mildly better than the SM itself.

  18. Origins of inert Higgs doublets

    Directory of Open Access Journals (Sweden)

    Thomas W. Kephart

    2016-05-01

    Full Text Available We consider beyond the standard model embedding of inert Higgs doublet fields. We argue that inert Higgs doublets can arise naturally in grand unified theories where the necessary associated Z2 symmetry can occur automatically. Several examples are discussed.

  19. Radiative corrections to the triple Higgs coupling in the inert Higgs doublet model

    International Nuclear Information System (INIS)

    Arhrib, Abdesslam; Benbrik, Rachid; Falaki, Jaouad El; Jueid, Adil

    2015-01-01

    We investigate the implication of the recent discovery of a Higgs-like particle in the first phase of the LHC Run 1 on the Inert Higgs Doublet Model (IHDM). The determination of the Higgs couplings to SM particles and its intrinsic properties will get improved during the new LHC Run 2 starting this year. The new LHC Run 2 would also shade some light on the triple Higgs coupling. Such measurement is very important in order to establish the details of the electroweak symmetry breaking mechanism. Given the importance of the Higgs couplings both at the LHC and e + e − Linear Collider machines, accurate theoretical predictions are required. We study the radiative corrections to the triple Higgs coupling hhh and to hZZ, hWW couplings in the context of the IHDM. By combining several theoretical and experimental constraints on parameter space, we show that extra particles might modify the triple Higgs coupling near threshold regions. Finally, we discuss the effect of these corrections on the double Higgs production signal at the e + e − LC and show that they can be rather important.

  20. Vacuum stability in neutrinophilic Higgs doublet model

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Horita, Tomohiro

    2011-01-01

    A neutrinophilic Higgs model has tiny vacuum expectation value (VEV), which can naturally explain tiny masses of neutrinos. There is a large energy scale hierarchy between a VEV of the neutrinophilic Higgs doublet and that of usual standard model-like Higgs doublet. In this Letter we at first analyze vacuum structures of Higgs potential in both supersymmetry (SUSY) and non-SUSY neutrinophilic Higgs models, and next investigate a stability of this VEV hierarchy against radiative corrections. We will show that the VEV hierarchy is stable against radiative corrections in both Dirac neutrino and Majorana neutrino scenarios in both SUSY and non-SUSY neutrinophilic Higgs doublet models.

  1. Semialigned two Higgs doublet model

    Science.gov (United States)

    Haba, Naoyuki; Umeeda, Hiroyuki; Yamada, Toshifumi

    2018-02-01

    In the left-right symmetric model based on S U (2 )L×S U (2 )R×U (1 )B -L gauge symmetry, there appear heavy neutral scalar particles mediating quark flavor changing neutral currents (FCNCs) at tree level. We consider a situation where such FCNCs give the only sign of the left-right model while WR gauge boson is decoupled, and name it "semialigned two Higgs doublet model" because the model resembles a two Higgs doublet model with mildly aligned Yukawa couplings to quarks. We predict a correlation among processes induced by quark FCNCs in the model, and argue that future precise calculation of meson-antimeson mixings and C P violation therein may hint at the semialigned two Higgs doublet model and the left-right model behind it.

  2. Precision calculations for h → WW/ZZ → 4 fermions in the Two-Higgs-Doublet Model with Prophecy4f

    DEFF Research Database (Denmark)

    Altenkamp, Lukas; Dittmaier, Stefan; Rzehak, Heidi

    2018-01-01

    We have calculated the next-to-leading-order electroweak and QCD corrections to the decay processes h → WW/ZZ → 4 fermions of the light CP-even Higgs boson h of various types of Two-Higgs-Doublet Models (Types I and II, “lepton-specific” and “flipped” models). The input parameters are defined in ...

  3. Two-loop corrections to the ρ parameter in Two-Higgs-Doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Hessenberger, Stephan; Hollik, Wolfgang [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany)

    2017-03-15

    Models with two scalar doublets are among the simplest extensions of the Standard Model which fulfill the relation ρ = 1 at lowest order for the ρ parameter as favored by experimental data for electroweak observables allowing only small deviations from unity. Such small deviations Δρ originate exclusively from quantum effects with special sensitivity to mass splittings between different isospin components of fermions and scalars. In this paper the dominant two-loop electroweak corrections to Δρ are calculated in the CP-conserving THDM, resulting from the top-Yukawa coupling and the self-couplings of the Higgs bosons in the gauge-less limit. The on-shell renormalization scheme is applied. With the assumption that one of the CP-even neutral scalars represents the scalar boson observed by the LHC experiments, with standard properties, the two-loop non-standard contributions in Δρ can be separated from the standard ones. These contributions are of particular interest since they increase with mass splittings between non-standard Higgs bosons and can be additionally enhanced by tanβ and λ{sub 5}, an additional free coefficient of the Higgs potential, and can thus modify the one-loop result substantially. Numerical results are given for the dependence on the various non-standard parameters, and the influence on the calculation of electroweak precision observables is discussed. (orig.)

  4. Trilinear Higgs couplings in the two Higgs doublet model with CP violation

    International Nuclear Information System (INIS)

    Osland, Per; Pandita, P. N.; Selbuz, Levent

    2008-01-01

    We carry out a detailed analysis of the general two Higgs doublet model with CP violation. We describe two different parametrizations of this model, and then study the Higgs boson masses and the trilinear Higgs couplings for these two parametrizations. Within a rather general model, we find that the trilinear Higgs couplings have a significant dependence on the details of the model, even when the lightest Higgs boson mass is taken to be a fixed parameter. We include radiative corrections in the one-loop effective potential approximation in our analysis of the Higgs boson masses and the Higgs trilinear couplings. The one-loop corrections to the trilinear couplings of the two Higgs doublet model also depend significantly on the details of the model, and can be rather large. We study quantitatively the trilinear Higgs couplings, and show that these couplings are typically several times larger than the corresponding standard model trilinear Higgs coupling in some regions of the parameter space. We also briefly discuss the decoupling limit of the two Higgs doublet model.

  5. Reopen parameter regions in two-Higgs doublet models

    Science.gov (United States)

    Staub, Florian

    2018-01-01

    The stability of the electroweak potential is a very important constraint for models of new physics. At the moment, it is standard for Two-Higgs doublet models (THDM), singlet or triplet extensions of the standard model to perform these checks at tree-level. However, these models are often studied in the presence of very large couplings. Therefore, it can be expected that radiative corrections to the potential are important. We study these effects at the example of the THDM type-II and find that loop corrections can revive more than 50% of the phenomenological viable points which are ruled out by the tree-level vacuum stability checks. Similar effects are expected for other extension of the standard model.

  6. Symmetries for SM Alignment in multi-Higgs Doublet Models

    CERN Document Server

    Pilaftsis, Apostolos

    2016-01-01

    We derive the complete set of maximal symmetries for Standard Model (SM) alignment that may occur in the tree-level scalar potential of multi-Higgs Doublet Models, with $n > 2$ Higgs doublets. Our results generalize the symmetries of SM alignment, without decoupling of large mass scales or fine-tuning, previously obtained in the context of two-Higgs Doublet Models.

  7. Conformally invariant Inert Higgs doublet model: an unified model for Inflation and Dark matter

    International Nuclear Information System (INIS)

    Das, Moumita; Mohanty, Subhendra

    2012-01-01

    Motivation of our present study is the searching for an unified model which can describe both the inflation as well as dark matter. From particle physics point of view, Higgs can be the most interesting candidate for the scalar field inflation. Conformal coupling of the inflaton with the gravity can generate the density perturbation and we use this idea in a realistic inert Higgs doublet model. We study the loop corrections of this conformally coupled system and in present era there is electroweak symmetry breaking to provide the mass of the particles. Study of the mass spectrum in present era reveals the scalar dark matter with mass 33.7 GeV and lightest Higgs at 125.6 GeV.

  8. Effective Field Theory with Two Higgs Doublets

    CERN Document Server

    Crivellin, Andreas; Procura, Massimiliano

    2016-01-01

    In this article we extend the effective field theory framework describing new physics effects to the case where the underlying low-energy theory is a Two-Higgs-Doublet model. We derive a complete set of independent operators up to dimension six assuming a $Z_2$-invariant CP-conserving Higgs potential. The effects on Higgs and gauge boson masses, mixing angles in the Higgs sector as well as couplings to fermions and gauge bosons are computed. At variance with the case of a single Higgs doublet, we find that pair production of SM-like Higgses, arising through dimension-six operators, is not fixed by fermion-fermion-Higgs couplings and can therefore be sizable.

  9. Radiative neutrino mass and Majorana dark matter within an inert Higgs doublet model

    Science.gov (United States)

    Ahriche, Amine; Jueid, Adil; Nasri, Salah

    2018-05-01

    We consider an extension of the standard model (SM) with an inert Higgs doublet and three Majorana singlet fermions to address both origin and the smallness of neutrino masses and dark matter (DM) problems. In this setup, the lightest Majorana singlet fermion plays the role of DM candidate and the model parameter space can be accommodated to avoid different experimental constraints such as lepton flavor violating processes and electroweak precision tests. The neutrino mass is generated at one-loop level a la Scotogenic model and its smallness is ensured by the degeneracy between the C P -odd and C P -even scalar members of the inert doublet. Interesting signatures at both leptonic and hadronic colliders are discussed.

  10. CP violation conditions in N-Higgs-doublet potentials

    International Nuclear Information System (INIS)

    Nishi, C. C.

    2006-01-01

    Conditions for CP violation in the scalar potential sector of general N-Higgs-doublet models are analyzed from a group theoretical perspective. For the simplest two-Higgs-doublet model potential, a minimum set of conditions for explicit and spontaneous CP violation is presented. The conditions can be given a clear geometrical interpretation in terms of quantities in the adjoint representation of the basis transformation group for the two doublets. Such conditions depend on CP-odd pseudoscalar invariants. When the potential is CP invariant, the explicit procedure to reach the real CP-basis and the explicit CP transformation can also be obtained. The procedure to find the real basis and the conditions for CP violation are then extended to general N-Higgs-doublet model potentials. The analysis becomes more involved and only a formal procedure to reach the real basis is found. Necessary conditions for CP invariance can still be formulated in terms of group invariants: the CP-odd generalized pseudoscalars. The problem can be completely solved for three Higgs-doublets

  11. Dark matter and electroweak phase transition in the mixed scalar dark matter model

    Science.gov (United States)

    Liu, Xuewen; Bian, Ligong

    2018-03-01

    We study the electroweak phase transition in the framework of the scalar singlet-doublet mixed dark matter model, in which the particle dark matter candidate is the lightest neutral Higgs that comprises the C P -even component of the inert doublet and a singlet scalar. The dark matter can be dominated by the inert doublet or singlet scalar depending on the mixing. We present several benchmark models to investigate the two situations after imposing several theoretical and experimental constraints. An additional singlet scalar and the inert doublet drive the electroweak phase transition to be strongly first order. A strong first-order electroweak phase transition and a viable dark matter candidate can be accomplished in two benchmark models simultaneously, for which a proper mass splitting among the neutral and charged Higgs masses is needed.

  12. Search for a lighter Higgs boson in Two Higgs Doublet Models

    Energy Technology Data Exchange (ETDEWEB)

    Cacciapaglia, Giacomo; Deandrea, Aldo; Gascon-Shotkin, Suzanne; Corre, Solène Le; Lethuillier, Morgan [University Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, UMR5822 IPNL,4, rue E. Fermi, Villeurbanne, F-69622 (France); Tao, Junquan [Institute High Energy Physics, Chinese Academy of Sciences,P.O. Box 918, Beijing, 100049 (China)

    2016-12-15

    We consider present constraints on Two Higgs Doublet Models, both from the LHC at Run 1 and from other sources in order to explore the possibility of constraining a neutral scalar or pseudo-scalar particle lighter than the 125 GeV Higgs boson. Such a lighter particle is not yet completely excluded by present data. We show with a simplified analysis that some new constraints could be obtained at the LHC if such a search is performed by the experimental collaborations, which we therefore encourage to continue carrying out light diphoton resonance searches at √s=13 TeV in the context of Two Higgs Doublet Models.

  13. Higgs Mass Textures in Flipped SU(5)

    CERN Document Server

    Ellis, Jonathan Richard; Rizos, J; Ellis, John

    1999-01-01

    We analyze the Higgs doublet-triplet mass splitting problem in the version of flipped SU(5) derived from string theory. Analyzing non-renormalizable terms up to tenth order in the superpotential, we identify a pattern of field vev's that keeps one pair of electroweak Higgs doublets light, while all other Higgs doublets and all Higgs triplets are kept heavy, with the aid of the economical missing-doublet mechanism found in the field-theoretical version of flipped SU(5). The solution predicts that second-generation charge -1/3 quarks and charged leptons are much lighter than those in the third generation.

  14. Simplified dark matter models with two Higgs doublets. I. Pseudoscalar mediators

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Martin [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Haisch, Ulrich [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics; CERN, Geneva (Switzerland). Theoretical Physics Dept.; Kahlhoefer, Felix [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-01-15

    We study a new class of renormalisable simplified models for dark matter searches at the LHC that are based on two Higgs doublet models with an additional pseudoscalar mediator. In contrast to the spin-0 simplified models employed in analyses of Run I data these models are self-consistent, unitary and bounds from Higgs physics typically pose no constraints. Predictions for various missing transverse energy (E{sub T,miss}) searches are discussed and the reach of the 13 TeV LHC is explored. It is found that the proposed models provide a rich spectrum of complementary observables that lead to non-trivial constraints. We emphasise in this context the sensitivity of the t anti t+E{sub T,miss}, mono-Z and mono-Higgs channels, which yield stronger limits than mono-jet searches in large parts of the parameter space. Constraints from spin-0 resonance searches, electroweak precision measurements and flavour observables are also derived and shown to provide further important handles to constraint and to test the considered dark matter models.

  15. Explaining the Higgs decays at the LHC with an extended electroweak model

    International Nuclear Information System (INIS)

    Alves, Alexandre; Ramirez Barreto, E.; Dias, A.G.; Pires, S.C.A. de; Rodrigues da Silva, P.S.; Queiroz, Farinaldo S.

    2013-01-01

    We show that the observed enhancement in the diphoton decays of the recently discovered new boson at the LHC, which we assume to be a Higgs boson, can be naturally explained by a new doublet of charged vector bosons from extended electroweak models with SU(3) C x SU(3) L x U(1) X symmetry. These models are also rather economical in explaining the measured signal strengths, within the current experimental errors, demanding fewer assumptions and less parameters tuning. Our results show a good agreement between the theoretical expected sensitivity to a 126-125 GeV Higgs boson, and the experimental significance observed in the diphoton channel at the 8 TeV LHC. Effects of an invisible decay channel for the Higgs boson are also taken into account, in order to anticipate a possible confirmation of deficits in the branching ratios into ZZ * , WW * , bottom quarks, and tau leptons. (orig.)

  16. Multi-Higgs doublet models: physical parametrization, sum rules and unitarity bounds

    Science.gov (United States)

    Bento, Miguel P.; Haber, Howard E.; Romão, J. C.; Silva, João P.

    2017-11-01

    If the scalar sector of the Standard Model is non-minimal, one might expect multiple generations of the hypercharge-1/2 scalar doublet analogous to the generational structure of the fermions. In this work, we examine the structure of a Higgs sector consisting of N Higgs doublets (where N ≥ 2). It is particularly convenient to work in the so-called charged Higgs basis, in which the neutral Higgs vacuum expectation value resides entirely in the first Higgs doublet, and the charged components of remaining N - 1 Higgs doublets are mass-eigenstate fields. We elucidate the interactions of the gauge bosons with the physical Higgs scalars and the Goldstone bosons and show that they are determined by an N × 2 N matrix. This matrix depends on ( N - 1)(2 N - 1) real parameters that are associated with the mixing of the neutral Higgs fields in the charged Higgs basis. Among these parameters, N - 1 are unphysical (and can be removed by rephasing the physical charged Higgs fields), and the remaining 2( N - 1)2 parameters are physical. We also demonstrate a particularly simple form for the cubic interaction and some of the quartic interactions of the Goldstone bosons with the physical Higgs scalars. These results are applied in the derivation of Higgs coupling sum rules and tree-level unitarity bounds that restrict the size of the quartic scalar couplings. In particular, new applications to three Higgs doublet models with an order-4 CP symmetry and with a Z_3 symmetry, respectively, are presented.

  17. Derivative interactions and perturbative UV contributions in N Higgs doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Kikuta, Yohei [KEK Theory Center, KEK, Tsukuba (Japan); The Graduate University for Advanced Studies, Department of Particle and Nuclear Physics, Tsukuba (Japan); Yamamoto, Yasuhiro [Universidad de Granada, Deportamento de Fisica Teorica y del Cosmos, Facultad de Ciencias and CAFPE, Granada (Spain)

    2016-05-15

    We study the Higgs derivative interactions on models including arbitrary number of the Higgs doublets. These interactions are generated by two ways. One is higher order corrections of composite Higgs models, and the other is integration of heavy scalars and vectors. In the latter case, three point couplings between the Higgs doublets and these heavy states are the sources of the derivative interactions. Their representations are constrained to couple with the doublets. We explicitly calculate all derivative interactions generated by integrating out. Their degrees of freedom and conditions to impose the custodial symmetry are discussed. We also study the vector boson scattering processes with a couple of two Higgs doublet models to see experimental signals of the derivative interactions. They are differently affected by each heavy field. (orig.)

  18. Origin and phenomenology of weak-doublet spin-1 bosons

    International Nuclear Information System (INIS)

    Chizhov, M.V.; Dvali, Gia

    2011-01-01

    We study phenomenological consequences of the Standard Model extension by the new spin-1 fields with the internal quantum numbers of the electroweak Higgs doublets. We show, that there are at least three different classes of theories, all motivated by the hierarchy problem, which predict appearance of such vector weak-doublets not far from the weak scale. The common feature for all the models is the existence of an SU(3) W gauge extension of the weak SU(2) W group, which is broken down to the latter at some energy scale around TeV. The Higgs doublet then emerges as either a pseudo-Nambu-Goldstone boson of a global remnant of SU(3) W , or as a symmetry partner of the true eaten-up Goldstone boson. In the third class, the Higgs is a scalar component of a high-dimensional SU(3) W gauge field. The common phenomenological feature of these theories is the existence of the electroweak doublet vectors (Z * ,W * ), which in contrast to well-known Z ' and W ' bosons posses only anomalous (magnetic moment type) couplings with ordinary light fermions. This fact leads to some unique signatures for their detection at the hadron colliders.

  19. Electroweak symmetry breaking: Higgs/whatever

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1990-01-01

    In these two lectures the author discusses electroweak symmetry breaking from a general perspective, stressing properties that are model independent and follow just from the assumption that the electroweak interactions are described by a spontaneously broken gauge theory. This means he assumes the Higgs mechanism though not necessarily the existence of Higgs bosons. The first lecture presents the general framework of a spontaneously broken gauge theory: (1) the Higgs mechanism sui generis, with or without Higgs boson(s) and (2) the implications of symmetry and unitarity for the mass scale and interaction strength of the new physics that the Higgs mechanism requires. In addition he reviews a softer theoretical argument based on the naturalness problem which leads to a prejudice against Higgs bosons unless they are supersymmetric. This is a prejudice, not a theorem, and it could be overturned in the future by a clever new idea. In the second lecture he illustrates the general framework by reviewing some specific models: (1) the Weinberg-Salam model of the Higgs sector; (2) the minimal supersymmetric extension of the Weinberg-Salam model; and (3) technicolor as an example of the Higgs mechanism without Higgs bosons. He concludes the second lecture with a discussion of strong WW scattering that must occur if L SB lives above 1 TeV. In particular he describes some of the experimental signals and backgrounds at the SSC. 57 refs., 12 figs

  20. Status of the charged Higgs boson in two Higgs doublet models

    Science.gov (United States)

    Arbey, A.; Mahmoudi, F.; Stål, O.; Stefaniak, T.

    2018-03-01

    The existence of charged Higgs boson(s) is inevitable in models with two (or more) Higgs doublets. Hence, their discovery would constitute unambiguous evidence for new physics beyond the Standard Model (SM). Taking into account all relevant results from direct charged and neutral Higgs boson searches at LEP and the LHC, as well as the most recent constraints from flavour physics, we present a detailed analysis of the current phenomenological status of the charged Higgs sector in a variety of well-motivated two Higgs doublet models (2HDMs). We find that charged Higgs bosons as light as 75 GeV can still be compatible with the combined data, although this implies severely suppressed charged Higgs couplings to all fermions. In more popular models, e.g. the 2HDM of Type II, we find that flavour physics observables impose a combined lower limit on the charged Higgs mass of M_{H^± } ≳ 600 GeV - independent of tan β - which increases to M_{H^± } ≳ 650 GeV for tan β < 1. We furthermore find that in certain scenarios, the signature of a charged Higgs boson decaying into a lighter neutral Higgs boson and a W boson provides a promising experimental avenue that would greatly complement the existing LHC search programme for charged Higgs boson(s).

  1. Status of the charged Higgs boson in two Higgs doublet models

    International Nuclear Information System (INIS)

    Arbey, A.; Mahmoudi, F.; Stefaniak, T.; Staal, O.

    2018-01-01

    The existence of charged Higgs boson(s) is inevitable in models with two (or more) Higgs doublets. Hence, their discovery would constitute unambiguous evidence for new physics beyond the Standard Model (SM). Taking into account all relevant results from direct charged and neutral Higgs boson searches at LEP and the LHC, as well as the most recent constraints from flavour physics, we present a detailed analysis of the current phenomenological status of the charged Higgs sector in a variety of well-motivated two Higgs doublet models (2HDMs). We find that charged Higgs bosons as light as 75 GeV can still be compatible with the combined data, although this implies severely suppressed charged Higgs couplings to all fermions. In more popular models, e.g. the 2HDM of Type II, we find that flavour physics observables impose a combined lower limit on the charged Higgs mass of M H ± > or similar 600 GeV - independent of tan β - which increases to M H ± > or similar 650 GeV for tan β < 1. We furthermore find that in certain scenarios, the signature of a charged Higgs boson decaying into a lighter neutral Higgs boson and a W boson provides a promising experimental avenue that would greatly complement the existing LHC search programme for charged Higgs boson(s). (orig.)

  2. CP violation in the two-doublet Higgs sector of the MSSM

    International Nuclear Information System (INIS)

    Akhmetzyanova, Eh.N.; Dolgopolov, M.V.; Dubinin, M.N.

    2006-01-01

    Models with extended two-doublet Higgs sector are discussed in view of using their particular features to find out which sources of CP violation could take place in nature. It is considered the effective two-Higgs-doublet potential with complex parameters, when the CP invariance is broken both explicitly and spontaneously. For case of the two-doublet Higgs sector of the minimal supersymmetric model, when CP invariance is violated by the interactions of Higgs fields with the third generation of scalar quarks, the Higgs bosons mass spectrum in the case of maximal CP mixing is calculated which is significantly different from CP-conserving case. The phenomenological consequences for the Higgs mass spectrum in the decoupling regime and for the strong mixing case are considered [ru

  3. Gauge-Higgs unification in higher dimensions

    International Nuclear Information System (INIS)

    Hall, Lawrence; Nomura, Yasunori; Smith, David

    2002-01-01

    The electroweak Higgs doublets are identified as components of a vector multiplet in a higher-dimensional supersymmetric field theory. We construct a minimal model in 6D where the electroweak SU(2)xU(1) gauge group is extended to SU(3), and unified 6D models with the unified SU(5) gauge symmetry extended to SU(6). In these realistic theories the extended gauge group is broken by orbifold boundary conditions, leaving Higgs doublet zero modes which have Yukawa couplings to quarks and leptons on the orbifold fixed points. In one SU(6) model the weak mixing angle receives power law corrections, while in another the fixed point structure forbids such corrections. A 5D model is also constructed in which the Higgs doublet contains the fifth component of the gauge field. In this case Yukawa couplings are introduced as nonlocal operators involving the Wilson line of this gauge field

  4. Concepts of electroweak symmetry breaking and Higgs physics

    International Nuclear Information System (INIS)

    Gomez-Bock, M.; Zerwas, P.M.; RWTH Aachen; Univ. Paris- Sud, Orsay

    2007-12-01

    We present an introduction to the basic concepts of electroweak symmetry breaking and Higgs physics within the Standard Model and its supersymmetric extensions. A brief overview will also be given on alternative mechanisms of electroweak symmetry breaking. In addition to the theoretical basis, the present experimental status of Higgs physics and prospects at the Tevatron, the LHC and e + e - linear colliders are discussed. (orig.)

  5. Concepts of electroweak symmetry breaking and Higgs physics

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Bock, M. [Benemerita Univ., Puebla (Mexico). Inst. de Fisica; Mondragon, M. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica; Muehlleitner, M. [Laboratoire d' Annecy-Le-Vieux de Physique Theorique, 74 (France)]|[CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Spira, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[RWTH Aachen (Germany). Inst. Theor. Physik E]|[Univ. Paris- Sud, Orsay (France). Laboratoire de Physique Theorique

    2007-12-15

    We present an introduction to the basic concepts of electroweak symmetry breaking and Higgs physics within the Standard Model and its supersymmetric extensions. A brief overview will also be given on alternative mechanisms of electroweak symmetry breaking. In addition to the theoretical basis, the present experimental status of Higgs physics and prospects at the Tevatron, the LHC and e{sup +}e{sup -} linear colliders are discussed. (orig.)

  6. Electroweak symmetry breaking in supersymmetric gauge-Higgs unification models

    International Nuclear Information System (INIS)

    Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi; Haba, Naoyuki; Shimizu, Yasuhiro; Yamaguchi, Masahiro

    2004-01-01

    We examine the Higgs mass parameters and electroweak symmetry breaking in supersymmetric orbifold field theories in which the 4-dimensional Higgs fields originate from higher-dimensional gauge supermultiplets. It is noted that such gauge-Higgs unification leads to a specific boundary condition on the Higgs mass parameters at the compactification scale, which is independent of the details of supersymmetry breaking mechanism. With this boundary condition, phenomenologically viable parameter space of the model is severely constrained by the condition of electroweak symmetry breaking for supersymmetry breaking scenarios which can be realized naturally in orbifold field theories. For instance, if it is assumed that the 4-dimensional effective theory is the minimal supersymmetric standard model with supersymmetry breaking parameters induced by the Scherk-Schwarz mechanism, a correct electroweak symmetry breaking can not be achieved for reasonable range of parameters of the model, even when one includes additional contributions to the Higgs mass parameters from the auxiliary component of 4-dimensional conformal compensator. However if there exists a supersymmetry breaking mediated by brane superfields, sizable portion of the parameter space can give a correct electroweak symmetry breaking. (author)

  7. Higgs bosons in the two-doublet model with CP violation

    International Nuclear Information System (INIS)

    Akhmetzyanova, E.; Dolgopolov, M.; Dubinin, M.

    2005-01-01

    We consider the effective two-Higgs-doublet potential with complex parameters, when the CP invariance is broken both explicitly and spontaneously. The diagonal mass term in the local minimum of the potential is constructed for the physical basis of Higgs fields, keeping explicitly the limiting case of CP conservation, if the parameters are taken real. For the special case of the two-doublet Higgs sector of the minimal supersymmetric model, when CP invariance is violated by the Higgs bosons interaction with scalar quarks of the third generation, we calculate by means of the effective potential method the Higgs boson masses and evaluate the two-fermion Higgs boson decay widths and the widths of rare one-loop-mediated decays H→γγ, H→gg

  8. Two-Higgs-doublet models with Minimal Flavour Violation

    International Nuclear Information System (INIS)

    Carlucci, Maria Valentina

    2010-01-01

    The tree-level flavour-changing neutral currents in the two-Higgs-doublet models can be suppressed by protecting the breaking of either flavour or flavour-blind symmetries, but only the first choice, implemented by the application of the Minimal Flavour Violation hypothesis, is stable under quantum corrections. Moreover, a two-Higgs-doublet model with Minimal Flavour Violation enriched with flavour-blind phases can explain the anomalies recently found in the ΔF = 2 transitions, namely the large CP-violating phase in B s mixing and the tension between ε K and S ψKS .

  9. H+H- interaction up to higher orders of perturbation theory in the model with two Higgs doublets (self-energy and vertex diagrams)

    International Nuclear Information System (INIS)

    Dvoeglazov, V.V.; Skachkov, N.B.

    1991-01-01

    Self-energy and vertex blocks that enter into the amplitude of Higgs-Higgs-interaction are calculated up to the fourth order of perturbation theory in the framework of the model of electroweak interaction with two Higgs doublets and an arbitrary number of fermions. The renormalization is performed on the mass shell of the physical fields after a spontaneous symmetry breaking. The values of the coupling constants are, as a rule, not concretized in the paper. In the cases where it is needed to use them, their values obtained in the model with the minimal supersymmetric extension of the standard model (MSSM) are taken. 29 refs.; 1 tab

  10. On stability of the electroweak vacuum and the Higgs portal

    International Nuclear Information System (INIS)

    Lebedev, Oleg

    2012-03-01

    In the Standard Model (SM), the Higgs mass around 125 GeV implies that the electroweak vacuum is metastable since the quartic Higgs coupling turns negative at high energies. I point out that an arbitrarily small mixing of the Higgs with a heavy singlet can make the electroweak vacuum completely stable. This is due to a tree level correction to the Higgs mass, which survives in the zero--mixing/heavy--singlet limit. Such a situation is experimentally indistinguishable from the SM, unless the Higgs self--coupling can be measured. As a result, Higgs inflation and its variants can still be viable.

  11. On stability of the electroweak vacuum and the Higgs portal

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg

    2012-03-15

    In the Standard Model (SM), the Higgs mass around 125 GeV implies that the electroweak vacuum is metastable since the quartic Higgs coupling turns negative at high energies. I point out that an arbitrarily small mixing of the Higgs with a heavy singlet can make the electroweak vacuum completely stable. This is due to a tree level correction to the Higgs mass, which survives in the zero--mixing/heavy--singlet limit. Such a situation is experimentally indistinguishable from the SM, unless the Higgs self--coupling can be measured. As a result, Higgs inflation and its variants can still be viable.

  12. Electroweak Higgs production with HiggsPO at NLO QCD

    Science.gov (United States)

    Greljo, Admir; Isidori, Gino; Lindert, Jonas M.; Marzocca, David; Zhang, Hantian

    2017-12-01

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p_T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available.

  13. ATLAS diboson excesses from the stealth doublet model

    Directory of Open Access Journals (Sweden)

    Wei Chao

    2016-02-01

    Full Text Available The ATLAS Collaboration has reported excesses in diboson invariant mass searches of new resonances around 2 TeV, which might be a prediction of new physics around that mass range. We interpret these results in the context of a modified stealth doublet model where the extra Higgs doublet has a Yukawa interaction with the first generation quarks, and show that the heavy CP-even Higgs boson can naturally explain the excesses in the WW and ZZ channels with a small Yukawa coupling, ξ∼0.15, and a tiny mixing angle with the SM Higgs boson, α∼0.05. Furthermore, the model satisfies constraints from colliders and electroweak precision measurements.

  14. Baryogenesis at the electroweak scale

    International Nuclear Information System (INIS)

    Dine, M.; Huet, P.; Singleton, R. Jr.

    1992-01-01

    We explore some issues involved in generating the baryon asymmetry at the electroweak scale. A simple two-dimensional model is analyzed which illustrates the role of the effective action in computing the asymmetry. We stress the fact that baryon production ceases at a very small value of the Higgs field; as a result, certain two-Higgs models which have been studied recently cannot produce sufficient asymmetry, while quite generally models with only doublets can barely produce the observed baryon density; models with gauge singlets are more promising. We also review limits on Higgs masses coming from the requirement that the baryon asymmetry not be wiped out after the phase transition. We note that there are a variety of uncertainties in these calculations, and that even in models with a single Higgs doublet one cannot rule out a Higgs mass below 55 GeV. (orig.)

  15. Higgs properties in the Stealth Doublet Model

    Directory of Open Access Journals (Sweden)

    Wouda Glenn

    2013-11-01

    Full Text Available I present a model with two scalar doublets and a softly broken ℤ2 symmetry, where only one of the doublets gets a vacuum expectation value and couples to fermions at tree-level. The softly broken ℤ2 symmetry leads to interesting phenomenology such as mixing between the two doublets and a charged scalar H± which can be light and dominantly decays into Hγ. The model can also naturally reproduce an enhanced γγ signal of the newly observed Higgs boson at the LHC with mass 125 GeV.

  16. Electroweak Higgs production with HiggsPO at NLO QCD

    International Nuclear Information System (INIS)

    Greljo, Admir; Isidori, Gino; Zhang, Hantian; Lindert, Jonas M.; Marzocca, David

    2017-01-01

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available. (orig.)

  17. Electroweak Higgs production with HiggsPO at NLO QCD

    Energy Technology Data Exchange (ETDEWEB)

    Greljo, Admir [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Johannes Gutenberg-Universitaet Mainz, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); University of Sarajevo, Faculty of Science, Sarajevo (Bosnia and Herzegovina); Isidori, Gino; Zhang, Hantian [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Lindert, Jonas M. [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Marzocca, David [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); INFN, Sezione di Trieste(Italy); SISSA, Trieste (Italy)

    2017-12-15

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p{sub T} for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available. (orig.)

  18. Scalar production in models with 1 and 2 Higgs doublets

    International Nuclear Information System (INIS)

    Campos Carvalho, F.L. de.

    1991-03-01

    A standard electroweak interaction model is studied based on the introduction of an additional scalar doublet which rises two neutral scalars, one pseudoscalar and two charged scalars. The doublet introduction gives the possibility to implement constraints issued by the supersymmetry, restricting therefore those scalar masses. (L.C.J.A.)

  19. Higgs pair production in the CP-violating two-Higgs-doublet model

    Science.gov (United States)

    Bian, Ligong; Chen, Ning; Jiang, Yun

    2017-12-01

    The SM-like Higgs pair production is discussed in the framework of the general CP-violating two-Higgs-doublet model, where we find that the CP-violating mixing angles can be related to the Higgs self-couplings. Therefore, the future experimental searches for Higgs boson pairs can be constrained by the improved precision of the electric dipole moment measurements. Based on a series of constraints of the SM-like Higgs boson signal fits, the perturbative unitarity and stability bounds to the Higgs potential, and the most recent LHC searches for heavy Higgs bosons, we suggest a set of benchmark models for the future high-energy collider searches for Higgs pair production. The e+e- colliders operating at s = (500GeV,1 TeV) are capable of measuring the Higgs cubic self-couplings of the benchmark models directly. We also estimate the cross sections of the resonance contributions to the Higgs pair productions for the benchmark models at the future LHC and SppC/FCC-hh runs.

  20. Partially composite two-Higgs doublet model

    Indian Academy of Sciences (India)

    Abstract. In the extra dimensional scenarios with gauge fields in the bulk, the Kaluza–. Klein (KK) gauge bosons can induce Nambu–Jona–Lasinio (NJL) type attractive four- fermion interactions, which can break electroweak symmetry dynamically with accompa- nying composite Higgs fields. We consider a possibility that ...

  1. Electroweak vacuum stability in classically conformal B - L extension of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Das, Arindam; Okada, Nobuchika; Papapietro, Nathan [University of Alabama, Department of Physics and Astronomy, Alabama (United States)

    2017-02-15

    We consider the minimal U(1){sub B-L} extension of the standard model (SM) with the classically conformal invariance, where an anomaly-free U(1){sub B-L} gauge symmetry is introduced along with three generations of right-handed neutrinos and a U(1){sub B-L} Higgs field. Because of the classically conformal symmetry, all dimensional parameters are forbidden. The B - L gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, generating the mass for the U(1){sub B-L} gauge boson (Z{sup '} boson) and the right-handed neutrinos. Through a small negative coupling between the SM Higgs doublet and the B - L Higgs field, the negative mass term for the SM Higgs doublet is generated and the electroweak symmetry is broken. In this model context, we investigate the electroweak vacuum instability problem in the SM. It is well known that in the classically conformal U(1){sub B-L} extension of the SM, the electroweak vacuum remains unstable in the renormalization group analysis at the one-loop level. In this paper, we extend the analysis to the two-loop level, and perform parameter scans. We identify a parameter region which not only solve the vacuum instability problem, but also satisfy the recent ATLAS and CMS bounds from search for Z{sup '} boson resonance at the LHC Run-2. Considering self-energy corrections to the SM Higgs doublet through the right-handed neutrinos and the Z{sup '} boson, we derive the naturalness bound on the model parameters to realize the electroweak scale without fine-tunings. (orig.)

  2. Electroweak symmetry breaking: Higgs/whatever

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1989-01-01

    In the first of these two lectures the Higgs mechanism is reviewed in its most general form, which does not necessarily require the existence of Higgs bosons. The general consequences of the hypothesis that electroweak symmetry breaking is due to the Higgs mechanism are deduced just from gauge invariance and unitarity. In the second lecture the general properties are illustrated with three specific models: the Weinberg-Salam model, its minimal supersymmetric extension, and technicolor. The second lecture concludes with a discussion of the experiment signals for strong WW scattering, whose presence or absence will allow us to determine whether the symmetry breaking sector lies above or below 1 TeV. 57 refs

  3. The electroweak phase transition in minimal supergravity models

    CERN Document Server

    Nanopoulos, Dimitri V

    1994-01-01

    We have explored the electroweak phase transition in minimal supergravity models by extending previous analysis of the one-loop Higgs potential to include finite temperature effects. Minimal supergravity is characterized by two higgs doublets at the electroweak scale, gauge coupling unification, and universal soft-SUSY breaking at the unification scale. We have searched for the allowed parameter space that avoids washout of baryon number via unsuppressed anomalous Electroweak sphaleron processes after the phase transition. This requirement imposes strong constraints on the Higgs sector. With respect to weak scale baryogenesis, we find that the generic MSSM is {\\it not} phenomenologically acceptable, and show that the additional experimental and consistency constraints of minimal supergravity restricts the mass of the lightest CP-even Higgs even further to $m_h\\lsim 32\\GeV$ (at one loop), also in conflict with experiment. Thus, if supergravity is to allow for baryogenesis via any other mechanism above the weak...

  4. LHC phenomenology of composite 2-Higgs doublet models

    Energy Technology Data Exchange (ETDEWEB)

    De Curtis, Stefania [University of Florence, Department of Physics and Astronomy, Sesto Fiorentino (Italy); INFN, Sezione di Firenze (Italy); Moretti, Stefano; Yagyu, Kei; Yildirim, Emine [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom)

    2017-08-15

    We investigate the phenomenology of Composite 2-Higgs doublet models (C2HDMs) of various Yukawa types based on the global symmetry breaking SO(6) → SO(4) x SO(2). The kinetic part and the Yukawa Lagrangian are constructed in terms of the pseudo Nambu-Goldstone Boson (pNGB) matrix and a 6-plet of fermions under SO(6). The scalar potential is assumed to be the same as that of the Elementary 2-Higgs doublet model (E2HDM) with a softly broken discrete Z{sub 2} symmetry. We then discuss the phenomenological differences between the E2HDM and C2HDM by focusing on the deviations from standard model (SM) couplings of the discovered Higgs state (h) as well as on the production cross sections and branching ratios (BRs) at the large Hadron collider (LHC) of extra Higgs bosons. We find that, even if the same deviation in the hVV (V = W,Z) coupling is assumed in the two scenarios, there appear significant differences between the E2HDM and C2HDM from the structure of the Yukawa couplings, so that production and decay features of extra Higgs bosons can be used to distinguish between the two scenarios. (orig.)

  5. Pseudo-Goldstone Higgs Doublets from Non-Vectorlike Grand Unified Higgs Sector

    CERN Document Server

    Hernández, A E Cárcamo

    2016-01-01

    We present a novel way of realizing the pseudo-Nambu-Goldstone boson mechanism for the doublet-triplet splitting in supersymmetric grand unified theories. The global symmetries of the Higgs sector are attributed to a non-vectorlike Higgs content, which is consistent with unbroken supersymmetry in a scenario with flat extra dimensions and branes. We also show how in such a model one can naturally obtain a realistic pattern for the Standard Model fermion masses and mixings.

  6. Higgs triplets in the standard model

    International Nuclear Information System (INIS)

    Gunion, J.F.; Vega, R.; Wudka, J.

    1990-01-01

    Even though the standard model of the strong and electroweak interactions has proven enormously successful, it need not be the case that a single Higgs-doublet field is responsible for giving masses to the weakly interacting vector bosons and the fermions. In this paper we explore the phenomenology of a Higgs sector for the standard model which contains both doublet and triplet fields [under SU(2) L ]. The resulting Higgs bosons have many exotic features and surprising experimental signatures. Since a critical task of future accelerators will be to either discover or establish the nonexistence of Higgs bosons with mass below the TeV scale, it will be important to keep in mind the alternative possibilities characteristic of this and other nonminimal Higgs sectors

  7. Penguin effects induced by the two-Higgs-doublet model and charmless B-meson decays

    International Nuclear Information System (INIS)

    Davies, A.J.; Joshi, G.C.; Matsuda, M.

    1991-03-01

    Nonstandard physical effects through the penguin diagram induced by the charged Higgs scalar contribution in the two-Higgs-doublet model are analysed. The non-leptonic β-decay processes including the non-standard two-Higgs-doublet contribution are compared with the standard model results, which arise from the magnetic gluon transition term. The charged Higgs contribution gives a sizable enhancement to the branching fractions of β-meson charmless decay. 13 refs., 4 figs

  8. Dominant two-loop electroweak corrections to the hadroproduction of a pseudoscalar Higgs boson and its photonic decay

    International Nuclear Information System (INIS)

    Brod, J.; Kniehl, B.A.

    2008-01-01

    We present the dominant two-loop electroweak corrections to the partial decay widths to gluon jets and prompt photons of the neutral CP-odd Higgs boson A 0 , with mass M A 0 W , in the two-Higgs-doublet model for low to intermediate values of the ratio tan β=v 2 /v 1 of the vacuum expectation values. They apply as they stand to the production cross sections in hadronic and two-photon collisions, at the Tevatron, the LHC, and a future photon collider. The appearance of three γ 5 matrices in closed fermion loops requires special care in the dimensional regularization of ultraviolet divergences. The corrections are negative and amount to several percent, so that they fully compensate or partly screen the enhancement due to QCD corrections. (orig.)

  9. The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim; Humboldt-Universitaet, Berlin; Jansen, Karl

    2011-11-01

    The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self coupling. (orig.)

  10. Scalar dark matter in leptophilic two-Higgs-doublet model

    Science.gov (United States)

    Bandyopadhyay, Priyotosh; Chun, Eung Jin; Mandal, Rusa

    2018-04-01

    Two-Higgs-Doublet Model of Type-X in the large tan ⁡ β limit becomes leptophilic to allow a light pseudo-scalar A and thus provides an explanation of the muon g - 2 anomaly. Introducing a singlet scalar dark matter S in this context, one finds that two important dark matter properties, nucleonic scattering and self-annihilation, are featured separately by individual couplings of dark matter to the two Higgs doublets. While one of the two couplings is strongly constrained by direct detection experiments, the other remains free to be adjusted for the relic density mainly through the process SS → AA. This leads to the 4τ final states which can be probed by galactic gamma ray detections.

  11. Two-Higgs-doublet-portal dark-matter models in light of direct search and LHC data

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Feng [Department of Physics and Center for Theoretical Sciences, National Taiwan University,No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (China); He, Xiao-Gang [Department of Physics and Center for Theoretical Sciences, National Taiwan University,No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (China); INPAC, Department of Physics and Astronomy, Shanghai Jiao Tong University,800 Dongchuan Rd., Minhang, Shanghai 200240 (China); Physics Division, National Center for Theoretical Sciences,No. 101, Sec. 2, Kuang Fu Rd., Hsinchu 300, Taiwan (China); Tandean, Jusak [Department of Physics and Center for Theoretical Sciences, National Taiwan University,No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (China); Physics Division, National Center for Theoretical Sciences,No. 101, Sec. 2, Kuang Fu Rd., Hsinchu 300, Taiwan (China)

    2017-04-19

    We explore simple Higgs-portal models of dark matter (DM) with spin 1/2, 3/2, and 1, respectively, applying to them constraints from the LUX and PandaX-II direct detection experiments and from LHC measurements on the 125-GeV Higgs boson. With only one Higgs doublet, we find that the spin-1/2 DM having a purely scalar effective coupling to the doublet is viable only in a narrow range of mass near the Higgs pole, whereas the vector DM is still allowed if its mass is also close to the Higgs pole or exceeds 1.4 TeV, both in line with earlier analyses. Moreover, the spin-3/2 DM is in a roughly similar situation to the spin-1/2 DM, but has surviving parameter space which is even more restricted. We also consider the two-Higgs-doublet extension of each of the preceding models, assuming that the expanded Yukawa sector is that of the two-Higgs-doublet model of type II. We show that in these two-Higgs-doublet-portal models significant portions of the DM mass regions excluded in the simplest scenarios by direct search bounds can be reclaimed due to suppression of the effective DM interactions with nucleons at some ratios of the CP-even Higgs bosons’ couplings to the up and down quarks. The regained parameter space contains areas which can yield a DM-nucleon scattering cross-section that is far less than its current experimental limit or even goes below the neutrino-background floor.

  12. Radiatively Generating the Higgs Potential and Electroweak Scale via the Seesaw Mechanism.

    Science.gov (United States)

    Brivio, Ilaria; Trott, Michael

    2017-10-06

    The minimal seesaw scenario can radiatively generate the Higgs potential to induce electroweak symmetry breaking while supplying an origin of the Higgs vacuum expectation value from an underlying Majorana scale. If the Higgs potential and (derived) electroweak scale have this origin, the heavy SU(3)×SU(2)×U(1)_{Y} singlet states are expected to reside at m_{N}∼10-500  PeV for couplings |ω|∼10^{-4.5}-10^{-6} between the Majorana sector and the standard model. In this framework, the usual challenge of the electroweak scale hierarchy problem with a classically assumed potential is absent as the electroweak scale is not a fundamental scale. The new challenge is the need to generate or accommodate PeV Majorana mass scales while simultaneously suppressing tree-level contributions to the potential in ultraviolet models.

  13. ILC Higgs White Paper

    CERN Document Server

    Asner, D.M.; Calancha, C.; Fujii, K.; Graf, N.; Haber, H.E.; Ishikawa, A.; Kanemura, S.; Kawada, S.; Kurata, M.; Miyamoto, A.; Neal, H.; Ono, H.; Potter, C.; Strube, J.; Suehara, T.; Tanabe, T.; Tian, J.; Tsumura, J.; Watanuki, S.; Weiglein, G.; Yagyu, K.; Yokoya, H.

    2013-01-01

    The ILC Higgs White Paper is a review of Higgs Boson theory and experiment at the International Linear Collider (ILC). Theory topics include the Standard Model Higgs, the two-Higgs doublet model, alternative approaches to electroweak symmetry breaking, and precision goals for Higgs boson experiments. Experimental topics include the measurement of the Higgs cross section times branching ratio for various Higgs decay modes at ILC center of mass energies of 250, 500, and 1000 GeV, and the extraction of Higgs couplings and the total Higgs width from these measurements. Luminosity scenarios based on the ILC TDR machine design are used throughout. The gamma-gamma collider option at the ILC is also discussed.

  14. Precise predictions within the two-Higgs-doublet model

    International Nuclear Information System (INIS)

    Altenkamp, Lukas

    2017-01-01

    We consider the Two-Higgs-Doublet Model (THDM) where the Standard Model (SM) field content is extended by adding a further Higgs-boson doublet. This results in five Higgs bosons, two CP-even, one CP-odd and a charged Higgs boson and it's anti-particle. In order to provide accurate and reliable predictions within this model, next-to-leading order calculations are necessary. To this end, we perform a renormalization procedure and adopt four new renormalization schemes. The counterterm Feynman rules as well as the renormalization conditions are implemented into an FeynArts model file, yielding the possibility to generate amplitudes and squared matrix elements for arbitrary processes which is a major contribution to the automation of higher-order calculations. As an application we investigate the decay of a light, CP-even, SM-like Higgs boson into four fermions in the THDM. To this end, we extend the program Prophecy4f and compute the partial decay widths for different benchmark scenarios. For all investigated scenarios, we observe that the THDM widths are bounded by the SM widths and that the deviations are larger at higher order. The renormalization group equations have been solved in order to investigate the renormalization scale dependence which gives an estimate of the theoretical uncertainty arising due to the truncation of the perturbation series. By comparing the results of different renormalization schemes we determine for which parameter regions each scheme provides reliable predictions.

  15. Precise predictions within the two-Higgs-doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Altenkamp, Lukas

    2017-02-21

    We consider the Two-Higgs-Doublet Model (THDM) where the Standard Model (SM) field content is extended by adding a further Higgs-boson doublet. This results in five Higgs bosons, two CP-even, one CP-odd and a charged Higgs boson and it's anti-particle. In order to provide accurate and reliable predictions within this model, next-to-leading order calculations are necessary. To this end, we perform a renormalization procedure and adopt four new renormalization schemes. The counterterm Feynman rules as well as the renormalization conditions are implemented into an FeynArts model file, yielding the possibility to generate amplitudes and squared matrix elements for arbitrary processes which is a major contribution to the automation of higher-order calculations. As an application we investigate the decay of a light, CP-even, SM-like Higgs boson into four fermions in the THDM. To this end, we extend the program Prophecy4f and compute the partial decay widths for different benchmark scenarios. For all investigated scenarios, we observe that the THDM widths are bounded by the SM widths and that the deviations are larger at higher order. The renormalization group equations have been solved in order to investigate the renormalization scale dependence which gives an estimate of the theoretical uncertainty arising due to the truncation of the perturbation series. By comparing the results of different renormalization schemes we determine for which parameter regions each scheme provides reliable predictions.

  16. Electroweak Higgs plus three jet production at NLO QCD

    International Nuclear Information System (INIS)

    Campanario, Francisco; Figy, Terrance M.; Plaetzer, Simon; Sjoedahl, Malin

    2013-11-01

    We calculate next-to-leading order (NLO) QCD corrections to electroweak Higgs plus three jet production. Both vector boson fusion (VBF) and Higgs-strahlung type contributions are included along with all interferences. The calculation is implemented within the Matchbox NLO framework of the Herwig++ event generator.

  17. Penguin effects induced by the two-Higgs-doublet model and charmless B-meson decays

    International Nuclear Information System (INIS)

    Davies, A.J.; Joshi, G.C.; Matsuda, M.

    1991-01-01

    Nonstandard physical effects through the penguin diagram induced by the charged Higgs scalar contribution in the two-Higgs-doublet model are analysed. Since non-leptonic B-decay processes to final states consisting of s+s+anti s are induced only through the penguin diagram they are important tests of such contributions. We compare these decays including the non-standard two-Higgs-doublet contribution with the standard model results, which arise from the magnetic gluon transistion term. The charged Higgs contribution can give a sizable enhancement to the branching fraction of B-meson charmless decay. (orig.)

  18. Electroweak Calibration of the Higgs Characterization Model

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    I will present the preliminary results of histogram fits using the Higgs Combine histogram fitting package. These fits can be used to estimate the effects of electroweak contributions to the p p -> H mu+ mu- Higgs production channel and calibrate Beyond Standard Model (BSM) simulations which ignore these effects. I will emphasize my findings' significance in the context of other research here at CERN and in the broader world of high energy physics.

  19. Is radiative electroweak symmetry breaking consistent with a 125 GeV Higgs mass?

    Science.gov (United States)

    Steele, T G; Wang, Zhi-Wei

    2013-04-12

    The mechanism of radiative electroweak symmetry breaking occurs through loop corrections, and unlike conventional symmetry breaking where the Higgs mass is a parameter, the radiatively generated Higgs mass is dynamically predicted. Padé approximations and an averaging method are developed to extend the Higgs mass predictions in radiative electroweak symmetry breaking from five- to nine-loop order in the scalar sector of the standard model, resulting in an upper bound on the Higgs mass of 141 GeV. The mass predictions are well described by a geometric series behavior, converging to an asymptotic Higgs mass of 124 GeV consistent with the recent ATLAS and CMS Collaborations observations. Similarly, we find that the Higgs self-coupling converges to λ=0.23, which is significantly larger than its conventional symmetry breaking counterpart for a 124 GeV Higgs mass. In addition to this significant enhancement of the Higgs self-coupling and HH→HH scattering, we find that Higgs decays to gauge bosons are unaltered and the scattering processes WL(+)WL(+)→HH, ZLZL→HH are also enhanced, providing signals to distinguish conventional and radiative electroweak symmetry breaking mechanisms.

