WorldWideScience

Sample records for hif-1 inhibitor enhances

  1. HIF-1α is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1α

    Science.gov (United States)

    Forristal, C E; Nowlan, B; Jacobsen, R N; Barbier, V; Walkinshaw, G; Walkley, C R; Winkler, I G; Levesque, J P

    2015-01-01

    Many patients with hematological neoplasms fail to mobilize sufficient numbers of hematopoietic stem cells (HSCs) in response to granulocyte colony-stimulating factor (G-CSF) precluding subsequent autologous HSC transplantation. Plerixafor, a specific antagonist of the chemokine receptor CXCR4, can rescue some but not all patients who failed to mobilize with G-CSF alone. These refractory poor mobilizers cannot currently benefit from autologous transplantation. To discover alternative targetable pathways to enhance HSC mobilization, we studied the role of hypoxia-inducible factor-1α (HIF-1α) and the effect of HIF-1α pharmacological stabilization on HSC mobilization in mice. We demonstrate in mice with HSC-specific conditional deletion of the Hif1a gene that the oxygen-labile transcription factor HIF-1α is essential for HSC mobilization in response to G-CSF and Plerixafor. Conversely, pharmacological stabilization of HIF-1α with the 4-prolyl hydroxylase inhibitor FG-4497 synergizes with G-CSF and Plerixafor increasing mobilization of reconstituting HSCs 20-fold compared with G-CSF plus Plerixafor, currently the most potent mobilizing combination used in the clinic. PMID:25578474

  2. Isolation of hypoxia-inducible factor 1 (HIF-1) inhibitors from frankincense using a molecularly imprinted polymer.

    Science.gov (United States)

    Lakka, Achillia; Mylonis, Ilias; Bonanou, Sophia; Simos, George; Tsakalof, Andreas

    2011-10-01

    Hypoxia-Inducible Factor 1 (HIF-1), a transcriptional activator, is highly involved in the pathology of cancer. Inhibition of HIF-1 retards tumor growth and enhances treatment efficiency when used in combination with chemo- or radiation therapy. The recent validation of HIF-1 as an important drug target in cancer treatment has stimulated efforts to identify and isolate natural or synthetic HIF-1 inhibitors. In the present study, quercetin, a known inhibitor of HIF-1, was imprinted in a polymer matrix in order to prepare a Molecularly Imprinted Polymer (MIP), which was subsequently used for the selective isolation of new inhibitors from frankincense, a gum resin used as anticancer remedy in traditional medicine. The frankincense components isolated by Solid Phase Extraction on MIP (MIP-SPE), efficiently inhibited the transcriptional activity of HIF-1 and decreased the protein levels of HIF-1α, the regulated subunit of HIF-1. The selective retention of acetyl 11-ketoboswellic acid (AKBA, one of the main bioactive components of frankincense) by MIP led to the revealing of its inhibitory activity on the HIF-1 signaling pathway. AKBA was selectively retained by SPE on the quercetin imprinted polymer, with an imprinting effect of 8.1 ± 4.6. Overall, this study demonstrates the potential of MIP application in the screening, recognition and isolation of new bioactive compounds that aim selected molecular targets, a potential that has been poorly appreciated until.

  3. Targeting Aerobic Glycolysis and HIF-1α Expression Enhance Imiquimod-induced Apoptosis in Cancer Cells

    Science.gov (United States)

    Huang, Shi-Wei; Kao, Jun-Kai; Wu, Chun-Ying; Wang, Sin-Ting; Lee, Hsin-Chen; Liang, Shu-Mei; Chen, Yi-Ju; Shieh, Jeng-Jer

    2014-01-01

    Tumor cells rely on aerobic glycolysis to maintain unconstrained cell growth and proliferation. Imiquimod (IMQ), a synthetic Toll-like receptor (TLR) 7/8 ligand, exerts anti-tumor effects directly by inducing cell death in cancer cells and/or indirectly by activating cellular immune responses against tumor cells. However, whether IMQ modulates glucose metabolism pathways remains unclear. In this study, we demonstrated that IMQ can enhance aerobic glycolysis by up-regulating HIF-1α expression at the transcriptional and translational levels via ROS mediated STAT3- and Akt-dependent pathways, independent of TLR7/8 signaling. The genetic silencing of HIF-1α not only repressed IMQ-induced aerobic glycolysis but also sensitized cells to IMQ-induced apoptosis due to faster ATP and Mcl-1 depletion. Moreover, the glucose analog 2-DG and the Hsp90 inhibitor 17-AAG, which destabilizes the HIF-1α protein, synergized with IMQ to induce tumor cell apoptosis in vitro and significantly inhibited tumor growth in vivo. Thus, we hypothesize that the IMQ-induced up-regulation of HIF-1α and aerobic glycolysis is a protective response to the metabolic stress generated by IMQ treatment, and thus, co-treatment with inhibitors of HIF-1α and/or glycolysis may be a useful therapeutic strategy to enhance the anti-tumor effects of IMQ in clinical settings. PMID:24658058

  4. Characterization and functional analysis of hypoxia-inducible factor HIF1α and its inhibitor HIF1αn in tilapia.

    Science.gov (United States)

    Li, Hong Lian; Gu, Xiao Hui; Li, Bi Jun; Chen, Xiao; Lin, Hao Ran; Xia, Jun Hong

    2017-01-01

    Hypoxia is a major cause of fish morbidity and mortality in the aquatic environment. Hypoxia-inducible factors are very important modulators in the transcriptional response to hypoxic stress. In this study, we characterized and conducted functional analysis of hypoxia-inducible factor HIF1α and its inhibitor HIF1αn in Nile tilapia (Oreochromis niloticus). By cloning and Sanger sequencing, we obtained the full length cDNA sequences for HIF1α (2686bp) and HIF1αn (1308bp), respectively. The CDS of HIF1α includes 15 exons encoding 768 amino acid residues and the CDS of HIF1αn contains 8 exons encoding 354 amino acid residues. The complete CDS sequences of HIF1α and HIF1αn cloned from tilapia shared very high homology with known genes from other fishes. HIF1α show differentiated expression in different tissues (brain, heart, gill, spleen, liver) and at different hypoxia exposure times (6h, 12h, 24h). HIF1αn expression level under hypoxia is generally increased (6h, 12h, 24h) and shows extremely highly upregulation in brain tissue under hypoxia. A functional determination site analysis in the protein sequences between fish and land animals identified 21 amino acid sites in HIF1α and 2 sites in HIF1αn as significantly associated sites (α = 0.05). Phylogenetic tree-based positive selection analysis suggested 22 sites in HIF1α as positively selected sites with a p-value of at least 95% for fish lineages compared to the land animals. Our study could be important for clarifying the mechanism of fish adaptation to aquatic hypoxia environment.

  5. Paradoxical regulation of hypoxia inducible factor-1α (HIF-1α by histone deacetylase inhibitor in diffuse large B-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Savita Bhalla

    Full Text Available Hypoxia inducible factor (HIF is important in cancer, as it regulates various oncogenic genes as well as genes involved in cell survival, proliferation, and migration. Elevated HIF-1 protein promotes a more aggressive tumor phenotype, and greater HIF-1 expression has been demonstrated to correlate with poorer prognosis, increased risk of metastasis and increased mortality. Recent reports suggest that HIF-1 activates autophagy, a lysosomal degradation pathway which may promote tumor cell survival. We show here that HIF-1α expression is constitutively active in multiple diffuse large B cell lymphoma (DLBCL cell lines under normoxia and it is regulated by the PI3K/AKT pathway. PCI-24781, a pan histone deacetylase inhibitor (HDACI, enhanced accumulation of HIF-1α and induced autophagy initially, while extended incubation with the drug resulted in inhibition of HIF-1α. We tested the hypothesis that PCI-24781- induced autophagy is mediated by HIF-1α and that inhibition of HIF-1α in these cells results in attenuation of autophagy and decreased survival. We also provide evidence that autophagy serves as a survival pathway in DLBCL cells treated with PCI-24781 which suggests that the use of autophagy inhibitors such as chloroquine or 3-methyl adenine in combination with PCI-24781 may enhance apoptosis in lymphoma cells.

  6. Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1α-mediated target gene activation.

    Science.gov (United States)

    Brix, Britta; Mesters, Jeroen R; Pellerin, Luc; Jöhren, Olaf

    2012-07-11

    Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation.

  7. Pharmacologic increase in HIF1α enhances hematopoietic stem and progenitor homing and engraftment.

    Science.gov (United States)

    Speth, Jennifer M; Hoggatt, Jonathan; Singh, Pratibha; Pelus, Louis M

    2014-01-09

    Hematopoietic stem cell (HSC) transplantation is a lifesaving therapy for a number of immunologic disorders. For effective transplant, HSCs must traffic from the peripheral blood to supportive bone marrow niches. We previously showed that HSC trafficking can be enhanced by ex vivo treatment of hematopoietic grafts with 16-16 dimethyl prostaglandin E2 (dmPGE2). While exploring regulatory molecules involved in dmPGE2 enhancement, we found that transiently increasing the transcription factor hypoxia-inducible factor 1-α (HIF1α) is required for dmPGE2-enhanced CXCR4 upregulation and enhanced migration and homing of stem and progenitor cells and that pharmacologic manipulation of HIF1α is also capable of enhancing homing and engraftment. We also now identify the specific hypoxia response element required for CXCR4 upregulation. These data define a precise mechanism through which ex vivo pulse treatment with dmPGE2 enhances the function of hematopoietic stem and progenitor cells; these data also define a role for hypoxia and HIF1α in enhancement of hematopoietic transplantation.

  8. Diallyl trisulfides, a natural histone deacetylase inhibitor, attenuate HIF-1α synthesis, and decreases breast cancer metastasis.

    Science.gov (United States)

    Wei, Zhonghong; Shan, Yunlong; Tao, Li; Liu, Yuping; Zhu, Zhijie; Liu, Zhaoguo; Wu, Yuanyuan; Chen, Wenxing; Wang, Aiyun; Lu, Yin

    2017-10-01

    Intratumoral hypoxia promotes the distant metastasis of cancer subclones. The clinical expression level of hypoxia-inducible factor-1α (HIF-1α) reflects the prognosis of a variety of cancers, especially breast cancer. Histone deacetylase (HDAC) inhibitors can target HIF-1α protein due to von Hippel-Lindau (VHL) protein-dependent degradation. Dietary organosulfur compounds, such as those in garlic, have been reported as HDAC inhibitors. The effects of diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS) on the ratio of firefly/Renilla luciferase activity in hypoxic MDA-MB-231 cells were determined. The mRNA expressions of HIF-1α target genes ANGPTL4, LOXL4, and LOX in hypoxic MDA-MB-231 cells were significantly down-regulated by DATS. DATS attenuated the metastatic potential of MDA-MB-231 cells in hypoxia-induced embryonic zebrafish, xenograft, and orthotopic tumors. Endothelial cell-cancer cell adhesion, wound healing, transwell, and tube formation assays showed that DATS dose-dependently inhibited the migration and angiogenesis of MDA-MB-231 cells in vitro. The expressions of L1CAM, VEGF-A, and EMT-related proteins (Slug, Snail, MMP-2) were inhibited by DATS. DATS dose-dependently inhibited HIF-1α transcriptional activity and hypoxia-induced hematogenous metastasis of MDA-MB-231 cells. It reduced the protein expression of HIF-1α, which did not involve inhibition of HIF-1α mRNA expression or ubiquitin proteasome degradation. Efficient inhibition of HIF-1α expression was required for DATS to resist breast cancer. © 2017 Wiley Periodicals, Inc.

  9. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Xie, Jing [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Peng, Jianjun, E-mail: jianjunpeng@126.com [College of Life Sciences, Chongqing Normal University, Chongqing 401331 (China); Han, Yantao, E-mail: hanyt19@126.com [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Jiang, Qixiao; Han, Mei; Wang, Chunbo [Medical College, Qingdao University, Qingdao, Shandong 266071 (China)

    2015-03-15

    Gallbladder cancer (GBC) is an aggressive malignancy of the bile duct, which is associated with a low (5-year) survival and poor prognosis. The transcription factor HIF-1α is implicated in the angiogenesis, cell survival, epithelial mesenchymal transition (EMT) and invasiveness of GBC. In this study, we have investigated the role of HIF-1α in the pathobilogy of GBC and effect of hispidulin on the molecular events controlled by this transcription factor. We observed that hispidulin caused induction of apoptosis, blockade of growth and cell cycle progression in GBC cells. Our results have demonstrated for the first time that hispidulin-exerted anti-tumor effect involved the suppression of HIF-1α signaling. Hispidulin was found to repress the expression of HIF-1α protein dose-dependently without affecting the HIF-1α mRNA expression. In addition, the inhibition of HIF-1α protein synthesis was revealed to be mediated through the activation of AMPK signaling. Hispidulin also sensitized the tumor cells to Gemcitabine and 5-Fluoroucil by down-regulating HIF-1α/P-gp signaling. Given the low cost and exceedingly safe profile, hispidulin appears to be a promising and novel chemosensitizer for GBC treatment. - Highlights: • Hispidulin inhibits proliferation of gallbladder cancer cells by targeting HIF-1α. • Hispidulin regulates HIF-1α via activating AMPK signaling. • Hispidulin sensitized the GBC cells to chemotherapeutics by down-regulating P-gp.

  10. Investigating the Regulation and Potential Role of Nonhypoxic Hypoxia-Inducible Factor 1 (HIF-1) in Aromatase Inhibitor Resistant Breast Cancer

    Science.gov (United States)

    2013-10-01

    obese and overweight patients with ER+ breast cancer to neoadjuvant aromatase inhibitor therapy. My role in this clinical trial is to analyze HIF-1 and...with drug resistance in different cancer cell types, including chronic myeloid leukemia cells (Zhao et al. Oncogene. 2010), gastric cancer cells (Liu...Hypoxia- Inducible Factor 1 (HIF-1) in Aromatase Inhibitor Resistant Breast Cancer PRINCIPAL INVESTIGATOR: Armina Kazi CONTRACTING

  11. TNF-α upregulates HIF-1α expression in pterygium fibroblasts and enhances their susceptibility to VEGF independent of hypoxia.

    Science.gov (United States)

    Kim, Kyoung Woo; Lee, Soo Jin; Kim, Jae Chan

    2017-11-01

    The clinical manifestations of pterygium are characterized by rapid growth and postoperative recurrences. We had previously proposed that hypoxia-inducible factor (HIF)-1α recruits progenitor cells during the development and progression of pterygia. Recently, it was reported that various stimuli, including inflammation, could activate HIF-1α even under normoxic conditions. The ocular surface directly faces external environments, and is thus frequently exposed to inflammatory insults. First, we examined the gene expression of HIF-1α, its downstream molecule, vascular endothelial growth factor (VEGF)-A, and VEGF receptor (VEGFR)-2 in corneal and conjunctival cells compared with cultured human umbilical vein endothelial cells. Corneal fibroblasts had high expression of VEGFR-2 in the presence of TNF-α, and HIF-1α was activated by TNF-α in diverse ocular surface cells. The HIF-1α/VEGF/VEGFR signaling pathway in response to TNF-α was evaluated in cultured human pterygium fibroblasts (HPFs) at the gene and protein levels and was compared to treatment with cobalt chloride (CoCl 2 ), a hypoxic mimetic, to exclude the effect of hypoxia. Although VEGF-A expression was not changed by TNF-α, expression of HIF-1α and VEGFR-2 was enhanced in HPFs treated with TNF-α, independent of hypoxia conditioning. In addition, VEGF-C gene expression was activated solely by TNF-α in HPF, but VEGF-B levels were not significantly affected. These results may provide mechanistic explanations for the uniquely vigorous proliferation of pterygium fibrovascular tissue during TNF-α-induced ocular surface inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Ras inhibitors display an anti-metastatic effect by downregulation of lysyl oxidase through inhibition of the Ras-PI3K-Akt-HIF-1α pathway.

    Science.gov (United States)

    Yoshikawa, Yoko; Takano, Osamu; Kato, Ichiro; Takahashi, Yoshihisa; Shima, Fumi; Kataoka, Tohru

    2017-09-23

    Metastasis stands as the major obstacle for the survival from cancers. Nonetheless most existing anti-cancer drugs inhibit only cell proliferation, and discovery of agents having both anti-proliferative and anti-metastatic properties would be more beneficial. We previously reported the discovery of small-molecule Ras inhibitors, represented by Kobe0065, that displayed anti-proliferative activity on xenografts of human colorectal cancer (CRC) cell line SW480 carrying the K-ras(G12V)gene. Here we show that treatment of cancer cells carrying the activated ras genes with Kobe0065 or a siRNA targeting Ras downregulates the expression of lysyl oxidase (LOX), which has been implicated in metastasis. LOX expression is enhanced by co-expression of Ras(G12V) through activation of phosphatidylinositol 3-kinase (PI3K)/Akt and concomitant accumulation of hypoxia-inducible factor (HIF)-1α. Furthermore, Kobe0065 effectively inhibits not only migration and invasion of cancer cells carrying the activated ras genes but also lung metastasis of human CRC cell line SW620 carrying the K-ras(G12V) gene. Collectively, these results indicate that Kobe0065 prevents metastasis through inhibition of the Ras-PI3K-Akt-HIF-1α-LOX signaling and suggest that Ras inhibitors in general might exhibit both anti-proliferative and anti-metastatic properties toward cancer cells carrying the activated ras genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Targeting MTA1/HIF-1α signaling by pterostilbene in combination with histone deacetylase inhibitor attenuates prostate cancer progression.

    Science.gov (United States)

    Butt, Nasir A; Kumar, Avinash; Dhar, Swati; Rimando, Agnes M; Akhtar, Israh; Hancock, John C; Lage, Janice M; Pound, Charles R; Lewin, Jack R; Gomez, Christian R; Levenson, Anait S

    2017-10-10

    The metastasis-associated protein 1(MTA1)/histone deacetylase (HDAC) unit is a cancer progression-related epigenetic regulator, which is overexpressed in hormone-refractory and metastatic prostate cancer (PCa). In our previous studies, we found a significantly increased MTA1 expression in a prostate-specific Pten-null mouse model. We also demonstrated that stilbenes, namely resveratrol and pterostilbene (Pter), affect MTA1/HDAC signaling, including deacetylation of tumor suppressors p53 and PTEN. In this study, we examined whether inhibition of MTA1/HDAC using combination of Pter and a clinically approved HDAC inhibitor, SAHA (suberoylanilide hydroxamic acid, vorinostat), which also downregulates MTA1, could block prostate tumor progression in vivo. We generated and utilized a luciferase reporter in a prostate-specific Pten-null mouse model (Pb-Cre(+) ; Pten(f/f) ; Rosa26(Luc/+) ) to evaluate the anticancer efficacy of Pter/SAHA combinatorial approach. Our data showed that Pter sensitized tumor cells to SAHA treatment resulting in inhibiting tumor growth and additional decline of tumor progression. These effects were dependent on the reduction of MTA1-associated proangiogenic factors HIF-1α, VEGF, and IL-1β leading to decreased angiogenesis. In addition, treatment of PCa cell lines in vitro with combined Pter and low dose SAHA resulted in more potent inhibition of MTA1/HIF-1α than by high dose SAHA alone. Our study provides preclinical evidence that Pter/SAHA combination treatment inhibits MTA1/HIF-1α tumor-promoting signaling in PCa. The beneficial outcome of combinatorial strategy using a natural agent and an approved drug for higher efficacy and less toxicity supports further development of MTA1-targeted therapies in PCa. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  14. KAI1 suppresses HIF-1α and VEGF expression by blocking CDCP1-enhanced Src activation in prostate cancer

    Directory of Open Access Journals (Sweden)

    Park Jung-Jin

    2012-03-01

    Full Text Available Abstract Background KAI1 was initially identified as a metastasis-suppressor gene in prostate cancer. It is a member of the tetraspan transmembrane superfamily (TM4SF of membrane glycoproteins. As part of a tetraspanin-enriched microdomain (TEM, KAI1 inhibits tumor metastasis by negative regulation of Src. However, the underlying regulatory mechanism has not yet been fully elucidated. CUB-domain-containing protein 1 (CDCP1, which was previously known as tetraspanin-interacting protein in TEM, promoted metastasis via enhancement of Src activity. To better understand how KAI1 is involved in the negative regulation of Src, we here examined the function of KAI1 in CDCP1-mediated Src kinase activation and the consequences of this process, focusing on HIF-1 α and VEGF expression. Methods We used the human prostate cancer cell line PC3 which was devoid of KAI1 expression. Vector-transfected cells (PC3-GFP clone #8 and KAI1-expressing PC3 clones (PC3-KAI1 clone #5 and #6 were picked after stable transfection with KAI1 cDNA and selection in 800 μg/ml G418. Protein levels were assessed by immunoblotting and VEGF reporter gene activity was measured by assaying luciferase activitiy. We followed tumor growth in vivo and immunohistochemistry was performed for detection of HIF-1, CDCP1, and VHL protein level. Results We demonstrated that Hypoxia-inducible factor 1α (HIF-1α and VEGF expression were significantly inhibited by restoration of KAI1 in PC3 cells. In response to KAI1 expression, CDCP1-enhanced Src activation was down-regulated and the level of von Hippel-Lindau (VHL protein was significantly increased. In an in vivo xenograft model, KAI1 inhibited the expression of CDCP1 and HIF-1α. Conclusions These novel observations may indicate that KAI1 exerts profound metastasis-suppressor activity in the tumor malignancy process via inhibition of CDCP1-mediated Src activation, followed by VHL-induced HIF-1α degradation and, ultimately, decreased VEGF

  15. Enhanced glycolysis, regulated by HIF-1α via MCT-4, promotes inflammation in arsenite-induced carcinogenesis.

    Science.gov (United States)

    Luo, Fei; Zou, Zhonglan; Liu, Xinlu; Ling, Min; Wang, Qingling; Wang, Qi; Lu, Lu; Shi, Le; Liu, Yonglian; Liu, Qizhan; Zhang, Aihua

    2017-06-01

    Arsenite is well established as a human carcinogen, but the molecular mechanisms leading to arsenite-induced carcinogenesis are complex and elusive. Accelerated glycolysis, a common process in tumor cells called the Warburg effect, is associated with various biological phenomena. However, the role of glycolysis induced by arsenite is unknown. We have found that, with chronic exposure to arsenite, L-02 cells undergo a metabolic shift to glycolysis. In liver cells exposed to arsenite, hypoxia inducible factor-1α (HIF-1α) and monocarboxylate transporter-4 (MCT-4) are over-expressed. MCT-4, directly mediated by HIF-1α, maintains a high level of glycolysis, and the enhanced glycolysis promotes pro-inflammatory properties, which are involved in arsenite carcinogenesis. In addition, serum lactate and cytokines are higher in arsenite-exposed human populations, and there is a positive correlation between them. Moreover, there is a positive relationship between lactate and cytokines with arsenic in hair. In sum, these findings indicate that MCT-4, mediated by HIF-1α, enhances the glycolysis induced by arsenite. Lactate, the end product of glycolysis, is released into the extracellular environment. The acidic microenvironment promotes production of pro-inflammatory cytokines, which contribute to arsenite-induced liver carcinogenesis. These results provide a link between the induction of glycolysis and inflammation in liver cells exposed to arsenite, and thus establish a previously unknown mechanism for arsenite-induced hepatotoxicity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Thrombopoietin (TPO) regulates HIF-1alpha levels through generation of mitochondrial reactive oxygen species.

    Science.gov (United States)

    Yoshida, Kozue; Kirito, Keita; Yongzhen, Hu; Ozawa, Keiya; Kaushansky, Kenneth; Komatsu, Norio

    2008-07-01

    Hypoxia inducible factor (HIF)-1 is a master transcriptional regulator mediating the cellular adaptation to hypoxia. In addition, HIF-1 is also vital for the development of hematopoietic stem cells (HSCs). In a previous study we found that thrombopoietin (TPO), an important and non-redundant cytokine for HSC maintenance and expansion, induces HIF-1alpha expression in HSCs by enhancing the stability of HIF-1alpha under normoxic conditions. However, the molecular mechanisms of these effects are not yet fully understood. In this study, we explored the mechanisms and found that TPO-induced mitochondrial reactive oxygen species (ROS) played a crucial role in stabilization of HIF-1. Both ROS scavengers and inhibitors of mitochondrial electron transport completely blocked HIF-1alpha induction by TPO in UT-7/TPO cells and in primary immature mouse bone marrow cells. We also found that TPO-induced HIF-1alpha induction was tightly coupled with glucose metabolism. Inhibition of glucose transporter or glycolytic enzyme blocked HIF-1alpha elevation of TPO. These results indicate that TPO induces HIF-1alpha expression in a manner very similar to that of hypoxia.

  17. Enhanced Aerobic Glycolysis by S-Nitrosoglutathione via HIF-1α Associated GLUT1/Aldolase A Axis in Human Endothelial Cells.

    Science.gov (United States)

    Yan, Jieping; Huang, Xin; Zhu, Danyan; Lou, Yijia

    2017-08-01

    S-nitrosoglutathione (GSNO)-induced apoptosis is associated with reactive oxygen species and loss of mitochondrial Omi/HtrA2 in human endothelial cells (ECs). But its upstream regulation is still not elucidated. Here, we demonstrate that hypoxia induced factor-1α (HIF-1α)-linked aerobic glycolysis is associated with mitochondrial abnormality by treatment of human EC-derived EA.hy926 cells with GSNO (500 µM) for 6 h. GSNO exposure increased the levels of Aldolase A and glucose transporter-1 (GLUT1) mRNAs and proteins. And selectively enhanced aldolase A activity to form glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, which subsequently increased intracellular levels of methylglyoxal and reactive oxygen species in parallel. Using the biotin switch assay, we found that GSNO increased the S-nitrosylating levels of total protein and HIF-1α. Knockdown of HIF-1α with siRNA attenuated its target aldolase A and GLUT1 expression but not VEGF. In contrast, nitrosylation scanvenger dithiothreitol could decrease all the protein levels. It suggested that aerobic glycolytic flux was more dependent on HIF-1α level, and that HIF-1α S-nitrosylation was crucial for its target expression under the normoxic condition. Moreover, GSNO-induced PI3 K (phosphoinositide 3-kinase)/Akt phosphorylation might contribute to HIF-1α stabilization and nucleus translocation, thereby aiding aldolase A and GLUT1 mRNAs upregulation. Taken together, higher concentration GSNO promotes glycolytic flux enhancement and methylglyoxal formation via HIF-1α S-nitrosylation. These findings reveal the mechanism of enhanced glycolysis-associated mitochondrial dysfunction in ECs by GSNO exposure under normoxic and non-hyperglycemic condition. And offer the early potential targets for vascular pathophysiological evaluation. J. Cell. Biochem. 118: 2443-2453, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Discovery of novel inhibitors disrupting HIF-1α/von Hippel–Lindau interaction through shape-based screening and cascade docking

    Directory of Open Access Journals (Sweden)

    Xin Xue

    2016-12-01

    Full Text Available Major research efforts have been devoted to the discovery and development of new chemical entities that could inhibit the protein–protein interaction between HIF-1α and the von Hippel–Lindau protein (pVHL, which serves as the substrate recognition subunit of an E3 ligase and is regarded as a crucial drug target in cancer, chronic anemia, and ischemia. Currently there is only one class of compounds available to interdict the HIF-1α/pVHL interaction, urging the need to discover chemical inhibitors with more diversified structures. We report here a strategy combining shape-based virtual screening and cascade docking to identify new chemical scaffolds for the designing of novel inhibitors. Based on this strategy, nine active hits have been identified and the most active hit, 9 (ZINC13466751, showed comparable activity to pVHL with an IC50 of 2.0 ± 0.14 µM, showing the great potential of utilizing these compounds for further optimization and serving as drug candidates for the inhibition of HIF-1α/von Hippel–Lindau interaction.

  19. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiuming; Yao, Jing; Wang, Fei; Zhou, Mi; Zhou, Yuxin; Wang, Hu; Wei, Libin; Zhao, Li; Li, Zhiyu; Lu, Na, E-mail: luna555@163.com; Guo, Qinglong, E-mail: anticancer_drug@yahoo.com.cn

    2013-09-01

    Wogonin, a plant-derived flavone, has been shown recently to have antitumor effects. However, the mechanisms that wogonin inhibits tumor angiogenesis are not well known. In this study, we investigated the effects of wogonin on expression of hypoxia-inducible factor-1α (HIF-1α) and secretion of vascular endothelial growth factor (VEGF) in tumor cells. We found that wogonin decreased the expression of HIF-1α by affecting its stability and reduced the secretion of VEGF, which suppressed angiogenesis in cancer. Wogonin promoted the degradation of HIF-1α by increasing its prolyl hydroxylation, which depended on prolyl hydroxylase (PHD) and the von Hippel–Lindau tumor suppressor (VHL). Intriguingly, wogonin impeded the binding between heat-shock protein 90 (Hsp90) and HIF-1α. In addition, wogonin down-regulated the Hsp90 client proteins EGFR, Cdk4 and survivin, but did not affect the level of Hsp90. Wogonin also increased ubiquitination of HIF-1α and promoted its degradation in proteasome. We also found that wogonin could inhibit nuclear translocation of HIF-1α. Electrophoresis mobility shift assay (EMSA) showed that wogonin decreased the binding activity of exogenous consensus DNA oligonucleotide with HIF-1α in nuclear extracts from MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay also revealed that HIF-1α directly binded to endogenous hypoxia-responsive element (HRE) and this binding was significantly decreased in MCF-7 cells treated with wogonin. Preliminary results indicated in vivo activity of wogonin against xenograft-induced angiogenesis in nude mice. Taken together, the results suggested that wogonin was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of wogonin against cancers. - Highlights: • Wogonin is an all around inhibitor of VEGF signaling. • We firstly demonstrate that wogonin inhibits secretion of VEGF by decreasing HIF-1α. • Wogonin enhances PDH and VHL expression and inhibits Hsp90 function.

  20. How lithium treatment generates neutrophilia by enhancing phosphorylation of GSK-3, increasing HIF-1 levels and how this path is important during engraftment.

    Science.gov (United States)

    Kast, R E

    2008-01-01

    Lithium is commonly used in psychiatry for mood stabilization. Lithium treatment results in neutrophilia, increased platelets and increased circulating CD34+ haematopoietic stem cells, HSC. This paper outlines the newly discovered mechanism by which this occurs. Glycogen synthase kinase-3, GSK-3, phosphorylates and thereby inactivates hypoxia-induced factor-1, HIF-1. HIF-1 is a transcription factor triggering transcription of multiple genes related to adaptation to hypoxia, among which is CXCL12. CXCL12 forms the primary homing gradient for CD34+ HSCs towards the hypoxic, trophic bone marrow niche to which they must go to thrive. Lithium inhibits GSK-3 thereby increasing active HIF-1 that results in a stronger CXCL12 homing gradient. Trophic niche function is enhanced, ultimately resulting in increased production of neutrophils, platelets and CD34+ cells. Sitagliptin is a new drug to treat diabetes that coincidentally inhibits destruction of CXCL12. Thus, lithium and sitagliptin enhance CXCL12 by different paths, potentially increasing trophic niche function. Awareness of this path is important in HSC transplantation.

  1. Polymeric nano-encapsulation of curcumin enhances its anti-cancer activity in breast (MDA-MB231) and lung (A549) cancer cells through reduction in expression of HIF-1a and nuclear p65 (Rel A).