  20. Cosmological Higgs-Axion Interplay for a Naturally Small Electroweak Scale.

    Science.gov (United States)

    Espinosa, J R; Grojean, C; Panico, G; Pomarol, A; Pujolàs, O; Servant, G

    2015-12-18

    Recently, a new mechanism to generate a naturally small electroweak scale has been proposed. It exploits the coupling of the Higgs boson to an axionlike field and a long era in the early Universe where the axion unchains a dynamical screening of the Higgs mass. We present a new realization of this idea with the new feature that it leaves no sign of new physics at the electroweak scale, and up to a rather large scale, 10^{9}  GeV, except for two very light and weakly coupled axionlike states. One of the scalars can be a viable dark matter candidate. Such a cosmological Higgs-axion interplay could be tested with a number of experimental strategies.

  1. Implications of the discovery of a Higgs triplet on electroweak right-handed neutrinos

    International Nuclear Information System (INIS)

    Aranda, Alfredo; Hernandez-Sanchez, J.; Hung, P.Q.

    2008-01-01

    Electroweak scale active right-handed neutrinos such as those proposed in a recent model necessitate the enlargement of the SM Higgs sector to include Higgs triplets with doubly charged scalars. The search for and constraints on such Higgs sector has implications not only on the nature of the electroweak symmetry breaking but also on the possibility of testing the seesaw mechanism at colliders such as the LHC and the ILC.

  2. Restrictions on two Higgs doublet models and CP violation at the unification scale

    International Nuclear Information System (INIS)

    Athanasiu, G.G.

    1987-04-01

    Bounds on charged Higgs masses and couplings in models with two Higgs doublets are examined that came from CP violation in the neutral K system. Bounds on charged Higgs masses and couplings in two Higgs doublet models are also obtained from their effects on neutral-B-meson mixing. The bounds are found to be comparable to those obtained with additional assumptions from the neutral K system. The three generation phase invariant measure of CP violation is shown to satisfy a simple and solvable renormalization group equation. Its value is seen to fall by four to eight orders of magnitude between the weak and grand unification scales in the standard model, as well as in its two Higgs and supersymmetric extensions

  3. Higgs-boson contributions to gauge-boson mass shifts in extended electroweak models

    International Nuclear Information System (INIS)

    Moore, S.R.

    1985-01-01

    The author analyzed the mass shifts for models with a more complicated Higgs sector. He uses the on-shell renormalization scheme, in which the parameters of the theory are the physical masses and couplings. The author has considered the 2-doublet, n-doublet, triplet and doublet-triplet models. He has found that the Z-boson mass prediction has a strong dependence on the charged-Higgs mass. In the limit that the charged Higgs is much heavier than the gauge bosons, the Higgs-dependent terms become significant, and may even cancel the light-fermion terms. If the author uses the Z mass as input in determining the parameters of the theory, a scenario which will become attractive as the mass of the Z is accurately measured in the next few years, it is found that the W-boson mass shift exhibits the same sort of behavior, differing from the minimal model for the case of the charged Higgs being heavy. The author has found that when the radiative corrections are taken into account, models with extended Higgs sectors may differ significantly from the minimal standard model in this predictions for the gauge-boson masses. Thus, an accurate measurement of the masses will help shed light on the structure of the Higgs sector

  4. Singlet Higgs phenomenology and the electroweak phase transition

    International Nuclear Information System (INIS)

    Profumo, Stefano; Ramsey-Musolf, Michael J.; Shaughnessy, Gabe

    2007-01-01

    We study the phenomenology of gauge singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. We determine the conditions on the scalar potential parameters that lead to a strong first order phase transition as needed to produce the observed baryon asymmetry of the universe. We analyze the constraints on the potential parameters derived from Higgs boson searches at LEP and electroweak precision observables. For models that satisfy these constraints and that produce a strong first order phase transition, we discuss the prospective signatures in future Higgs studies at the Large Hadron Collider and a Linear Collider. We argue that such studies will provide powerful probes of phase transition dynamics in models with an extended scalar sector

  5. Bs0–B-bars0 mixing within minimal flavor-violating two-Higgs-doublet models

    International Nuclear Information System (INIS)

    Chang, Qin; Li, Pei-Fu; Li, Xin-Qiang

    2015-01-01

    In the “Higgs basis” for a generic 2HDM, only one scalar doublet gets a nonzero vacuum expectation value and, under the criterion of minimal flavor violation, the other one is fixed to be either color-singlet or color-octet, which are named as the type-III and type-C models, respectively. In this paper, the charged-Higgs effects of these two models on B s 0 –B -bar s 0 mixing are studied. First of all, we perform a complete one-loop computation of the electro-weak corrections to the amplitudes of B s 0 –B -bar s 0 mixing. Together with the up-to-date experimental measurements, a detailed phenomenological analysis is then performed in the cases of both real and complex Yukawa couplings of charged scalars to quarks. The spaces of model parameters allowed by the current experimental data on B s 0 –B -bar s 0 mixing are obtained and the differences between type-III and type-C models are investigated, which is helpful to distinguish between these two models

  6. The inert doublet model: a new archetype of WIMP dark matter?

    International Nuclear Information System (INIS)

    Tytgat, M Hg

    2008-01-01

    The Inert Doublet Model (IDM) is a two doublet extension of the Higgs-Brout-Englert sector of the Standard Model with a Z2 symmetry in order to prevent FCNC. If the Z2 symmetry is not spontaneously broken, the lightest neutral extra scalar is a dark matter candidate. We briefly review the phenomenology of the model, emphasizing its relevance for the issue of Electroweak Symmetry Breaking (EWSB) and the prospects for detection of dark matter

  7. CP properties of symmetry-constrained two-Higgs-doublet models

    CERN Document Server

    Ferreira, P M; Nachtmann, O; Silva, Joao P

    2010-01-01

    The two-Higgs-doublet model can be constrained by imposing Higgs-family symmetries and/or generalized CP symmetries. It is known that there are only six independent classes of such symmetry-constrained models. We study the CP properties of all cases in the bilinear formalism. An exact symmetry implies CP conservation. We show that soft breaking of the symmetry can lead to spontaneous CP violation (CPV) in three of the classes.

  8. PRECISION ELECTROWEAK MEASUREMENTS AND THE HIGGS MASS

    International Nuclear Information System (INIS)

    MARCIANO, W.J.

    2004-01-01

    The utility of precision electroweak measurements for predicting the Standard Model Higgs mass via quantum loop effects is discussed. Current constraints from m w and sin 2 θ w (m z ) ovr MS imply a relatively light Higgs ∼< 154 GeV which is consistent with Supersymmetry expectations. The existence of Supersymmetry is further suggested by a discrepancy between experiment and theory for the muon anomalous magnetic moment. Constraints from precision studies on other types of ''New Physics'' are also briefly described

  9. Two Higgs Doublet Model and Model Independent Interpretation of Neutral Higgs Boson Searches

    CERN Document Server

    Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Benelli, G.; Bentvelsen, S.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; de Roeck, A.; de Wolf, E.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanti, M.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rembser, C.; Renkel, P.; Rick, H.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Stumpf, L.; Surrow, B.; Talbot, S.D.; Tarem, S.; Taylor, R.J.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Toya, D.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Vachon, B.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2001-01-01

    Searches for the neutral Higgs bosons h0 and A0, are used to obtain limits on the Type II Two Higgs Doublet Model (2HDM(II)) with no CP-violation in the Higgs sector and no additional particles besides the five Higgs bosons. The analysis combines approximately 170 pb-1 of data collected with the OPAL detector at sqrt{s} ~ 189 GeV with previous runs at sqrt{s} ~ mZ and sqrt{s} ~ 183 GeV. The searches are sensitive to the h0, A0 -> qq, gg, tau+tau- and h0 -> A0A0 decay modes of the Higgs bosons. For the first time, the 2HDM(II) parameter space is explored in a detailed scan, and new flavour independent analyses are applied to examine regions in which the neutral Higgs bosons decay predominantly into light quarks or gluons. Model-independent limits are also given.

  10. Electric dipole moments in two-Higgs-doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Martin [Institut für Physik, Technische Universität Dortmund,Otto-Hahn-Str. 4, D-44221 Dortmund (Germany); Pich, Antonio [IFIC, Universitat de València - CSIC,Apt. Correos 22085, E-46071 València (Spain)

    2014-04-10

    Electric dipole moments are extremely sensitive probes for additional sources of CP violation in new physics models. Specifically, they have been argued in the past to exclude new CP-violating phases in two-Higgs-doublet models. Since recently models including such phases have been discussed widely, we revisit the available constraints in the presence of mechanisms which are typically invoked to evade flavour-changing neutral currents. To that aim, we start by assessing the necessary calculations on the hadronic, nuclear and atomic/molecular level, deriving expressions with conservative error estimates. Their phenomenological analysis in the context of two-Higgs-doublet models yields strong constraints, in some cases weakened by a cancellation mechanism among contributions from neutral scalars. While the corresponding parameter combinations do not yet have to be unnaturally small, the constraints are likely to preclude large effects in other CP-violating observables. Nevertheless, the generically expected contributions to electric dipole moments in this class of models lie within the projected sensitivity of the next-generation experiments.

  11. Tadpole-induced electroweak symmetry breaking and pNGB Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Harnik, Roni; Howe, Kiel; Kearney, John [Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2017-03-22

    We investigate induced electroweak symmetry breaking (EWSB) in models in which the Higgs is a pseudo-Nambu-Goldstone boson (pNGB). In pNGB Higgs models, Higgs properties and precision electroweak measurements imply a hierarchy between the EWSB and global symmetry-breaking scales, v{sub H}≪f{sub H}. When the pNGB potential is generated radiatively, this hierarchy requires fine-tuning to a degree of at least ∼v{sub H}{sup 2}/f{sub H}{sup 2}. We show that if Higgs EWSB is induced by a tadpole arising from an auxiliary sector at scale f{sub Σ}≪v{sub H}, this tuning is significantly ameliorated or can even be removed. We present explicit examples both in Composite Higgs models based on SO(5)/SO(4) and in Twin Higgs models. For the Twin case, the result is a fully natural model with f{sub H}∼1 TeV and the lightest colored top partners at 2 TeV. These models also have an appealing mechanism to generate the scales of the auxiliary sector and Higgs EWSB directly from the scale f{sub H}, with a natural hierarchy f{sub Σ}≪v{sub H}≪f{sub H}∼TeV. The framework predicts modified Higgs coupling as well as new Higgs and vector states at LHC13.

  12. Structure of potentials with N Higgs doublets

    International Nuclear Information System (INIS)

    Nishi, C. C.

    2007-01-01

    Extensions of the standard model with N Higgs doublets are simple extensions presenting a rich mathematical structure. An underlying Minkowski structure emerges from the study of both variable space and parameter space. The former can be completely parametrized in terms of two future lightlike Minkowski vectors with spatial parts forming an angle whose cosine is -(N-1) -1 . For the parameter space, the Minkowski parametrization enables one to impose sufficient conditions for bounded below potentials, characterize certain classes of local minima, and distinguish charge breaking vacua from neutral vacua. A particular class of neutral minima presents a degenerate mass spectrum for the physical charged Higgs bosons

  13. Electroweak baryogenesis and Higgs and stop searches at LEP and the Tevatron

    International Nuclear Information System (INIS)

    Carena, M.; Quiros, M.; Wagner, C.E.M.

    1998-01-01

    It has been recently shown that the observed baryon number may originate at the electroweak phase transition, provided that the Higgs boson and the lightest stop are sufficiently light. In this work, we perform a detailed analysis, including all dominant two-loop finite-temperature corrections to the Higgs effective potential, as well as the non-trivial effects proceeding from the mixing in the stop sector, to define the region of parameter space for which electroweak baryogenesis can happen. The limits on the stop and Higgs masses are obtained by taking into account the experimental bounds on these quantities, as well as those coming from the requirement of avoiding dangerous color breaking minima. We find for the Higgs mass m h < or∼105 GeV, while the stop mass may be close to the present experimental bound and must be smaller than, or of the order of, the top quark mass. These results provide a very strong motivation for further non-perturbative analysis of the electroweak phase transition, as well as for the search for Higgs and stop particles at the LEP and Tevatron colliders. (orig.)

  14. Precision calculations for h → WW/ZZ → 4 fermions in the Two-Higgs-Doublet Model with Prophecy4f

    Science.gov (United States)

    Altenkamp, Lukas; Dittmaier, Stefan; Rzehak, Heidi

    2018-03-01

    We have calculated the next-to-leading-order electroweak and QCD corrections to the decay processes h → WW/ZZ → 4 fermions of the light CP-even Higgs boson h of various types of Two-Higgs-Doublet Models (Types I and II, "lepton-specific" and "flipped" models). The input parameters are defined in four different renormalization schemes, where parameters that are not directly accessible by experiments are defined in the \\overline{MS} scheme. Numerical results are presented for the corrections to partial decay widths for various benchmark scenarios previously motivated in the literature, where we investigate the dependence on the \\overline{MS} renormalization scale and on the choice of the renormalization scheme in detail. We find that it is crucial to be precise with these issues in parameter analyses, since parameter conversions between different schemes can involve sizeable or large corrections, especially in scenarios that are close to experimental exclusion limits or theoretical bounds. It even turns out that some renormalization schemes are not applicable in specific regions of parameter space. Our investigation of differential distributions shows that corrections beyond the Standard Model are mostly constant offsets induced by the mixing between the light and heavy CP-even Higgs bosons, so that differential analyses of h→4 f decay observables do not help to identify Two-Higgs-Doublet Models. Moreover, the decay widths do not significantly depend on the specific type of those models. The calculations are implemented in the public Monte Carlo generator Prophecy4f and ready for application.

  15. Higgs-boson contributions to gauge-boson mass shifts in extended electroweak models

    International Nuclear Information System (INIS)

    Moore, S.R.

    1985-10-01

    In the minimal standard model, the difference between the tree-level and one-loop-corrected predictions for the gauge-boson masses, known as the mass shifts, are of the order of 4%. The dominant contribution is from light-fermion loops. The Higgs-dependent terms are small, even if the Higgs boson is heavy. We have analyzed the mass shifts for models with a more complicated Higgs sector. We use the on-shell renormalization scheme, in which the parameters of the theory are the physical masses and couplings. We have considered the 2-doublet, n-doublet, triplet and doublet-triplet models. We have found that the Z-boson mass prediction has a strong dependence on the charged-Higgs mass. In the limit that the charged Higgs is much heavier than the gauge bosons, the Higgs-dependent terms become significant, and may even cancel the light-fermion terms. In the models with a Higgs triplet, there is also a strong dependence on the neutral-Higgs masses, although this contribution tends to be suppressed in realistic models. The W-boson mass shift does not have a strong Higgs dependence. If we use the Z mass as input in determining the parameters of the theory, a scenario which will become attractive as the mass of the Z is accurately measured in the next few years, we find that the W-boson mass shift exhibits the same sort of behavior, differing from the minimal model for the case of the charged Higgs being heavy. We have found that when radiative corrections are taken into account, models with extended Higgs sectors may differ significantly from the minimal standard model in their predictions for the gauge-boson masses. Thus, an accurate measurement of the masses will help shed light on the structure of the Higgs sector. 68 refs

  16. Strong first order electroweak phase transition in the CP-conserving 2HDM revisited

    International Nuclear Information System (INIS)

    Basler, P.; Krause, M.; Mühlleitner, M.; Wittbrodt, J.; Wlotzka, A.

    2017-01-01

    The discovery of the Higgs boson by the LHC experiments ATLAS and CMS has marked a milestone for particle physics. Yet, there are still many open questions that cannot be answered within the Standard Model (SM). For example, the generation of the observed matter-antimatter asymmetry in the universe through baryogenesis can only be explained qualitatively in the SM. A simple extension of the SM compatible with the current theoretical and experimental constraints is given by the 2-Higgs-Doublet Model (2HDM) where a second Higgs doublet is added to the Higgs sector. We investigate the possibility of a strong first order electroweak phase transition in the CP-conserving 2HDM type I and type II where either of the CP-even Higgs bosons is identified with the SM-like Higgs boson. The renormalisation that we apply on the loop-corrected Higgs potential allows us to efficiently scan the 2HDM parameter space and simultaneously take into account all relevant theoretical and up-to-date experimental constraints. The 2HDM parameter regions found to be compatible with the applied constraints and a strong electroweak phase transition are analysed systematically. Our results show that there is a strong interplay between the requirement of a strong phase transition and collider phenomenology with testable implications for searches at the LHC.

  17. Strong first order electroweak phase transition in the CP-conserving 2HDM revisited

    Energy Technology Data Exchange (ETDEWEB)

    Basler, P.; Krause, M.; Mühlleitner, M. [Institute for Theoretical Physics, Karlsruhe Institute of Technology,Wolfgang-Gaede-Str. 1, 76131 Karlsruhe (Germany); Wittbrodt, J. [Institute for Theoretical Physics, Karlsruhe Institute of Technology,Wolfgang-Gaede-Str. 1, 76131 Karlsruhe (Germany); Deutsches Elektronen-Synchrotron DESY,Notkestraße 85, D-22607 Hamburg (Germany); Wlotzka, A. [Institute for Theoretical Physics, Karlsruhe Institute of Technology,Wolfgang-Gaede-Str. 1, 76131 Karlsruhe (Germany)

    2017-02-23

    The discovery of the Higgs boson by the LHC experiments ATLAS and CMS has marked a milestone for particle physics. Yet, there are still many open questions that cannot be answered within the Standard Model (SM). For example, the generation of the observed matter-antimatter asymmetry in the universe through baryogenesis can only be explained qualitatively in the SM. A simple extension of the SM compatible with the current theoretical and experimental constraints is given by the 2-Higgs-Doublet Model (2HDM) where a second Higgs doublet is added to the Higgs sector. We investigate the possibility of a strong first order electroweak phase transition in the CP-conserving 2HDM type I and type II where either of the CP-even Higgs bosons is identified with the SM-like Higgs boson. The renormalisation that we apply on the loop-corrected Higgs potential allows us to efficiently scan the 2HDM parameter space and simultaneously take into account all relevant theoretical and up-to-date experimental constraints. The 2HDM parameter regions found to be compatible with the applied constraints and a strong electroweak phase transition are analysed systematically. Our results show that there is a strong interplay between the requirement of a strong phase transition and collider phenomenology with testable implications for searches at the LHC.

  18. Electroweak Baryogenesis and Higgs and Stop Searches at LEP and the Tevatron

    CERN Document Server

    Carena, M S; Wagner, C E M

    1998-01-01

    It has been recently shown that the observed baryon number may originate at the electroweak phase transition, provided that the Higgs boson and the lightest stop are sufficiently light. In this work, we perform a detailed analysis, including all dominant two-loop finite temperature corrections to the Higgs effective potential, as well as the non-trivial effects proceeding from the mixing in the stop sector, to define the region of parameter space for which electroweak baryogenesis can happen. The limits on the stop and Higgs masses are obtained by taking into account the experimental bounds on these quantities, as well as those coming from the requirement of avoiding dangerous color breaking minima. We find for the Higgs mass $m_h \\simlt 105$ GeV, while the stop mass may be close to the present experimental bound and must be smaller than, or of order of, the top quark mass. These results provide a very strong motivation for further non-perturbative analysis of the electroweak phase transition, as well as for ...

  19. Higgs boson pair production at the photon linear collider in the two Higgs doublet model

    International Nuclear Information System (INIS)

    Asakawa, Eri; Harada, Daisuke; Okada, Yasuhiro; Kanemura, Shinya; Tsumura, Koji

    2009-02-01

    We calculate the cross section of the lightest Higgs boson pair production at the Photon Linear Collider in the two Higgs doublet model. We focus on the scenario in which the lightest Higgs boson has the standard model like couplings to gauge bosons. We take into account the one-loop correction to the hhh coupling as well as additional one-loop diagrams due to charged bosons to the γγ → hh helicity amplitudes. We discuss the impact of these corrections on the hhh coupling measurement at the Photon Linear Collider. (author)

  20. Vortex solutions in two-Higgs-doublet systems

    International Nuclear Information System (INIS)

    Bimonte, G.; Lozano, G.

    1994-04-01

    We analyze the existence of string-like defects in a two-Higgs-doublet system having SU(2) x U(1) y x U(1) y , as gauge group. We are able to show that, when certain relations among the parameters hold, these configurations satisfy a set of first order differential equations (Bogomol'nyi equations) and their energy is proportional to their topological charge. (author). 12 refs

  1. Search for Higgs bosons predicted in two-Higgs-doublet models via decays to tau lepton pairs in 1.96 TeV pp collisions.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; Di Canto, A; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-11-13

    We present the results of a search for Higgs bosons predicted in two-Higgs-doublet models, in the case where the Higgs bosons decay to tau lepton pairs, using 1.8 fb(-1) of integrated luminosity of pp collisions recorded by the CDF II experiment at the Fermilab Tevatron. Studying the mass distribution in events where one or both tau leptons decay leptonically, no evidence for a Higgs boson signal is observed. The result is used to infer exclusion limits in the two-dimensional space of tanbeta versus m(A) (the ratio of the vacuum expectation values of the two Higgs doublets and the mass of the pseudoscalar boson, respectively).

  2. Top and Higgs masses from dynamical electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Kahana, D.E.

    1993-01-01

    The standard model of electroweak interactions, with the gauge and Higgs bosons appearing as composites, is derived from a Nambu-Jona-Lasinio-type four-fermion interaction, assumed to be valid above a high scale μ. Simple relationships are found for the composite boson top quark mass ratios and for the weak angle. Assuming three generations and a 'desert' hypothesis, these relationships are evolved with the full renormalization group down to present experimental energies, yielding predictions for the top quark and Higgs-boson masses, near 155 GeV for the former and near 140 GeV for the latter. In this fashion, fermion-antifermion condensates can be shown to yield a top mass consistent with that indicated from electroweak loop corrections for LEP data. (author) 23 refs

  3. Electroweak symmetry breaking: to Higgs or not to Higgs” (3/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    How do elementary particles acquire their mass? What is making the photon different from the Z boson? In a word: How is electroweak symmetry broken? This is one of the pressing questions in particle physics that the LHC will answer soon. The aim of this lectures is, after briefly introducing SM physics and the conventional Higgs mechanism, to give a survey of recent attempts to go beyond a simple elementary Higgs. In particular, I will describe composite models (where the Higgs boson emerges from a strongly-interacting sector) and Higsless models. Distinctive signatures at the LHC are expected and will reveal the true nature of the electroweak symmetry sector.

  4. Electroweak symmetry breaking: to Higgs or not to Higgs” (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    How do elementary particles acquire their mass? What is making the photon different from the Z boson? In a word: How is electroweak symmetry broken? This is one of the pressing questions in particle physics that the LHC will answer soon. The aim of this lectures is, after briefly introducing SM physics and the conventional Higgs mechanism, to give a survey of recent attempts to go beyond a simple elementary Higgs. In particular, I will describe composite models (where the Higgs boson emerges from a strongly-interacting sector) and Higsless models. Distinctive signatures at the LHC are expected and will reveal the true nature of the electroweak symmetry sector.

  5. Electroweak symmetry breaking: to Higgs or not to Higgs” (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    How do elementary particles acquire their mass? What is making the photon different from the Z boson? In a word: How is electroweak symmetry broken? This is one of the pressing questions in particle physics that the LHC will answer soon. The aim of this lectures is, after briefly introducing SM physics and the conventional Higgs mechanism, to give a survey of recent attempts to go beyond a simple elementary Higgs. In particular, I will describe composite models (where the Higgs boson emerges from a strongly-interacting sector) and Higsless models. Distinctive signatures at the LHC are expected and will reveal the true nature of the electroweak symmetry sector.

  6. Anatomy of the inert two-Higgs-doublet model in the light of the LHC and non-LHC dark matter searches

    Science.gov (United States)

    Belyaev, Alexander; Cacciapaglia, Giacomo; Ivanov, Igor P.; Rojas-Abatte, Felipe; Thomas, Marc

    2018-02-01

    The inert two-Higgs-doublet model (i2HDM) is a theoretically well-motivated example of a minimal consistent dark matter (DM) model which provides monojet, mono-Z , mono-Higgs, and vector-boson-fusion +ETmiss signatures at the LHC, complemented by signals in direct and indirect DM search experiments. In this paper we have performed a detailed analysis of the constraints in the full five-dimensional parameter space of the i2HDM, coming from perturbativity, unitarity, electroweak precision data, Higgs data from the LHC, DM relic density, direct/indirect DM detection, and LHC monojet analysis, as well as implications of experimental LHC studies on disappearing charged tracks relevant to a high DM mass region. We demonstrate the complementarity of the above constraints and present projections for future LHC data and direct DM detection experiments to probe further i2HDM parameter space. The model is implemented into the CalcHEP and micrOMEGAs packages, which are publicly available at the HEPMDB database, and it is ready for a further exploration in the context of the LHC, relic density, and DM direct detection.

  7. Updated status of the global electroweak fit and constraints on new physics

    Energy Technology Data Exchange (ETDEWEB)

    Baak, M.; Hoecker, A.; Schott, M. [CERN, Geneva (Switzerland); Goebel, M.; Ludwig, D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Haller, J. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Goettingen Univ. (Germany). II. Physikalisches Inst.; Moenig, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Stelzer, J. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy

    2011-07-15

    We present an update of the Standard Model fit to electroweak precision data. We include newest experimental results on the top quark mass, the W mass and width, and the Higgs boson mass bounds from LEP, Tevatron and the LHC. We also include a new determination of the electromagnetic coupling strength at the Z pole. We find for the Higgs boson mass 96{sub -24}{sup +31} GeV and 120{sub -5}{sup +12} GeV when not including and including the direct Higgs searches, respectively. From the latter fit we indirectly determine the W mass to be (80.362{+-} 0.013)GeV. We exploit the data to determine experimental constraints on the oblique vacuum polarisation parameters, and confront these with predictions from the Standard Model (SM) and selected SM extensions. By fitting the oblique parameters to the electroweak data we derive allowed regions in the BSM parameter spaces. We revisit and consistently update these constraints for a fourth fermion generation, two Higgs doublet, inert Higgs and littlest Higgs models, models with large, universal or warped extra dimensions and technicolour. In most of the models studied a heavy Higgs boson can be made compatible with the electroweak precision data. (orig.)

  8. Higgs mass implications on the stability of the electroweak vacuum: a NNLO analysis

    International Nuclear Information System (INIS)

    Elias-Miro, J.

    2014-01-01

    The mass range M n ≅ 124.5 - 126.5 GeV, of the discovered Higgs-like particle is a specially interesting range from the stability of the electroweak vacuum point of view. As we will show, for such mass range and assuming a Standard Model Higgs, the electroweak vacuum lies almost in between being absolutely stable up to the Planck scale and unstable, i.e. the Standard Mode effective potential presents a second minimum, deeper than the electroweak one, below the Planck scale. This observation motivates a higher order precision analysis of the Standard Model effective potential. We will review the first complete next-to-next-to-leading order analysis of the Standard Model Higgs potential made recently. Then, we will be able to conclude whether or not the SM can be consistently extrapolated up to the Planck scale. (author)

  9. Interference contributions to gluon initiated heavy Higgs production in the Two-Higgs-Doublet Model

    International Nuclear Information System (INIS)

    Greiner, Nicolas

    2016-03-01

    We discuss the production of a heavy neutral Higgs boson of a CP-conserving Two-Higgs-Doublet Model in gluon fusion and its decay into a four-fermion final state, gg(→VV)→e + e - π + π - /e + e - ν l anti ν l . We investigate the interference contributions to invariant mass distributions of the four-fermion final state and other relevant kinematical observables. The relative importance of the different contributions is quantified for the process in the on-shell approximation, gg→ZZ. We show that interferences of the heavy Higgs with the light Higgs boson and background contributions are essential for a correct description of the differential cross section. Even though they contribute below O(10%) to those heavy Higgs signal cross sections, to which the experiments at the Large Hadron Collider were sensitive in its first run, we find that they are sizeable in certain regions of the parameter space that are relevant for future heavy Higgs boson searches. In fact, the interference contributions can significantly enhance the experimental sensitivity to the heavy Higgs boson.

  10. Quantum chromodynamics effects in electroweak and Higgs physics

    Indian Academy of Sciences (India)

    Several examples of the often intricate effects of higher-order quantum chromodynamics (QCD) corrections on predictions for hadron-collider observables, are discussed, using the production of electroweak gauge boson and the Standard Model Higgs boson as examples. Particular attention is given to the interplay of QCD ...

  11. Looking for New Naturally Aligned Higgs Doublets at the LHC

    CERN Document Server

    Pilaftsis, Apostolos

    2015-10-30

    Since the current LHC Higgs data suggest the couplings of the observed 125 GeV Higgs boson to be close to the Standard Model (SM) expectations, any extended Higgs sector must lead to the so-called SM alignment limit, where one of the Higgs bosons behaves exactly like that of the SM. In the context of the Two Higgs Doublet Model (2HDM), this alignment is often associated with either decoupling of the heavy Higgs sector or accidental cancellations in the 2HDM potential. We present a novel symmetry justification for 'natural' alignment without necessarily decoupling or fine-tuning. We show that there exist only three different symmetry realizations of the natural alignment scenario in 2HDM. We analyze new collider signals for the heavy Higgs sector in the natural alignment limit, which dominantly lead to third-generation quarks in the final state and can serve as a useful observational tool during the Run-II phase of the LHC.

  12. Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future

    Energy Technology Data Exchange (ETDEWEB)

    Blas, J. de [INFN, Sezione di Roma,Piazzale A. Moro 2, I-00185 Rome (Italy); Ciuchini, M. [INFN, Sezione di Roma Tre,Via della Vasca Navale 84, I-00146 Roma (Italy); Franco, E. [INFN, Sezione di Roma,Piazzale A. Moro 2, I-00185 Rome (Italy); Mishima, S. [Theory Center, Institute of Particle and Nuclear Studies (IPNS),High Energy Accelerator Research Organization (KEK),1-1 Oho, Tsukuba, 305-0801 (Japan); Pierini, M. [CERN,Geneva (Switzerland); Reina, L. [Physics Department, Florida State University,77 Chieftan Way, Tallahassee, FL 32306-4350 (United States); Kavli Institute for Theoretical Physics, University of California,Kohn Hall, Santa Barbara, CA 93106-4030 (United States); Silvestrini, L. [INFN, Sezione di Roma,Piazzale A. Moro 2, I-00185 Rome (Italy)

    2016-12-27

    We present results from a state-of-the-art fit of electroweak precision observables and Higgs-boson signal-strength measurements performed using 7 and 8 TeV data from the Large Hadron Collider. Based on the HEPfit package, our study updates the traditional fit of electroweak precision observables and extends it to include Higgs-boson measurements. As a result we obtain constraints on new physics corrections to both electroweak observables and Higgs-boson couplings. We present the projected accuracy of the fit taking into account the expected sensitivities at future colliders.

  13. Electroweak vacuum stability in the Higgs-Dilaton theory

    Energy Technology Data Exchange (ETDEWEB)

    Shkerin, A. [Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL),CH-1015, Lausanne (Switzerland); Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary prospect 7a, 117312, Moscow (Russian Federation)

    2017-05-30

    We study the stability of the Electroweak (EW) vacuum in a scale-invariant extension of the Standard Model and General Relativity, known as a Higgs-Dilaton theory. The safety of the EW vacuum against possible transition towards another vacuum is a necessary condition for the model to be phenomenologically acceptable. We find that, within a wide range of parameters of the theory, the decay rate is significantly suppressed compared to that of the Standard Model. We also discuss properties of a tunneling solution that are specific to the Higgs-Dilaton theory.

  14. Electroweak phase transitions

    International Nuclear Information System (INIS)

    Anderson, G.W.

    1991-01-01

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, left-angle φ right-angle T is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of left-angle φ right-angle T . In very minimal extensions of the standard model it is quite easy to increase left-angle φ right-angle T so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value left-angle φ right-angle = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state left-angle φ right-angle = 246 GeV unstable. The requirement that the state left-angle φ right-angle = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field

  15. Standard model fermion hierarchies with multiple Higgs doublets

    International Nuclear Information System (INIS)

    Solaguren-Beascoa Negre, Ana

    2016-01-01

    The hierarchies between the Standard Model (SM) fermion masses and mixing angles and the origin of neutrino masses are two of the biggest mysteries in particle physics. We extend the SM with new Higgs doublets to solve these issues. The lightest fermion masses and the mixing angles are generated through radiative effects, correctly reproducing the hierarchy pattern. Neutrino masses are generated in the see-saw mechanism.

  16. Updated Status of the Global Electroweak Fit and Constraints on New Physics

    CERN Document Server

    Baak, M; Haller, J; Hoecker, A; Kennedy, D; Moenig, K; Schott, M; Stelzer, J

    2012-01-01

    We present an update of the Standard Model fit to electroweak precision data. We include newest experimental results on the top quark mass, the W mass and width, and the Higgs boson mass bounds from LEP, Tevatron and the LHC. We also include a new determination of the electromagnetic coupling strength at the Z pole. We find for the Higgs boson mass (96 +31 -24) GeV and (120 +12 -5) GeV when not including and including the direct Higgs searches, respectively. From the latter fit we indirectly determine the W mass to be (80.362 +- 0.013) GeV. We exploit the data to determine experimental constraints on the oblique vacuum polarisation parameters, and confront these with predictions from the Standard Model (SM) and selected SM extensions. By fitting the oblique parameters to the electroweak data we derive allowed regions in the BSM parameter spaces. We revisit and consistently update these constraints for a fourth fourth fermion generation, two Higgs doublet, inert Higgs and littlest Higgs models, models with lar...

  17. Updated Status of the Global Electroweak Fit and Constraints on New Physics

    CERN Document Server

    Baak, Max; Haller, Johannes; Hoecker, Andreas; Ludwig, Doerthe; Moenig, Klaus; Schott, Matthias; Stelzer, Joerg

    2011-01-01

    We present an update of the Standard Model fit to electroweak precision data. We include newest experimental results on the top quark mass, the W mass and width, and the Higgs boson mass bounds from LEP, Tevatron and the cLHC. We also include a new determination of the electromagnetic coupling strength at the Z pole. We find for the Higgs boson mass (96 +31 -24) GeV and (120 +12 -5) GeV when not including and including the direct Higgs searches, respectively. From the latter fit we indirectly determine the W mass to be (80.359 +0.017 -0.010) GeV. We exploit the data to determine experimental constraints on the oblique vacuum polarisation parameters, and confront these with predictions from the Standard Model (SM) and selected SM extensions. By fitting the oblique parameters to the electroweak data we derive allowed regions in the BSM parameter spaces. We revisit and consistently update these constraints for a fourth family, two Higgs doublet, inert Higgs and littlest Higgs models, models with large,...

  18. {Delta}r in the Two-Higgs-Doublet Model at full one loop level - and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Val, David [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); Sola, Joan [Universitat de Barcelona, Dept. Estructura i Constituents de la Materia, Barcelona, Catalonia (Spain); Institut de Ciencies del Cosmos, Barcelona, Catalonia (Spain)

    2013-04-15

    After the recent discovery of a Higgs-like boson particle at the CERN LHC-collider, it becomes more necessary than ever to prepare ourselves for identifying its standard or non-standard nature. The fundamental parameter {Delta}r, relating the values of the electroweak gauge boson masses and the Fermi constant, is the traditional observable encoding high precision information of the quantum effects. In this work we present a complete quantitative study of {Delta}r in the framework of the general Two-Higgs-Doublet Model (2HDM). While the one-loop analysis of {Delta}r in this model was carried out long ago, in the first part of our work we consistently incorporate the higher order effects that have been computed since then for the SM part of {Delta}r. Within the on-shell scheme, we find typical corrections leading to shifts of {proportional_to}20-40 MeV on the W mass, resulting in a better agreement with its experimentally measured value and in a degree no less significant than in the MSSM case. In the second part of our study we devise a set of effective couplings that capture the dominant higher order genuine 2HDM quantum effects on the {delta}{rho} part of {Delta}r in the limit of large Higgs boson self-interactions. This limit constitutes a telltale property of the general 2HDM which is unmatched by e.g. the MSSM. (orig.)

  19. Δr in the Two-Higgs-Doublet Model at full one loop level - and beyond

    International Nuclear Information System (INIS)

    Lopez-Val, David; Sola, Joan

    2013-01-01

    After the recent discovery of a Higgs-like boson particle at the CERN LHC-collider, it becomes more necessary than ever to prepare ourselves for identifying its standard or non-standard nature. The fundamental parameter Δr, relating the values of the electroweak gauge boson masses and the Fermi constant, is the traditional observable encoding high precision information of the quantum effects. In this work we present a complete quantitative study of Δr in the framework of the general Two-Higgs-Doublet Model (2HDM). While the one-loop analysis of Δr in this model was carried out long ago, in the first part of our work we consistently incorporate the higher order effects that have been computed since then for the SM part of Δr. Within the on-shell scheme, we find typical corrections leading to shifts of ∝20-40 MeV on the W mass, resulting in a better agreement with its experimentally measured value and in a degree no less significant than in the MSSM case. In the second part of our study we devise a set of effective couplings that capture the dominant higher order genuine 2HDM quantum effects on the δρ part of Δr in the limit of large Higgs boson self-interactions. This limit constitutes a telltale property of the general 2HDM which is unmatched by e.g. the MSSM. (orig.)

  20. Impact of a CP-violating Higgs sector: from LHC to baryogenesis.

    Science.gov (United States)

    Shu, Jing; Zhang, Yue

    2013-08-30

    We observe a generic connection between LHC Higgs data and electroweak baryogenesis: the particle that contributes to the CP-odd hgg or hγγ vertex would provide the CP-violating source during a first-order phase transition. It is illustrated in the two Higgs doublet model that a common complex phase controls the lightest Higgs properties at the LHC, electric dipole moments, and the CP-violating source for electroweak baryogenesis. We perform a general parametrization of Higgs effective couplings and a global fit to the LHC Higgs data. Current LHC measurements prefer a nonzero phase for tanβ≲1 and electric dipole moment constraints still allow an order-one phase for tanβ∼1, which gives sufficient room to generate the correct cosmic baryon asymmetry. We also give some prospects in the direct measurements of CP violation in the Higgs sector at the LHC.

  1. Higgs naturalness and dark matter stability by scale invariance

    Directory of Open Access Journals (Sweden)

    Jun Guo

    2015-09-01

    Full Text Available Extending the spacetime symmetries of standard model (SM by scale invariance (SI may address the Higgs naturalness problem. In this article we attempt to embed accidental dark matter (DM into SISM, requiring that the symmetry protecting DM stability is accidental due to the model structure rather than imposed by hand. In this framework, if the light SM-like Higgs boson is the pseudo Goldstone boson of SI spontaneously breaking, we can even pine down the model, two-Higgs-doublets plus a real singlet: The singlet is the DM candidate and the extra Higgs doublet triggers electroweak symmetry breaking via the Coleman–Weinberg mechanism; Moreover, it dominates DM dynamics. We study spontaneously breaking of SI using the Gillard–Weinberg approach and find that the second doublet should acquire vacuum expectation value near the weak scale. Moreover, its components should acquire masses around 380 GeV except for a light CP-odd Higgs boson. Based on these features, we explore viable ways to achieve the correct relic density of DM, facing stringent constraints from direct detections of DM. For instance, DM annihilates into bb¯ near the SM-like Higgs boson pole, or into a pair of CP-odd Higgs boson with mass above that pole.

  2. Inert doublet dark matter with an additional scalar singlet and 125 GeV Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Dutta Banik, Amit; Majumdar, Debasish [Saha Institute of Nuclear Physics, Astroparticle Physics and Cosmology Division, Kolkata (India)

    2014-11-15

    In this work we consider a model for particle dark matter where an extra inert Higgs doublet and an additional scalar singlet is added to the Standard Model (SM) Lagrangian. The dark matter candidate is obtained from only the inert doublet. The stability of this one component dark matter is ensured by imposing a Z{sub 2} symmetry on this additional inert doublet. The additional singlet scalar has a vacuum expectation value (VEV) and mixes with the Standard Model Higgs doublet, resulting in two CP even scalars h{sub 1} and h{sub 2}. We treat one of these scalars, h{sub 1}, to be consistent with the SM Higgs-like boson of mass around 125 GeV reported by the LHC experiment. These two CP even scalars contribute to the annihilation cross section of this inert doublet dark matter, resulting in a larger dark matter mass region that satisfies the observed relic density. We also investigate the h{sub 1} → γγ and h{sub 1} → γ Z processes and compared these with LHC results. This is also used to constrain the dark matter parameter space in the present model. We find that the dark matter candidate in the mass region 60-80 GeV (m{sub 1} = 125 GeV, mass of h{sub 1}) satisfies the recent bound from LUX direct detection experiment. (orig.)

  3. On Minimal Dark Matter coupled to the Higgs

    OpenAIRE

    Honorez, Laura; Tytgat, Michel; Tziveloglou, Pantelis; Zaldivar, Bryan

    2018-01-01

    We provide a unified presentation of extensions of the Minimal Dark Matter framework in which new fermionic electroweak multiplets are coupled to each other via the Standard Model Higgs doublet. We study systematically the generic features of all the possibilities, starting with a singlet and two doublets (akin to Bino-Higgsino dark matter) up to a Majorana quintuplet coupled to two Weyl quadruplets. We pay special attention to this last case, since it has not yet been discussed in the litera...

  4. The CP-violating 2HDM in light of a strong first order electroweak phase transition and implications for Higgs pair production

    Science.gov (United States)

    Basler, P.; Mühlleitner, M.; Wittbrodt, J.

    2018-03-01

    We investigate the strength of the electroweak phase transition (EWPT) within the CP-violating 2-Higgs-Doublet Model (C2HDM). The 2HDM is a simple and well-studied model, which can feature CP violation at tree level in its extended scalar sector. This makes it, in contrast to the Standard Model (SM), a promising candidate for explaining the baryon asymmetry of the universe through electroweak baryogenesis. We apply a renormalisation scheme which allows efficient scans of the C2HDM parameter space by using the loop-corrected masses and mixing matrix as input parameters. This procedure enables us to investigate the possibility of a strong first order EWPT required for baryogenesis and study its phenomenological implications for the LHC. Like in the CP-conserving (real) 2HDM (R2HDM) we find that a strong EWPT favours mass gaps between the non-SM-like Higgs bosons. These lead to prominent final states comprised of gauge+Higgs bosons or pairs of Higgs bosons. In contrast to the R2HDM, the CP-mixing of the C2HDM also favours approximately mass degenerate spectra with dominant decays into SM particles. The requirement of a strong EWPT further allows us to distinguish the C2HDM from the R2HDM using the signal strengths of the SM-like Higgs boson. We additionally find that a strong EWPT requires an enhancement of the SM-like trilinear Higgs coupling at next-to-leading order (NLO) by up to a factor of 2.4 compared to the NLO SM coupling, establishing another link between cosmology and collider phenomenology. We provide several C2HDM benchmark scenarios compatible with a strong EWPT and all experimental and theoretical constraints. We include the dominant branching ratios of the non-SM-like Higgs bosons as well as the Higgs pair production cross section of the SM-like Higgs boson for every benchmark point. The pair production cross sections can be substantially enhanced compared to the SM and could be observable at the high-luminosity LHC, allowing access to the trilinear

  5. Low-energy effective theory, unitarity, and nondecoupling behavior in a model with heavy Higgs-triplet fields

    International Nuclear Information System (INIS)

    Chivukula, R. Sekhar; Christensen, Neil D.; Simmons, Elizabeth H.

    2008-01-01

    We discuss the properties of a model incorporating both a scalar electroweak Higgs doublet and an electroweak Higgs triplet. We construct the low-energy effective theory for the light Higgs doublet in the limit of small (but nonzero) deviations in the ρ parameter from one, a limit in which the triplet states become heavy. For Δρ>0, perturbative unitarity of WW scattering breaks down at a scale inversely proportional to the renormalized vacuum expectation value of the triplet field (or, equivalently, inversely proportional to the square root of Δρ). This result imposes an upper limit on the mass scale of the heavy triplet bosons in a perturbative theory; we show that this upper bound is consistent with dimensional analysis in the low-energy effective theory. Recent articles have shown that the triplet bosons do not decouple, in the sense that deviations in the ρ parameter from one do not necessarily vanish at one-loop in the limit of large triplet mass. We clarify that, despite the nondecoupling behavior of the Higgs triplet, this model does not violate the decoupling theorem since it incorporates a large dimensionful coupling. Nonetheless, we show that if the triplet-Higgs boson masses are of order the grand unified theory scale, perturbative consistency of the theory requires the (properly renormalized) Higgs-triplet vacuum expectation value to be so small as to be irrelevant for electroweak phenomenology

  6. Prospects for charged Higgs searches at the LHC

    CERN Document Server

    Akeroyd, A.G.; Arhrib, A.; Basso, L.; Ginzburg, I.F.; Guedes, R.; Hernandez-Sanchez, J.; Huitu, K.; Hurth, T.; Kadastik, M.; Kanemura, S.; Kannike, K.; Khater, W.; Krawczyk, M.; Mahmoudi, F.; Moretti, S.; Najjari, S.; Osland, P.; Pruna, G.M.; Purmohammadi, M.; Racioppi, A.; Raidal, M.; Santos, R.; Sharma, P.; Sokolowska, D.; Staal, O.; Yagyu, K.; Yildirim, E.

    2017-05-03

    The goal of this report is to summarize the current situation and discuss possible search strategies for charged scalars, in non-supersymmetric extensions of the Standard Model at the LHC. Such scalars appear in Multi-Higgs-Doublet models (MHDM), in particular in the popular Two-Higgs-Doublet model (2HDM), allowing for charged and more neutral Higgs bosons. These models have the attractive property that electroweak precision observables are automatically in agreement with the Standard Model at the tree level. For the most popular version of this framework, Model~II, a discovery of a charged Higgs boson remains challenging, since the parameter space is becoming very constrained, and the QCD background is very high. We also briefly comment on models with dark matter which constrain the corresponding charged scalars that occur in these models. The stakes of a possible discovery of an extended scalar sector are very high, and these searches should be pursued in all conceivable channels, at the LHC and at future c...

  7. Prospects for charged Higgs searches at the LHC

    International Nuclear Information System (INIS)

    Akeroyd, A.G.; Moretti, S.; Yagyu, K.; Yildirim, E.; Aoki, M.; Arhrib, A.; Basso, L.; Ginzburg, I.F.; Guedes, R.; Hernandez-Sanchez, J.; Huitu, K.; Hurth, T.; Kadastik, M.; Kannike, K.; Racioppi, A.; Raidal, M.; Kanemura, S.; Khater, W.; Krawczyk, M.; Najjari, S.; Sokolowska, D.; Mahmoudi, F.; Osland, P.; Purmohammadi, M.; Pruna, G.M.; Santos, R.; Sharma, P.; Staal, O.

    2017-01-01

    The goal of this report is to summarize the current situation and discuss possible search strategies for charged scalars, in non-supersymmetric extensions of the Standard Model at the LHC. Such scalars appear in Multi-Higgs-Doublet models, in particular in the popular Two-Higgs-Doublet model, allowing for charged and additional neutral Higgs bosons. These models have the attractive property that electroweak precision observables are automatically in agreement with the Standard Model at the tree level. For the most popular version of this framework, Model II, a discovery of a charged Higgs boson remains challenging, since the parameter space is becoming very constrained, and the QCD background is very high. We also briefly comment on models with dark matter which constrain the corresponding charged scalars that occur in these models. The stakes of a possible discovery of an extended scalar sector are very high, and these searches should be pursued in all conceivable channels, at the LHC and at future colliders. (orig.)

  8. Prospects for charged Higgs searches at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Akeroyd, A.G.; Moretti, S.; Yagyu, K.; Yildirim, E. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Aoki, M. [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan); Arhrib, A. [Universite Abdelmalek Essaadi, Departement de Mathematique, Faculte des Sciences et Techniques, Tangier (Morocco); Faculte des Sciences-Semlalia, LPHEA, Marrakesh (Morocco); Basso, L. [CPPM, Aix-Marseille Universite, CNRS-IN2P3, UMR 7346, Marseille Cedex 9 (France); Ginzburg, I.F. [Novosibirsk University, Sobolev Institute of Mathematics SB RAS, Novosibirsk (Russian Federation); Guedes, R. [FCSH - New University of Lisbon, IHC, Instituto de Historia Contemporanea, Lisbon (Portugal); Hernandez-Sanchez, J. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica, Puebla, Puebla (Mexico); Dual C-P Institute of High Energy Physics, Colima (Mexico); Huitu, K. [University of Helsinki, Department of Physics, and Helsinki Institute of Physics, Helsinki (Finland); Hurth, T. [Johannes Gutenberg University, PRISMA Cluster of Excellence and Institute for Physics (THEP), Mainz (Germany); Kadastik, M.; Kannike, K.; Racioppi, A.; Raidal, M. [National Institute of Chemical Physics and Biophysics, Tallinn (Estonia); Kanemura, S. [University of Toyama, Department of Physics, Toyama (Japan); Khater, W. [Birzeit University, Department of Physics, West Bank (Palestinian Territory, Occupied); Krawczyk, M.; Najjari, S.; Sokolowska, D. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Mahmoudi, F. [Lyon 1 Univ., ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon, UMR5574, Saint-Genis-Laval (France); CERN, Theoretical Physics Department, Geneva 23 (Switzerland); Osland, P.; Purmohammadi, M. [University of Bergen, Department of Physics and Technology, Postboks 7803, Bergen (Norway); Pruna, G.M. [Paul Scherrer Institute, Villigen (Switzerland); Santos, R. [Universidade de Lisboa, Campo Grande, Centro de Fisica Teorica e Computacional, Faculdade de Ciencias, Lisbon (Portugal); Instituto Superior de Engenharia de Lisboa - ISEL, Lisbon (Portugal); Sharma, P. [The University of Adelaide, Center of Excellence in Particle Physics (CoEPP), Adelaide, SA (Australia); Staal, O. [Stockholm University, Department of Physics, The Oskar Klein Centre, Stockholm (Sweden)

    2017-05-15

    The goal of this report is to summarize the current situation and discuss possible search strategies for charged scalars, in non-supersymmetric extensions of the Standard Model at the LHC. Such scalars appear in Multi-Higgs-Doublet models, in particular in the popular Two-Higgs-Doublet model, allowing for charged and additional neutral Higgs bosons. These models have the attractive property that electroweak precision observables are automatically in agreement with the Standard Model at the tree level. For the most popular version of this framework, Model II, a discovery of a charged Higgs boson remains challenging, since the parameter space is becoming very constrained, and the QCD background is very high. We also briefly comment on models with dark matter which constrain the corresponding charged scalars that occur in these models. The stakes of a possible discovery of an extended scalar sector are very high, and these searches should be pursued in all conceivable channels, at the LHC and at future colliders. (orig.)

  9. Minkowski space structure of the Higgs potential in the two-Higgs-doublet model. II. Minima, symmetries, and topology

    International Nuclear Information System (INIS)

    Ivanov, I. P.

    2008-01-01

    We continue to explore the consequences of the recently discovered Minkowski space structure of the Higgs potential in the two-Higgs-doublet model. Here, we focus on the vacuum properties. The search for extrema of the Higgs potential is reformulated in terms of 3-quadrics in the 3+1-dimensional Minkowski space. We prove that 2HDM cannot have more than two local minima in the orbit space and that a twice-degenerate minimum can arise only via spontaneous violation of a discrete symmetry of the Higgs potential. Investigating topology of the 3-quadrics, we give concise criteria for existence of noncontractible paths in the Higgs orbit space. We also study explicit symmetries of the Higgs potential/Lagrangian and their spontaneous violation from a wider perspective than usual

  10. Search for non-minimal Higgs bosons in Z0 decays with the L3 detector at LEP

    International Nuclear Information System (INIS)

    Sopczak, A.

    1992-01-01

    A general search for neutral and charged Higgs bosons in e + e - collisions at the Z 0 resonance is reported. No assumption that the Higgs sector consists of one doublet as in the Minimal Standard Model (MSM) is made. In the MSM of electroweak interactions, a single Higgs doublet generates the masses for the gauge bosons and for the charged fermions via spontaneous breaking of the gauge symmetry. With only one doublet, Higgs boson production and decay properties depend only on the Higgs boson mass. The LEP experiments have searched for the MSM Higgs boson and exclude it for masses less than about 60 GeV. It is quite possible that the actual scalar sector in nature has more than one doublet of Higgs bosons or has Higgs bosons in other multiplets. This is expected in many theories that go beyond the Standard Model. In Supersymmetric models, at least two Higgs doublets are predicted. A model with two Higgs doublets illustrates some processes that occur in more general models. If the Higgs sector contains more than a single doublet, rates for bremsstrahlung of the lightest Higgs boson from the Z 0 are no longer uniquely predicted and are generally lower than in the MSM. At the same time, with a richer Higgs sector, pairs of Higgs particles can be produced in Z 0 decays. Therefore, if one is to find a non-MSM Higgs boson at LEP, one must search for bremsstrahlung at lower rates than predicted in the MSM and for Higgs boson pair-production. This work is based on the 1990 and 1991 L3 data sample which totals 408,000 hadronic Z 0 decays, collected at center-of-mass energies between 88.2 and 94.3 GeV. No Higgs signal inconsistent with background is observed in any of the decay channels analyzed. From the results of direct searches, model-independent limits on Higgs boson bremsstrahlung and on Higgs boson pair-production from the Z 0 are presented. The bremsstrahlung limits are interpreted in a general two-doublet model

  11. Electroweak and Higgs boson production at the LHC

    Directory of Open Access Journals (Sweden)

    Lazopoulos Achilleas

    2013-05-01

    Full Text Available I summarize very briefly the status of theory predictions for the production of electroweak and Higgs bosons at the LHC, highlighting recent developments and issues that have attracted the interest of the theory community. The focus is on inclusive and fixed order differential computations and related developments in parton showers are not discussed at all in this contribution.