    Science.gov (United States)

    Khan, Mohammed N; Haggag, Yusuf A; Lane, Majella E; McCarron, Paul A; Tambuwala, Murtaza M

    2017-10-19

    The anti-cancer potential of curcumin, a natural NFkβ inhibitor, has been reported extensively in breast, lung and other cancers. In vitro and in vivo studies indicate that the therapeutic efficacy of curcumin is enhanced when formulated in a nanoparticulate carrier. However, the mechanism of action of curcumin at the molecular level in the hypoxic tumour micro-environment is not fully understood. Hence, the aim of our study was to investigate the mechanism of action of curcumin formulated as nanoparticles in in vitro models of breast and lung cancer under a hypoxic micro-environment. Biodegradable poly (lactic-co-glycolic acid) PLGA nanoparticles (NP), loaded with curcumin (cur-PLGA-NP), were fabricated using a solvent evaporation technique to overcome solubility issues and to facilitate intracellular curcumin delivery. Cytotoxicity of free curcumin and cur-PLGA-NP were evaluated in MDA-MB-231 and A549 cell lines using migration, invasion and colony formation assays. All treatments were performed under a hypoxic micro-environment and whole cell lysates from controls and test groups were used to determine the expression of HIF-1α and p65 levels using ELISA assays. A ten-fold increase in solubility, three-fold increase in anti-cancer activity and a significant reduction in the levels of cellular HIF-1α and nuclear p65 (Rel A) were observed for cur-PLGA-NP, when compared to free curcumin. Our findings indicate that curcumin can effectively lower the elevated levels of HIF-1α and nuclear p65 (Rel A) in breast and lung cancer cells under a hypoxic tumour micro-environment when delivered in nanoparticulate form. This applied means of colloidal delivery could explain the improved anti-cancer efficacy of curcumin and has further potential applications in enhancing the activity of anti-cancer agents of low solubility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Testosterone replacement therapy promotes angiogenesis after acute myocardial infarction by enhancing expression of cytokines HIF-1a, SDF-1a and VEGF.

    Science.gov (United States)

    Chen, Yeping; Fu, Lu; Han, Ying; Teng, Yueqiu; Sun, Junfeng; Xie, Rongsheng; Cao, Junxian

    2012-06-05

    In order to investigate the effects of testosterone-replacement therapy on peripheral blood stem cells and angiogenesis after acute myocardial infarction, a castrated rat acute myocardial infarction model was established by ligation of the left anterior descending coronary followed by treatment with testosterone. CD34(+) cells in myocardium and in peripheral blood after 1 and 3 days were measured by immunohistochemistry and flow cytometry, respectively. In the early phase of acute myocardial infarction, the expression levels of hypoxia-inducible factor 1a (HIF-1a), stromal cell-derived factor 1a (SDF-1a) and vascular endothelium growth factor (VEGF) in ischemic myocardium were determined by real time RT-PCR and immunohistochemistry, respectively. Infarct size, cardiomyocyte apoptosis, capillary density and cardiac function were assessed after 28 days. These results showed that the number of CD34(+) cells in the peripheral blood and in myocardium was significantly decreased in castrated rats, and the early expression levels of HIF-1a, SDF-1a and VEGF in the myocardium were also decreased. Furthermore, reduced capillary density, worsened cardiac function, increased infarct size and cardiomyocyte apoptosis at 28 days post-infarction were found in castrated rats. But these adverse effects could be reversed by testosterone-replacement therapy. These findings suggested that testosterone can increase the mobilization and homing of CD34(+) cells into the ischemic myocardium and further promote neoangiogenesis after myocardial infarction. The pro-angiogenesis effect of testosterone-replacement therapy is associated with the enhanced expression of HIF-1a, SDF-1a and VEGF in myocardium after myocardial infarction. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Deferoxamine Promotes MDA-MB-231 Cell Migration and Invasion through Increased ROS-Dependent HIF-1α Accumulation

    Directory of Open Access Journals (Sweden)

    Yiping Liu

    2014-04-01

    Full Text Available Background/Aim: Deferoxamine (DFO, an iron chelator, has been reported to induce hypoxia-inducible factor-1α (HIF-1α expression. HIF-1α plays a critical role in promoting tumor metastasis. However, the molecular mechanisms underlying induction of HIF-1α in breast cancer cells remain unknown. Our aim was to ascertain whether DFO enhanced cancer metastasis in MDA-MB-231 cells. Methods: Cellular reactive oxygen species (ROS was measured by flow cytometry. Cell migration was determined by wound healing and transwell assays. Protein and mRNA expression were detected by western blotting and RT-PCR, respectively. Results: DFO treatment enhanced cell migration and invasion, while HIF-1α expression was significantly up-regulated at the post-transcriptional level. However, treatment with a NADPH oxidase inhibitor, diphenyleneiodonium (DPI, strongly inhibited ROS generation and HIF-1α expression, as well as cell migration and invasion. Notably, DFO treatment increased extracellular signal-regulated kinase (ERK1/2 phosphorylation. Inhibition of ROS production with DPI attenuated DFO-induced ERK1/2 activation. Moreover, a MEK1 inhibitor, PD98059, suppressed DFO-induced cell migration and invasion. Conclusion: DFO-induced HIF-1α expression involves a cascade of signaling events including ROS generation, activation of ERK signaling, and subsequent promotion of cell migration and invasion. These findings indicate a risk associated with DFO and other iron chelators for treatment of tumors with invasive potential.

  4. Inhibition of HIF-2.alpha. heterodimerization with HIF1.beta. (ARNT)

    Energy Technology Data Exchange (ETDEWEB)

    Bruick, Richard K.; Caldwell, Charles G.; Frantz, Doug E.; Gardner, Kevin H.; MacMillan, John B.; Scheuermann, Thomas H.; Tambar, Uttam K.

    2017-09-12

    Provided is a method of inhibiting heterodimerization of HIF-2.alpha. to HIF1.beta. (ARNT) comprising binding certain small molecules to the HIF-2.alpha. PAS-B domain cavity but not to HIF1.alpha. and inhibiting HIF-2.alpha. heterodimerization to HIF1.beta. (ARNT) but not inhibiting HIF1.alpha. heterodimerization to HIF1.beta. (ARNT). Those certain small molecules are also referenced synonymously as HIF2-HDI and HIF2.alpha. heterodimerization inhibitors and also simply as certain small molecules.

  5. Hypoxic preconditioning of human cardiosphere-derived cell sheets enhances cellular functions via activation of the PI3K/Akt/mTOR/HIF-1α pathway.

    Science.gov (United States)

    Tanaka, Yuya; Hosoyama, Tohru; Mikamo, Akihito; Kurazumi, Hiroshi; Nishimoto, Arata; Ueno, Koji; Shirasawa, Bungo; Hamano, Kimikazu

    2017-01-01

    Cell sheet technology is a promising therapeutic strategy for the treatment of ischemic diseases such as myocardial infarction. We recently developed a novel protocol, termed "hypoxic preconditioning," capable of augmenting the therapeutic efficacy of cell sheets. Following this protocol, the pro-angiogenic and anti-fibrotic activity of cell sheets were enhanced by brief incubation of cell sheets under hypoxic culture conditions. However, the precise molecular mechanism underlying the hypoxic preconditioning of cell sheets is unclear. In the present study, we examined signal transducers in cell sheets to identify those responsive to hypoxic preconditioning, using cardiosphere-derived cell (CDC) sheets. We initially tested whether sheet-like structures were suitable for hypoxic preconditioning by comparing them with individual cells. Hypoxic preconditioning was more effective in sheeted cells than in individual cells. Expression of hypoxia inducible factor-1α (HIF-1α) and mammalian target of rapamycin (mTOR) were induced upon hypoxic preconditioning of cell sheets, as was the phosphoinositide 3-kinase (PI3K)/Akt pathway. In addition, hypoxic preconditioning increased phosphorylation of epidermal growth factor receptor (EGFR) and heat shock protein 60 (HSP60) in CDC sheets. Our findings provide novel insights into the utility of hypoxic preconditioning in cell sheet-based technologies for the treatment of ischemic diseases.

  6. Sphingosine Kinase-1 Involves the Inhibitory Action of HIF-1α by Chlorogenic Acid in Hypoxic DU145 Cells

    Directory of Open Access Journals (Sweden)

    Myoung-Sun Lee

    2017-02-01

    Full Text Available Hypoxia enhances cancer development in a solid tumor. Hypoxia-inducible factor-1 α (HIF-1α is a transcription factor that is dominantly expressed under hypoxia in solid tumor cells and is a key factor that regulates tumor. HIF-1α regulates several target genes involved in many aspects of cancer progression, including angiogenesis, metastasis, anti-apoptosis and cell proliferation as well as imparts resistance to cancer treatment. In this study, we assessed Crataegus Pinnatifida Bunge var. typical Schneider ethanol extract (CPE for its anti-cancer effects in hypoxia-induced DU145 human prostate cancer cell line. CPE decreased the abundance of HIF-1α and sphingosine kinase-1 (SPHK-1 in hypoxia-induced prostate cancer DU145 cells. CPE decreased HIF-1α and SPHK-1 as well as SPHK-1 activity. Chlorogenic acid (CA is one of four major compounds of CPE. Compared to CPE, CA significantly decreased the expression of HIF-1α and SPHK-1 as well as SPHK-1 activity in hypoxia-induced DU145 cells. Furthermore, CA decreased phosphorylation AKT and GSK-3β, which are associated with HIF-1α stabilization and affected SPHK-1 in a concentration-dependent manner. We confirmed the mechanism of CA-induced inhibition of HIF-1α by SPHK-1 signaling pathway using SPHK-1 siRNA and SPHK inhibitor (SKI. CA decreased the secretion and cellular expression of VEGF, thus inhibiting hypoxia-induced angiogenesis. Treatment of DU145cells with SPHK1 siRNA and CA for 48 h decreased cancer cell growth, and the inhibitory action of SPHK siRNA and CA on cell growth was confirmed by decrease in the abundance of Proliferating cell nuclear antigen (PCNA.

  7. HIF1alpha synergizes with glucocorticoids to promote BFU-E progenitor self-renewal.

    Science.gov (United States)

    Flygare, Johan; Rayon Estrada, Violeta; Shin, Chanseok; Gupta, Sumeet; Lodish, Harvey F

    2011-03-24

    With the aim of finding small molecules that stimulate erythropoiesis earlier than erythropoietin and that enhance erythroid colony-forming unit (CFU-E) production, we studied the mechanism by which glucocorticoids increase CFU-E formation. Using erythroid burst-forming unit (BFU-E) and CFU-E progenitors purified by a new technique, we demonstrate that glucocorticoids stimulate the earliest (BFU-E) progenitors to undergo limited self-renewal, which increases formation of CFU-E cells > 20-fold. Interestingly, glucocorticoids induce expression of genes in BFU-E cells that contain promoter regions highly enriched for hypoxia-induced factor 1α (HIF1α) binding sites. This suggests activation of HIF1α may enhance or replace the effect of glucocorticoids on BFU-E self-renewal. Indeed, HIF1α activation by a prolyl hydroxylase inhibitor (PHI) synergizes with glucocorticoids and enhances production of CFU-Es 170-fold. Because PHIs are able to increase erythroblast production at very low concentrations of glucocorticoids, PHI-induced stimulation of BFU-E progenitors thus represents a conceptually new therapeutic window for treating erythropoietin-resistant anemia.

  8. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Borsi, Enrica, E-mail: enrica.borsi2@unibo.it [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy); Perrone, Giulia [Fondazione IRCCS Istituto Nazionale dei Tumori, Hematology Department, Via Venezian 1, 20133 Milano (Italy); Terragna, Carolina; Martello, Marina; Zamagni, Elena; Tacchetti, Paola; Pantani, Lucia; Brioli, Annamaria; Dico, Angela Flores; Zannetti, Beatrice Anna; Rocchi, Serena; Cavo, Michele [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy)

    2014-11-01

    Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow (BM). The reciprocal and complex interactions that take place between the different compartments of BM and the MM cells result in tumor growth, angiogenesis, bone disease, and drug resistance. Given the importance of the BM microenvironment in MM pathogenesis, we investigated the possible involvement of Hypoxia-Inducible transcription Factor-1 alpha (HIF-1α) in the PCs-bone marrow stromal cells interplay. To test this hypothesis, we used EZN-2968, a 3rd generation antisense oligonucleotide against HIF-1α, to inhibit HIF-1α functions. Herein, we provide evidence that the interaction between MM cells and BM stromal cells is drastically reduced upon HIF-1α down-modulation. Notably, we showed that upon exposure to HIF-1α inhibitor, neither the incubation with IL-6 nor the co-culture with BM stromal cells were able to revert the anti-proliferative effect induced by EZN-2968. Moreover, we observed a down-modulation of cytokine-induced signaling cascades and a reduction of MM cells adhesion capability to the extracellular matrix proteins in EZN-2968-treated samples. Taken together, these results strongly support the concept that HIF-1α plays a critical role in the interactions between bone BM cells and PCs in Multiple Myeloma. - Highlights: • HIF-1α inhibition induces a mild apoptotic cell death. • Down-modulation of cytokine-induced signaling cascades upon HIF-1α inhibition. • Reduced interaction between MM cells and BMSCs upon HIF-1α down-modulation. • Reduced PCs adhesion to the extracellular matrix protein induced by EZN-2968. • HIF-1α inhibition may be an attractive therapeutic strategy for Multiple Myeloma.

  9. Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1α protein under hypoxic conditions.

    Directory of Open Access Journals (Sweden)

    Alexander Laemmle

    Full Text Available Sirtuins and hypoxia-inducible transcription factors (HIF have well-established roles in regulating cellular responses to metabolic and oxidative stress. Recent reports have linked these two protein families by demonstrating that sirtuins can regulate the activity of HIF-1 and HIF-2. Here we investigated the role of SIRT1, a NAD+-dependent deacetylase, in the regulation of HIF-1 activity in hypoxic conditions. Our results show that in hepatocellular carcinoma (HCC cell lines, hypoxia did not alter SIRT1 mRNA or protein expression, whereas it predictably led to the accumulation of HIF-1α and the up-regulation of its target genes. In hypoxic models in vitro and in in vivo models of systemic hypoxia and xenograft tumor growth, knockdown of SIRT1 protein with shRNA or inhibition of its activity with small molecule inhibitors impaired the accumulation of HIF-1α protein and the transcriptional increase of its target genes. In addition, endogenous SIRT1 and HIF-1α proteins co-immunoprecipitated and loss of SIRT1 activity led to a hyperacetylation of HIF-1α. Taken together, our data suggest that HIF-1α and SIRT1 proteins interact in HCC cells and that HIF-1α is a target of SIRT1 deacetylase activity. Moreover, SIRT1 is necessary for HIF-1α protein accumulation and activation of HIF-1 target genes under hypoxic conditions.

  10. Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription

    Directory of Open Access Journals (Sweden)

    Antonina N. Shvetsova

    2017-08-01

    Full Text Available Mitochondria are the main consumers of molecular O2 in a cell as well as an abundant source of reactive oxygen species (ROS. Both, molecular oxygen and ROS are powerful regulators of the hypoxia-inducible factor-1α-subunit (HIF-α. While a number of mechanisms in the oxygen-dependent HIF-α regulation are quite well known, the view with respect to mitochondria is less clear. Several approaches using pharmacological or genetic tools targeting the mitochondrial electron transport chain (ETC indicated that ROS, mainly formed at the Rieske cluster of complex III of the ETC, are drivers of HIF-1α activation. However, studies investigating non-ETC located mitochondrial defects and their effects on HIF-1α regulation are scarce, if at all existing. Thus, in the present study we examined three cell lines with non-ETC mitochondrial defects and focused on HIF-1α degradation and transcription, target gene expression, as well as ROS levels. We found that cells lacking the key enzyme 2-enoyl thioester reductase/mitochondrial enoyl-CoA reductase (MECR, and cells lacking manganese superoxide dismutase (MnSOD showed a reduced induction of HIF-1α under long-term (20 h hypoxia. By contrast, cells lacking the mitochondrial DNA depletion syndrome channel protein Mpv17 displayed enhanced levels of HIF-1α already under normoxic conditions. Further, we show that ROS do not exert a uniform pattern when mediating their effects on HIF-1α, although all mitochondrial defects in the used cell types increased ROS formation. Moreover, all defects caused a different HIF-1α regulation via promoting HIF-1α degradation as well as via changes in HIF-1α transcription. Thereby, MECR- and MnSOD-deficient cells showed a reduction in HIF-1α mRNA levels whereas the Mpv17 lacking cells displayed enhanced HIF-1α mRNA levels under normoxia and hypoxia. Altogether, our study shows for the first time that mitochondrial defects which are not related to the ETC and Krebs cycle

  11. Engineered myocardium model to study the roles of HIF-1α and HIF1A-AS1 in paracrine-only signaling under pathological level oxidative stress.

    Science.gov (United States)

    Acun, Aylin; Zorlutuna, Pinar

    2017-08-01

    Studying heart tissue is critical for understanding and developing treatments for cardiovascular diseases. In this work, we fabricated precisely controlled and biomimetic engineered model tissues to study how cell-cell and cell-matrix interactions influence myocardial cell survival upon exposure to pathological level oxidative stress. Specifically, the interactions of endothelial cells (ECs) and cardiomyocytes (CMs), and the role of hypoxia inducible factor-1α (HIF-1α), with its novel alternative regulator, HIF-1α antisense RNA1 (HIF1A-AS1), in these interactions were investigated. We encapsulated CMs in photo-crosslinkable, biomimetic hydrogels with or without ECs, then exposed to oxidative stress followed by normoxia. With precisely controlled microenvironment provided by the model tissues, cell-cell interactions were restricted to be solely through the secreted factors. CM survival after oxidative stress was significantly improved, in the presence of ECs, when cells were in the model tissues that were functionalized with cell attachment motifs. Importantly, the cardioprotective effect of ECs was reduced when HIF-1α expression was knocked down suggesting that HIF-1α is involved in cardioprotection from oxidative damage, provided through secreted factors conferred by the ECs. Using model tissues, we showed that cell survival increased with increased cell-cell communication and enhanced cell-matrix interactions. In addition, whole genome transcriptome analysis showed, for the first time to our knowledge, a possible role for HIF1A-AS1 in oxidative regulation of HIF-1α. We showed that although HIF1A-AS1 knockdown helps CM survival, its effect is overridden by CM-EC bidirectional interactions as we showed that the conditioned media taken from the CM-EC co-cultures improved CM survival, regardless of HIF1A-AS1 expression. Cardiovascular diseases, most of which are associated with oxidative stress, is the most common cause of death worldwide. Thus, understanding

  12. Rapamycin Inhibits Proliferation of Hemangioma Endothelial Cells by Reducing HIF-1-Dependent Expression of VEGF

    Science.gov (United States)

    Medici, Damian; Olsen, Bjorn R.

    2012-01-01

    Hemangiomas are tumors formed by hyper-proliferation of vascular endothelial cells. This is caused by elevated vascular endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we show that elevated VEGF levels produced by hemangioma endothelial cells are reduced by the mTOR inhibitor rapamycin. mTOR activates p70S6K, which controls translation of mRNA to generate proteins such as hypoxia inducible factor-1 (HIF-1). VEGF is a known HIF-1 target gene, and our data show that VEGF levels in hemangioma endothelial cells are reduced by HIF-1α siRNA. Over-expression of HIF-1α increases VEGF levels and endothelial cell proliferation. Furthermore, both rapamycin and HIF-1α siRNA reduce proliferation of hemangioma endothelial cells. These data suggest that mTOR and HIF-1 contribute to hemangioma endothelial cell proliferation by stimulating an autocrine loop of VEGF signaling. Furthermore, mTOR and HIF-1 may be therapeutic targets for the treatment of hemangiomas. PMID:22900063

  13. Rapamycin inhibits proliferation of hemangioma endothelial cells by reducing HIF-1-dependent expression of VEGF.

    Directory of Open Access Journals (Sweden)

    Damian Medici

    Full Text Available Hemangiomas are tumors formed by hyper-proliferation of vascular endothelial cells. This is caused by elevated vascular endothelial growth factor (VEGF signaling through VEGF receptor 2 (VEGFR2. Here we show that elevated VEGF levels produced by hemangioma endothelial cells are reduced by the mTOR inhibitor rapamycin. mTOR activates p70S6K, which controls translation of mRNA to generate proteins such as hypoxia inducible factor-1 (HIF-1. VEGF is a known HIF-1 target gene, and our data show that VEGF levels in hemangioma endothelial cells are reduced by HIF-1α siRNA. Over-expression of HIF-1α increases VEGF levels and endothelial cell proliferation. Furthermore, both rapamycin and HIF-1α siRNA reduce proliferation of hemangioma endothelial cells. These data suggest that mTOR and HIF-1 contribute to hemangioma endothelial cell proliferation by stimulating an autocrine loop of VEGF signaling. Furthermore, mTOR and HIF-1 may be therapeutic targets for the treatment of hemangiomas.

  14. Downregulation of HIF-1a sensitizes U251 glioma cells to the temozolomide (TMZ) treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun-Hai [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Ma, Zhi-Xiong [National Institute of Biological Sciences, Beijing 102206 (China); Huang, Guo-Hao; Xu, Qing-Fu; Xiang, Yan [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Li, Ningning; Sidlauskas, Kastytis [Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG (United Kingdom); Zhang, Eric Erquan [National Institute of Biological Sciences, Beijing 102206 (China); Lv, Sheng-Qing, E-mail: lvsq0518@hotmail.com [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China)

    2016-05-01

    Purpose: The aim of this study was to investigate the effect of downregulation of HIF-1α gene on human U251 glioma cells and examine the consequent changes of TMZ induced effects and explore the molecular mechanisms. Methods: U251 cell line stably expressing HIF-1α shRNA was acquired via lentiviral vector transfection. The mRNA and protein expression alterations of genes involved in our study were determined respectively by qRT-PCR and Western blot. Cell proliferation was measured by MTT assay and colony formation assay, cell invasion/migration capacity was determined by transwell invasion assay/wound healing assay, and cell apoptosis was detected by flow cytometry. Results: We successfully established a U251 cell line with highly efficient HIF-1α knockdown. HIF-1a downregulation sensitized U251 cells to TMZ treatment and enhanced the proliferation-inhibiting, invasion/migration-suppressing, apoptosis-inducing and differentiation-promoting effects exerted by TMZ. The related molecular mechanisms demonstrated that expression of O{sup 6}-methylguanine DNA methyltransferase gene (MGMT) and genes of Notch1 pathway were significantly upregulated by TMZ treatment. However, this upregulation was abrogated by HIF-1α knockdown. We further confirmed important regulatory roles of HIF-1α in the expression of MGMT and activation of Notch1 pathways. Conclusion: HIF-1α downregulation sensitizes U251 glioma cells to the temozolomide treatment via inhibiting MGMT expression and Notch1 pathway activation. - Highlights: • TMZ caused more significant proliferation inhibition and apoptosis in U251 cells after downregulating HIF-1α. • Under TMZ treatment, HIF-1 downregulated U251 cells exhibited weaker mobility and more differentiated state. • TMZ caused MGMT over-expression and Notch1 pathway activation, which could be abrogated by HIF-1α downregulation.

  15. Synergistic Inhibition of Endochondral Bone Formation by Silencing Hif1α and Runx2 in Trauma-induced Heterotopic Ossification

    Science.gov (United States)

    Lin, Lin; Shen, Qi; Leng, Huijie; Duan, Xiaoning; Fu, Xin; Yu, Changlong

    2011-01-01

    Angiogenesis and osteogenesis are tightly coupled during bone development. We studied the effect of inhibition of Hif1α and Runt-related protein 2 (Runx2) on the formation of heterotopic ossification (HO). We constructed lentivirus vectors expressing Hif1α small interfering RNA (siRNA) and Runx2 siRNA. The inhibition of Hif1α function impaired osteoblast proliferation while osteoblasts differentiated normally. Osteoblasts lacking Runx2 proliferated normally while the differentiation was impaired. The osteoblast differentiation was significantly inhibited by co-Runx2 and Hif1α siRNA treatment. The formation of HO by inhibiting Runx2 and Hif1α in an animal model induced by Achilles tenotomy was investigated. The results showed that lacking of Runx2 and Hif1α could inhibit HO formation. Inhibition of Hif1α prevented HO formation only at the initial step and inhibition of Runx2 worked both at the initial step and after chondrogenesis. Angiogenesis and the expressions of osteogenic genes were downregulated in the Hif1α siRNA group. We found synergistic inhibition of endochondral bone formation by silencing Hif1α and Runx2. Our study provided new insight into the roles of Hif1α and Runx2 during the processes of endochondral bone formation, and had important implications for the new therapeutic methods to inhibit HO or to enhance bone formation. PMID:21629226

  16. Suppression of NHE1 by small interfering RNA inhibits HIF-1α-induced angiogenesis in vitro via modulation of calpain activity.

    Science.gov (United States)

    Mo, Xian-Gang; Chen, Qing-Wei; Li, Xing-Sheng; Zheng, Min-Ming; Ke, Da-Zhi; Deng, Wei; Li, Gui-Qiong; Jiang, Jin; Wu, Zhi-Qin; Wang, Li; Wang, Peng; Yang, Yan; Cao, Guang-Yi

    2011-03-01

    Hypoxia-inducible factor-1 (HIF-1) orchestrates angiogenesis under hypoxic conditions mainly due to increased expression of such target genes as vascular endothelial growth factor (VEGF). Na+/H+exchanger-1 (NHE1), a potential HIF target gene product, plays a pivotal role in proliferation, survival, migration, adhesion and so on. However, it is unknown whether NHE1 is involved in HIF-1α-induced angiogenesis. This present study demonstrated that the expression of NHE1 was much higher in human umbilical vein endothelial cells (HUVECs) infected with adenovirus encoding HIF-1α (rAd-HIF) than with vacuum adenovirus (vAd). HIF-1α also increased the expression of VEGF, the expression and activity of calpains, and the intracellular pH. Moreover, small interfering RNA targeting NHE1 (NHE1 siRNA) dramatically decreased the expression of NHE1 and thus lowered the intracellular pH, and it also attenuated the protein expression of calpain-2 but not calpain-1, resulting in the lower calpain activity. Furthermore, HIF-1α enhanced the proliferation, migration and Matrigel tube formation, which were inhibited by NHE1 siRNA. Finally, the inhibitory effect of NHE1 siRNA was reversed by VEGF and the reversibility of the later was abrogated by the calpain inhibitor ALLM. In conclusion, the findings have revealed that NHE1 might participate in HIF-1-induced angiogenesis due, at least in part, to the alteration of the calpain activity, suggesting that NHE1 as well as calpains might represent a potential target of controlling angiogenesis in response to the hypoxic stress under various pathological conditions. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. XIAP upregulates expression of HIF target genes by targeting HIF1α for Lys63-linked polyubiquitination.

    Science.gov (United States)

    Park, Catherine V; Ivanova, Iglika G; Kenneth, Niall S

    2017-09-19

    The cellular response to hypoxia is characterised by a switch in the transcriptional program, mediated predominantly by the hypoxia inducible factor family of transcription factors (HIF). Regulation of HIF1 is primarily controlled by post-translational modification of the HIF1α subunit, which can alter its stability and/or activity. This study identifies an unanticipated role for the X-linked inhibitor of apoptosis (XIAP) protein as a regulator of Lys63-linked polyubiquitination of HIF1α. Lys63-linked ubiquitination of HIF1α by XIAP is dependent on the activity of E2 ubiquitin conjugating enzyme Ubc13. We find that XIAP and Ubc13 dependent Lys63-linked polyubiquitination promotes HIF1α nuclear retention leading to an increase in the expression of HIF1 responsive genes. Inhibition of the Lys63-linked polyubiquitination pathway leads to reduced levels of nuclear HIF1α, promoter occupancy, HIF-dependent gene expression and cell viability. Our data reveals an additional and significant level of control of the HIF1 by XIAP, with important implications in understanding the role of HIF1 and XIAP in human disease. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Suppression of mitochondrial respiration with auraptene inhibits the progression of renal cell carcinoma: involvement of HIF-1α degradation.

    Science.gov (United States)

    Jang, Yunseon; Han, Jeongsu; Kim, Soo Jeong; Kim, Jungim; Lee, Min Joung; Jeong, Soyeon; Ryu, Min Jeong; Seo, Kang-Sik; Choi, Song-Yi; Shong, Minho; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-11-10

    Renal cell carcinoma (RCC) progression resulting from the uncontrolled migration and enhanced angiogenesis is an obstacle to effective therapeutic intervention. Tumor metabolism has distinctive feature called Warburg effect, which enhances the aerobic glycolysis rapidly supplying the energy for migration of tumor. To manipulate this metabolic change characteristic of aggressive tumors, we utilized the citrus extract, auraptene, known as a mitochondrial inhibitor, testing its anticancer effects against the RCC4 cell line. We found that auraptene impaired RCC4 cell motility through reduction of mitochondrial respiration and glycolytic pathway-related genes. It also strongly disrupted VEGF-induced angiogenesis in vitro and in vivo. Hypoxia-inducible factor 1a (HIF-1a), a key regulator of cancer metabolism, migration and angiogenesis that is stably expressed in RCCs by virtue of a genetic mutation in the von Hippel-Lindau (VHL) tumor-suppressor protein, was impeded by auraptene, which blocked HIF-1a translation initiation without causing cytotoxicity. We suggest that blockade HIF-1a and reforming energy metabolism with auraptene is an effective approach for suspension RCC progression.

  19. HIF1α represses cell stress pathways to allow proliferation of hypoxic fetal cardiomyocytes

    Science.gov (United States)

    Guimarães-Camboa, Nuno; Stowe, Jennifer; Aneas, Ivy; Sakabe, Noboru; Cattaneo, Paola; Henderson, Lindsay; Kilberg, Michael S.; Johnson, Randall S.; Chen, Ju; McCulloch, Andrew D.; Nobrega, Marcelo A.; Evans, Sylvia M.; Zambon, Alexander C.

    2015-01-01

    Summary Transcriptional mediators of cell stress pathways, including HIF1α, ATF4, and p53, are key to normal development and play critical roles in disease, including ischemia and cancer. Despite their importance, mechanisms by which pathways mediated by these transcription factors interact with each other are not fully understood. In addressing the controversial role of HIF1α in cardiomyocytes (CMs) during heart development, we have discovered a mid-gestational requirement for HIF1α for proliferation of hypoxic CMs, involving metabolic switching and a complex interplay between HIF1α, ATF4 and p53. Loss of HIF1α resulted in activation of ATF4 and p53, the latter inhibiting CM proliferation. Bioinformatic and biochemical analyses revealed unexpected mechanisms by which HIF1α intersects with ATF4 and p53 pathways. Our results highlight previously undescribed roles of HIF1α and interactions between major cell stress pathways that could be targeted to enhance proliferation of CMs in ischemia, and may have relevance to other diseases, including cancer. PMID:26028220

  20. Insufficient radiofrequency ablation promotes angiogenesis of residual hepatocellular carcinoma via HIF-1α/VEGFA.

    Directory of Open Access Journals (Sweden)

    Jian Kong

    Full Text Available BACKGROUND: The mechanism of rapid growth of the residual tumor after radiofrequency (RF ablation is poorly understood. In this study, we investigated the effect of hyperthermia on HepG2 cells and generated a subline with enhanced viability and dys-regulated angiogenesis in vivo, which was used as a model to further determine the molecular mechanism of the rapid growth of residual HCC after RF ablation. METHODOLOGY/PRINCIPAL FINDINGS: Heat treatment was used to establish sublines of HepG2 cells. A subline (HepG2 k with a relatively higher viability and significant heat tolerance was selected. The cellular protein levels of VEGFA, HIF-1α and p-Akt, VEGFA mRNA and secreted VEGFA were measured, and all of these were up-regulated in this subline compared to parental HepG2 cells. HIF-1α inhibitor YC-1 and VEGFA siRNA inhibited the high viability of the subline. The conditioned media from the subline exerted stronger pro-angiogenic effects. Bevacizumab, VEGFA siRNA and YC-1 inhibited proangiogenic effects of the conditioned media of HepG2 k cells and abolished the difference between parental HepG2 cells and HepG2 k cells. For in vivo studies, a nude mouse model was used, and the efficacy of bavacizumab was determined. HepG2 k tumor had stronger pro-angiogenic effects than parental HepG2 tumor. Bevacizumab could inhibit the tumor growth and angiogenesis, and also eliminate the difference in tumor growth and angiogenesis between parental HepG2 tumor and HepG2 k tumor in vivo. CONCLUSIONS/SIGNIFICANCE: The angiogenesis induced by HIF1α/VEGFA produced by altered cells after hyperthermia treatment may play an important role in the rapid growth of residual HCC after RF ablation. Bevacizumab may be a good candidate drug for preventing and treating the process.

  1. HIF-1 in cancer therapy: two decade long story of a transcription factor.

    Science.gov (United States)

    Soni, Sourabh; Padwad, Yogendra S

    2017-04-01

    Oxygen (O2) homeostasis is an indispensable requirement of eukaryotes. O2 concentration in cellular milieu is defined as normoxia (∼21% O2), physoxia (∼1-13% O2) or hypoxia (∼0.1-1% O2). Hypoxia, a striking micro-environmental feature in tumorigenesis, is countered by tumor cells via induction of O2 governed transcription factor, hypoxia inducible factor-1 (HIF-1). Post discovery, HIF-1 has emerged as a promising anticancer therapeutic target during the last two decades. Recent reports have highlighted that enhanced levels of HIF-1 correlate with tumor metastasis leading to poor patient prognosis. A systematic search in PubMed and SciFinder for the literature on HIF-1 biology and therapeutic importance in cancer was carried out. This review highlights the initial description as well as the recent insights into HIF-1 biology and regulation. We have focused on emerging data regarding varied classes of HIF-1 target genes affecting various levels of crosstalk among tumorigenic pathways. We have emphasized on the fact that HIF-1 acts as a networking hub coordinating activities of multiple signaling molecules influencing tumorigenesis. Emerging evidences indicate role of many HIF-induced proteomic and genomic alterations in malignant progression by mediating a myriad of genes stimulating angiogenesis, anaerobic metabolism and survival of cancer cells in O2-deficient microenvironment. Better understanding of the crucial role of HIF-1 in carcinogenesis could offer promising new avenues to researchers and aid in elucidating various open issues regarding the use of HIF-1 as an anticancer therapeutic target. In spite of large efforts in this field, many questions still remain unanswered. Hence, future investigations are necessary to devise, assess and refine methods for translating previous research efforts into novel clinical practices in cancer treatment.

  2. P70S6K 1 regulation of angiogenesis through VEGF and HIF-1{alpha} expression

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Chuan-Xiu; Shi, Zhumei [Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029 (China); Meng, Qiao; Jiang, Yue; Liu, Ling-Zhi [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jiang, Bing-Hua, E-mail: binghjiang@yahoo.com [Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029 (China); Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)

    2010-07-30

    Research highlights: {yields} P70S6K1 regulates VEGF expression; {yields} P70S6K1 induces transcriptional activation through HIF-1{alpha} binding site; {yields} P70S6K1 regulates HIF-1{alpha}, but not HIF-1{beta} protein expression; {yields} P70S6K1 mediates tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression. -- Abstract: The 70 kDa ribosomal S6 kinase 1 (p70S6K1), a downstream target of phosphoinositide 3-kinase (PI3K) and ERK mitogen-activated protein kinase (MAPK), is an important regulator of cell cycle progression, and cell proliferation. Recent studies indicated an important role of p70S6K1 in PTEN-negative and AKT-overexpressing tumors. However, the mechanism of p70S6K1 in tumor angiogenesis remains to be elucidated. In this study, we specifically inhibited p70S6K1 activity in ovarian cancer cells using vector-based small interfering RNA (siRNA) against p70S6K1. We found that knockdown of p70S6K1 significantly decreased VEGF protein expression and VEGF transcriptional activation through the HIF-1{alpha} binding site at its enhancer region. The expression of p70S6K1 siRNA specifically inhibited HIF-1{alpha}, but not HIF-1{beta} protein expression. We also found that p70S6K1 down-regulation inhibited ovarian tumor growth and angiogenesis, and decreased cell proliferation and levels of VEGF and HIF-1{alpha} expression in tumor tissues. Our results suggest that p70S6K1 is required for tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression, providing a molecular mechanism of human ovarian cancer mediated by p70S6K1 signaling.

  3. Bcl-2 regulates HIF-1alpha protein stabilization in hypoxic melanoma cells via the molecular chaperone HSP90.

    Directory of Open Access Journals (Sweden)

    Daniela Trisciuoglio

    Full Text Available BACKGROUND: Hypoxia-Inducible Factor 1 (HIF-1 is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1alpha, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF-mediated tumour angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1alpha protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1alpha protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1alpha protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1alpha stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1alpha degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1alpha protein. We also showed that bcl-2, HIF-1alpha and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1alpha protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1alpha protein during hypoxia, and in particular the isoform HSP90beta is the main player in this phenomenon. CONCLUSIONS/SIGNIFICANCE: We identified the stabilization of HIF-1alpha protein as a mechanism through which bcl-2 induces the

  4. Analysis list: HIF1A [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available HIF1A Blood,Breast + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/HIF...1A.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/HIF1A.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/hg19/target/HIF1A.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/HIF1A.Blood.tsv,ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/HIF1A.Breast.tsv http://dbarch

  5. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium.

    Directory of Open Access Journals (Sweden)

    Tobias Eckle

    2013-09-01

    Full Text Available While acute lung injury (ALI contributes significantly to critical illness, it resolves spontaneously in many instances. The majority of patients experiencing ALI require mechanical ventilation. Therefore, we hypothesized that mechanical ventilation and concomitant stretch-exposure of pulmonary epithelia could activate endogenous pathways important in lung protection.To examine transcriptional responses during ALI, we exposed pulmonary epithelia to cyclic mechanical stretch conditions--an in vitro model resembling mechanical ventilation. A genome-wide screen revealed a transcriptional response similar to hypoxia signaling. Surprisingly, we found that stabilization of hypoxia-inducible factor 1A (HIF1A during stretch conditions in vitro or during ventilator-induced ALI in vivo occurs under normoxic conditions. Extension of these findings identified a functional role for stretch-induced inhibition of succinate dehydrogenase (SDH in mediating normoxic HIF1A stabilization, concomitant increases in glycolytic capacity, and improved tricarboxylic acid (TCA cycle function. Pharmacologic studies with HIF activator or inhibitor treatment implicated HIF1A-stabilization in attenuating pulmonary edema and lung inflammation during ALI in vivo. Systematic deletion of HIF1A in the lungs, endothelia, myeloid cells, or pulmonary epithelia linked these findings to alveolar-epithelial HIF1A. In vivo analysis of ¹³C-glucose metabolites utilizing liquid-chromatography tandem mass-spectrometry demonstrated that increases in glycolytic capacity, improvement of mitochondrial respiration, and concomitant attenuation of lung inflammation during ALI were specific for alveolar-epithelial expressed HIF1A.These studies reveal a surprising role for HIF1A in lung protection during ALI, where normoxic HIF1A stabilization and HIF-dependent control of alveolar-epithelial glucose metabolism function as an endogenous feedback loop to dampen lung inflammation.

  6. Chronic CSE treatment induces the growth of normal oral keratinocytes via PDK2 upregulation, increased glycolysis and HIF1α stabilization.

    Directory of Open Access Journals (Sweden)

    Wenyue Sun

    2011-01-01

    Full Text Available Exposure to cigarette smoke is a major risk factor for head and neck squamous cell carcinoma (HNSCC. We have previously established a chronic cigarette smoke extract (CSE-treated human oral normal keratinocyte model, demonstrating an elevated frequency of mitochondrial mutations in CSE treated cells. Using this model we further characterized the mechanism by which chronic CSE treatment induces increased cellular proliferation.We demonstrate that chronic CSE treatment upregulates PDK2 expression, decreases PDH activity and thereby increases the glycolytic metabolites pyruvate and lactate. We also found that the chronic CSE treatment enhanced HIF1α accumulation through increased pyruvate and lactate production in a manner selectively reversible by ascorbate. Use of a HIF1α small molecule inhibitor blocked the growth induced by chronic CSE treatment in OKF6 cells. Furthermore, chronic CSE treatment was found to increase ROS (reactive oxygen species production, and application of the ROS scavengers N-acetylcysteine abrogated the expression of PDK2 and HIF1α. Notably, treatment with dichloroacetate, a PDK2 inhibitor, also decreased the HIF1α expression as well as cell proliferation in chronic CSE treated OKF6 cells.Our findings suggest that chronic CSE treatment contribute to cell growth via increased ROS production through mitochondrial mutations, upregulation of PDK2, attenuating PDH activity thereby increasing glycolytic metabolites, resulting in HIF1α stabilization. This study suggests a role for chronic tobacco exposure in the development of aerobic glycolysis and normoxic HIFα activation as a part of HNSCC initiation. These data may provide insights into development of chemopreventive strategies for smoking related cancers.

  7. HIF-1α- Targeting Acriflavine Provides Long Term Survival and Radiological Tumor Response in Brain Cancer Therapy.

    Science.gov (United States)

    Mangraviti, Antonella; Raghavan, Tula; Volpin, Francesco; Skuli, Nicolas; Gullotti, David; Zhou, Jinyuan; Asnaghi, Laura; Sankey, Eric; Liu, Ann; Wang, Yuan; Lee, Dong-Hoon; Gorelick, Noah; Serra, Riccardo; Peters, Michael; Schriefer, Destiny; Delaspre, Fabien; Rodriguez, Fausto J; Eberhart, Charles G; Brem, Henry; Olivi, Alessandro; Tyler, Betty

    2017-11-02

    Tumor progression, limited efficacy of current standard treatments, and the rise in patient mortality are associated with gene expression caused by the synergistic action of intratumoral hypoxia and HIF-1α activation. For this reason, recent investigations have focused on HIF-targeting therapeutic agents, with encouraging preclinical and clinical results in solid tumors. Here we describe the efficacy of a HIF-1α inhibitor, Acriflavine, and demonstrate its potency against brain cancer. This safe antibacterial dye induces cell death and apoptosis in several glioma cell lines, targets HIF-1α-mediated pathways, and decreases the level of PGK1, VEGF and HIF-1α in vitro and in vivo. Administered locally via biodegradable polymers, Acriflavine provides significant benefits in survival resulting in nearly 100% long term survival, confirmed by MRI and histological analyses. This study reports preclinical evidence that this safe, small molecule can contribute to brain tumor therapy and highlights the significance of HIF-1α-targeting molecules.

  8. CYP2E1 Potentiates Ethanol-induction of Hypoxia and HIF-1α in vivo

    Science.gov (United States)

    Wang, Xiaodong; Wu, Defeng; Yang, Lili; Gan, Lixia; Cederbaum, Arthur I

    2013-01-01

    Ethanol induces hypoxia and elevates HIF-1α in the liver. CYP2E1 plays a role in the mechanisms by which ethanol generates oxidative stress, fatty liver and liver injury. The current study evaluated whether CYP2E1 contributes to ethanol-induced hypoxia and activation of HIF-1α in vivo and whether HIF-1α protects against or promotes CYP2E1-dependent toxicity in vitro. Wild type (WT), CYP2E1-knockin (KI) and CYP2E1 knockout (KO) mice were fed ethanol chronically; pair fed controls received isocaloric dextrose. Ethanol produced liver injury in the KI mice to a much greater extent than in the WT and KO mice. Protein levels of HIF-1α and downstream targets of HIF-1α activation were elevated in the ethanol-fed KI mice compared to the WT and KO mice. Levels of HIF prolylhydroxlase 2 which promotes HIF-1α degradation were decreased in the ethanol-fed KI mice in association with the increases in HIF-1α. Hypoxia occurred in the ethanol-fed CYP2E1 KI mice as shown by an increased area of staining using the hypoxia-specific marker pimonidazole. Hypoxia was lower in the ethanol-fed WT mice and lowest in the ethanol fed KO mice and all the dextrose-fed mice. In situ double staining showed that pimonidazole and CYP2E1 were co-localized to the same area of injury in the hepatic centrilobule. Increased protein levels of HIF-1α were also found after acute ethanol treatment of KI mice. Treatment of HepG2 E47 cells which express CYP2E1 with ethanol plus arachidonic (AA) acid or ethanol plus buthionine sulfoximine (BSO) which depletes GSH caused loss of cell viability to greater extent than in HepG2 C34 cells which do not express CYP2E1. These treatments elevated protein levels of HIF-1α to a greater extent in E47 cells than C34 cells. 2-Methoxyestradiol, an inhibitor of HIF-1α, blunted the toxic effects of ethanol plus AA and ethanol plus BSO in the E47 cells in association with inhibition of HIF-1α. The HIF-1α inhibitor also blocked the elevated oxidative stress produced

  9. PDGF Promotes the Warburg Effect in Pulmonary Arterial Smooth Muscle Cells via Activation of the PI3K/AKT/mTOR/HIF-1α Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yunbin Xiao

    2017-07-01

    Full Text Available Background/Aims: The enhanced proliferation of pulmonary arterial smooth muscle cells (PASMCs is a central pathological component in pulmonary arterial hypertension (PAH. Both the Warburg effect and platelet-derived growth factor (PDGF are involved in the proliferation of PASMCs. However, the mechanism underlying the crosstalk between the Warburg effect and PDGF during PASMC proliferation is still unknown. We hypothesized that PDGF promotes the Warburg effect via activating the phosphatidylinositol 3-kinase (PI3K signaling pathway and hypoxia-inducible factor 1-α (HIF-1α in proliferative PASMCs. Methods: PASMCs were derived from pulmonary arteries of SD rats; cell viability, the presence of metabolites, and metabolic enzyme activities assay were determined by MTT assays, kit assays and western blot analysis, respectively. Results: PDGF promoted PASMC proliferation in a dose- and time-dependent manner, accompanied by an enhanced Warburg effect. Treatment with PDGFR antagonists, Warburg effect inhibitor and PDK1 inhibitor significantly inhibited PI3K signaling activation, HIF-1α expression and PASMC proliferation induced by PDGF, respectively. Furthermore, treatment with PI3K signaling pathway inhibitors remarkably suppressed PDGF-induced PASMC proliferation and the Warburg effect. Conclusion: microplate reader (Biotek, Winooski The Warburg effect plays a critical role in PDGF-induced PASMC proliferation and is mediated by activation of the PI3K signaling pathway and HIF-1α.

  10. Extended ischemia prevents HIF1alpha degradation at reoxygenation by impairing prolyl-hydroxylation: role of Krebs cycle metabolites.

    Science.gov (United States)

    Serra-Pérez, Anna; Planas, Anna M; Núñez-O'Mara, Analía; Berra, Edurne; García-Villoria, Judit; Ribes, Antònia; Santalucía, Tomàs

    2010-06-11

    Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor that activates the cellular response to hypoxia. The HIF1alpha subunit is constantly synthesized and degraded under normoxia, but degradation is rapidly inhibited when oxygen levels drop. Oxygen-dependent hydroxylation by prolyl-4-hydroxylases (PHD) mediates HIF1alpha proteasome degradation. Brain ischemia limits the availability not only of oxygen but also of glucose. We hypothesized that this circumstance could have a modulating effect on HIF. We assessed the separate involvement of oxygen and glucose in HIF1alpha regulation in differentiated neuroblastoma cells subjected to ischemia. We report higher transcriptional activity and HIF1alpha expression under oxygen deprivation in the presence of glucose (OD), than in its absence (oxygen and glucose deprivation, OGD). Unexpectedly, HIF1alpha was not degraded at reoxygenation after an episode of OGD. This was not due to impairment of proteasome function, but was associated with lower HIF1alpha hydroxylation. Krebs cycle metabolites fumarate and succinate are known inhibitors of PHD, while alpha-ketoglutarate is a co-substrate of the reaction. Lack of HIF1alpha degradation in the presence of oxygen was accompanied by a very low alpha-ketoglutarate/fumarate ratio. Furthermore, treatment with a fumarate analogue prevented HIF1alpha degradation under normoxia. In all, our data suggest that postischemic metabolic alterations in Krebs cycle metabolites impair HIF1alpha degradation in the presence of oxygen by decreasing its hydroxylation, and highlight the involvement of metabolic pathways in HIF1alpha regulation besides the well known effects of oxygen.

  11. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  12. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    Science.gov (United States)

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  13. Expression of HIF-1A/VEGF/ING-4 Axis in Pulmonary Sarcoidosis.

    Science.gov (United States)

    Piotrowski, W J; Kiszałkiewicz, J; Pastuszak-Lewandoska, D; Górski, P; Antczak, A; Migdalska-Sęk, M; Górski, W; Czarnecka, K H; Domańska, D; Nawrot, E; Brzeziańska-Lasota, E

    2015-01-01

    Angiogenesis/angiostasis regulated by hypoxia inducible factor-1A (HIF-1A)/vascular endothelial growth factor (VEGF)/inhibitor of growth protein 4 (ING-4) axis may be crucial for the course and outcome of sarcoidosis. Overexpression of angiogenic factors (activation of VEGF through HIF-1A) may predispose to chronic course and lung fibrosis, whereas immunoangiostasis (related to an overexpression of inhibitory ING-4) may be involved in granuloma formation in early sarcoid inflammation, or sustained or recurrent formation of granulomas. In this work we investigated gene expression of HIF-1A, VEGF and ING-4 in bronchoalveolar fluid (BALF) cells and in peripheral blood (PB) lymphocytes of sarcoidosis patients (n=94), to better understand mechanisms of the disease and to search for its biomarkers. The relative gene expression level (RQ value) was analyzed by qPCR. The results were evaluated according to the presence of lung parenchymal involvement (radiological stage I vs. II-IV), acute vs. insidious onset, lung function tests, calcium metabolism parameters, percentage of lymphocytes (BALL%) and BAL CD4+/CD8+ in BALF, age, and gender. In BALF cells, the ING-4 and VEGF RQ values were increased, while HIF-1A expression was decreased. In PB lymphocytes all studied genes were overexpressed. Higher expression of HIF-1A in PB lymphocytes of patients with abnormal spirometry, and in BALF cells of patients with lung volume restriction was found. VEGF gene expression in BALF cells was also higher in patients with abnormal spirometry. These findings were in line with previous data on the role of HIF-1A/VEGF/ING-4 axis in the pathogenesis of sarcoidosis. Up-regulated HIF-1A and VEGF genes are linked to acknowledged negative prognostics.

  14. ATR controls cellular adaptation to hypoxia through positive regulation of hypoxia-inducible factor 1 (HIF-1) expression.

    Science.gov (United States)

    Fallone, F; Britton, S; Nieto, L; Salles, B; Muller, C

    2013-09-12

    Tumor cells adaptation to severe oxygen deprivation (hypoxia) plays a major role in tumor progression. The transcription factor HIF-1 (hypoxia-inducible factor 1), whose α-subunit is stabilized under hypoxic conditions is a key component of this process. Recent studies showed that two members of the phosphoinositide 3-kinase-related kinases (PIKKs) family, ATM (ataxia telangiectasia mutated) and DNA-PK (DNA-dependent protein kinase), regulate the hypoxic-dependent accumulation of HIF-1. These proteins initiate cellular stress responses when DNA damage occurs. In addition, it has been demonstrated that extreme hypoxia induces a replicative stress resulting in regions of single-stranded DNA at stalled replication forks and the activation of ATR (ataxia telangiectasia and Rad3 related protein), another member of the PIKKs family. Here, we show that even less severe hypoxia (0.1% O2) also induces activation of ATR through replicative stress. Importantly, in using either transiently silenced ATR cells, cells expressing an inactive form of ATR or cells exposed to an ATR inhibitor (CGK733), we demonstrate that hypoxic ATR activation positively regulates the key transcription factor HIF-1 independently of the checkpoint kinase Chk1. We show that ATR kinase activity regulates HIF-1α at the translational level and we find that the elements necessary for the regulation of HIF-1α translation are located within the coding region of HIF-1α mRNA. Finally, by using three independent cellular models, we clearly show that the loss of ATR expression and/or kinase activity results in the decrease of HIF-1 DNA binding under hypoxia and consequently affects protein expression levels of two HIF-1 target genes, GLUT-1 and CAIX. Taken together, our data show a new function for ATR in cellular adaptation to hypoxia through regulation of HIF-1α translation. Our work offers new prospect for cancer therapy using ATR inhibitors with the potential to decrease cellular adaptation in hypoxic

  15. Investigating the Multifaceted Impact of HIF-1 during Prostate Cancer and Its Potential Value as a Therapeutic Target

    Science.gov (United States)

    2016-10-01

    Acriflavine). Ten weeks after the initial treatment, mice were sacrificed and tumor extent was evaluated as described previously (4). The net weight of the...mice were treated with HIF1 inhibitors (Digoxin and Acriflavine, 2mg/kg for each drug) for 10 weeks before harvested for tumor weight analysis. 1...2. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha- dependent glycolytic pathway orchestrates a metabolic checkpoint for the

  16. Small interfering RNA targeting HIF-1{alpha} reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Staab, Adrian [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Paul Scherrer Institute (PSI), Villigen (Switzerland); Fleischer, Markus [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Wuerzburg Univ. (Germany). Medical Clinic II; Loeffler, Juergen; Einsele, Herrmann [Wuerzburg Univ. (Germany). Medical Clinic II; Said, Harun M.; Katzer, Astrid; Flentje, Michael [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Plathow, Christian [Freiburg Univ. (Germany). Dept. of Nuclear Medicine; Vordermark, Dirk [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Halle-Wittenberg Univ. (Germany). Dept. of Radiation Oncology

    2011-04-15

    Background: Hypoxia inducible factor-1 has been identified as a potential target to overcome hypoxia-induced radioresistance The aim of the present study was to investigate whether selective HIF-1 inhibition via small interfering RNA (siRNA) targeting hypoxia-inducible factor 1{alpha} (HIF-1{alpha}) affects hypoxia-induced radioresistance in HT 1080 human fibrosarcoma cells. Material and Methods: HIF-1{alpha} expression in HT 1080 human fibrosarcoma cells in vitro was silenced using HIF-1{alpha} siRNA sequence primers. Quantitative real-time polymerase chain reaction assay was performed to quantify the mRNA expression of HIF-1{alpha}. HIF-1{alpha} protein levels were studied by Western blotting at 20% (air) or after 12 hours at 0.1% O{sub 2} (hypoxia). Cells were assayed for clonogenic survival after irradiation with 2, 5, or 10 Gy, under normoxic or hypoxic conditions in the presence of HIF-1{alpha}-targeted or control siRNA sequences. A modified oxygen enhancement ratio (OER') was calculated as the ratio of the doses to achieve the same survival at 0.1% O{sub 2} as at ambient oxygen tensions. OER' was obtained at cell survival levels of 50%, 37%, and 10%. Results: HIF-1{alpha}-targeted siRNA enhanced radiation treatment efficacy under severely hypoxic conditions compared to tumor cells treated with scrambled control siRNA. OER was reduced on all survival levels after treatment with HIF-1{alpha}-targeted siRNA, suggesting that inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA increases radiosensitivity of hypoxic tumor cells in vitro. Conclusion: Inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA clearly acts synergistically with radiotherapy and increase radiosensitivity of hypoxic cells in vitro. (orig.)

  17. HIF-1-alpha links mitochondrial perturbation to the dynamic acquisition of breast cancer tumorigenicity.

    Science.gov (United States)

    Kuo, Ching-Ying; Cheng, Chun-Ting; Hou, Peifeng; Lin, Yi-Pei; Ma, Huimin; Chung, Yiyin; Chi, Kevin; Chen, Yuan; Li, Wei; Kung, Hsing-Jien; Ann, David K

    2016-06-07

    Up-regulation of hypoxia-inducible factor-1α (HIF-1α), even in normoxia, is a common feature of solid malignancies. However, the mechanisms of increased HIF-1α abundance, and its role in regulating breast cancer plasticity are not fully understood. We have previously demonstrated that dimethyl-2-ketoglutarate (DKG), a widely used cell membrane-permeable α-ketoglutarate (α-KG) analogue, transiently stabilizes HIF-1α by inhibiting prolyl hydroxylase 2. Here, we report that breast cancer tumorigenicity can be acquired through prolonged treatment with DKG. Our results indicate that, in response to prolonged DKG treatment, mitochondrial respiration becomes uncoupled, leading to the accumulation of succinate and fumarate in breast cancer cells. Further, we found that an early increase in the oxygen flux rate was accompanied by a delayed enhancement of glycolysis. Together, our results indicate that these events trigger a dynamic enrichment for cells with pluripotent/stem-like cell markers and tumorsphere-forming capacity. Moreover, DKG-mediated metabolic reprogramming results in HIF-1α induction and reductive carboxylation pathway activation. Both HIF-1α accumulation and the tumor-promoting metabolic state are required for DKG-promoted tumor repopulation capacity in vivo. Our data suggest that mitochondrial adaptation to DKG elevates the ratio of succinate or fumarate to α-KG, which in turn stabilizes HIF-1α and reprograms breast cancer cells into a stem-like state. Therefore, our results demonstrate that metabolic regulation, with succinate and/or fumarate accumulation, governs the dynamic transition of breast cancer tumorigenic states and we suggest that HIF-1α is indispensable for breast cancer tumorigenicity.

  18. The epigenetic regulation of HIF-1α by SIRT1 in MPP{sup +} treated SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Su-Yan; Guo, Yan-Jie; Feng, Ya; Cui, Xin-Xin [Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080 (China); Kuo, Sheng-Han [Department of Neurology, College of Physicians and Surgeons, Columbia University, New York (United States); Liu, Te, E-mail: liute1979@126.com [Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031 (China); Wu, Yun-Cheng, E-mail: yunchw@medmail.com.cn [Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080 (China)

    2016-02-05

    Both silent information regulator 1 (SIRT1) and hypoxia inducible factor 1 (HIF-1) have been found to play important roles in the pathophysiology of Parkinson's disease (PD). However, their mechanisms and their relationship still require further study. In the present study, we focused on the change and relationship of SIRT1 and HIF-1α in PD. PD cell models were established by using methyl-4-phenylpyridinium (MPP{sup +}), which induced inhibition of cell proliferation, cell cycle arrest and apoptosis. We found that the expression of HIF-1α and its target genes VEGFA and LDHA increased and that SIRT1 expression was inhibited in MPP{sup +} treated cells. With further analysis, we found that the acetylation of H3K14 combined with the HIF-1α promoter was dramatically increased in cells treated with MPP{sup +}, which resulted in the transcriptional activation of HIF-1α. Moreover, the acetylation of H3K14 and the expression of HIF-1α increased when SIRT1 was knocked down, suggesting that SIRT1 was involved in the epigenetic regulation of HIF-1α. At last, phenformin, another mitochondrial complex1 inhibitor, was used to testify that the increased HIF-1a was not due to off target effects of MPP{sup +}. Therefore, our results support a link between PD and SIRT1/HIF-1α signaling, which may serve as a clue for understanding PD.

  19. HIF-1α inhibits IDH-1 expression in osteosarcoma.

    Science.gov (United States)

    Liu, Deng-Cheng; Zheng, Xun; Zho, Yong; Yi, Wan-Rong; Li, Zong-Huan; Hu, Xiang; Yu, Ai-Xi

    2017-07-01

    Recently, hypoxia inducible factor-1 (HIF-1) was reported to be correlated with isocitrate dehydrogenase 1 (IDH-1) in several types of tumors. However, the expression and significance of HIF-1 and IDH-1 in osteosarcoma is still unknown. In the present study, the expression levels of IDH-1 and HIF-1α in 35 formalin-fixed paraffin-embedded sections from osteosarcoma patients were investigated by immunohistochemistry. The expression levels of IDH-1 and HIF-1α in human osteosarcoma cell lines (MG-63 and 143B) were further detected by western blotting under normal and hypoxic conditions. In addition, HIF-1α was downregulated via lentiviral vector‑mediated RNA interference (RNAi) in the MG-63 human osteosarcoma cell line. The results revealed that HIF-1α was negatively correlated with IDH-1 in the osteosarcoma tissues. Both in MG-63 and 143B cell lines, the expression of HIF-1α was increased while IDH-1 was decreased under a hypoxic condition compared to normal conditions. HIF-1α downregulation promoted IDH-1 expression in the MG-63 cell line under either normal or hypoxic conditions. In conclusion, our findings suggest that HIF-1α inhibits IDH-1 in osteosarcoma and consequently increases the incidence of osteosarcoma.

  20. Roles of PI3K/Akt and c-Jun signaling pathways in human papillomavirus type 16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis in non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Erying Zhang

    Full Text Available Human papillomavirus (HPV-16 infection may be related to non-smoking associated lung cancer. Our previous studies have found that HPV-16 oncoproteins promoted angiogenesis via enhancing hypoxia-inducible factor-1α (HIF-1α, vascular endothelial growth factor (VEGF, and interleukin-8 (IL-8 expression in non-small cell lung cancer (NSCLC cells. In this study, we further investigated the roles of PI3K/Akt and c-Jun signaling pathways in it.Human NSCLC cell lines, A549 and NCI-H460, were stably transfected with pEGFP-16 E6 or E7 plasmids. Western blotting was performed to analyze the expression of HIF-1α, p-Akt, p-P70S6K, p-P85S6K, p-mTOR, p-JNK, and p-c-Jun proteins. VEGF and IL-8 protein secretion and mRNA levels were determined by ELISA and Real-time PCR, respectively. The in vitro angiogenesis was observed by human umbilical vein endothelial cells (HUVECs tube formation assay. Co-immunoprecipitation was performed to analyze the interaction between c-Jun and HIF-1α.HPV-16 E6 and E7 oncoproteins promoted the activation of Akt, P70S6K, P85S6K, mTOR, JNK, and c-Jun. LY294002, a PI3K inhibitor, inhibited HPV-16 oncoprotein-induced activation of Akt, P70S6K, and P85S6K, expression of HIF-1α, VEGF, and IL-8, and in vitro angiogenesis. c-Jun knockdown by specific siRNA abolished HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis. Additionally, HPV-16 oncoproteins promoted HIF-1α protein stability via blocking proteasome degradation pathway, but c-Jun knockdown abrogated this effect. Furthermore, HPV-16 oncoproteins increased the quantity of c-Jun binding to HIF-1α.PI3K/Akt signaling pathway and c-Jun are involved in HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis. Moreover, HPV-16 oncoproteins promoted HIF-1α protein stability possibly through enhancing the interaction between c-Jun and HIF-1α, thus making a contribution to angiogenesis in NSCLC cells.

  1. Digoxin Downregulates NDRG1 and VEGF through the Inhibition of HIF-1α under Hypoxic Conditions in Human Lung Adenocarcinoma A549 Cells

    Directory of Open Access Journals (Sweden)

    Dong Wei

    2013-04-01

    Full Text Available Digoxin, an inhibitor of Na+/K+ ATPase, has been used in the treatment of heart-related diseases (such as congestive heart failure and atrial arrhythmia for decades. Recently, it was reported that digoxin is also an effective HIF-1α inhibitor. We investigated whether digoxin could suppress tumor cell growth through HIF-1α in non-small cell lung cancer cells (A549 cells under hypoxic conditions. An MTT assay was used to measure cell viability. RT-PCR and western blotting were performed to analyze the mRNA and protein expression of VEGF, NDRG1, and HIF-1α. HIF-1α nuclear translocation was then determined by EMSA. Digoxin was found to inhibit the proliferation of A549 cells under hypoxic conditions. Our results showed that hypoxia led to the upregulation of VEGF, NDRG1, and HIF-1α both at the mRNA and protein levels. We also found that the hypoxia-induced overexpression of VEGF, NDRG1, and HIF-1α was suppressed by digoxin in a concentration-dependent manner. As expected, our EMSA results demonstrated that under hypoxic conditions HIF-1α nuclear translocation was also markedly reduced by digoxin in a concentration-dependent manner. Our results suggest that digoxin downregulated hypoxia-induced overexpression of VEGF and NDRG1 at the transcriptional level probably through the inhibition of HIF-1α synthesis in A549 cells.