  12. Electroweak vacuum instability and renormalized Higgs field vacuum fluctuations in the inflationary universe

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori [Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan); Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan)

    2017-08-01

    In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations < δ φ {sup 2} > enlarge in proportion to the Hubble scale H {sup 2}. Therefore, the large inflationary vacuum fluctuations of the Higgs field < δ φ {sup 2} > are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations < δ φ {sup 2} >, i.e., the vacuum expectation values have an ultraviolet divergence, and therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field φ determined by the effective potential V {sub eff}( φ ) in curved space-time and the renormalized vacuum fluctuations < δ φ {sup 2} >{sub ren} via adiabatic regularization and point-splitting regularization. We simply suppose that the Higgs field only couples the gravity via the non-minimal Higgs-gravity coupling ξ(μ). In this scenario, the electroweak vacuum stability is inevitably threatened by the dynamical behavior of the homogeneous Higgs field φ, or the formations of AdS domains or bubbles unless the Hubble scale is small enough H < Λ {sub I} .

  13. Analysis of the phase structure in extended Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Seniuch, M.

    2006-07-07

    We study the generation of the baryon asymmetry in the context of electroweak baryogenesis in two different extensions of the Standard Model. First, we consider an effective theory, in which the Standard Model is augmented by an additional dimension-six Higgs operator. The effects of new physics beyond a cut-off scale are parameterized by this operator. The second model is the two-Higgs-doublet model, whose particle spectrum is extended by two further neutral and two charged heavy Higgs bosons. In both cases we focus on the properties of the electroweak phase transition, especially on its strength and the profile of the nucleating bubbles. After reviewing some general aspects of the electroweak phase transition and baryogenesis we derive the respective thermal effective potentials to one-loop order. We systematically study the parameter spaces, using numerical methods, and compute the strength of the phase transition and the wall thickness as a function of the Higgs masses. We find a strong first order transition for a light Higgs state with a mass up to about 200 GeV. In case of the dimension-six model the cut-off scale has to stay between 500 and 850 GeV, in the two-Higgs-doublet model one needs at least one heavy Higgs mass of 300 GeV. The wall thickness varies for both theories in the range roughly from two to fifteen, in units of the inverse critical temperature. We also estimate the size of the electron and neutron electric dipole moments, since new sources of CP violation give rise to them. In wide ranges of the parameter space we are not in conflict with the experimental bounds. Finally the baryon asymmetry, which is predicted by these models, is related to the Higgs mass and the other appropriate input parameters. In both models the measured baryon asymmetry can be achieved for natural values of the model parameters. (orig.)

  14. Natural Dark Matter from an unnatural Higgs boson and new colored particles at the TeV scale

    International Nuclear Information System (INIS)

    Pierce, Aaron; Thaler, Jesse

    2007-01-01

    The thermal relic abundance of Dark Matter motivates the existence of new electroweak scale particles, independent of naturalness considerations. However, most unnatural Dark Matter models do not ensure the presence of new particles charged under SU(3) C , resulting in challenging LHC phenomenology. Here, we present a class of models with scalar electroweak doublet Dark Matter that require a host of colored particles at the TeV scale. In these models, the Higgs boson is apparently fine-tuned, but the Dark Matter doublet is kept light without any additional fine-tuning

  15. Electroweak oblique parameters as a probe of the trilinear Higgs boson self-interaction

    DEFF Research Database (Denmark)

    Kribs, Graham D.; Maier, Andreas; Rzehak, Heidi

    2017-01-01

    We calculate the two-loop contributions from a modified trilinear Higgs self-interaction, κλλSMvh3, to the electroweak oblique parameters S and T. Using the current bounds on S and T from electroweak measurements, we find the 95% C.L. constraint on the modified trilinear coupling to be -14.0≤κλ≤17.......4. The largest effects on S and T arise from two insertions of the modified trilinear coupling that result in T/S≃-3/2; remarkably, this is nearly parallel to the axis of the tightest experimental constraint in the S-T plane. No contributions to S and T arise from a modified Higgs quartic coupling at two......-loop order. These calculations utilized a gauge-invariant parametrization of the trilinear Higgs coupling in terms of higher-dimensional operators (H†H)n with n≥3. Interestingly, the bounds on κλ that we obtain are comparable to constraints from di-Higgs production at the LHC as well as recent bounds from...

  16. Restrictions on two Higgs doublet models and CP violation at the unification scale

    International Nuclear Information System (INIS)

    Athanasiu, G.G.

    1987-01-01

    In Part I we examine bounds from CP violation in the neutral K system on charged Higgs masses and couplings in models with two Higgs doublets. While CP violation is still due only to a non-zero phase in the Kobayashi-Maskawa matrix, there are additional short-distance contributions involving charged Higgs exchange rather than W boson exchange. By having CP violation in the mass matrix, but not in the kaon to two pions decay amplitude, largely due to Higgs exchange, it is possible to obtain a small value of ε'/ε. In Part II we obtain bounds on charged-Higgs-boson masses and couplings in two Higgs doublet models from their effects on neutral-B-meson mixing. The bounds are comparable to those obtained with additional assumptions from the neutral-K-system. Neutral-Higgs-boson effects on the spectrum and wave functions of tt bound states are examined in the same model. In the future they could lead to restrictions on, or discovery of, the corresponding neutral Higgs bosons if they have relatively low masses and enhanced couplings. Finally, in Part III, the three generation phase invariant measure of CP violation is shown to satisfy a simple and solvable renormalization group equation. Its value falls by four to eight orders of magnitude between the weak and grand unification scales in the standard model, as well as in its two Higgs and supersymmetric extensions. Such a small value of CP violation at the grand unification scale can pose a problem for baryogenesis; this avoided if there are heavy quarks with masses close to their fixed points

  17. Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment

    CERN Document Server

    Dev, P S Bhupal

    2014-01-01

    We study the Higgs mass spectrum as predicted by a Maximally Symmetric Two Higgs Doublet Model (MS-2HDM) potential based on the SO(5) group, softly broken by bilinear Higgs mass terms. We show that the lightest Higgs sector resulting from this MS-2HDM becomes naturally aligned with that of the Standard Model (SM), independently of the charged Higgs boson mass and $\\tan \\beta$. In the context of Type-II 2HDM, SO(5) is the simplest of the three possible symmetry realizations of the scalar potential that can naturally lead to the SM alignment. Nevertheless, renormalization group effects due to the hypercharge gauge coupling $g'$ and third-generation Yukawa couplings may break sizeably this SM alignment, along with the custodial symmetry inherited by the SO(5) group. Using the current Higgs signal strength data from the LHC, which disfavour large deviations from the SM alignment limit, we derive lower mass bounds on the heavy Higgs sector as a function of $\\tan\\beta$, which can be stronger than the existing limit...

  18. Toward verification of electroweak baryogenesis by electric dipole moments

    International Nuclear Information System (INIS)

    Fuyuto, Kaori; Hisano, Junji; Senaha, Eibun

    2016-01-01

    We study general aspects of the CP-violating effects on the baryon asymmetry of the Universe (BAU) and electric dipole moments (EDMs) in models extended by an extra Higgs doublet and a singlet, together with electroweak-interacting fermions. In particular, the emphasis is on the structure of the CP-violating interactions and dependences of the BAU and EDMs on masses of the relevant particles. In a concrete mode, we investigate a relationship between the BAU and the electron EDM for a typical parameter set. As long as the BAU-related CP violation predominantly exists, the electron EDM has a strong power in probing electroweak baryogenesis. However, once a BAU-unrelated CP violation comes into play, the direct correlation between the BAU and electron EDM can be lost. Even in such a case, we point out that verifiability of the scenario still remains with the help of Higgs physics.

  19. Toward verification of electroweak baryogenesis by electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Fuyuto, Kaori, E-mail: fuyuto@th.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Hisano, Junji, E-mail: hisano@eken.phys.nagoya-u.ac.jp [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kavli IPMU (WPI), University of Tokyo, Kashiwa, Chiba 277-8584 (Japan); Senaha, Eibun, E-mail: senaha@ncu.edu.tw [Department of Physics and Center for Mathematics and Theoretical Physics, National Central University, Taoyuan, 32001, Taiwan (China)

    2016-04-10

    We study general aspects of the CP-violating effects on the baryon asymmetry of the Universe (BAU) and electric dipole moments (EDMs) in models extended by an extra Higgs doublet and a singlet, together with electroweak-interacting fermions. In particular, the emphasis is on the structure of the CP-violating interactions and dependences of the BAU and EDMs on masses of the relevant particles. In a concrete mode, we investigate a relationship between the BAU and the electron EDM for a typical parameter set. As long as the BAU-related CP violation predominantly exists, the electron EDM has a strong power in probing electroweak baryogenesis. However, once a BAU-unrelated CP violation comes into play, the direct correlation between the BAU and electron EDM can be lost. Even in such a case, we point out that verifiability of the scenario still remains with the help of Higgs physics.

  20. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2017-02-01

    Full Text Available We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  1. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen, E-mail: liu-zhen@sjtu.edu.cn; Gu, Pei-Hong, E-mail: peihong.gu@sjtu.edu.cn

    2017-02-15

    We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  2. Higgs mass implications on the stability of the electroweak vacuum

    CERN Document Server

    Elias-Miro, Joan; Giudice, Gian F; Isidori, Gino; Riotto, Antonio; Strumia, Alessandro

    2012-01-01

    We update instability and metastability bounds of the Standard Model electroweak vacuum in view of the recent ATLAS and CMS Higgs results. For a Higgs mass in the range 124--126 GeV, and for the current central values of the top mass and strong coupling constant, the Higgs potential develops an instability around $10^{11}$ GeV, with a lifetime much longer than the age of the Universe. However, taking into account theoretical and experimental errors, stability up to the Planck scale cannot be excluded. Stability at finite temperature implies an upper bound on the reheat temperature after inflation, which depends critically on the precise values of the Higgs and top masses. A Higgs mass in the range 124--126 GeV is compatible with very high values of the reheating temperature, without conflict with mechanisms of baryogenesis such as leptogenesis. We derive an upper bound on the mass of heavy right-handed neutrinos by requiring that their Yukawa couplings do not destabilize the Higgs potential.

  3. B-meson anomalies and Higgs physics in flavored U(1)' model

    Science.gov (United States)

    Bian, Ligong; Lee, Hyun Min; Park, Chan Beom

    2018-04-01

    We consider a simple extension of the Standard Model with flavor-dependent U(1)', that has been proposed to explain some of B-meson anomalies recently reported at LHCb. The U(1)' charge is chosen as a linear combination of anomaly-free B_3-L_3 and L_μ -L_τ . In this model, the flavor structure in the SM is restricted due to flavor-dependent U(1)' charges, in particular, quark mixings are induced by a small vacuum expectation value of the extra Higgs doublet. As a result, it is natural to get sizable flavor-violating Yukawa couplings of heavy Higgs bosons involving the bottom quark. In this article, we focus on the phenomenology of the Higgs sector of the model including extra Higgs doublet and singlet scalars. We impose various bounds on the extended Higgs sector from Higgs and electroweak precision data, B-meson mixings and decays as well as unitarity and stability bounds, then discuss the productions and decays of heavy Higgs bosons at the LHC.

  4. Review of electroweak fits of the SM and beyond, after the Higgs discovery -- with Gfitter

    CERN Document Server

    Baak, M

    2014-01-01

    We present an update of the global Standard Model (SM) fit to electroweak precision data under the assumption that the new particle discovered at the LHC is the SM Higgs boson. In this scenario all parameters entering the calculations of electroweak precision observables are known, allowing to over-constrain the SM at the electroweak scale and to assert its validity. Within the SM the W boson mass and the effective weak mixing angle can now be accurately predicted from the global fit. Their results exceed in precision the direct measurements. A determination of the S , T and U parameters, which parametrize the oblique vacuum corrections, is given. We examine the impact of the STU observables on a model of modified couplings of the Higgs boson to gauge bosons, and compare this with the corresponding analysis of LHC measurements of the signal strength of Higgs channels. Future measurements at the International Linear Collider (ILC) promise to improve significantly the experimental precision of key observables u...

  5. Higgs pair production at NLO QCD for CP-violating Higgs sectors

    Science.gov (United States)

    Gröber, R.; Mühlleitner, M.; Spira, M.

    2017-12-01

    Higgs pair production through gluon fusion is an important process at the LHC to test the dynamics underlying electroweak symmetry breaking. Higgs sectors beyond the Standard Model (SM) can substantially modify this cross section through novel couplings not present in the SM or the on-shell production of new heavy Higgs bosons that subsequently decay into Higgs pairs. CP violation in the Higgs sector is important for the explanation of the observed matter-antimatter asymmetry through electroweak baryogenesis. In this work we compute the next-to-leading order (NLO) QCD corrections in the heavy top quark limit, including the effects of CP violation in the Higgs sector. We choose the effective theory (EFT) approach, which provides a rather model-independent way to explore New Physics (NP) effects by adding dimension-6 operators, both CP-conserving and CP-violating ones, to the SM Lagrangian. Furthermore, we perform the computation within a specific UV-complete model and choose as benchmark model the general 2-Higgs-Doublet Model with CP violation, the C2HDM. Depending on the dimension-6 coefficients, the relative NLO QCD corrections are affected by several per cent through the new CP-violating operators. This is also the case for SM-like Higgs pair production in the C2HDM, while the relative QCD corrections in the production of heavier C2HDM Higgs boson pairs deviate more strongly from the SM case. The absolute cross sections both in the EFT and the C2HDM can be modified by more than an order of magnitude. In particular, in the C2HDM the resonant production of Higgs pairs can by far exceed the SM cross section.

  6. Search for supersymmetry in {tau} final states at ATLAS and constraints on new physics using electroweak precision data

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Doerthe

    2012-08-15

    In this thesis, various models beyond the Standard Model (SM) offering different solutions to some of the shortcomings of the SM are studied: Supersymmetry, the two Higgs doublet model, and models with warped extra dimensions. A search for events with large missing transverse momentum, jets, and at least two {tau} leptons using 2 fb{sup -1} of proton-proton collision data recorded at {radical}(s)=7 TeV with the ATLAS detector at the Large Hadron Collider is performed. No excess above the SM background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set. A 95% CL lower limit of 32 TeV is set on the Gauge Mediated Supersymmetry Breaking scale {Lambda} independent of the ratio of tan{beta}. These limits provide the most stringent tests to date in a large part of the considered parameter space. By using the results of the oblique vacuum polarization parameters from a fit to the electroweak precision data indirect constraints on model parameters are set. While in the two Higgs doublet model as well as in models with warped extra dimensions a heavy Higgs boson is compatible with the electroweak precision data, models with warped extra dimensions featuring custodial symmetry cannot accommodate a heavy Higgs.

  7. Search for supersymmetry in τ final states at ATLAS and constraints on new physics using electroweak precision data

    International Nuclear Information System (INIS)

    Kennedy, Doerthe

    2012-08-01

    In this thesis, various models beyond the Standard Model (SM) offering different solutions to some of the shortcomings of the SM are studied: Supersymmetry, the two Higgs doublet model, and models with warped extra dimensions. A search for events with large missing transverse momentum, jets, and at least two τ leptons using 2 fb -1 of proton-proton collision data recorded at √(s)=7 TeV with the ATLAS detector at the Large Hadron Collider is performed. No excess above the SM background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set. A 95% CL lower limit of 32 TeV is set on the Gauge Mediated Supersymmetry Breaking scale Λ independent of the ratio of tanβ. These limits provide the most stringent tests to date in a large part of the considered parameter space. By using the results of the oblique vacuum polarization parameters from a fit to the electroweak precision data indirect constraints on model parameters are set. While in the two Higgs doublet model as well as in models with warped extra dimensions a heavy Higgs boson is compatible with the electroweak precision data, models with warped extra dimensions featuring custodial symmetry cannot accommodate a heavy Higgs.

  8. The global electroweak Standard Model fit after the Higgs discovery

    CERN Document Server

    Baak, Max

    2013-01-01

    We present an update of the global Standard Model (SM) fit to electroweak precision data under the assumption that the new particle discovered at the LHC is the SM Higgs boson. In this scenario all parameters entering the calculations of electroweak precision observalbes are known, allowing, for the first time, to over-constrain the SM at the electroweak scale and assert its validity. Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted from the global fit. The results are compatible with, and exceed in precision, the direct measurements. An updated determination of the S, T and U parameters, which parametrize the oblique vacuum corrections, is given. The obtained values show good consistency with the SM expectation and no direct signs of new physics are seen. We conclude with an outlook to the global electroweak fit for a future e+e- collider.

  9. Higgs physics at future colliders: Recent theoretical developments

    Indian Academy of Sciences (India)

    is relatively light and if enough integrated luminosity is collected [2,3] and can be detected at the LHC [3,4] over its entire mass range 114.4 GeV <. ~ MА < .... In the MssM, two doublets of Higgs fields are needed to break the electroweak .... BRs of O(10-3) (however, they lead to clear signals and are interesting, since they.

  10. Leptophilic neutral Higgs bosons in two Higgs doublet model at a linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Majid [Shiraz University, Physics Department, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2017-05-15

    This paper addresses the question of the observability of neutral Higgs bosons through the leptonic decay in a two Higgs doublet model (2HDM). Both scalar and pseudo-scalar Higgs bosons (H, A) are considered. The model is set to type IV to enhance the leptonic decay. In such a scenario, a signal production process like e{sup +}e{sup -} → A{sup 0}H{sup 0} → ττμμ or μμττ would provide a clear signal on top of the background in a di-muon invariant mass distribution far from the Z boson pole mass. The analysis is based on a τ-id algorithm which preselects events if they have two τ jets by requiring a hadronic τ decay. Several benchmark points are defined for the search, requiring a linear collider operating at √(s) = 0.5 and 1 TeV. It is shown that the signal can be observed on top of the background in all benchmark points at an integrated luminosity of 1000 fb{sup -1}. (orig.)

  11. Higgs mass implications on the stability of the electroweak vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Elias-Miro, Joan [IFAE and Dep. de Fisica, Univ. Aut. de Barcelona, 08193 Bellaterra, Barcelona (Spain); Espinosa, Jose R. [IFAE and Dep. de Fisica, Univ. Aut. de Barcelona, 08193 Bellaterra, Barcelona (Spain); ICREA, Institucio Catalana de Recerca i Estudis Avancats, Barcelona (Spain); Giudice, Gian F. [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Isidori, Gino, E-mail: gino.isidori@lnf.infn.it [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, Frascati (Italy); Riotto, Antonio [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padua (Italy); Strumia, Alessandro [Dipartimento di Fisica dell' Universita di Pisa and INFN (Italy); National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia)

    2012-03-19

    We update instability and metastability bounds of the Standard Model electroweak vacuum in view of the recent ATLAS and CMS Higgs results. For a Higgs mass in the range 124-126 GeV, and for the current central values of the top mass and strong coupling constant, the Higgs potential develops an instability around 10{sup 11} GeV, with a lifetime much longer than the age of the Universe. However, taking into account theoretical and experimental errors, stability up to the Planck scale cannot be excluded. Stability at finite temperature implies an upper bound on the reheat temperature after inflation, which depends critically on the precise values of the Higgs and top masses. A Higgs mass in the range 124-126 GeV is compatible with very high values of the reheating temperature, without conflict with mechanisms of baryogenesis such as leptogenesis. We derive an upper bound on the mass of heavy right-handed neutrinos by requiring that their Yukawa couplings do not destabilize the Higgs potential.

  12. Studying Higgs pair production in the process γγ→H0H0 in the two-Higgs-doublet model

    International Nuclear Information System (INIS)

    La-Zhen, S.; Yao-Yang, L.

    1996-01-01

    In the two-Higgs-doublet model the complete nonstandard Higgs boson helicity amplitudes for the Higgs boson pair production process γγ→H 0 H 0 is calculated and explicit formulas for nonstandard Higgs boson contributions to the helicity amplitudes are given. It is shown that the cross section is in the range of 0.03 endash 30 pb at √s=1 TeV, for Higgs boson masses of 350 H 0 <490 GeV in monochromatic γγ collisions. The angular distribution for Higgs pair production is strongly peaked in the forward and backward directions. In particular the angular dependence for Higgs pair production is due to the nonstandard Higgs boson getting larger where the box diagrams constitute the dominant part of the differential cross section. For studying heavy Higgs pair production the use of circularly polarized photon beams with equal helicities is advantageous. copyright 1996 The American Physical Society

  13. Higgs particle production at LEP in multi-doublet scenarios with hierarchy of the vacuum expectation values

    International Nuclear Information System (INIS)

    Kalinowski, J.; Pokorski, S.

    1989-01-01

    We discuss the production at LEP of Higgs particles in multi-doublet scenarios with a hierarchy of the vacuum expectation values ν 2 /ν 1 ≅m t /m b . The cross sections are similar or larger than for the standard Higgs boson of the same mass but the signature is different. Events with four b-jets are the only important signature of such Higgs particles. (orig.)

  14. FN-2HDM: Two Higgs Doublet Models with Froggatt-Nielsen symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Dery, Avital; Nir, Yosef [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Herzl 234, Rehovot 76100 (Israel)

    2017-04-03

    We embed Two Higgs Doublet Models (2HDMs) in the Froggatt Nielsen (FN) framework. We find that the approximate FN symmetry predicts i) approximate Natural Flavor Conservation (NFC) of Types II or IV in the Yukawa sector, and ii) approximate Peccei-Quinn (PQ) symmetry in the scalar sector. We discuss the phenomenological consequences of these features.

  15. Higgs pair production at NLO QCD for CP-violating Higgs sectors

    Directory of Open Access Journals (Sweden)

    R. Gröber

    2017-12-01

    Full Text Available Higgs pair production through gluon fusion is an important process at the LHC to test the dynamics underlying electroweak symmetry breaking. Higgs sectors beyond the Standard Model (SM can substantially modify this cross section through novel couplings not present in the SM or the on-shell production of new heavy Higgs bosons that subsequently decay into Higgs pairs. CP violation in the Higgs sector is important for the explanation of the observed matter-antimatter asymmetry through electroweak baryogenesis. In this work we compute the next-to-leading order (NLO QCD corrections in the heavy top quark limit, including the effects of CP violation in the Higgs sector. We choose the effective theory (EFT approach, which provides a rather model-independent way to explore New Physics (NP effects by adding dimension-6 operators, both CP-conserving and CP-violating ones, to the SM Lagrangian. Furthermore, we perform the computation within a specific UV-complete model and choose as benchmark model the general 2-Higgs-Doublet Model with CP violation, the C2HDM. Depending on the dimension-6 coefficients, the relative NLO QCD corrections are affected by several per cent through the new CP-violating operators. This is also the case for SM-like Higgs pair production in the C2HDM, while the relative QCD corrections in the production of heavier C2HDM Higgs boson pairs deviate more strongly from the SM case. The absolute cross sections both in the EFT and the C2HDM can be modified by more than an order of magnitude. In particular, in the C2HDM the resonant production of Higgs pairs can by far exceed the SM cross section.

  16. Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian

    Science.gov (United States)

    Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.

    2018-03-01

    Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.

  17. Probing Electroweak Phase Transition via Enhanced Di-Higgs Production

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela [Chicago U., KICP; Liu, Zhen [Fermilab; Riembau, Marc [DESY

    2018-01-02

    We consider a singlet extension of the Standard Model (SM) with a spontaneous $Z_2$ breaking and study the gluon-gluon fusion production of the heavy scalar, with subsequent decay into a pair of SM-like Higgs bosons. We find that an on-shell interference effect can notably enhance the resonant di-Higgs production rate up to 40\\%. In addition, consistently taking into account both the on-shell and off-shell interference effects between the heavy scalar and the SM di-Higgs diagrams significantly improves the HL-LHC and HE-LHC reach in this channel. As an example, within an effective field theory analysis in an explicitly $Z_2$ breaking scenario, we further discuss the potential to probe the parameter region compatible with a first order electroweak phase transition. Our analysis is applicable for general potentials of the singlet extension of the SM as well as for more general resonance searches.

  18. Exploring collider aspects of a neutrinophilic Higgs doublet model in multilepton channels

    Science.gov (United States)

    Huitu, Katri; Kärkkäinen, Timo J.; Mondal, Subhadeep; Rai, Santosh Kumar

    2018-02-01

    We consider a neutrinophilic Higgs scenario where the Standard Model is extended by one additional Higgs doublet and three generations of singlet right-handed Majorana neutrinos. Light neutrino masses are generated through mixing with the heavy neutrinos via the Type-I seesaw mechanism when the neutrinophilic Higgs gets a vacuum expectation value (VEV). The Dirac neutrino Yukawa coupling in this scenario can be sizable compared to those in the canonical Type-I seesaw mechanism owing to the small neutrinophilic Higgs VEV giving rise to interesting phenomenological consequences. We have explored various signal regions likely to provide a hint of such a scenario at the LHC as well as at future e+e- colliders. We have also highlighted the consequences of light neutrino mass hierarchies in collider phenomenology that can complement the findings of neutrino oscillation experiments.

  19. Large Higgs-electron Yukawa coupling in 2HDM

    Science.gov (United States)

    Dery, Avital; Frugiuele, Claudia; Nir, Yosef

    2018-04-01

    The present upper bound on κ e , the ratio between the electron Yukawa coupling and its Standard Model value, is of O(600) . We ask what would be the implications in case that κ e is close to this upper bound. The simplest extension that allows for such enhancement is that of two Higgs doublet models (2HDM) without natural flavor conservation. In this framework, we find the following consequences: (i) Under certain conditions, measuring κ e and κ V would be enough to predict values of Yukawa couplings for other fermions and for the H and A scalars. (ii) In the case that the scalar potential has a softly broken Z 2 symmetry, the second Higgs doublet must be light, but if there is hard breaking of the symmetry, the second Higgs doublet can be much heavier than the electroweak scale and still allow the electron Yukawa coupling to be very different from its SM value. (iii) CP must not be violated at a level higher than O(0.01/{κ}_e) in both the scalar potential and the Yukawa sector. (iv) LHC searches for e + e - resonances constrain this scenario in a significant way. Finally, we study the implications for models where one of the scalar doublets couples only to the first generation, or only to the third generation.

  20. Higgs Pair Production as a Signal of Enhanced Yukawa Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Martin [Heidelberg U.; Carena, Marcela [Chicago U., KICP; Carmona, Adrián [U. Mainz, PRISMA

    2017-12-31

    We present a non-trivial correlation between the enhancement of the Higgs-fermion couplings and the Higgs pair production cross section in two Higgs doublet models with a flavour symmetry. This symmetry suppresses flavour-changing neutral couplings of the Higgs boson and allows for a partial explanation of the hierarchy in the Yukawa sector. After taking into account the constraints from electroweak precision measurements, Higgs coupling strength measurements, and unitarity and perturbativity bounds, we identify an interesting region of parameter space leading to enhanced Yukawa couplings as well as enhanced di-Higgs gluon fusion production at the LHC reach. This effect is visible in both the resonant and non-resonant contributions to the Higgs pair production cross section. We encourage dedicated searches based on differential distributions as a novel way to indirectly probe enhanced Higgs couplings to light fermions.

  1. QCD and electroweak interference in Higgs production by gauge boson fusion

    International Nuclear Information System (INIS)

    Andersen, Jeppe R.; Smillie, Jennifer M.

    2007-01-01

    We explicitly calculate the contribution to Higgs production at the LHC from the interference between gluon fusion and weak vector boson fusion, and compare it to the pure QCD and pure electroweak result. While the effect is small at tree level, we speculate it will be significantly enhanced by loop effects

  2. Unanswered Questions in the Electroweak Theory

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris

    2009-11-01

    This article is devoted to the status of the electroweak theory on the eve of experimentation at CERN's Large Hadron Collider. A compact summary of the logic and structure of the electroweak theory precedes an examination of what experimental tests have established so far. The outstanding unconfirmed prediction of the electroweak theory is the existence of the Higgs boson, a weakly interacting spin-zero particle that is the agent of electroweak symmetry breaking, the giver of mass to the weak gauge bosons, the quarks, and the leptons. General arguments imply that the Higgs boson or other new physics is required on the TeV energy scale. Indirect constraints from global analyses of electroweak measurements suggest that the mass of the standard-model Higgs boson is less than 200 GeV. Once its mass is assumed, the properties of the Higgs boson follow from the electroweak theory, and these inform the search for the Higgs boson. Alternative mechanisms for electroweak symmetry breaking are reviewed, and the importance of electroweak symmetry breaking is illuminated by considering a world without a specific mechanism to hide the electroweak symmetry. For all its triumphs, the electroweak theory has many shortcomings.

  3. Unanswered Questions in the Electroweak Theory

    International Nuclear Information System (INIS)

    Quigg, Chris

    2009-01-01

    This article is devoted to the status of the electroweak theory on the eve of experimentation at CERN's Large Hadron Collider. A compact summary of the logic and structure of the electroweak theory precedes an examination of what experimental tests have established so far. The outstanding unconfirmed prediction of the electroweak theory is the existence of the Higgs boson, a weakly interacting spin-zero particle that is the agent of electroweak symmetry breaking, the giver of mass to the weak gauge bosons, the quarks, and the leptons. General arguments imply that the Higgs boson or other new physics is required on the TeV energy scale. Indirect constraints from global analyses of electroweak measurements suggest that the mass of the standard-model Higgs boson is less than 200 GeV. Once its mass is assumed, the properties of the Higgs boson follow from the electroweak theory, and these inform the search for the Higgs boson. Alternative mechanisms for electroweak symmetry breaking are reviewed, and the importance of electroweak symmetry breaking is illuminated by considering a world without a specific mechanism to hide the electroweak symmetry. For all its triumphs, the electroweak theory has many shortcomings.

  4. Fingerprints of heavy scales in electroweak effective Lagrangians

    Science.gov (United States)

    Pich, Antonio; Rosell, Ignasi; Santos, Joaquín; Sanz-Cillero, Juan José

    2017-04-01

    The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2) L ⊗ SU(2) R → SU(2) L+ R , which couples the known particle fields to heavier states with bosonic quantum numbers J P = 0± and 1±. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.

  5. Fingerprints of heavy scales in electroweak effective Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    Pich, Antonio [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, Ignasi [Departamento de Matemáticas, Física y Ciencias Tecnológicas,Universidad CEU Cardenal Herrera, E-46115 Alfara del Patriarca, València (Spain); Santos, Joaquín [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Sanz-Cillero, Juan José [Departamento de Física Teórica I, Universidad Complutense de Madrid,E-28040 Madrid (Spain)

    2017-04-04

    The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, which couples the known particle fields to heavier states with bosonic quantum numbers J{sup P}=0{sup ±} and 1{sup ±}. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.

  6. New viable region of an inert Higgs doublet dark matter model with scotogenic extension

    Science.gov (United States)

    Borah, Debasish; Gupta, Aritra

    2017-12-01

    We explore the intermediate dark matter mass regime of the inert Higgs doublet model, approximately between 400 and 550 GeV, which is allowed by latest constraints from direct and indirect detection experiments, but the thermal relic abundance remains suppressed. We extend the model by three copies of right-handed neutrinos, odd under the built-in Z2 symmetry of the model. This discrete Z2 symmetry of the model allows these right-handed neutrinos to couple to the usual lepton doublets through the inert Higgs doublet allowing the possibility of radiative neutrino mass in the scotogenic fashion. Apart from generating nonzero neutrino mass, such an extension can also revive the intermediate dark matter mass regime. The late decay of the lightest right-handed neutrino to dark matter makes it possible for the usual thermally underabundant dark matter in this intermediate mass regime to satisfy the correct relic abundance limit. The revival of this wide intermediate mass range can have relevance not only for direct and indirect search experiments but also for neutrino experiments as the long lifetime of the lightest right-handed neutrino also results in almost vanishing lightest neutrino mass.

  7. Light Higgs and vector-like quarks without prejudice

    Science.gov (United States)

    Fajfer, Svjetlana; Greljo, Admir; Kamenik, Jernej F.; Mustać, Ivana

    2013-07-01

    Light vector-like quarks with non-renormalizable couplings to the Higgs are a common feature of models trying to address the electroweak (EW) hierarchy problem by treating the Higgs as a pseudo-goldstone boson of a global (approximate) symmetry. We systematically investigate the implications of the leading dimension five operators on Higgs phenomenology in presence of dynamical up- and down-type weak singlet as well as weak doublet vector-like quarks. After taking into account constraints from precision EW and flavour observables we show that contrary to the renormalizable models, significant modifications of Higgs properties are still possible and could shed light on the role of vector-like quarks in solutions to the EW hierarchy problem. We also briefly discuss implications of higher dimensional operators for direct vector-like quark searches at the LHC.

  8. Electroweak symmetry breaking and mass spectra in six-dimensional gauge-Higgs grand unification

    Science.gov (United States)

    Hosotani, Yutaka; Yamatsu, Naoki

    2018-02-01

    The mass spectra of the standard model particles are reproduced in the SO(11) gauge-Higgs grand unification in six-dimensional warped space without introducing exotic light fermions. Light neutrino masses are explained by the gauge-Higgs seesaw mechanism. We evaluate the effective potential of the four-dimensional Higgs boson appearing as a fluctuation mode of the Aharonov-Bohm phase θ_H in the extra-dimensional space, and show that the dynamical electroweak symmetry breaking takes place with the Higgs boson mass m_H ˜ 125 GeV and θ_H ˜ 0.1. The Kaluza-Klein mass scale in the fifth dimension is approximately given by m_KK ˜ 1.230 TeV/sin θ_H.

  9. Inert two-Higgs-doublet model strongly coupled to a non-Abelian vector resonance

    Science.gov (United States)

    Rojas-Abatte, Felipe; Mora, Maria Luisa; Urbina, Jose; Zerwekh, Alfonso R.

    2017-11-01

    We study the possibility of a dark matter candidate having its origin in an extended Higgs sector which, at least partially, is related to a new strongly interacting sector. More concretely, we consider an i2HDM (i.e., a Type-I two Higgs doublet model supplemented with a Z2 under which the nonstandard scalar doublet is odd) based on the gauge group S U (2 )1×S U (2 )2×U (1 )Y . We assume that one of the scalar doublets and the standard fermion transform nontrivially under S U (2 )1 while the second doublet transforms under S U (2 )2. Our main hypothesis is that standard sector is weakly coupled while the gauge interactions associated to the second group is characterized by a large coupling constant. We explore the consequences of this construction for the phenomenology of the dark matter candidate and we show that the presence of the new vector resonance reduces the relic density saturation region, compared to the usual i2DHM, in the high dark matter mass range. In the collider side, we argue that the mono-Z production is the channel which offers the best chances to manifest the presence of the new vector field. We study the departures from the usual i2HDM predictions and show that the discovery of the heavy vector at the LHC is challenging even in the mono-Z channel since the typical cross sections are of the order of 10-2 fb .

  10. CP violation in a multi-Higgs-doublet model with flavor-changing neutral currents

    International Nuclear Information System (INIS)

    Deshpande, N.G.; He, X.

    1994-01-01

    We study CP violation in multi-Higgs-doublet model based on a S 3 xZ 3 horizontal symmetry where the CKM phase is not the principal source of CP violation. We consider two mechanisms for CP violation in this model: (a) CP violation due to complex Yukawa couplings, and (b) CP violation due to scalar-pseudoscalar Higgs boson mixings. Both mechanisms can explain the observed CP violation in the neutral kaon system. ε'/ε due to neutral Higgs boson exchange is small in both mechanisms, but charged Higgs boson contributions can be as large as 10 -4 for (a) and 10 -3 for (b). CP violation in the neutral B system is, however, quite different from the minimal standard model. The neutron electric dipole moment can be as large as the present experimental bound, and can be used to constrain charged Higgs boson masses. The electron EDM is one order of magnitude below the experimental bound in case (b) and smaller in case (a)

  11. Off-Shell Higgs Probe of Naturalness

    Science.gov (United States)

    Gonçalves, Dorival; Han, Tao; Mukhopadhyay, Satyanarayan

    2018-03-01

    Examining the Higgs sector at high energy scales through off-shell Higgs production can potentially shed light on the naturalness problem of the Higgs boson mass. We propose such a study at the LHC by utilizing a representative model with a new scalar field (S ) coupled to the standard model Higgs doublet (H ) in a form |S |2|H |2. In the process p p →h*→Z Z , the dominant momentum-dependent part of the one-loop scalar singlet corrections, especially above the new threshold at 2 mS, leads to a measurable deviation in the differential distribution of the Z -pair invariant mass, in accordance with the quadratic divergence cancellation to the Higgs mass. We find that it is conceivable to probe such new physics at the 5 σ level at the high-luminosity LHC, improving further with the upgraded 27 TeV LHC, without requiring the precise measurement of the Higgs boson total width. The discovery of such a Higgs portal could also have important implications for thermal dark matter as well as for electroweak baryogenesis.

  12. Lectures on Higgs Boson Physics in the Standard Model and Beyond

    CERN Document Server

    Wells, James D

    2009-01-01

    These lectures focus on the structure of various Higgs boson theories. Topics in the first lectures include: mass generation in chiral theories, spontaneous symmetry breaking, neutrino masses, perturbative unitarity, vacuum stability, vacuum alignment, flavor changing neutral current solutions with multiple Higgs doublets, analysis of type I theory with Z2 symmetry, and rephasing symmetries. After an Essay on the Hierarchy Problem, additional topics are covered that more directly relate to naturalness of the electroweak theory. Emphasis is on their connection to Higgs boson physics. Topics in these later lectures include: supersymmetry, supersymmetric Higgs sector in the Runge basis, leading-order radiative corrections of supersymmetric light Higgs boson mass, theories of extra dimensions, and radion mixing with the Higgs boson in warped extra dimensions. And finally, one lecture is devoted to Higgs boson connections to the hidden sector.

  13. Electroweak symmetry breaking in supersymmetric models with heavy scalar superpartners

    International Nuclear Information System (INIS)

    Chankowski, Piotr H.; Falkowski, Adam; Pokorski, Stefan; Wagner, Jakub

    2004-01-01

    We propose a novel mechanism of electroweak symmetry breaking in supersymmetric models, as the one recently discussed by Birkedal, Chacko and Gaillard, in which the Standard Model Higgs doublet is a pseudo-Goldstone boson of some global symmetry. The Higgs mass parameter is generated at one-loop level by two different, moderately fine-tuned sources of the global symmetry breaking. The mechanism works for scalar superpartner masses of order 10 TeV, but gauginos can be light. The scale at which supersymmetry breaking is mediated to the visible sector has to be low, of order 100 TeV. Fine-tuning in the scalar potential is at least two orders of magnitude smaller than in the MSSM with similar soft scalar masses. The physical Higgs boson mass is (for tanβ >> 1) in the range 120-135 GeV

  14. Workshop on CP Studies and Non-Standard Higgs Physics

    CERN Document Server

    Accomando, E.; Akhmetzyanova, E.; Albert, J.; Alves, A.; Amapane, N.; Aoki, M.; Azuelos, G.; Baffioni, S.; Ballestrero, A.; Barger, V.; Bartl, A.; Bechtle, P.; Blanger, G.; Belhouari, A.; Bellan, R.; Belyaev, A.; Benes, Petr; Benslama, K.; Bernreuther, W.; Besanon, M.; Bevilacqua, G.; Beyer, M.; Bluj, M.; Bolognesi, S.; Boonekamp, M.; Borzumati, Francesca; Boudjema, F.; Brandenburg, A.; Brauner, Tomas; Buszello, C.P.; Butterworth, J.M.; Carena, Marcela; Cavalli, D.; Cerminara, G.; Choi, S.Y.; Clerbaux, B.; Collard, C.; Conley, John A.; Deandrea, A.; De Curtis, S.; Dermisek, R.; De Roeck, A.; Dewhirst, G.; Diaz, M.A.; Diaz-Cruz, J.L.; Dietrich, D.D.; Dolgopolov, M.; Dominici, D.; Dubinin, M.; Eboli, O.; Ellis, John R.; Evans, N.; Fano, L.; Ferland, J.; Ferrag, S.; Fitzgerald, S.P.; Fraas, H.; Franke, F.; Gennai, S.; Ginzburg, I.F.; Godbole, R.M.; Gregoire, T.; Grenier, Gerald Jean; Grojean, C.; Gudnason, S.B.; Gunion, J.F.; Haber, H.E.; Hahn, T.; Han, T.; Hankele, V.; Hays, Christopher Paul; Heinemeyer, S.; Hesselbach, S.; Hewett, J.L.; Hidaka, K.; Hirsch, M.; Hollik, W.; Hooper, D.; Hosek, J.; Hubisz, J.; Hugonie, C.; Kalinowski, J.; Kanemura, S.; Kashkan, V.; Kernreiter, T.; Khater, W.; Khoze, V.A.; Kilian, W.; King, S.F.; Kittel, O.; Klamke, G.; Kneur, J.L.; Kouvaris, C.; Kraml, S.; Krawczyk, M.; Krstonoic, P.; Kyriakis, A.; Langacker, P.; Le, M.P.; Lee, H.-S.; Lee, J.S.; Lemaire, M.C.; Liao, Y.; Lillie, B.; Litvine, Vladimir A.; Logan, H.E.; McElrath, Bob; Mahmoud, T.; Maina, E.; Mariotti, C.; Marquard, P.; Martin, A.D.; Mazumdar, K.; Miller, D.J.; Min, P.; Monig, Klaus; Moortgat-Pick, G.; Moretti, S.; Muhlleitner, M.M.; Munir, S.; Nevzorov, R.; Newman, H.; Niezurawski, P.; Nikitenko, A.; Noriega-Papaqui, R.; Okada, Y.; Osland, P.; Pilaftsis, A.; Porod, W.; Przysiezniak, H.; Pukhov, A.; Rainwater, D.; Raspereza, A.; Reuter, J.; Riemann, S.; Rindani, S.; Rizzo, T.G.; Ros, E.; Rosado, A.; Rousseau, D.; Roy, D.P.; Ryskin, M.G.; Rzehak, H.; Sannino, F.; Schmidt, E.; Schrder, H.; Schumacher, M.; Semenov, A.; Senaha, E.; Shaughnessy, G.; Singh, R.K.; Terning, J.; Vacavant, L.; Velasco, M.; Villanova del Moral, Albert; von der Pahlen, F.; Weiglein, G.; Williams, J.; Williams, K.E.; Zarnecki, A.F.; Zeppenfeld, D.; Zerwas, D.; Zerwas, P.M.; Zerwekh, A.R.; Ziethe, J.; 2nd Workshop on CP Studies and Non-standard Higgs Physics; 3rd Workshop on CP Studies and Non-standard Higgs Physics; 4th Workshop on CP Studies and Non-standard Higgs Physics; CPNSH; Workshop on CP Studies and Non-standard Higgs Physics; CP Studies and Non-Standard Higgs Physics

    2006-01-01

    There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state, or there may even be no Higgs at all. These non-standard Higgs scenarios have important implications for collider physics as well as for cosmology, and understanding their phenomenology is essential for a full comprehension of electroweak symmetry breaking. This report discusses the most relevant theories which go beyond the Standard Model and its minimal, CP-conserving supersymmetric extension: two-Higgs-doublet models and minimal supersymmetric models with CP violation, supersymmetric models with an extra singlet, models with extra gauge groups or Higgs triplets, Little Higgs models, models in extra dimensions, and models with technicolour or other new strong dynamics. For each of these scenarios, this report presents ...

  15. CP-odd Higgs boson production in eγ collisions

    Science.gov (United States)

    Sasaki, Ken; Uematsu, Tsuneo

    2018-06-01

    We investigate the CP-odd Higgs boson production via two-photon processes in eγ collisions. The CP-odd Higgs boson, which we denote as A0, is expected to appear in the Two-Higgs Doublet Models (2HDM) as a minimal extension of Higgs sector for which the Minimal Supersymmetric Standard Model (MSSM) is a special case. The scattering amplitude for eγ → eA0 is evaluated at the electroweak one-loop level. The dominant contribution comes from top-quark loops when A0 boson is rather light and tan ⁡ β is not large. There are no contributions from the W-boson and Z-boson loops nor the scalar top-quark (stop) loops. The differential cross section for the A0 production is analyzed.

  16. Charged Higgs contribution to B{sup ¯}{sub s}→ϕπ{sup 0} and B{sup ¯}{sub s}→ϕρ{sup 0}

    Energy Technology Data Exchange (ETDEWEB)

    Faisel, Gaber, E-mail: gfaisel@hep1.phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Department of Physics and Center for Mathematics and Theoretical Physics, National Central University, Chung-Li 32054, Taiwan (China); Egyptian Center for Theoretical Physics, Modern University for Information and Technology, Cairo (Egypt)

    2014-04-04

    We study the decay modes B{sup ¯}{sub s}→ϕπ{sup 0} and B{sup ¯}{sub s}→ϕρ{sup 0} within the frameworks of two-Higgs doublet models type-II and type-III. We adopt in our study Soft Collinear Effective Theory as a framework for the calculation of the amplitudes. We derive the contributions of the charged Higgs mediation to the weak effective Hamiltonian governing the decay processes in both models. Moreover, we analyze the effect of the charged Higgs mediation on the Wilson coefficients of the electroweak penguins and on the branching ratios of B{sup ¯}{sub s}→ϕπ{sup 0} and B{sup ¯}{sub s}→ϕρ{sup 0} decays. We show that within two-Higgs doublet models type-II and type-III the Wilson coefficients corresponding to the electroweak penguins can be enhanced due to the contributions from the charged Higgs mediation leading into enhancement in the branching ratios of B{sup ¯}{sub s}→ϕπ{sup 0} and B{sup ¯}{sub s}→ϕρ{sup 0} decays. We find that, within two-Higgs doublet models type-II, the enhancement in the branching ratio of B{sup ¯}{sub s}→ϕπ{sup 0} cannot exceed 18% with respect to the SM predictions. For the branching ratio of B{sup ¯}{sub s}→ϕρ{sup 0}, we find that the charged Higgs contribution in this case is small where the branching ratio of B{sup ¯}{sub s}→ϕρ{sup 0} can be enhanced or reduced by about 4% with respect to the SM predictions. For the case of the two-Higgs doublet models type-III we show that the branching ratio of B{sup ¯}{sub s}→ϕπ{sup 0} can be enhanced by about a factor 2 of its value within two-Higgs doublet models type-II. However, no sizeable enhancement with respect to the SM predictions can be obtained for both B{sup ¯}{sub s}→ϕπ{sup 0} and B{sup ¯}{sub s}→ϕρ{sup 0} decays.

  17. Dark matter phenomenology of SM and enlarged Higgs sectors extended with vector-like leptons.

    Science.gov (United States)

    Angelescu, Andrei; Arcadi, Giorgio

    2017-01-01

    We will investigate the scenario in which the Standard Model (SM) Higgs sector and its two-doublet extension (called the Two Higgs Doublet Model or 2HDM) are the "portal" for the interactions between the Standard Model and a fermionic Dark Matter (DM) candidate. The latter is the lightest stable neutral particle of a family of vector-like leptons (VLLs). We will provide an extensive overview of this scenario combining the constraints coming purely from DM phenomenology with more general constraints like Electroweak Precision Test (EWPT) as well as with collider searches. In the case that the new fermionic sector interacts with the SM Higgs sector, constraints from DM phenomenology force the new states to lie above the TeV scale. This requirement is relaxed in the case of 2HDM. Nevertheless, strong constraints coming from EWPTs and the Renormalization Group Equations (RGEs) limit the impact of VLFs on collider phenomenology.

  18. Let there be light from a second light Higgs doublet

    Science.gov (United States)

    Haisch, Ulrich; Malinauskas, Augustinas

    2018-03-01

    In this article, we demonstrate that the unexpected peak at around 95 GeV as seen recently by CMS in the di-photon final state can be explained within the type-I two-Higgs-doublet model by means of a moderately-to-strongly fermiophobic CP-even Higgs H. Depending on the Higgs mass spectrum, the production of such a H arises dominantly from vector boson fusion or through a cascade in either pp\\to t\\overline{t} with \\overset{(-)}{t}\\to {H}^{±}\\overset{(-)}{b}\\to {W}^{± *}H\\overset{(-)}{b} or pp → A with A → W ∓ H ± → W ∓ W ± H or via pp → W ± ∗ → H ± H. In this context, we also discuss other Higgs anomalies such as the LEP excess in Higgsstrahlung and the observation of enhanced rates in t\\overline{t}h at both the Tevatron and the LHC, showing that parameters capable of explaining the CMS di-photon signal can address the latter deviations as well. The Higgs spectra that we explore comprise masses between 80 GeV and 350 GeV. While at present all constraints from direct and indirect searches for spin-0 resonances can be shown to be satisfied for such light Higgses, future LHC data will be able to probe the parameter space that leads to a simultaneous explanation of the discussed anomalies.

  19. The strange quark contribution to the neutron electric dipole moment in multi-Higgs doublet models

    International Nuclear Information System (INIS)

    He, Xiao Gang; McKeller, H.J.; Pakvasa, S.

    1990-09-01

    The strange quark contribution to the neutron electric dipole moment was studied and compared with other contributions in multi-Higgs doublet models. It was found that the strange quark contribution is significant because the strange quark color dipole moment is larger than that of the down (up) quark by a factor m s /m d (m s /m u ). In the case of neutral Higgs it can be the dominant contribution to the neutron electric dipole moment. 18 refs

  20. Off-the-Wall Higgs in the universal Randall-Sundrum model

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Lillie, Ben; Rizzo, Thomas G.

    2006-01-01

    We outline a consistent Randall-Sundrum (RS) framework in which a fundamental 5-dimensional Higgs doublet induces electroweak symmetry breaking (EWSB). In this framework of a warped Universal Extra Dimension, the lightest Kaluza-Klein (KK) mode of the bulk Higgs is tachyonic leading to a vacuum expectation value (vev) at the TeV scale. The consistency of this picture imposes a set of constraints on the parameters in the Higgs sector. A novel feature of our scenario is the emergence of an adjustable bulk profile for the Higgs vev. We also find a tower of non-tachyonic Higgs KK modes at the weak scale. We consider an interesting implementation of this 'Off-the-Wall Higgs' mechanism where the 5-dimensional curvature-scalar coupling alone generates the tachyonic mode responsible for EWSB. In this case, additional relations among the parameters of the Higgs and gravitational sectors are established. We discuss the experimental signatures of the bulk Higgs in general, and those of the 'Gravity-Induced' EWSB in particular

  1. The minimal linear σ model for the Goldstone Higgs

    International Nuclear Information System (INIS)

    Feruglio, F.; Gavela, M.B.; Kanshin, K.; Machado, P.A.N.; Rigolin, S.; Saa, S.

    2016-01-01

    In the context of the minimal SO(5) linear σ-model, a complete renormalizable Lagrangian -including gauge bosons and fermions- is considered, with the symmetry softly broken to SO(4). The scalar sector describes both the electroweak Higgs doublet and the singlet σ. Varying the σ mass would allow to sweep from the regime of perturbative ultraviolet completion to the non-linear one assumed in models in which the Higgs particle is a low-energy remnant of some strong dynamics. We analyze the phenomenological implications and constraints from precision observables and LHC data. Furthermore, we derive the d≤6 effective Lagrangian in the limit of heavy exotic fermions.

  2. Muon g−2 in the aligned two Higgs doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Han, Tao [Department of Physics and Astronomy, University of Pittsburgh,Pittsburgh, PA 15260 (United States); Physics Department, Collaborative Innovation Center of Quantum Matter, Tsinghua University,Beijing 100084 (China); Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Kang, Sin Kyu [School of Liberal Arts, Seoul National University of Science and Technology,Seoul 139-743 (Korea, Republic of); Sayre, Joshua [Department of Physics and Astronomy, University of Pittsburgh,Pittsburgh, PA 15260 (United States)

    2016-02-16

    We study the Two-Higgs-Doublet Model with the aligned Yukawa sector (A2HDM) in light of the observed excess measured in the muon anomalous magnetic moment. We take into account the existing theoretical and experimental constraints with up-to-date values and demonstrate that a phenomenologically interesting region of parameter space exists. With a detailed parameter scan, we show a much larger region of viable parameter space in this model beyond the limiting case Type X 2HDM as obtained before. It features the existence of light scalar states with masses 3 GeV≲m{sub H}≲50 GeV, or  10 GeV≲m{sub A}≲130 GeV, with enhanced couplings to tau leptons. The charged Higgs boson is typically heavier, with 200 GeV≲m{sub H{sup +}}≲630 GeV. The surviving parameter space is forced into the CP-conserving limit by EDM constraints. Some Standard Model observables may be significantly modified, including a possible new decay mode of the SM-like Higgs boson to four taus. We comment on future measurements and direct searches for those effects at the LHC as tests of the model.