  2. Definition of a novel feed-forward mechanism for glycolysis-HIF1α signaling in hypoxic tumors highlights adolase A as a therapeutic target

    Science.gov (United States)

    James, Brian; Koh, Mei Yee; Lemos, Robert; Kingston, John; Aleshin, Alexander; Bankston, Laurie A.; Miller, Claudia P.; Cho, Eun Jeong; Edupuganti, Ramakrishna; Devkota, Ashwini; Stancu, Gabriel; Liddington, Robert C.; Dalby, Kevin; Powis, Garth

    2016-01-01

    The hypoxia-inducible transcription factor HIF1α drives expression of many glycolytic enzymes. Here we show that hypoxic glycolysis, in turn, increases HIF1α transcriptional activity and stimulates tumor growth, revealing a novel feed-forward mechanism of glycolysis-HIF1α signaling. Negative regulation of HIF1α by AMPK1 is bypassed in hypoxic cells, due to ATP elevation by increased glycolysis, thereby preventing phosphorylation and inactivation of the HIF1α transcriptional co-activator p300. Notably, of the HIF1α activated glycolytic enzymes we evaluated by gene silencing, aldolase A (ALDOA) blockade produced the most robust decrease in glycolysis, HIF-1 activity and cancer cell proliferation. Furthermore, either RNAi-mediated silencing of ALDOA or systemic treatment with a specific small molecule inhibitor of aldolase A was sufficient to increase overall survival in a xenograft model of metastatic breast cancer. In establishing a novel glycolysis-HIF-1α feed-forward mechanism in hypoxic tumor cell, our results also provide a preclinical rationale to develop aldolase A inhibitors as a generalized strategy to treat intractable hypoxic cancer cells found widely in most solid tumors. PMID:27261507

  3. Definition of a Novel Feed-Forward Mechanism for Glycolysis-HIF1α Signaling in Hypoxic Tumors Highlights Aldolase A as a Therapeutic Target.

    Science.gov (United States)

    Grandjean, Geoffrey; De Jong, Petrus; James, Brian; Koh, Mei Yee; Lemos, Robert; Kingston, John; Aleshin, Alexander; Bankston, Laurie A; Miller, Claudia P; Cho, Eun Jeong; Edupuganti, Ramakrishna; Devkota, Ashwini; Stancu, Gabriel; Liddington, Robert C; Dalby, Kevin; Powis, Garth

    2016-07-15

    The hypoxia-inducible transcription factor HIF1α drives expression of many glycolytic enzymes. Here, we show that hypoxic glycolysis, in turn, increases HIF1α transcriptional activity and stimulates tumor growth, revealing a novel feed-forward mechanism of glycolysis-HIF1α signaling. Negative regulation of HIF1α by AMPK1 is bypassed in hypoxic cells, due to ATP elevation by increased glycolysis, thereby preventing phosphorylation and inactivation of the HIF1α transcriptional coactivator p300. Notably, of the HIF1α-activated glycolytic enzymes we evaluated by gene silencing, aldolase A (ALDOA) blockade produced the most robust decrease in glycolysis, HIF-1 activity, and cancer cell proliferation. Furthermore, either RNAi-mediated silencing of ALDOA or systemic treatment with a specific small-molecule inhibitor of aldolase A was sufficient to increase overall survival in a xenograft model of metastatic breast cancer. In establishing a novel glycolysis-HIF-1α feed-forward mechanism in hypoxic tumor cells, our results also provide a preclinical rationale to develop aldolase A inhibitors as a generalized strategy to treat intractable hypoxic cancer cells found widely in most solid tumors. Cancer Res; 76(14); 4259-69. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Jianfang Chen

    Full Text Available Multidrug resistance (MDR is one of the major reasons chemotherapy-based treatments fail. Hypoxia is generally associated with tumor chemoresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1 and the multidrug resistance (MDR1 gene/transporter P-glycoprotein (P-gp remains unclear. This study aims to explore the molecular mechanisms of reversing colon cancer MDR by focusing on the target gene HIF-1α.A chemotherapeutic sensitivity assay was used to observe the efficiency of MDR reversal in LoVo multicellular spheroids (MCS. The apoptotic level induced by different drugs was examined by flow cytometry (FCM. Binding of HIF-1α to the MDR1 gene promoter was evaluated by Chromatin immunoprecipitation (ChIP. The relationship between HIF-1α/P-gp expression and sensitivity to chemotherapy was analyzed.The sensitivity of LoVo MCS to all four chemotherapy drugs was decreased to varying degrees under hypoxic conditions. After silencing the HIF-1α gene, the sensitivities of LoVo MCS to all four chemotherapy drugs were restored. The apoptotic levels that all the drugs induced were all decreased to various extents in the hypoxic group. After silencing HIF-1α, the apoptosis level induced by all four chemotherapy drugs increased. The expression of HIF-1α and P-gp was significantly enhanced in LoVo MCS after treatment with hypoxia. Inhibiting HIF-1α significantly decreased the expression of MDR1/P-gp mRNA or protein in both the LoVo monolayers and LoVo MCS. The ChIP assay showed that HIF-1α was bound to the MDR1 gene promoter. Advanced colon carcinoma patients with expression of both HIF-1α and P-gp were more resistant to chemotherapy than that with non expression.HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-gp. The expression of HIF-1α and MDR1/P-gp can be used as a predictive marker for chemotherapy resistance in colon cancer.

  5. Analysis list: Hif1a [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Hif1a Blood,Embryo + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Hif1a.1.tsv http://dbarchi...ve.biosciencedbc.jp/kyushu-u/mm9/target/Hif1a.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Hi...f1a.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Hif1a.Blood.tsv,http://dbarchi...ve.biosciencedbc.jp/kyushu-u/mm9/colo/Hif1a.Embryo.tsv http://dbarchive.bi...osciencedbc.jp/kyushu-u/mm9/colo/Blood.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Embryo.gml ...

  6. HIF-1α in Myeloid Cells Promotes Adipose Tissue Remodeling Toward Insulin Resistance.

    Science.gov (United States)

    Takikawa, Akiko; Mahmood, Arshad; Nawaz, Allah; Kado, Tomonobu; Okabe, Keisuke; Yamamoto, Seiji; Aminuddin, Aminuddin; Senda, Satoko; Tsuneyama, Koichi; Ikutani, Masashi; Watanabe, Yasuharu; Igarashi, Yoshiko; Nagai, Yoshinori; Takatsu, Kiyoshi; Koizumi, Keiichi; Imura, Johji; Goda, Nobuhito; Sasahara, Masakiyo; Matsumoto, Michihiro; Saeki, Kumiko; Nakagawa, Takashi; Fujisaka, Shiho; Usui, Isao; Tobe, Kazuyuki

    2016-12-01

    Adipose tissue hypoxia is an important feature of pathological adipose tissue expansion. Hypoxia-inducible factor-1α (HIF-1α) in adipocytes reportedly induces oxidative stress and fibrosis, rather than neoangiogenesis via vascular endothelial growth factor (VEGF)-A. We previously reported that macrophages in crown-like structures (CLSs) are both hypoxic and inflammatory. In the current study, we examined how macrophage HIF-1α is involved in high-fat diet (HFD)-induced inflammation, neovascularization, hypoxia, and insulin resistance using mice with myeloid cell-specific HIF-1α deletion that were fed an HFD. Myeloid cell-specific HIF-1α gene deletion protected against HFD-induced inflammation, CLS formation, poor vasculature development in the adipose tissue, and systemic insulin resistance. Despite a reduced expression of Vegfa in epididymal white adipose tissue (eWAT), the preadipocytes and endothelial cells of HIF-1α-deficient mice expressed higher levels of angiogenic factors, including Vegfa, Angpt1, Fgf1, and Fgf10 in accordance with preferable eWAT remodeling. Our in vitro study revealed that lipopolysaccharide-treated bone marrow-derived macrophages directly inhibited the expression of angiogenic factors in 3T3-L1 preadipocytes. Thus, macrophage HIF-1α is involved not only in the formation of CLSs, further enhancing the inflammatory responses, but also in the inhibition of neoangiogenesis in preadipocytes. We concluded that these two pathways contribute to the obesity-related physiology of pathological adipose tissue expansion, thus causing systemic insulin resistance. © 2016 by the American Diabetes Association.

  7. pPKCα mediated-HIF-1α activation related to the morphological modifications occurring in neonatal myocardial tissue in response to severe and mild hyperoxia

    Directory of Open Access Journals (Sweden)

    S. Zara

    2012-01-01

    Full Text Available In premature babies birth an high oxygen level exposure can occur and newborn hyperoxia exposure can be associated with free radical oxygen release with impairment of myocardial function, while in adult animal models short exposure to hyperoxia seems to protect heart against ischemic injury. Thus, the mechanisms and consequences which take place after hyperoxia exposure are different and related to animals age. The aim of our work has been to analyze the role played by HIF-1α in the occurrence of the morphological modifications upon hyperoxia exposure in neonatal rat heart. Hyperoxia exposure induces connective compartment increase which seems to allow enhanced blood vessels growth. An increased hypoxia inducible factor-1α (HIF-1α translocation and vascular endothelial growth factor (VEGF expression has been found upon 95% oxygen exposure to induce morphological modifications. Upstream pPKC-α expression increase in newborn rats exposed to 95% oxygen can suggest PKC involvement in HIF-1α activation. Since nitric oxide synthase (NOS are involved in heart vascular regulation, endothelial NOS (e-NOS and inducible NOS (i-NOS expression has been investigated: a lower eNOS and an higher iNOS expression has been found in newborn rats exposed to 95% oxygen related to the evidence that hyperoxia provokes a systemic vasoconstriction and to the iNOS pro-apoptotic action, respectively. The occurrence of apoptotic events, evaluated by TUNEL and Bax expression analyses, seems more evident in sample exposed to severe hyperoxia. All in all such results suggest that in newborn rats hyperoxia can trigger oxygen free radical mediated membrane injury through a pPKCα mediated HIF-1α signalling system, even though specificity of such response could be obtained by in vivo administration to the rats of specific inhibitors of PKCα. This intracellular signalling can switch molecular events leading to blood vessels development in parallel to pro-apoptotic events

  8. Tid-1 interacts with the von Hippel-Lindau protein and modulates angiogenesis by destabilization of HIF-1alpha.

    Science.gov (United States)

    Bae, Moon-Kyoung; Jeong, Joo-Won; Kim, Se-Hee; Kim, Soo-Young; Kang, Hye Jin; Kim, Dong-Min; Bae, Soo-Kyung; Yun, Il; Trentin, Grace A; Rozakis-Adcock, Maria; Kim, Kyu-Won

    2005-04-01

    The von Hippel-Lindau protein (pVHL) is a major tumor suppressor protein and also associated with the inhibition of angiogenesis via HIF-1alpha ubiquitination and proteasomal degradation. To further elucidate the biological activity of pVHL in angiogenesis, pVHL-interacting proteins were screened using the yeast two-hybrid system. We found that a mouse homologue of the long form of Drosophila tumor suppressor l(2)tid, Tid-1(L), directly interacts with pVHL in vitro and in vivo. Furthermore, Tid-1(L) protein; enhanced the interaction between HIF-1alpha and pVHL, leading to the destabilization of HIF-1alpha protein; therefore, Tid-1(L) protein decreased vascular endothelial growth factor expression and inhibited angiogenesis in vivo and in vitro. These findings propose that Tid-1(L) may play a critical role in pVHL-mediated tumor suppression by modulating the pVHL-dependent HIF-1alpha stability.

  9. Cytochrome P450 2E1 potentiates ethanol induction of hypoxia and HIF-1α in vivo.

    Science.gov (United States)

    Wang, Xiaodong; Wu, Defeng; Yang, Lili; Gan, Lixia; Cederbaum, Arthur I

    2013-10-01

    Ethanol induces hypoxia and elevates HIF-1α in the liver. CYP2E1 plays a role in the mechanisms by which ethanol generates oxidative stress, fatty liver, and liver injury. This study evaluated whether CYP2E1 contributes to ethanol-induced hypoxia and activation of HIF-1α in vivo and whether HIF-1α protects against or promotes CYP2E1-dependent toxicity in vitro. Wild-type (WT), CYP2E1-knock-in (KI), and CYP2E1 knockout (KO) mice were fed ethanol chronically; pair-fed controls received isocaloric dextrose. Ethanol produced liver injury in the KI mice to a much greater extent than in the WT and KO mice. Protein levels of HIF-1α and downstream targets of HIF-1α activation were elevated in the ethanol-fed KI mice compared to the WT and KO mice. Levels of HIF prolyl hydroxylase 2, which promotes HIF-1α degradation, were decreased in the ethanol-fed KI mice in association with the increases in HIF-1α. Hypoxia occurred in the ethanol-fed CYP2E1 KI mice as shown by an increased area of staining using the hypoxia-specific marker pimonidazole. Hypoxia was lower in the ethanol-fed WT mice and lowest in the ethanol-fed KO mice and all the dextrose-fed mice. In situ double staining showed that pimonidazole and CYP2E1 were colocalized to the same area of injury in the hepatic centrilobule. Increased protein levels of HIF-1α were also found after acute ethanol treatment of KI mice. Treatment of HepG2 E47 cells, which express CYP2E1, with ethanol plus arachidonic acid (AA) or ethanol plus buthionine sulfoximine (BSO), which depletes glutathione, caused loss of cell viability to a greater extent than in HepG2 C34 cells, which do not express CYP2E1. These treatments elevated protein levels of HIF-1α to a greater extent in E47 cells than in C34 cells. 2-Methoxyestradiol, an inhibitor of HIF-1α, blunted the toxic effects of ethanol plus AA and ethanol plus BSO in the E47 cells in association with inhibition of HIF-1α. The HIF-1α inhibitor also blocked the elevated oxidative

  10. Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Escherichia coli Infection

    Science.gov (United States)

    Lin, Ann E.; Beasley, Federico C.; Olson, Joshua; Keller, Nadia; Shalwitz, Robert A.; Hannan, Thomas J.; Hultgren, Scott J.; Nizet, Victor

    2015-01-01

    Uropathogenic E. coli (UPEC) is the primary cause of urinary tract infections (UTI) affecting approximately 150 million people worldwide. Here, we revealed the importance of transcriptional regulator hypoxia-inducible factor-1 α subunit (HIF-1α) in innate defense against UPEC-mediated UTI. The effects of AKB-4924, a HIF-1α stabilizing agent, were studied using human uroepithelial cells (5637) and a murine UTI model. UPEC adherence and invasion were significantly reduced in 5637 cells when HIF-1α protein was allowed to accumulate. Uroepithelial cells treated with AKB-4924 also experienced reduced cell death and exfoliation upon UPEC challenge. In vivo, fewer UPEC were recovered from the urine, bladders and kidneys of mice treated transurethrally with AKB-4924, whereas increased bacteria were recovered from bladders of mice with a HIF-1α deletion. Bladders and kidneys of AKB-4924 treated mice developed less inflammation as evidenced by decreased pro-inflammatory cytokine release and neutrophil activity. AKB-4924 impairs infection in uroepithelial cells and bladders, and could be correlated with enhanced production of nitric oxide and antimicrobial peptides cathelicidin and β-defensin-2. We conclude that HIF-1α transcriptional regulation plays a key role in defense of the urinary tract against UPEC infection, and that pharmacological HIF-1α boosting could be explored further as an adjunctive therapy strategy for serious or recurrent UTI. PMID:25927232

  11. Pin1, a new player in the fate of HIF-1α degradation: an hypothetical mechanism inside vascular damage as Alzheimer’s disease risk factor.

    Directory of Open Access Journals (Sweden)

    Elena eLonati

    2014-01-01

    Full Text Available Aetiology of neurodegenerative mechanisms underlying Alzheimer's disease (AD are still under elucidation. The contribution of cerebrovascular deficiencies (such as cerebral ischemia/stroke has been strongly endorsed in recent years. Reduction of blood supply leading to hypoxic condition is known to activate cellular responses mainly controlled by hypoxia-inducible transcription factor-1 (HIF-1. Thus alterations of oxygen responsive HIF-1α subunit in the central nervous system may contribute to the cognitive decline, especially influencing mechanisms associated to APP (amyloid precursor protein amyloidogenic metabolism. Although HIF-1α protein level is known to be regulated by von Hippel-Lindau (VHL ubiquitin-proteasome system, it has been recently suggested that Gsk-3β (glycogen synthase kinase-3β promotes a VHL-independent HIF-1α degradation. Here we provide evidences that in rat primary hippocampal cell cultures, HIF-1α degradation might be mediated by a synergic action of Gsk-3β and Pin1 (peptidyl-prolyl cis/trans isomerase. In post-ischemic conditions, such as those mimicked with oxygen glucose deprivation (OGD, HIF-1α protein level increases remaining unexpectedly high for long time after normal condition restoration jointly with the increase of LDH (lactate dehydrogenase and BACE1 (β-secretase 1 protein expression (70% and 140% respectively. Interestingly the Pin1 activity decreases about 40%-60% and Pin1S16 inhibitory phosphorylation significantly increases, indicating that Pin1 binding to its substrate and enzymatic activity are reduced by treatment. Co-immunoprecipitation experiments demonstrate that HIF-1α/Pin1 in normoxia are associated, and that in presence of specific Pin1 and Gsk-3β inhibitors their interaction is reduced in parallel to an increase of HIF-1α protein level. Thus we suggest that in post-OGD neurons the high level of HIF-1α might be due to Pin1 binding ability and activity reduction which affects HIF-1

  12. Roles of HIF-1α, VEGF, and NF-κB in Ischemic Preconditioning-Mediated Neuroprotection of Hippocampal CA1 Pyramidal Neurons Against a Subsequent Transient Cerebral Ischemia.

    Science.gov (United States)

    Lee, Jae-Chul; Tae, Hyun-Jin; Kim, In Hye; Cho, Jeong Hwi; Lee, Tae-Kyeong; Park, Joon Ha; Ahn, Ji Hyeon; Choi, Soo Young; Bai, Hui Chen; Shin, Bich-Na; Cho, Geum-Sil; Kim, Dae Won; Kang, Il Jun; Kwon, Young-Guen; Kim, Young-Myeong; Won, Moo-Ho; Bae, Eun Joo

    2016-10-26

    Ischemic preconditioning (IPC) provides neuroprotection against subsequent severe ischemic insults by specific mechanisms. We tested the hypothesis that IPC attenuates post-ischemic neuronal death in the gerbil hippocampal CA1 region (CA1) throughout hypoxia inducible factor-1α (HIF-1α) and its associated factors such as vascular endothelial growth factor (VEGF) and nuclear factor-kappa B (NF-κB). Lethal ischemia (LI) without IPC increased expressions of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) in CA1 pyramidal neurons at 12 h and/or 1-day post-LI; thereafter, their expressions were decreased in the CA1 pyramidal neurons with time and newly expressed in non-pyramidal cells (pericytes), and the CA1 pyramidal neurons were dead at 5-day post-LI, and, at this point in time, their immunoreactivities were newly expressed in pericytes. In animals with IPC subjected to LI (IPC/LI)-group), CA1 pyramidal neurons were well protected, and expressions of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) were significantly increased compared to the sham-group and maintained after LI. Whereas, treatment with 2ME2 (a HIF-1α inhibitor) into the IPC/LI-group did not preserve the IPC-mediated increases of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) expressions and did not show IPC-mediated neuroprotection. In brief, IPC protected CA1 pyramidal neurons from LI by upregulation of HIF-1α, VEGF, and p-IκB-α expressions. This study suggests that IPC increases HIF-1α expression in CA1 pyramidal neurons, which enhances VEGF expression and NF-κB activation and that IPC may be a strategy for a therapeutic intervention of cerebral ischemic injury.

  13. MKP-1 negatively regulates LPS-mediated IL-1β production through p38 activation and HIF-1α expression.

    Science.gov (United States)

    Talwar, Harvinder; Bauerfeld, Christian; Bouhamdan, Mohamad; Farshi, Pershang; Liu, Yusen; Samavati, Lobelia

    2017-06-01

    Interleukin 1 beta (IL-1β) is a pro-inflammatory cytokine that plays a major role in inflammatory diseases as well as cancer. The inflammatory response after Toll-like receptor (TLR) 4 activation is tightly regulated through phosphorylation of MAP kinases, including p38 and JNK pathways. The activation of MAP kinases is negatively regulated by MAPK phosphatases (MKPs). MKP-1 preferentially dephosphorylates p38 and JNK. IL-1β is regulated through the activation of MAPK, including p38 as well as several transcription factors. The oxygen-sensitive transcription factor HIF-1α is a known transcription factor for several inflammatory cytokines including IL-1β and IL-6. Here, we report that MKP-1 regulates HIF-1α expression in response to LPS. MKP-1 deficient bone marrow derived macrophages (BMDMs) exhibited increased reactive oxygen species (ROS) production and higher HIF-1α expression. In contrast, the expression of all three isoforms of prolyl hydroxylases (PHDs), which are important in destabilizing HIF-1α through hydroxylation, were significantly decreased in MKP-1 deficient BMDMs. LPS challenge of MKP-1 deficient BMDMs led to a substantial increase in IL-1β production. An inhibitor of HIF-1α significantly decreased LPS mediated IL-1β production both at the transcript and protein levels. Similarly, inhibition of p38 MAP kinase reduced LPS mediated pro-IL-1β and HIF-1α protein levels as well as ROS production in MKP-1 deficient BMDMs. These findings demonstrate a regulatory function for MKP-1 in modulating IL-1β expression through p38 activation, ROS production and HIF-1α expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. HIF-1α Activation Attenuates IL-6 and TNF-α Pathways in Hippocampus of Rats Following Transient Global Ischemia

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-07-01

    Full Text Available Background/Aims: This study was to examine the role played by hypoxia inducible factor-1 (HIF-1α in regulating pro-inflammatory cytokines (PICs pathway in the rat hippocampus after cardiac arrest (CA induced-transient global ischemia followed by cardiopulmonary resuscitation (CPR. Those PICs include interleukin-1β (IL-1β, interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α. Methods: A rat model of CA induced by asphyxia was used in the current study. Following CPR, the hippocampus CA1 region was obtained for ELISA to determine the levels of HIF-1α and PICs; and Western Blot analysis to determine the protein levels of PIC receptors. Results: Our data show that IL-1β, IL-6 and TNF-α were significant elevated in the hippocampus after CPR as compared with control group. This was companied with increasing of HIF-1α and the time courses for HIF-1α and PICs were similar. In addition, PIC receptors, namely IL-1R, IL-6R and TNFR1 were upregulated in CA rats. Also, stimulation of HIF-1α by systemic administration of ML228, HIF-1α activator, significantly attenuated the amplified IL-6/IL-6R and TNF-α /TNFR1 pathway in the hippocampus of CA rats, but did not modify IL-1β and its receptor. Moreover, ML228 attenuated upregulated expression of Caspase-3 indicating cell apoptosis evoked by CA. Conclusion: Transient global ischemia induced by CA increases the levels of IL-1β, IL-6 and TNF-α and thereby leads to enhancement in their respective receptor in the rat hippocampus. Stabilization of HIF-1α plays a role in attenuating amplified expression IL-6R, TNFR1 and Caspase-3 in the processing of transient global ischemia. Results of our study suggest that PICs contribute to cerebral injuries evoked by transient global ischemia and in this pathophysiological process activation of HIF-1α improves tissues against ischemic injuries. Our data revealed specific signaling pathways in alleviating CA-evoked global cerebral ischemia by elucidating that

  15. Design and in vitro activities of N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, novel small molecule Hypoxia Inducible Factor-1 (HIF-1) pathway inhibitors and anti-cancer agents

    Science.gov (United States)

    Mun, Jiyoung; Jabbar, Adnan Abdul; Devi, Narra Sarojini; Yin, Shaoman; Wang, Yingzhe; Tan, Chalet; Culver, Deborah; Snyder, James P.; Van Meir, Erwin G.; Goodman, Mark M.

    2013-01-01

    The Hypoxia Inducible Factor (HIF) pathway is an attractive target for cancer as it controls tumor adaptation to growth under hypoxia and mediates chemo- and radiation resistance. We previously discovered 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, as a novel small molecule HIF-1 pathway inhibitor in a high-throughput cell-based assay, but its in vivo delivery is hampered by poor aqueous solubility (0.009 μM in water; logP7.4: 3.7). Here we describe the synthesis of twelve N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, which were designed to possess optimal lipophilicities and aqueous solubilities by in silico calculations. Experimental logP7.4 values of 8 of the 12 new analogs ranged from 1.2 ∼ 3.1. Aqueous solubilities of 3 analogs were measured, among which the most soluble N-[(8-methoxy-2,2-dimethyl-2H-chromen-6-yl)methyl]-N-(propan-2-yl)pyridine-2-sulfonamide had an aqueous solubility of 80 μM, e.g. a solubility improvement of ∼9,000-fold. The pharmacological optimization had minimal impact on drug efficacy as the compounds retained IC50 values at or below 5 μM in our HIF-dependent reporter assay. PMID:22746274

  16. HIF-1α Transgenic Bone Marrow Cells Can Promote Tissue Repair in Cases of Corticosteroid-Induced Osteonecrosis of the Femoral Head in Rabbits

    Science.gov (United States)

    Ding, Hao; Gao, You-Shui; Hu, Chen; Wang, Yang; Wang, Chuan-Gui; Yin, Ji-Min; Sun, Yuan; Zhang, Chang-Qing

    2013-01-01

    Although corticosteroid-induced osteonecrosis of the femoral head (ONFH) is common, the treatment for it remains limited and largely ineffective. We examined whether implantation of hypoxia inducible factor-1α (HIF-1α) transgenic bone marrow cells (BMCs) can promote the repair of the necrotic area of corticosteroid-induced ONFH. In this study, we confirmed that HIF-1α gene transfection could enhance mRNA expression of osteogenic genes in BMCs in vitro. Alkaline phosphatase activity assay and alizarin red-S staining indicated HIF-1α transgenic BMCs had enhanced osteogenic differentiation capacity in vitro. Furthermore, enzyme linked immunosorbent assay (ELISA) for VEGF revealed HIF-1α transgenic BMCs secreted more VEGF as compared to normal BMCs. An experimental rabbit model of early-stage corticosteroid-induced ONFH was established and used for an evaluation of cytotherapy. Transplantation of HIF-1α transgenic BMCs dramatically improved the bone regeneration of the necrotic area of the femoral head. The number and volume of blood vessel were significantly increased in the necrotic area of the femoral head compared to the control groups. These results support HIF-1α transgenic BMCs have enhanced osteogenic and angiogenic activity in vitro and in vivo. Transplantation of HIF-1α transgenic BMCs can potentially promote the repair of the necrotic area of corticosteroid-induced ONFH. PMID:23675495

  17. HIF-1α transgenic bone marrow cells can promote tissue repair in cases of corticosteroid-induced osteonecrosis of the femoral head in rabbits.

    Science.gov (United States)

    Ding, Hao; Gao, You-Shui; Hu, Chen; Wang, Yang; Wang, Chuan-Gui; Yin, Ji-Min; Sun, Yuan; Zhang, Chang-Qing

    2013-01-01

    Although corticosteroid-induced osteonecrosis of the femoral head (ONFH) is common, the treatment for it remains limited and largely ineffective. We examined whether implantation of hypoxia inducible factor-1α (HIF-1α) transgenic bone marrow cells (BMCs) can promote the repair of the necrotic area of corticosteroid-induced ONFH. In this study, we confirmed that HIF-1α gene transfection could enhance mRNA expression of osteogenic genes in BMCs in vitro. Alkaline phosphatase activity assay and alizarin red-S staining indicated HIF-1α transgenic BMCs had enhanced osteogenic differentiation capacity in vitro. Furthermore, enzyme linked immunosorbent assay (ELISA) for VEGF revealed HIF-1α transgenic BMCs secreted more VEGF as compared to normal BMCs. An experimental rabbit model of early-stage corticosteroid-induced ONFH was established and used for an evaluation of cytotherapy. Transplantation of HIF-1α transgenic BMCs dramatically improved the bone regeneration of the necrotic area of the femoral head. The number and volume of blood vessel were significantly increased in the necrotic area of the femoral head compared to the control groups. These results support HIF-1α transgenic BMCs have enhanced osteogenic and angiogenic activity in vitro and in vivo. Transplantation of HIF-1α transgenic BMCs can potentially promote the repair of the necrotic area of corticosteroid-induced ONFH.

  18. Hypoxia favors myosin heavy chain beta gene expression in an Hif-1alpha-dependent manner

    Science.gov (United States)

    Binó, Lucia; Procházková, Jiřina; Radaszkiewicz, Katarzyna Anna; Kučera, Jan; Kudová, Jana; Pacherník, Jiří; Kubala, Lukáš

    2017-01-01

    The potentiation of the naturally limited regenerative capacity of the heart is dependent on an understanding of the mechanisms that are activated in response to pathological conditions such as hypoxia. Under these conditions, the expression of genes suggested to support cardiomyocyte survival and heart adaptation is triggered. Particularly important are changes in the expression of myosin heavy chain (MHC) isoforms. We propose here that alterations in the expression profiles of MHC genes are induced in response to hypoxia and are primarily mediated by hypoxia inducible factor (HIF). In in vitro models of mouse embryonic stem cell-derived cardiomyocytes, we showed that hypoxia (1% O2) or the pharmacological stabilization of HIFs significantly increased MHCbeta (Myh7) gene expression. The key role of HIF-1alpha is supported by the absence of these effects in HIF-1alpha-deficient cells, even in the presence of HIF-2alpha. Interestingly, ChIP analysis did not confirm the direct interaction of HIF-1alpha with putative HIF response elements predicted in the MHCalpha and beta encoding DNA region. Further analyses showed the significant effect of the mTOR signaling inhibitor rapamycin in inducing Myh7 expression and a hypoxia-triggered reduction in the levels of antisense RNA transcripts associated with the Myh7 gene locus. Overall, the recognized and important role of HIF in the regulation of heart regenerative processes could be highly significant for the development of novel therapeutic interventions in heart failure. PMID:29137374

  19. Activation of protease-activated receptor 2 induces VEGF independently of HIF-1.

    Directory of Open Access Journals (Sweden)

    Jeppe Grøndahl Rasmussen

    Full Text Available BACKGROUND: Human adipose stem cells (hASCs can promote angiogenesis through secretion of proangiogenic factors such as vascular endothelial growth factor (VEGF. In other cell types, it has been shown that induction of VEGF is mediated by both protease activated receptor 2 (PAR2 and hypoxia inducible factor 1(HIF-1. The present study hypothesized that PAR2 stimulation through activation of kinase signaling cascades lead to induction of HIF-1 and secretion of VEGF. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemistry revealed the expression of PAR2 receptors on the surface of hASCs. Blocking the PAR2 receptors with a specific antibody prior to trypsin treatment showed these receptors are involved in trypsin-evoked increase in VEGF secretion from hASCs. Blocking with specific kinase inhibitors suggested that that activation of MEK/ERK and PI3-kinase/Akt pathways are involved in trypsin-eveoked induction of VEGF. The effect of the trypsin treatment on the transcription of VEGF peaked at 6 hours after the treatment and was comparable to the activation observed after keeping hASCs for 24 hours at 1% oxygen. In contrast to hypoxia, trypsin alone failed to induce HIF-1 measured with ELISA, while the combination of trypsin and hypoxia had an additive effect on both VEGF transcription and secretion, results which were confirmed by Western blot. CONCLUSION: In hASCs trypsin and hypoxia induce VEGF expression through separate pathways.

  20. Effects of Nitric Oxide and Reactive Oxygen Species on HIF-1α Stabilization Following Clostridium Difficile Toxin Exposure of the Caco-2 Epithelial Cell Line

    Directory of Open Access Journals (Sweden)

    Joshua Y. Lee

    2013-08-01

    Full Text Available Background/Aims: Stabilization of the hypoxia-inducible factor (HIF-1α is proposed to provide a protective host-response to C. difficile intoxication. Here, we aimed to elucidate whether nitric oxide and/or reactive oxygen species produced during C. difficile toxin exposure could influence HIF-1α stability and initiate protection against epithelial cell damage. Methods/Results: HIF-1α and inducible nitric oxide synthase (iNOS proteins were up-regulated whereas factor-inhibiting HIF-1 (FIH-1 protein was down-regulated in Caco-2 epithelial cell monolayers with in vitro toxin exposure. We demonstrate using the biotin-switch assay that the stabilization of HIF-1α protein occurred via iNOS-dependent nitrosylation. Inhibition of iNOS activity by selective inhibitor (1400W attenuated HIF-1α stabilization and exacerbated toxin-dependent disruptions in Caco-2 monolayer morphology and tight junctional integrity in vitro. Treatment of Caco-2 cell monolayers with N-actylcysteine (NAC, a scavenger of reactive oxygen species (ROS, attenuated toxin-dependent increases in iNOS and HIF-1α protein levels but had no effect on FIH-1 responses. In addition, mice that were exposed to C. difficile toxin in vivo also demonstrated a significant increase in HIF-1α protein and nitrosylation levels. Conclusion: Taken together, these data suggest that important synergistic actions exist between nitric oxide and ROS to stabilize HIF-1α and its innate, protective actions in the context of C. difficile toxin-mediated epithelial injury.