  3. Particle currents in a space-time dependent and CP-violating Higgs background: a field theory approach

    International Nuclear Information System (INIS)

    Comelli, D.; Riotto, A.

    1995-06-01

    Motivated by cosmological applications like electroweak baryogenesis, we develop a field theoretic approach to the computation of particle currents on a space-time dependent and CP-violating Higgs background. We consider the Standard Model model with two Higgs doublets and CP violation in the scalar sector, and compute both fermionic and Higgs currents by means of an expansion in the background fields. We discuss the gauge dependence of the results and the renormalization of the current operators, showing that in the limit of local equilibrium, no extra renormalization conditions are needed in order to specify the system completely. (orig.)

  4. C P -violation in the two Higgs doublet model: From the LHC to EDMs

    Science.gov (United States)

    Chen, Chien-Yi; Li, Hao-Lin; Ramsey-Musolf, Michael

    2018-01-01

    We study the prospective sensitivity to C P -violating two Higgs doublet models from the 14 TeV LHC and future electric dipole moment (EDM) experiments. We concentrate on the search for a resonant heavy Higgs that decays to a Z boson and a SM-like Higgs h , leading to the Z (ℓℓ)h (b b ¯ ) final state. The prospective LHC reach is analyzed using the Boosted Decision Tree method. We illustrate the complementarity between the LHC and low energy EDM measurements and study the dependence of the physics reach on the degree of deviation from the alignment limit. In all cases, we find that there exists a large part of parameter space that is sensitive to both EDMs and LHC searches.

  5. A model of neutrino and Higgs physics at the electroweak scale

    International Nuclear Information System (INIS)

    Aranda, Alfredo; Blanno, Omar; Diaz-Cruz, J. Lorenzo

    2008-01-01

    We present and explore the Higgs physics of a model that in addition to the Standard Model fields includes a lepton number violating singlet scalar field. Based on the fact that the only experimental data we have so far for physics beyond the Standard Model is that of neutrino physics, we impose a constraint for any addition not to introduce new higher scales. As such, we introduce right-handed neutrinos with an electroweak scale mass. We study the Higgs decay H→νν and show that it leads to different signatures compared to those in the Standard Model, making it possible to detect them and to probe the nature of their couplings

  6. Probing the electroweak phase transition via enhanced di-Higgs boson production

    Science.gov (United States)

    Carena, Marcela; Liu, Zhen; Riembau, Marc

    2018-05-01

    We consider a singlet extension of the standard model (SM) with a spontaneous Z2 breaking and study the gluon-gluon fusion production of the heavy scalar, with subsequent decay into a pair of SM-like Higgs bosons. We find that an on-shell interference effect can notably enhance the resonant di-Higgs production rate up to 40%. In addition, consistently taking into account both the on-shell and off-shell interference effects between the heavy scalar and the SM di-Higgs diagrams significantly improves the HL-LHC and HE-LHC reach in this channel. As an example, within an effective field theory analysis in an explicitly Z2 breaking scenario, we further discuss the potential to probe the parameter region compatible with a first-order electroweak phase transition. Our analysis is applicable for general potentials of the singlet extension of the SM as well as for more general resonance searches.

  7. Dark matter phenomenology of SM and enlarged Higgs sectors extended with vector-like leptons

    Energy Technology Data Exchange (ETDEWEB)

    Angelescu, Andrei [Universite Paris-Saclay, CNRS, Laboratoire de Physique Theorique, Orsay (France); Arcadi, Giorgio [Max Planck Institut fuer Kernphysik, Heidelberg (Germany)

    2017-07-15

    We will investigate the scenario in which the Standard Model (SM) Higgs sector and its two-doublet extension (called the Two Higgs Doublet Model or 2HDM) are the ''portal'' for the interactions between the Standard Model and a fermionic Dark Matter (DM) candidate. The latter is the lightest stable neutral particle of a family of vector-like leptons (VLLs). We will provide an extensive overview of this scenario combining the constraints coming purely from DM phenomenology with more general constraints like Electroweak Precision Test (EWPT) as well as with collider searches. In the case that the new fermionic sector interacts with the SM Higgs sector, constraints from DM phenomenology force the new states to lie above the TeV scale. This requirement is relaxed in the case of 2HDM. Nevertheless, strong constraints coming from EWPTs and the Renormalization Group Equations (RGEs) limit the impact of VLFs on collider phenomenology. (orig.)

  8. Flavour Independent $h^{0}A^{0}$ Search and Two Higgs Doublet Model Interpretation of Neutral Higgs Boson Searches at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, Niels T.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2005-01-01

    Upper limits on the cross-section of the pair-production process e+e- -> h0A0 assuming 100% decays into hadrons, are derived from a new search for the h0A0 -> hadrons topology, independent of the hadronic flavour of the decay products. Searches for the neutral Higgs bosons h0 and A0, are used to obtain constraints on the Type II Two Higgs Doublet Model (2HDM(11)) with no CP violation in the Higgs sector and no additional non Standard Model particles besides the five Higgs bosons. The analysis combines LEP1 and LEP2 data collected with the OPAL detctor up to the highest available centre-of-mass energies. The searches are sensitive to the h0, A0 -> qq, gg,tau+tau- and h0 -> A0A0 decay modes of the Higgs bosons. The 2HDM(II) parameter space is explored in a detailed scan. Large regions of the 2HDM(II) parameter space are excluded at the 95% CL in the (mh, mA), (mh, tanb) and (mA, tanb) planes, using both direct neutral Higgs boson searches and indirect limits derived from Standard Model high precision measuremen...

  9. Effects of a potential fourth fermion generation on the Higgs boson mass bounds

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim; Jansen, Karl

    2010-12-01

    We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)

  10. Perturbation constraint on particle masses in the Weinberg-Salam model with two massless Higgs doublets

    International Nuclear Information System (INIS)

    Inoue, Kenzo; Nakano, Yoshimasa; Kakuto, Akira.

    1980-01-01

    The Weinberg-Salam model with two Higgs doublets is investigated. The spontaneous breakdown of the gauge symmetry is assumed to be produced by the Coleman-Weinberg mechanism, keeping gauge hierarchies in grand unified theories in mind. A discrete symmetry is introduced to secure flavor-diagonal Yukawa interactions of neutral Higgs bosons and the absence of the axion. Bounds on various masses are obtained by imposing coupling constants to lie in a finite range for the validity of the perturbation theory. It will be found that there must be at least one Higgs boson whose mass is lighter than 40 GeV, in order to satisfy the perturbation constraint at the unification mass scale in grand unified theories. (author)

  11. B→ηK* and B→φKs decays in the two Higgs doublet model III

    International Nuclear Information System (INIS)

    Wang Shuaiwei; Song Taiping; Lv Linxia

    2008-01-01

    Using the QCD factorization approach, we investigate the large branching ratios of B→ηK * decays and the S φK s anomaly of B→φK s decay in the two Higgs doublet model III. With the contributions of flavour-changing neutral current mediated by the neutral Higgs bosons H 0 , h 0 and A 0 at the tree level, we provide a coherent resolution to these anomalies within the constrained parameter spaces, which are 120 bs λ ss |<136. This will be really interesting in searching for the signs of new physics. (authors)

  12. Higgs boson mass bounds in the presence of a very heavy fourth quark generation

    International Nuclear Information System (INIS)

    Gerhold, P.; Kallarackal, J.; DESY, Zeuthen; Jansen, K.

    2010-11-01

    We study the effect of a potential fourth quark generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)

  13. Mass matrix ansatz and lepton flavor violation in the two-Higgs doublet model-III

    International Nuclear Information System (INIS)

    Diaz-Cruz, J.L.; Noriega-Papaqui, R.; Rosado, A.

    2004-01-01

    Predictive Higgs-boson-fermion couplings can be obtained when a specific texture for the fermion mass matrices is included in the general two-Higgs doublet model. We derive the form of these couplings in the charged lepton sector using a Hermitian mass matrix ansatz with four-texture zeros. The presence of unconstrained phases in the vertices φ i l i l j modifies the pattern of flavor-violating Higgs boson interactions. Bounds on the model parameters are obtained from present limits on rare lepton flavor-violating processes, which could be extended further by the search for the decay τ→μμμ and μ-e conversion at future experiments. The signal from Higgs boson decays φ i →τμ could be searched for at the CERN Large Hadron Collider, while e-μ transitions could produce a detectable signal at a future eμ collider, through the reaction e + μ - →h 0 →τ + τ -

  14. After the Higgs: status and prospects of the electroweak fit of the SM and beyond -- with Gfitter

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    models are also obtained, through an analysis of the so-called oblique parameters. We discuss the impact of the electroweak fit on Higgs coupling studies and vice versa. Future measurements at the Large Hadron Collider and the International Linear Collider promise to improve the experimental precision of key observables used in the fit. We present the prospects of the global electroweak fit in view of these improvements.

  15. Separate μ- and e-lepton numbers non-conservation in the Weinberg model with two higgs doublets

    International Nuclear Information System (INIS)

    Branco, G.C.

    1977-03-01

    It is shown that in the Weinberg-Salam model with two Higgs doublets, one is naturally led to the violation of separate μ and e-lepton numbers. The branching ratio for μ → eγ is found to be comparable to the present experimental limit. (orig.) [de

  16. Direct and indirect singlet scalar dark matter detection in the lepton-specific two-Higgs-doublet model

    International Nuclear Information System (INIS)

    Boucenna, M. S.; Profumo, S.

    2011-01-01

    A recent study of gamma-ray data from the Galactic center motivates the investigation of light (∼7-10 GeV) particle dark matter models featuring tau-lepton pairs as dominant annihilation final state. The lepton-specific two-Higgs-doublet model provides a natural framework where light, singlet scalar dark matter can pair-annihilate dominantly into tau leptons. We calculate the nucleon-dark matter cross section for singlet scalar dark matter within the lepton-specific two-Higgs-doublet model framework, and compare with recent results from direct detection experiments. We study how direct dark matter searches can be used to constrain the dark matter interpretation of gamma-ray observations, for different dominant annihilation final states. We show that models exist with the correct thermal relic abundance that could fit the claimed gamma-ray excess from the Galactic center region and have direct detection cross sections of the order of what is needed to interpret recent anomalous events reported by direct detection experiments.

  17. NLO QCD corrections to electroweak Higgs boson plus three jet production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Campanario, Francisco [Valencia-CSIC Univ. (Spain). IFIC; Figy, Terrance M. [Manchester Univ. (United Kingdom). School of Physics and Astronomy; Plaetzer, Simon [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Sjoedahl, Malin [Lund Univ. (Sweden). Dept. of Astronomy and Theoretical Physics

    2013-11-15

    The implementation of the full next-to-leading order (NLO) QCD corrections to electroweak Higgs boson plus three jet production at hadron colliders such as the LHC within the Matchbox NLO framework of the Herwig++ event generator is discussed. We present numerical results for integrated cross sections and kinematic distributions.

  18. Mass terms of CP-violating Weinberg three-Higgs-doublet model at a charge-breaking vacuum

    International Nuclear Information System (INIS)

    Zarrinkamar, S.; Hassanabadi, H.; Rajabi, A.A.

    2010-01-01

    Weinberg three-Higgs-doublet model attracts interest in many aspects including the study of CP-violation as well as calculating the muon transverse polarization and neutron electric dipole moment. In the present work, we calculate the mass terms of CP-violating Weinberg 3HDM at a charge-breaking vacuum using an elaborate basis. (author)

  19. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kallarackal, Jim

    2011-04-28

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  20. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    International Nuclear Information System (INIS)

    Kallarackal, Jim

    2011-01-01

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  1. Study of electroweak vacuum stability from extended Higgs portal of dark matter and neutrinos

    Science.gov (United States)

    Ghosh, Purusottam; Saha, Abhijit Kumar; Sil, Arunansu

    2018-04-01

    We investigate the electroweak vacuum stability in an extended version of the Standard Model that incorporates two additional singlet scalar fields and three right-handed neutrinos. One of these extra scalars plays the role of dark matter, while the other scalar not only helps make the electroweak vacuum stable but also opens up the low-mass window of the scalar singlet dark matter (<500 GeV ). We consider the effect of large neutrino Yukawa coupling on the running of Higgs quartic coupling. We have analyzed the constraints on the model and identified the range of parameter space that is consistent with the neutrino mass, appropriate relic density, and direct search limits from the latest XENON 1T preliminary result as well as realized the stability of the electroweak vacuum up to the Planck scale.

  2. Exploring extended scalar sectors with di-Higgs signals: a Higgs EFT perspective

    Science.gov (United States)

    Corbett, Tyler; Joglekar, Aniket; Li, Hao-Lin; Yu, Jiang-Hao

    2018-05-01

    We consider extended scalar sectors of the Standard Model as ultraviolet complete motivations for studying the effective Higgs self-interaction operators of the Standard Model effective field theory. We investigate all motivated heavy scalar models which generate the dimension-six effective operator, | H|6, at tree level and proceed to identify the full set of tree-level dimension-six operators by integrating out the heavy scalars. Of seven models which generate | H|6 at tree level only two, quadruplets of hypercharge Y = 3 Y H and Y = Y H , generate only this operator. Next we perform global fits to constrain relevant Wilson coefficients from the LHC single Higgs measurements as well as the electroweak oblique parameters S and T. We find that the T parameter puts very strong constraints on the Wilson coefficient of the | H|6 operator in the triplet and quadruplet models, while the singlet and doublet models could still have Higgs self-couplings which deviate significantly from the standard model prediction. To determine the extent to which the | H|6 operator could be constrained, we study the di-Higgs signatures at the future 100 TeV collider and explore future sensitivity of this operator. Projected onto the Higgs potential parameters of the extended scalar sectors, with 30 ab-1 luminosity data we will be able to explore the Higgs potential parameters in all seven models.

  3. A two-Higgs-doublet model facing experimental hints

    Directory of Open Access Journals (Sweden)

    Crivellin Andreas

    2016-01-01

    Full Text Available Physics beyond the Standard Model has so far eluded our experimental probes. Nevertheless, a number of interesting anomalies have accumulated that can be taken as hints towards new physics: BaBar, Belle, and LHCb have found deviations of approximately 3:8σ in B → Dτν and B → D*τν; the anomalous magnetic moment of the muon differs by about 3σ from the theoretic prediction; the branching ratio for τ → μνν is about 2σ above the Standard Model expectation; and CMS and ATLAS found hints for a non-zero decay rate of h → μτ at 2.6σ. Here we consider these processes within a lepton-specific two-Higgs doublet model with additional non-standard Yukawa couplings and show how (and which of these excesses can be accommodated.

  4. Visit of Peters Higgs at Point 2 ALICE Experiment - British theoretical physicist, He worked on proposals to unify the weak and the electromagnetic forces into a single electroweak theory, The Boson of Higgs.

    CERN Multimedia

    Mona Schweizer

    2008-01-01

    Visit of Peters Higgs at Point 2 ALICE Experiment - British theoretical physicist, He worked on proposals to unify the weak and the electromagnetic forces into a single electroweak theory, The Boson of Higgs.

  5. Effects of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim; Jansen, Karl

    2010-12-01

    We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)

  6. CP-violating profile of the electroweak bubble wall

    Energy Technology Data Exchange (ETDEWEB)

    Funakubo, Koichi [Saga Univ. (Japan). Dept. of Physics; Kakuto, Akira; Otsuki, Shoichiro; Takenaga, Kazunori; Toyoda, Fumihiko

    1995-11-01

    In any scenario of the electroweak baryogenesis, the profile of the CP violating bubble wall, created at the first-order phase transition, plays an essential role. We attempt to determine it by solving the equations of motion for the scalars in the two-Higgs-doublet model at the transition temperature. According to the parameters in the potential, we found three solutions. Two of them smoothly connect the CP-violating broken phase and the symmetric phase, while the other connects CP-conserving vacua but violates CP in the intermediate region. We also estimate the chiral charge flux, which will be turned into the baryon density in the symmetric phase by the sphaleron process. (author).

  7. Electroweak radiative corrections to Higgs production via vector boson fusion using soft-collinear effective theory

    International Nuclear Information System (INIS)

    Fuhrer, Andreas; Manohar, Aneesh V.; Waalewijn, Wouter J.

    2011-01-01

    Soft-collinear effective theory (SCET) is applied to compute electroweak radiative corrections to Higgs production via gauge boson fusion, qq→qqH. There are several novel features which make this process an interesting application of SCET: The amplitude is proportional to the Higgs vacuum expectation value, and so is not a gauge singlet amplitude. Standard resummation methods require a gauge singlet operator and do not apply here. The SCET analysis requires operators with both collinear and soft external fields, with the Higgs vacuum expectation value being described by an external soft φ field. There is a scalar soft-collinear transition operator in the SCET Lagrangian which contributes to the scattering amplitude, and is derived here.

  8. Tests of the electroweak standard model and measurement of the weak mixing angle with the ATLAS detector

    International Nuclear Information System (INIS)

    Goebel, M.

    2011-09-01

    In this thesis the global Standard Model (SM) fit to the electroweak precision observables is revisted with respect to newest experimental results. Various consistency checks are performed showing no significant deviation from the SM. The Higgs boson mass is estimated by the electroweak fit to be M H =94 -24 +30 GeV without any information from direct Higgs searches at LEP, Tevatron, and the LHC and the result is M H =125 -10 +8 GeV when including the direct Higgs mass constraints. The strong coupling constant is extracted at fourth perturbative order as α s (M Z 2 )=0.1194±0.0028(exp)±0.0001 (theo). From the fit including the direct Higgs constraints the effective weak mixing angle is determined indirectly to be sin 2 θ l eff =0.23147 -0.00010 +0.00012 . For the W mass the value of M W =80.360 -0.011 +0.012 GeV is obtained indirectly from the fit including the direct Higgs constraints. The electroweak precision data is also exploited to constrain new physics models by using the concept of oblique parameters. In this thesis the following models are investigated: models with a sequential fourth fermion generation, the inert-Higgs doublet model, the littlest Higgs model with T-parity conservation, and models with large extra dimensions. In contrast to the SM, in these models heavy Higgs bosons are in agreement with the electroweak precision data. The forward-backward asymmetry as a function of the invariant mass is measured for pp→ Z/γ * →e + e - events collected with the ATLAS detector at the LHC. The data taken in 2010 at a center-of-mass energy of √(s)=7 TeV corresponding to an integrated luminosity of 37.4 pb -1 is analyzed. The measured forward-backward asymmetry is in agreement with the SM expectation. From the measured forward-backward asymmetry the effective weak mixing angle is extracted as sin 2 θ l eff =0.2204±.0071(stat) -0.0044 +0.0039 (syst). The impact of unparticles and large extra dimensions on the forward-backward asymmetry at large

  9. A (critical) overview of electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Csaki, Csaba

    2010-01-01

    This presentation discusses the following points: The standard Higgs, big vs. little hierarchy; Electroweak Symmetry Breaking in supersymmetry and little hierarchy of Minimal Supersymmetric Standard Model (MSSM): Buried Higgs, Bigger quartic (D-terms, Next-to-Minimal Supersymmetric Standard Model (NMSSM), fat Higgs,..); Strong dynamics and related models: Technicolor, Monopole condensate, Warped extra dimensions, Realistic RS, Higgs-less, Composite Higgs, Little Higgs. In summary, we do not understand how Higgs is light and still no trace of new physics. In Supersymmetry (SUSY) it calls for extension of MSSM. In strong dynamics models: electroweak penguin (EWP) usually issue (Warped extra dimension - composite Higgs, Higgs-less, Little Higgs, Technicolor, monopole condensation,..). None of them is fully convincing but LHC should settle these

  10. Recent progress for Linear Collider SM/BSM Higgs/electroweak symmetry breaking calculations

    International Nuclear Information System (INIS)

    Reuter, Juergen

    2012-01-01

    In this paper I review the calculations (and partially simulations and theoretical studies) that have been made and published during the last two to three years focusing on the electroweak symmetry breaking sector and the Higgs boson(s) within the Standard Model and models beyond the Standard Model (BSM) at or relevant for either the International Linear Collider (ILC) or the Compact Linear Collider (CLIC), commonly abbreviated as Linear Collider (LC). (orig.)

  11. 2HDM portal for Singlet-Doublet Dark Matter

    OpenAIRE

    Arcadi, Giorgio

    2018-01-01

    We present an extensive analysis of a model in which the (Majorana) Dark Matter candidate is a mixture between a SU(2) singlet and two SU(2) doublets. This kind of setup takes the name of singlet-doublet model. We will investigate in detail an extension of this model in which the Dark Matter sector interactions with a 2-doublet Higgs sector enforcing the complementarity between Dark Matter phenomenology and searches of extra Higgs bosons.

  12. Current densities in a space-time-dependent and CP-violating Higgs background in the adiabatic limit

    International Nuclear Information System (INIS)

    Comelli, D.; Pietroni, M.; Riotto, A.

    1996-01-01

    Motivated by cosmological applications such as electroweak baryogenesis, we develop a field theoretic approach to the computation of particle currents on a space-time-dependent and CP-violating Higgs background in the adiabatic limit. We consider the standard model with two Higgs doublets and CP violation in the scalar sector, and compute both fermionic and Higgs currents by means of an expansion in the background fields describing the profile of the bubble wall. We discuss the gauge dependence of the results and the renormalization of the current operators, showing that in the limit of local equilibrium, no extra renormalization conditions are needed in order to specify the system completely. copyright 1996 The American Physical Society

  13. Lepton Flavor Violation in the Two Higgs Doublet Model using g-2 muon factor

    International Nuclear Information System (INIS)

    Diaz, Rodolfo A.; Martinez, R.; Rodriguez, J.-Alexis; Tuiran, E.

    2002-01-01

    Current experimental data from the g-2 muon factor, seems to show the necessity of physics beyond the Standard Model (SM), since the difference between SM and experimental predictions is approximately 2.6σ. In the framework of the General Two Higgs Doublet Model (2HDM), we calculate the muon anomalous magnetic moment to get lower and upper bounds for the Flavour Changing (FC) Yukawa couplings in the leptonic sector

  14. The inert doublet model in the light of Fermi-LAT gamma-ray data: a global fit analysis

    Science.gov (United States)

    Eiteneuer, Benedikt; Goudelis, Andreas; Heisig, Jan

    2017-09-01

    We perform a global fit within the inert doublet model taking into account experimental observables from colliders, direct and indirect dark matter searches and theoretical constraints. In particular, we consider recent results from searches for dark matter annihilation-induced gamma-rays in dwarf spheroidal galaxies and relax the assumption that the inert doublet model should account for the entire dark matter in the Universe. We, moreover, study in how far the model is compatible with a possible dark matter explanation of the so-called Galactic center excess. We find two distinct parameter space regions that are consistent with existing constraints and can simultaneously explain the excess: One with dark matter masses near the Higgs resonance and one around 72 GeV where dark matter annihilates predominantly into pairs of virtual electroweak gauge bosons via the four-vertex arising from the inert doublet's kinetic term. We briefly discuss future prospects to probe these scenarios.

  15. The inert doublet model in the light of Fermi-LAT gamma-ray data: a global fit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Eiteneuer, Benedikt; Heisig, Jan [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany); Goudelis, Andreas [UMR 7589 CNRS and UPMC, Laboratoire de Physique Theorique et Hautes Energies (LPTHE), Paris (France)

    2017-09-15

    We perform a global fit within the inert doublet model taking into account experimental observables from colliders, direct and indirect dark matter searches and theoretical constraints. In particular, we consider recent results from searches for dark matter annihilation-induced gamma-rays in dwarf spheroidal galaxies and relax the assumption that the inert doublet model should account for the entire dark matter in the Universe. We, moreover, study in how far the model is compatible with a possible dark matter explanation of the so-called Galactic center excess. We find two distinct parameter space regions that are consistent with existing constraints and can simultaneously explain the excess: One with dark matter masses near the Higgs resonance and one around 72 GeV where dark matter annihilates predominantly into pairs of virtual electroweak gauge bosons via the four-vertex arising from the inert doublet's kinetic term. We briefly discuss future prospects to probe these scenarios. (orig.)

  16. Dispersion Relations for Electroweak Observables in Composite Higgs Models

    CERN Document Server

    Contino, Roberto

    2015-12-14

    We derive dispersion relations for the electroweak oblique observables measured at LEP in the context of $SO(5)/SO(4)$ composite Higgs models. It is shown how these relations can be used and must be modified when modeling the spectral functions through a low-energy effective description of the strong dynamics. The dispersion relation for the parameter $\\epsilon_3$ is then used to estimate the contribution from spin-1 resonances at the 1-loop level. Finally, it is shown that the sign of the contribution to the $\\hat S$ parameter from the lowest-lying spin-1 states is not necessarily positive definite, but depends on the energy scale at which the asymptotic behavior of current correlators is attained.

  17. Magnitude of Higgs-boson-exchange CP violation in two-doublet models with large tanβ

    International Nuclear Information System (INIS)

    Barr, S.M.

    1993-01-01

    CP violation in neutral Higgs-boson exchange is studied in two-doublet models in an expansion in (1/tan 2 β). The typical magnitude of various CP-violating quantities is found for large tanβ. In particular the electric dipole moment (EDM) of the electron and the coefficient c S of the CP-violating electron-nucleon scalar-pseudoscalar operator are examined and it is found that in a simple class of two-doublet models c S /d e is typically O(tan 2 β). Therefore c S is more important than d e for the EDM's of diamagnetic atoms and molecules (Hg, Xe, TlF) typically if tanβ approx-gt 5, and for paramagnetic atoms (Cs, Tl) if tanβ approx-gt 15. The dependence on tanβ of the various contributions to the neutron EDM including the Weinberg three-gluon operator, and the dependence on tanβ of the top-quark EDM are also discussed. Supersymmetric and three-doublet models are also considered

  18. Bound states via Higgs exchanging and heavy resonant di-Higgs

    Directory of Open Access Journals (Sweden)

    Zhaofeng Kang

    2017-08-01

    Full Text Available The existence of Higgs boson h predicted by the standard model (SM was established and hunting for clues to new physics (NP hidden in h has become the top priority in particle physics. In this paper we explore an intriguing phenomenon that prevails in NP associated with h, bound state (Bh, referring to the ground state only of relatively heavy particles ϕ out of NP via interchanging h. This is well-motivated due to the intrinsic properties of h: It has zero spin and light mass, capable of mediating Yukawa interactions; moreover, it may be strongly coupled to ϕ in several important contexts, from addressing the naturalness problem by compositeness/supersymmetry (SUSY/classical scale invariance to understanding neutrino mass origin radiatively and matter asymmetry by electroweak baryogensis. The new resonance Bh, being a neutral scalar boson, has important implications to the large hadron collider (LHC di-Higgs search because it yields a clear resonant di-Higgs signature at the high mass region (≳1 TeV. In other words, searching for Bh offers a new avenue to probe the hidden sector with a Higgs-portal. For illustration in this paper we concentrate on two examples, the stop sector in SUSY and an inert Higgs doublet from a radiative neutrino model. In particular, h-mediation opens a new and wide window to probe the conventional stoponium and the current date begins to have sensitivity to stoponium around TeV.

  19. Bound states via Higgs exchanging and heavy resonant di-Higgs

    Science.gov (United States)

    Kang, Zhaofeng

    2017-08-01

    The existence of Higgs boson h predicted by the standard model (SM) was established and hunting for clues to new physics (NP) hidden in h has become the top priority in particle physics. In this paper we explore an intriguing phenomenon that prevails in NP associated with h, bound state (Bh, referring to the ground state only) of relatively heavy particles ϕ out of NP via interchanging h. This is well-motivated due to the intrinsic properties of h: It has zero spin and light mass, capable of mediating Yukawa interactions; moreover, it may be strongly coupled to ϕ in several important contexts, from addressing the naturalness problem by compositeness/supersymmetry (SUSY)/classical scale invariance to understanding neutrino mass origin radiatively and matter asymmetry by electroweak baryogensis. The new resonance Bh, being a neutral scalar boson, has important implications to the large hadron collider (LHC) di-Higgs search because it yields a clear resonant di-Higgs signature at the high mass region (≳ 1 TeV). In other words, searching for Bh offers a new avenue to probe the hidden sector with a Higgs-portal. For illustration in this paper we concentrate on two examples, the stop sector in SUSY and an inert Higgs doublet from a radiative neutrino model. In particular, h-mediation opens a new and wide window to probe the conventional stoponium and the current date begins to have sensitivity to stoponium around TeV.

  20. Higgs Signals in a Type I 2HDM or with a Sister Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Daniele S.M. [Fermilab; Fox, Patrick J. [Fermilab; Weiner, Neal J. [New York U.

    2012-07-01

    In models where an additional SU(2)-doublet that does not have couplings to fermions participates in electroweak symmetry breaking, the properties of the Higgs boson are changed. At tree level, in the neighborhood of the SM-like range of parameter space, it is natural to have the coupling to vectors, cV, approximately constant, while the coupling to fermions, cf, is suppressed. This leads to enhanced VBF signals of gamma gamma while keeping other signals of Higgses approximately constant (such as WW* and ZZ*), and suppressing higgs to tau tau. Sizable tree-level effects are often accompanied by light charged Higgs states, which lead to important constraints from b to s gamma and top to b H+, but also often to similarly sizable contributions to the inclusive h to gamma gamma signal from radiative effects. In the simplest model, this is described by a Type I 2HDM, and in supersymmetry is naturally realized with 'sister Higgs' fields. In such a scenario, additional light charged states can contribute further with fewer constraints from heavy flavor decays. With supersymmetry, Grand Unification motivates the inclusion of colored partner fields. These G-quarks may provide additional evidence for such a model.

  1. Signature of the CERN GoldenBook at CERN by Peters Higgs British theoretical physicist - He worked on proposals to unify the weak and the electromagnetic forces into a single electroweak theory, The Boson of Higgs.

    CERN Multimedia

    Claudia Marcelloni

    2008-01-01

    Signature of the CERN GoldenBook at CERN by Peters Higgs British theoretical physicist - He worked on proposals to unify the weak and the electromagnetic forces into a single electroweak theory, The Boson of Higgs.

  2. Scrutinizing the alignment limit in two-Higgs-doublet models. II. mH=125 GeV

    Science.gov (United States)

    Bernon, Jérémy; Gunion, John F.; Haber, Howard E.; Jiang, Yun; Kraml, Sabine

    2016-02-01

    In the alignment limit of a multidoublet Higgs sector, one of the Higgs mass eigenstates aligns in field space with the direction of the scalar field vacuum expectation values, and its couplings approach those of the Standard Model (SM) Higgs boson. We consider C P -conserving two-Higgs-doublet models (2HDMs) of type I and type II near the alignment limit in which the heavier of the two C P -even Higgs bosons, H , is the SM-like state observed with a mass of 125 GeV, and the couplings of H to gauge bosons approach those of the SM. We review the theoretical structure and analyze the phenomenological implications of this particular realization of the alignment limit, where decoupling of the extra states cannot occur given that the lighter C P -even state h must, by definition, have a mass below 125 GeV. For the numerical analysis, we perform scans of the 2HDM parameter space employing the software packages 2hdmc and lilith, taking into account all relevant pre-LHC constraints, constraints from the measurements of the 125 GeV Higgs signal at the LHC, as well as the most recent limits coming from searches for other Higgs-like states. Implications for Run 2 at the LHC, including expectations for observing the other scalar states, are also discussed.

  3. Constraints on the Lee-Wick Higgs sector

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Primulando, Reinard

    2009-01-01

    Lee-Wick partners to the standard model Higgs doublet may appear at a mass scale that is significantly lower than that of the remaining Lee-Wick partner states. The relevant effective theory is a two-Higgs doublet model in which one doublet has wrong-sign kinetic and mass terms. We determine bounds on this effective theory, including those from neutral B-meson mixing, b→X s γ, and Z→bb. The results differ from those of conventional two-Higgs doublet models and lead to meaningful constraints on the Lee-Wick Higgs sector.

  4. arXiv Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data

    CERN Document Server

    Ellis, John; Sanz, Verónica; You, Tevong

    The ATLAS and CMS collaborations have recently released significant new data on Higgs and diboson production in LHC Run 2. Measurements of Higgs properties have improved in many channels, while kinematic information for $h \\to \\gamma\\gamma$ and $h \\to ZZ$ can now be more accurately incorporated in fits using the STXS method, and $W^+ W^-$ diboson production at high $p_T$ gives new sensitivity to deviations from the Standard Model. We have performed an updated global fit to precision electroweak data, $W^+W^-$ measurements at LEP, and Higgs and diboson data from Runs 1 and 2 of the LHC in the framework of the Standard Model Effective Field Theory (SMEFT), allowing all coefficients to vary across the combined dataset, and present the results in both the Warsaw and SILH operator bases. We exhibit the improvement in the constraints on operator coefficients provided by the LHC Run 2 data, and discuss the correlations between them. We also explore the constraints our fit results impose on several models of physics ...

  5. Limits from LEP Data on CP-Violating Nonminimal Higgs Sectors

    International Nuclear Information System (INIS)

    Gunion, J.F.; Grzadkowski, B.; Kalinowski, J.; Haber, H.E.; Kalinowski, J.

    1997-01-01

    We derive a sum rule which shows how to extend limits from LEP data on the masses of the lightest CP-even and CP-odd Higgs bosons of a CP-conserving two-Higgs doublet model to any two Higgs bosons of a general CP-violating two-Higgs-doublet model. We generalize the analysis to a Higgs sector consisting of an arbitrary number of Higgs doublets and singlets, giving explicit limits for the CP-conserving and CP-violating two-doublet plus one-singlet Higgs sectors. copyright 1997 The American Physical Society

  6. tbW anomalous couplings in the Two Higgs Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Arhrib, Abdesslam; Jueid, Adil [Département de Mathématiques, Faculté des Sciences et Techniques,Université Abdelmalek Essaadi,B. 416, Tangier (Morocco)

    2016-08-11

    We make a complete one loop calculation of the tbW couplings in the Two Higgs Doublet Model. We evaluate both the anomalous couplings g{sub L} and g{sub R} as well as left handed and right handed component of tbW. The computation is done in the Feynman gauge using the on-shell scheme renormalization for the Standard Model wave functions and parameters. We first show that the relative corrections to these anomalous couplings are rather small in most regions of the parameter space. We then analyze the effects of these anomalous couplings on certain observables such as top quark polarization in single top production through t−channel as well as W{sup ±} boson helicity fractions in top decay.

  7. Radiative generation of quark masses and mixing angles in the two Higgs doublet model

    International Nuclear Information System (INIS)

    Ibarra, Alejandro; Solaguren-Beascoa, Ana

    2014-01-01

    We present a framework to generate the quark mass hierarchies and mixing angles by extending the Standard Model with one extra Higgs doublet. The charm and strange quark masses are generated by small quantum effects, thus explaining the hierarchy between the second and third generation quark masses. All the mixing angles are also generated by small quantum effects: the Cabibbo angle is generated at zeroth order in perturbation theory, while the remaining off-diagonal entries of the Cabibbo–Kobayashi–Maskawa matrix are generated at first order, hence explaining the observed hierarchy |V ub |,|V cb |≪|V us |. The values of the radiatively generated parameters depend only logarithmically on the heavy Higgs mass, therefore this framework can be reconciled with the stringent limits on flavor violation by postulating a sufficiently large new physics scale

  8. Renormalization schemes for the Two-Higgs-Doublet Model and applications to h → WW/ZZ → 4 fermions

    DEFF Research Database (Denmark)

    Altenkamp, Lukas; Dittmaier, Stefan; Rzehak, Heidi

    2017-01-01

    We perform the renormalization of different types of Two-Higgs-Doublet Models for the calculation of observables at next-to-leading order. In detail, we suggest four different renormalization schemes based on on-shell renormalization conditions as far as possible and on M S ¯ prescriptions for th...

  9. B → nK* and B → φKS Decays in the Two Higgs Doublet Model III

    International Nuclear Information System (INIS)

    Shuai-Wei, Wang; Tai-Ping, Song; Lin-Xia, Lü

    2008-01-01

    Using the QCD factorization approach, we investigate the large branching ratios of B →φ K s decays and tjhe S φKs anomaly of B →K s decay in the two Higgs doublet model III. With the contributions of flavour-changing neutral current mediated by the neutral Higgs bosons H 0 , h 0 and A 0 at the tree level, we provide a coherent resolution to these anomalies within the constrained parameter spaces, which are 120 bs λ ss | <136. This will be really interesting in searching for the signs of new physics. (the physics of elementary particles and fields)

  10. Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-11-30

    The ATLAS experiment at the LHC has measured the Higgs boson couplings and mass, and searched for invisible Higgs boson decays, using multiple production and decay channels with up to 4.7 fb$^{-1}$ of $pp$ collision data at $\\sqrt{s}=7$ TeV and 20.3 fb$^{-1}$ at $\\sqrt{s}=8$ TeV. In the current study, the measured production and decay rates of the observed Higgs boson in the $\\gamma\\gamma$, $ZZ$, $WW$, $Z\\gamma$, $bb$, $\\tau\\tau$, and $\\mu\\mu$ decay channels, along with results from the associated production of a Higgs boson with a top-quark pair, are used to probe the scaling of the couplings with mass. Limits are set on parameters in extensions of the Standard Model including a composite Higgs boson, an additional electroweak singlet, and two-Higgs-doublet models. Together with the measured mass of the scalar Higgs boson in the $\\gamma\\gamma$ and $ZZ$ decay modes, a lower limit is set on the pseudoscalar Higgs boson mass of $m_{A}>370$ GeV in the ``hMSSM'' simplified Minimal Supersymmetric Standard Model. R...

  11. Neutrino masses in RPV models with two pairs of Higgs doublets

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Yuval [Laboratory for Elementary-Particle Physics, Cornell University,Ithaca, N.Y. (United States); Peset, Clara [Institut de Fisica d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,08193 Bellaterra, Barcelona (Spain)

    2014-04-07

    We study the generation of neutrino masses and mixing in supersymmetric R-parity violating models containing two pairs of Higgs doublets. In these models, new RPV terms H^{sub D{sub 1}}H^{sub D{sub 2}}E^ arise in the superpotential, as well as new soft terms. Such terms give new contributions to neutrino masses. We identify the different parameters and suppression/enhancement factors that control each of these contributions. At tree level, just like in the MSSM, only one neutrino acquires a mass due to neutrino-neutralino mixing. There are no new one loop effects. We study the two loop contributions and find the conditions under which they can be important.

  12. Tests of the electroweak standard model and measurement of the weak mixing angle with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, M.

    2011-09-15

    In this thesis the global Standard Model (SM) fit to the electroweak precision observables is revisted with respect to newest experimental results. Various consistency checks are performed showing no significant deviation from the SM. The Higgs boson mass is estimated by the electroweak fit to be M{sub H}=94{sub -24}{sup +30} GeV without any information from direct Higgs searches at LEP, Tevatron, and the LHC and the result is M{sub H}=125{sub -10}{sup +8} GeV when including the direct Higgs mass constraints. The strong coupling constant is extracted at fourth perturbative order as {alpha}{sub s}(M{sub Z}{sup 2})=0.1194{+-}0.0028(exp){+-}0.0001 (theo). From the fit including the direct Higgs constraints the effective weak mixing angle is determined indirectly to be sin{sup 2} {theta}{sup l}{sub eff}=0.23147{sub -0.00010}{sup +0.00012}. For the W mass the value of M{sub W}=80.360{sub -0.011}{sup +0.012} GeV is obtained indirectly from the fit including the direct Higgs constraints. The electroweak precision data is also exploited to constrain new physics models by using the concept of oblique parameters. In this thesis the following models are investigated: models with a sequential fourth fermion generation, the inert-Higgs doublet model, the littlest Higgs model with T-parity conservation, and models with large extra dimensions. In contrast to the SM, in these models heavy Higgs bosons are in agreement with the electroweak precision data. The forward-backward asymmetry as a function of the invariant mass is measured for pp{yields} Z/{gamma}{sup *}{yields}e{sup +}e{sup -} events collected with the ATLAS detector at the LHC. The data taken in 2010 at a center-of-mass energy of {radical}(s)=7 TeV corresponding to an integrated luminosity of 37.4 pb{sup -1} is analyzed. The measured forward-backward asymmetry is in agreement with the SM expectation. From the measured forward-backward asymmetry the effective weak mixing angle is extracted as sin{sup 2} {theta}{sup l

  13. Survey of composite particle models of electroweak interaction

    International Nuclear Information System (INIS)

    Suzuki, Mahiko.

    1992-05-01

    Models of composite weak bosons, the top-condensate model of electroweak interaction and related models we surveyed. Composite weak bosons must be tightly bound with a high compositeness scale in order to generate approximate puge symmetry dynamically. However, naturalness argument suggests that the compositeness scale is low at least in toy models. In the top-condensate model, where a composite Higgs doublet is formed with a very high scale, the prediction of the model is insensitive to details of the model and almost model-independent Actually, the numerical prediction of the t-quark and Higgs boson masses does not test compositeness of the Higgs boson nor condensation of the t-quark field. To illustrate the point, a composite t R -quark model is discussed which leads to the same numerical prediction as the top-condensate model. However, different constraints an imposed on the structure of the Higgs sector, depending on which particles are composite. The attempt to account the large t-b mass splitting by the high compositeness scale of the top-condensate model is reinterpreted in terms of fine tuning of more than one vacuum expectation value. It is difficult to lower, without a fourth generation, the t-quark mass in the composite particle models in general because the Yukawa coupling of the i-quark to the Higgs boson, t2 /4π = 0.1 for m t = 200 GeV, is too small for a coupling of a composite particle

  14. The MSSM Electroweak Phase Transition on the Lattice

    CERN Document Server

    Laine, Mikko

    1998-01-01

    We study the MSSM finite temperature electroweak phase transition with lattice Monte Carlo simulations, for a large Higgs mass (m_H ~ 95 GeV) and light stop masses (m_tR ~ 150...160 GeV). We employ a 3d effective field theory approach, where the degrees of freedom appearing in the action are the SU(2) and SU(3) gauge fields, the weakly interacting Higgs doublet, and the strongly interacting stop triplet. We determine the phase diagram, the critical temperatures, the scalar field expectation values, the latent heat, the interface tension and the correlation lengths at the phase transition points. Extrapolating the results to the infinite volume and continuum limits, we find that the transition is stronger than indicated by 2-loop perturbation theory, guaranteeing that the MSSM phase transition is strong enough for baryogenesis in this regime. We also study the possibility of a two-stage phase transition, in which the stop field gets an expectation value in an intermediate phase. We find that a two-stage transi...

  15. Where is the Higgs boson?

    International Nuclear Information System (INIS)

    Aranda, A.; Balazs, C.; Diaz-Cruz, J.L.

    2003-01-01

    Electroweak precision measurements indicate that the standard model Higgs boson is light and that it could have already been discovered at LEP 2, or might be found at the Tevatron run 2. In the context of a TeV -1 size extra-dimensional model, we argue that the Higgs boson production rates at LEP and the Tevatron are suppressed, while they might be enhanced at the LHC or at CLIC. This is due to the possible mixing between brane and bulk components of the Higgs boson, that is, the non-trivial brane-bulk 'location' of the lightest Higgs. To parametrize this mixing, we consider two Higgs doublets, one confined to the usual space dimensions and the other propagating in the bulk. Calculating the production and decay rates for the lightest Higgs boson, we find that compared to the standard model (SM), the cross section receives a suppression well below but an enhancement close to and above the compactification scale M c . This impacts the discovery of the lightest (SM like) Higgs boson at colliders. To find a Higgs signal in this model at the Tevatron run 2 or at the LC with √s=1.5 TeV, a higher luminosity would be required than in the SM case. Meanwhile, at the LHC or at CLIC with √s∼3-5 TeV one might find highly enhanced production rates. This will enable the latter experiments to distinguish between the extra-dimensional and the SM for M c up to about 6 TeV

  16. Variations of little Higgs models and their electroweak constraints

    International Nuclear Information System (INIS)

    Csaki, Csaba; Hubisz, Jay; Meade, Patrick; Kribs, Graham D.; Terning, John

    2003-01-01

    We calculate the tree-level electroweak precision constraints on a wide class of little Higgs models including variations of the littlest Higgs SU(5)/SO(5), SU(6)/Sp(6), and SU(4) 4 /SU(3) 4 models. By performing a global fit to the precision data we find that for generic regions of the parameter space the bound on the symmetry breaking scale f is several TeV, where we have kept the normalization of f constant in the different models. For example, the 'minimal' implementation of SU(6)/Sp(6) is bounded by f>3.0 TeV throughout most of the parameter space, and SU(4) 4 /SU(3) 4 is bounded by f 2 ≡f 1 2 +f 2 2 >(4.2 TeV) 2 . In certain models, such as SU(4) 4 /SU(3) 4 , a large f does not directly imply a large amount of fine-tuning since the heavy-fermion masses that contribute to the Higgs boson mass can be lowered below f for a carefully chosen set of parameters. We also find that for certain models (or variations) there exist regions of parameter space in which the bound on f can be lowered into the range 1-2 TeV. These regions are typically characterized by a small mixing between heavy and standard model gauge bosons and a small (or vanishing) coupling between heavy U(1) gauge bosons and light fermions. Whether such a region of parameter space is natural or not is ultimately contingent on the UV completion

  17. Neutralino-stop co-annihilation into electroweak gauge and Higgs bosons at one loop

    Energy Technology Data Exchange (ETDEWEB)

    Harz, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Herrmann, B. [Univ. Savoie/CNRS, Annecy-le-Vieux (France). LAPTh; Klasen, M. [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Kovarik, K. [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Theoretical Physics; Le Boulc' h, Q. [Grenoble Univ. (France). CNRS-IN2P3/INPG

    2012-12-15

    We compute the full O({alpha}{sub s}) supersymmetric QCD corrections for neutralino-stop co-annihilation into electroweak gauge and Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM). We show that these annihilation channels are phenomenologically relevant within the so-called phenomenological MSSM, in particular in the light of the observation of a Higgs-like particle with a mass of about 126 GeV at the LHC. We present in detail our calculation, including the renormalization scheme, the infrared treatment, and the kinematical subtleties to be addressed. Numerical results for the co-annihilation cross sections and the predicted neutralino relic density are presented. We demonstrate that the impact of including the corrections on the cosmologically preferred region of parameter space is larger than the current experimental uncertainty from WMAP data.

  18. On the origin of mass and the electroweak mass spectrum without Higgs

    International Nuclear Information System (INIS)

    Souza, Manoelita Martins

    1995-01-01

    In a Causality Preserving Manifold Formalism (CPMF), which is based on a new model of spacetime, masses are consequences of spacetime structure symmetries. The mass spectrum of a set of non Abelian fields is solely determined from its Lagrangian kinematic term, in a way independent of any kind of interactions and without any extra field (no Higgs, no Yukawa couplings etc). After a brief review about this CPMF, the origin and meaning of mass is discussed and then illustrated with the vector boson sector of the SU(2) x U(1) electroweak theory. (author)

  19. Electroweak symmetry breaking and collider signatures in the next-to-minimal composite Higgs model

    Science.gov (United States)

    Niehoff, Christoph; Stangl, Peter; Straub, David M.

    2017-04-01

    We conduct a detailed numerical analysis of the composite pseudo-Nambu-Goldstone Higgs model based on the next-to-minimal coset SO(6)/SO(5) ≅ SU(4)/Sp(4), featuring an additional SM singlet scalar in the spectrum, which we allow to mix with the Higgs boson. We identify regions in parameter space compatible with all current exper-imental constraints, including radiative electroweak symmetry breaking, flavour physics, and direct searches at colliders. We find the additional scalar, with a mass predicted to be below a TeV, to be virtually unconstrained by current LHC data, but potentially in reach of run 2 searches. Promising indirect searches include rare semi-leptonic B decays, CP violation in B s mixing, and the electric dipole moment of the neutron.

  20. Gamma-ray constraints on dark-matter annihilation to electroweak gauge and Higgs bosons

    Energy Technology Data Exchange (ETDEWEB)

    Fedderke, Michael A.; Kolb, Edward W.; Lin, Tongyan; Wang, Lian-Tao, E-mail: mfedderke@uchicago.edu, E-mail: Rocky.Kolb@uchicago.edu, E-mail: tongyan@kicp.uchicago.edu, E-mail: liantaow@uchicago.edu [Enrico Fermi Institute and Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, Illinois, 60637-1433 (United States)

    2014-01-01

    Dark-matter annihilation into electroweak gauge and Higgs bosons results in γ-ray emission. We use observational upper limits on the fluxes of both line and continuum γ-rays from the Milky Way Galactic Center and from Milky Way dwarf companion galaxies to set exclusion limits on allowed dark-matter masses. (Generally, Galactic Center γ-ray line search limits from the Fermi-LAT and the H.E.S.S. experiments are most restrictive.) Our limits apply under the following assumptions: a) the dark matter species is a cold thermal relic with present mass density equal to the measured dark-matter density of the universe; b) dark-matter annihilation to standard-model particles is described in the non-relativistic limit by a single effective operator O∝J{sub DM}⋅J{sub SM}, where J{sub DM} is a standard-model singlet current consisting of dark-matter fields (Dirac fermions or complex scalars), and J{sub SM} is a standard-model singlet current consisting of electroweak gauge and Higgs bosons; and c) the dark-matter mass is in the range 5 GeV to 20 TeV. We consider, in turn, the 34 possible operators with mass dimension 8 or lower with non-zero s-wave annihilation channels satisfying the above assumptions. Our limits are presented in a large number of figures, one for each of the 34 possible operators; these limits can be grouped into 13 classes determined by the field content and structure of the operators. We also identify three classes of operators (coupling to the Higgs and SU(2){sub L} gauge bosons) that can supply a 130 GeV line with the desired strength to fit the putative line signal in the Fermi-LAT data, while saturating the relic density and satisfying all other indirect constraints we consider.

  1. Can the 125 GeV Higgs be the Little Higgs?

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, J.; Tonini, M

    2012-12-15

    After the discovery of the Higgs-like boson by the LHC 2012 it is the most important task to check whether this new particle is the Standard Model Higgs boson or something else. In this paper, we study whether the 125 GeV boson could be the pseudo- Goldstone boson of Little Higgs models. We derive limits on the parameter space of several Little Higgs models (simple group and product group models, with and without T-parity), both from the experimental data from ATLAS and CMS about the different Higgs discovery channel and the electroweak precision observables. We perform a fit of several Little Higgs models to all electroweak parameters from measurements of SLC, LEP, Tevatron, and LHC. For the Higgs searches, we include all available data from the summer conferences 2012 as well as the update from December 2012.

  2. Kinematic Reconstruction of the Charged Higgs Boson Mass the H+ → t¯b process using a Likelihood Technique

    CERN Document Server

    Villanueva, John Adrian; CERN. Geneva. EP Department

    2017-01-01

    An extension of the Standard Model of particle physics is an introduction of two Higgs doublets to break electroweak symmetry instead of a single Higgs boson. This results to a couple of Higgs bosons, which includes a charged scalar, H±. The H+ is produced as a mediator in a scattering process of a top quark and a bottom quark coming from two gluon. This CERN Summer Student project report studies how to reconstruct the mass of H+ using a novel statistical method based on weighting every combination of the final state products which then corresponds to a weighted average mass per event. Histograms on the invariant mass of the H+ are produced for simulated datasets with different H+ truth mass

  3. Pair production of charged Higgs scalars from electroweak gauge boson fusion

    CERN Document Server

    Moretti, S.

    2002-01-01

    We compute the contribution to charged Higgs boson pair production at the Large Hadron Collider (LHC) due to the scattering of two electroweak (EW) gauge bosons, these being in turn generated via bremsstrahlung off incoming quarks and antiquarks: $q\\bar q\\to q\\bar q V^*V^*\\to q\\bar q H^+H^-$ ($V=\\gamma,Z,W^\\pm$). We verify that the production cross section of this mode is $\\tan\\beta$ independent and show that it is smaller than that of $H^+H^-$ production via $q\\bar q$-initiated processes but generally larger than that of the loop-induced channel $gg\\to H^+H^-$.

  4. Electroweak and Higgs Measurements Using Tau Final States

    CERN Document Server

    INSPIRE-00258006; McNulty, Ronan

    Spin correlations for $\\tau$ lepton decays are included in the PYTHIA 8 event generation software with a framework which can be expanded to include the decays of particles other than the $\\tau$ lepton. The spin correlations for the decays of $\\tau$ leptons produced from electroweak and Higgs bosons are calculated. Decays of the $\\tau$ lepton using sophisticated resonance models are included in PYTHIA 8 for all channels with experimentally observed branching fractions greater than $0.04\\%$. The mass distributions for the decay products of these channels calculated with PYTHIA 8 are validated against the equivalent distributions from the HERWIG++ and TAUOLA event generators. The technical implementation of the $\\tau$ lepton spin correlations and decays in PYTHIA 8 is described. A measurement of the inclusive ${Z \\rightarrow \\tau\\tau}$ cross-section using ${1.0~\\mathrm{fb}^{-1}}$ of data from $pp$ collisions at $\\sqrt{s} = 7~\\mathrm{Te\\kern -0.1em V}$ collected with the LHCb detector is presented. Reconstructed ...

  5. SM with two Higgs doublets: an example of CP-violation without Fermions

    International Nuclear Information System (INIS)

    Cvetic, G.

    1993-01-01

    Some CP-violation effects without fermions in the Standard Model are investigated with two Higgs doublets. First, the mass eigenstates of the physical neutral Higgses are calculated for small but nonzero CP-violation parameter ξ * , and then a ''forward-backward'' asymmetry A fb for the decay H → W + W - Z that would be a signal of CP-violation. The effects are in general small. However, A fb turns out to be a rather clean signal of CP-violation: neither the CP-conserving final state interactions nor the direct production background events contribute to Γ fb . The KM-type CP-violation effects that could in principle also contribute to A fb are negligible. 6 refs

  6. On the origin of mass and the electroweak mass spectrum without Higgs

    International Nuclear Information System (INIS)

    Souza, Manoelito Martins de

    1994-01-01

    Full text: In a Causality Preserving Manifold Formalism, (CPMF), which is based on a model of spacetime with geometric and strict implementation of causality, masses are consequences of the spacetime symmetries. The mass spectrum of a set of non Abelian fields is solely determined from its Lagrangian kinematics term, in a way independent of any kind of interactions and without any extra field (no Higgs, no Yukawa coupling). The origin and meaning of mass in this formalism is discussed and then illustrated with the vector boson sector of the standard SU(2)x U(1) electroweak theory. (author)

  7. Electroweak symmetry breaking and collider signatures in the next-to-minimal composite Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Niehoff, Christoph; Stangl, Peter; Straub, David M. [Excellence Cluster Universe, TUM,Boltzmannstr. 2, 85748 Garching (Germany)

    2017-04-20

    We conduct a detailed numerical analysis of the composite pseudo-Nambu-Goldstone Higgs model based on the next-to-minimal coset SO(6)/SO(5)≅SU(4)/Sp(4), featuring an additional SM singlet scalar in the spectrum, which we allow to mix with the Higgs boson. We identify regions in parameter space compatible with all current experimental constraints, including radiative electroweak symmetry breaking, flavour physics, and direct searches at colliders. We find the additional scalar, with a mass predicted to be below a TeV, to be virtually unconstrained by current LHC data, but potentially in reach of run 2 searches. Promising indirect searches include rare semi-leptonic B decays, C P violation in B{sub s} mixing, and the electric dipole moment of the neutron.

  8. Next-to-leading order unitarity fits in Two-Higgs-Doublet models with soft ℤ{sub 2} breaking

    Energy Technology Data Exchange (ETDEWEB)

    Cacchio, Vincenzo; Chowdhury, Debtosh; Eberhardt, Otto [Istituto Nazionale di Fisica Nucleare, Sezione di Roma,Piazzale Aldo Moro 2, I-00185 Roma (Italy); Murphy, Christopher W. [Scuola Normale Superiore,Piazza dei Cavalieri 7, I-56126 Pisa (Italy)

    2016-11-07

    We fit the next-to-leading order unitarity conditions to the Two-Higgs-Doublet model with a softly broken ℤ{sub 2} symmetry. In doing so, we alleviate the existing uncertainty on how to treat higher order corrections to quartic couplings of its Higgs potential. A simplified approach to implementing the next-to-leading order unitarity conditions is presented. These new bounds are then combined with all other relevant constraints, including the complete set of LHC Run I data. The upper 95% bounds we find are 4.2 on the absolute values of the quartic couplings, and 235 GeV (100 GeV) for the mass degeneracies between the heavy Higgs particles in the type I (type II) scenario. In type II, we exclude an unbroken ℤ{sub 2} symmetry with a probability of 95%. All fits are performed using the open-source code HEPfit.

  9. Controlled flavour changing neutral couplings in two Higgs Doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Joao M.; Branco, Gustavo C.; Nebot, Miguel [Instituto Superior Tecnico (IST), Lisboa Univ., Departamento de Fisica e Centro de Fisica Teorica de Particulas (CFTP), Lisboa (Portugal); Botella, Francisco J.; Cornet-Gomez, Fernando [Universitat de Valencia-CSIC, Departament de Fisica Teorica y IFIC, Burjassot (Spain)

    2017-09-15

    We propose a class of two Higgs doublet models where there are flavour changing neutral currents (FCNC) at tree level, but under control due to the introduction of a discrete symmetry in the full Lagrangian. It is shown that in this class of models, one can have simultaneously FCNC in the up and down sectors, in contrast to the situation encountered in the renormalisable and minimal flavour violating 2HDM models put forward by Branco et al. (Phys Lett B 380:119, 1996). The intensity of FCNC is analysed and it is shown that in this class of models one can respect all the strong constraints from experiment without unnatural fine-tuning. It is pointed out that the additional sources of flavour and CP violation are such that they can enhance significantly the generation of the Baryon asymmetry of the Universe, with respect to the standard model. (orig.)

  10. Two Higgs doublet models and b → s exclusive decays

    Energy Technology Data Exchange (ETDEWEB)

    Arnan, Pere; Mescia, Federico [Universitat de Barcelona, Departament de Fisica Quantica i Astrofisica (FQA), Institut de Ciencies del Cosmos (ICCUB), Barcelona (Spain); Becirevic, Damir [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique, Orsay (France); Sumensari, Olcyr [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique, Orsay (France); Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil)

    2017-11-15

    We computed the leading order Wilson coefficients relevant to all the exclusive b → sl{sup +}l{sup -} decays in the framework of the two Higgs doublet model (2HDM) with a softly broken Z{sub 2} symmetry by including the O(m{sub b}) corrections. We elucidate the issue of appropriate matching between the full and the effective theory when dealing with the (pseudo-)scalar operators for which keeping the external momenta different from zero is necessary. We then make a phenomenological analysis by using the measured B(B{sub s} → μ{sup +}μ{sup -}) and B(B → Kμ{sup +}μ{sup -}){sub high-q{sup 2}}, for which the hadronic uncertainties are well controlled, and we discuss their impact on various types of 2HDM. A brief discussion of the decays with τ-leptons in the final state is provided too. (orig.)

  11. High scale impact in alignment and decoupling in two-Higgs-doublet models

    Science.gov (United States)

    Basler, Philipp; Ferreira, Pedro M.; Mühlleitner, Margarete; Santos, Rui

    2018-05-01

    The two-Higgs-doublet model (2HDM) provides an excellent benchmark to study physics beyond the Standard Model (SM). In this work, we discuss how the behavior of the model at high-energy scales causes it to have a scalar with properties very similar to those of the SM—which means the 2HDM can be seen to naturally favor a decoupling or alignment limit. For a type II 2HDM, we show that requiring the model to be theoretically valid up to a scale of 1 TeV, by studying the renormalization group equations (RGE) of the parameters of the model, causes a significant reduction in the allowed magnitude of the quartic couplings. This, combined with B -physics bounds, forces the model to be naturally decoupled. As a consequence, any nondecoupling limits in type II, like the wrong-sign scenario, are excluded. On the contrary, even with the very constraining limits for the Higgs couplings from the LHC, the type I model can deviate substantially from alignment. An RGE analysis similar to that made for type II shows, however, that requiring a single scalar to be heavier than about 500 GeV would be sufficient for the model to be decoupled. Finally, we show that the 2HDM is stable up to the Planck scale independently of which of the C P -even scalars is the discovered 125 GeV Higgs boson.

  12. The electroweak theory

    International Nuclear Information System (INIS)

    Chris Quigg

    2001-01-01

    After a short essay on the current state of particle physics, the author reviews the antecedents of the modern picture of the weak and electromagnetic interactions and then undertakes a brief survey of the SU(2) L (circle-times) U(1) Y electroweak theory. The authors reviews the features of electroweak phenomenology at tree level and beyond, presents an introduction to the Higgs boson and the 1-TeV scale, and examines arguments for enlarging the electroweak theory. The author concludes with a brief look at low-scale gravity

  13. Electroweak Physics

    OpenAIRE

    Hollik, W.

    2005-01-01

    The status of precision electroweak measurements as of summer 2002 is reviewed. The recent results on the anomalous magnetic moment of the muon and on neutrino-nucleon scattering are discussed. Precision results on the electroweak interaction obtained by the experiments at the SLC, LEP and TEVATRON colliders are presented. The experimental results are compared with the predictions of the minimal Standard Model and are used to constrain its parameters, including the mass of the Higgs boson. Th...

  14. Electric dipole moments of charged leptons in the split fermion scenario in the two Higgs doublet model

    International Nuclear Information System (INIS)

    Iltan, E.O.

    2005-01-01

    We predict the charged lepton electric dipole moments in the split fermion scenario in the framework of the two Higgs doublet model. We observe that the numerical value of the muon (tau) electric dipole moment is of the order of the magnitude of 10 -22 e cm (10 -20 e cm) and there is an enhancement in the case of two extra dimensions, especially for the tau lepton electric dipole moment. (orig.)

  15. Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson ...

    Indian Academy of Sciences (India)

    The Higgs sector of the MSSM contains two scalar doublet fields leading to five ... At tree level, the masses and couplings of the MSSM Higgs bosons ..... J F Gunion, H E Haber, G Kane and S Dawson, The Higgs Hunters Guide (Addison-.

  16. Search and prospects for BSM Higgs with the ATLAS detector at the LHC

    CERN Document Server

    Barak, Liron

    Almost two years ago, ATLAS and CMS announced the observation of a new boson with a mass of approximately 125 GeV. The properties of this newly discovered boson make a convincing case that it is a Higgs boson related to the BEH mechanism of spontaneous breaking of the electroweak (EW) symmetry. Yet, it remains an open question whether it is the Standard Model (SM) Higgs boson, which is a single elementary scalar particle, or one physical state of an extended scalar sector, as predicted by the two-Higgs-doublet-model (2HDM). There are various ways of trying to answer this exciting question: • Looking for additional scalar particles (e.g. charged Higgs bosons - light and heavy @ 7-8 TeV). This is the main subject of my thesis. • Determining the spin/CP quantum numbers. • Measuring precisely the couplings to fermions and vector bosons. • Studying additional production mechanisms which are not possible in the SM (e.g. from CP-odd decay). During my PhD research, I was involved with each of these topics, so...

  17. Collider signatures of flavorful Higgs bosons

    International Nuclear Information System (INIS)

    Altmannshofer, Wolfgang; Eby, Joshua; Gori, Stefania; Lotito, Matteo

    2016-01-01

    Motivated by our limited knowledge of the Higgs couplings to the first two generation fermions, we analyze the collider phenomenology of a class of two Higgs doublet models (2HDMs) with a nonstandard Yukawa sector. One Higgs doublet is mainly responsible for the masses of the weak gauge bosons and the third-generation fermions, while the second Higgs doublet provides mass for the lighter fermion generations. The characteristic collider signatures of this setup differ significantly from well-studied 2HDMs with natural flavor conservation, flavor alignment, or minimal flavor violation. New production mechanisms for the heavy scalar, pseudoscalar, and charged Higgs involving second-generation quarks can become dominant. The most interesting decay modes include H/A → cc,tc,μμ,τμ and H"± → cb,cs,μν. As a result, searches for low-mass dimuon resonances are currently among the best probes of the heavy Higgs bosons in this setup.

  18. Very light dilaton and naturally light Higgs boson

    Science.gov (United States)

    Hong, Deog Ki

    2018-02-01

    We study very light dilaton, arising from a scale-invariant ultraviolet theory of the Higgs sector in the standard model of particle physics. Imposing the scale symmetry below the ultraviolet scale of the Higgs sector, we alleviate the fine-tuning problem associated with the Higgs mass. When the electroweak symmetry is spontaneously broken radiatively à la Coleman-Weinberg, the dilaton develops a vacuum expectation value away from the origin to give an extra contribution to the Higgs potential so that the Higgs mass becomes naturally around the electroweak scale. The ultraviolet scale of the Higgs sector can be therefore much higher than the electroweak scale, as the dilaton drives the Higgs mass to the electroweak scale. We also show that the light dilaton in this scenario is a good candidate for dark matter of mass m D ˜ 1 eV - 10 keV, if the ultraviolet scale is about 10-100 TeV. Finally we propose a dilaton-assisted composite Higgs model to realize our scenario. In addition to the light dilaton the model predicts a heavy U(1) axial vector boson and two massive, oppositely charged, pseudo Nambu-Goldstone bosons, which might be accessible at LHC.

  19. Charged Higgs signals in t t ¯ searches

    Science.gov (United States)

    Alves, Daniele S. M.; Hedri, Sonia El; Taki, Anna Maria; Weiner, Neal

    2017-10-01

    New scalars from an extended Higgs sector could have weak scale masses and still have escaped detection. In a type I two Higgs doublet model, for instance, even the charged Higgs can be lighter than the top quark. Because electroweak production of these scalars is modest, the greatest opportunity for their detection might come from rare top decays. For mass hierarchies of the type mt>mH+>mA0,H0, the natural signal can arise from top quark pair production, followed by the decay chain t →b H+, H+→W+(*)ϕ0, ϕ0→b b ¯,τ+τ-, where ϕ0=A0,H0. These final states largely overlap with those of the Standard Model t t ¯ HSM process, and therefore can potentially contaminate t t ¯ HSM searches. We demonstrate that existing t t ¯HSM analyses can already probe light extended Higgs sectors, and we derive new constraints from their results. Furthermore, we note that existing excesses in t t ¯HSM searches can be naturally explained by the contamination of rare top decays to new light Higgses. We discuss how to distinguish this signal from the Standard Model process.

  20. Gravitationally coupled electroweak monopole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2016-10-10

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  1. Search for Fermiophobic Higgs using the 3γ+X Final State in 1.96-TeV Proton-Antiproton Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Atsunari [Osaka Univ. (Japan)

    2012-01-01

    We search for a fermiophobic Higgs boson using 3γ+X events in p$\\bar{p}$ collisions at √ s = 1.96 TeV. In the Standard Model (SM), the Higgs boson is introduced to explain the electroweak symmetry breaking (EWSB) and the origin of fermion masses. The minimal extension of the SM contains an additional Higgs doublet, the “two Higgs doublet model” (2HDM). In this model a fermiophobic Higgs boson (hf) which signifies very suppressed or zero coupling to the fermions, may arise in a paticular version of the 2HDM called type I. The data were collected with the CDF-II detector at the Fermilab Tevatron collider and correspond to an integrated luminosity of 6.0 fb -1. We estimate the fake-photon backgrounds and Direct Triphoton Production(DTP) backgrounds. The expected number of signal events is 17.7 for the fermiophobic higgs of the mass 75 GeV/c2 and H± of the mass 120 GeV/c2. The expected number of backgrounds is 1.9±0.9, From these results, we obtain the expected limits on σ(p$\\bar{p}$ → H±hf ) × Br(H± → W*hf ) × (Br(hf → γγ))2 of 8.0 fb for the fermiophobic Higgs of 75 GeV/c2 and H± of the mass 120 GeV/c2 at the 95% confidence level, while the observed limit is 10 fb.

  2. Precision electroweak measurements

    International Nuclear Information System (INIS)

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro e + e - and p anti p colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct m t measurements. Using the world's electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs' mass are discussed

  3. Leptophobic Z' in models with multiple Higgs doublet fields

    Science.gov (United States)

    Chiang, Cheng-Wei; Nomura, Takaaki; Yagyu, Kei

    2015-05-01

    We study the collider phenomenology of the leptophobic Z' boson from an extra U(1)' gauge symmetry in models with N -Higgs doublet fields. We assume that the Z' boson at tree level has (i) no Z- Z' mixing, (ii) no interaction with the charged leptons, and (iii) no flavour-changing neutral current. Under such a setup, it is shown that in the N = 1 case, all the U(1)' charges of left-handed quark doublets and right-handed up- and down- type quarks are required to be the same, while in the N ≥ 3 case one can take different charges for the three types of quarks. The N = 2 case is not well-defined under the above three requirements. We study the processes ( V = γ , Z and W ±) with the leptonic decays of Z and W ± at the LHC. The most promising discovery channel or the most stringent constraint on the U(1)' gauge coupling constant comes from the Z'γ process below the threshold and from the process above the threshold. Assuming the collision energy of 8 TeV and integrated luminosity of 19.6 fb-1, we find that the constraint from the Z'γ search in the lower mass regime can be stronger than that from the UA2 experiment. In the N ≥ 3 case, we consider four benchmark points for the Z' couplings with quarks. If such a Z' is discovered, a careful comparison between the Z'γ and Z' W signals is crucial to reveal the nature of Z' couplings with quarks. We also present the discovery reach of the Z' boson at the 14-TeV LHC in both N = 1 and N ≥ 3 cases.

  4. Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Pich, A. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, I. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Departamento de Ciencias Físicas, Matemáticas y de la Computación,Universidad CEU Cardenal Herrera,c/ Sant Bartomeu 55, E-46115 Alfara del Patriarca, València (Spain); Sanz-Ciller, J.J. [Departamento de Física Teórica, Instituto de Física Teórica,Universidad Autónoma de Madrid - CSIC,c/ Nicolás Cabrera 13-15, E-28049 Cantoblanco, Madrid (Spain)

    2014-01-28

    Using a general effective Lagrangian implementing the chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, we present a one-loop calculation of the oblique S and T parameters within electroweak strongly-coupled models with a light scalar. Imposing a proper ultraviolet behaviour, we determine S and T at next-to-leading order in terms of a few resonance parameters. The constraints from the global fit to electroweak precision data force the massive vector and axial-vector states to be heavy, with masses above the TeV scale, and suggest that the W{sup +}W{sup −} and ZZ couplings of the Higgs-like scalar should be close to the Standard Model value. Our findings are generic, since they only rely on soft requirements on the short-distance properties of the underlying strongly-coupled theory, which are widely satisfied in more specific scenarios.

  5. Hidden U (1 ) gauge symmetry realizing a neutrinophilic two-Higgs-doublet model with dark matter

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2018-04-01

    We propose a neutrinophilic two-Higgs-doublet model with hidden local U (1 ) symmetry, where active neutrinos are Dirac type, and a fermionic dark matter (DM) candidate is naturally induced as a result of remnant symmetry even after the spontaneous symmetry breaking. In addition, a physical Goldstone boson arises as a consequence of two types of gauge singlet bosons and contributes to the DM phenomenologies as well as an additional neutral gauge boson. Then, we analyze the relic density of DM within the safe range of direct detection searches and show the allowed region of dark matter mass.

  6. Standard model without Higgs particles

    International Nuclear Information System (INIS)

    Kovalenko, S.G.

    1992-10-01

    A modification of the standard model of electroweak interactions with the nonlocal Higgs sector is proposed. Proper form of nonlocality makes Higgs particles unobservable after the electroweak symmetry breaking. They appear only as a virtual state because their propagator is an entire function. We discuss some specific consequences of this approach comparing it with the conventional standard model. (author). 12 refs

  7. The Higgs Portal and Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Assamagan, Ketevi [Brookhaven National Lab. (BNL), Upton, NY (United States); Chen, Chien-Yi [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Univ. of Victoria, BC (Canada); Chou, John Paul [Rutgers Univ., Piscataway, NJ (United States); Curtin, David [Univ. of Maryland, College Park, MD (United States); Fedderke, Michael A. [Univ. of Chicago, IL (United States); Gershtein, Yuri [Rutgers Univ., Piscataway, NJ (United States); He, Xiao-Gang [Shanghai Jiao Tong Univ. (China); Klute, Markus [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kozaczuk, Jonathon [TRIUMF, Vancouver, BC (Canada); Kotwal, Ashutosh [Duke Univ., Durham, NC (United States); Lowette, Steven [Vrije Univ., Brussels (Belgium); No, Jose Miguel [Univ. of Sussex, Brighton (United Kingdom); Plehn, Tilman [Heidelberg Univ. (Germany); Qian, Jianming [Univ. of Michigan, Ann Arbor, MI (United States); Ramsey-Musolf, Michael [Univ. of Massachusetts, Amherst, MA (United States); Safonov, Alexei [Texas A & M Univ., College Station, TX (United States); Shelton, Jessie [Univ. of Illinois, Urbana-Champaign, IL (United States); Spannowsky, Michael [Durham Univ. (United Kingdom); Su, Shufang [Univ. of Arizona, Tucson, AZ (United States); Walker, Devin G. E. [Univ. of Washington, Seattle, WA (United States); Willocq, Stephane [Univ. of Massachusetts, Amherst, MA (United States); Winslow, Peter [Univ. of Massachusetts, Amherst, MA (United States)

    2016-04-18

    Higgs portal interactions provide a simple mechanism for addressing two open problems in cosmology: dark matter and the baryon asymmetry. In the latter instance, Higgs portal interactions may contain the ingredients for a strong first-order electroweak phase transition as well as new CP-violating interactions as needed for electroweak baryogenesis. These interactions may also allow for a viable dark matter candidate. We survey the opportunities for probing the Higgs portal as it relates to these questions in cosmology at the LHC and possible future colliders.

  8. Higgs mixing in the NMSSM and light higgsinos

    International Nuclear Information System (INIS)

    Jeong, Kwang Sik; Shoji, Yutaro; Yamaguchi, Masahiro

    2014-12-01

    We explore the effects of Higgs mixing in the general next-to-minimal supersymmetric Standard Model (NMSSM). Extended to include a gauge singlet, the Higgs sector can naturally explain the observed Higgs boson mass in TeV scale supersymmetry without invoking large stop mixing. This is particularly the case when the singlet scalar is light so that singlet-doublet mixing increases the mass of the SM-like Higgs boson. In such a case the Higgs mixing has interesting implications following from the fact that the higgsino mass parameter and the singlet coupling to Higgs bilinear crucially depend on the Higgs boson masses and mixing angles. For the mixing compatible with the current LHC data on the Higgs signal rates, the higgsinos are required to be relatively light, around or below a few hundred GeV, as long as the heavy doublet Higgs boson has a mass smaller than about 250√(tanβ) GeV and the singlet-like Higgs boson is consistent with the LEP constraint. In addition, the Higgs coupling to photons can receive a sizable contribution of either sign from the charged-higgsino loops combined with singlet-doublet mixing.

  9. Has the general two-Higgs-doublet model unnatural FCNC suppression? An RGE analysis

    International Nuclear Information System (INIS)

    Cvetic, G.; Hwang, S.S.; Kim, C.S.

    1997-01-01

    There is a widespread belief that the general two-Higgs-doublet model (G2HDM) behaves unnaturally with respect to evolution of the flavor-changing neutral Yukawa coupling parameters (FCNYCP's) - i.e., that the latter, although being suppressed at low energies of probes, in general increase by a large factor as the energy of probes increases. We investigate this, by evolving Yukawa parameters by one-loop renormalization group equations and neglecting contributions of the first quark generation. For patterns of FCNYCP suppression at low energies suggested by existing quark mass hierarchies, FCNYCP's remain remarkably stable (suppressed) up to energies very close to the Landau pole. This indicates that G2HDM preserves FCNYCP suppression, for reasonably chosen patterns of that suppression at low energies. (author)

  10. On the Possible Links Between Electroweak Symmetry Breaking and Dark Matter

    International Nuclear Information System (INIS)

    Hambye, Thomas; Tytgat, Michel H. G.

    2009-01-01

    The mechanism behind electroweak symmetry breaking (EWSB) and the nature of dark matter (DM) are currently very important issues in particle physics. Usually, in most models, these two issues are not or poorly connected. However, since a natural dark matter candidate is a weakly interacting massive particle or WIMP, with mass around the electroweak scale, it is clearly of interest to investigate the possibility that DM and EWSB are closely related. In the context of a very simple extension of the Standard Model, the Inert Doublet Model, we show that dark matter could play a crucial role in the breaking of the electroweak symmetry. In this model, dark matter is the lightest component of an inert scalar doublet which can induce dynamically electroweak symmetry breaking at one loop level. Moreover, in a large fraction of the parameter space of this model, the mass of the dark matter particle is essentially determined by the electroweak scale, so that the fact that the WIMP DM mass is around the electroweak scale is not a coincidence.

  11. Sakurai Prize: Why the Higgs Boson data implies an M-theory world

    Science.gov (United States)

    Kane, Gordon

    2017-01-01

    Compactifying 11D M-theory on a 7D G2 manifold automatically gives a supersymmetric 4D relativistic quantum field theory. The supersymmetry is softly broken by gluino condensation of the largest gauge group hidden sector, which runs fastest. The resulting gravitino mass is about 40 TeV, and the scalar masses and trilinears of the soft breaking Lagrangian have similar values. All solutions having electroweak symmetry breaking are in the two doublet decoupling region. The coefficient λ of the effective Higgs potential is calculable and determines Mh/MZ. Using the most recent match and run methods, and running down to the TeV scale gives Mh = 126 GeV, and decay BR within a few per cent of the SM Higgs. This was reported in summer 2011, before LHC data, though the result does not depend on any adjustable parameters so it would be unchanged whenever it was reported.

  12. Electroweak Baryogenesis in R-symmetric Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin

    2013-03-01

    We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.

  13. Neutrinophilic two Higgs doublet model with dark matter under an alternative U(1)_{B-L} gauge symmetry

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2018-03-01

    We propose a Dirac type active neutrino with rank two mass matrix and a Majorana fermion dark matter candidate with an alternative local U(1)_{B-L} extension of neutrinophilic two Higgs doublet model. Our dark matter candidate can be stabilized due to charge assignment under the gauge symmetry without imposing extra discrete Z_2 symmetry and the relic density is obtained from an Z' boson exchanging process. Taking into account collider constraints on the Z' boson mass and coupling, we estimate the relic density.

  14. A search for Higgs bosons h and A of a two doublet model is performed using ALEPH; Recherche des bosons de Higgs neutres d`un modele a deux doublets avec le detecteur ALEPH au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Simion, S.

    1995-04-01

    A search of Higgs bosons h and A of a two-doublet model is performed. We analyse the data collected by ALEPH till 1993, corresponding to a luminosity of 63.4 pb{sup 1} at the Z peak. The {tau}{sup +}{tau}{sup -}q anti q and b anti b b anti b final states are mainly considered. The section criteria are available, thus improving the sensitivity of the analysis. Assuming m{sub h} = m{sub A} = 45 GeV, an upper limit of O.324 pb on the {pi}{sup +}{pi}{sup -}q anti q cross section is derived. The four-b final state selection is based on b-hadron lifetime, using the two-dimensional readout from the vertex detector. We analyse 1.53 million hadronic Z`s without any evidence for a signal (313 events seen, 270+-17 expected from the background, with 24% efficiency for m{sub h} = m{sub A} = 45 GeV.). Searches for the standard Model Higgs boson are interpreted in the framework of a two-doublet model. The decay of the lightest scalar h into a AA pair is also considered. No signal is found and the regions excluded in the (m{sub h} -m{sub A}) and (m{sub A} - tan {beta}) planes of the MSSM are presented. Influence of stop mixing is discussed. Assuming m{sub top} 170 GeV, universal quark masses m{sub Q} = 1 TeV, no stop mixing, and tan {beta} > 1, a 95% lower limit on m{sub A} equal to 45.5 GeV is derived. (authors). 60 refs., 93 figs., 15 tabs.

  15. Breaking of electroweak symmetry: origin and effects

    International Nuclear Information System (INIS)

    Delaunay, C.

    2008-10-01

    The Higgs boson appears as the corner stone of high energy physics, it might be the cause of the excess of matter that led to the formation of the structures of the universe and it seems that it drives the breaking of the electroweak symmetry. Moreover, when the stability at low energies of the Higgs boson is assured by an extra space dimension, it appears that this extra dimension can explain most issues in the flavor physics that are not understood by the standard model. The first chapter presents the main tools of effective field theories, the role of experimental data in the construction of theories valid beyond the standard model is discussed. The second chapter focuses on the electroweak baryogenesis that allows the testing of new physics via the electroweak phase transition. We detail the calculation of a Higgs potential at finite temperature. We follow the dynamics of the phase transition including nucleation an supercooling. Finally we investigate the prospects of gravity wave detection to see the effects of a strong electroweak phase transition. The 2 last chapters are dedicated to the physics of extra-dimension. The properties of the dynamics of scalar, vector fields with a 1/2 spin plunged in a 5 d. Anti de Sitter geometry are reviewed. We present a model of lepton masses and mixings based on the A 4 non-Abelian discrete symmetry. It is shown that this model does not contradict the tests of electroweak precision. (A.C.)

  16. Perturbed Lepton-Specific Two-Higgs-Doublet Model Facing Experimental Hints for Physics beyond the Standard Model.

    Science.gov (United States)

    Crivellin, Andreas; Heeck, Julian; Stoffer, Peter

    2016-02-26

    BABAR, Belle, and LHCb Collaborations report evidence for new physics in B→Dτν and B→D^{*}τν of approximately 3.8σ. There is also the long lasting discrepancy of about 3σ in the anomalous magnetic moment of the muon, and the branching ratio for τ→μνν is 1.8σ (2.4σ) above the standard model expectation using the HFAG (PDG) values. Furthermore, CMS Collaboration finds hints for a nonzero decay rate of h→μτ. Interestingly, all these observations can be explained by introducing new scalars. In this Letter we consider these processes within a lepton-specific two-Higgs doublet model (i.e., of type X) with additional nonstandard Yukawa couplings. It is found that one can accommodate τ→μνν with modified Higgs-τ couplings. The anomalous magnetic moment of the muon can be explained if the additional neutral CP-even Higgs boson H is light (below 100 GeV). Also R(D) and R(D^{*}) can be easily explained by additional t-c-Higgs couplings. Combining these t-c couplings with a light H the decay rate for t→Hc can be in a testable range for the LHC. Effects in h→μτ are also possible, but in this case a simultaneous explanation of the anomalous magnetic moment of the muon is difficult due to the unavoidable τ→μγ decay.

  17. The Higgs portal above threshold

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Lou, Hou Keong [Department of Physics, Princeton University,Princeton, NJ 08540 (United States); McCullough, Matthew [Theory Division, CERN,1211 Geneva 23 (Switzerland); Thalapillil, Arun [Department of Physics and Astronomy, Rutgers University,Piscataway, NJ 08854 (United States)

    2016-02-18

    The discovery of the Higgs boson opens the door to new physics interacting via the Higgs Portal, including motivated scenarios relating to baryogenesis, dark matter, and electroweak naturalness. We systematically explore the collider signatures of singlet scalars produced via the Higgs Portal at the 14 TeV LHC and a prospective 100 TeV hadron collider. We focus on the challenging regime where the scalars are too heavy to be produced in the decays of an on-shell Higgs boson, and instead are produced primarily via an off-shell Higgs. Assuming these scalars escape the detector, promising channels include missing energy in association with vector boson fusion, monojets, and top pairs. We forecast the sensitivity of searches in these channels at √s=14 & 100 TeV and compare collider reach to the motivated parameter space of singlet-assisted electroweak baryogenesis, Higgs Portal dark matter, and neutral naturalness.

  18. The Higgs portal above threshold

    International Nuclear Information System (INIS)

    Craig, Nathaniel; Lou, Hou Keong; McCullough, Matthew; Thalapillil, Arun

    2016-01-01

    The discovery of the Higgs boson opens the door to new physics interacting via the Higgs Portal, including motivated scenarios relating to baryogenesis, dark matter, and electroweak naturalness. We systematically explore the collider signatures of singlet scalars produced via the Higgs Portal at the 14 TeV LHC and a prospective 100 TeV hadron collider. We focus on the challenging regime where the scalars are too heavy to be produced in the decays of an on-shell Higgs boson, and instead are produced primarily via an off-shell Higgs. Assuming these scalars escape the detector, promising channels include missing energy in association with vector boson fusion, monojets, and top pairs. We forecast the sensitivity of searches in these channels at √s=14 & 100 TeV and compare collider reach to the motivated parameter space of singlet-assisted electroweak baryogenesis, Higgs Portal dark matter, and neutral naturalness.

  19. A phenomenological study on the production of Higgs bosons in the cSMCS model at the LHC

    Directory of Open Access Journals (Sweden)

    N. Darvishi

    2017-10-01

    Full Text Available In the present work, we intend to predict the production rates of the Higgs bosons in the simplest extension of the Standard Model (SM by a neutral complex singlet (cSMCS. This model has an additional source of CP violation and provides strong enough first-order electroweak phase transition to generate the baryon asymmetry of universe (BAU. The scalar spectrum of the cSMCS includes three neutral Higgs particles with the lightest one considered to be the 125 GeV Higgs boson found at LHC. The SM-like Higgs boson comes mostly from the SM-like SU(2 doublet, with a small correction from the singlet. To predict the production rates of the Higgs bosons, we use a conventional effective LO QCD framework and the unintegrated parton distribution functions (UPDF of Kimber–Martin–Ryskin (KMR. We first compute the SM Higgs production cross-section and compare the results to the existing theoretical calculations from different frameworks as well as the experimental data from the CMS and ATLAS collaborations. It is shown that our framework is capable of producing sound predictions for these high-energy QCD events in the SM. Afterwards we present our predictions for the Higgs boson production in the cSMCS.

  20. Diphoton and diboson probes of fermiophobic Higgs bosons at the LHC

    International Nuclear Information System (INIS)

    Delgado, Antonio; Garcia-Pepin, Mateo; Quirós, Mariano; Santiago, José; Vega-Morales, Roberto

    2016-01-01

    Extensions of the Standard Model Higgs sector with electroweak charged scalars can possess exotic ‘Higgs’ bosons with vanishing or suppressed couplings to Standard Model fermions. These ‘fermiophobic’ scalars, which cannot be produced via gluon fusion, are constrained by LHC measurements of the 125 GeV Higgs boson to have a small vacuum expectation value. This implies that vector boson fusion and associated vector boson production are in general suppressed rendering conventional Higgs searches insensitive. However, Drell-Yan Higgs pair production, which is not present in the SM, can be sizeable even in the limit of vanishing exotic Higgs vacuum expectation value. We utilize this to show that diphoton searches at 8 TeV LHC already rule out a large class of neutral fermiophobic Higgs bosons below ∼110 GeV. This includes fermiophobic scalars found in two Higgs doublet as well as Higgs triplet and Georgi-Machacek type models. Our results extend the only relevant limit on fermiophobic Higgs bosons obtained by a recent CDF analysis of 4γ+X Tevatron data. Furthermore, diphoton limits are independent of the decay of the second Higgs boson and thus apply even for degenerate masses in contrast to the CDF search. We also find that if the fermiophobic Higgs has very enhanced couplings to photons, masses as large as ∼150 GeV can be ruled out while if these couplings are somehow highly suppressed, masses below ∼90 GeV can still be ruled out. Finally, we show that WW and ZZ diboson searches may serve as complementary probes for masses above the diphoton limit up to ∼250 GeV and discuss prospects at 13 TeV LHC.

  1. Higgs physics

    Indian Academy of Sciences (India)

    The theoretical aspects of the physics of Higgs bosons are reviewed focussing on the elements that are relevant for the production and detection at present hadron colliders. After briefly summarizing the basics of electroweak symmetry breaking in the Standard Model, the Higgs production at the LHC and at the Tevatron is ...

  2. Higgs mass bounds from a chirally invariant lattice Higgs-Yukawa model with overlap fermions

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim

    2008-10-01

    We study the parameter dependence of the Higgs mass in a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. Eventually, the aim is to establish upper and lower Higgs mass bounds. Here we present our preliminary results on the lower Higgs mass bound at several selected values for the cutoff and give a brief outlook towards the upper Higgs mass bound. (orig.)

  3. Associated central exclusive production of charged Higgs bosons

    International Nuclear Information System (INIS)

    Enberg, Rikard; Pasechnik, Roman

    2011-01-01

    We propose central exclusive production of a charged Higgs boson in association with a W boson as a possible signature of certain types of extended Higgs sectors. We calculate the cross section and find that the rate at the LHC could be large enough to allow observation in some models with two-Higgs doublets, where the charged Higgs and at least one of the neutral scalars can be light enough. We use the two-Higgs doublet model as a prototype and consider two distinct regions of parameter space, but we also briefly discuss the prospects for the next-to-minimal supersymmetric standard model, where the charged Higgs may very well be quite light.

  4. State of electroweak interactions

    International Nuclear Information System (INIS)

    Lane, K.

    1984-01-01

    I assess what we know and what we do not know about the electroweak interactions. In particular, I argue that existing data on the electroweak parameters rho, sin 2 theta/sub w/ and G/sub F/ and on the recently discovered W +- and Z 0 allow us reasonably to conclude that: (1) the W +- and Z 0 truly are the elementary massive gauge bosons of SU(2) x U(1) and not the composite bosons of a new strong interaction, and (2) the electroweak scalar sector consists of weak doublets only. The most important thing we do not know is everything else about the electroweak scalar sector. In the hope of soon shedding light on this issue, a new method of searching for electroweak scalars in existing p-barp colliders is proposed. The basis of this method is that the branching ratio of W +- to decay to a charged plus a neutral scalar (expected in non-minimal SU(2) x U(1) models) can be as large as 1-2%, with detectable rates up to scalar masses of approx.35 GeV

  5. Higgs searches and prospects at CDF

    International Nuclear Information System (INIS)

    Pavel A Murat

    2003-01-01

    The Standard model of electroweak interactions (SM) has been extremely successful in describing interactions of elementary particles over the last decades. The Higgs scalar boson is one of the key elements of the SM: Higgs interactions with the other particles generate the particle masses and allow to keep the theory renormalizable at electroweak scale. All the particles predicted by the SM but the Higgs boson have already been observed experimentally and therefore search for the Higgs is one of the most important scientific goals for high energy physics. The current lower limit on the SM Higgs mass M H > 114.4 GeV at 95% CL has been established by LEP experiments. In this paper we review CDF Run I results on Higgs searches including the Higgs bosons predicted by the minimal supersymmetric extention of the Standard Model (MSSM) and discuss the Run II prospects

  6. One-loop corrections to the perturbative unitarity bounds in the CP-conserving two-Higgs doublet model with a softly broken ℤ{sub 2} symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Grinstein, Benjamín [Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Murphy, Christopher W. [Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126 (Italy); Uttayarat, Patipan [Department of Physics, Srinakharinwirot University, Wattana, Bangkok 10110 (Thailand)

    2016-06-13

    We compute all of the one-loop corrections that are enhanced, O(λ{sub i}λ{sub j}/16π{sup 2}), in the limit s≫|λ{sub i}|v{sup 2}≫M{sub W}{sup 2}, s≫m{sub 12}{sup 2} to all the 2→2 longitudinal vector boson and Higgs boson scattering amplitudes in the CP-conserving two-Higgs doublet model with a softly broken ℤ{sub 2} symmetry. In the two simplified scenarios we study, the typical bound we find is |λ{sub i}(s)|⪅4.

  7. The hierarchy problem of the electroweak standard model revisited

    International Nuclear Information System (INIS)

    Jegerlehner, Fred

    2013-05-01

    A careful renormalization group analysis of the electroweak Standard Model reveals that there is no hierarchy problem in the SM. In the broken phase a light Higgs turns out to be natural as it is self-protected and self-tuned by the Higgs mechanism. It means that the scalar Higgs needs not be protected by any extra symmetry, specifically super symmetry, in order not to be much heavier than the other SM particles which are protected by gauge- or chiral-symmetry. Thus the existence of quadratic cutoff effects in the SM cannot motivate the need for a super symmetric extensions of the SM, but in contrast plays an important role in triggering the electroweak phase transition and in shaping the Higgs potential in the early universe to drive inflation as supported by observation.

  8. The hierarchy problem of the electroweak standard model revisited

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-05-15

    A careful renormalization group analysis of the electroweak Standard Model reveals that there is no hierarchy problem in the SM. In the broken phase a light Higgs turns out to be natural as it is self-protected and self-tuned by the Higgs mechanism. It means that the scalar Higgs needs not be protected by any extra symmetry, specifically super symmetry, in order not to be much heavier than the other SM particles which are protected by gauge- or chiral-symmetry. Thus the existence of quadratic cutoff effects in the SM cannot motivate the need for a super symmetric extensions of the SM, but in contrast plays an important role in triggering the electroweak phase transition and in shaping the Higgs potential in the early universe to drive inflation as supported by observation.

  9. Dark matter physics in neutrino specific two Higgs doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seungwon; Nomura, Takaaki [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul 02455 (Korea, Republic of)

    2017-03-10

    Although the seesaw mechanism is a natural explanation for the small neutrino masses, there are cases when the Majorana mass terms for the right-handed neutrinos are not allowed due to symmetry. In that case, if neutrino-specific Higgs doublet is introduced, neutrinos become Dirac particles and their small masses can be explained by its small VEV. We show that the same symmetry, which we assume a global U(1){sub X}, can also be used to explain the stability of dark matter. In our model, a new singlet scalar breaks the global symmetry spontaneously down to a discrete Z{sub 2} symmetry. The dark matter particle, lightest Z{sub 2}-odd fermion, is stabilized. We discuss the phenomenology of dark matter: relic density, direct detection, and indirect detection. We find that the relic density can be explained by a novel Goldstone boson channel or by resonance channel. In the most region of parameter space considered, the direct detections is suppressed well below the current experimental bound. Our model can be further tested in indirect detection experiments such as FermiLAT gamma ray searches or neutrinoless double beta decay experiments.

  10. Vector resonances at LHC Run II in composite 2HDM

    Energy Technology Data Exchange (ETDEWEB)

    Chiara, Stefano Di [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Heikinheimo, Matti; Tuominen, Kimmo [Helsinki Institute of Physics, University of Helsinki,P.O. Box 64, FI-000140, Helsinki (Finland); Department of Physics, University of Helsinki,P.O. Box 64, FI-000140, Helsinki (Finland)

    2017-03-02

    We consider a model where the electroweak symmetry breaking is driven by strong dynamics, resulting in an electroweak doublet scalar condensate, and transmitted to the standard model matter fields via another electroweak doublet scalar. At low energies the effective theory therefore shares features with a type-I two Higgs doublet model. However, important differences arise due to the rich composite spectrum expected to contain new vector resonances accessible at the LHC. We carry out a systematic analysis of the vector resonance signals at LHC and find that the model remains viable, but will be tightly constrained by direct searches as the projected integrated luminosity, around 200 fb{sup −1}, of the current run becomes available.

  11. Smoking-gun signatures of little Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Han Tao [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Institute of Theoretical Physics, Academia Sinica, Beijing 100080 (China); Logan, Heather E. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Wang, L.-T. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2006-01-15

    Little Higgs models predict new gauge bosons, fermions and scalars at the TeV scale that stabilize the Higgs mass against quadratically divergent one-loop radiative corrections. We categorize the many little Higgs models into two classes based on the structure of the extended electroweak gauge group and examine the experimental signatures that identify the little Higgs mechanism in addition to those that identify the particular little Higgs model. We find that by examining the properties of the new heavy fermion(s) at the LHC, one can distinguish the structure of the top quark mass generation mechanism and test the little Higgs mechanism in the top sector. Similarly, by studying the couplings of the new gauge bosons to the light Higgs boson and to the Standard Model fermions, one can confirm the little Higgs mechanism and determine the structure of the extended electroweak gauge group.

  12. Electroweak Symmetry Breaking (3/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The focus of the lectures will be on the role of the Higgs boson in the mechanism of electroweak symmetry breaking, both in the Standard Model and in models of New Physics. In particular, I will discuss how a determination of its couplings to matter and gauge fields can give important information on the nature and origin of the Higgs boson. I will thus review the picture on Higgs couplings implied by the current experimental data and examine further interesting processes that can be measured in the future.

  13. Electroweak Symmetry Breaking (2/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The focus of the lectures will be on the role of the Higgs boson in the mechanism of electroweak symmetry breaking, both in the Standard Model and in models of New Physics. In particular, I will discuss how a determination of its couplings to matter and gauge fields can give important information on the nature and origin of the Higgs boson. I will thus review the picture on Higgs couplings implied by the current experimental data and examine further interesting processes that can be measured in the future.

  14. Electroweak Symmetry Breaking (1/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The focus of the lectures will be on the role of the Higgs boson in the mechanism of electroweak symmetry breaking, both in the Standard Model and in models of New Physics. In particular, I will discuss how a determination of its couplings to matter and gauge fields can give important information on the nature and origin of the Higgs boson. I will thus review the picture on Higgs couplings implied by the current experimental data and examine further interesting processes that can be measured in the future.

  15. Grand unified supersymmetric Higgs bosons as pseudo-Goldstone particles

    International Nuclear Information System (INIS)

    Barbieri, R.; Dvali, G.; Strumia, A.

    1993-01-01

    We reconsider the possibility that the Higgs doublet responsible for the breaking of the electroweak gauge group be quasi-Goldstone bosons of a spontaneously broken approximate global symmetry of the theory. Supersymmetric SU(5) and SO(10) gauge models are discussed. The main phenomenological consequence of this viewpoint is the possible existence at the Fermi scale of a quasi-stable particle, most likely a Lorentz scalar, with the same colour and charge as a down quark. Its existence is a generic feature of models based on SO(10). The associated phenomoenological is illustrated. We also show how the phenomenology of the minimal SU(5) theory, already proposed, gets tightly constrained by the consideration of coupling constant unification without any assumption, otherwise crucial, on the superheavy threshold effects. (orig.)

  16. Can the ''doublet-triplet splitting'' problem be solved without doublet-triplet splitting?

    International Nuclear Information System (INIS)

    Dvali, G.R.

    1992-03-01

    We consider a new possible mechanism for the natural solution of the doublet-triplet splitting problem in SUSY GUTs. In contrast to the usually discussed scenarios, in our case the GUT symmetry breaking does not provide any splitting between the Higgs doublet and the triplet masses. The weak doublet and its colour triplet partner both remain light, but the triplet automatically occurs decoupled from the quark and lepton superfields and cannot induce proton decay. The advantage of the above scenarios is the absence at the GUT scale of the baryon number violating the tree level d = 5 and d = 6 operators via the colour-triple exchange. It is shown that in flipped SU(5) GUT they do not appear at any scale. In the SO(10) model, such operators can be induced after SUSY breaking but are strongly suppressed. (author). 22 refs, 2 figs

  17. p p →A →Z h and the wrong-sign limit of the two-Higgs-doublet model

    Science.gov (United States)

    Ferreira, Pedro M.; Liebler, Stefan; Wittbrodt, Jonas

    2018-03-01

    We point out the importance of the decay channels A →Z h and H →V V in the wrong-sign limit of the two-Higgs-doublet model (2HDM) of type II. They can be the dominant decay modes at moderate values of tan β , even if the (pseudo)scalar mass is above the threshold where the decay into a pair of top quarks is kinematically open. Accordingly, large cross sections p p →A →Z h and p p →H →V V are obtained and currently probed by the LHC experiments, yielding conclusive statements about the remaining parameter space of the wrong-sign limit. In addition, mild excesses—as recently found in the ATLAS analysis b b ¯→A →Z h —could be explained. The wrong-sign limit makes other important testable predictions for the light Higgs boson couplings.

  18. LEP Higgs boson searches beyond the standard model

    Indian Academy of Sciences (India)

    These include the searches for charged Higgs bosons, models with two Higgs field doublets, searches for 'fermiophobic' Higgs decay, invisible Higgs boson decays, decay-mode independent searches, and limits on Yukawa and anomalous Higgs couplings. I review the searches done by the four LEP experiments and ...

  19. Search for BSM Higgs bosons in fermion decay modes with ATLAS

    CERN Document Server

    Straessner, Arno; The ATLAS collaboration

    2017-01-01

    Many physics models beyond the Standard Model (BSM) predict an extension of the Higgs sector, like the general 2-Higgs Doublet Model (2HDM) or supersymmetric models. In case of one additional Higgs doublet, there are five physical Higgs bosons: two CP neutral states (h,H), one CP odd state (A) and two charged Higgs bosons (H±). Typically, the already observed Higgs boson is identified with the h Higgs boson, while the others are assumed to be heavy. This presentation is reporting on recent results of direct searches for heavy neutral and charged Higgs bosons by the ATLAS Collaboration, in particular analyzing direct Higgs boson decays to fermions, like $H^\\pm \\to \\tau\

  20. Early Universe Higgs dynamics in the presence of the Higgs-inflaton and non-minimal Higgs-gravity couplings

    Energy Technology Data Exchange (ETDEWEB)

    Ema, Yohei [Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Karčiauskas, Mindaugas [University of Jyväskylä, Department of Physics, P.O. Box 35 (YFL), FI-40014, Jyväskylä (Finland); Lebedev, Oleg; Zatta, Marco, E-mail: ema@hep-th.phys.s.u-tokyo.ac.jp, E-mail: mindaugas.m.karciauskas@jyu.fi, E-mail: oleg.lebedev@helsinki.fi, E-mail: marco.zatta@helsinki.fi [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki (Finland)

    2017-06-01

    Apparent metastability of the electroweak vacuum poses a number of cosmological questions. These concern evolution of the Higgs field to the current vacuum, and its stability during and after inflation. Higgs-inflaton and non-minimal Higgs-gravity interactions can make a crucial impact on these considerations potentially solving the problems. In this work, we allow for these couplings to be present simultaneously and study their interplay. We find that different combinations of the Higgs-inflaton and non-minimal Higgs-gravity couplings induce effective Higgs mass during and after inflation. This crucially affects the Higgs stability considerations during preheating. In particular, a wide range of the couplings leading to stable solutions becomes allowed.

  1. Light stop mass limits from Higgs rate measurements in the MSSM: is MSSM electroweak baryogenesis still alive after all?

    Energy Technology Data Exchange (ETDEWEB)

    Liebler, Stefan [Deutsches Elektronen-Synchrotron (DESY),Notkestraße 85, 22607 Hamburg (Germany); Profumo, Stefano; Stefaniak, Tim [Department of Physics and Santa Cruz Institute for Particle Physics (SCIPP),University of California Santa Cruz, CA 95064 (United States)

    2016-04-22

    We investigate the implications of the Higgs rate measurements from Run 1 of the LHC for the mass of the light scalar top partner (stop) in the Minimal Supersymmetric Standard Model (MSSM). We focus on light stop masses, and we decouple the second, heavy stop and the gluino to the multi-TeV range in order to obtain a Higgs mass of ∼125 GeV. We derive lower mass limits for the light stop within various scenarios, taking into account the effects of a possibly light scalar tau partner (stau) or chargino on the Higgs rates, of additional Higgs decays to undetectable “new physics”, as well as of non-decoupling of the heavy Higgs sector. Under conservative assumptions, the stop can be as light as 123 GeV. Relaxing certain theoretical and experimental constraints, such as vacuum stability and model-dependent bounds on sparticle masses from LEP, we find that the light stop mass can be as light as 116 GeV. Our indirect limits are complementary to direct limits on the light stop mass from collider searches and have important implications for electroweak baryogenesis in the MSSM as a possible explanation for the observed matter-antimatter asymmetry of the Universe.

  2. Light stop mass limits from Higgs rate measurements in the MSSM. Is MSSM electroweak baryogenesis still alive after all?

    Energy Technology Data Exchange (ETDEWEB)

    Liebler, Stefan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Profumo, Stefano; Stefaniak, Tim [California Univ., Santa Cruz, CA (United States). Dept. of Physics; California Univ., Santa Cruz, CA (United States). Santa Cruz Inst. for Particle Physics (SCIPP)

    2015-12-15

    We investigate the implications of the Higgs rate measurements from Run 1 of the LHC for the mass of the light scalar top partner (stop) in the Minimal Supersymmetric Standard Model (MSSM). We focus on light stop masses, and we decouple the second, heavy stop and the gluino to the multi-TeV range in order to obtain a Higgs mass of ∝125 GeV. We derive lower mass limits for the light stop within various scenarios, taking into account the effects of a possibly light scalar tau partner (stau) or chargino on the Higgs rates, of additional Higgs decays to undetectable new physics, as well as of non-decoupling of the heavy Higgs sector. Under conservative assumptions, the stop can be as light as 123 GeV. Relaxing certain theoretical and experimental constraints, such as vacuum stability and model-dependent bounds on sparticle masses from LEP, we find that the light stop mass can be as light as 116 GeV. Our indirect limits are complementary to direct limits on the light stop mass from collider searches and have important implications for electroweak baryogenesis in the MSSM as a possible explanation for the observed matter-antimatter asymmetry of the Universe.