  1. HIF-1{alpha} is necessary to support gluconeogenesis during liver regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Toshihide [Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Goda, Nobuhito, E-mail: goda@waseda.jp [Department of Life Science and Medical Bio-Science, School of Advanced Science and Engineering, Waseda University, TWIns 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480 (Japan); Fujiki, Natsuko; Hishiki, Takako; Nishiyama, Yasumasa [Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Senoo-Matsuda, Nanami [Department of Life Science and Medical Bio-Science, School of Advanced Science and Engineering, Waseda University, TWIns 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480 (Japan); Shimazu, Motohide [Department of Surgery, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo 193-0998 (Japan); Soga, Tomoyoshi [The Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata 997-0052 (Japan); Yoshimura, Yasunori [Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Johnson, Randall S. [Molecular Biology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093 (United States); Suematsu, Makoto [Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2009-10-02

    Coordinated recovery of hepatic glucose metabolism is prerequisite for normal liver regeneration. To examine roles of hypoxia inducible factor-1{alpha} (HIF-1{alpha}) for hepatic glucose homeostasis during the reparative process, we inactivated the gene in hepatocytes in vivo. Following partial hepatectomy (PH), recovery of residual liver weight was initially retarded in the mutant mice by down-regulation of hepatocyte proliferation, but occurred comparably between the mutant and control mice at 72 h after PH. At this time point, the mutant mice showed lowered blood glucose levels with enhanced accumulation of glycogen in the liver. The mutant mice exhibited impairment of hepatic gluconeogenesis as assessed by alanine tolerance test. This appeared to result from reduced expression of PGK-1 and PEPCK since 3-PG, PEP and malate were accumulated to greater extents in the regenerated liver. In conclusion, these findings provide evidence for roles of HIF-1{alpha} in the regulation of gluconeogenesis under liver regeneration.

  2. Influence of Dll4 via HIF-1α-VEGF signaling on the angiogenesis of choroidal neovascularization under hypoxic conditions.

    Directory of Open Access Journals (Sweden)

    Xiao Dong

    Full Text Available Choroidal neovascularization (CNV is the common pathological basis of irreversible visual impairment encountered in a variety of chorioretinal diseases; the pathogenesis of its development is complicated and still imperfectly understood. Recent studies indicated that delta-like ligand 4 (Dll4, one of the Notch family ligands might participate in the HIF-1α-VEGF pathway to regulate CNV angiogenesis. But little is known about the influence and potential mechanism of Dll4/Notch signals on CNV angiogenesis. Real-time RT-PCR, Western blotting were used to analyze the expression alteration of Dll4, VEGF and HIF-1α in hypoxic RF/6A cells. Immunofluorescence staining, a laser-induced rat CNV model and intravitreal injection techniques were used to confirm the relationships among these molecules in vitro and in vivo. RPE-RF/6A cell co-culture systems were used to investigate the effects of Dll4/Notch signals on CNV angiogenesis. We found that the Dll4 was involved in hypoxia signaling in CNV angiogenesis. Results from the co-culture system showed that the enhancement of Dll4 expression in RF/6A cells led to the significantly faster proliferation and stronger tube forming ability, but inhibited cells migration and invasion across a monolayer of RPE cells in hypoxic environment, while siRNA-mediated Dll4 silencing caused the opposite effects. Pharmacological disruption of Notch signaling using gamma-secretase inhibitor (GSI produced similar, but not identical effects, to that caused by the Dll4 siRNA. In addition, the expression of several key molecules involved in the angiogenesis of CNV was altered in RF/6A cells showing constitutively active Dll4 expression. These results suggest that Dll4 play an important role in CNV angiogenesis, which appears to be regulated by HIF-1α and VEGF during the progression of CNV under hypoxic conditions. Targeting Dll4/Notch signaling may facilitate further understanding of the mechanisms that underlie CNV angiogenesis.

  3. Eukaryotic translation initiation factor 5A (eIF5A) is essential for HIF-1α activation in hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Tariq, Mohammad [Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Graduate School of Science and Engineering, Saitama University, 645 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Ito, Akihiro, E-mail: akihiro-i@riken.jp [Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Japan Agency for Medical Research and Development, AMED-CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004 (Japan); Ishfaq, Muhammad; Bradshaw, Elliot [Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Graduate School of Science and Engineering, Saitama University, 645 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Yoshida, Minoru [Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Graduate School of Science and Engineering, Saitama University, 645 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Japan Agency for Medical Research and Development, AMED-CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004 (Japan)

    2016-02-05

    The eukaryotic initiation factor 5A (eIF5A) is an essential protein involved in translation elongation and cell proliferation. eIF5A undergoes several post-translational modifications including hypusination and acetylation. Hypusination is indispensable for the function of eIF5A. On the other hand, the precise function of acetylation remains unknown, but it may render the protein inactive since hypusination blocks acetylation. Here, we report that acetylation of eIF5A increases under hypoxia. During extended hypoxic periods an increase in the level of eIF5A acetylation correlated with a decrease in HIF-1α, suggesting involvement of eIF5A activity in HIF-1α expression under hypoxia. Indeed, suppression of eIF5A by siRNA oligo-mediated knockdown or treatment with GC7, a deoxyhypusine synthase inhibitor, led to significant reduction of HIF-1α activity. Furthermore, knockdown of eIF5A or GC7 treatment reduced tumor spheroid formation with a concomitant decrease in HIF-1α expression. Our results suggest that functional, hypusinated eIF5A is necessary for HIF-1α expression during hypoxia and that eIF5A is an attractive target for cancer therapy. - Highlights: • Hypoxia induces acetylation of eIF5A. • Active eIF5A is necessary for HIF-1α activation in hypoxia. • Active eIF5A is important for tumor spheroid growth.

  4. (HIF-1α) on proliferation and apoptosis of adrenocorticotropic hormone

    African Journals Online (AJOL)

    Jane

    2011-07-25

    Jul 25, 2011 ... hypoxia induced apoptosis, we investigated the effects of HIF-1α on proliferation and apoptosis of adrenocorticotropic hormone ... The effect of CoCl2 on the proliferation of AtT-20 cells was in a concentration and time dependent manner. When the ..... arrest by functionally counter-acting. Myc. Embo.

  5. Active HIF-1 in the Normal Human Retina

    NARCIS (Netherlands)

    Hughes, John M.; Groot, Arjan J.; van der Groep, Petra; Sersansie, René; Vooijs, Marc; van Diest, Paul J.; van Noorden, Cornelis J. F.; Schlingemann, Reinier O.; Klaassen, Ingeborg

    2010-01-01

    A unique feature of the retina is the presence of photoreceptors, which require an enormous amount of oxygen for the conversion of light to an electrical signal. Hypoxia-inducible factor-1 alpha (HIF-1 alpha) is a transcription factor that is the master regulator of cellular adaptation to low oxygen

  6. Hypoxia-induced cytotoxic drug resistance in osteosarcoma is independent of HIF-1Alpha.

    Directory of Open Access Journals (Sweden)

    Jennifer Adamski

    Full Text Available Survival rates from childhood cancer have improved dramatically in the last 40 years, such that over 80% of children are now cured. However in certain subgroups, including metastatic osteosarcoma, survival has remained stubbornly poor, despite dose intensive multi-agent chemotherapy regimens, and new therapeutic approaches are needed. Hypoxia is common in adult solid tumours and is associated with treatment resistance and poorer outcome. Hypoxia induces chemotherapy resistance in paediatric tumours including neuroblastoma, rhabdomyosarcoma and Ewing's sarcoma, in vitro, and this drug resistance is dependent on the oxygen-regulated transcription factor hypoxia inducible factor-1 (HIF-1. In this study the effects of hypoxia on the response of the osteosarcoma cell lines 791T, HOS and U2OS to the clinically relevant cytotoxics cisplatin, doxorubicin and etoposide were evaluated. Significant hypoxia-induced resistance to all three agents was seen in all three cell lines and hypoxia significantly reduced drug-induced apoptosis. Hypoxia also attenuated drug-induced activation of p53 in the p53 wild-type U2OS osteosarcoma cells. Drug resistance was not induced by HIF-1α stabilisation in normoxia by cobalt chloride nor reversed by the suppression of HIF-1α in hypoxia by shRNAi, siRNA, dominant negative HIF or inhibition with the small molecule NSC-134754, strongly suggesting that hypoxia-induced drug resistance in osteosarcoma cells is independent of HIF-1α. Inhibition of the phosphoinositide 3-kinase (PI3K pathway using the inhibitor PI-103 did not reverse hypoxia-induced drug resistance, suggesting the hypoxic activation of Akt in osteosarcoma cells does not play a significant role in hypoxia-induced drug resistance. Targeting hypoxia is an exciting prospect to improve current anti-cancer therapy and combat drug resistance. Significant hypoxia-induced drug resistance in osteosarcoma cells highlights the potential importance of hypoxia as a target

  7. HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2015-04-01

    Full Text Available Background/Aims: Joint cartilage defects are difficult to treat due to the limited self-repair capacities of cartilage. Cartilage tissue engineering based on stem cells and gene enhancement is a potential alternative for cartilage repair. Bone morphogenetic protein 2 (BMP2 has been shown to induce chondrogenic differentiation in mesenchymal stem cells (MSCs; however, maintaining the phenotypes of MSCs during cartilage repair since differentiation occurs along the endochondral ossification pathway. In this study, hypoxia inducible factor, or (HIF-1α, was determined to be a regulator of BMP2-induced chondrogenic differentiation, osteogenic differentiation, and endochondral bone formation. Methods: BMP2 was used to induce chondrogenic and osteogenic differentiation in stem cells and fetal limb development. After HIF-1α was added to the inducing system, any changes in the differentiation markers were assessed. Results: HIF-1α was found to potentiate BMP2-induced Sox9 and the expression of chondrogenesis by downstream markers, and inhibit Runx2 and the expression of osteogenesis by downstream markers in vitro. In subcutaneous stem cell implantation studies, HIF-1α was shown to potentiate BMP2-induced cartilage formation and inhibit endochondral ossification during ectopic bone/cartilage formation. In the fetal limb culture, HIF-1α and BMP2 synergistically promoted the expansion of the proliferating chondrocyte zone and inhibited chondrocyte hypertrophy and endochondral ossification. Conclusion: The results of this study indicated that, when combined with BMP2, HIF-1α induced MSC differentiation could become a new method of maintaining cartilage phenotypes during cartilage tissue engineering.

  8. NADPH oxidase 4 mediates insulin-stimulated HIF-1α and VEGF expression, and angiogenesis in vitro.

    Directory of Open Access Journals (Sweden)

    Dan Meng

    Full Text Available Acute intensive insulin therapy causes a transient worsening of diabetic retinopathy in type 1 diabetes patients and is related to VEGF expression. Reactive oxygen species (ROS have been shown to be involved in HIF-1α and VEGF expression induced by insulin, but the role of specific ROS sources has not been fully elucidated. In this study we examined the role of NADPH oxidase subunit 4 (Nox4 in insulin-stimulated HIF-1α and VEGF expression, and angiogenic responses in human microvascular endothelial cells (HMVECs. Here we demonstrate that knockdown of Nox4 by siRNA reduced insulin-stimulated ROS generation, the tyrosine phosphorylation of IR-β and IRS-1, but did not change the serine phosphorylation of IRS-1. Nox4 gene silencing had a much greater inhibitory effect on insulin-induced AKT activation than ERK1/2 activation, whereas it had little effect on the expression of the phosphatases such as MKP-1 and SHIP. Inhibition of Nox4 expression inhibited the transcriptional activity of VEGF through HIF-1. Overexpression of wild-type Nox4 was sufficient to increase VEGF transcriptional activity, and further enhanced insulin-stimulated the activation of VEGF. Downregulation of Nox4 expression decreased insulin-stimulated mRNA and protein expression of HIF-1α, but did not change the rate of HIF-1α degradation. Inhibition of Nox4 impaired insulin-stimulated VEGF expression, cell migration, cell proliferation, and tube formation in HMVECs. Our data indicate that Nox4-derived ROS are essential for HIF-1α-dependent VEGF expression, and angiogenesis in vitro induced by insulin. Nox4 may be an attractive therapeutic target for diabetic retinopathy caused by intensive insulin treatment.

  9. Effect of trifluoperazine on toxicity, HIF-1α induction and hepatocyte regeneration in acetaminophen toxicity in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Shubhra, E-mail: SCHAUDHURI@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); McCullough, Sandra S., E-mail: mcculloughsandras@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Hennings, Leah, E-mail: lhennings@uams.edu [Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Brown, Aliza T., E-mail: brownalizat@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Li, Shun-Hwa [Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI (United States); Simpson, Pippa M., E-mail: psimpson@mcw.edu [Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI (United States); Hinson, Jack A., E-mail: hinsonjacka@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); James, Laura P., E-mail: jameslaurap@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States)

    2012-10-15

    Oxidative stress and mitochondrial permeability transition (MPT) are important mechanisms in acetaminophen (APAP) toxicity. The MPT inhibitor trifluoperazine (TFP) reduced MPT, oxidative stress, and toxicity in freshly isolated hepatocytes treated with APAP. Since hypoxia inducible factor-one alpha (HIF-1α) is induced very early in APAP toxicity, a role for oxidative stress in the induction has been postulated. In the present study, the effect of TFP on toxicity and HIF-1α induction in B6C3F1 male mice treated with APAP was examined. Mice received TFP (10 mg/kg, oral gavage) prior to APAP (200 mg/kg IP) and at 7 and 36 h after APAP. Measures of metabolism (hepatic glutathione and APAP protein adducts) were comparable in the two groups of mice. Toxicity was decreased in the APAP/TFP mice at 2, 4, and 8 h, compared to the APAP mice. At 24 and 48 h, there were no significant differences in toxicity between the two groups. TFP lowered HIF-1α induction but also reduced the expression of proliferating cell nuclear antigen, a marker of hepatocyte regeneration. TFP can also inhibit phospholipase A{sub 2}, and cytosolic and secretory PLA{sub 2} activity levels were reduced in the APAP/TFP mice compared to the APAP mice. TFP also lowered prostaglandin E{sub 2} expression, a known mechanism of cytoprotection. In summary, the MPT inhibitor TFP delayed the onset of toxicity and lowered HIF-1α induction in APAP treated mice. TFP also reduced PGE{sub 2} expression and hepatocyte regeneration, likely through a mechanism involving PLA{sub 2}. -- Highlights: ► Trifluoperazine reduced acetaminophen toxicity and lowered HIF-1α induction. ► Trifluoperazine had no effect on the metabolism of acetaminophen. ► Trifluoperazine reduced hepatocyte regeneration. ► Trifluoperazine reduced phospholipase A{sub 2} activity and prostaglandin E{sub 2} levels.

  10. Valproic acid inhibits the angiogenic potential of cervical cancer cells via HIF-1α/VEGF signals.

    Science.gov (United States)

    Zhao, Y; You, W; Zheng, J; Chi, Y; Tang, W; Du, R

    2016-11-01

    Cervical cancer is one of the most prevalent malignancies in women worldwide. Therefore, the investigation about the molecular pathogenesis and related therapy targets of cervical cancer is an emergency. The objective of the present study is to investigate the effects of valproic acid (VPA), a histone deacetylase inhibitor, on the angiogenesis of cervical cancer. The effects and mechanisms of VPA on in vitro angiogenesis and vascular endothelial growth factor (VEGF) expression of human cervical cancer HeLa and SiHa cells were investigated. Our present study reveals that 1 mM VPA can significantly inhibit the in vitro angiogenic potential and VEGF expression of human cervical cancer HeLa and SiHa cells. Further, the transcription and protein levels of hypoxia inducible factor-1α (HIF-1α), and not HIF-1β, are significantly inhibited in VPA-treated cervical cancer cells. Over expression of HIF-1α can obviously reverse VPA-induced VEGF down regulation. VPA-treatment decreases the activation of Akt and ERK1/2 in both HeLa and SiHa cells in a time-dependent manner. The inhibitor of Akt (LY 294002) or ERK1/2 (PD98059) can inhibit VEGF alone and cooperatively reinforce the suppression effects of VPA on HIF-1α and VEGF expression. Collectively, our data reveal that the inhibition of PI3K/Akt and ERK1/2 signals are involved in VPA-induced HIF-1α and VEGF suppression of cervical cancer cells.

  11. Arylsulfonamide KCN1 inhibits in vivo glioma growth and interferes with HIF signaling by disrupting HIF-1α interaction with co-factors p300/CBP

    Science.gov (United States)

    Yin, Shaoman; Kaluz, Stefan; Devi, Narra S.; Jabbar, Adnan A.; de Noronha, Rita G.; Mun, Jiyoung; Zhang, Zhaobin; Boreddy, Purushotham R.; Wang, Wei; Wang, Zhibo; Abbruscato, Thomas; Chen, Zhengjia; Olson, Jeffrey J.; Zhang, Ruiwen; Goodman, Mark M.; Nicolaou, K.C.; Van Meir, Erwin G.

    2012-01-01

    Purpose The hypoxia inducible factor-1 (HIF-1) plays a critical role in tumor adaptation to hypoxia, and its elevated expression correlates with poor prognosis and treatment failure in cancer patients. In this study, we determined whether 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, KCN1, the lead inhibitor in a novel class of arylsulfonamide inhibitors of the HIF-1 pathway, had anti-tumorigenic properties in vivo and further defined its mechanism of action. Experimental Design We studied the inhibitory effect of systemic KCN1 delivery on the growth of human brain tumors in mice. To define mechanisms of KCN1 anti-HIF activities, we examined its influence on the assembly of a functional HIF1α/HIF1β/p300 transcription complex. Results KCN1 specifically inhibited HIF reporter gene activity in several glioma cell lines at the nanomolar level. KCN1 also downregulated transcription of endogenous HIF-1 target genes, such as VEGF, Glut-1 and carbonic anhydrase 9, in an HRE-dependent manner. KCN1 potently inhibited the growth of subcutaneous malignant glioma tumor xenografts with minimal adverse effects on the host. It also induced a temporary survival benefit in an intracranial model of glioma but had no effect in a model of melanoma metastasis to the brain. Mechanistically, KCN1 did not down-regulate levels of HIF-1α or other components of the HIF transcriptional complex; rather, it antagonized hypoxia-inducible transcription by disrupting the interaction of HIF-1α with transcriptional co-activators p300/CBP. Conclusions Our results suggest that the new HIF pathway inhibitor KCN1 has antitumor activity in mouse models, supporting its further translation for the treatment of human tumors displaying hypoxia or HIF overexpression. PMID:22923450

  12. Nicotine promotes proliferation of human nasopharyngeal carcinoma cells by regulating α7AChR, ERK, HIF-1α and VEGF/PEDF signaling.

    Directory of Open Access Journals (Sweden)

    Dingbo Shi

    Full Text Available Nicotine, the major component in cigarette smoke, can promote tumor growth and angiogenesis, but the precise mechanisms involved remain largely unknown. Here, we investigated the mechanism of action of nicotine in human nasopharyngeal carcinoma (NPC cells. Nicotine significantly promoted cell proliferation in a dose and time-dependent manner in human NPC cells. The mechanism studies showed that the observed stimulation of proliferation was accompanied by the nicotine-mediated simultaneous modulation of α7AChR, HIF-1α, ERK and VEGF/PEDF signaling. Treatment of NPC cells with nicotine markedly upregulated the expression of α7AChR and HIF-1α proteins. Transfection with a α7AChR or HIF-1α-specific siRNA or a α7AChR-selective inhibitor significantly attenuated the nicotine-mediated promotion of NPC cell proliferation. Nicotine also promoted the phosphorylation of ERK1/2 but not JNK and p38 proteins, thereby induced the activation of ERK/MAPK signaling pathway. Pretreatment with an ERK-selective inhibitor effectively reduced the nicotine-induced proliferation of NPC cells. Moreover, nicotine upregulated the expression of VEGF but suppressed the expression of PEDF at mRNA and protein levels, leading to a significant increase of the ratio of VEGF/PEDF in NPC cells. Pretreatment with a α7AChR or ERK-selective inhibitor or transfection with a HIF-1α-specific siRNA in NPC cells significantly inhibited the nicotine-induced HIF-1α expression and VEGF/PEDF ratio. These results therefore indicate that nicotine promotes proliferation of human NPC cells in vitro through simultaneous modulation of α7AChR, HIF-1α, ERK and VEGF/PEDF signaling and suggest that the related molecules such as HIF-1α might be the potential therapeutic targets for tobacco-associated diseases such as nasopharyngeal carcinomas.

  13. Diallyl trisulfide exerts cardioprotection against myocardial ischemia-reperfusion injury in diabetic state, role of AMPK-mediated AKT/GSK-3β/HIF-1α activation.

    Science.gov (United States)

    Yu, Liming; Di, Wencheng; Dong, Xue; Li, Zhi; Xue, Xiaodong; Zhang, Jian; Wang, Qi; Xiao, Xiong; Han, Jinsong; Yang, Yang; Wang, Huishan

    2017-09-26

    Diallyl trisulfide (DATS), the major active ingredient in garlic, has been reported to confer cardioprotective effects. However, its effect on myocardial ischemia-reperfusion (MI/R) injury in diabetic state and the underlying mechanism are still unknown. We hypothesize that DATS reduces MI/R injury in diabetic state via AMPK-mediated AKT/GSK-3β/HIF-1α activation. Streptozotocin-induced diabetic rats received MI/R surgery with or without DATS (20mg/kg) treatment in the presence or absence of Compound C (Com.C, an AMPK inhibitor, 0.25mg/kg) or LY294002 (a PI3K inhibitor, 5mg/kg). We found that DATS significantly improved heart function and reduced myocardial apoptosis. Additionally, in cultured H9c2 cells, DATS (10μM) also attenuated simulated ischemia-reperfusion injury. We found that AMPK and AKT/GSK-3β/HIF-1α signaling were down-regulated under diabetic condition, while DATS markedly increased the phosphorylation of AMPK, ACC, AKT and GSK-3β as well as HIF-1α expression in MI/R-injured myocardium. However, these protective actions were all blunted by Com.C administration. Additionally, LY294002 abolished the stimulatory effect of DATS on AKT/GSK-3β/HIF-1α signaling without affecting AMPK signaling. While 2-methoxyestradiol (a HIF-1α inhibitor) reduced HIF-1α expression without affecting AKT/GSK-3β signaling. Taken together, these data showed that DATS protected against MI/R injury in diabetic state by attenuating cellular apoptosis via AMPK-mediated AKT/GSK-3β/HIF-1α signaling. Its cardioprotective effect deserves further study.

  14. The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1α (HIF-1α protein levels in endothelial cells under hypoxia.

    Directory of Open Access Journals (Sweden)

    Stefan K Alig

    Full Text Available The tyrosine phosphatase SHP-1 negatively influences endothelial function, such as VEGF signaling and reactive oxygen species (ROS formation, and has been shown to influence angiogenesis during tissue ischemia. In ischemic tissues, hypoxia induced angiogenesis is crucial for restoring oxygen supply. However, the exact mechanism how SHP-1 affects endothelial function during ischemia or hypoxia remains unclear. We performed in vitro endothelial cell culture experiments to characterize the role of SHP-1 during hypoxia.SHP-1 knock-down by specific antisense oligodesoxynucleotides (AS-Odn increased cell growth as well as VEGF synthesis and secretion during 24 hours of hypoxia compared to control AS-Odn. This was prevented by HIF-1α inhibition (echinomycin and apigenin. SHP-1 knock-down as well as overexpression of a catalytically inactive SHP-1 (SHP-1 CS further enhanced HIF-1α protein levels, whereas overexpression of a constitutively active SHP-1 (SHP-1 E74A resulted in decreased HIF-1α levels during hypoxia, compared to wildtype SHP-1. Proteasome inhibition (MG132 returned HIF-1α levels to control or wildtype levels respectively in these cells. SHP-1 silencing did not alter HIF-1α mRNA levels. Finally, under hypoxic conditions SHP-1 knock-down enhanced intracellular endothelial reactive oxygen species (ROS formation, as measured by oxidation of H2-DCF and DHE fluorescence.SHP-1 decreases half-life of HIF-1α under hypoxic conditions resulting in decreased cell growth due to diminished VEGF synthesis and secretion. The regulatory effect of SHP-1 on HIF-1α stability may be mediated by inhibition of endothelial ROS formation stabilizing HIF-1α protein. These findings highlight the importance of SHP-1 in hypoxic signaling and its potential as therapeutic target in ischemic diseases.

  15. Celecoxib Down-Regulates the Hypoxia-Induced Expression of HIF-1α and VEGF Through the PI3K/AKT Pathway in Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yi-zhou Sun

    2017-12-01

    Full Text Available Background/Aims: The goal of this study was to detect the expression of hypoxia-inducible factor 1α (HIF-1α and vascular endothelial growth factor (VEGF in human retinal pigmented epithelial (RPE cells treated with celecoxib, a selective cyclooxygenase-2 (COX-2 inhibitor, under hypoxic and normoxic conditions and to explore the signaling mechanism involved in regulating the hypoxia-induced expression of HIF-1α and VEGF in RPE cells. Methods: D407 cells were cultured in normoxic or hypoxic conditions, with or without celecoxib or a PI3K inhibitor (LY294002. The anti-proliferative effect of celecoxib was assessed using the MTT assay. RT-PCR, Western blotting and ELISA were performed to detect the levels of PI3K, phosphorylated AKT (p-AKT, HIF-1α, VEGF and COX-2. Results: Celecoxib inhibited the proliferation of RPE cells in a dose-dependent manner. Celecoxib suppressed the expression of VEGF at both the mRNA and protein levels and decreased HIF-1α protein expression. HIF-1α activation was regulated by the PI3K/AKT pathway. The celecoxib-induced down-regulation of HIF-1α and VEGF required the suppression of the hypoxia-induced PI3K/AKT pathway. However, the down-regulation of COX-2 did not occur in cells treated with celecoxib. Conclusions: The antiangiogenic effects of celecoxib in RPE cells under hypoxic conditions resulted from the inhibition of HIF-1α and VEGF expression, which may be partly mediated by a COX-2-independent, PI3K/AKT-dependent pathway.

  16. Regulation of glycolysis in brown adipocytes by HIF-1α

    DEFF Research Database (Denmark)

    Basse, Astrid L; Isidor, Marie S; Winther, Sally

    2017-01-01

    Brown adipose tissue takes up large amounts of glucose during cold exposure in mice and humans. Here we report an induction of glucose transporter 1 expression and increased expression of several glycolytic enzymes in brown adipose tissue from cold-exposed mice. Accordingly, these genes were also...... with glucose as the only exogenously added fuel. These data suggest that HIF-1α-dependent regulation of glycolysis is necessary for maximum glucose metabolism in brown adipocytes....

  17. File list: Oth.ALL.10.HIF1A.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.HIF1A.AllCell hg19 TFs and others HIF1A All cell types SRX666556,SRX1576...28430 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.10.HIF1A.AllCell.bed ...

  18. File list: Oth.ALL.05.HIF1A.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.HIF1A.AllCell hg19 TFs and others HIF1A All cell types SRX666556,SRX1576...28430 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.05.HIF1A.AllCell.bed ...

  19. File list: Oth.ALL.20.HIF1A.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.HIF1A.AllCell hg19 TFs and others HIF1A All cell types SRX157608,SRX1576...12351 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.20.HIF1A.AllCell.bed ...

  20. File list: Oth.Bld.10.HIF1A.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.HIF1A.AllCell hg19 TFs and others HIF1A Blood SRX212354,SRX212361,SRX212...353,SRX212352,SRX212351,SRX212360,SRX212359,SRX212362 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.10.HIF1A.AllCell.bed ...

  1. File list: Oth.Bld.20.HIF1A.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.HIF1A.AllCell hg19 TFs and others HIF1A Blood SRX212360,SRX212353,SRX212...352,SRX212362,SRX212354,SRX212361,SRX212359,SRX212351 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.20.HIF1A.AllCell.bed ...

  2. File list: Oth.ALL.05.Hif1a.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.Hif1a.AllCell mm9 TFs and others Hif1a All cell types SRX698169,SRX18722...5,SRX698168,SRX122405,SRX122404,SRX122402,SRX187224,SRX122403 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.05.Hif1a.AllCell.bed ...

  3. Basal HIF-1a expression levels are not predictive for radiosensitivity of human cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, D.; Multhoff, G. [Klinikum rechts der Isar der Technischen Univ. Muenchen (Germany). Dept. of Radiation Oncology; Helmholtz Center Munich, CCG - Innate Immunity in Tumor Biology, Munich (Germany). German Research Center for Environmental Health - Inst. of Pathology; Bayer, C.; Emmerich, K.; Molls, M.; Vaupel, P. [Klinikum rechts der Isar der Technischen Univ. Muenchen (Germany). Dept. of Radiation Oncology; Huber, R.M. [Klinikum der Univ. Muenchen (Germany). Dept. of Pneumology

    2012-04-15

    High levels of hypoxia inducible factor (HIF)-1a in tumors are reported to be associated with tumor progression and resistance to therapy. To examine the impact of HIF-1a on radioresistance under normoxia, the sensitivity towards irradiation was measured in human tumor cell lines that differ significantly in their basal HIF-1a levels. HIF-1a levels were quantified in lysates of H1339, EPLC-272H, A549, SAS, XF354, FaDu, BHY, and CX- tumor cell lines by ELISA. Protein levels of HIF-1a, HIF-2a, carbonic anhydrase IX (CA IX), and GAPDH were assessed by Western blot analysis. Knock-down experiments were performed using HIF-1a siRNA. Clonogenic survival after irradiation was determined by the colony forming assay. According to their basal HIF-1a status, the tumor cell lines were divided into low (SAS, XF354, FaDu, A549, CX-), intermediate (EPLC-272H, BHY), and high (H1339) HIF-1a expressors. The functionality of the high basal HIF-1a expression in H1339 cells was proven by reduced CA IX expression after knocking-down HIF-1a. Linear regression analysis revealed no correlation between basal HIF-1a levels and the survival fraction at either 2 or 4 Gy in all tumor cell lines investigated. Our data suggest that basal HIF-1a levels in human tumor cell lines do not predict their radiosensitivity under normoxia. (orig.)

  4. HIF-1α signaling activation by post-ischemia treatment with astragaloside IV attenuates myocardial ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Jingwen Si

    Full Text Available In this study, we evaluated the effect of astragaloside IV (Ast IV post-ischemia treatment on myocardial ischemia-reperfusion (IR injury (IRI. We also examined whether hypoxia inducible factor-1α (HIF-1α and its downstream gene-inducible nitric oxide (NO synthase (iNOS play roles in the cardioprotective effect of Ast IV. Cultured cardiomyocytes and perfused isolated rat hearts were exposed to Ast IV during reperfusion in the presence or absence of the HIF-1α inhibitor 2-methoxyestradiol (2-MeOE2. The post-ischemia treatment with Ast IV protected cardiomyocytes from the apoptosis and death induced by simulated IRI (SIRI. Additionally, in cardiomyocytes, 2-MeOE2 and HIF-1α siRNA treatment each not only abolished the anti-apoptotic effect of post-ischemia treatment with Ast IV but also reversed the upregulation of HIF-1α and iNOS expression. Furthermore, after treatment with Ast IV, post-ischemic cardiac functional recovery and lactate dehydrogenase (LDH release in the coronary flow (CF were improved, and the myocardial infarct size was decreased. Moreover, the number of apoptotic cells was reduced, and the upregulation of the anti-apoptotic protein Bcl2 and downregulation of the pro-apoptotic protein Caspase3 were reversed. 2-MeOE2 reversed these effects of Ast IV on IR-injured hearts. These results suggest that post-ischemia treatment with Ast IV can attenuate IRI by upregulating HIF-1α expression, which transmits a survival signal to the myocardium.

  5. Dexmedetomidine Protects Mouse Brain from Ischemia-Reperfusion Injury via Inhibiting Neuronal Autophagy through Up-Regulating HIF-1α

    Directory of Open Access Journals (Sweden)

    Cong Luo

    2017-07-01

    Full Text Available Stroke is the leading cause of death in China and produces a heavy socio-economic burden in the past decades. Previous studies have shown that dexmedetomidine (DEX is neuroprotective after cerebral ischemia. However, the role of autophagy during DEX-mediated neuroprotection after cerebral ischemia is still unknown. In this study, we found that post-conditioning with DEX and DEX+3-methyladenine (3-MA (autophagy inhibitor reduced brain infarct size and improved neurological deficits compared with DEX+RAPA (autophagy inducer 24 h after transient middle cerebral artery artery occlusion (tMCAO model in mice. DEX inhibited the neuronal autophagy in the peri-ischemic brain, and increased viability and decreased apoptosis of primary cultured neurons in oxygen-glucose deprivation (OGD model. DEX induced expression of Bcl-1 and p62, while reduced the expression of microtubule-associated protein 1 light chain 3 (LC3 and Beclin 1 in primary cultured neurons through inhibition of apoptosis and autophagy. Meanwhile, DEX promoted the expression of hypoxia-inducible factor-1α (HIF-1α both in vivo and in vitro, and 2-Methoxyestradiol (2ME2, an inhibitor of HIF-1α, could reverse DEX-induced autophagic inhibition. In conclusion, our study suggests that post-conditioning with DEX at the beginning of reperfusion protects mouse brain from ischemia-reperfusion injury via inhibition of neuronal autophagy by upregulation of HIF-1α, which provides a potential therapeutic treatment for acute ischemic injury.

  6. Neonatal bronchopulmonary dysplasia increases neuronal apoptosis in the hippocampus through the HIF-1α and p53 pathways.

    Science.gov (United States)

    Yin, Rong; Yuan, Lin; Ping, Lili; Hu, Liyuan

    2016-01-01

    Neonatal bronchopulmonary dysplasia (BPD) might lead to an increased risk for brain injury. The present study aims to investigate the effects of neonatal BPD on neuronal apoptosis in the hippocampus and cognitive function and to explore the underlying mechanisms. The results revealed that BPD model rat pups exhibited more apoptotic cells in the hippocampus and longer escape latencies in the Morris maze test. Both the caspase-dependent and caspase-nondependent signal pathways were activated. Further examinations showed an elevated p53 level by BPD via HIF-1α induction, while the caspase-3 in the hippocampus was suppressed by both HIF-1α and p53 inhibitor. These findings suggested that neonatal BPD caused impaired cognitive function and neuron apoptosis in hippocampus via p53 and HIF-1α. Although the precise mechanism requires further investigation, this study provided new evidence for and an explanation of the impaired CNS developmental outcomes of BPD. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. TCDD Induces the Hypoxia-Inducible Factor (HIF-1α Regulatory Pathway in Human Trophoblastic JAR Cells

    Directory of Open Access Journals (Sweden)

    Tien-Ling Liao

    2014-09-01

    Full Text Available The exposure to dioxin can compromise pregnancy outcomes and increase the risk of preterm births. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD has been demonstrated to induce placental hypoxia at the end of pregnancy in a rat model, and hypoxia has been suggested to be the cause of abnormal trophoblast differentiation and placental insufficiency syndromes. In this study, we demonstrate that the non-hypoxic stimulation of human trophoblastic cells by TCDD strongly increased hypoxia inducible factor-1 alpha (HIF-1α stabilization. TCDD exposure induced the generation of reactive oxygen species (ROS and nitric oxide. TCDD-induced HIF-1α stabilization and Akt phosphorylation was inhibited by pretreatment with wortmannin (a phosphatidylinositol 3-kinase (PI3K inhibitor or N-acetylcysteine (a ROS scavenger. The augmented HIF-1α stabilization by TCDD occurred via the ROS-dependent activation of the PI3K/Akt pathway. Additionally, a significant increase in invasion and metallomatrix protease-9 activity was found in TCDD-treated cells. The gene expression of vascular endothelial growth factor and placental growth factor was induced upon TCDD stimulation, whereas the protein levels of peroxisome proliferator-activated receptor γ (PPARγ, PPARγ coactivator-1α, mitochondrial transcription factor, and uncoupling protein 2 were decreased. Our results indicate that an activated HIF-1α pathway, elicited oxidative stress, and induced metabolic stress contribute to TCDD-induced trophoblastic toxicity. These findings may provide molecular insight into the TCDD-induced impairment of trophoblast function and placental development.

  8. Silencing HIF-1α reduces the adhesion and secretion functions of acute leukemia hBMSCs

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Dong-Feng [Department of Hematology, XinQiao Hospital, Third Military Medical University, ChongQing (China); Liu, Ting [Department of Ophthalmology, DaPing Hospital, Third Military Medical University, ChongQing (China); Chang, Cheng; Zhang, Xi; Liang, Xue; Chen, Xing-Hua; Kong, Pei-Yan [Department of Hematology, XinQiao Hospital, Third Military Medical University, ChongQing (China)

    2012-06-29

    Hypoxia inducible factor-1α (HIF-1α) is an important transcription factor, which plays a critical role in the formation of solid tumor and its microenvironment. The objective of the present study was to evaluate the expression and function of HIF-1α in human leukemia bone marrow stromal cells (BMSCs) and to identify the downstream targets of HIF-1α. HIF-1α expression was detected at both the RNA and protein levels using real-time PCR and immunohistochemistry, respectively. Vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1α (SDF-1α) were detected in stromal cells by enzyme-linked immunosorbent assay. HIF-1α was blocked by constructing the lentiviral RNAi vector system and infecting the BMSCs. The Jurkat cell/BMSC co-cultured system was constructed by putting the two cells into the same suitable cultured media and conditions. Cell adhesion and secretion functions of stromal cells were evaluated after transfection with the lentiviral RNAi vector of HIF-1α. Increased HIF-1α mRNA and protein was detected in the nucleus of the acute myeloblastic and acute lymphoblastic leukemia compared with normal BMSCs. The lentiviral RANi vector for HIF-1α was successfully constructed and was applied to block the expression of HIF-1α. When HIF-1α of BMSCs was blocked, the expression of VEGF and SDF-1α secreted by stromal cells was decreased. When HIF-1α was blocked, the co-cultured Jurkat cell's adhesion and migration functions were also decreased. Taken together, these results suggest that HIF-1α acts as an important transcription factor and can significantly affect the secretion and adhesion functions of leukemia BMSCs.

  9. Silencing HIF-1α reduces the adhesion and secretion functions of acute leukemia hBMSCs

    Directory of Open Access Journals (Sweden)

    Zeng Dong-Feng

    2012-10-01

    Full Text Available Hypoxia inducible factor-1α (HIF-1α is an important transcription factor, which plays a critical role in the formation of solid tumor and its microenviroment. The objective of the present study was to evaluate the expression and function of HIF-1α in human leukemia bone marrow stromal cells (BMSCs and to identify the downstream targets of HIF-1α. HIF-1α expression was detected at both the RNA and protein levels using real-time PCR and immunohistochemistry, respectively. Vascular endothelial growth factor (VEGF and stromal cell-derived factor-1α (SDF-1α were detected in stromal cells by enzyme-linked immunosorbent assay. HIF-1α was blocked by constructing the lentiviral RNAi vector system and infecting the BMSCs. The Jurkat cell/BMSC co-cultured system was constructed by putting the two cells into the same suitable cultured media and conditions. Cell adhesion and secretion functions of stromal cells were evaluated after transfection with the lentiviral RNAi vector of HIF-1α. Increased HIF-1α mRNA and protein was detected in the nucleus of the acute myeloblastic and acute lymphoblastic leukemia compared with normal BMSCs. The lentiviral RANi vector for HIF-1α was successfully constructed and was applied to block the expression of HIF-1α. When HIF-1α of BMSCs was blocked, the expression of VEGF and SDF-1 secreted by stromal cells were decreased. When HIF-1α was blocked, the co-cultured Jurkat cell’s adhesion and migration functions were also decreased. Taken together, these results suggest that HIF-1α acts as an important transcription factor and can significantly affect the secretion and adhesion functions of leukemia BMSCs.

  10. Hypoxia induced E-cadherin involving regulators of Hippo pathway due to HIF-1α stabilization/nuclear translocation in bone metastasis from breast carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Maroni, Paola [Istituto Ortopedico Galeazzi, IRCCS, Milano (Italy); Matteucci, Emanuela [Dipartiimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano (Italy); Drago, Lorenzo; Banfi, Giuseppe [Istituto Ortopedico Galeazzi, IRCCS, Milano (Italy); Dipartiimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano (Italy); Bendinelli, Paola [Dipartiimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano (Italy); Desiderio, Maria Alfonsina, E-mail: a.desiderio@unimi.it [Dipartiimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano (Italy)

    2015-01-15

    The present study deals with the molecular mechanisms involved in the regulation of E-cadherin expression under hypoxia, because the adjustment of the amount of E-cadherin due to physical stimuli of the microenvironment might influence the colonization of metastasis to skeleton. We analyzed the effect of 1% oxygen tension, that is similar to that encountered in the bone marrow by metastatic cells spreading from breast carcinoma. The purpose was to evaluate the hypoxia-orchestrated control of E-cadherin transactivation via hypoxia inducible factor-1 (HIF-1) and peroxisome proliferator activated receptor-γ (PPARγ), and the involvement of Hippo pathway members, as regulators of transcription factors. To give a translational significance to the study, we took into consideration human pair-matched ductal breast carcinoma and bone metastasis: E-cadherin and Wwox were expressed in bone metastasis but not in breast carcinoma, while HIF-1α and TAZ seemed localized principally in nuclei of metastasis and were found in all cell compartments of breast carcinoma. A close examination of the regulatory mechanisms underlying E-cadherin expression in bone metastasis was done in 1833 clone derived from MDA-MB231 cells. Hypoxia induced E-cadherin only in 1833 clone, but not in parental cells, through HIF-1 and PPARγ activities, while Wwox decreased. Since Wwox was highly expressed in bone metastasis, the effect of ectopic Wwox was evaluated, and we showed E-cadherin transactivation and enhanced invasiveness in WWOX transfected 1833 cells. Also, hypoxia was additive with ectopic Wwox remarkably enhancing HIF-1α nuclear shuttle and accumulation due to the lengthening of the half-life of HIF-1α protein; under this experimental condition HIF-1α appeared as a slower migrated band compared with control, in agreement with the phosphorylation state. The in vitro data strongly supported the almost exclusive presence of HIF-1α in nuclei of human-bone metastasis. Thus, we identified

  11. Increased size of solid organs in patients with Chuvash polycythemia and in mice with altered expression of HIF-1α and HIF-2α

    Science.gov (United States)

    Yoon, Donghoon; Okhotin, David V.; Kim, Bumjun; Okhotina, Yulia; Okhotin, Daniel J.; Miasnikova, Galina Y.; Sergueeva, Adelina I.; Polyakova, Lydia A.; Maslow, Alexei; Lee, Yonggu; Semenza, Gregg L.; Prchal, Josef T.

    2010-01-01

    Chuvash polycythemia, the first hereditary disease associated with dysregulated oxygen-sensing to be recognized, is characterized by a homozygous germ-line loss-of-function mutation of the VHL gene (VHLR200W) resulting in elevated hypoxia inducible factor (HIF)-1α and HIF-2α levels, increased red cell mass and propensity to thrombosis. Organ volume is determined by the size and number of cells, and the underlying molecular control mechanisms are not fully elucidated. Work from several groups has demonstrated that the proliferation of cells is regulated in opposite directions by HIF-1α and HIF-2α. HIF-1α inhibits cell proliferation by displacing MYC from the promoter of the gene encoding the cyclin-dependent kinase inhibitor, p21Cip1, thereby inducing its expression. In contrast, HIF-2α promotes MYC activity and cell proliferation. Here we report that the volumes of liver, spleen, and kidneys relative to body mass were larger in 30 individuals with Chuvash polycythemia than in 30 matched Chuvash controls. In Hif1a+/− mice, which are heterozygous for a null (knockout) allele at the locus encoding HIF-1α, hepatic HIF-2α mRNA was increased (2-fold) and the mass of the liver was increased, compared with wild-type littermates, without significant difference in cell volume. Hepatic p21Cip1 mRNA levels were 9.5-fold lower in Hif1a+/− mice compared with wild-type littermates. These data suggest that, in addition to increased red cell mass, the sizes of liver, spleen, and kidneys are increased in Chuvash polycythemia. At least in the liver, this phenotype may result from increased HIF-2α and decreased p21Cip1 levels leading to increased hepatocyte proliferation. PMID:20140661

  12. Degradation of HIF-1alpha under hypoxia combined with induction of Hsp90 polyubiquitination in cancer cells by hypericin: a unique cancer therapy.

    Directory of Open Access Journals (Sweden)

    Tilda Barliya

    Full Text Available The perihydroxylated perylene quinone hypericin has been reported to possess potent anti-metastatic and antiangiogenic activities, generated by targeting diverse crossroads of cancer-promoting processes via unique mechanisms. Hypericin is the only known exogenous reagent that can induce forced poly-ubiquitination and accelerated degradation of heat shock protein 90 (Hsp90 in cancer cells. Hsp90 client proteins are thereby destabilized and rapidly degraded. Hsp70 client proteins may potentially be also affected via preventing formation of hsp90-hsp70 intermediate complexes. We show here that hypericin also induces enhanced degradation of hypoxia-inducible factor 1α (HIF-1α in two human tumor cell lines, U87-MG glioblastoma and RCC-C2VHL-/- renal cell carcinoma and in the non-malignant ARPE19 retinal pigment epithelial cell line. The hypericin-accelerated turnover of HIF-1α, the regulatory precursor of the HIF-1 transcription factor which promotes hypoxic stress and angiogenic responses, overcomes the physiologic HIF-1α protein stabilization which occurs in hypoxic cells. The hypericin effect also eliminates the high HIF-1α levels expressed constitutively in the von-Hippel Lindau protein (pVHL-deficient RCC-C2VHL-/- renal cell carcinoma cell line. Unlike the normal ubiquitin-proteasome pathway-dependent turnover of HIF-α proteins which occurs in normoxia, the hypericin-induced HIF-1α catabolism can occur independently of cellular oxygen levels or pVHL-promoted ubiquitin ligation of HIF-1α. It is mediated by lysosomal cathepsin-B enzymes with cathepsin-B activity being optimized in the cells through hypericin-mediated reduction in intracellular pH. Our findings suggest that hypericin may potentially be useful in preventing growth of tumors in which HIF-1α plays pivotal roles, and in pVHL ablated tumor cells such as renal cell carcinoma through elimination of elevated HIF-1α contents in these cells, scaling down the excessive angiogenesis

  13. HIF-1α-stabilizing agent FG-4497 rescues human CD34+cell mobilization in response to G-CSF in immunodeficient mice.

    Science.gov (United States)

    Nowlan, Bianca; Futrega, Kathryn; Brunck, Marion E; Walkinshaw, Gail; Flippin, Lee E; Doran, Michael R; Levesque, Jean-Pierre

    2017-08-01

    Granulocyte colony-stimulating factor (G-CSF) is used routinely in the clinical setting to mobilize hematopoietic stem progenitor cells (HSPCs) into the patient's blood for collection and subsequent transplantation. However, a significant proportion of patients who have previously received chemotherapy or radiotherapy and require autologous HSPC transplantation cannot mobilize the minimal threshold of mobilized HSPCs to achieve rapid and successful hematopoietic reconstitution. Although several alternatives to the G-CSF regime have been tested, few are used in the clinical setting. We have shown previously in mice that administration of prolyl 4-hydroxylase domain enzyme (PHD) inhibitors, which stabilize hypoxia-inducible factor (HIF)-1α, synergize with G-CSF in vivo to enhance mouse HSPC mobilization into blood, leading to enhanced engraftment via an HSPC-intrinsic mechanism. To evaluate whether PHD inhibitors could be used to enhance mobilization of human HSPCs, we humanized nonobese, diabetic severe combined immune-deficient Il2rg -/- mice by transplanting them with human umbilical cord blood CD34 + HSPCs and then treating them with G-CSF with and without co-administration of the PHD inhibitor FG-4497. We observed that combination treatment with G-CSF and FG-4497 resulted in significant mobilization of human lineage-negative (Lin - ) CD34 + HSPCs and more primitive human Lin - CD34 + CD38 - HSPCs into blood and spleen, whereas mice treated with G-CSF alone did not mobilize human HSPCs significantly. These results suggest that the PHD inhibitor FG-4497 also increases human HSPC mobilization in a xenograft mouse model, suggesting the possibility of testing PHD inhibitors to boost HSPC mobilization in response to G-CSF in humans. Copyright © 2017 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  14. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α.

    Science.gov (United States)

    Faubert, Brandon; Vincent, Emma E; Griss, Takla; Samborska, Bozena; Izreig, Said; Svensson, Robert U; Mamer, Orval A; Avizonis, Daina; Shackelford, David B; Shaw, Reuben J; Jones, Russell G

    2014-02-18

    One of the major metabolic changes associated with cellular transformation is enhanced nutrient utilization, which supports tumor progression by fueling both energy production and providing biosynthetic intermediates for growth. The liver kinase B1 (LKB1) is a serine/threonine kinase and tumor suppressor that couples bioenergetics to cell-growth control through regulation of mammalian target of rapamycin (mTOR) activity; however, the influence of LKB1 on tumor metabolism is not well defined. Here, we show that loss of LKB1 induces a progrowth metabolic program in proliferating cells. Cells lacking LKB1 display increased glucose and glutamine uptake and utilization, which support both cellular ATP levels and increased macromolecular biosynthesis. This LKB1-dependent reprogramming of cell metabolism is dependent on the hypoxia-inducible factor-1α (HIF-1α), which accumulates under normoxia in LKB1-deficient cells and is antagonized by inhibition of mTOR complex I signaling. Silencing HIF-1α reverses the metabolic advantages conferred by reduced LKB1 signaling and impairs the growth and survival of LKB1-deficient tumor cells under low-nutrient conditions. Together, our data implicate the tumor suppressor LKB1 as a central regulator of tumor metabolism and growth control through the regulation of HIF-1α-dependent metabolic reprogramming.

  15. Repeated Administration of Ketamine can Induce Hippocampal Neurodegeneration and Long-Term Cognitive Impairment via the ROS/HIF-1α Pathway in Developing Rats

    Directory of Open Access Journals (Sweden)

    Jia Yan

    2014-05-01

    Full Text Available Background: Recent animal experiments have suggested that ketamine administration during development might induce widespread neurodegeneration and long-term cognitive deficits. The underlying mechanism is not fully understood. Methods: Immature rat hippocampal neurons and newborn rats underwent repeated exposure to ketamine, ketamine+inhibitor of hypoxia-inducible factor (HIF-1α(YC-1, ketamine+inhibitor of reactive oxygen species(ROS (L-carnitine or ketamine+Ca2+ blocker(nimodipine. Apoptosis of the hippocampal neurons was analyzed by TUNEL and flow cytometry. Intracellular ROS were measured using 2',7'-dichlorofluorescein diacetate. The expression of HIF- 1α and apoptosis-related proteins was analyzed by western blot or qPCR. As these rats grew, behavioral tests were performed to evaluate cognitive function. Results: The apoptotic rate in the ketamine group was significantly higher than that in the other groups, and the intracellular ROS levels in the ketamine and ketamine+YC-1 groups were higher than those in the other groups. The expression of HIF- 1α, p53, BNIP3 and cleaved caspase-3 proteins increased, and the ratio of Bcl-2/Bax decreased in the ketamine group. The transcriptional levels of HIF-1α in the ketamine and ketamine+YC-1 groups were higher than those in the other groups. Cognitive deficits were found only in the ketamine group. Conclusion: We suggest that ketamine-induced neurodegeneration in neonatal rats, followed by long-term cognitive deficits, might be mediated via the ROS/HIF-1α pathway.

  16. A positive circuit of VEGF increases Glut-1 expression by increasing HIF-1α gene expression in human retinal endothelial cells.

    Science.gov (United States)

    Choi, Yoon Kyung

    2017-12-01

    Treatment of human retinal microvascular endothelial cells (HRMECs) with vascular endothelial growth factor 165 (VEGF 165 ) increased hypoxia-inducible factor 1α (HIF-1α), VEGF, and glucose transporter 1 (Glut-1) mRNA expression and Glut-1 protein localization to the membrane. In contrast, treatment of human retinal pigment epithelium cells with VEGF 165 did not induce HIF-1α, VEGF, and Glut-1 gene expression. Microvascular endothelial cells are surrounded by astrocytic end feet in the retina. Astrocyte-derived A-kinase anchor protein 12 overexpression during hypoxia downregulated VEGF secretion, and this conditioned medium reduced VEGF and Glut-1 expression in HRMECs, suggesting that communications between astrocytes and endothelial cells may be the determinants of the blood vessel network. In HRMECs, HIF-1α small interfering RNA transfection blocked the VEGF 165 -mediated increase in VEGF and Glut-1 gene expression. Inhibition of protein kinase C (PKC) with inhibitor GF109203X or with a small interfering RNA targeting PKCζ attenuated the VEGF 165 -induced Glut-1 protein expression and VEGF and Glut-1 mRNA expression. In addition, results of an immunoprecipitation assay imply an interaction between VEGF receptor 2 (VEGFR2) and PKCζ in HRMECs. Therefore, VEGF secretion by hypoxic astrocytes may upregulate HIF-1α gene expression, inducing VEGF and Glut-1 expression via the VEGFR2-PKCζ axis in HRMECs.

  17. Human Papillomavirus 16 E6 Contributes HIF-1α Induced Warburg Effect by Attenuating the VHL-HIF-1α Interaction

    Directory of Open Access Journals (Sweden)

    Yi Guo

    2014-05-01

    Full Text Available Cervical cancer is still one of the leading causes of cancer deaths in women worldwide, especially in the developing countries. It is a major metabolic character of cancer cells to consume large quantities of glucose and derive more energy by glycolysis even in the presence of adequate oxygen, which is called Warburg effect that can be exaggerated by hypoxia. The high risk subtype HPV16 early oncoprotein E6 contributes host cell immortalization and transformation through interacting with a number of cellular factors. Hypoxia-inducible factor 1α (HIF-1α, a ubiquitously expressed transcriptional regulator involved in induction of numerous genes associated with angiogenesis and tumor growth, is highly increased by HPV E6. HIF-1α is a best-known target of the von Hippel-Lindau tumor suppressor (VHL as an E3 ligase for degradation. In the present work, we found that HPV16 E6 promotes hypoxia induced Warburg effect through hindering the association of HIF-1α and VHL. This disassociation attenuates VHL-mediated HIF-1α ubiquitination and causes HIF-1α accumulation. These results suggest that oncoprotein E6 plays a major role in the regulation of Warburg effect and can be a valuable therapeutic target for HPV-related cancer.

  18. HIF1-Alpha Expression Predicts Survival of Patients with Squamous Cell Carcinoma of the Oral Cavity

    Science.gov (United States)

    dos Santos, Marcelo; Mercante, Ana Maria da Cunha; Louro, Iúri Drumond; Gonçalves, Antônio José; de Carvalho, Marcos Brasilino; da Silva, Eloiza Helena Tajara; da Silva, Adriana Madeira Álvares

    2012-01-01

    Background Oral squamous cell carcinoma is an important cause of death and morbidity wordwide and effective prognostic markers are still to be discovered. HIF1α protein is associated with hypoxia response and neovascularization, essential conditions for solid tumors survival. The relationship between HIF1α expression, tumor progression and treatment response in head and neck cancer is still poorly understood. Patients and Methods In this study, we investigated HIF1α expression by immunohistochemistry in tissue microarrays and its relationship with clinical findings, histopathological results and survival of 66 patients with squamous cell carcinoma of the lower mouth. Results Our results demonstrated that high HIF1α expression is associated with local disease-free survival, independently from the choice of treatment. Furthermore, high expression of HIF1α in patients treated with postoperative radiotherapy was associated with survival, therefore being a novel prognostic marker in squamous cell carcinoma of the mouth. Additionally, our results showed that MVD was associated with HIF1α expression and local disease relapse. Conclusion These findings suggest that HIF1α expression can be used as a prognostic marker and predictor of postoperative radiotherapy response, helping the oncologist choose the best treatment for each patient. PMID:23028863

  19. Castration Therapy of Prostate Cancer Results in Downregulation of HIF-1{alpha} Levels

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ubaidi, Firas L.T. [Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm (Sweden); Department of Urology, Central Hospital, Vaesteras (Sweden); Schultz, Niklas [Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm (Sweden); Egevad, Lars [Department of Oncology-Pathology, Karolinska Institutet, Stockholm (Sweden); Granfors, Torvald [Department of Urology, Central Hospital, Vaesteras (Sweden); Helleday, Thomas, E-mail: helleday@gmt.su.se [Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm (Sweden); Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Science for Life Laboratory, Stockholm University, Solna (Sweden)

    2012-03-01

    Background and Purpose: Neoadjuvant androgen deprivation in combination with radiotherapy of prostate cancer is used to improve radioresponsiveness and local tumor control. Currently, the underlying mechanism is not well understood. Because hypoxia causes resistance to radiotherapy, we wanted to test whether castration affects the degree of hypoxia in prostate cancer. Methods and Materials: In 14 patients with locally advanced prostate cancer, six to 12 prostatic needle core biopsy specimens were taken prior to castration therapy. Bilateral orchidectomy was performed in 7 patients, and 7 were treated with a GnRH-agonist (leuprorelin). After castrationm two to four prostatic core biopsy specimens were taken, and the level of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in cancer was determined by immunofluorescence. Results: Among biopsy specimens taken before castration, strong HIF-1{alpha} expression (mean intensity above 30) was shown in 5 patients, weak expression (mean intensity 10-30) in 3 patients, and background levels of HIF-1{alpha} (mean intensity 0-10) in 6 patients. Downregulation of HIF-1{alpha} expression after castration was observed in all 5 patients with strong HIF-1{alpha} precastration expression. HIF-1{alpha} expression was also reduced in 2 of 3 patients with weak HIF-1{alpha} precastration expression. Conclusions: Our data suggest that neoadjuvant castration decreases tumor cell hypoxia in prostate cancer, which may explain increased radiosensitivity after castration.

  20. HIF1-alpha expression predicts survival of patients with squamous cell carcinoma of the oral cavity.

    Science.gov (United States)

    dos Santos, Marcelo; Mercante, Ana Maria da Cunha; Louro, Iúri Drumond; Gonçalves, Antônio José; de Carvalho, Marcos Brasilino; da Silva, Eloiza Helena Tajara; da Silva, Adriana Madeira Álvares

    2012-01-01

    Oral squamous cell carcinoma is an important cause of death and morbidity wordwide and effective prognostic markers are still to be discovered. HIF1α protein is associated with hypoxia response and neovascularization, essential conditions for solid tumors survival. The relationship between HIF1α expression, tumor progression and treatment response in head and neck cancer is still poorly understood. In this study, we investigated HIF1α expression by immunohistochemistry in tissue microarrays and its relationship with clinical findings, histopathological results and survival of 66 patients with squamous cell carcinoma of the lower mouth. Our results demonstrated that high HIF1α expression is associated with local disease-free survival, independently from the choice of treatment. Furthermore, high expression of HIF1α in patients treated with postoperative radiotherapy was associated with survival, therefore being a novel prognostic marker in squamous cell carcinoma of the mouth. Additionally, our results showed that MVD was associated with HIF1α expression and local disease relapse. These findings suggest that HIF1α expression can be used as a prognostic marker and predictor of postoperative radiotherapy response, helping the oncologist choose the best treatment for each patient.

  1. Cinnamon extract reduces VEGF expression via suppressing HIF-1α gene expression and inhibits tumor growth in mice.

    Science.gov (United States)

    Zhang, Keqiang; Han, Ernest S; Dellinger, Thanh H; Lu, Jianming; Nam, Sangkil; Anderson, Richard A; Yim, John H; Wen, Wei

    2017-02-01

    Although many anti-VEGF agents are available for cancer treatment, side effects of these agents limit their application for cancer treatment and prevention. Here we studied the potential use of a diet-based agent as an inhibitor for VEGF production. Using a VEGF reporter assay, our data showed that an extract from cinnamon (CE) was a potent inhibitor of VEGF production in human cancer cells and suggested inhibition might be mediated through the suppression of HIF-1α gene expression and protein synthesis. Furthermore, CE treatment was found to inhibit expression and phosphorylation of STAT3 and AKT, which are key factors in the regulation of HIF-1α expression, and significantly reduce angiogenesis potential of cancer cells by migration assay. Consistent with these results, we observed significant suppression of VEGF expression, blood vessel formation, and tumor growth in a human ovarian tumor model in mice treated with CE. Cinnamaldehyde, a major component in cinnamon, was identified as one active component in CE that inhibits VEGF expression. Taken together, our findings provide a novel mechanism underlying anti-angiogenic and anti-tumor actions of CE and support the potential use of CE in cancer prevention and treatment. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Hypoxia-inducible factor-1β (HIF-1β) is upregulated in a HIF-1α-dependent manner in 518A2 human melanoma cells under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mandl, Markus, E-mail: mmandl@mail.austria.com; Kapeller, Barbara; Lieber, Roman; Macfelda, Karin

    2013-04-26

    Highlights: •HIF-1β is a hypoxia-responsive protein in 518A2 human melanoma cells. •HIF-1β is upregulated in a HIF-1α-dependent manner under hypoxic conditions. •HIF-1β is not elevated due to heterodimerization with HIF-1α per se. •HIF-1β inducibility has a biological relevance as judged in Het-CAM model. -- Abstract: Solid tumors include hypoxic areas due to excessive cell proliferation. Adaptation to low oxygen levels is mediated by the hypoxia-inducible factor (HIF) pathway promoting invasion, metastasis, metabolic alterations, chemo-resistance and angiogenesis. The transcription factor HIF-1, the major player within this pathway consists of HIF-1α and HIF-1β. The alpha subunit is continuously degraded under normoxia and becomes stabilized under reduced oxygen supply. In contrast, HIF-1β is generally regarded as constitutively expressed and being present in excess within the cell. However, there is evidence that the expression of this subunit is more complex. The aim of this study was to investigate the role of HIF-1β in human melanoma cells. Among a panel of five different cell lines, in 518A2 cells exposed to the hypoxia-mimetic cobalt chloride HIF-1β was rapidly elevated on protein level. Knockdown experiments performed under cobalt chloride-exposure and hypoxia revealed that this effect was mediated by HIF-1α. The non-canonical relationship between these subunits was further confirmed by pharmacologic inhibition of HIF-1α and by expression of a dominant-negative HIF mutant. Overexpression of HIF-1α showed a time delay in HIF-1β induction, thus arguing for HIF-1β de novo synthesis rather than protein stabilization by heterodimerization. A Hen’s egg test-chorioallantoic membrane model of angiogenesis and invasion indicated a local expression of HIF-1β and implies a biological relevance of these findings. In summary, this study demonstrates the HIF-1α-dependent regulation of HIF-1β under hypoxic conditions for the first time. The

  3. Loss of skeletal muscle HIF-1alpha results in altered exercise endurance.

    Directory of Open Access Journals (Sweden)

    Steven D Mason

    2004-10-01

    Full Text Available The physiological flux of oxygen is extreme in exercising skeletal muscle. Hypoxia is thus a critical parameter in muscle function, influencing production of ATP, utilization of energy-producing substrates, and manufacture of exhaustion-inducing metabolites. Glycolysis is the central source of anaerobic energy in animals, and this metabolic pathway is regulated under low-oxygen conditions by the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha. To determine the role of HIF-1alpha in regulating skeletal muscle function, we tissue-specifically deleted the gene encoding the factor in skeletal muscle. Significant exercise-induced changes in expression of genes are decreased or absent in the skeletal-muscle HIF-1alpha knockout mice (HIF-1alpha KOs; changes in activities of glycolytic enzymes are seen as well. There is an increase in activity of rate-limiting enzymes of the mitochondria in the muscles of HIF-1alpha KOs, indicating that the citric acid cycle and increased fatty acid oxidation may be compensating for decreased flow through the glycolytic pathway. This is corroborated by a finding of no significant decreases in muscle ATP, but significantly decreased amounts of lactate in the serum of exercising HIF-1alpha KOs. This metabolic shift away from glycolysis and toward oxidation has the consequence of increasing exercise times in the HIF-1alpha KOs. However, repeated exercise trials give rise to extensive muscle damage in HIF-1alpha KOs, ultimately resulting in greatly reduced exercise times relative to wild-type animals. The muscle damage seen is similar to that detected in humans in diseases caused by deficiencies in skeletal muscle glycogenolysis and glycolysis. Thus, these results demonstrate an important role for the HIF-1 pathway in the metabolic control of muscle function.