  3. Towards Reviving Electroweak Baryogenesis with a Fourth Generation

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    universe. However, it does not work within the standard model due to two reasons: (1 the strength of CP violation from the Kobayashi-Maskawa mechanism with three generations is too small; (2 the electroweak phase transition is not first order for the experimentally allowed Higgs boson mass. We discuss possibilities to solve these problems by introducing a fourth generation of fermions and how electroweak baryogenesis might be revived. We also discuss briefly the recent observation of a Higgs-like boson with mass around 125 GeV, which puts the fourth generation in a difficult situation, and the possible way out.

  4. Constraints on the mass spectrum of fourth generation fermions and Higgs bosons

    International Nuclear Information System (INIS)

    Hashimoto, Michio

    2010-01-01

    We reanalyze constraints on the mass spectrum of the chiral fourth generation fermions and the Higgs bosons for the standard model (SM4) and the two Higgs doublet model. We find that the Higgs mass in the SM4 should be larger than roughly the fourth generation up-type quark mass, while the light CP even Higgs mass in the two Higgs doublet model can be smaller. Various mass spectra of the fourth generation fermions and the Higgs bosons are allowed. The phenomenology of the fourth generation models is still rich.

  5. Phenomenology of induced electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Chang, Spencer; Galloway, Jamison; Luty, Markus A.; Salvioni, Ennio; Tsai, Yuhsin

    2015-01-01

    We study the phenomenology of models of electroweak symmetry breaking where the Higgs potential is destabilized by a tadpole arising from the coupling to an “auxiliary” Higgs sector. The auxiliary Higgs sector can be either perturbative or strongly coupled, similar to technicolor models. Since electroweak symmetry breaking is driven by a tadpole, the cubic and quartic Higgs couplings can naturally be significantly smaller than their values in the standard model. The theoretical motivation for these models is that they can explain the 125 GeV Higgs mass in supersymmetry without fine-tuning. The auxiliary Higgs sector contains additional Higgs states that cannot decouple from standard model particles, so these models predict a rich phenomenology of Higgs physics beyond the standard model. In this paper we analyze a large number of direct and indirect constraints on these models. We present the current constraints after the 8 TeV run of the LHC, and give projections for the sensitivity of the upcoming 14 TeV run. We find that the strongest constraints come from the direct searches A 0 →Zh, A 0 →tt-bar, with weaker constraints from Higgs coupling fits. For strongly-coupled models, additional constraints come from ρ + →WZ where ρ + is a vector resonance. Our overall conclusion is that a significant parameter space for such models is currently open, allowing values of the Higgs cubic coupling down to 0.4 times the standard model value for weakly coupled models and vanishing cubic coupling for strongly coupled models. The upcoming 14 TeV run of the LHC will stringently test this scenario and we identify several new searches with discovery potential for this class of models.

  6. Little Higgs models and T parity

    International Nuclear Information System (INIS)

    Perelstein, Maxim

    2006-01-01

    Little Higgs models are an interesting extension of the standard model at the TeV scale. They provide a simple and attractive mechanism of electroweak symmetry breaking. We review one of the simplest models of this class, the littlest Higgs model, and its extension with T parity. The model with T parity satisfies precision electroweak constraints without fine-tuning, contains an attractive dark matter candidate, and leads to interesting phenomenology at the Large Hadron Collider (LHC). (author)

  7. A search for neutral Higgs bosons in the MSSM and models with two scalar field doublets

    CERN Document Server

    Ackerstaff, K.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Clarke, P.E.L.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; del Pozo, L.A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M.S.; Doucet, M.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Evans, M.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Feld, L.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Fong, D.G.; Foucher, M.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Geddes, N.I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Goodrick, M.J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Hargrove, C.K.; Hart, P.A.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Hocker, James Andrew; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Hutchcroft, D.E.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jawahery, A.; Jeffreys, P.W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jones, M.; Jost, U.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kirk, J.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G.D.; Lahmann, R.; Lai, W.P.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; List, B.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Markus, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mincer, A.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Oldershaw, N.J.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Rembser, C.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rooke, A.; Rossi, A.M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schleper, P.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Springer, Robert Wayne; Sproston, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, David M.; Strohmer, R.; Szymanski, P.; Tafirout, R.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Utzat, P.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Vikas, P.; Vokurka, E.H.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-01-01

    A search is described for the neutral Higgs bosons h^0 and A^0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z^0 h^0 and h^0 A^0 production channels is based on data corresponding to an integrated luminosity of 25 pb^{-1} from e^+e^- collisions at centre-of-mass energies between 130 and 172GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z^0 resonance to set limits on m_h and m_A in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan(beta) > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits m_h > 59.0 GeV and m_A > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan.

  8. The global electroweak fit at NNLO and prospects for the LHC and ILC

    International Nuclear Information System (INIS)

    Baak, M.; Hoecker, A.; Cuth, J.; Schott, M.; Haller, J.; Kogler, R.; Moenig, K.; Stelzer, J.

    2014-01-01

    For a long time, global fits of the electroweak sector of the standard model (SM) have been used to exploit measurements of electroweak precision observables at lepton colliders (LEP, SLC), together with measurements at hadron colliders (Tevatron, LHC) and accurate theoretical predictions at multi-loop level, to constrain free parameters of the SM, such as the Higgs and top masses. Today, all fundamental SM parameters entering these fits are experimentally determined, including information on the Higgs couplings, and the global fits are used as powerful tools to assess the validity of the theory and to constrain scenarios for new physics. Future measurements at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) promise to improve the experimental precision of key observables used in the fits. This paper presents updated electroweak fit results using the latest NNLO theoretical predictions and prospects for the LHC and ILC. The impact of experimental and theoretical uncertainties is analysed in detail. We compare constraints from the electroweak fit on the Higgs couplings with direct LHC measurements, and we examine present and future prospects of these constraints using a model with modified couplings of the Higgs boson to fermions and bosons. (orig.)

  9. Natural Cold Baryogenesis from Strongly Interacting Electroweak Symmetry Breaking

    CERN Document Server

    Konstandin, Thomas

    2011-01-01

    The mechanism of "cold electroweak baryogenesis" has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on...

  10. Higgs boson hunting

    International Nuclear Information System (INIS)

    Dawson, S.; Haber, H.E.; Rindani, S.D.

    1989-05-01

    This is the summary report of the Higgs Boson Working Group. We discuss a variety of search techniques for a Higgs boson which is lighter than the Z. The processes K → πH, η prime → ηH,Υ → Hγ and e + e - → ZH are examined with particular attention paid to theoretical uncertainties in the calculations. We also briefly examine new features of Higgs phenomenology in a model which contains Higgs triplets as well as the usual doublet of scalar fields. 33 refs., 6 figs., 1 tab

  11. Fundamental composite electroweak dynamics

    DEFF Research Database (Denmark)

    Arbey, Alexandre; Cacciapaglia, Giacomo; Cai, Haiying

    2017-01-01

    Using the recent joint results from the ATLAS and CMS collaborations on the Higgs boson, we determine the current status of composite electroweak dynamics models based on the expected scalar sector. Our analysis can be used as a minimal template for a wider class of models between the two limitin...... space at the effective Lagrangian level. We show that a wide class of models of fundamental composite electroweak dynamics are still compatible with the present constraints. The results are relevant for the ongoing and future searches at the Large Hadron Collider....

  12. The electroweak phase transition in models with gauge singlets

    Energy Technology Data Exchange (ETDEWEB)

    Ahriche, A.

    2007-04-18

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition {omega}(T{sub c})/T{sub c} >or similar 1, where {omega} = (v{sup 2} + (x - x{sub 0}){sup 2}){sup (}1)/(2) and x(x{sub 0}) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v{sub c}/T{sub c} >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  13. The electroweak phase transition in models with gauge singlets

    International Nuclear Information System (INIS)

    Ahriche, A.

    2007-01-01

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition Ω(T c )/T c >or similar 1, where Ω = (v 2 + (x - x 0 ) 2 ) ( 1)/(2) and x(x 0 ) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v c /T c >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  14. Vector condensate model of electroweak interactions

    International Nuclear Information System (INIS)

    Cynolter, G.; Pocsik, G.

    1997-01-01

    Motivated by the fact that the Higgs is not seen, a new version of the standard model is proposed where the scalar doublet is replaced by a vector doublet and its neutral member forms a nonvanishing condensate. Gauge fields are coupled to the new vector fields B in a gauge invariant way leading to mass terms for the gauge fields by condensation. The model is presented and some implications are discussed. (K.A.)

  15. CP-violation in the ZZZ and ZWW vertices at e"+e"− colliders in Two-Higgs-Doublet Models

    International Nuclear Information System (INIS)

    Grzadkowski, B.; Ogreid, O.M.; Osland, P.

    2016-01-01

    We discuss possibilities of measuring CP violation in the Two-Higgs-Doublet Model by studying effects of one-loop generated ZZZ and ZWW vertices. We discuss a set of CP-sensitive asymmetries for ZZ and W"+W"− production at linear e"+e"−-colliders, that directly depends on the weak-basis invariant ℑJ_2 that parametrises the strength of CP violation. Given the restrictions on this model that follow from the LHC measurements, the predicted effects are small. Pursuing such measurements is however very important, as an observed signal might point to a richer scalar sector.

  16. Electric dipole moments of charged leptons and lepton flavor violating interactions in the general two Higgs doublet model

    International Nuclear Information System (INIS)

    Iltan, E. O.

    2001-01-01

    We calculate the electric dipole moment of the electron using the experimental result of the muon electric dipole moment and upper limit of the BR(μ->eγ) in the framework of the general two Higgs doublet model. Our prediction is 10 -32 ecm, which lies in the experimental current limits. Further, we obtain constraints for the Yukawa couplings {bar ξ} N,τe D and {bar ξ} N,τμ D . Finally, we present an expression which connects the BR(τ->μγ) and the electric dipole moment of the τ lepton and study the relation between these physical quantities

  17. Baryogenesis at the electroweak scale

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, A [Saha Inst. of Nuclear Physics, Calcutta (India); Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1995-10-01

    The generation of the baryon asymmetry of the universe is considered in the standard model of the electroweak theory with simple extensions of the Higgs sector. The propagation of quarks of masses up to about 5 GeV are considered, taking into account their markedly different dispersion relations due to propagation through the hot electroweak plasma. It is shown that the contribution of the b quark to the baryon asymmetry can be comparable to that for the t quark considered earlier. (orig.)

  18. Baryogenesis at the electroweak scale

    International Nuclear Information System (INIS)

    Kundu, A.; Mallik, S.

    1995-01-01

    The generation of the baryon asymmetry of the universe is considered in the standard model of the electroweak theory with simple extensions of the Higgs sector. The propagation of quarks of masses up to about 5 GeV are considered, taking into account their markedly different dispersion relations due to propagation through the hot electroweak plasma. It is shown that the contribution of the b quark to the baryon asymmetry can be comparable to that for the t quark considered earlier. (orig.)

  19. Finding the CP-violating Higgs bosons at e+e- colliders

    International Nuclear Information System (INIS)

    Grzadkowski, B.; Gunion, J.F.; Kalinowski, J.

    1999-01-01

    We discuss a general two-Higgs-doublet model with CP violation in the Higgs sector. In general, the three neutral Higgs fields of the model all mix and the resulting physical Higgs bosons have no definite CP properties. We derive a new sum rule relating Yukawa and Higgs-Z couplings which implies that a neutral Higgs boson cannot escape detection at an e + e - collider if it is kinematically accessible in Z+Higgs boson, b bar b+Higgs boson and t bar t+Higgs boson production, irrespective of the mixing angles and the masses of the other neutral Higgs bosons. We also discuss modifications of the sum rules and their phenomenological consequences in the case when the two-doublet Higgs sector is extended by adding one or more singlets. A brief discussion of the implications of the sum rules for Higgs boson discovery at the Fermilab Tevatron and CERN LHC is given. copyright 1999 The American Physical Society

  20. Heavy Higgs boson with a light sneutrino next-to-lightest supersymmetric particle in the MSSM with enhanced SU(2) D-terms

    International Nuclear Information System (INIS)

    Medina, Anibal D.; Shah, Nausheen R.; Wagner, Carlos E. M.

    2009-01-01

    The minimal supersymmetric extension of the standard model provides a solution to the hierarchy problem and leads to the presence of a light Higgs. A Higgs boson with mass above the present experimental bound may only be obtained for relatively heavy third generation squarks, requiring a precise, somewhat unnatural balance between different contributions to the effective Higgs mass parameter. It was recently noticed that somewhat heavier Higgs bosons, which are naturally beyond the CERN LEP bound, may be obtained by enhanced weak SU(2) D-terms. Such contributions appear in models with an enhanced electroweak gauge symmetry, provided the supersymmetry breaking masses associated with the scalars responsible for the breakdown of the enhanced gauge symmetry group to the standard model one are larger than the enhanced symmetry breaking scale. In this article we emphasize that the enhanced SU(2) D-terms will not only raise the Higgs boson mass but also affect the spectrum of the nonstandard Higgs bosons, sleptons, and squarks, which therefore provide a natural contribution to the T parameter, compensating for the negative one coming from the heavy Higgs boson. The sleptons and nonstandard Higgs bosons of these models, in particular, may act in a way similar to the so-called inert Higgs doublet. The phenomenological properties of these models are emphasized, and possible cosmological implications as well as collider signatures are described.

  1. Partially composite Goldstone Higgs boson

    DEFF Research Database (Denmark)

    Alanne, Tommi; Franzosi, Diogo Buarque; Frandsen, Mads T.

    2017-01-01

    We consider a model of dynamical electroweak symmetry breaking with a partially composite Goldstone Higgs boson. The model is based on a strongly interacting fermionic sector coupled to a fundamental scalar sector via Yukawa interactions. The SU(4)×SU(4) global symmetry of these two sectors...... is broken to a single SU(4) via Yukawa interactions. Electroweak symmetry breaking is dynamically induced by condensation due to the strong interactions in the new fermionic sector which further breaks the global symmetry SU(4)→Sp(4). The Higgs boson arises as a partially composite state which is an exact...... Goldstone boson in the limit where SM interactions are turned off. Terms breaking the SU(4) global symmetry explicitly generate a mass for the Goldstone Higgs boson. The model realizes in different limits both (partially) composite Higgs and (bosonic) technicolor models, thereby providing a convenient...

  2. The muon g−2 in two-Higgs-doublet models

    Indian Academy of Sciences (India)

    2016-08-24

    Aug 24, 2016 ... Electroweak precesion data. Allowing such a light CP-odd boson, there could be a strong limit on the extra boson masses coming from the electroweak precision test. To see this, we compare the theoretical 2HDM predictions for MW and sin2 θ lept eff with their present experimental values via a combined.

  3. Metastable electroweak vacuum. Implications for inflation

    International Nuclear Information System (INIS)

    Lebedev, Oleg; Westphal, Alexander

    2012-10-01

    Within the Standard Model, the current Higgs and top quark data favor metastability of the electroweak vacuum, although the uncertainties are still significant. The true vacuum is many orders of magnitude deeper than ours and the barrier separating the two is tiny compared to the depth of the well. This raises a cosmological question: how did the Higgs field get trapped in the shallow minimum and why did it stay there during inflation? The Higgs initial conditions before inflation must be fine-tuned to about one part in 10 8 in order for the Higgs field to end up in the right vacuum. In this note, we show that these problems can be resolved if there is a small positive coupling between the Higgs and the inflaton.

  4. Numerical tests of the electroweak phase transition and thermodynamics of the electroweak plasma

    CERN Document Server

    Csikor, Ferenc; Hein, J; Jaster, A; Montvay, István

    1996-01-01

    The finite temperature phase transition in the SU(2) Higgs model at a Higgs boson mass M_H \\simeq 34 GeV is studied in numerical simulations on four-dimensional lattices with time-like extensions up to L_t=5. The effects of the finite volume and finite lattice spacing on masses and couplings are studied in detail. The errors due to uncertainties in the critical hopping parameter are estimated. The thermodynamics of the electroweak plasma near the phase transition is investigated by determining the relation between energy density and pressure.

  5. Gauge-Higgs unification with broken flavour symmetry

    International Nuclear Information System (INIS)

    Olschewsky, M.

    2007-05-01

    We study a five-dimensional Gauge-Higgs unification model on the orbifold S 1 /Z 2 based on the extended standard model (SM) gauge group SU(2) L x U(1) Y x SO(3) F . The group SO(3) F is treated as a chiral gauged flavour symmetry. Electroweak-, flavour- and Higgs interactions are unified in one single gauge group SU(7). The unified gauge group SU(7) is broken down to SU(2) L x U(1) Y x SO(3) F by orbifolding and imposing Dirichlet and Neumann boundary conditions. The compactification scale of the theory is O(1) TeV. Furthermore, the orbifold S 1 /Z 2 is put on a lattice. This setting gives a well-defined staring point for renormalisation group (RG) transformations. As a result of the RG-flow, the bulk is integrated out and the extra dimension will consist of only two points: the orbifold fixed points. The model obtained this way is called an effective bilayered transverse lattice model. Parallel transporters (PT) in the extra dimension become nonunitary as a result of the blockspin transformations. In addition, a Higgs potential V(Φ) emerges naturally. The PTs can be written as a product e A y e η e A y of unitary factors e A y and a selfadjoint factor e η . The reduction 48 → 35 + 6 + anti 6 + 1 of the adjoint representation of SU(7) with respect to SU(6) contains SU(2) L x U(1) Y x SO(3) F leads to three SU(2) L Higgs doublets: one for the first, one for the second and one for the third generation. Their zero modes serve as a substitute for the SM Higgs. When the extended SM gauge group SU(2) L x U(1) Y x SO(3) F is spontaneously broken down to U(1) em , an exponential gauge boson mass splitting occurs naturally. At a first step SU(2) L x U(1) Y x SO(3) F is broken to SU(2) L x U(1) Y by VEVs for the selfadjoint factor e η . This breaking leads to masses of flavour changing SO(3) F gauge bosons much above the compactification scale. Such a behaviour has no counterpart within the customary approximation scheme of an ordinary orbifold theory. This way tree

  6. Gfitter - Revisiting the global electroweak fit of the Standard Model and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Flaecher, H.; Hoecker, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Goebel, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Haller, J. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Moenig, K.; Stelzer, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-11-15

    The global fit of the Standard Model to electroweak precision data, routinely performed by the LEP electroweak working group and others, demonstrated impressively the predictive power of electroweak unification and quantum loop corrections. We have revisited this fit in view of (i) the development of the new generic fitting package, Gfitter, allowing flexible and efficient model testing in high-energy physics, (ii) the insertion of constraints from direct Higgs searches at LEP and the Tevatron, and (iii) a more thorough statistical interpretation of the results. Gfitter is a modular fitting toolkit, which features predictive theoretical models as independent plugins, and a statistical analysis of the fit results using toy Monte Carlo techniques. The state-of-the-art electroweak Standard Model is fully implemented, as well as generic extensions to it. Theoretical uncertainties are explicitly included in the fit through scale parameters varying within given error ranges. This paper introduces the Gfitter project, and presents state-of-the-art results for the global electroweak fit in the Standard Model, and for a model with an extended Higgs sector (2HDM). Numerical and graphical results for fits with and without including the constraints from the direct Higgs searches at LEP and Tevatron are given. Perspectives for future colliders are analysed and discussed. Including the direct Higgs searches, we find M{sub H}=116.4{sup +18.3}{sub -1.3} GeV, and the 2{sigma} and 3{sigma} allowed regions [114,145] GeV and [[113,168] and [180,225

  7. Toponium and two-Higgs models

    International Nuclear Information System (INIS)

    Franzini, P.J.

    1986-04-01

    Bounds from B 0 - anti B 0 mixing on charged-Higgs-boson masses and couplings in two-Higgs-doublet models are presented. These bounds are comparable to those obtained, with additional assumptions, from the neutral-K-system. The effects of the neutral Higgs bosons of these models on the spectrum and wave function of toponium are discussed. These effects could, in the future, lead to limits on, or the discovery of, these Higgs bosons. 8 refs., 3 figs

  8. Charged Higgs bosons in π→eν-bareγ decay

    International Nuclear Information System (INIS)

    Komachenko, Yu.Ya.

    1992-01-01

    The contribution of charged Higgs bosons of the two-doublet model to the weak-electromagnetic decay π→eν-bar e γ is considered. The limitation obtained for the parameters of the model with the two-doublet Higgs sector turns out to be more stringent than in previous works. 19 refs.; 1 fig

  9. The minimal extension of the Standard Model with S3 symmetry

    International Nuclear Information System (INIS)

    Lee, C.E.; Lin, C.; Yang, Y.W.

    1991-01-01

    In this paper the two Higgs-doublet extension of the standard electroweak model with S 3 symmetry is presented. The flavour changing neutral Higgs interaction are automatically absent. A permutation symmetry breaking scheme is discussed. The correction to the Bjorken's approximation and the CP-violation factor J are given within this scheme

  10. Phenomenological comparison of models with extended Higgs sectors

    International Nuclear Information System (INIS)

    Muehlleitner, Margarete

    2017-01-01

    Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (C x SM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.

  11. Phenomenological comparison of models with extended Higgs sectors

    Energy Technology Data Exchange (ETDEWEB)

    Muehlleitner, Margarete [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Theoretical Physics; Sampaio, Marco O.P. [Aveiro Univ. e CIDMA (Portugal). Dept. de Fisica; Santos, Rui [Instituto Politecnico de Lisboa (Portugal). ISEL - Instituto Superior de Engenharia de Lisboa; Lisboa Univ. (Portugal). Centro de Fisica Teorica e Computacional; Univ. do Minho, Braga (Portugal). LIP, Dept. de Fisica; Wittbrodt, Jonas [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-03-22

    Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (C x SM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.

  12. Searches for heavy Higgs bosons in two-Higgs-doublet models and for t → ch decay using multilepton and diphoton final states in pp collisions at 8 TeV

    International Nuclear Information System (INIS)

    2014-01-01

    Searches are presented for heavy scalar (H) and pseudoscalar (A) Higgs bosons posited in the two doublet model (2HDM) extensions of the standard model (SM). These searches are based on a data sample of pp collisions collected with the CMS experiment at the LHC at a center-of-mass energy of sqrt(s) = 8 TeV and corresponding to an integrated luminosity of 19.5 fb -1 . The decays H hh and A to Zh, where h denotes an SM-like Higgs boson, lead to events with three or more isolated charged leptons or with a photon pair accompanied by one or more isolated leptons. The search results are presented in terms of the H and A production cross sections times branching fractions and are further interpreted in terms of 2HDM parameters. We place 95% CL cross section upper limits of approximately 7 pb on B for H to hh and 2 pb for A to Zh. Also presented are the results of a search for the rare decay of the top quark that results in a charm quark and an SM Higgs boson, t to ch, the existence of which would indicate a nonzero flavor-changing Yukawa coupling of the top quark to the Higgs boson. We place a 95% CL upper limit of 0.56% on B(t to ch).

  13. Electroweak phase transition in an extension of the standard model with scalar color octet

    International Nuclear Information System (INIS)

    Ham, S. W.; Shim, Seong-A; Oh, S. K.

    2010-01-01

    In an extension of the standard model with a scalar color octet, the possibility of the strongly first-order electroweak phase transition is studied by examining the finite-temperature effective Higgs potential at the one-loop level. It is found that there are wide regions in the parameter space that allow the strongly first-order electroweak phase transition, where the Higgs boson mass is larger than the experimental lower bound of 115 GeV, and the masses of the scalar color octet is around 200 GeV. The parameter regions may be explored at the LHC with respect to the electroweak phase transition.

  14. Comparison of mixed-Higgs scenarios in the NMSSM and the MSSM

    International Nuclear Information System (INIS)

    Dermisek, Radovan; Gunion, John F.

    2008-01-01

    We study scenarios in the minimal and next-to-minimal supersymmetric models in which the lightest CP-even Higgs boson can have mass below the 114 GeV standard model LEP limit by virtue of reduced ZZ coupling due to substantial mixing among the Higgs bosons. We pay particular attention to the size of corrections from superpartners needed for these scenarios to be viable and point to boundary conditions at large scales which lead to these scenarios while at the same time keeping electroweak fine-tuning modest in size. We find that naturalness of electroweak symmetry breaking in the mixed-Higgs scenarios of both models points to the same region of soft supersymmetry breaking terms as in the decoupled scenarios with mass of the CP even Higgs boson above 114 GeV, namely those leading to large mixing in the stop sector at the electroweak scale, especially if we also require that the lightest CP-even Higgs explains the Higgs-like LEP events at ∼98 GeV

  15. Metastable electroweak vacuum. Implications for inflation

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg; Westphal, Alexander [DESY Theory Group, Hamburg (Germany)

    2012-10-15

    Within the Standard Model, the current Higgs and top quark data favor metastability of the electroweak vacuum, although the uncertainties are still significant. The true vacuum is many orders of magnitude deeper than ours and the barrier separating the two is tiny compared to the depth of the well. This raises a cosmological question: how did the Higgs field get trapped in the shallow minimum and why did it stay there during inflation? The Higgs initial conditions before inflation must be fine-tuned to about one part in 10{sup 8} in order for the Higgs field to end up in the right vacuum. In this note, we show that these problems can be resolved if there is a small positive coupling between the Higgs and the inflaton.

  16. Vector Higgs-portal dark matter and the invisible Higgs

    International Nuclear Information System (INIS)

    Lebedev, Oleg; Lee, Hyun Min; Mambrini, Yann

    2011-11-01

    The Higgs sector of the Standard Model offers a unique probe of the hidden sector. In this work, we explore the possibility of renormalizable Higgs couplings to the hidden sector vector fields which can constitute dark matter (DM). Abelian gauge sectors with minimal field content, necessary to render the gauge fields massive, have a natural Z 2 parity. This symmetry ensures stability of the vector fields making them viable dark matter candidates, while evading the usual electroweak constraints. We illustrate this idea with the Stueckelberg and Higgs mechanisms. Vector DM is consistent with the WMAP, XENON100, and LHC constraints, while it can affect significantly the invisible Higgs decay. Due to the enhanced branching ratio for the Higgs decay into the longitudinal components of the vector field, the vector Higgs portal provides an efficient way to hide the Higgs at the LHC. This could be the reason why the latest combined ATLAS/CMS data did not bring evidence for the existence of the Higgs boson. (orig.)

  17. Vector Higgs portal dark matter and the invisible Higgs

    International Nuclear Information System (INIS)

    Lebedev, Oleg; Lee, Hyun Min; Mambrini, Yann

    2012-01-01

    The Higgs sector of the Standard Model offers a unique probe of the hidden sector. In this work, we explore the possibility of renormalizable Higgs couplings to the hidden sector vector fields which can constitute dark matter (DM). Abelian gauge sectors with minimal field content, necessary to render the gauge fields massive, have a natural Z 2 parity. This symmetry ensures stability of the vector fields making them viable dark matter candidates, while evading the usual electroweak constraints. We illustrate this idea with the Stückelberg and Higgs mechanisms. Vector DM is consistent with the WMAP, XENON100, and LHC constraints, while it can affect significantly the invisible Higgs decay. Due to the enhanced branching ratio for the Higgs decay into the longitudinal components of the vector field, the vector Higgs portal provides an efficient way to hide the Higgs at the LHC. This could be the reason why the latest combined ATLAS/CMS data did not bring evidence for the existence of the Higgs boson.

  18. Vector Higgs-portal dark matter and the invisible Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lee, Hyun Min [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Mambrini, Yann [Paris-Sud Univ., 91 - Orsay (France). Lab. de Physique Theorique

    2011-11-15

    The Higgs sector of the Standard Model offers a unique probe of the hidden sector. In this work, we explore the possibility of renormalizable Higgs couplings to the hidden sector vector fields which can constitute dark matter (DM). Abelian gauge sectors with minimal field content, necessary to render the gauge fields massive, have a natural Z{sub 2} parity. This symmetry ensures stability of the vector fields making them viable dark matter candidates, while evading the usual electroweak constraints. We illustrate this idea with the Stueckelberg and Higgs mechanisms. Vector DM is consistent with the WMAP, XENON100, and LHC constraints, while it can affect significantly the invisible Higgs decay. Due to the enhanced branching ratio for the Higgs decay into the longitudinal components of the vector field, the vector Higgs portal provides an efficient way to hide the Higgs at the LHC. This could be the reason why the latest combined ATLAS/CMS data did not bring evidence for the existence of the Higgs boson. (orig.)

  19. Electroweak symmetry breaking beyond the Standard Model

    International Nuclear Information System (INIS)

    Bhattacharyya, Gautam

    2012-01-01

    In this paper, two key issues related to electroweak symmetry breaking are addressed. First, how fine-tuned different models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily elementary? After a brief introduction, the fine-tuning aspects of the MSSM, NMSSM, generalized NMSSM and GMSB scenarios shall be reviewed, then the little Higgs, composite Higgs and the Higgsless models shall be compared. Finally, a broad overview will be given on where we stand at the end of 2011. (author)

  20. Constraints on a fourth generation of fermions from Higgs Boson searches

    CERN Document Server

    Lenz, Alexander

    2013-01-01

    We review the past and current status of the extension of the standard model (SM) by a fourth generation of fermions. In particular the new results for Higgs boson searches at the LHC and at Tevatron exclude the possibility of having simply a perturbative fourth generation of fermions with one Higgs doublet (SM4). We also briefly mention more complicated extensions of the SM4, which are not yet excluded, like adding in addition another Higgs doublet to the SM4.

  1. Electroweak Physics at the LHC

    CERN Document Server

    Sommer, Philip; The ATLAS collaboration

    2018-01-01

    With the large integrated luminosities recorded at the LHC and the excellent understanding of the LHC detectors, it is possible to measure electroweak observables to the highest precision. A review of the measurement of the $W$ boson mass by the ATLAS Collaboration as well as a new measurement of the electroweak mixing angle with the CMS detector are presented. Special emphasis is put on a discussion of the modelling uncertainties and the potential of the latest low-$\\mu$ runs, recorded at the end of 2017 by both collaboration. In addition, the latest measurements of multi-boson final states as well as the electroweak production of single gauge bosons at 13 TeV are summarised. The study of these processes can be used to constrain anomalous gauge couplings in an effective field theory approach, allowing to bridge tests of the electroweak sector of the Standard Models also to Higgs boson production.

  2. Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models

    International Nuclear Information System (INIS)

    Abe, Tomohiro; Hisano, Junji; Kitahara, Teppei; Tobioka, Kohsaku

    2014-01-01

    We calculate all gauge invariant Barr-Zee type contributions to fermionic electric dipole moments (EDMs) in the two-Higgs doublet models (2HDM) with softly broken Z 2 symmetry. We start by studying the tensor structure of h→VV′ part in the Barr-Zee diagrams, and we calculate the effective couplings in a gauge invariant way by using the pinch technique. Then we calculate all Barr-Zee diagrams relevant for electron and neutron EDMs. We make bounds on the parameter space in type-I, type-II, type-X, and type-Y 2HDMs. The electron and neutron EDMs are complementary to each other in discrimination of the 2HDMs. Type-II and type-X 2HDMs are strongly constrained by recent ACME experiment’s result, and future experiments of electron and neutron EDMs may search O(10) TeV physics

  3. Higgs friends and counterfeits at hadron colliders

    International Nuclear Information System (INIS)

    Fox, Patrick J.; Tucker-Smith, David; Weiner, Neal

    2011-01-01

    We consider the possibility of 'Higgs counterfeits' - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving 'Higgs friends,' fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW,ZZ,γγ, or even γZ, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with 'effective Z's,' where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.

  4. Predictions of the Higgs mass and the weak mixing angle in the 6D gauge-Higgs unification

    International Nuclear Information System (INIS)

    Hasegawa, Kouhei; Lim, Chong-Sa; Maru, Nobuhito

    2016-01-01

    In the gauge-Higgs unification with multiple extra spaces, the Higgs self-coupling is on the order of g 2 and the Higgs boson is predicted to be light, being consistent with the LHC results. When the gauge group is simple, the weak mixing angle is also predictable. We address a question on whether there exists a model of gauge-Higgs unification in six-dimensional space-time, which successfully predicts the mass ratios of the Higgs boson and weak gauge bosons. First, using a useful formula, we give a general argument on the condition for obtaining a realistic prediction of the weak mixing angle sin 2 θ W = 1/4, and find that triplet and sextet representations of the minimal SU(3) gauge group lead to the realistic prediction. Concerning the Higgs mass, we notice that, in the models with one Higgs doublet, the predicted Higgs mass is always the same: M H = 2M W . However, by extending our discussion to the models with two Higgs doublets, the situation changes: we obtain an interesting prediction M H ≤ 2M W at the leading order of the perturbation. Thus, it is possible to recover the observed Higgs mass, 125 GeV, for a suitable choice of the parameter. The situation is in clear contrast to the case of the minimal supersymmetric standard model, where M H ≤ M Z at the classical level and the predicted Higgs mass cannot recover the observed value. (author)

  5. Higgs physics at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Higgs boson; Large Hadron Collider; electroweak symmetry; spin and CP of the Higgs boson ... I shall then give a short description of the pre-LHC constraints on the Higgs mass and the theoretical predictions for the LHC along with a discussion of the current experimental results, ending with prospects in the near future at ...

  6. Next-to-leading order corrections to the spin-dependent energy spectrum of hadrons from polarized top quark decay in the general two Higgs doublet model

    Directory of Open Access Journals (Sweden)

    S. Mohammad Moosavi Nejad

    2017-08-01

    Full Text Available In recent years, searches for the light and heavy charged Higgs bosons have been done by the ATLAS and the CMS collaborations at the Large Hadron Collider (LHC in proton–proton collision. Nevertheless, a definitive search is a program that still has to be carried out at the LHC. The experimental observation of charged Higgs bosons would indicate physics beyond the Standard Model. In the present work, we study the scaled-energy distribution of bottom-flavored mesons (B inclusively produced in polarized top quark decays into a light charged Higgs boson and a massless bottom quark at next-to-leading order in the two-Higgs-doublet model; t(↑→bH+→BH++X. This spin-dependent energy distribution is studied in a specific helicity coordinate system where the polarization vector of the top quark is measured with respect to the direction of the Higgs momentum. The study of these energy distributions could be considered as a new channel to search for the charged Higgs bosons at the LHC. For our numerical analysis and phenomenological predictions, we restrict ourselves to the unexcluded regions of the MSSM mH+−tan⁡β parameter space determined by the recent results of the CMS [13] and ATLAS [14] collaborations.

  7. ELECTROWEAK PHYSICS AND PRECISION STUDIES

    International Nuclear Information System (INIS)

    MARCIANO, W.

    2005-01-01

    The utility of precision electroweak measurements for predicting the Standard Model Higgs mass via quantum loop effects is discussed. Current values of m W , sin 2 θ W (m Z ) # ovr MS# and m t imply a relatively light Higgs which is below the direct experimental bound but possibly consistent with Supersymmetry expectations. The existence of Supersymmetry is further suggested by a 2σ discrepancy between experiment and theory for the muon anomalous magnetic moment. Constraints from precision studies on other types of ''New Physics'' are also briefly described

  8. Split NMSSM with electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, S.V.; Gorbunov, D.S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Moscow Institute of Physics and Technology,Institutsky per. 9, Dolgoprudny 141700 (Russian Federation); Kirpichnikov, D.V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)

    2016-11-24

    In light of the Higgs boson discovery and other results of the LHC we reconsider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.

  9. A very light CP-odd scalar in the Two-Higgs-Doublet Model

    CERN Document Server

    Larios, F; Yuan, C P; CERN. Geneva

    2001-01-01

    We show that a general two-Higgs-doublet model (THDM) with a very light CP-odd scalar (A) can be compatible with the rho parameter, Br(b --> s\\gamma), R_b, A_b, (g-2) of muon, Br(Upsilon --> A gamma), and the direct search via the Yukawa process at LEP. For its mass around 0.2 GeV, the muon (g-2) and Br(Upsilon --> A \\gamma) data require tan(beta) to be about 1. Consequently, A can behave like a fermiophobic CP-odd scalar and predominantly decay into a photon pair ("gamma gamma"), which registers in detectors of high energy collider experiments as a single photon signature when the momentum of A is large. We compute the partial decay width of Z --> A A A and the production rate of f \\bar{f} --> Z A A --> Z +"gamma gamma", f^' {\\bar f} --> W^{\\pm} A A --> W^\\pm + "gamma gamma" and f \\bar f --> H^+ H^- --> W^+ W^- A A --> W^+ W^- + "gamma gamma" at high energy colliders such as LEP, Tevatron, LHC, and future Linear Colliders. Other production mechanisms of a light A, such as gg --> h --> AA --> "gamma gamma", a...

  10. Integrating out the standard Higgs field in the path integral

    International Nuclear Information System (INIS)

    Dittmaier, S.

    1996-01-01

    We integrate out the Higgs boson in the electroweak standard model at one loop and construct a low-energy effective Lagrangian assuming that the Higgs mass is much larger than the gauge-boson masses. Instead of applying diagrammatical techniques, we integrate out the Higgs boson directly in the path integral, which turns out to be much simpler. By using the background-field method and the Stueckelberg formalism, we directly find a manifestly gauge-invariant result. The heavy-Higgs effects on fermionic couplings are derived, too. At one loop the log M H terms of the heavy-Higgs limit of the electroweak standard model coincide with the UV-divergent terms in the gauged non-linear σ-model, but vertex functions differ in addition by finite constant terms. Finally, the leading Higgs effects to some physical processes are calculated from the effective Lagrangian. (orig.)

  11. The rho-parameter in supersymmetric models

    International Nuclear Information System (INIS)

    Lim, C.S.; Inami, T.; Sakai, N.

    1983-10-01

    The electroweak rho-parameter is examined in a general class of supersymmetric models. Formulae are given for one-loop contributions to Δrho from scalar quarks and leptons, gauge-Higgs fermions and an extra doublet of Higgs scalars. Mass differences between members of isodoublet scalar quarks and leptons are constrained to be less than about 200 GeV. (author)

  12. Second-order QCD effects in Higgs boson production through vector boson fusion

    Science.gov (United States)

    Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Huss, A.

    2018-06-01

    We compute the factorising second-order QCD corrections to the electroweak production of a Higgs boson through vector boson fusion. Our calculation is fully differential in the kinematics of the Higgs boson and of the final state jets, and uses the antenna subtraction method to handle infrared singular configurations in the different parton-level contributions. Our results allow us to reassess the impact of the next-to-leading order (NLO) QCD corrections to electroweak Higgs-plus-three-jet production and of the next-to-next-to-leading order (NNLO) QCD corrections to electroweak Higgs-plus-two-jet production. The NNLO corrections are found to be limited in magnitude to around ± 5% and are uniform in several of the kinematical variables, displaying a kinematical dependence only in the transverse momenta and rapidity separation of the two tagging jets.

  13. Searching for additional Higgs bosons via Higgs cascades

    Science.gov (United States)

    Gao, Christina; Luty, Markus A.; Mulhearn, Michael; Neill, Nicolás A.; Wang, Zhangqier

    2018-04-01

    The discovery of a 125 GeV Higgs boson at the Large Hadron Collider strongly motivates direct searches for additional Higgs bosons. In a type I two Higgs doublet model there is a large region of parameter space at tan β ≳5 that is currently unconstrained experimentally. We show that the process g g →H →A Z →Z Z h can probe this region, and can be the discovery mode for an extended Higgs sector at the LHC. We analyze 9 promising decay modes for the Z Z h state, and we find that the most sensitive final states are ℓℓℓℓb b , ℓℓj j b b , ℓℓν ν γ γ and ℓℓℓℓ+ missing energy.

  14. Higgs Production and Decay in Models of a Warped Extra Dimension with a Bulk Higgs

    OpenAIRE

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias

    2014-01-01

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS$_5$ space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusio...

  15. Electroweak Physics at the LHC

    CERN Document Server

    Sommer, Philip; The ATLAS collaboration

    2018-01-01

    With the high integrated luminosities recorded at the LHC and the very good understanding of the LHC detectors, it is possible to measure electroweak observables to the highest precision. In this talk, we review the measurement of the W boson mass by the ATLAS Collaboration as well as the new measurement of the electroweak mixing angle with the CMS detector. Special focus is drawn on a discussion of the modeling uncertainties and the physics potential of the latest low-mu runs, recorded at the end of 2017 by both collaboration. In addition, we will present the latest measurements of multi-boson final states as well as the electroweak production of single gauge bosons at 13 TeV. The study of these processes can be used to constrain anomalous gauge couplings in an effective field theory approach, allowing to bridge tests of the electroweak sector of the Standard Models also to the Higgs-boson production.

  16. On stability of electroweak vacuum during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Shkerin, A., E-mail: andrey.shkerin@epfl.ch [Institut de Théorie des Phénomènes Physiques, EPFL, CH-1015 Lausanne (Switzerland); Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, 117312 Moscow (Russian Federation); Sibiryakov, S. [Institut de Théorie des Phénomènes Physiques, EPFL, CH-1015 Lausanne (Switzerland); Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, 117312 Moscow (Russian Federation); CERN Theory Division, CH-1211 Geneva 23 (Switzerland)

    2015-06-30

    We study Coleman–De Luccia tunneling of the Standard Model Higgs field during inflation in the case when the electroweak vacuum is metastable. We verify that the tunneling rate is exponentially suppressed. The main contribution to the suppression is the same as in flat space–time. We analytically estimate the corrections due to the expansion of the universe and an effective mass term in the Higgs potential that can be present at inflation.

  17. On stability of electroweak vacuum during inflation

    International Nuclear Information System (INIS)

    Shkerin, A.; Sibiryakov, S.

    2015-01-01

    We study Coleman–De Luccia tunneling of the Standard Model Higgs field during inflation in the case when the electroweak vacuum is metastable. We verify that the tunneling rate is exponentially suppressed. The main contribution to the suppression is the same as in flat space–time. We analytically estimate the corrections due to the expansion of the universe and an effective mass term in the Higgs potential that can be present at inflation

  18. On stability of electroweak vacuum during inflation

    CERN Document Server

    Shkerin, Andrey

    2015-01-01

    We study Coleman-De Luccia tunneling of the Standard Model Higgs field during inflation in the case when the electroweak vacuum is metastable. We verify that the tunneling rate is exponentially suppressed. The main contribution to the suppression is the same as in flat space-time. We analytically estimate the corrections due to the expansion of the universe and an effective mass term in the Higgs potential that can be present at inflation.

  19. Probing the non-minimal Higgs sector at the SSC

    International Nuclear Information System (INIS)

    Gunion, J.F.; Haber, H.E.; Komamiya, S.; Yamamoto, H.; Barbaro-Galtieri, A.

    1987-11-01

    Non-minimal Higgs sectors occur in the Standard Model with more than one Higgs doublet, as well as in theories that go beyond the Standard Model. In this report, we discuss how Higgs search strategies must be altered, with respect to the Standard Model approaches, in order to probe the non-minimal Higgs sectors at the SSC

  20. The No-Higgs Signal: Strong WW Scattering at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Michael S. Chanowitz

    2004-12-07

    Strong WW scattering at the LHC is discussed as a manifestation of electroweak symmetry breaking in the absence of a light Higgs bosom. The general framework of the Higgs mechanism--with or without a Higgs boson--is reviewed, and unitarity is shown to fix the scale of strong WW scattering. Strong WW scattering is also shown to be a possible outcome of five-dimensional models, which do not employ the usual Higgs mechanism at the TeV scale. Precision electroweak constraints are briefly discussed. Illustrative LHC signals are reviewed for models with QCD-like dynamics, stressing the complementarity of the W{sup {+-}}Z and like-charge W{sup +}W{sup +} + W{sup -}W{sup -} channels.

  1. Higgs phenomenology in the minimal S U (3 )L×U (1 )X model

    Science.gov (United States)

    Okada, Hiroshi; Okada, Nobuchika; Orikasa, Yuta; Yagyu, Kei

    2016-07-01

    We investigate the phenomenology of a model based on the S U (3 )c×S U (3 )L×U (1 )X gauge theory, the so-called 331 model. In particular, we focus on the Higgs sector of the model which is composed of three S U (3 )L triplet Higgs fields and is the minimal form for realizing a phenomenologically acceptable scenario. After the spontaneous symmetry breaking S U (3 )L×U (1 )X→S U (2 )L×U (1 )Y , our Higgs sector effectively becomes that with two S U (2 )L doublet scalar fields, in which the first- and the second-generation quarks couple to a different Higgs doublet from that which couples to the third-generation quarks. This structure causes the flavor-changing neutral current mediated by Higgs bosons at the tree level. By taking an alignment limit of the mass matrix for the C P -even Higgs bosons, which is naturally realized in the case with the breaking scale of S U (3 )L×U (1 )X much larger than that of S U (2 )L×U (1 )Y, we can avoid current constraints from flavor experiments such as the B0-B¯ 0 mixing even for the Higgs bosons masses that are O (100 ) GeV . In this allowed parameter space, we clarify that a characteristic deviation in quark Yukawa couplings of the Standard Model-like Higgs boson is predicted, which has a different pattern from that seen in two Higgs doublet models with a softly broken Z2 symmetry. We also find that the flavor-violating decay modes of the extra Higgs boson, e.g., H /A →t c and H±→t s , can be dominant, and they yield the important signature to distinguish our model from the two Higgs doublet models.

  2. Gauge-Higgs unification with broken flavour symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Olschewsky, M.

    2007-05-15

    We study a five-dimensional Gauge-Higgs unification model on the orbifold S{sup 1}/Z{sub 2} based on the extended standard model (SM) gauge group SU(2){sub L} x U(1){sub Y} x SO(3){sub F}. The group SO(3){sub F} is treated as a chiral gauged flavour symmetry. Electroweak-, flavour- and Higgs interactions are unified in one single gauge group SU(7). The unified gauge group SU(7) is broken down to SU(2){sub L} x U(1){sub Y} x SO(3){sub F} by orbifolding and imposing Dirichlet and Neumann boundary conditions. The compactification scale of the theory is O(1) TeV. Furthermore, the orbifold S{sup 1}/Z{sub 2} is put on a lattice. This setting gives a well-defined staring point for renormalisation group (RG) transformations. As a result of the RG-flow, the bulk is integrated out and the extra dimension will consist of only two points: the orbifold fixed points. The model obtained this way is called an effective bilayered transverse lattice model. Parallel transporters (PT) in the extra dimension become nonunitary as a result of the blockspin transformations. In addition, a Higgs potential V({phi}) emerges naturally. The PTs can be written as a product e{sup A{sub y}}e{sup {eta}}e{sup A{sub y}} of unitary factors e{sup A{sub y}} and a selfadjoint factor e{sup {eta}}. The reduction 48 {yields} 35 + 6 + anti 6 + 1 of the adjoint representation of SU(7) with respect to SU(6) contains SU(2){sub L} x U(1){sub Y} x SO(3){sub F} leads to three SU(2){sub L} Higgs doublets: one for the first, one for the second and one for the third generation. Their zero modes serve as a substitute for the SM Higgs. When the extended SM gauge group SU(2){sub L} x U(1){sub Y} x SO(3){sub F} is spontaneously broken down to U(1){sub em}, an exponential gauge boson mass splitting occurs naturally. At a first step SU(2){sub L} x U(1){sub Y} x SO(3){sub F} is broken to SU(2){sub L} x U(1){sub Y} by VEVs for the selfadjoint factor e{sup {eta}}. This breaking leads to masses of flavour changing SO(3){sub F

  3. Higgs particle searches at LEP

    International Nuclear Information System (INIS)

    Martin, J.P.

    1996-01-01

    Results on searches for the Higgs particle performed by the four LEP experiments are received in the framework of the Standard Model, Two Doublet Model, and Minimal Supersymmetric Model. The combined mass lower limit for the standard Higgs boson is 66 GeV/c 2 at 95 % CL for a statistics of 14.6 Million hadronic Z decays. (authors)

  4. Searches for BSM Higgs Bosons with ATLAS

    CERN Document Server

    Navarro, Gabriela; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs-like boson with a mass of about 125GeV has prompted the question of whether or not this particle is part of a much larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS Experiment regarding Beyond-the-Standard Model (BSM) Higgs hypothesis tests are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal Supersymmetric Standard Model.

  5. Fundamental Composite (Goldstone) Higgs Dynamics

    DEFF Research Database (Denmark)

    Cacciapaglia, G.; Sannino, Francesco

    2014-01-01

    We provide a unified description, both at the effective and fundamental Lagrangian level, of models of composite Higgs dynamics where the Higgs itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation of the conden...... searches of new physics at the Large Hadron Collider....

  6. Higgs mass in the gauge-Higgs unification

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Takenaga, Kazunori; Yamashita, Toshifumi

    2005-01-01

    The gauge-Higgs unification theory identifies the zero mode of the extra-dimensional component of the gauge field as the usual Higgs doublet. Since this degree of freedom is the Wilson line phase, the Higgs does not have the mass term nor quartic coupling at the tree level. Through quantum corrections, the Higgs can take a vacuum expectation value, and its mass is induced. The radiatively induced mass tends to be small, although it can be lifted to O(100) GeV by introducing the O(10) numbers of bulk fields. Perturbation theory becomes unreliable when a large number of bulk fields are introduced. We reanalyze the Higgs mass based on useful expansion formulae for the effective potential and find that even a small number of bulk field can have the suitable heavy Higgs mass. We show that a small (large) number of bulk fields are enough (needed) when the SUSY breaking mass is large (small). We also study the case of introducing the soft SUSY breaking scalar masses in addition to the Scherk-Schwarz SUSY breaking and obtain the heavy Higgs mass due to the effect of the scalar mass

  7. Searches for heavy Higgs bosons in two-Higgs-doublet models and for $t→ch$ decay using multilepton and diphoton final states in $pp$ collisions at 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Song; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Heister, Arno; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Nowak, Friederike; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Gavrilenko, Mikhail; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Dobson, Marc; Dordevic, Milos; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Klein, Daniel; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Craig, Nathaniel; Duggan, Daniel; Evans, Jared; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Vuosalo, Carl; Woods, Nathaniel

    2014-12-23

    Searches are presented for heavy scalar ($\\mathrm{H}$) and pseudoscalar ($\\mathrm{A}$) Higgs bosons posited in the two doublet model (2HDM) extensions of the standard model (SM). These searches are based on a data sample of $\\mathrm{p}\\mathrm{p}$ collisions collected with the CMS experiment at the LHC at a center-of-mass energy of $\\sqrt{s} = 8~\\mathrm{TeV}$ and corresponding to an integrated luminosity of $19.5~\\mathrm{fb}^{-1}$. The decays $\\mathrm{H} \\rightarrow \\mathrm{h} \\mathrm{h}$ and $\\mathrm{A} \\rightarrow \\mathrm{Z} \\mathrm{h}$, where $\\mathrm{h}$ denotes an SM-like Higgs boson, lead to events with three or more isolated charged leptons or with a photon pair accompanied by one or more isolated leptons. The search results are presented in terms of the $\\mathrm{H}$ and $\\mathrm{A}$ production cross sections times branching fractions and are further interpreted in terms of 2HDM parameters. We place 95% CL cross section upper limits of approximately $7~\\mathrm{pb}$ on $\\sigma \\mathcal{B}$ for $\\mathrm{H...

  8. Upper and lower Higgs boson mass bounds from a lattice Higgs-Yukawa model with dynamical overlap fermions

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Jansen, Karl

    2009-12-01

    We study a lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model, in particular, obeying a Ginsparg- Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. In this paper we present our results on the cutoffdependent upper Higgs boson mass bound at several selected values of the cutoff parameter Λ. (orig.)

  9. Theory and Phenomenology of the Elementary Goldstone Higgs

    DEFF Research Database (Denmark)

    Gertov, Helene; Meroni, Aurora; Molinaro, Emiliano

    2015-01-01

    We show, via a careful analytical and numerical analysis, that a pseudo Goldstone nature of the Higgs is naturally embodied by an elementary realization that also serves as ultraviolet completion. Renormalizability married to perturbation theory allows to precisely determine the quantum corrections...... of the theory while permitting to explore the underlying parameter space. By characterising the available parameter space of the extended Higgs sector we discover that the preferred electroweak alignment angle is centred around $\\theta \\simeq 0.02$, corresponding to the Higgs chiral symmetry breaking scale $ f...... \\simeq 14~$TeV. The latter is almost 60 times higher than the Standard Model electroweak scale. However, due to the perturbative nature of the theory, the spectrum of the enlarged Higgs sector remains in the few TeV energy range. We also analyse precision constraints and the relevant phenomenological...

  10. Search for Charged Higgs Bosons with the ATLAS Detector

    CERN Document Server

    Barak, L; The ATLAS collaboration

    2014-01-01

    Several non-minimal Higgs scenarios, e.g. Two Higgs Doublet Models (2HDM), predict the existence of charged Higgs bosons. This talk describes searches for charged Higgs bosons produced in top quark decays, in association with a top quark, or decaying to a tau lepton and a neutrino using the Run I data collected by the ATLAS detector at the LHC.

  11. Electroweak baryogenesis and low energy supersymmetry

    CERN Document Server

    Carena, M S; Riotto, Antonio; Vilja, I; Wagner, C E M

    1997-01-01

    Electroweak baryogenesis is an interesting theoretical scenario, which demands physics beyond the Standard Model at energy scales of the order of the weak boson masses. It has been recently emphasized that, in the presence of light stops, the electroweak phase transition can be strongly first order, opening the window for electroweak baryogenesis in the MSSM. For the realization of this scenario, the Higgs boson must be light, at the reach of the LEP2 collider. In this article, we compute the baryon asymmetry assuming the presence of non-trivial CP violating phases in the parameters associated with the left-right stop mixing term and the Higgsino mass $\\mu$. We conclude that a phase $|\\sin \\phi_{\\mu}| > 0.01$ and Higgsino and gaugino mass parameters $|\\mu| \\simeq M_2$, and of the order of the electroweak scale, are necessary in order to generate the observed baryon asymmetry.

  12. Searches for non-Standard Model Higgs bosons

    CERN Document Server

    Dumitriu, Ana Elena; The ATLAS collaboration

    2018-01-01

    This presentation focuses on the Searches for non-Standard Model Higgs bosons using 36.1 fb of data collected by the ATLAS experiment. There are several theoretical models with an extended Higgs sector considered: 2 Higgs Doublet Models (2HDM), Supersymmetry (SUSY), which brings along super-partners of the SM particles (+ The Minimal Supersymmetric Standard Model (MSSM), whose Higgs sector is equivalent to the one of a constrained 2HDM of type II and the next-to MSSM (NMSSM)), General searches and Invisible decaying Higgs boson.

  13. Holographic theories of electroweak symmetry breaking without a Higgs Boson

    International Nuclear Information System (INIS)

    Burdman, Gustavo; Nomura, Yasunori

    2003-01-01

    Recently, realistic theories of electroweak symmetry breaking have been constructed in which the electroweak symmetry is broken by boundary conditions imposed at a boundary of higher dimensional spacetime. These theories have equivalent 4D dual descriptions, in which the electroweak symmetry is dynamically broken by non-trivial infrared dynamics of some gauge interaction, whose gauge coupling (tilde g) and size N satisfy (tilde g) 2 N ∼> 16π 2 . Such theories allow one to calculate electroweak radiative corrections, including the oblique parameters S, T and U, as long as (tilde g) 2 N/16π 2 and N are sufficiently larger than unity. We study how the duality between the 4D and 5D theories manifests itself in the computation of various physical quantities. In particular, we calculate the electroweak oblique parameters in a warped 5D theory where the electroweak symmetry is broken by boundary conditions at the infrared brane. We show that the value of S obtained in the minimal theory exceeds the experimental bound if the theory is in a weakly coupled regime. This requires either an extension of the minimal model or departure from weak coupling. A particularly interesting scenario is obtained if the gauge couplings in the 5D theory take the largest possible values--the value suggested by naive dimensional analysis. We argue that such a theory can provide a potentially consistent picture for dynamical electroweak symmetry breaking: corrections to the electroweak observables are sufficiently small while realistic fermion masses are obtained without conflicting with bounds from flavor violation. The theory contains only the standard model quarks, leptons and gauge bosons below ≅2 TeV, except for a possible light scalar associated with the radius of the extra dimension. At ≅2 TeV increasingly broad string resonances appear. An analysis of top-quark phenomenology and flavor violation is also presented, which is applicable to both the weakly-coupled and strongly

  14. Radiative generation of the Higgs potential

    International Nuclear Information System (INIS)

    Chun, Eung Jin; Jung, Sunghoon; Lee, Hyun Min

    2013-01-01

    We consider the minimal extension of the Standard Model with U(1) B−L gauge symmetry for generating the Higgs potential radiatively. Assuming that the full scalar potential vanishes at the vacuum instability scale, we achieve the goal in terms of two free parameters, the B−L gauge coupling and the right-handed neutrino Yukawa coupling. The B−L gauge symmetry is broken spontaneously by the Coleman–Weinberg mechanism while the scale symmetry breakdown induces electroweak symmetry breaking through the radiative generation of appropriate scalar quartic couplings. We show that there is a reasonable parameter space that is consistent with a correct electroweak symmetry breaking and the observed Higgs mass

  15. The universal Higgs fit

    DEFF Research Database (Denmark)

    Giardino, P. P.; Kannike, K.; Masina, I.

    2014-01-01

    We perform a state-of-the-art global fit to all Higgs data. We synthesise them into a 'universal' form, which allows to easily test any desired model. We apply the proposed methodology to extract from data the Higgs branching ratios, production cross sections, couplings and to analyse composite...... Higgs models, models with extra Higgs doublets, supersymmetry, extra particles in the loops, anomalous top couplings, and invisible Higgs decays into Dark Matter. Best fit regions lie around the Standard Model predictions and are well approximated by our 'universal' fit. Latest data exclude the dilaton...... as an alternative to the Higgs, and disfavour fits with negative Yukawa couplings. We derive for the first time the SM Higgs boson mass from the measured rates, rather than from the peak positions, obtaining M-h = 124.4 +/- 1.6 GeV....

  16. Large mass of the littlest Higgs boson

    International Nuclear Information System (INIS)

    Bazzocchi, F.; Fabbrichesi, M.; Piai, M.

    2005-01-01

    We study the exact (one-loop) effective potential of the littlest Higgs model and determine the dependence of physical quantities, such as the vacuum expectation value v W and mass m h of the Higgs boson, on the fundamental parameters of the Lagrangian--masses, couplings of new states, the fundamental scale f of the sigma model, and the coefficients of operators quadratically sensitive to the cutoff of the theory. On the one hand, we show that it is possible to have the electroweak ground state and a relatively large cutoff Λ=4πf with f in the 2 TeV range without requiring unnaturally small coefficients for quadratically divergent quantities, and with only moderate cancellations between the contribution of different sectors to the effective potential of the Higgs. On the other hand, this cannot be achieved while at the same time keeping m h close to its current lower bound of 114.4 GeV. The natural expectation for m h is O(f), mainly because of large logarithmically divergent contributions to the effective potential of the top-quark sector. Even a fine-tuning at the level of O(10 -2 ) in the coefficients of the quadratic divergences is not enough to produce small physical Higgs masses, and the natural expectation is in the 800 GeV range for f∼2 TeV. We conclude that the littlest Higgs model is a solution of the little hierarchy problem, in the sense that it stabilizes the electroweak symmetry breaking scale to be a factor of 100 less than the cutoff of the theory, but this requires a quite large physical mass for the Higgs, and hence precision electroweak studies should be redone accordingly. We also study finite temperature corrections. The first order electroweak phase transition is no stronger than in the standard model. A second phase transition (nonrestoration of symmetry at high temperature) depends strongly on the logarithmic terms in the potential

  17. Higgs Physics and Cosmology

    Science.gov (United States)

    Roberts, Alex

    2016-08-01

    Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. We elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein. We explore supersymmetric theories in which the Higgs mass is boosted by the non-decoupling D-terms of an extended U(1) X gauge symmetry, defined here to be a general linear combination of hypercharge, baryon number, and lepton number. Crucially, the gauge coupling, gX, is bounded from below to accommodate the Higgs mass, while the quarks and leptons are required by gauge invariance to carry non-zero charge under U(1)X. This induces an irreducible rate, sigmaBR, for pp → X → ll relevant to existing and future resonance searches, and gives rise to higher dimension operators that are stringently constrained by precision electroweak measurements. Combined, these bounds define a maximally allowed region in the space of observables, (sigmaBR, mX), outside of which is excluded by naturalness and experimental limits. If natural supersymmetry utilizes non-decoupling D-terms, then the associated X boson can only be observed within this window, providing a model independent 'litmus test' for this broad

  18. Higgs Searches at DØ

    Science.gov (United States)

    Owen, Mark

    2009-09-01

    The Higgs boson is essential to achieve electroweak symmetry breaking in the Standard Model. Results on searches for the Higgs boson using data collected in pbar p collisions at √ s = 1.96 {TeV} with the DØ detector at the Fermilab Teva-tron collider are presented. The data, corresponding to integrated luminosities between 1 fb-1 and 2 fb-1 show no excess above the expected backgrounds and as such upper limits on the production cross section of Higgs bosons are set at the 95% confidence level.

  19. Vector boson fusion in the inert doublet model

    Science.gov (United States)

    Dutta, Bhaskar; Palacio, Guillermo; Restrepo, Diego; Ruiz-Álvarez, José D.

    2018-03-01

    In this paper we probe the inert Higgs doublet model at the LHC using vector boson fusion (VBF) search strategy. We optimize the selection cuts and investigate the parameter space of the model and we show that the VBF search has a better reach when compared with the monojet searches. We also investigate the Drell-Yan type cuts and show that they can be important for smaller charged Higgs masses. We determine the 3 σ reach for the parameter space using these optimized cuts for a luminosity of 3000 fb-1 .

  20. What's new with the electroweak phase transition?

    CERN Document Server

    Laine, M.

    1999-01-01

    We review the status of non-perturbative lattice studies of the electroweak phase transition. In the Standard Model, the complete phase diagram has been reliably determined, and the conclusion is that there is no phase transition at all for the experimentally allowed Higgs masses. In the Minimal Supersymmetric Standard Model (MSSM), in contrast, there can be a strong first order transition allowing for baryogenesis. Finally, we point out possibilities for future simulations, such as the problem of CP-violation at the MSSM electroweak phase boundary.

  1. Precise predictions of higgs boson decays including the full one-loop corrections in supersymmetry

    International Nuclear Information System (INIS)

    Frisch, W.

    2011-01-01

    The Standard Model of elementary particle physics is a highly successful theory, describing the electromagnetic, strong and weak interaction of matter particles up to energy scales to a few hundred giga electronvolt. Despite its great success in explaining experimental results correctly, there is hardly no doubt that the SM is an effective theory, which means that the theory loses its predictability at higher energies. Therefore, the Standard Model has to be extended in a proper way to describe physics at higher energies. A most promising concept for the extension of the SM is those of Supersymmetry, where for each particle of the SM one or more superpartner particles are introduced. The simplest and most attractive extension of the SM is called Minimal Supersymmetric Standard Model (MSSM). Minimal refers to the additional field content, which is kept as low as possible. In fact the MSSM consists of the fields of the SM and their corresponding supersymmetric partner fields, as well as one additional Higgs doublet. The presence of this additional Higgs doublet leads to the existence of five physical Higgs bosons in the MSSM. The search for supersymmetric particles and Higgs bosons is one of the primary goals of the Large Hadron Collider (LHC) at the CERN laboratory, producing collisions at sufficiently high energies to detect these particles. For the discovery of these new particles, precise pre- dictions of the corresponding decay widths and branching rations are utmost mandatory. To contribute with the precision of the LHC and the future ILC, Feynman amplitudes should be calculated at least to one-loop order. Since these calculations lead to so called UV- and IR- divergences, it is essential to perform a renormalization procedure, where the divergences are subtracted by a proper definition of counterterms. The goal of this work was to develop a program package, which calculates all MSSM two- body Higgs decay widths and corresponding branching ratios at full one

  2. CP Studies and Non-Standard Higgs Physics

    DEFF Research Database (Denmark)

    Kraml, S.; Accomando, E.; G. Akeroyd, A.

    2006-01-01

    There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state......, or there may even be no Higgs at all. These non-standard Higgs scenarios have important implications for collider physics as well as for cosmology, and understanding their phenomenology is essential for a full comprehension of electroweak symmetry breaking. This report discusses the most relevant theories...

  3. Three-body decays of Higgs bosons at LEP2 and application to a hidden fermiophobic Higgs

    International Nuclear Information System (INIS)

    Akeroyd, A.G.

    1999-01-01

    We study the decays of Higgs bosons to a lighter Higgs boson and a virtual gauge boson in the context of the non-supersymmetric two-Higgs doublet model (2HDM). We consider the phenomenological impact at LEP2 and find that such decays, when open, may be dominant in regions of parameter space and thus affect current Higgs boson search techniques. Three-body decays would be a way of producing light neutral Higgs bosons which have so far escaped detection at LEP due to suppressed couplings to the Z, and are of particular importance in the 2HDM (Model I) which allows both a light fermiophobic Higgs and a light charged scalar

  4. Natural cold baryogenesis from strongly interacting electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Konstandin, Thomas; Servant, Géraldine

    2011-01-01

    The mechanism of ''cold electroweak baryogenesis'' has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on any particular UV completion but only on a stage of supercooling ended by a first-order phase transition in the evolution of the universe, which can be natural if there is nearly conformal dynamics at the TeV scale. Besides, baryon-number violation originates from the Standard Model only

  5. New perturbative upper bound on MH from fermionic Higgs decays at two loops

    International Nuclear Information System (INIS)

    Durand, L.; Kniehl, B.A.; Riesselmann, K.

    1993-09-01

    We present the dominant two-loop O (G F 2 M H 4 ) electroweak corrections to the fermionic decay widths of a high-mass Higgs boson in the Standard Model. The corrections are negative and quite significant, and are larger in magnitude than the one-loop electroweak corrections for M H > or ∼400 GeV. This indicates the onset of a breakdown of perturbation theory in the Higgs sector of the Standard Model at this surprisingly low value of the Higgs boson mass. (orig.)

  6. Tests of the electroweak standard model and measurement of the weak mixing angle with the ATLAS detector

    CERN Document Server

    Goebel, Martin; Mnich, Joachim; Schleper, Peter

    In this thesis the global Standard Model (SM) fit to the electroweak precision observables is revisited with respect to newest experimental results. Various consistency checks are performed showing no significant deviation from the SM. The Higgs boson mass is estimated by the electroweak fit to be MH = 94+30−24 GeV without any information from direct Higgs searches at LEP, Tevatron, and the LHC and the result is MH = 125+8−10 GeV when including the direct Higgs mass constraints. The strong coupling constant is extracted at fourth perturbative order as αs(M2Z) = 0.1194 ± 0.0028 (exp) ± 0.0001 (theo). From the fit including the direct Higgs constraints the effective weak mixing angle is determined indirectly to be sin2 θleff = 0.23147+0.00012−0.00010. For the W mass the value of MW = 80.360+0.012−0.011 GeV is obtained indirectly from the fit including the direct Higgs constraints. The electroweak precision data is also exploited to constrain new physics models by using the concept of oblique paramet...

  7. Heavy Higgs searches. Flavour matters

    International Nuclear Information System (INIS)

    Gori, Stefania; Paul, Ayan

    2017-10-01

    We point out that the stringent lower bounds on the masses of additional electrically neutral and charged Higgs bosons crucially depend on the flavour structure of their Yukawa interactions. We show that these bounds can easily be evaded by the introduction of flavour-changing neutral currents in the Higgs sector. As an illustration, we study the phenomenology of a two Higgs doublet model with a Yukawa texture singling out the third family of quarks and leptons. We combine constraints from low-energy flavour physics measurements, LHC measurements of the 125 GeV Higgs boson rates, and LHC searches for new heavy Higgs bosons. We propose novel LHC searches that could be performed in the coming years to unravel the existence of these new Higgs bosons.

  8. Heavy Higgs searches. Flavour matters

    Energy Technology Data Exchange (ETDEWEB)

    Gori, Stefania [Cincinnati Univ., OH (United States). Dept. of Physics; Grojean, Christophe [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Juste, Aurelio [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain); Institucio Catalanade Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Paul, Ayan [INFN, Sezione di Roma (Italy)

    2017-10-15

    We point out that the stringent lower bounds on the masses of additional electrically neutral and charged Higgs bosons crucially depend on the flavour structure of their Yukawa interactions. We show that these bounds can easily be evaded by the introduction of flavour-changing neutral currents in the Higgs sector. As an illustration, we study the phenomenology of a two Higgs doublet model with a Yukawa texture singling out the third family of quarks and leptons. We combine constraints from low-energy flavour physics measurements, LHC measurements of the 125 GeV Higgs boson rates, and LHC searches for new heavy Higgs bosons. We propose novel LHC searches that could be performed in the coming years to unravel the existence of these new Higgs bosons.

  9. The hunt for the Higgs particle

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    With the advent of the LHC, the hunt for the Higgs boson enters its crucial phase. These three lectures will review: the Higgs mechanism; its implementation in the minimal Standard Model; possible alternatives with and without elementary scalar fields; the presently available information on electroweak gauge symmetry breaking and the Higgs particle; the properties of the Higgs boson(s) in the Standard Model and its supersymmetric extensions; the strategies for direct searches at colliders, with emphasis on the LHC, and comments on the possible scenarios that may emerge.

  10. Weak radiative decays of the B meson and bounds on M{sub H}± in the Two-Higgs-Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Misiak, Mikolaj [University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); CERN, Theoretical Physics Department, Geneva 23 (Switzerland); Steinhauser, Matthias [Karlsruhe Institute of Technology (KIT), Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany)

    2017-03-15

    In a recent publication (Abdesselam et al. arXiv:1608.02344), the Belle collaboration updated their analysis of the inclusive weak radiative B-meson decay, including the full dataset of (772 ± 11) x 10{sup 6} B anti B pairs. Their result for the branching ratio is now below the Standard Model prediction (Misiak et al. Phys Rev Lett 114:221801, 2015, Czakon et al. JHEP 1504:168, 2015), though it remains consistent with it. However, bounds on the charged Higgs boson mass in the Two-Higgs-Doublet Model get affected in a significant manner. In the so-called Model II, the 95% C.L. lower bound on M{sub H}± is now in the 570-800 GeV range, depending quite sensitively on the method applied for its determination. Our present note is devoted to presenting and discussing the updated bounds, as well as to clarifying several ambiguities that one might encounter in evaluating them. One of such ambiguities stems from the photon energy cutoff choice, which deserves re-consideration in view of the improved experimental accuracy. (orig.)

  11. Higgs Discovery

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    has been challenged by the discovery of a not-so-heavy Higgs-like state. I will therefore review the recent discovery \\cite{Foadi:2012bb} that the standard model top-induced radiative corrections naturally reduce the intrinsic non-perturbative mass of the composite Higgs state towards the desired...... via first principle lattice simulations with encouraging results. The new findings show that the recent naive claims made about new strong dynamics at the electroweak scale being disfavoured by the discovery of a not-so-heavy composite Higgs are unwarranted. I will then introduce the more speculative......I discuss the impact of the discovery of a Higgs-like state on composite dynamics starting by critically examining the reasons in favour of either an elementary or composite nature of this state. Accepting the standard model interpretation I re-address the standard model vacuum stability within...

  12. Searches for heavy Higgs bosons in two-Higgs-doublet models and for t →c h decay using multilepton and diphoton final states in p p collisions at 8 TeV

    Science.gov (United States)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Heister, A.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Park, S.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Gavrilenko, M.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Meister, D.; Mohr, N.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Millan Mejias, B.; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; Sperka, D.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Babb, J.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Craig, N.; Duggan, D.; Evans, J.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Vuosalo, C.; Woods, N.; CMS Collaboration

    2014-12-01

    Searches are presented for heavy scalar (H ) and pseudoscalar (A ) Higgs bosons posited in the two doublet model (2HDM) extensions of the standard model (SM). These searches are based on a data sample of p p collisions collected with the CMS experiment at the LHC at a center-of-mass energy of √{s }=8 TeV and corresponding to an integrated luminosity of 19.5 fb-1 . The decays H →h h and A →Z h , where h denotes an SM-like Higgs boson, lead to events with three or more isolated charged leptons or with a photon pair accompanied by one or more isolated leptons. The search results are presented in terms of the H and A production cross sections times branching fractions and are further interpreted in terms of 2HDM parameters. We place 95% C.L. cross section upper limits of approximately 7 pb on σ B for H →h h and 2 pb for A →Z h . Also presented are the results of a search for the rare decay of the top quark that results in a charm quark and an SM Higgs boson, t →c h , the existence of which would indicate a nonzero flavor-changing Yukawa coupling of the top quark to the Higgs boson. We place a 95% C.L. upper limit of 0.56% on B (t →c h ) .

  13. Electroweak corrections

    International Nuclear Information System (INIS)

    Beenakker, W.J.P.

    1989-01-01

    The prospect of high accuracy measurements investigating the weak interactions, which are expected to take place at the electron-positron storage ring LEP at CERN and the linear collider SCL at SLAC, offers the possibility to study also the weak quantum effects. In order to distinguish if the measured weak quantum effects lie within the margins set by the standard model and those bearing traces of new physics one had to go beyond the lowest order and also include electroweak radiative corrections (EWRC) in theoretical calculations. These higher-order corrections also can offer the possibility of getting information about two particles present in the Glashow-Salam-Weinberg model (GSW), but not discovered up till now, the top quark and the Higgs boson. In ch. 2 the GSW standard model of electroweak interactions is described. In ch. 3 some special techniques are described for determination of integrals which are responsible for numerical instabilities caused by large canceling terms encountered in the calculation of EWRC effects, and methods necessary to get hold of the extensive algebra typical for EWRC. In ch. 4 various aspects related to EWRC effects are discussed, in particular the dependence of the unknown model parameters which are the masses of the top quark and the Higgs boson. The processes which are discussed are production of heavy fermions from electron-positron annihilation and those of the fermionic decay of the Z gauge boson. (H.W.). 106 refs.; 30 figs.; 6 tabs.; schemes

  14. Stabilizing the Higgs potential with a Z′

    International Nuclear Information System (INIS)

    Di Chiara, Stefano; Keus, Venus; Lebedev, Oleg

    2015-01-01

    Current data point toward metastability of the electroweak vacuum within the Standard Model. We study the possibility of stabilizing the Higgs potential in U(1) extensions thereof. A generic Z′ boson improves stability of the scalar potential in two ways: it increases the Higgs self-coupling, due to a positive contribution to the beta-function of the latter, and it decreases the top quark Yukawa coupling, which again has a stabilizing effect. We determine the range of U(1) charges which leads to a stable electroweak vacuum. In certain classes of models, such stabilization is possible even if the Z′ does not couple to the Higgs and is due entirely to the reduction of the top Yukawa coupling. We also study the effect of the kinetic mixing between the extra U(1) and hypercharge gauge fields

  15. Associated heavy quarks pair production with Higgs as a tool for a search for non-perturbative effects of the electroweak interaction at the LHC

    Directory of Open Access Journals (Sweden)

    B.A. Arbuzov

    2017-09-01

    Full Text Available Assuming an existence of the anomalous triple electro-weak bosons interaction being defined by coupling constant λ we calculate its contribution to interactions of the Higgs with pairs of heavy particles. Bearing in mind experimental restrictions −0.011<λ<0.011 we present results for possible effects in processes pp→W+W−H,pp→W+ZH,pp→W−ZH,pp→t¯tH, pp→b¯bH. Effects could be significant with negative sign of λ in associated heavy quarks t,b pairs production with the Higgs. In calculations we rely on results of the non-perturbative approach to a spontaneous generation of effective interactions, which defines the form-factor of the three-boson anomalous interaction.

  16. History of electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Kibble, T W B

    2015-01-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012. (paper)

  17. Dynamical Electroweak Symmetry Breaking with a Heavy Fermion in Light of Recent LHC Results

    Directory of Open Access Journals (Sweden)

    Pham Q. Hung

    2013-01-01

    Full Text Available The recent announcement of a discovery of a possible Higgs-like particle—its spin and parity are yet to be determined—at the LHC with a mass of 126 GeV necessitates a fresh look at the nature of the electroweak symmetry breaking, in particular if this newly-discovered particle will turn out to have the quantum numbers of a Standard Model Higgs boson. Even if it were a 0+ scalar with the properties expected for a SM Higgs boson, there is still the quintessential hierarchy problem that one has to deal with and which, by itself, suggests a new physics energy scale around 1 TeV. This paper presents a minireview of one possible scenario: the formation of a fermion-antifermion condensate coming from a very heavy fourth generation, carrying the quantum number of the SM Higgs field, and thus breaking the electroweak symmetry.

  18. Breaking of electroweak symmetry: origin and effects; Brisure de symetrie electrobaible: origine et consequence

    Energy Technology Data Exchange (ETDEWEB)

    Delaunay, C

    2008-10-15

    The Higgs boson appears as the corner stone of high energy physics, it might be the cause of the excess of matter that led to the formation of the structures of the universe and it seems that it drives the breaking of the electroweak symmetry. Moreover, when the stability at low energies of the Higgs boson is assured by an extra space dimension, it appears that this extra dimension can explain most issues in the flavor physics that are not understood by the standard model. The first chapter presents the main tools of effective field theories, the role of experimental data in the construction of theories valid beyond the standard model is discussed. The second chapter focuses on the electroweak baryogenesis that allows the testing of new physics via the electroweak phase transition. We detail the calculation of a Higgs potential at finite temperature. We follow the dynamics of the phase transition including nucleation an supercooling. Finally we investigate the prospects of gravity wave detection to see the effects of a strong electroweak phase transition. The 2 last chapters are dedicated to the physics of extra-dimension. The properties of the dynamics of scalar, vector fields with a 1/2 spin plunged in a 5 d. Anti de Sitter geometry are reviewed. We present a model of lepton masses and mixings based on the A{sub 4} non-Abelian discrete symmetry. It is shown that this model does not contradict the tests of electroweak precision. (A.C.)

  19. Emergent Electroweak Symmetry Breaking with Composite W, Z Bosons

    CERN Document Server

    Cui, Yanou; Wells, James D

    2009-01-01

    We present a model of electroweak symmetry breaking in a warped extra dimension where electroweak symmetry is broken at the UV (or Planck) scale. An underlying conformal symmetry is broken at the IR (or TeV) scale generating masses for the electroweak gauge bosons without invoking a Higgs mechanism. By the AdS/CFT correspondence the W,Z bosons are identified as composite states of a strongly-coupled gauge theory, suggesting that electroweak symmetry breaking is an emergent phenomenon at the IR scale. The model satisfies electroweak precision tests with reasonable fits to the S and T parameter. In particular the T parameter is sufficiently suppressed since the model naturally admits a custodial SU(2) symmetry. The composite nature of the W,Z-bosons provide a novel possibility of unitarizing WW scattering via form factor suppression. Constraints from LEP and the Tevatron as well as discovery opportunities at the LHC are discussed for these composite electroweak gauge bosons.

  20. Global Fits of the Electroweak Standard Theory: Past, Present and Future

    CERN Document Server

    Baak, M; Mönig, K

    2016-01-01

    The last decades have seen tremendous progress in the experimental techniques for measuring key observables of the Standard Theory (ST) as well as in theoretical calculations that has led to highly precise predictions of these observables. Global electroweak fits of the ST compare the precision measurements of electroweak observables from lepton and hadron colliders at CERN and elsewhere with accurate theoretical predictions of the ST calculated at multi-loop level. For a long time, global fits have been used to assess the validity of the ST and to constrain indirectly (by exploiting contributions from quantum loops) the remaining free ST parameters, like the masses of the top quark and Higgs boson before their direct discovery. With the discovery of the Higgs boson at the Large Hadron Collider (LHC), the electroweak sector of the ST is now complete and all fundamental ST parameters are known. Hence the global fits are a powerful tool to probe the internal consistency of the ST, to predict ST parameters with...

  1. Probing the Higgs self coupling via single Higgs production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Degrassi, G. [Dipartimento di Matematica e Fisica, Università di Roma Tre andINFN, sezione di Roma Tre,Via della Vasca Navale 84, I-00146 Rome (Italy); Giardino, P.P. [Physics Department, Brookhaven National Laboratory,20 Pennsylvania St., Upton NY 11742 (United States); Maltoni, F.; Pagani, D. [Centre for Cosmology, Particle Physics and Phenomenology (CP3),Université Catholique de Louvain,B-1348 Louvain-la-Neuve (Belgium)

    2016-12-16

    We propose a method to determine the trilinear Higgs self coupling that is alternative to the direct measurement of Higgs pair production total cross sections and differential distributions. The method relies on the effects that electroweak loops featuring an anomalous trilinear coupling would imprint on single Higgs production at the LHC. We first calculate these contributions to all the phenomenologically relevant Higgs production (ggF, VBF, WH, ZH, tt̄H) and decay (γγ, WW{sup ∗}/ZZ{sup ∗}→4f, bb̄, ττ) modes at the LHC and then estimate the sensitivity to the trilinear coupling via a one-parameter fit to the single Higgs measurements at the LHC 8 TeV. We find that the bounds on the self coupling are already competitive with those from Higgs pair production and will be further improved in the current and next LHC runs.

  2. Littlest Higgs with T-parity. Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Juergen; Tonini, Marco; Vries, Maikel de

    2013-11-15

    The Littlest Higgs model with T-parity is providing an attractive solution to the fine-tuning problem. This solution is only entirely natural if its intrinsic symmetry breaking scale f is relatively close to the electroweak scale. We examine the constraints using the latest results from the 8 TeV run at the LHC. Both direct searches and Higgs precision physics are taken into account. The constraints from Higgs couplings are by now competing with electroweak precision tests and both combined exclude f up to 694 GeV. At the same time limits from direct searches now become competitive and constrain f to be larger than 638 GeV. We show that the Littlest Higgs model parameter space is slowly driven into the TeV range. Furthermore, we develop a strategy on how to optimise present supersymmetry searches for the considered model, with the goal to improve the constraints and yield more stringent limits on f.

  3. Higgs production and decay in models of a warped extra dimension with a bulk Higgs

    International Nuclear Information System (INIS)

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias

    2015-01-01

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS 5 space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H → γγ decay rate and show that they are finite (at one-loop order) as a consequence of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y * of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H → γγ rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. As a result, we perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y * , the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator

  4. Two aspects of high energy physics. Methods for extended Higgs models and constraints on the colour dipole picture

    Energy Technology Data Exchange (ETDEWEB)

    Manteuffel, Andreas von

    2008-07-17

    Theories with extended Higgs sectors such as Two-Higgs-Doublet Models (THDMs) or the Next-to-Minimal Supersymmetric Standard Model (NMSSM) allow for rich CP phenomena and involved Higgs-potential structures. Employing a gauge invariant formulation for the tree-level Higgs potential of the general THDM, we derive compact criteria for its stability, electroweak symmetry breaking, and generalised CP properties in a clear geometrical language. A new type of CP symmetry is shown to impose strong restrictions on the Lagrangian and to require at least two fermion generations for non-trivial Yukawa terms. Large regions of the NMSSM parameter space are excluded due to an instable vacuum. We present a rigorous determination of the global minimum of the tree-level potential via Groebner bases. In a second part, we investigate the colour dipole picture. This model of high energy photonproton scattering permits a very successful description of available HERA data. Nevertheless, its range of applicability is limited. We derive general bounds on ratios of deep-inelastic proton structure functions within the colour dipole picture, following exclusively from its framework and photon wave function properties. Confronting these bounds with HERA data we can further restrict the range of applicability of the colour dipole picture. Finally, we calculate Ioffe times for a specific model and find them to be too small to justify the dipole picture at large photon virtualities. (orig.)

  5. Higgs boson resonance parameters and the finite temperature phase transition in a chirally invariant Higgs-Yukawa model

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Gerhold, Philip; Kallarackal, Jim; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humbolt-Univ. Berlin (Germany)

    2011-12-15

    We study a chirally invariant Higgs-Yukawa model regulated on a space-time lattice. We calculate Higgs boson resonance parameters and mass bounds for various values of the mass of the degenerate fermion doublet. Also, first results on the phase transition temperature are presented. In general, this model may be relevant for BSM scenarios with a heavy fourth generation of quarks. (orig.)

  6. Enabling electroweak baryogenesis through dark matter

    International Nuclear Information System (INIS)

    Lewicki, Marek; Rindler-Daller, Tanja; Wells, James D.

    2016-01-01

    We study the impact on electroweak baryogenesis from a swifter cosmological expansion induced by dark matter. We detail the experimental bounds that one can place on models that realize it, and we investigate the modifications of these bounds that result from a non-standard cosmological history. The modifications can be sizeable if the expansion rate of the Universe increases by several orders of magnitude. We illustrate the impact through the example of scalar field dark matter, which can alter the cosmological history enough to enable a strong-enough first-order phase transition in the Standard Model when it is supplemented by a dimension six operator directly modifying the Higgs boson potential. We show that due to the modified cosmological history, electroweak baryogenesis can be realized, while keeping deviations of the triple Higgs coupling below HL-LHC sensitivies. The required scale of new physics to effectuate a strong-enough first order phase transition can change by as much as twenty percent as the expansion rate increases by six orders of magnitude.

  7. Electroweak baryogenesis in extensions of the standard model

    International Nuclear Information System (INIS)

    Fromme, L.

    2006-01-01

    We investigate the generation of the baryon asymmetry in two extensions of the Standard Model; these are the Φ 6 and the two-Higgs-doublet model. Analyzing the thermal potential in the presence of CP violation, we find a strong first order phase transition for a wide range of parameters in both models. We compute the relevant bubble wall properties which then enter the transport equations. In non-supersymmetric models electroweak baryogenesis is dominated by top transport, which we treat in the WKB approximation. We calculate the CP-violating source terms starting from the Dirac equation. We show how to resolve discrepancies between this treatment and the computation in the Schwinger-Keldysh formalism. Furthermore, we keep inelastic scatterings of quarks and W bosons at a finite rate, which considerably affects the amount of the generated baryon asymmetry depending on the bubble wall velocity. In addition, we improve the transport equations by novel source terms which are generated by CP-conserving perturbations in the plasma. It turns out that their effect is relatively small. Both models under consideration predict a baryon to entropy ratio close to the observed value for a large part of the parameter space without being in conflict with constraints on electric dipole moments. (orig.)

  8. Electroweak baryogenesis in extensions of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Fromme, L.

    2006-07-07

    We investigate the generation of the baryon asymmetry in two extensions of the Standard Model; these are the {phi}{sup 6} and the two-Higgs-doublet model. Analyzing the thermal potential in the presence of CP violation, we find a strong first order phase transition for a wide range of parameters in both models. We compute the relevant bubble wall properties which then enter the transport equations. In non-supersymmetric models electroweak baryogenesis is dominated by top transport, which we treat in the WKB approximation. We calculate the CP-violating source terms starting from the Dirac equation. We show how to resolve discrepancies between this treatment and the computation in the Schwinger-Keldysh formalism. Furthermore, we keep inelastic scatterings of quarks and W bosons at a finite rate, which considerably affects the amount of the generated baryon asymmetry depending on the bubble wall velocity. In addition, we improve the transport equations by novel source terms which are generated by CP-conserving perturbations in the plasma. It turns out that their effect is relatively small. Both models under consideration predict a baryon to entropy ratio close to the observed value for a large part of the parameter space without being in conflict with constraints on electric dipole moments. (orig.)

  9. Precision tests and fine tuning in twin Higgs models

    Science.gov (United States)

    Contino, Roberto; Greco, Davide; Mahbubani, Rakhi; Rattazzi, Riccardo; Torre, Riccardo

    2017-11-01

    We analyze the parametric structure of twin Higgs (TH) theories and assess the gain in fine tuning which they enable compared to extensions of the standard model with colored top partners. Estimates show that, at least in the simplest realizations of the TH idea, the separation between the mass of new colored particles and the electroweak scale is controlled by the coupling strength of the underlying UV theory, and that a parametric gain is achieved only for strongly-coupled dynamics. Motivated by this consideration we focus on one of these simple realizations, namely composite TH theories, and study how well such constructions can reproduce electroweak precision data. The most important effect of the twin states is found to be the infrared contribution to the Higgs quartic coupling, while direct corrections to electroweak observables are subleading and negligible. We perform a careful fit to the electroweak data including the leading-logarithmic corrections to the Higgs quartic up to three loops. Our analysis shows that agreement with electroweak precision tests can be achieved with only a moderate amount of tuning, in the range 5%-10%, in theories where colored states have mass of order 3-5 TeV and are thus out of reach of the LHC. For these levels of tuning, larger masses are excluded by a perturbativity bound, which makes these theories possibly discoverable, hence falsifiable, at a future 100 TeV collider.

  10. Higgs enhancement for the dark matter relic density

    Science.gov (United States)

    Harz, Julia; Petraki, Kalliopi

    2018-04-01

    We consider the long-range effect of the Higgs on the density of thermal-relic dark matter. While the electroweak gauge boson and gluon exchange have been previously studied, the Higgs is typically thought to mediate only contact interactions. We show that the Sommerfeld enhancement due to a 125 GeV Higgs can deplete TeV-scale dark matter significantly and describe how the interplay between the Higgs and other mediators influences this effect. We discuss the importance of the Higgs enhancement in the minimal supersymmetric standard model and its implications for experiments.

  11. Tests of electroweak interactions at CERN's LEP Collider

    Science.gov (United States)

    Fearnley, T. A.

    1995-08-01

    Precision measurements of electroweak interactions at the Z0 energy are performed at four experiments at the Large Electron Positron (LEP) Collider at CERN in Geneva, Switzerland. The large amount of data obtained from 1989 until today allows detailed comparisons with the predictions made by the Standard Model. Within the experimental errors the agreement with the Standard Model is good. Fits to the LEP data allow an indirect determination of the mass of the top quark: Mt=173+12+18-13-20 GeV, assuming a Higgs boson mass of 300 GeV. The first errors reflect the experimental errors (systematic and statistical) on the measurements. The second errors correspond to the variation of the central value when varying the Higgs mass between 60 and 1000 GeV. This paper reviews the results of the measurements of electroweak interactions, and compares the results with predictions made by the Standard Model.

  12. Opening the window for electroweak baryogenesis

    CERN Document Server

    Carena, M S; Wagner, C E M

    1996-01-01

    We perform an analysis of the behaviour of the electroweak phase transition in the Minimal Supersymmetric Standard Model, in the presence of light stops. We show that, in previously unexplored regions of parameter space, the order parameter v(T_c)/T_c can become significantly larger than one, for values of the Higgs and supersymmetric particle masses consistent with the present experimental bounds. This implies that baryon number can be efficiently generated at the electroweak phase transition. As a by-product of this study, we present an analysis of the problem of colour breaking minima at zero and finite temperature, and we use it to investigate the region of parameter space preferred by the best fit to the present precision electroweak measurement data, in which the left-handed stops are much heavier than the right-handed ones.

  13. Integrating out resonances in strongly-coupled electroweak scenarios

    Directory of Open Access Journals (Sweden)

    Rosell Ignasi

    2017-01-01

    Full Text Available Accepting that there is a mass gap above the electroweak scale, the Electroweak Effective Theory (EWET is an appropriate tool to describe this situation. Since the EWET couplings contain information on the unknown high-energy dynamics, we consider a generic strongly-coupled scenario of electroweak symmetry breaking, where the known particle fields are coupled to heavier states. Then, and by integrating out these heavy fields, we study the tracks of the lightest resonances into the couplings. The determination of the low-energy couplings (LECs in terms of resonance parameters can be made more precise by considering a proper short-distance behaviour on the Lagrangian with heavy states, since the number of resonance couplings is then reduced. Notice that we adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs.

  14. Prediction of the Cabibbo angle in the vector model for electroweak interactions

    International Nuclear Information System (INIS)

    Reifler, F.; Morris, R.

    1985-01-01

    In a recent paper we presented a vector model for the electroweak interactions which is similar to the Weinberg--Salam model but differs in the following features. (1) In the vector model all fermion wave functions are bispinors or equivalently isotropic Yang--Mills triplets (as opposed to a state vector composed of a spinor and bispinors in the Weinberg--Salam model). Particles are distinguished by their Higgs fields. (2) The vector model predicts that sin 2 theta/sub W/ = 1/4 , where theta/sub W/ is the Weinberg angle. (3) The vector model accounts for conservation of lepton number, electric charge, and baryon number. (4) In the vector model an antiparticle is characterized by opposite lepton number, electric charge, and baryon number; yet both particles and antiparticles propagate forward in time with positive energies. In this paper we extend the vector theory to include interactions between fermions and the gauge bosons mediating the electroweak force. We model the bosons as Yang--Mills fields with their own Higgs fields. We further propose a specific configuration of Higgs fields for the u,d,s, and c quarks. With these features, the model accounts for electroweak transitions of quarks and leptons and predicts that cos theta/sub C/ = 0.9744, where theta/sub C/ is the Cabibbo angle. We further show that the vector model accounts for the intrinsic parity of particles and antiparticles, and parity violations and CPT invariance for electroweak interactions

  15. Higgs Physics

    CERN Document Server

    Grojean, C.

    2016-01-01

    The cause of the screening of the weak interactions at long distances puzzled the high-energy community for more nearly half a century. With the discovery of the Higgs boson a new era started with direct experimental information on the physics behind the breaking of the electroweak symmetry. This breaking plays a fundamental role in our understanding of particle physics and sits at the high-energy frontier beyond which we expect new physics that supersedes the Standard Model. The Higgs boson (inclusive and differential) production and decay rates offer a new way to probe this frontier.

  16. A few words about resonances in the electroweak effective Lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Rosell, Ignasi [Departamento de Ciencias Físicas, Matemáticas y de la Computación, Universidad CEU Cardenal Herrera, c/ Sant Bartomeu 55, 46115 Alfara del Patriarca, València (Spain); Pich, Antonio; Santos, Joaquín [Departament de Física Teòrica, IFIC, Universitat de València – CSIC, Apt. Correus 22085, 46071 València (Spain); Sanz-Cillero, Juan José [Departamento de Física Teórica and Instituto Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2016-01-22

    Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models including both a light Higgs-like boson and massive spin-1 resonances are not in conflict with experimental constraints on the oblique S and T parameters. We use an effective Lagrangian implementing the chiral symmetry breaking SU (2){sub L} ⊗ SU (2){sub R} → SU (2){sub L+R} that contains the Standard Model gauge bosons coupled to the electroweak Goldstones, one Higgs-like scalar state h with mass m{sub h} = 126 GeV and the lightest vector and axial-vector resonance multiplets V and A. We have considered the one-loop calculation of S and T in order to study the viability of these strongly-coupled scenarios, being short-distance constraints and dispersive relations the main ingredients of the calculation. Once we have constrained the resonance parameters, we do a first approach to the determination of the low energy constants of the electroweak effective theory at low energies (without resonances). We show this determination in the case of the purely Higgsless bosonic Lagrangian.

  17. Comments on the electroweak phase transition

    International Nuclear Information System (INIS)

    Dine, M.; Leigh, R.G.; Huet, P.; Linde, A.; Linde, D.

    1992-01-01

    We report on an investigation of various problems related to the theory of the electroweak phase transition. This includes a determination of the nature of the phase transition, a discussion of the possible role of higher order radiative corrections and the theory of the formation and evolution of the bubbles of the new phase. We find in particular that no dangerous linear terms appear in the effective potential. However, the strength of the first-order phase transition is 2/3 times less than what follows from the one-loop approximation. This rules out baryogenesis in the minimal version of the electroweak theory with light Higgs bosons. (orig.)

  18. Natural cold baryogenesis from strongly interacting electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Konstandin, Thomas; Servant, Géraldine, E-mail: tkonstan@cern.ch, E-mail: geraldine.servant@cern.ch [CERN Physics Department, Theory Division, CH-1211 Geneva 23 (Switzerland)

    2011-07-01

    The mechanism of ''cold electroweak baryogenesis'' has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on any particular UV completion but only on a stage of supercooling ended by a first-order phase transition in the evolution of the universe, which can be natural if there is nearly conformal dynamics at the TeV scale. Besides, baryon-number violation originates from the Standard Model only.

  19. Higgsless theory of electroweak symmetry breaking from warped space

    International Nuclear Information System (INIS)

    Nomura, Yasunori

    2003-01-01

    We study a theory of electroweak symmetry breaking without a Higgs boson, recently suggested by Csaki et al. The theory is formulated in 5D warped space with the gauge bosons and matter fields propagating in the bulk. In the 4D dual picture, the theory appears as the standard model without a Higgs field, but with an extra gauge group G which becomes strong at the TeV scale. The strong dynamics of G breaks the electroweak symmetry, giving the masses for the W and Z bosons and the quarks and leptons. We study corrections in 5D which are logarithmically enhanced by the large mass ratio between the Planck and weak scales, and show that they do not destroy the structure of the electroweak gauge sector at the leading order. We introduce a new parameter, the ratio between the two bulk gauge couplings, into the theory and find that it allows us to control the scale of new physics. We also present a potentially realistic theory accommodating quarks and leptons and discuss its implications, including the violation of universality in the W and Z boson couplings to matter and the spectrum of the Kaluza-Klein excitations of the gauge bosons. The theory reproduces many successful features of the standard model, although some cancellations may still be needed to satisfy constraints from the precision electroweak data. (author)

  20. Spontaneous parity violation and minimal Higgs models

    International Nuclear Information System (INIS)

    Chavez, H.; Martins Simoes, J.A.

    2007-01-01

    In this paper we present a model for the spontaneous breaking of parity with two Higgs doublets and two neutral Higgs singlets which are even and odd under D-parity. The condition υ R >>υ L can be satisfied without introducing bidoublets, and it is induced by the breaking of D-parity through the vacuum expectation value of the odd Higgs singlet. Examples of left-right symmetric and mirror fermions models in grand unified theories are presented. (orig.)

  1. Little Higgs model effects in γγ → γγ

    Indian Academy of Sciences (India)

    metry breaking. Note that the mass of the Higgs scalar is not protected by any symmetry. In fact the Higgs mass diverges quadratically when quantum corrections in the SM are taken into account. This gives rise to a 'fine tuning' problem in the. SM. The precision electroweak data demands the lightest Higgs boson mass to be.

  2. Light Higgs boson in THDM with explicit CP violation

    International Nuclear Information System (INIS)

    Akhmetzyanova, Eh.N.; Dolgopolov, M.V.; Smirnov, I.A.; Dubinin, M.N.

    2005-01-01

    The effective Lagrangian of the two-doublet Higgs sector with complex parameters is considered in the case of Minimal Supersymmetric Model with explicit CP violation. Light Higgs boson decay widths are calculated for the scenario with maximal mixing of CP even and CP odd states [ru

  3. On the difference between the pole and the MS masses of the top quark at the electroweak scale

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Kalmykov, Mikhail Yu.; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2012-12-15

    We argue that for a Higgs boson mass M{sub H} {proportional_to} 125 GeV, as estimated from recent Higgs searches at the LHC, the inclusion of the electroweak radiative corrections in the relationship between the pole and MS masses of the top quark reduces the difference to about 1 GeV. This fact is relevant for the scheme dependence of electroweak observables as well as for the extraction of the top quark mass from experimental data.

  4. Towards a natural theory of electroweak interactions

    Science.gov (United States)

    Dobrescu, Bogdan A.

    1998-01-01

    I study theories of electroweak symmetry breaking that may describe naturally the electromagnetic and weak interactions of the elementary particles observed so far (quarks, leptons and gauge bosons). These theories should explain why the energy scale at which the electroweak symmetry is spontaneously broken (246 GeV), called the 'electroweak scale', is seventeen orders of magnitude smaller than the 'Planck scale', which is associated with the quantum origin of gravity. I discuss first theories where the electroweak symmetry is broken by the dynamics of new strong interactions, naturally producing the hierarchy between the Planck scale and the electroweak scale. I show that in a realistic class of models of this type, the new gauge bosons needed for generating the mass of the heaviest quark have couplings which require a careful adjustment in order to be compatible with experimental data. In the case where the strong dynamics produces a composite spinless particle ('Higgs boson') whose interactions break the electroweak symmetry, I derive an upper bound of 460 GeV on the Higgs boson mass from experimental constraints on processes sensitive to new physics. I also discuss a different type of theory that explains the hierarchy of energy scales, based on a special symmetry, called supersymmetry, which requires the existence of new particles ('superpartners'). No superpartners have been seen in experiments. Therefore, if they exist, they must have masses larger than the particles known so far, implying that supersymmetry is not exact. In the simplest models, supersymmetry breaking is transmitted to the superpartners by standard gauge interactions. I show that all known models of this type are likely to be unacceptable because they do not admit a stable and phenomenologically viable ground state of the universe ('vacuum'). I then construct modified versions of these models that permit viable stable vacua. Also, I present a new model in which supersymmetry breaking is

  5. Higgs inflation, seesaw physics and fermion dark matter

    Directory of Open Access Journals (Sweden)

    Nobuchika Okada

    2015-07-01

    Full Text Available We present an inflationary model in which the Standard Model Higgs doublet field with non-minimal coupling to gravity drives inflation, and the effective Higgs potential is stabilized by new physics which includes a dark matter particle and right-handed neutrinos for the seesaw mechanism. All of the new particles are fermions, so that the Higgs doublet is the unique inflaton candidate. With central values for the masses of the top quark and the Higgs boson, the renormalization group improved Higgs potential is employed to yield the scalar spectral index ns≃0.968, the tensor-to-scalar ratio r≃0.003, and the running of the spectral index α=dns/dln⁡k≃−5.2×10−4 for the number of e-folds N0=60 (ns≃0.962, r≃0.004, and α≃−7.5×10−4 for N0=50. The fairly low value of r≃0.003 predicted in this class of models means that the ongoing space and land based experiments are not expected to observe gravity waves generated during inflation.

  6. Flavored gauge mediation with discrete non-Abelian symmetries

    Science.gov (United States)

    Everett, Lisa L.; Garon, Todd S.

    2018-05-01

    We explore the model building and phenomenology of flavored gauge-mediation models of supersymmetry breaking in which the electroweak Higgs doublets and the S U (2 ) messenger doublets are connected by a discrete non-Abelian symmetry. The embedding of the Higgs and messenger fields into representations of this non-Abelian Higgs-messenger symmetry results in specific relations between the Standard Model Yukawa couplings and the messenger-matter Yukawa interactions. Taking the concrete example of an S3 Higgs-messenger symmetry, we demonstrate that, while the minimal implementation of this scenario suffers from a severe μ /Bμ problem that is well known from ordinary gauge mediation, expanding the Higgs-messenger field content allows for the possibility that μ and Bμ can be separately tuned, allowing for the possibility of phenomenologically viable models of the soft supersymmetry-breaking terms. We construct toy examples of this type that are consistent with the observed 125 GeV Higgs boson mass.

  7. Magnetic Fields at First Order Phase Transition: A Threat to Electroweak Baryogenesis

    CERN Document Server

    De Simone, Andrea; Quiros, Mariano; Riotto, Antonio

    2011-01-01

    The generation of the observed baryon asymmetry may have taken place during the electroweak phase transition, thus involving physics testable at LHC, a scenario dubbed electroweak baryogenesis. In this paper we point out that the magnetic field which is produced in the bubbles of a first order phase transition endangers the baryon asymmetry produced in the bubble walls. The reason being that the produced magnetic field couples to the sphaleron magnetic moment and lowers the sphaleron energy; this strengthens the sphaleron transitions inside the bubbles and triggers a more effective wash out of the baryon asymmetry. We apply this scenario to the Minimal Supersymmetric extension of the Standard Model (MSSM) where, in the absence of a magnetic field, successful electroweak baryogenesis requires the lightest CP-even Higgs and the right-handed stop masses to be lighter than about 127 GeV and 120 GeV, respectively. We show that even for moderate values of the magnetic field, the Higgs mass required to preserve the ...

  8. Formulation of the low-energy effective theory of electroweak symmetry-breaking without a Higgs particle

    International Nuclear Information System (INIS)

    Hirn, J.

    2004-07-01

    The low-energy effective theory of electroweak symmetry-breaking without a Higgs particle is constructed using the methods of Chiral Perturbation Theory. Weinberg's power-counting formula demonstrates the consistency of the loop expansion, with the corresponding renormalization. We find that the suppression of effective operators by a mass scale, which was automatic in the case of the Standard Model, no longer holds in the Higgs-less case. Moreover, the incriminated operators appear at leading order in the chiral expansion, at variance with experiments. To account for their suppression, invariance under a larger symmetry is required, corresponding to the composite sector (which produces the three Goldstone modes) being decoupled from the elementary sector (quarks, leptons and Yang-Mills fields). The couplings are introduced via spurions: this reduces the symmetry to SU(2) x U(1). In the simultaneous expansion in powers of momenta and spurions, the aforementioned operators are relegated to higher orders. In addition, the method allows for a systematic treatment of weak isospin breaking. The Weinberg power-counting formula can be recovered, and small neutrino masses accounted for. The three right-handed neutrinos (lighter than the TeV), which are introduced in connection with the custodial symmetry, are quasi-sterile and stable. A constraint on the underlying theory is obtained by studying the anomaly-matching in the composite sector and generalizing the Wess-Zumino construction. The spurion formalism is also applied to open linear moose models, for which generalized Weinberg sum rules are derived. (author)

  9. Electroweak symmetry breaking: Unitarity, dynamics, and experimental prospects

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1988-01-01

    A review of what is known about the unexplained mechanism that breaks the electroweak symmetry and thereby gives mass to the W and Z gauge bosons while leaving the photon massless is given. Symmetry, unitarity, technicolor, supersymmetry, higgs sector dynamics, and experimental status and prospects are discussed

  10. Search for Higgs bosons beyond the Standard Model

    Directory of Open Access Journals (Sweden)

    Mankel Rainer

    2015-01-01

    Full Text Available While the existence of a Higgs boson with a mass near 125 GeV has been clearly established, the detailed structure of the entire Higgs sector is yet unclear. Beyond the standard model interpretation, various scenarios for extended Higgs sectors are being considered. Such options include the minimal and next-to-minimal supersymmetric extensions (MSSM and NMSSM of the standard model, more generic Two-Higgs Doublet models (2HDM, as well as truly exotic Higgs bosons decaying e.g. into totally invisible final states. This article presents recent results from the CMS experiment.