  4. Molecular characterization of mudskipper (Boleophthalmus pectinirostris) hypoxia-inducible factor-1α (HIF-1α) and analysis of its function in monocytes/macrophages

    National Research Council Canada - National Science Library

    Feng Guan; Xin-Jiang Lu; Chang-Hong Li; Jiong Chen

    ...). In this study, the cDNA sequence of the mudskipper (Boleophthalmus pectinirostris) HIF-1α gene (BpHIF-1α) was determined. Sequence comparison and phylogenetic tree analysis showed that BpHIF-1...

  5. Expression of Hypoxia-Inducible Factor (HIF-1a-Vascular Endothelial Growth Factor (VEGF-Inhibitory Growth Factor (ING-4- axis in sarcoidosis patients

    Directory of Open Access Journals (Sweden)

    Tzouvelekis Argyris

    2012-11-01

    Full Text Available Abstract Background Sarcoidosis is a granulomatous disorder of unknown etiology. The term of immunoangiostasis has been addressed by various studies as potentially involved in the disease pathogenesis. The aim of the study was to investigate the expression of the master regulator of angiogenesis hypoxia inducible factor (HIF-1a – vascular endothelial growth factor (VEGF- inhibitor of growth factor 4-(ING4 - axis within sarcoid granuloma. Methods A total of 37 patients with sarcoidosis stages II-III were recruited in our study. Tissue microarray technology coupled with immunohistochemistry analysis were applied to video-assisted thoracoscopic surgery (VATS lung biopsy samples collected from 37 sarcoidosis patients and 24 controls underwent surgery for benign lesions of the lung. Computerized image analysis was used to quantify immunohistochemistry results. qRT-PCR was used to assess HIF-1a and ING4 expression in 10 sarcoidosis mediastinal lymph node and 10 control lung samples. Results HIF-1a and VEGF-ING4 expression, both in protein and mRNA level, was found to be downregulated and upregulated, respectively, in sarcoidosis samples compared to controls. Immunohistochemistry coupled with computerized image analysis revealed minimal expression of HIF-1a within sarcoid granulomas whereas an abundant staining of ING4 and VEGF in epithelioid cells was also visualized. Conclusions Our data suggest an impairment of the HIF-1a – VEGF axis, potentialy arising by ING4 overexpression and ultimately resulting in angiostasis and monocyte recruitment within granulomas. The concept of immunoangiostasis as a possible protection mechanism against antigens of infectious origin needs further research to be verified.

  6. Inhibition of protein kinase C delta attenuates allergic airway inflammation through suppression of PI3K/Akt/mTOR/HIF-1 alpha/VEGF pathway.

    Directory of Open Access Journals (Sweden)

    Yun Ho Choi

    Full Text Available Vascular endothelial growth factor (VEGF is supposed to contribute to the pathogenesis of allergic airway disease. VEGF expression is regulated by a variety of stimuli such as nitric oxide, growth factors, and hypoxia-inducible factor-1 alpha (HIF-1α. Recently, inhibition of the mammalian target of rapamycin (mTOR has been shown to alleviate cardinal asthmatic features, including airway hyperresponsiveness, eosinophilic inflammation, and increased vascular permeability in asthma models. Based on these observations, we have investigated whether mTOR is associated with HIF-1α-mediated VEGF expression in allergic asthma. In studies with the mTOR inhibitor rapamycin, we have elucidated the stimulatory role of a mTOR-HIF-1α-VEGF axis in allergic response. Next, the mechanisms by which mTOR is activated to modulate this response have been evaluated. mTOR is known to be regulated by phosphoinositide 3-kinase (PI3K/Akt or protein kinase C-delta (PKC δ in various cell types. Consistent with these, our results have revealed that suppression of PKC δ by rottlerin leads to the inhibition of PI3K/Akt activity and the subsequent blockade of a mTOR-HIF-1α-VEGF module, thereby attenuating typical asthmatic attack in a murine model. Thus, the present data indicate that PKC δ is necessary for the modulation of the PI3K/Akt/mTOR signaling cascade, resulting in a tight regulation of HIF-1α activity and VEGF expression. In conclusion, PKC δ may represent a valuable target for innovative therapeutic treatment of allergic airway disease.

  7. Microtubular stability affects pVHL-mediated regulation of HIF-1alpha via the p38/MAPK pathway in hypoxic cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Miao Teng

    Full Text Available BACKGROUND: Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL, as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α. METHODOLOGY/PRINCIPAL FINDINGS: In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4 overexpression plasmids and microtubule-depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells. CONCLUSIONS/SIGNIFICANCE: This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes.

  8. Mechanism of salutary effects of melatonin-mediated liver protection after trauma-hemorrhage: p38 MAPK-dependent iNOS/HIF-1α pathway.

    Science.gov (United States)

    Hsu, Jun-Te; Le, Puo-Hsien; Lin, Chun-Jung; Chen, Tsung-Hsing; Kuo, Chia-Jung; Chiang, Kun-Chun; Yeh, Ta-Sen

    2017-05-01

    Although melatonin attenuates the increases in inflammatory mediators and reduces organ injury during trauma-hemorrhage, the mechanisms remain unclear. This study explored whether melatonin prevents liver injury after trauma-hemorrhage through the p38 mitogen-activated protein kinase (MAPK)-dependent, inducible nitrite oxide (iNOS)/hypoxia-inducible factor (HIF)-1α pathway. After a 5-cm midline laparotomy, male rats underwent hemorrhagic shock (mean blood pressure ~40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, melatonin (2 mg/kg), melatonin plus p38 MAPK inhibitor SB203580 (2 mg/kg), or melatonin plus the melatonin receptor antagonist luzindole (2.5 mg/kg). At 2 h after trauma-hemorrhage, histopathology score of liver injury, liver tissue myeloperoxidase activity, malondialdehyde, adenosine triphosphate, serum alanine aminotransferase, and asparate aminotransferase levels were significantly increased compared with sham-operated control. Trauma-hemorrhage resulted in a significant decrease in the p38 MAPK activation compared with that in the sham-treated animals. Administration of melatonin after trauma-hemorrhage normalized liver p38 MAPK phosphorylation and iNOS and HIF-1α expression and attenuated cleaved caspase 3 and receptor interacting protein kinase-1 levels. Coadministration of SB203580 or luzindole abolished the melatonin-mediated attenuation of the trauma-hemorrhage-induced increase of iNOS/HIF-1α protein expression and liver injury markers. Taken together, our results suggest that melatonin prevents trauma-hemorrhage-induced liver injury in rats, at least in part, through melatonin receptor-related, p38 MAPK-dependent iNOS/HIF-1α pathway. NEW & NOTEWORTHY Trauma-hemorrhage resulted in a significant decrease in liver p38 MAPK activation and increase in nitrite oxide synthase (iNOS) and hypoxia-inducible factor (HIF)-1α expression. Administration of melatonin after trauma

  9. The Novel Antitubulin Agent TR-764 Strongly Reduces Tumor Vasculature and Inhibits HIF-1α Activation.

    Science.gov (United States)

    Porcù, Elena; Persano, Luca; Ronca, Roberto; Mitola, Stefania; Bortolozzi, Roberta; Romagnoli, Romeo; Oliva, Paola; Basso, Giuseppe; Viola, Giampietro

    2016-06-13

    Tubulin binding agents (TBAs) are commonly used in cancer therapy as antimitotics. It has been described that TBAs, like combretastatin A-4 (CA-4), present also antivascular activity and among its derivatives we identified TR-764 as a new inhibitor of tubulin polymerization, based on the 2-(alkoxycarbonyl)-3-(3',4',5'-trimethoxyanilino)benzo[b]thiophene molecular skeleton. The antiangiogenic activity of TR-764 (1-10 nM) was tested in vitro on human umbilical endothelial cells (HUVECs), and in vivo, on the chick embryo chorioallantoic membrane (CAM) and two murine tumor models. TR-764 binding to tubulin triggers cytoskeleton rearrangement without affecting cell cycle and viability. It leads to capillary tube disruption, increased cell permeability, and cell motility reduction. Moreover it disrupts adherens junctions and focal adhesions, through mechanisms involving VE-cadherin/β-catenin and FAK/Src. Importantly, TR-764 is active in hypoxic conditions significantly reducing HIF-1α. In vivo TR-764 (1-100 pmol/egg) remarkably blocks the bFGF proangiogenic activity on CAM and shows a stronger reduction of tumor mass and microvascular density both in murine syngeneic and xenograft tumor models, compared to the lead compound CA-4P. Altogether, our results indicate that TR-764 is a novel TBA with strong potential as both antivascular and antitumor molecule that could improve the common anticancer therapies, by overcoming hypoxia-induced resistance mechanisms.

  10. Myeloid HIF-1 is protective in Helicobacter pylori-mediated gastritis.

    Science.gov (United States)

    Matak, Pavle; Heinis, Mylène; Mathieu, Jacques R R; Corriden, Ross; Cuvellier, Sylvain; Delga, Stéphanie; Mounier, Rémi; Rouquette, Alexandre; Raymond, Josette; Lamarque, Dominique; Emile, Jean-François; Nizet, Victor; Touati, Eliette; Peyssonnaux, Carole

    2015-04-01

    Helicobacter pylori infection triggers chronic inflammation of the gastric mucosa that may progress to gastric cancer. The hypoxia-inducible factors (HIFs) are the central mediators of cellular adaptation to low oxygen levels (hypoxia), but they have emerged recently as major transcriptional regulators of immunity and inflammation. No studies have investigated whether H. pylori affects HIF signaling in immune cells and a potential role for HIF in H. pylori-mediated gastritis. HIF-1 and HIF-2 expression was examined in human H. pylori-positive gastritis biopsies. Subsequent experiments were performed in naive and polarized bone marrow-derived macrophages from wild-type (WT) and myeloid HIF-1α-null mice (HIF-1(Δmyel)). WT and HIF-1(Δmyel) mice were inoculated with H. pylori by oral gavage and sacrificed 6 mo postinfection. HIF-1 was specifically expressed in macrophages of human H. pylori-positive gastritis biopsies. Macrophage HIF-1 strongly contributed to the induction of proinflammatory genes (IL-6, IL-1β) and inducible NO synthase in response to H. pylori. HIF-2 expression and markers of M2 macrophage differentiation were decreased in response to H. pylori. HIF-1(Δmyel) mice inoculated with H. pylori for 6 mo presented with a similar bacterial colonization than WT mice but, surprisingly, a global increase of inflammation, leading to a worsening of the gastritis, measured by an increased epithelial cell proliferation. In conclusion, myeloid HIF-1 is protective in H. pylori-mediated gastritis, pointing to the complex counterbalancing roles of innate immune and inflammatory phenotypes in driving this pathology. Copyright © 2015 by The American Association of Immunologists, Inc.

  11. Regulation of hypoxia-inducible factor-1α (HIF-1α expression by interleukin-1β (IL-1 β, insulin-like growth factors I (IGF-I and II (IGF-II in human osteoarthritic chondrocytes

    Directory of Open Access Journals (Sweden)

    Angelica Rossi Sartori-Cintra

    2012-01-01

    Full Text Available OBJECTIVE: Hypoxia-inducible factor 1 alpha regulates genes related to cellular survival under hypoxia. This factor is present in osteroarthritic chondrocytes, and cytokines, such as interleukin-1 beta, participate in the pathogenesis of osteoarthritis, thereby increasing the activities of proteolytic enzymes, such as matrix metalloproteinases, and accelerating cartilage destruction. We hypothesize that Hypoxia Inducible Factor-1 alpha (HIF-1α can regulate cytokines (catabolic action and/or growth factors (anabolic action in osteoarthritis. The purpose of this study was to investigate the modulation of HIF-1α in human osteoarthritic chondrocytes by interleukin-1 beta (IL-1β and insulin-like growth factors I (IGF-I and II (IGF-II and to determine the involvement of the phosphatidylinositol-3kinase (PI-3K pathway in this process. METHODS: Human osteroarthritic chondrocytes were stimulated with IL-1β, IGF-I and IGF-II and LY294002, a specific inhibitor of PI-3K. Nuclear protein levels and gene expression were analyzed by western blot and quantitative reverse transcription-polymerase chain reaction analyses, respectively. RESULTS: HIF-1α expression was upregulated by IL-1β at the protein level but not at the gene level. IGF-I treatment resulted in increases in both the protein and mRNA levels of HIF-1α , whereas IGF-II had no effect on its expression. However, all of these stimuli exploited the PI-3K pathway. CONCLUSION: IL-1β upregulated the levels of HIF-1α protein post-transcriptionally, whereas IGF-I increased HIF-1α at the transcript level. In contrast, IGF-II did not affect the protein or gene expression levels of HIF-1α . Furthermore, all of the tested stimuli exploited the PI-3K pathway to some degree. Based on these findings, we are able to suggest that Hypoxia inducible Factor-1 exhibits protective activity in chondrocytes during osteoarthritis.

  12. Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia

    Directory of Open Access Journals (Sweden)

    Meng-Chuan Chen

    2015-07-01

    Full Text Available Activation of hypoxia-induced hypoxia-inducible factors-1 (HIF-1 plays a critical role in promoting tumor angiogenesis, growth and metastasis. Low molecular weight fucoidan (LMWF is prepared from brown algae, and exhibits anticancer activity. However, whether LMWF attenuates hypoxia-induced angiogenesis in bladder cancer cells and the molecular mechanisms involved remain unclear. This is the first study to demonstrate that LMWF can inhibit hypoxia-stimulated H2O2 formation, HIF-1 accumulation and transcriptional activity vascular endothelial growth factor (VEGF secretion, and the migration and invasion in hypoxic human bladder cancer cells (T24 cells. LMWF also downregulated hypoxia-activated phosphorylation of PI3K/AKT/mTOR/p70S6K/4EBP-1 signaling in T24 cells. Blocking PI3K/AKT or mTOR activity strongly diminished hypoxia-induced HIF-1α expression and VEGF secretion in T24 cells, supporting the involvement of PI3K/AKT/mTOR in the induction of HIF-1α and VEGF. Additionally, LMWF significantly attenuated angiogenesis in vitro and in vivo evidenced by reduction of tube formation of hypoxic human umbilical vascular endothelial cells and blood capillary generation in the tumor. Similarly, administration of LMWF also inhibited the HIF-1α and VEGF expression in vivo, accompanied by a reduction of tumor growth. In summary, under hypoxia conditions, the antiangiogenic activity of LMWF in bladder cancer may be associated with suppressing HIF-1/VEGF-regulated signaling pathway.

  13. Cloning and characterization of the rat HIF-1 alpha prolyl-4-hydroxylase-1 gene.

    Science.gov (United States)

    Cobb, Ronald R; McClary, John; Manzana, Warren; Finster, Silke; Larsen, Brent; Blasko, Eric; Pearson, Jennifer; Biancalana, Sara; Kauser, Katalin; Bringmann, Peter; Light, David R; Schirm, Sabine

    2005-08-01

    Prolyl-4-hydroxylase domain-containing enzymes (PHDs) mediate the oxygen-dependent regulation of the heterodimeric transcription factor hypoxia-inducible factor-1 (HIF-1). Under normoxic conditions, one of the subunits of HIF-1, HIF-1alpha, is hydroxylated on specific proline residues to target HIF-1alpha for degradation by the ubiquitin-proteasome pathway. Under hypoxic conditions, the hydroxylation by the PHDs is attenuated by lack of the oxygen substrate, allowing HIF-1 to accumulate, translocate to the nucleus, and mediate HIF-mediated gene transcription. In several mammalian species including humans, three PHDs have been identified. We report here the cloning of a full-length rat cDNA that is highly homologous to the human and murine PHD-1 enzymes and encodes a protein that is 416 amino acids long. Both cDNA and protein are widely expressed in rat tissues and cell types. We demonstrate that purified and crude baculovirus-expressed rat PHD-1 exhibits HIF-1alpha specific prolyl hydroxylase activity with similar substrate affinities and is comparable to human PHD-1 protein.

  14. Increased titer and reduced lactate accumulation in recombinant retrovirus production through the down-regulation of HIF1 and PDK.

    Science.gov (United States)

    Rodrigues, A F; Guerreiro, M R; Formas-Oliveira, A S; Fernandes, P; Blechert, A-K; Genzel, Y; Alves, P M; Hu, W S; Coroadinha, A S

    2016-01-01

    Many mammalian cell lines used in the manufacturing of biopharmaceuticals exhibit high glycolytic flux predominantly channeled to the production of lactate. The accumulation of lactate in culture reduces cell viability and may also decrease product quality. In this work, we engineered a HEK 293 derived cell line producing a recombinant gene therapy retroviral vector, by down-regulating hypoxia inducible factor 1 (HIF1) and pyruvate dehydrogenase kinase (PDK). Specific productivity of infectious viral titers could be increased more than 20-fold for single gene knock-down (HIF1 or PDK) and more than 30-fold under combined down-regulation. Lactate production was reduced up to 4-fold. However, the reduction in lactate production, alone, was not sufficient to enhance the titer: high-titer clones also showed significant enrollment of metabolic routes not related to lactate production. Transcriptome analysis indicated activation of biological amines metabolism, detoxification routes, including glutathione metabolism, pentose phosphate pathway, glycogen biosynthesis and amino acid catabolism. The latter were validated by enzyme activity assays and metabolite profiling, respectively. High-titer clones also presented substantially increased transcript levels of the viral genes expression cassettes. The results herein presented demonstrate the impact of HIF1 and PDK down-regulation on the production performance of a mammalian cell line, reporting one of the highest fold-increase in specific productivity of infectious virus titers achieved by metabolic engineering. They additionally highlight the contribution of secondary pathways, beyond those related to lactate production, that can be also explored to pursue improved metabolic status favoring a high-producing phenotype. © 2015 Wiley Periodicals, Inc.

  15. Regeneration of three layers vascular wall by using BMP2-treated MSC involving HIF-1α and Id1 expressions through JAK/STAT pathways.

    Science.gov (United States)

    Belmokhtar, Karim; Bourguignon, Thierry; Worou, Morel E; Khamis, Georges; Bonnet, Pierre; Domenech, Jorge; Eder, Véronique

    2011-11-01

    Engineering living, multilayered blood vessels to form in vivo arteries is a promising alternative to peripheral artery bypass using acellular grafts restricted by thrombosis and occlusion at long term. Bone Morphogenetic Protein 2 (BMP2) is a growth factor determining in the early vascular embryonic development. The aim of the present study was evaluate the collaborative effect of recombinant human--BMP2 and Bone marrow--Mesenchymal stem cells (BM-MSCs) seeded on vascular patch to regenerate a vascular arterial wall in a rat model. BM-MSCs expressing green fluorescent protein (GFP) seeded on vascular patch were cultured in presence of recombinant human-BMP2 [100 ng/mL] during 1 week before their implantation on the abdominal aorta of Wistar rats. We observed after 2 weeks under physiological arterial flow a regeneration of a three layers adult-like arterial wall with a middle layer expressing smooth muscle proteins and a border layer expressing endothelial marker. In vitro study, using Matrigel assay and co-culture of BM-MSCs with endothelial cells demonstrated that rh-BMP2 promoted tube-like formation even at long term (90 days) allowing the organization of thick rails. We demonstrated using inhibitors and siRNAs that rh-BMP2 enhanced the expression of HIF-1α and Id1 through, at least in part, the stimulation of JAK2/STAT3/STAT5 signaling pathways. Rh-BMP2 by mimicking embryological conditions allowed vascular BM-MSCs differentiation.

  16. VHL and HIF-1α: gene variations and prognosis in early-stage clear cell renal cell carcinoma.

    Science.gov (United States)

    Lessi, Francesca; Mazzanti, Chiara Maria; Tomei, Sara; Di Cristofano, Claudio; Minervini, Andrea; Menicagli, Michele; Apollo, Alessandro; Masieri, Lorenzo; Collecchi, Paola; Minervini, Riccardo; Carini, Marco; Bevilacqua, Generoso

    2014-03-01

    Von Hipple-Lindau gene (VHL) inactivation represents the most frequent abnormality in clear cell renal cell carcinoma (ccRCC). Hypoxia-inducible factor-1α (HIF-1α) expression is regulated by O2 level. In normal O2 conditions, VHL binds HIF-1α and allows HIF-1α proteasomal degradation. A single-nucleotide polymorphism (SNP) has been found located in the oxygen-dependent degradation domain at codon 582 (C1772T, rs11549465, Pro582Ser). In hypoxia, VHL/HIF-1α interaction is abolished and HIF-1α activates target genes in the nucleus. This study analyzes the impact of genetic alterations and protein expression of VHL and the C1772T SNP of HIF-1α gene (HIF-1α) on prognosis in early-stage ccRCC (pT1a, pT1b, and pT2). Mutational analysis of the entire VHL sequence and the genotyping of HIF-1α C1772T SNP were performed together with VHL promoter methylation analysis and loss of heterozygosis (LOH) analysis at (3p25) locus. Data obtained were correlated with VHL and HIF-1α protein expression and with tumor-specific survival (TSS). VHL mutations, methylation status, and LOH were detected in 51, 11, and 12% of cases, respectively. Our results support the association between biallelic alterations and/or VHL silencing with a worse TSS. Moreover, we found a significant association between the HIF-1α C1772C genotype and a worse TSS. The same association was found when testing the presence of HIF-1α protein in the nucleus. Our results highlight the role of VHL/HIF-1α pathway in RCC and support the molecular heterogeneity of early-stage ccRCC. More important, we show the involvement of HIF-1α C1772T SNP in ccRCC progression.

  17. Morphological changes and expression of HIF-1α in rat lens during embryonic development

    Directory of Open Access Journals (Sweden)

    Die Hu

    2014-11-01

    Full Text Available AIM: To investigate the morphological changes and the expression of hypoxia-inducible factor-1 alpha(HIF-1αsubunit during embryonic development of rat lens and explore the role of HIF-1α in lens development process. METHODS: Thirty clean pregnant Wistar rats were divided into 6 embryon groups,10-d, 12-d, 14-d, 16-d, 18-d and 20-d embryo. Two embryons were randomized obtained from every pregnant rat. One of the eyeball samples that were parallel to sagittal axis of optic nerve were cut into serial sections, used HE staining and examined by light microscope. Expression of HIF-1α protein in lens was detected by immunohistochemistry. The positive expression of HIF-1α mRNA of the other eyeball samples was detected by real-time PCR.RESULTS:In the 10th d of embryo(E10, the formation of lens vesicle were recognized under the light microscope. In the 12th d of embryo(E12, the anteriorly situated cells and posteriorly situated cells have already differentiated. The anteriorly situated cells were epithelium. In the 14th d of embryo(E14, primary fibers which came from posteriorly situated cells were examined. In the 16th d of embryo(E16, the lens epithelium undergoes extensive proliferation, and enlongate into the secondary fibers. In the 20th d of embryo(E20, the lens was maturation. By immunohistochemistry staining, the HIF-1α was highly expressed in the lens embryonic development. The expression was gradually promoting from E10 to E16, then reducing. The lens epithelium expressed more HIF-1α than fibers. The highest mean density was at E16, the lowest at E20. The difference was significant among of the 6 groups(PP>0.05. The other groups were compared with each other, finding significant difference(PPP>0.05. The other groups were compared with each other, finding significant difference(P0.05. CONCLUSION:The lens of Wistar rats differentiate from the E10 when the vesicle formed through the embryo phase. The lens is basic mature before birth. The HIF

  18. HIF1 Contributes to Hypoxia-Induced Pancreatic Cancer Cells Invasion via Promoting QSOX1 Expression

    Directory of Open Access Journals (Sweden)

    Chen-Ye Shi

    2013-08-01

    Full Text Available Background: Quiescin sulfhydryl oxidase 1 (QSOX1, which oxidizes sulfhydryl groups to form disulfide bonds in proteins, is found to be over-expressed in various pancreatic cancer cell lines and patients. QSOX1 promotes invasion of pancreatic cancer cells by activating MMP-2 and MMP-9. However, its regulatory mechanism remains largely undefined. Methods: Real-time PCR and Western blot were employed to detect the expression of QSOX1 in human pancreatic cancer cell lines under hypoxic condition. Luciferase reporter and ChIP assays were used to assess the regulation of QSOX1 by hypoxia-inducible factor 1 (HIF-1. Small interfering RNA (siRNA was applied to knock down endogenous expression of QSOX1. Matrigel-coated invasion chamber essays were conducted to detect the invasion capacity of QSOX1-depleted cells. Results: Both hypoxia and hypoxia mimicking reagent up-regulated the expression of QSOX1 in human pancreatic cancer cell lines. Knockdown of HIF-1α eliminated hypoxia induced QSOX1 expression. HIF-1α was found directly bound to two hypoxia-response elements (HRE of QSOX1 gene, both of which were required for HIF-1 induced QSOX1 expression. Moreover, QSOX1 silencing blocked hypoxia-induced pancreatic cancer cells invasion. Conclusion: QSOX1 is a direct target of HIF-1 and may contribute to hypoxia-induced pancreatic cancer cells invasion.

  19. HIF-1α expression in keloid and its correlation with angiogenesis, inflammatory response and apoptosis

    Directory of Open Access Journals (Sweden)

    Fei-Lun Ye

    2017-09-01

    Full Text Available Objective: To study the expression of hypoxia-inducible factor-1α (HIF-1α in keloid and its correlation with angiogenesis, inflammatory response and apoptosis. Methods: Keloid samples removed in the Third People’s Hospital of Chengdu between June 2014 and March 2017 were selected as the pathology group of the research, and normal skin tissues removed in the Third People’s Hospital of Chengdu due to injury were selected as the control group of the research. The expression of HIF-1α, angiogenesis molecules, inflammatory response cytokines and apoptosis molecules in keloid samples normal skin tissues were detected. Results: HIF- 1α, VEGF165, Flt-1, Flk-1, Ang-1, Tie-2, PGE2, PGF2α, MIF, Livin and Survivin mRNA expression in keloid of pathology group were significantly higher than those in normal skin tissue of control group while TSG-6, Caspase-3, Caspase-7 and Caspase-9 mRNA expression were significantly lower than those in normal skin tissue of control group; HIF-1α mRNA expression was positively correlated with VEGF165, Flt-1, Flk-1, Ang-1, Tie-2, PGE2, PGF2α, MIF, Livin and Survivin mRNA expression, and negatively correlated with TSG-6, Caspase-3, Caspase-7 and Caspase-9 mRNA expression. Conclusion: HIF-1α is highly expressed in keloid and can promote angiogenesis and inflammatory response and inhibit apoptosis.

  20. Nitric oxide prevents axonal degeneration by inducing HIF-1-dependent expression of erythropoietin.

    Science.gov (United States)

    Keswani, Sanjay C; Bosch-Marcé, Marta; Reed, Nicole; Fischer, Angela; Semenza, Gregg L; Höke, Ahmet

    2011-03-22

    Nitric oxide (NO) is a signaling molecule that can trigger adaptive (physiological) or maladaptive (pathological) responses to stress stimuli in a context-dependent manner. We have previously reported that NO may signal axonal injury to neighboring glial cells. In this study, we show that mice deficient in neuronal nitric oxide synthase (nNOS-/-) are more vulnerable than WT mice to toxin-induced peripheral neuropathy. The administration of NO donors to primary dorsal root ganglion cultures prevents axonal degeneration induced by acrylamide in a dose-dependent manner. We demonstrate that NO-induced axonal protection is dependent on hypoxia-inducible factor (HIF)-1-mediated transcription of erythropoietin (EPO) within glial (Schwann) cells present in the cultures. Transduction of Schwann cells with adenovirus AdCA5 encoding a constitutively active form of HIF-1α results in amelioration of acrylamide-induced axonal degeneration in an EPO-dependent manner. Mice that are partially deficient in HIF-1α (HIF-1α+/-) are also more susceptible than WT littermates to toxic neuropathy. Our results indicate that NO→HIF-1→EPO signaling represents an adaptive mechanism that protects against axonal degeneration.

  1. HIF-1-mediated production of exosomes during hypoxia is protective in renal tubular cells.

    Science.gov (United States)

    Zhang, Wei; Zhou, Xiangjun; Yao, Qisheng; Liu, Yutao; Zhang, Hao; Dong, Zheng

    2017-10-01

    Exosomes are nano-sized vesicles produced and secreted by cells to mediate intercellular communication. The production and function of exosomes in kidney tissues and cells remain largely unclear. Hypoxia is a common pathophysiological condition in kidneys. This study was designed to characterize exosome production during hypoxia of rat renal proximal tubular cells (RPTCs), investigate the regulation by hypoxia-inducible factor-1 (HIF-1), and determine the effect of the exosomes on ATP-depletion-induced tubular cell injury. Hypoxia did not change the average sizes of exosomes secreted by RPTCs, but it significantly increased exosome production in a time-dependent manner. HIF-1 induction with dimethyloxalylglycine also promoted exosome secretion, whereas pharmacological and genetic suppression of HIF-1 abrogated the increase of exosome secretion under hypoxia. The exosomes from hypoxic RPTCs had inhibitory effects on apoptosis of RPTCs following ATP depletion. The protective effects were lost in the exosomes from HIF-1α knockdown cells. It is concluded that hypoxia stimulates exosome production and secretion in renal tubular cells. The exosomes from hypoxic cells are protective against renal tubular cell injury. HIF-1 mediates exosome production during hypoxia and contributes to the cytoprotective effect of the exosomes. Copyright © 2017 the American Physiological Society.

  2. Immunohistochemical Expression of GLUT-1 and HIF-1α in Tooth Germ, Ameloblastoma, and Ameloblastic Carcinoma.

    Science.gov (United States)

    Sánchez-Romero, Celeste; Bologna-Molina, Ronell; Mosqueda-Taylor, Adalberto; Paes de Almeida, Oslei

    2016-08-01

    Hypoxia-inducible factor-1α (HIF-1α) promotes proteins that enable cell survival during hypoxia, such as glucose transporter 1 (GLUT-1). Their coexpression has been associated with aggressiveness in malignancies and has not been studied in odontogenic tumors. Immunohistochemical expression of HIF-1α and GLUT-1 was analyzed in 13 tooth germs (TGs), 55 ameloblastomas (AMs), and 3 ameloblastic carcinomas (ACs). HIF-1α was negative in all TGs, and just 1 case of AM and 1 of AC had nuclear positivity. GLUT-1 expressed in ameloblastic cells of all TGs, AMs, and ACs, with an increasing intensity, respectively, and was significantly higher in solid AM than in unicystic AM (P = .041). Absence of nuclear HIF-1α in TGs and most AMs suggest that GLUT-1 may be induced by alternative pathways to hypoxia. However, in ACs, HIF-1α may be activated; however, to confirm this, additional cases are needed. GLUT-1 overexpression could be related to aggressiveness in AMs and ACs and must represent a normal metabolite in TGs. © The Author(s) 2016.