  11. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Madsen, Alexander; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the latest results from the ATLAS experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  12. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Vanadia, Marco; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the latest Run 1 results from the ATLAS Experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in wellmotivated BSM Higgs frameworks, including the two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  13. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Scutti, Federico; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS experiment on Beyond-the-Standard Model (BSM) Higgs searches are summarized. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  14. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Nagata, Kazuki; The ATLAS collaboration

    2014-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  15. Beyond-the-Standard Model Higgs physics using the ATLAS experiment

    CERN Document Server

    Ernis, G; The ATLAS collaboration

    2014-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  16. Sizable NSI from the SU(2){sub L} scalar doublet-singlet mixing and the implications in DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Forero, David V. [Center for Neutrino Physics, Virginia Tech,Blacksburg, VA, 24061 (United States); Huang, Wei-Chih [Fakultät für Physik, Technische Universität Dortmund,Dortmund, 44221 (Germany)

    2017-03-03

    We propose a novel and simple mechanism where sizable effects of non-standard interactions (NSI) in neutrino propagation are induced from the mixing between an electrophilic second Higgs doublet and a charged singlet. The mixing arises from a dimensionful coupling of the scalar doublet and singlet to the standard model Higgs boson. In light of the small mass, the light mass eigenstate from the doublet-singlet mixing can generate much larger NSI than those induced by the heavy eigenstate. We show that a sizable NSI ε{sub eτ} (∼0.3) can be attained without being excluded by a variety of experimental constraints. Furthermore, we demonstrate that NSI can mimic effects of the Dirac CP phase in the neutrino mixing matrix but they can potentially be disentangled by future long-baseline neutrino experiments, such as the Deep Underground Neutrino Experiment (DUNE).

  17. Probing the desert by the two-loop renormalization-group equations

    International Nuclear Information System (INIS)

    Tanimoto, M.; Suetake, Y.; Senba, K.

    1987-01-01

    We have reexamined the study of probing the desert with fermion masses, presented by Bagger, Dimopoulos, and Masso, by using the two-loop renormalization-group equations in the framework of the SU(3) x SU(2) x U(1) model with three generations and one Higgs doublet. The blow-up energy scale of the Yukawa coupling is found to be dependent on the Higgs quartic coupling λ. If the Yukawa coupling blows up between the electroweak scale M/sub W/ and the grand unified scale M/sub X/, the Higgs potential is destabilized for small values of λ at the electroweak scale M/sub W/, and becomes strongly coupled for large values of λ at M/sub W/. It is found that the Higgs-scalar mass as well as the fermion masses are important to probe the desert

  18. Direct and indirect signals of natural composite Higgs models

    Science.gov (United States)

    Niehoff, Christoph; Stangl, Peter; Straub, David M.

    2016-01-01

    We present a comprehensive numerical analysis of a four-dimensional model with the Higgs as a composite pseudo-Nambu-Goldstone boson that features a calculable Higgs potential and protective custodial and flavour symmetries to reduce electroweak fine-tuning. We employ a novel numerical technique that allows us for the first time to study constraints from radiative electroweak symmetry breaking, Higgs physics, electroweak precision tests, flavour physics, and direct LHC bounds on fermion and vector boson resonances in a single framework. We consider four different flavour symmetries in the composite sector, one of which we show to not be viable anymore in view of strong precision constraints. In the other cases, all constraints can be passed with a sub-percent electroweak fine-tuning. The models can explain the excesses recently observed in WW, WZ, Wh and ℓ + ℓ - resonance searches by ATLAS and CMS and the anomalies in angular observables and branching ratios of rare semi-leptonic B decays observed by LHCb. Solving the B physics anomalies predicts the presence of a dijet or toverline{t} resonance around 1 TeV just below the sensitivity of LHC run 1. We discuss the prospects to probe the models at run 2 of the LHC. As a side product, we identify several gaps in the searches for vector-like quarks at hadron colliders, that could be closed by reanalyzing existing LHC data.

  19. Aspects of radiative electroweak breaking in supergravity models

    International Nuclear Information System (INIS)

    Kelley, S.; Lopez, J.L.; Nanopoulos, D.V.; Pois, H.; Yuan, K.

    1993-01-01

    We discuss several aspects of state-of-the-art calculations of radiative electroweak symmetry breaking in supergravity models. These models have a five-dimensional parameter space in contrast with the 21-dimensional one of the MSSM. We examine the Higgs one-loop effective potential V 1 =V 0 +ΔV, in particular how its renormalization-scale (Q) independence is affected by the approximation used to calculate ΔV and by the presence of a Higgs-field-independent term which makes V 1 (0)≠0. We show that the latter must be subtracted out to achieve Q-independence. We also discuss our own approach to the exploration of the five-dimensional parameter space and the fine-tuning constraints within this approach. We apply our methods to the determination of the allowed region in parameter space of two models which we argue to be the prototypes for conventional (SSM) and string (SISM) unified models. To this end we impose the electroweak breaking constraint by minimizing the one-loop effective potential and study the shifts in μ and B relative to the values obtained using the tree-level potential. These shifts are most significant for small values of μ and B, and induce corresponding shifts on the lightest μ- and/or B-dependent particle masses, i.e., those of the lightest stau, neutralino, chargino, and Higgs boson states. Finally, we discuss the predictions for the squark, slepton, and one-loop corrected Higgs boson masses. (orig.)

  20. Electroweak vacuum stability and finite quadratic radiative corrections

    Energy Technology Data Exchange (ETDEWEB)

    Masina, Isabella [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Sezione di Ferrara (Italy); Southern Denmark Univ., Odense (Denmark). CP3-Origins; Southern Denmark Univ., Odense (Denmark). DIAS; Nardini, Germano [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quiros, Mariano [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); IFAE-IAB, Barcelona (Spain)

    2015-07-15

    If the Standard Model (SM) is an effective theory, as currently believed, it is valid up to some energy scale Λ to which the Higgs vacuum expectation value is sensitive throughout radiative quadratic terms. The latter ones destabilize the electroweak vacuum and generate the SM hierarchy problem. For a given perturbative Ultraviolet (UV) completion, the SM cutoff can be computed in terms of fundamental parameters. If the UV mass spectrum involves several scales the cutoff is not unique and each SM sector has its own UV cutoff Λ{sub i}. We have performed this calculation assuming the Minimal Supersymmetric Standard Model (MSSM) is the SM UV completion. As a result, from the SM point of view, the quadratic corrections to the Higgs mass are equivalent to finite threshold contributions. For the measured values of the top quark and Higgs masses, and depending on the values of the different cutoffs Λ{sub i}, these contributions can cancel even at renormalization scales as low as multi-TeV, unlike the case of a single cutoff where the cancellation only occurs at Planckian energies, a result originally obtained by Veltman. From the MSSM point of view, the requirement of stability of the electroweak minimum under radiative corrections is incorporated into the matching conditions and provides an extra constraint on the Focus Point solution to the little hierarchy problem in the MSSM. These matching conditions can be employed for precise calculations of the Higgs sector in scenarios with heavy supersymmetric fields.

  1. Fit to Electroweak Precision Data

    International Nuclear Information System (INIS)

    Erler, Jens

    2006-01-01

    A brief review of electroweak precision data from LEP, SLC, the Tevatron, and low energies is presented. The global fit to all data including the most recent results on the masses of the top quark and the W boson reinforces the preference for a relatively light Higgs boson. I will also give an outlook on future developments at the Tevatron Run II, CEBAF, the LHC, and the ILC

  2. Models of electroweak symmetry breaking

    CERN Document Server

    Pomarol, Alex

    2015-01-01

    This chapter present models of electroweak symmetry breaking arising from strongly interacting sectors, including both Higgsless models and mechanisms involving a composite Higgs. These scenarios have also been investigated in the framework of five-dimensional warped models that, according to the AdS/CFT correspondence, have a four-dimensional holographic interpretation in terms of strongly coupled field theories. We explore the implications of these models at the LHC.

  3. Doubling down on naturalness with a supersymmetric twin Higgs

    Science.gov (United States)

    Craig, Nathaniel; Howe, Kiel

    2014-03-01

    We show that naturalness of the weak scale can be comfortably reconciled with both LHC null results and observed Higgs properties provided the double protection of supersymmetry and the twin Higgs mechanism. This double protection radically alters conventional signs of naturalness at the LHC while respecting gauge coupling unification and precision electroweak limits. We find the measured Higgs mass, couplings, and percent-level naturalness of the weak scale are compatible with stops at ~ 3.5 TeV and higgsinos at ~ 1 TeV. The primary signs of naturalness in this scenario include modifications of Higgs couplings, a modest invisible Higgs width, resonant Higgs pair production, and an invisibly-decaying heavy Higgs.

  4. Learning from Higgs physics at future Higgs factories

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jiayin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chinese Academy of Sciences, Beijing (China). Center for Future High Energy Physics; Li, Honglei [Jinan Univ., Shandong (China). School of Physics and Technology; Arizona Univ., Tucson, AZ (United States). Dept. of Physics; Liu, Zhen [Fermi National Accelerator Laboratory, Batavia, IL (United States). Theoretical Physics Dept.; Su, Shufang [Arizona Univ., Tucson, AZ (United States). Dept. of Physics; Su, Wei [Arizona Univ., Tucson, AZ (United States). Dept. of Physics; Chinese Academy of Sciences, Beijing (China). Inst. of Theoretical Physics; Univ. of Chinese Academy of Sciences, Beijing (China). School of Physics

    2017-09-15

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sinθ, as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tanβ vs. cos(β-α) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. We also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).

  5. Learning from Higgs physics at future Higgs factories

    International Nuclear Information System (INIS)

    Gu, Jiayin; Chinese Academy of Sciences, Beijing; Li, Honglei; Arizona Univ., Tucson, AZ; Liu, Zhen; Su, Shufang; Su, Wei; Chinese Academy of Sciences, Beijing; Univ. of Chinese Academy of Sciences, Beijing

    2017-09-01

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sinθ, as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tanβ vs. cos(β-α) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. We also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).

  6. Higgs mass dependence of electroweak radiative corrections and the triviality bound

    NARCIS (Netherlands)

    Cortese, S.; Pallante, E.; Petronzio, R.

    1993-01-01

    We discuss how the existence of a triviality bound for the Higgs sector of the standard model does influence the dependence of radiative corrections upon the Higgs mass. The lowering of the Landau pole with increasing Higgs mass implies that the sensitivity to Higgs mass values beyond ≈ 500 GeV is

  7. Reflections on the Higgs system. Lectures given in the Academic Training Programme of CERN 1996-1997

    International Nuclear Information System (INIS)

    Veltmann, M.

    1997-01-01

    A detailed discussion of Higgs systems, including the Abelian Higgs model and the Higgs system of the Standard Model, is presented. The advantages and disadvantages of more complex Higgs systems, involving several doublets or higher representations, are scrutinized. The prospects for detecting Higgs-system-related effects at high energy are sketched. (orig.)

  8. Bounds on the number of possible Higgs particles using grand unification and exceptional Lie groups

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    The total sum of dimensions of a magnum exceptional Lie symmetry groups hierarchy is 4α-bar o =(4)(137+k o )≅548. Dividing this value among the various quantum fields leads to the possibility of an eight degrees of freedom Higgs field. However analyzing the same situation using sub groups of the largest exceptional Lie group leads to the conclusion that we are likely to find three Higgs particles only at the energy scale of the standard model. Consequently five of the eight degrees of freedom are unlikely to materialize as particles at this particular energy scale. This conclusion is reinforced by an entirely different approach based on grand unification analysis which excludes any grand unification using 4HD, i.e. four Higgs doublets. This leaves us with one, two and three Higgs doublets. Noting that a super symmetric standard model with two Higgs doublets gives almost perfect grand unification and that the result agrees with our exceptional Lie symmetry groups analysis, we exclude everything else. The final result is that we expect to find at least three more Higgs particles leading to a total of 66 elementary particles while at a somewhat higher energy, the expected number of 69 particles found using E-infinity theory is obtained

  9. Recent Results from CMS and ATLAS: Electroweak Symmetry, Breaking and Beyond

    CERN Document Server

    Azzurri, Paolo

    2016-01-01

    The discovery of the Higgs boson, announced by the CMS and ATLAS collaborations in 2012, unearthed the final cornerstone of the standard electroweak model of particle physics, and repre- sents the main legacy of the LHC Run 1. With Run 1 data the mass of the Higgs boson has been determined with 0.2pct precision, while coupling properties are only established at the 10pct level or worse. As the picture of the minimal standard model is now complete, unsettled difficulties and open questions remain on its stage. The LHC Run 2 has successfully started in 2015, opening a new period of particle physics exploration, at higher energy and intensity it will undoubtedly de- liver more insight on the electroweak model, its symmetry breaking mechanism, and on possible solutions to its difficulties.

  10. Higgs production at the lHC

    CERN Document Server

    Baglio, Julien

    2011-01-01

    We analyze the production of Higgs particles at the early stage of the CERN large Hadron Collider with a 7 TeV center of mass energy (lHC). We first consider the case of the Standard Model Higgs boson that is mainly produced in the gluon-gluon fusion channel and to be detected in its decays into electroweak gauge bosons, $gg\\to H \\to WW,ZZ,\\gamma\\gamma$. The production cross sections at $\\sqrt s=7$ TeV and the decay branching ratios, including all relevant higher order QCD and electroweak corrections, are evaluated. An emphasis is put on the various theoretical uncertainties that affect the production rates: the significant uncertainties from scale variation and from the parametrization of the parton distribution functions as well as the uncertainties which arise due to the use of an effective field theory in the calculation of the next-to-next-to-leading order corrections. The parametric uncertainties stemming from the values of the strong coupling constant and the heavy quark masses in the Higgs decay branc...

  11. Searches for electroweak neutralino and chargino production in channels with Higgs, Z , and W bosons in p p collisions at 8 TeV

    Science.gov (United States)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Plestina, R.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Heister, A.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Millan Mejias, B.; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Craig, N.; Duggan, D.; Evans, J.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Zywicki, P.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Vuosalo, C.; Woods, N.; CMS Collaboration

    2014-11-01

    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z , and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb-1 of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h ) and an LSP or to a Z boson and an LSP, leading to h h , h Z , and Z Z states with missing transverse energy (ETmiss). A second aspect is chargino-neutralino pair production, leading to h W states with ETmiss. The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values.

  12. Geneva University: Search for the Higgs Boson at the LHC

    CERN Multimedia

    2011-01-01

    GENEVA UNIVERSITY Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 16 November  2011 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE at 17.00 hrs – Stückelberg Auditorium Search for the Higgs Boson at the LHC Prof Karl Jakobs, Université de Freiburg, Allemagne One of the prime tasks of the physics programme of the LHC is the investigation of electroweak symmetry breaking. In the Standard Model the Higgs mechanism is invoked to give masses to the electroweak gauge bosons and fermions and to restore unitarity of the theory at high energies. Although the Higgs mechanism is one of the cornerstones of the Standard Model it is experimentally not validated and the associated Higgs boson has escaped detection so far. The data accumulated at the LHC in the years 2010/11 allow already to establish tighter constraints on the allow...

  13. Production of electroweak bosons at hadron colliders: theoretical aspects

    CERN Document Server

    Mangano, Michelangelo L.

    2016-01-01

    Since the W and Z discovery, hadron colliders have provided a fertile ground, in which continuously improving measurements and theoretical predictions allow to precisely determine the gauge boson properties, and to probe the dynamics of electroweak and strong interactions. This article will review, from a theoretical perspective, the role played by the study, at hadron colliders, of electroweak boson production properties, from the better understanding of the proton structure, to the discovery and studies of the top quark and of the Higgs, to the searches for new phenomena beyond the Standard Model.

  14. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Vanadia, Marco; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV/$\\rm{c^2}$ has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this report, the latest Run 1 results from the ATLAS Experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in well motivated BSM Higgs frameworks, including the two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  15. Exploring holographic Composite Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Croon, Djuna [Department of Physics and Astronomy, University of Sussex,BN1 9QH Brighton (United Kingdom); Perimeter Institute for Theoretical Physics,Waterloo, ON (Canada); Dillon, Barry M.; Huber, Stephan J.; Sanz, Veronica [Department of Physics and Astronomy, University of Sussex,BN1 9QH Brighton (United Kingdom)

    2016-07-13

    Simple Composite Higgs models predict new vector-like fermions not too far from the electroweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we explore the holographic dual of the minimal model, MCHM{sub 5}, to try and alleviate this tension without increasing the fine-tuning in the Higgs potential. Interestingly, we find that lowering the UV cutoff in the 5D picture allows for heavier top partners and less fine-tuning. In the 4D dual this corresponds to increasing the number of “colours” N, thus increasing the decay constant of the Goldstone Higgs. This is essentially a ‘Little Randall-Sundrum Model’, which are known to reduce some flavour and electroweak constraints. Furthermore, in anticipation of the ongoing efforts at the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D. We conclude that the 5D holographic realisation of the MCHM{sub 5} with a small UV cutoff is not in tension with the current experimental data.

  16. Higgs physics at LHC

    Indian Academy of Sciences (India)

    The large hadron collider (LHC) and its detectors, ATLAS and CMS, are being built to study TeV scale physics, and to fully understand the electroweak symmetry breaking mechanism. The Monte-Carlo simulation results for the standard model and minimal super symmetric standard model Higgs boson searches and ...

  17. The effective Standard Model after LHC Run I

    International Nuclear Information System (INIS)

    Ellis, John; Sanz, Verónica; You, Tevong

    2015-01-01

    We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension-6 operators on electroweak precision tests that is more general than the standard S,T formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run 1. We illustrate the combined constraints with the example of the two-Higgs doublet model.

  18. The Effective Standard Model after LHC Run I

    CERN Document Server

    Ellis, John; You, Tevong

    2015-01-01

    We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension-6 operators on electroweak precision tests that is more general than the standard $S,T$ formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run~1. We illustrate the combined constraints with the example of the two-Higgs doublet model.

  19. Higgs boson theory and phenomenology mass measurements and nuclear physics Recent results from ISOLTRAP

    CERN Document Server

    Carena, M S; Herfurth, F; Ames, F; Audi, G; Beck, D; Blaum, K; Bollen, G; Kellerbauer, A G; Kluge, H J; Kuckein, M; Lunney, M D; Moore, R B; Oinonen, M; Rodríguez, D; Sauvan, E; Scheidenberger, C

    2003-01-01

    Precision electroweak data presently-favors a weakly-coupled Higgs sector as the mechanism responsible for electroweak symmetry breaking. Low-energy supersymmetry provides a natural framework for weakly-coupled elementary scalars. In this review, we summarize the theoretical properties of the Standard Model (SM) Higgs boson and the Higgs sector of the minimal super-symmetric extension of the Standard Model (MSSM). We then survey the phenomenology of the SM and MSSM Higgs bosons at the Tevatron, LHC and a future e**+e**- linear collider. We focus on the Higgs discovery potential of present and future colliders and stress the importance of precision measurements of Higgs boson properties. 459 Refs.31 The Penning trap mass spectrometer ISOLTRAP is a facility for high- precision mass measurements of short-lived radioactive nuclei installed at ISOLDE/CERN in Geneva. More than 200 masses have been measured with relative uncertainties of 1 multiplied by 10**-**7 or even close to 1 multiplied by 10**-**8 in special c...

  20. Doubling down on naturalness with a supersymmetric twin Higgs

    International Nuclear Information System (INIS)

    Craig, Nathaniel; Howe, Kiel

    2014-01-01

    We show that naturalness of the weak scale can be comfortably reconciled with both LHC null results and observed Higgs properties provided the double protection of supersymmetry and the twin Higgs mechanism. This double protection radically alters conventional signs of naturalness at the LHC while respecting gauge coupling unification and precision electroweak limits. We find the measured Higgs mass, couplings, and percent-level naturalness of the weak scale are compatible with stops at ∼3.5 TeV and higgsinos at ∼1 TeV. The primary signs of naturalness in this scenario include modifications of Higgs couplings, a modest invisible Higgs width, resonant Higgs pair production, and an invisibly-decaying heavy Higgs

  1. The Higgs Particle (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The recent discovery of a Higgs boson is a milestone in a half century long strive to unravel the origins of electroweak symmetry breaking. In the successful first three years of LHC operations at the energy frontier, the quest of Higgs bosons went from the era of searches, to the discovery and more recently on to the era of measurements of its properties. An overview of the these three phases, the implications of the discovery and future prospects will be discussed.

  2. Radiative PQ breaking and the Higgs boson mass

    Energy Technology Data Exchange (ETDEWEB)

    D’Eramo, Francesco; Hall, Lawrence J.; Pappadopulo, Duccio [Berkeley Center for Theoretical Physics, Department of Physics, and Theoretical Physics Group, Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States)

    2015-06-17

    The small and negative value of the Standard Model Higgs quartic coupling at high scales can be understood in terms of anthropic selection on a landscape where large and negative values are favored: most universes have a very short-lived electroweak vacuum and typical observers are in universes close to the corresponding metastability boundary. We provide a simple example of such a landscape with a Peccei-Quinn symmetry breaking scale generated through dimensional transmutation and supersymmetry softly broken at an intermediate scale. Large and negative contributions to the Higgs quartic are typically generated on integrating out the saxion field. Cancellations among these contributions are forced by the anthropic requirement of a sufficiently long-lived electroweak vacuum, determining the multiverse distribution for the Higgs quartic in a similar way to that of the cosmological constant. This leads to a statistical prediction of the Higgs boson mass that, for a wide range of parameters, yields the observed value within the 1σ statistical uncertainty of ∼5 GeV originating from the multiverse distribution. The strong CP problem is solved and single-component axion dark matter is predicted, with an abundance that can be understood from environmental selection. A more general setting for the Higgs mass prediction is discussed.

  3. Radiative PQ breaking and the Higgs boson mass

    Science.gov (United States)

    D'Eramo, Francesco; Hall, Lawrence J.; Pappadopulo, Duccio

    2015-06-01

    The small and negative value of the Standard Model Higgs quartic coupling at high scales can be understood in terms of anthropic selection on a landscape where large and negative values are favored: most universes have a very short-lived electroweak vacuum and typical observers are in universes close to the corresponding metastability boundary. We provide a simple example of such a landscape with a Peccei-Quinn symmetry breaking scale generated through dimensional transmutation and supersymmetry softly broken at an intermediate scale. Large and negative contributions to the Higgs quartic are typically generated on integrating out the saxion field. Cancellations among these contributions are forced by the anthropic requirement of a sufficiently long-lived electroweak vacuum, determining the multiverse distribution for the Higgs quartic in a similar way to that of the cosmological constant. This leads to a statistical prediction of the Higgs boson mass that, for a wide range of parameters, yields the observed value within the 1σ statistical uncertainty of ˜ 5 GeV originating from the multiverse distribution. The strong CP problem is solved and single-component axion dark matter is predicted, with an abundance that can be understood from environmental selection. A more general setting for the Higgs mass prediction is discussed.

  4. Radiative PQ breaking and the Higgs boson mass

    International Nuclear Information System (INIS)

    D’Eramo, Francesco; Hall, Lawrence J.; Pappadopulo, Duccio

    2015-01-01

    The small and negative value of the Standard Model Higgs quartic coupling at high scales can be understood in terms of anthropic selection on a landscape where large and negative values are favored: most universes have a very short-lived electroweak vacuum and typical observers are in universes close to the corresponding metastability boundary. We provide a simple example of such a landscape with a Peccei-Quinn symmetry breaking scale generated through dimensional transmutation and supersymmetry softly broken at an intermediate scale. Large and negative contributions to the Higgs quartic are typically generated on integrating out the saxion field. Cancellations among these contributions are forced by the anthropic requirement of a sufficiently long-lived electroweak vacuum, determining the multiverse distribution for the Higgs quartic in a similar way to that of the cosmological constant. This leads to a statistical prediction of the Higgs boson mass that, for a wide range of parameters, yields the observed value within the 1σ statistical uncertainty of ∼5 GeV originating from the multiverse distribution. The strong CP problem is solved and single-component axion dark matter is predicted, with an abundance that can be understood from environmental selection. A more general setting for the Higgs mass prediction is discussed.

  5. Golden Probe of Electroweak Symmetry Breaking

    CERN Document Server

    Chen, Yi; Spiropulu, Maria; Stolarski, Daniel; Vega-Morales, Roberto

    2016-12-09

    The ratio of the Higgs couplings to $WW$ and $ZZ$ pairs, $\\lambda_{WZ}$, is a fundamental parameter in electroweak symmetry breaking as well as a measure of the (approximate) custodial symmetry possessed by the gauge boson mass matrix. We show that Higgs decays to four leptons are sensitive, via tree level/1-loop interference effects, to both the magnitude and, in particular, overall sign of $\\lambda_{WZ}$. Determining this sign requires interference effects, as it is nearly impossible to measure with rate information. Furthermore, simply determining the sign effectively establishes the custodial representation of the Higgs boson. We find that $h\\to4\\ell$ ($4\\ell \\equiv 2e2\\mu, 4e, 4\\mu$) decays have excellent prospects of directly establishing the overall sign at a high luminosity 13 TeV LHC. We also examine the ultimate LHC sensitivity in $h\\to4\\ell$ to the magnitude of $\\lambda_{WZ}$. Our results are independent of other measurements of the Higgs boson couplings and, in particular, largely free of assumpti...

  6. Partially composite Higgs models

    DEFF Research Database (Denmark)

    Alanne, Tommi; Buarque Franzosi, Diogo; Frandsen, Mads T.

    2018-01-01

    We study the phenomenology of partially composite-Higgs models where electroweak symmetry breaking is dynamically induced, and the Higgs is a mixture of a composite and an elementary state. The models considered have explicit realizations in terms of gauge-Yukawa theories with new strongly...... interacting fermions coupled to elementary scalars and allow for a very SM-like Higgs state. We study constraints on their parameter spaces from vacuum stability and perturbativity as well as from LHC results and find that requiring vacuum stability up to the compositeness scale already imposes relevant...... constraints. A small part of parameter space around the classically conformal limit is stable up to the Planck scale. This is however already strongly disfavored by LHC results. in different limits, the models realize both (partially) composite-Higgs and (bosonic) technicolor models and a dynamical extension...

  7. Higgs bosons in supersymmetric models. Pt. 1

    International Nuclear Information System (INIS)

    Gunion, J.F.

    1986-01-01

    We describe the properties of Higgs bosons in a class of supersymmetric theories. We consider models in which the low-energy sector contains two weak complex doublets and perhaps one complex gauge-singlet Higgs field. Supersymmetry is assumed to be either softly or spontaneously broken, thereby imposing a number of restrictions on the Higgs boson parameters. We elucidate the Higgs boson masses and present Feynman rules for their couplings to the gauge bosons, fermions and scalars of the theory. We also present Feynman rules for vertices which are related by supersymmetry to the above couplings. Exact analytic expressions are given in two useful limits - one corresponding to the absence of the gauge-singlet Higgs field and the other corresponding to the absence of a supersymmetric Higgs mass term. (orig.)

  8. Higgs cosmology

    Science.gov (United States)

    Rajantie, Arttu

    2018-01-01

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  9. Baryogenesis and Dark Matter through a Higgs Asymmetry

    CERN Document Server

    Servant, Geraldine

    2013-01-01

    In addition to explaining the masses of elementary particles, the Higgs boson may have far-reaching implications for the generation of the matter content in the Universe. For instance, the Higgs plays a key role in two main theories of baryogenesis, namely electroweak baryogenesis and leptogenesis. In this letter, we propose a new cosmological scenario where the Higgs chemical potential mediates asymmetries between visible and dark matter sectors, either generating a baryon asymmetry from a dark matter asymmetry or vice-versa. We illustrate this mechanism with a simple model with two new fermions coupled to the Higgs and discuss associated signatures.

  10. Prospects for Higgs search at D

    Indian Academy of Sciences (India)

    - terize the Higgs sector of the standard model. The minimal version of the standard model requires a single scalar particle, though many extensions predict additional particles. Fits to the global set of electroweak data provide an indirect upper ...

  11. Electroweak physics with LEP

    International Nuclear Information System (INIS)

    Davier, M.

    1992-03-01

    The present status of electroweak physics at LEP is presented. The LEP machine and the detectors are described. The decays of Z neutral bosons in both leptonic and hadronic channels are studied. Neutral and charged sector are investigated, and a precise test of the Standard Model is given. Higgs boson searches and τ decay measurements are also described as well as quark mixing and B 0 B-bar 0 oscillations. All the seven contributions are individually indexed and abstracted for the INIS database. (K.A.) 100 refs

  12. Distinguishing the Higgs Boson from the Dilaton at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Goldberger, Walter D.; Skiba, Witold; Grinstein, Benjamin

    2008-01-01

    It is likely that the LHC will observe a color- and charge-neutral scalar whose decays are consistent with those of the standard model (SM) Higgs boson. The Higgs interpretation of such a discovery is not the only possibility. For example, electroweak symmetry breaking could be triggered by a spontaneously broken, nearly conformal sector. The spectrum of states at the electroweak scale would then contain a narrow scalar resonance, the pseudo-Goldstone boson of conformal symmetry breaking, with Higgs-boson-like properties. If the conformal sector is strongly coupled, this pseudodilaton may be the only new state accessible at high energy colliders. We discuss the prospects for distinguishing this mode from a minimal Higgs boson at the LHC and ILC. The main discriminants between the two scenarios are (i) cubic self-interactions and (ii) a potential enhancement of couplings to massless SM gauge bosons

  13. Higgs physics as a proble of new physics

    International Nuclear Information System (INIS)

    KANEMURA, S.

    2014-01-01

    The discovery of the Higgs boson at the LHC has opened the door to clarifying the mechanism of electroweak symmetry breaking and the origin of particle masses. The Higgs sector in the SM is the simplest possible one but is not based on a fundamental theoretical principle, so that there is also the possibility of non-minimal Higgs sectors. While the standard model is not in contradiction with current LHC data within the errors, many extended Higgs sectors can also reproduce these data. An extended Higgs sector often appears in new physics models beyond the standard model, so that this allows to determine new physics from the Higgs sector. In this talk, we discuss various aspects of extended Higgs sectors, in particular their phenomenological properties and testability at future experiments, as the International Linear Collider.

  14. Thermal equilibrium during the electroweak phase transition

    International Nuclear Information System (INIS)

    Tetradis, N.

    1991-12-01

    The effective potential for the standard model develops a barrier, at temperatures around the electroweak scale, which separates the minimum at zero field and a deeper non-zero minimum. This could create out of equilibrium conditions by inducing the localization of the Higgs field in a metastable state around zero. In this picture vacuum decay would occur through bubble nucleation. I show that there is an upper bound on the Higgs mass for the above scenario to be realized. The barrier must be high enough to prevent thermal fluctuations of the Higgs expectation value from establishing thermal equilibrium between the two minima. The upper bound is estimated to be lower than the experimental lower limit. This is also imposes constraints on extensions of the standard model constructed in order to generate a strongly first order phase transition. (orig.)

  15. A search for charged higgs boson decays of the top quark using hadronic decays of the tau lepton in proton-antiproton collisions at square √s = 1.8 TeV at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Groer, Leslie Stevan [Rutgers Univ., New Brunswick, NJ (United States)

    1999-01-26

    The Standard Model predicts the existence of one neutral scalar Higgs boson, which is a remnant of the mechanism that breaks the SU(2)LxU(1)Y electroweak symmetry and generates masses for the heavy vector bosons and fermions. Many extensions to the Standard Model predict two or more Higgs doublets, resulting in a larger spectrum of Higgs bosons including a charged Higgs boson (H±). For a light charged Higgs boson mass, the top decay into a charged Higgs boson and bottom quark might occur. This thesis presents results of a direct search for this top quark decay mode via the charged Higgs decay to a tau lepton and tau-neutrino, using the hadronic decays of the tau leptons. The search data consist of 100 pb-1 of Run 1 data collected between 1992-1995 at the CDF detector, from p$\\bar{p}$ collisions at a center-of-mass energy of 1.8 TeV produced at Fermilab's Tevatron accelerator. A total of seven events are observed in two search channels with an expected background contribution of 7.4±2.0 events coming from fake taus (5.4±1.5), heavy vector boson decays with jets (1.9±1.3) and dibosons(0.08±0.06). Lacking evidence for a signal, we set limits on charged Higgs production at the 95% confidence level in the charged Higgs mass plane versus tanβ(a parameter of the theory) for a top quark mass of 175 GeV/c2 and for top production cross sections (σ t$\\bar{t}$) of 5.0 and 7.5 pb, assuming the Type-II Two-Higgs-Doublet-Model. For large tanβ, this analysis excludes a charged Higgs boson of mass below 147(158)GeV/c2 for σ t$\\bar{t}$=5.0(7.5)pb. Using the Standard Model measured top quark cross section from CDF, this limit increases to 168 GeV/c2 and we also exclude a branching fraction of top decays via this charged Higgs mode of greater than 43% for charged Higgs masses below 168 GeV/c2.

  16. Introduction to gauge theories of electroweak interactions

    International Nuclear Information System (INIS)

    Ecker, G.

    1982-01-01

    Intended as a lecture for physicists who are not familiar with the sophisticated theoretical models in particle physics. Starting with the standard gauge model of electromagnetic, weak and strong interactions the recent developments of a unified gauge theory of electroweak interactions are shown. Shortcomings in the unitarity problem of the V-A fermi theory of charged intermediate vector bosons. Presented are the spontaneous symmetry breaking in quantum mechanics, the abelian higgs model as an example of a spontaneously broken gauge field theory, the minimal gauge group of electroweak interactions, the fermion mass generation. Further on the anomalies in quantum field theory are discussed and the radiative corrections to the vector boson masses are considered. (H.B.)

  17. Beyond the standard Higgs at the LHC. Present constraints on little Higgs models and future prospects

    International Nuclear Information System (INIS)

    Tonini, Marco

    2014-11-01

    This thesis discusses the consistency of different Little Higgs models with the collected collider data as of the summer of 2013. Moreover, future prospects for possible discoveries and mass measurement methods of new physics signals at the foreseen LHC run II with increased center-of-mass energy are presented. Little Higgs models belong to a class of extensions of the Standard Higgs model, predicting a strong interaction regime at a compositeness scale Λ=4πf approximate global symmetry spontaneously broken at the scale f. A natural hierarchy between the compositeness and the electroweak scale is introduced by the Collective Symmetry Breaking mechanism: one-loop diagrams generating the Higgs mass term are forced to be at most logarithmically sensitive to Λ. A naturally light Higgs boson can thus be accommodated, consistently with a perturbative theory until a scale of order 10 TeV. We have probed the parameter space of three prominent examples of Little Higgs models, namely the Simplest Little Higgs model, the Littlest Higgs model, and the Littlest Higgs model with T-parity, against electroweak precision observables and the collected LHC data concerning both Higgs properties and direct searches for new particles, with √(s)=7,8 TeV and up to 25 fb -1 of integrated luminosity. Lower bounds on the scale f are set, within a certain degree of confidence level, which allow to draw conclusions on the ''naturalness'' of the different models. Optimisations of the existing direct searches setups, assuming a Little Higgs signal, as well as dedicated mass measurement methods designed for the foreseen LHC runs with √(s)=13,14 TeV are thoroughly discussed and proposed in this thesis. Special attention will be dedicated to final states including either a large or negligible fraction of missing transverse momentum. In particular, we will propose a dedicated collider search tailored for the discovery and mass measurement of a top partner, exploiting jet

  18. Phenomenology of a leptonic goldstino and invisible Higgs boson decays

    CERN Document Server

    Antoniadis, Ignatios; Zwirner, Fabio; Antoniadis, Ignatios; Tuckmantel, Marc; Zwirner, Fabio

    2005-01-01

    Non-linearly realized supersymmetry, combined with the Standard Model field content and SU(3)XSU(2)XU(1) gauge invariance, permits local dimension-six operators involving a goldstino, a lepton doublet and a Higgs doublet. These interactions preserve total lepton number if the left-handed goldstino transforms as an antilepton. We discuss the resulting phenomenology, in the simple limit where the new couplings involve only one lepton family, thus conserving also lepton flavour. Both the Z boson and the Higgs boson can decay into a neutrino and a goldstino: the present limits from the invisible Z width and from other observables leave room for the striking possibility of a Higgs boson decaying dominantly, or at least with a sizable branching ratio, via such an invisible mode. We finally comment on the perspectives at hadron and lepton colliders, and on possible extensions of our analysis.

  19. Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking

    Directory of Open Access Journals (Sweden)

    Katsuya Hashino

    2016-01-01

    Full Text Available Classical scale invariance (CSI may be one of the solutions for the hierarchy problem. Realistic models for electroweak symmetry breaking based on CSI require extended scalar sectors without mass terms, and the electroweak symmetry is broken dynamically at the quantum level by the Coleman–Weinberg mechanism. We discuss discriminative features of these models. First, using the experimental value of the mass of the discovered Higgs boson h(125, we obtain an upper bound on the mass of the lightest additional scalar boson (≃543 GeV, which does not depend on its isospin and hypercharge. Second, a discriminative prediction on the Higgs-photon–photon coupling is given as a function of the number of charged scalar bosons, by which we can narrow down possible models using current and future data for the di-photon decay of h(125. Finally, for the triple Higgs boson coupling a large deviation (∼+70% from the SM prediction is universally predicted, which is independent of masses, quantum numbers and even the number of additional scalars. These models based on CSI can be well tested at LHC Run II and at future lepton colliders.

  20. Stable Higgs Bosons - new candidate for cold dark matter

    International Nuclear Information System (INIS)

    Hosotani, Yutaka

    2010-01-01

    The Higgs boson is in the backbone of the standard model of electroweak interactions. It must exist in some form for achieving unification of interactions. In the gauge-Higgs unification scenario the Higgs boson becomes a part of the extra-dimensional component of gauge fields. The Higgs boson becomes absolutely stable in a class of the gauge-Higgs unification models, serving as a promising candidate for cold dark matter in the universe. The observed relic abundance of cold dark matter is obtained with the Higgs mass around 70 GeV. The Higgs-nucleon scattering cross section is found to be close to the recent CDMS II XENON10 bounds in the direct detection of dark matter. In collider experiments stable Higgs bosons are produced in a pair, appearing as missing energies momenta so that the way of detecting Higgs bosons must be altered.

  1. The serendipity of electroweak baryogenesis

    Science.gov (United States)

    Servant, Géraldine

    2018-01-01

    The origin of the matter-antimatter asymmetry of the universe remains unexplained in the Standard Model (SM) of particle physics. The origin of the flavour structure is another major puzzle of the theory. In this article, we report on recent work attempting to link the two themes through the appealing framework of electroweak (EW) baryogenesis. We show that Yukawa couplings of SM fermions can be the source of CP violation for EW baryogenesis if they vary at the same time as the Higgs is acquiring its vacuum expectation value, offering new avenues for EW baryogenesis. The advantage of this approach is that it circumvents the usual severe bounds from electric dipole moments. These ideas apply if the mechanism explaining the flavour structure of the SM is connected to EW symmetry breaking, as motivated for instance in Randall-Sundrum or Composite Higgs models. We compute the resulting baryon asymmetry for different configurations of the Yukawa coupling variation across the bubble wall and show that it can naturally be of the right order. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  2. Four generations and Higgs physics

    Energy Technology Data Exchange (ETDEWEB)

    Kribs, Graham D. [Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene (United States); Plehn, Tilman [SUPA, School of Physics, University of Edinburgh (United Kingdom); Spannowsky, Michael [Institut fuer Theoretische Physik, Universitaet Karlsruhe (Germany); Tait, Tim M.P. [HEP Division, Argonne National Laboratory (United States)

    2008-07-01

    A fourth generation has been considered and forgotten or discarded several times, wrongly leaving the impression that it is either ruled out or disfavored by experimental data. We revisit a fourth generation of chiral matter in the light of present electroweak precision data and deduce effects on Higgs phenomenology. We find a chiral fourth generation to be a viable model which can yield interesting signatures at the LHC, e.g. production rates are enhanced, weak-boson-fusion channels are suppressed, angular distributions are modified and Higgs pairs can be observed.

  3. Does low-energy physics depend on the potential of a heavy Higgs-particle?

    International Nuclear Information System (INIS)

    Bij, J.J. van der.

    1985-01-01

    The two-loop corrections to vectorboson-propagators and vertices are calculated in the limit of large Higgs-mass for a model with one Higgs-doublet but arbitrary gauge-invariant potential. The corrections are finite even for a non-renormalizable potential. By a suitable choice of the φ 6 term in the potential the corrections due to the Higgs self-coupling are cancelled. (Auth.)

  4. Baryogenesis and dark matter through a Higgs asymmetry.

    Science.gov (United States)

    Servant, Géraldine; Tulin, Sean

    2013-10-11

    In addition to explaining the masses of elementary particles, the Higgs boson may have far-reaching implications for the generation of the matter content in the Universe. For instance, the Higgs boson plays a key role in two main theories of baryogenesis, namely, electroweak baryogenesis and leptogenesis. In this Letter, we propose a new cosmological scenario where the Higgs chemical potential mediates asymmetries between visible and dark matter sectors, either generating a baryon asymmetry from a dark matter asymmetry or vice versa. We illustrate this mechanism with a simple model with two new fermions coupled to the Higgs boson and discuss the associated signatures.

  5. Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion

    Science.gov (United States)

    Bonetti, Marco; Melnikov, Kirill; Tancredi, Lorenzo

    2018-03-01

    We present an estimate of the next-to-leading-order (NLO) QCD corrections to mixed QCD-electroweak contributions to the Higgs boson production cross section in gluon fusion, combining the recently computed three-loop virtual corrections and the approximate treatment of real emission in the soft approximation. We find that the NLO QCD corrections to the mixed QCD-electroweak contributions are nearly identical to NLO QCD corrections to QCD Higgs production. Our result confirms an earlier estimate of these O (α αs2) effects by Anastasiou et al. [J. High Energy Phys. 04 (2009) 003, 10.1088/1126-6708/2009/04/003] and provides further support for the factorization approximation of QCD and electroweak corrections.

  6. A review of Higgs mass calculations in supersymmetric models

    DEFF Research Database (Denmark)

    Draper, P.; Rzehak, H.

    2016-01-01

    The discovery of the Higgs boson is both a milestone achievement for the Standard Model and an exciting probe of new physics beyond the SM. One of the most important properties of the Higgs is its mass, a number that has proven to be highly constraining for models of new physics, particularly those...... related to the electroweak hierarchy problem. Perhaps the most extensively studied examples are supersymmetric models, which, while capable of producing a 125 GeV Higgs boson with SM-like properties, do so in non-generic parts of their parameter spaces. We review the computation of the Higgs mass...

  7. The model-independent analysis for Higgs boson

    Indian Academy of Sciences (India)

    2016-08-23

    Aug 23, 2016 ... try breaking is applied to the electroweak theory [6–8]. Nevertheless, SM in itself ... enhance the signal selection probability and increase the background ... SM Monte Carlo (MC), except the Higgs, to estimate the background ...

  8. Baryogenesis in the two doublet and inert singlet extension of the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Alanne, Tommi [CP" 3-Origins, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark); Kainulainen, Kimmo [Department of Physics, University of Jyväskylä,P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland); Helsinki Institute of Physics, University of Helsinki,P.O. Box 64, FI-00014 Helsinki (Finland); Tuominen, Kimmo [Department of Physics, University of Helsinki,P.O. Box 64, FI-00014 Helsinki (Finland); Helsinki Institute of Physics, University of Helsinki,P.O. Box 64, FI-00014 Helsinki (Finland); Vaskonen, Ville [Department of Physics, University of Jyväskylä,P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland); Helsinki Institute of Physics, University of Helsinki,P.O. Box 64, FI-00014 Helsinki (Finland)

    2016-08-25

    We investigate an extension of the Standard Model containing two Higgs doublets and a singlet scalar field (2HDSM). We show that the model can have a strongly first-order phase transition and give rise to the observed baryon asymmetry of the Universe, consistent with all experimental constraints. In particular, the constraints from the electron and neutron electric dipole moments are less constraining here than in pure two-Higgs-doublet model (2HDM). The two-step, first-order transition in 2HDSM, induced by the singlet field, may lead to strong supercooling and low nucleation temperatures in comparison with the critical temperature, T{sub n}≪T{sub c}, which can significantly alter the usual phase-transition pattern in 2HD models with T{sub n}≈T{sub c}. Furthermore, the singlet field can be the dark matter particle. However, in models with a strong first-order transition its abundance is typically but a thousandth of the observed dark matter abundance.

  9. Academic training: The Hunt for the Higgs Particle

    CERN Multimedia

    2007-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28 February, 1st March, from 11:00 to 12:00 Main Auditorium, bldg. 500 The Hunt for the Higgs Particle F. ZWIRNER, University and INFN, Padova, Italy With the advent of the LHC, the hunt for the Higgs boson is entering its crucial phase. These three lectures will review: the Higgs mechanism; its implementation in the minimal Standard Model; possible alternatives with and without elementary scalar fields; the presently available information on electroweak gauge symmetry breaking and the Higgs particle; the properties of the Higgs boson(s) in the Standard Model and its supersymmetric extensions; the strategies for direct searches at colliders, with emphasis on the LHC, and comments on the possible scenarios that may emerge.

  10. Higgs Discovery in the Presence of Light CP-Odd Scalars

    Energy Technology Data Exchange (ETDEWEB)

    Lisanti, Mariangela; Wacker, Jay G.; /SLAC /Stanford U., Phys. Dept.

    2009-06-19

    Many models of electroweak symmetry breaking have an additional light pseudoscalar. If the Higgs boson can decay to a new pseudoscalar, LEP searches for the Higgs can be significantly altered and the Higgs can be as light as 86 GeV. Discovering the Higgs boson in these models is challenging when the pseudoscalar is lighter than 10 GeV because it decays dominantly into tau leptons. In this paper, we discuss discovering the Higgs in a subdominant decay mode where one of the pseudoscalars decays to a pair of muons. This search allows for potential discovery of a cascade-decaying Higgs boson with the complete Tevatron data set or early data at the LHC.

  11. Inflation and pseudo-Goldstone Higgs boson

    DEFF Research Database (Denmark)

    Alanne, Tommi; Sannino, Francesco; Tenkanen, Tommi

    2017-01-01

    We consider inflation within a model framework where the Higgs boson arises as a pseudo-Goldstone boson associated with the breaking of a global symmetry at a scale significantly larger than the electroweak one. We show that in such a model the scalar self-couplings can be parametrically suppressed...... and, consequently, the nonminimal couplings to gravity can be of order one or less, while the inflationary predictions of the model remain compatible with the precision cosmological observations. Furthermore, in the model we study, the existence of the electroweak scale is entirely due to the inflaton...

  12. Strongly coupled models with a Higgs-like boson

    International Nuclear Information System (INIS)

    Pich, A.; Rosell, I.; Sanz-Cillero, J. J.

    2013-01-01

    Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimental constraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. (authors)

  13. Higgs Boson Properties in the Standard Model and its Supersymmetric Extensions

    CERN Document Server

    Ellis, Jonathan Richard; Zwirner, F; Ellis, John; Ridolfi, Giovanni; Zwirner, Fabio

    2007-01-01

    We review the realization of the Brout-Englert-Higgs mechanism in the electroweak theory and describe the experimental and theoretical constraints on the mass of the single Higgs boson expected in the minimal Standard Model. We also discuss the couplings of this Higgs boson and its possible decay modes as functions of its unknown mass. We then review the structure of the Higgs sector in the minimal supersymmetric extension of the Standard Model (MSSM), noting the importance of loop corrections to the masses of its five physical Higgs bosons. Finally, we discuss some non-minimal models.

  14. Higgs boson properties in the Standard Model and its supersymmetric extensions

    International Nuclear Information System (INIS)

    Ellis, J.; Ridolfi, G.; Zwirner, F.

    2007-01-01

    We review the realization of the Brout-Englert-Higgs mechanism in the electroweak theory and describe the experimental and theoretical constraints on the mass of the single Higgs boson expected in the minimal Standard Model. We also discuss the couplings of this Higgs boson and its possible decay modes as functions of its unknown mass. We then review the structure of the Higgs sector in the minimal supersymmetric extension of the Standard Model (MSSM), noting the importance of loop corrections to the masses of its 5 physical Higgs bosons. Finally, we discuss some non-minimal models. (authors)

  15. Higgs cosmology.

    Science.gov (United States)

    Rajantie, Arttu

    2018-03-06

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  16. Can the triple Higgs self-coupling be measured at future colliders?

    International Nuclear Information System (INIS)

    Miller, D.J.

    2000-01-01

    The experimental reconstruction of the Higgs self-energy potential is essential to a verification of the Higgs boson's role in spontaneous electroweak symmetry breaking. The first step towards this goal, the measurement of the triple Higgs self-coupling, can possibly be accomplished at the next generation of linear colliders. Here we discuss the most promising channels at future hadron and e + e - colliders and present background studies to evaluate the feasibility of its measurement

  17. Extended Higgs sectors in radiative neutrino models

    Directory of Open Access Journals (Sweden)

    Oleg Antipin

    2017-05-01

    Full Text Available Testable Higgs partners may be sought within the extensions of the SM Higgs sector aimed at generating neutrino masses at the loop level. We study a viability of extended Higgs sectors for two selected models of radiative neutrino masses: a one-loop mass model, providing the Higgs partner within a real triplet scalar representation, and a three-loop mass model, providing it within its two-Higgs-doublet sector. The Higgs sector in the one-loop model may remain stable and perturbative up to the Planck scale, whereas the three-loop model calls for a UV completion around 106 GeV. Additional vector-like lepton and exotic scalar fields, which are required to close one- and three-loop neutrino-mass diagrams, play a decisive role for the testability of the respective models. We constrain the parameter space of these models using LHC bounds on diboson resonances.

  18. Exciting the Vacuum: Possible Manifestations of the Higgs Particle at the LHC

    International Nuclear Information System (INIS)

    Kaplan, David

    2009-01-01

    The Higgs boson is the particle most anticipated at the LHC. However, there is currently no leading theory of electroweak symmetry breaking (and the 'Higgs mechanism'). The many possibilities suggest many ways the Higgs could appear in the detectors, some of which require non-standard search methods. I will review the current state of beyond the standard model physics and the implication for Higgs physics. I then discuss some non-standard Higgs decays and suggest (perhaps naive) new experimental strategies for detecting the Higgs in such cases. In some models, while part of the new physics at the weak scale would be visible, the Higgs would be nearly impossible to detect.

  19. Higgs Decay to Photons at Two Loops

    International Nuclear Information System (INIS)

    Fugel, F.

    2007-01-01

    The calculation of the two-loop corrections to the partial width of an intermediate-mass Higgs boson decaying into a pair of photons is reviewed. The main focus lies on the electroweak (EW) contributions. The sum of the EW corrections ranges from -4% to 0% for a Higgs mass between 100 GeV and 150 GeV, while the complete correction at two-loop order amounts to less than ± 1.5% in this regime. (author)

  20. Electroweak interactions on the lattice

    International Nuclear Information System (INIS)

    Kieu, T.D.

    1994-07-01

    It is shown that the lattice fermion doubling phenomenon is connected to the chiral anomaly which is unique to the electroweak interactions. The chiral anomaly is the breaking of chiral gauge symmetry at the quantum level due to the quantum fluctuations. Such breaking, however, is undesirable and to be avoided. The preservation of gauge symmetry imposes stringent constraints on acceptable chiral gauge theory. It is argued that the constraints are unnecessary because the conventional quantization of chiral gauge theory has missed out some crucial contributions of the chiral interactions. The corrected quantization yields consistent theory in which there is no gauge anomaly and in which various mass terms can be introduced with neither the loss of gauge invariance nor the need for the Higgs mechanism. The new quantization also provide a solution to the difficulty of how to model the electroweak interactions on the lattice. 9 refs. 1 fig