  3. Evolutionary conserved regulation of HIF-1β by NF-κB.

    Directory of Open Access Journals (Sweden)

    Patrick van Uden

    2011-01-01

    Full Text Available Hypoxia Inducible Factor-1 (HIF-1 is essential for mammalian development and is the principal transcription factor activated by low oxygen tensions. HIF-α subunit quantities and their associated activity are regulated in a post-translational manner, through the concerted action of a class of enzymes called Prolyl Hydroxylases (PHDs and Factor Inhibiting HIF (FIH respectively. However, alternative modes of HIF-α regulation such as translation or transcription are under-investigated, and their importance has not been firmly established. Here, we demonstrate that NF-κB regulates the HIF pathway in a significant and evolutionary conserved manner. We demonstrate that NF-κB directly regulates HIF-1β mRNA and protein. In addition, we found that NF-κB-mediated changes in HIF-1β result in modulation of HIF-2α protein. HIF-1β overexpression can rescue HIF-2α protein levels following NF-κB depletion. Significantly, NF-κB regulates HIF-1β (tango and HIF-α (sima levels and activity (Hph/fatiga, ImpL3/ldha in Drosophila, both in normoxia and hypoxia, indicating an evolutionary conserved mode of regulation. These results reveal a novel mechanism of HIF regulation, with impact in the development of novel therapeutic strategies for HIF-related pathologies including ageing, ischemia, and cancer.

  4. Evolutionary conserved regulation of HIF-1β by NF-κB.

    Science.gov (United States)

    van Uden, Patrick; Kenneth, Niall S; Webster, Ryan; Müller, H Arno; Mudie, Sharon; Rocha, Sonia

    2011-01-27

    Hypoxia Inducible Factor-1 (HIF-1) is essential for mammalian development and is the principal transcription factor activated by low oxygen tensions. HIF-α subunit quantities and their associated activity are regulated in a post-translational manner, through the concerted action of a class of enzymes called Prolyl Hydroxylases (PHDs) and Factor Inhibiting HIF (FIH) respectively. However, alternative modes of HIF-α regulation such as translation or transcription are under-investigated, and their importance has not been firmly established. Here, we demonstrate that NF-κB regulates the HIF pathway in a significant and evolutionary conserved manner. We demonstrate that NF-κB directly regulates HIF-1β mRNA and protein. In addition, we found that NF-κB-mediated changes in HIF-1β result in modulation of HIF-2α protein. HIF-1β overexpression can rescue HIF-2α protein levels following NF-κB depletion. Significantly, NF-κB regulates HIF-1β (tango) and HIF-α (sima) levels and activity (Hph/fatiga, ImpL3/ldha) in Drosophila, both in normoxia and hypoxia, indicating an evolutionary conserved mode of regulation. These results reveal a novel mechanism of HIF regulation, with impact in the development of novel therapeutic strategies for HIF-related pathologies including ageing, ischemia, and cancer.

  5. Nimbolide upregulates RECK by targeting miR-21 and HIF-1α in cell lines and in a hamster oral carcinogenesis model.

    Science.gov (United States)

    Kowshik, Jaganathan; Mishra, Rajakishore; Sophia, Josephraj; Rautray, Satabdi; Anbarasu, Kumaraswamy; Reddy, G Deepak; Dixit, Madhulika; Mahalingam, Sundarasamy; Nagini, Siddavaram

    2017-05-17

    Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a potent inhibitor of matrix metalloproteinases (MMPs) is a common negative target of oncogenic signals and a potential therapeutic target for novel drug development. Here, we show that sequential RECKlessness stimulates angiogenesis and Notch signalling in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model, a paradigm for oral oncogenesis and chemointervention. We also report the chemotherapeutic effect of nimbolide, a limonoid from the neem tree (Azadirachta indica) based on the upregulation of RECK as well as modulation of the expression of key molecules involved in invasion and angiogenesis. We demonstrate that nimbolide upregulates RECK by targeting miR-21, and HIF-1α resulting in reduced MMP activity and blockade of VEGF and Notch signalling. Nimbolide reduced microvascular density, confirming its anti-angiogenic potential. Molecular docking analysis revealed interaction of nimbolide with HIF-1α. Additionally, we demonstrate that nimbolide upregulates RECK expression via downregulation of HIF-1α and miR-21 by overexpression and knockdown experiments in SCC4 and EAhy926 cell lines. Taken together, these findings provide compelling evidence that targeting RECK, a keystone protein that regulates mediators of invasion and angiogenesis with phytochemicals such as nimbolide may be a robust therapeutic approach to prevent oral cancer progression.

  6. Drug resistance and cancer stem cells: the shared but distinct roles of hypoxia-inducible factors HIF1α and HIF2α.

    Science.gov (United States)

    Schöning, Jennifer Petra; Monteiro, Michael; Gu, Wenyi

    2017-02-01

    Chemotherapy resistance is a major contributor to poor treatment responses and tumour relapse, the development of which has been strongly linked to the action of cancer stem cells (CSCs). Mounting evidence suggests that CSCs are reliant on low oxygen conditions and hypoxia-inducible factors 1α and 2α (HIF1α and HIF2α) to maintain their stem cell features. Research in the last decade has begun to clarify the functional differences between the two HIFα subtypes (HIFαs). Here, we review and discuss these differences in relation to CSC-associated drug resistance. Both HIFαs contribute to CSC survival but play different roles -HIF1α being more responsible for survival functions and HIF2α for stemness traits such as self-renewal - and are sensitive to different degrees of hypoxia. Failure to account for physiologically relevant oxygen concentrations in many studies may influence the current understanding of the roles of HIFαs. We also discuss how hypoxia and HIFαs contribute to CSC drug resistance via promotion of ABC drug transporters Breast cancer resistance protein (BCRP), MDR1, and MRP1 and through maintenance of quiescence. Additionally, we explore the PI3K/AKT cell survival pathway that may support refractory cancer by promoting CSCs and activating both HIF1α and HIF2α. Accordingly, HIF1α and HIF2α inhibition, potentially via PI3K/AKT inhibitors, could reduce chemotherapy resistance and prevent cancer relapse. © 2016 John Wiley & Sons Australia, Ltd.

  7. The potential role of Brachyury in inducing epithelial-to-mesenchymal transition (EMT) and HIF-1α expression in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Chao [Department of Mammary Surgery, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403 (China); Zhang, Jingjing, E-mail: jingjingzhangzs@163.com [Department of Cancer Radiotherapy, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403 (China); Fu, Jianhua [Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403 (China); Ling, Feihai, E-mail: feihailingfhl@163.com [Department of Mammary Surgery, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403 (China)

    2015-11-27

    One of transcription factors of the T-box family, Brachyury has been implicated in tumorigenesis of many types of cancers, regulating cancer cell proliferation, metastasis, invasion and epithelial-to-mesenchymal transition (EMT). However, the role of Brachyury in breast cancer cells has been scarcely reported. The present study aimed to investigate the expression and role of Brachyury in breast cancer. Brachyury expression was analyzed by qRT-PCR and Western blot. The correlations between Brachyury expression and clinicopathological factors of breast cancer were determined. Involvement of EMT stimulation and hypoxia-inducible factor-1α (HIF-1α) expression induction by Brachyury was also evaluated. Moreover, the effect of Brachyury on tumor growth and metastasis in vivo was examined in a breast tumor xenograft model. Brachyury expression was enhanced in primary breast cancer tissues and Brachyury expression was correlated with tumor stage and lymph node metastasis. Hypoxia enhanced Brachyury expression, the silencing of which blocked the modulation effect of hypoxia on E-cadherin and vimentin expression. Brachyury significantly augmented HIF-1alpha expression via PTEN/Akt signaling as well as accelerated cell proliferation and migration in vitro. Additionally, Brachyury accelerated breast tumor xenograft growth and increased lung metastasis in nude mice. In summary, our data confirmed that Brachyury might contribute to hypoxia-induced EMT of breast cancer and trigger HIF-1alpha expression via PTEN/Akt signaling. - Highlights: • Brachyury expression was correlated with tumor stage and lymph node metastasis. • Hypoxia enhanced Brachyury expression, which contributes to hypoxia-induced EMT. • Brachyury significantly augmented HIF-1alpha expression via PTEN/Akt signaling. • Brachyury accelerated tumor xenograft growth and increased lung metastasis.

  8. Molecular cloning and characterization of the Xenopus hypoxia-inducible factor 1alpha (xHIF1alpha).

    Science.gov (United States)

    de Beaucourt, Arnaud; Coumailleau, Pascal

    2007-12-15

    We report the molecular cloning and the characterization of the Xenopus homolog of mammalian hypoxia-inducible factor 1alpha (HIF1alpha), a member of the bHLH/PAS transcription factor family. Searches in Xenopus genome sequences and phylogenetic analysis reveal the existence of HIF1alpha and HIF2alpha paralogs in the Xenopus laevis species. Sequence data analyses indicate that the organization of protein domains in Xenopus HIF1alpha (xHIF1alpha) is strongly conserved. We also show that xHIF1alpha heterodimerizes with the Xenopus Arnt1 protein (xArnt1) with the proteic complex being mediated by the HLH and PAS domains. Subcellular analysis in a Xenopus XTC cell line using chimeric GFP constructs show that over-expression of xHIF1alpha and xArnt1 allows us to detect the xHIF1alpha/xArnt1 complex in the nucleus, but only in the presence of both partners. Further analyses in XTC cell line show that over-producing xHIF1alpha and xArnt1 mediates trans-activation of the hypoxia response element (HRE) reporter. The trans-activation level can be increased in hypoxia conditions. Interestingly such trans-activation properties can be also observed when human Arnt1 is used together with the xHIF1alpha. Copyright (c) 2007 Wiley-Liss, Inc.

  9. HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor

    Directory of Open Access Journals (Sweden)

    Joos Ulrich

    2005-07-01

    Full Text Available Abstract Background Hypoxia-inducible factor 1 (HIF-1 is a transcription factor, which plays a central role in biologic processes under hypoxic conditions, especially concerning tumour angiogenesis. HIF-1α is the relevant, oxygen-dependent subunit and its overexpression has been associated with a poor prognosis in a variety of malignant tumours. Therefore, HIF-1α expression in early stage oral carcinomas was evaluated in relation to established clinico-pathological features in order to determine its value as a prognostic marker. Methods 85 patients with histologically proven surgically treated T1/2 squamous cell carcinoma (SCC of the oral floor were eligible for the study. Tumor specimens were investigated by means of tissue micro arrays (TMAs and immunohistochemistry for the expression of HIF-1. Correlations between clinical features and the expression of HIF-1 were evaluated by Kaplan-Meier curves, log-rank tests and multivariate Cox regression analysis. Results HIF-1α was frequently overexpressed in a probably non-hypoxia related fashion. The expression of HIF-1α was related with a significantly improved 5-year survival rate (p Conclusion HIF-1α overexpression is an indicator of favourable prognosis in T1 and T2 SCC of the oral floor. Node negative patients lacking HIF-1α expression may therefore be considered for adjuvant radiotherapy.

  10. Vhl deletion in renal epithelia causes HIF-1?-dependent, HIF-2?-independent angiogenesis and constitutive diuresis

    OpenAIRE

    Schönenberger, Désirée; Rajski, Michal; Harlander, Sabine; Frew, Ian J

    2016-01-01

    One of the earliest requirements for the formation of a solid tumor is the establishment of an adequate blood supply. Clear cell renal cell carcinomas (ccRCC) are highly vascularized tumors in which the earliest genetic event is most commonly the biallelic inactivation of the VHL tumor suppressor gene, leading to constitutive activation of the HIF-1α and HIF-2α transcription factors, which are known angiogenic factors. However it remains unclear whether either or both HIF-1α or HIF-2α stabili...

  11. HIF-1alpha is essential for myeloid cell-mediated inflammation

    NARCIS (Netherlands)

    Cramer, Thorsten; Yamanishi, Yuji; Clausen, Björn E.; Förster, Irmgard; Pawlinski, Rafal; Mackman, Nigel; Haase, Volker H.; Jaenisch, Rudolf; Corr, Maripat; Nizet, Victor; Firestein, Gary S.; Gerber, Hans Peter; Ferrara, Napoleone; Johnson, Randall S.

    2003-01-01

    Granulocytes and monocytes/macrophages of the myeloid lineage are the chief cellular agents of innate immunity. Here, we have examined the inflammatory response in mice with conditional knockouts of the hypoxia responsive transcription factor HIF-1alpha, its negative regulator VHL, and a known

  12. Metal Ions-Stimulated Iron Oxidation in Hydroxylases Facilitates Stabilization of HIF-1α Protein

    Science.gov (United States)

    Kaczmarek, Monika; Cachau, Raul E.; Topol, Igor A.; Kasprzak, Kazimierz S.; Ghio, Andy; Salnikow, Konstantin

    2009-01-01

    The exposure of cells to several metal ions stabilizes HIF-1α protein. However, the molecular mechanisms are not completely understood. They may involve inhibition of hydroxylation by either substitution of iron by metal ions or by iron oxidation in the hydroxylases. Here we provide evidence supporting the latter mechanism. We show that HIF-1α stabilization in human lung epithelial cells occurred following exposure to various metal and metalloid ions, including those that cannot substitute for iron in the hydroxylases. In each case addition of the reducing agent ascorbic acid (AA)* abolished HIF-1α protein stabilization. To better understand the role of iron oxidation in hydroxylase inhibition and to define the role of AA in the enzyme recovery we applied molecular modeling techniques. Our results indicate that the energy required for iron substitution by Ni(II) in the enzyme is high and unlikely to be achieved in a biological system. Additionally, computer modeling allowed us to identify a tridentate coordination of AA with the enzyme-bound iron, which explains the specific demand for AA as the iron reductant. Thus, the stabilization of HIF-1α by numerous metal ions that cannot substitute for iron in the enzyme, the alleviation of this effect by AA, and our computer modeling data support the hypothesis of iron oxidation in the hydroxylases following exposure to metal ions. PMID:19074761

  13. Effect of hypoxia-inducible factor 1-alpha (HIF-1α) on proliferation ...

    African Journals Online (AJOL)

    In addition, AtT-20 cells were transfected with siRNA targeting HIF-1α and treated with different concentrations of CoCl2. The transfection efficacy was assessed by real-time PCR and western blot assay. Apoptosis was measured by fluorescein isothiocyanate (FITC)-annexin V/ propidium iodide (PI) staining and TUNEL ...

  14. Stanniocalcin-2 is a HIF-1 target gene that promotes cell proliferation in hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Law, Alice Y.S. [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wong, Chris K.C., E-mail: ckcwong@hkbu.edu.hk [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-02-01

    Stanniocalcin-2 (STC2), the paralog of STC1, has been suggested as a novel target of oxidative stress response to protect cells from apoptosis. The expression of STC2 has been reported to be highly correlated with human cancer development. In this study, we reported that STC2 is a HIF-1 target gene and is involved in the regulation of cell proliferation. STC2 was shown to be up-regulated in different breast and ovarian cancer cells, following exposure to hypoxia. Using ovarian cancer cells (SKOV3), the underlying mechanism of HIF-1 mediated STC2 gene transactivation was characterized. Hypoxia-induced STC2 expression was found to be HIF-1{alpha} dependent and required the recruitment of p300 and HDAC7. Using STC2 promoter deletion constructs and site-directed mutagenesis, two authentic consensus HIF-1 binding sites were identified. Under hypoxic condition, the silencing of STC2 reduced while the overexpression of STC2 increased the levels of phosphorylated retinoblastoma and cyclin D in both SKOV3 and MCF7 cells. The change in cell cycle proteins correlated with the data of the serial cell counts. The results indicated that cell proliferation was reduced in STC2-silenced cells but was increased in STC2-overexpressing hypoxic cells. Solid tumor progression is usually associated with hypoxia. The identification and functional analysis of STC2 up-regulation by hypoxia, a feature of the tumor microenvironment, sheds light on a possible role for STC2 in tumors.

  15. mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity

    Science.gov (United States)

    Cheng, Shih-Chin; Quintin, Jessica; Cramer, Robert A.; Shepardson, Kelly M.; Saeed, Sadia; Kumar, Vinod; Giamarellos-Bourboulis, Evangelos J; Martens, Joost H.A.; Rao, Nagesha Appukudige; Aghajanirefah, Ali; Manjeri, Ganesh R.; Li, Yang; Ifrim, Daniela C.; Arts, Rob J.W.; van der Meer, Brian M.J.W.; Deen, Peter M.T.; Logie, Colin; O’Neill, Luke A.; Willems, Peter; van de Veerdonk, Frank L.; van der Meer, Jos W.M.; Ng, Aylwin; Joosten, Leo A.B.; Wijmenga, Cisca; Stunnenberg, Hendrik G.; Xavier, Ramnik J.; Netea, Mihai G.

    2014-01-01

    Epigenetic reprogramming of myeloid cells by infection or vaccination, termed trained immunity, confers non-specific protection from secondary infections. We characterized genome-wide transcriptome and histone modification profiles of human monocytes trained with β-glucan and identified induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, lactate production, and NAD+/NADH ratio, reflecting a shift in the metabolism of trained monocytes with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1/Akt/HIF1α pathway. Inhibition of Akt, mTOR, or HIF1α blocked monocyte induction of trained immunity, whereas the AMPK activator metformin inhibited the innate immune response to fungal infection. Finally, mice with a myeloid cell-specific defect in HIF1α were unable to mount trained immunity against bacterial sepsis. In conclusion, Akt/mTOR/HIF1α-dependent induction of aerobic glycolysis represents the metabolic basis of trained immunity. PMID:25258083

  16. The effects of β-elemene on the expression of mTOR, HIF-1α ...

    African Journals Online (AJOL)

    The purpose of this manuscript was to study the regulation effects of â-elemene combined with radiotherapy on three different gene expressions in lung adenocarcinoma A549 cell. mTOR gene, HIF-1á gene, Survivin gene were included in the gene group. Cell culture and RT-PCR were applied to finish this research.

  17. Tibial dyschondroplasia is highly associated with suppression of tibial angiogenesis through regulating the HIF-1α/VEGF/VEGFR signaling pathway in chickens.

    Science.gov (United States)

    Huang, Shu-Cheng; Rehman, Mujeeb Ur; Lan, Yan-Fang; Qiu, Gang; Zhang, Hui; Iqbal, Muhammad Kashif; Luo, Hou-Qiang; Mehmood, Khalid; Zhang, Li-Hong; Li, Jia-Kui

    2017-08-22

    Tibial dyschondroplasia (TD) is an intractable poultry problem that is characterized by the appearance of non-vascularized and non-mineralized cartilage masses in tibial growth plates (TGPs). However, the role of angiogenesis inhibition in the occurrence of TD remains unknown. In this study, we found that, compared to low-altitude Arbor Acres chickens (AACs), high-altitude Tibetan chickens showed higher tibial vascular distributions that were accompanied by up-regulation of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor A (VEGFA) and VEGF receptors. These observations provide insights into hypoxia-induced angiogenesis, which may be related to the absence of TD in high-altitude native Tibetan chickens. Importantly, hypoxia experiments also showed that during hypoxia, tibial angiogenesis was enhanced, which was due to pro-angiogenic factor up-regulation (including VEGFA, VEGFR1, VEGFR2, and IL-8), in AACs. Moreover, we observed that thiram-induced TD could strongly inhibit tibial angiogenesis in the hypertrophic zone through coordinated down-regulation of HIF-1α and pro-angiogenic factors, leading to a disruption in the blood supply to the TGP. Taken together, these findings reveal that the occurrence of TD is highly associated with inhibition of tibial angiogenesis through down-regulated expression of HIF-1α, VEGFA and VEGF receptors, which results in suppression of TGP development.

  18. Hypoxia-induced HIF1α targets in melanocytes reveal a molecular profile associated with poor melanoma prognosis.

    Science.gov (United States)

    Loftus, Stacie K; Baxter, Laura L; Cronin, Julia C; Fufa, Temesgen D; Pavan, William J

    2017-05-01

    Hypoxia and HIF1α signaling direct tissue-specific gene responses regulating tumor progression, invasion, and metastasis. By integrating HIF1α knockdown and hypoxia-induced gene expression changes, this study identifies a melanocyte-specific, HIF1α-dependent/hypoxia-responsive gene expression signature. Integration of these gene expression changes with HIF1α ChIP-Seq analysis identifies 81 HIF1α direct target genes in melanocytes. The expression levels for 10 of the HIF1α direct targets - GAPDH, PKM, PPAT, DARS, DTWD1, SEH1L, ZNF292, RLF, AGTRAP, and GPC6 - are significantly correlated with reduced time of disease-free status in melanoma by logistic regression (P-value = 0.0013) and ROC curve analysis (AUC = 0.826, P-value < 0.0001). This HIF1α-regulated profile defines a melanocyte-specific response under hypoxia, and demonstrates the role of HIF1α as an invasive cell state gatekeeper in regulating cellular metabolism, chromatin and transcriptional regulation, vascularization, and invasion. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  19. Propranolol inhibits the proliferation, migration and tube formation of hemangioma cells through HIF-1α dependent mechanisms.

    Science.gov (United States)

    Chen, Y Z; Bai, N; Bi, J H; Liu, X W; Xu, G Q; Zhang, L F; Li, X Q; Huo, R

    2017-10-02

    The aim of this study was to investigate the mechanism of propranolol on the regression of hemangiomas. Propranolol-treated hemangioma tissues were collected and the expression of hypoxia inducible factor-1α (HIF-1α) was examined. We also established HIF-1α overexpression and knockdown hemangioma cells, and determined the effects of HIF-1α on the hemangioma cells proliferation, apoptosis, migration and tube formation. Significantly increased HIF-1α level was found in the hemangioma tissues compared to that in normal vascular tissues, whereas propranolol treatment decreased the HIF-1α level in hemangioma tissues in a time- and dose-dependent manner. Moreover, propranolol treatment significantly decreased cell proliferation, migration and tube formation as well as promoted cell apoptosis in HIF-1α overexpression and knockdown hemangioma cells. Propranolol suppressed the cells proliferation, migration and tube formation of hemangioma cells through HIF-1α dependent mechanisms. HIF-1α could serve as a novel target in the treatment of hemangiomas.

  20. Role of HIF-1α and CASPASE-3 in cystogenesis of odontogenic cysts and tumors.

    Science.gov (United States)

    da Costa, Natacha M M; de Siqueira, Adriane S; Ribeiro, André L R; da Silva Kataoka, Maria S; Jaeger, Ruy G; de Alves-Júnior, Sérgio M; Smith, Andrew M; de Jesus Viana Pinheiro, João

    2017-02-25

    Odontogenic cysts and tumors are the most relevant lesions that affect the gnathic bones. These lesions have in common the formation of cystic areas and this common feature may suggest involvement of similar mechanisms. The hypoxia inducible factor 1 alpha (HIF-1α), a responsive protein to hypoxia and caspase-3, an irreversible apoptosis marker, may contribute to cyst formation. Thus, this study aimed to investigate the immunoexpression of these proteins in odontogenic cysts and tumors. Twenty cases of ameloblastoma, keratocystic odontogenic tumor (KOT) (n = 20), radicular cyst (RC) (n = 18), dentigerous cyst (DC) (n = 11), calcifying cystic odontogenic tumor (n = 8), and dental follicle (DF) (n = 10) were used to investigate HIF-1α and caspase-3 expression in sequential serial cuts by immunohistochemistry. HIF-1α was overexpressed in RC, DC, and ameloblastoma when compared with DF. The basal and sometimes the lower suprabasal layer showed no or very low expression in DC, KOT, and ameloblastoma, the last also showing strong expression in solid epithelial areas and initial cystic formation regions. Caspase-3 was found to be overexpressed in all lesions, with the highest expression in odontogenic cysts compared to tumors. HIF-1α and caspase-3 were localized in similar areas of the same lesions, especially in the epithelium surrounding cystic formations. This study showed distinct immunoexpression of HIF-1α and caspase-3 in odontogenic cyst and tumors, with higher expression observed in odontogenic cysts. These findings suggest a possible correlation between hypoxia, apoptosis, and cystogenesis, leading to understand the mechanisms responsible to cystic formation in odontogenic lesions.

  1. Expression of HIF-1{alpha} in irradiated tissue is altered by topical negative-pressure therapy

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, A.; Stange, S.; Labanaris, A.; Horch, R.E. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Plastic and Hand Surgery; Dimmler, A. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Pathology; Sauer, R.; Grabenbauer, G. [Erlangen-Nuernberg Univ. (Germany). Dept. of Radiation Oncology

    2007-03-15

    Background and Purpose: Despite the enormous therapeutic potential of modern radiotherapy, common side effects such as radiation-induced wound healing disorders remain a well-known clinical phenomenon. Topical negative pressure therapy (TNP) is a novel tool to alleviate intraoperative, percutaneous irradiation or brachytherapy. Since TNP has been shown to positively influence the perfusion of chronic, poorly vascularized wounds, the authors applied this therapeutic method to irradiated wounds and investigated the effect on tissue oxygenation in irradiated tissue in five patients. Material and Methods: With informed patients' consent, samples prior to and 4 and 8 days after continuous TNP with -125 mmHg were obtained during routine wound debridements. Granulation tissue was stained with hematoxylin-eosin, and additionally with CD31, HIF-1{alpha} (hypoxia-inducible factor-1{alpha}), and D2-40 to detect blood vessels, measure indirect signs of hypoxia, and lymph vessel distribution within the pre- and post-TNP samples. Results: In this first series of experiments, a positive influence of TNP onto tissue oxygenation in radiation-induced wounds could be demonstrated. TNP led to a significant decrease of 53% HIF-1{alpha}-positive cell nuclei. At the same time, a slight reduction of CD31-stained capillaries was seen in comparison to samples before TNP. Immunostaining with D2-40 revealed an increased number of lymphatic vessels with distended lumina and an alteration of the parallel orientation within the post-TNP samples. Conclusion: This study is, to the authors' knowledge, the first report on a novel previously not described histological marker to demonstrate the effects of TNP on HIF-1{alpha} expression as an indirect marker of tissue oxygenation in irradiated wounds, as demonstrated by a reduction of HIF-1{alpha} concentration after TNP. Since this observation may be of significant value to develop possible new strategies to treat radiation-induced tissue

  2. Intermittent induction of HIF-1α produces lasting effects on malignant progression independent of its continued expression.

    Directory of Open Access Journals (Sweden)

    Hyunsung Choi

    Full Text Available Dysregulation of hypoxia-inducible transcription factors HIF-1α and HIF-2α correlates with poor prognosis in human cancers; yet, divergent and sometimes opposing activities of these factors in cancer biology have been observed. Adding to this complexity is that HIF-1α apparently possesses tumor-suppressing activities, as indicated by the loss-of-function mutations or even homozygous deletion of HIF1A in certain human cancers. As a step towards understanding this complexity, we employed 8-week intermittent induction of a stable HIF-1α variant, HIF1α(PP, in various cancer cell lines and examined the effects on malignant progression in xenografts of immunocompromised mice in comparison to those of HIF2α(PP. Although 8-week treatment led to eventual loss of HIF1α(PP expression, treated osteosarcoma U-2 OS cells acquired tumorigenicity in the subcutaneous tissue. Furthermore, the prior treatment resulted in widespread invasion of malignant glioma U-87 MG cells in the mouse brain and sustained growth of U-118 MG glioma cells. The lasting effects of HIF-1α on malignant progression are specific because neither HIF2α(PP nor β-galactosidase yielded similar effects. By contrast, transient expression of HIF1α(PP in U-87 MG cells or constitutive expression of HIF1α(PP but not HIF2α(PP in a patient-derived glioma sphere culture inhibited tumor growth and spread. Our results indicate that intermittent induction of HIF-1α produces lasting effects on malignant progression even at its own expense.

  3. Influence of preoperative transcatheter arterial chemoembolization on gene expression in the HIF-1α pathway in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Xu, Weiguang; Kwon, Jung-Hee; Moon, Young Ho; Kim, Young Bae; Yu, Yun Suk; Lee, Namgyu; Choi, Kwan Yong; Kim, Yun Soo; Park, Yong Keun; Kim, Bong Wan; Wang, Hee Jung

    2014-09-01

    Although transcatheter arterial chemoembolization (TACE) is the most common treatment option in patients with hepatocellular carcinoma (HCC), its clinical benefits remain still controversial. Since TACE induces hypoxic necrosis in tumors, hypoxia-inducible factor 1α (HIF-1α) could critically affect biology in residual tumors after TACE treatment and subsequent prognosis. However, HIF-1α and its prognostic relevance in TACE have rarely been examined in human specimens. In the current study, we investigated the prognosis and expression of genes regulated by HIF-1α in HCC patients receiving preoperative TACE for the first time. In total, 35 patients with HCC (10 patients undergoing preoperative TACE) were retrospectively studied. The prognostic significance of TACE was analyzed using Kaplan-Meier and Cox regression models. Protein levels of HIF-1α and mRNA levels of HIF-1α-associated genes were examined using immunohistochemistry (IHC) and real-time RT-PCR, respectively. Preoperative TACE was significantly associated with increased 2-year recurrence rate (80 vs. 36 %, P = 0.00402) and shorter disease-free survival (DFS) time (11.9 vs. 35.7 months, P = 0.0182). TACE was an independent prognostic factor for recurrence (P = 0.007) and poor DFS (P = 0.010) in a multivariate analysis. Immunohistochemical staining revealed in vivo activation of HIF-1α in human specimens treated with TACE. Notably, protein levels of HIF-1α were significantly increased in TACE tissues demonstrated by IHC. Transcriptional targets of HIF-1α showed mRNA expression patterns consistent with activation of HIF-1α in TACE tissues. Our findings collectively demonstrate that preoperative TACE confers poor prognosis in HCC patients through activation of HIF-1α.

  4. Loss of HIF-1α impairs GLUT4 translocation and glucose uptake by the skeletal muscle cells.

    Science.gov (United States)

    Sakagami, Hidemitsu; Makino, Yuichi; Mizumoto, Katsutoshi; Isoe, Tsubasa; Takeda, Yasutaka; Watanabe, Jun; Fujita, Yukihiro; Takiyama, Yumi; Abiko, Atsuko; Haneda, Masakazu

    2014-05-01

    Defects in glucose uptake by the skeletal muscle cause diseases linked to metabolic disturbance such as type 2 diabetes. The molecular mechanism determining glucose disposal in the skeletal muscle in response to cellular stimuli including insulin, however, remains largely unknown. The hypoxia-inducible factor-1α (HIF-1α) is a transcription factor operating in the cellular adaptive response to hypoxic conditions. Recent studies have uncovered pleiotropic actions of HIF-1α in the homeostatic response to various cellular stimuli, including insulin under normoxic conditions. Thus we hypothesized HIF-1α is involved in the regulation of glucose metabolism stimulated by insulin in the skeletal muscle. To this end, we generated C2C12 myocytes in which HIF-1α is knocked down by short-hairpin RNA and examined the intracellular signaling cascade and glucose uptake subsequent to insulin stimulation. Knockdown of HIF-1α expression in the skeletal muscle cells resulted in abrogation of insulin-stimulated glucose uptake associated with impaired mobilization of glucose transporter 4 (GLUT4) to the plasma membrane. Such defect seemed to be caused by reduced phosphorylation of the protein kinase B substrate of 160 kDa (AS160). AS160 phosphorylation and GLUT4 translocation by AMP-activated protein kinase activation were abrogated as well. In addition, expression of the constitutively active mutant of HIF-1α (CA-HIF-1α) or upregulation of endogenous HIF-1α in C2C12 cells shows AS160 phosphorylation comparable to the insulin-stimulated level even in the absence of insulin. Accordingly GLUT4 translocation was increased in the cells expressing CA-HIF1α. Taken together, HIF-1α is a determinant for GLUT4-mediated glucose uptake in the skeletal muscle cells thus as a possible target to alleviate impaired glucose metabolism in, e.g., type 2 diabetes.

  5. siRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in Toxoplasma gondii-Infected Cells.

    Science.gov (United States)

    Menendez, Matthew T; Teygong, Crystal; Wade, Kristin; Florimond, Celia; Blader, Ira J

    2015-06-23

    Although it is established that oxygen availability regulates cellular metabolism and growth, little is known regarding how intracellular pathogens use host factors to grow at physiological oxygen levels. Therefore, large-scale human small interfering RNA screening was performed to identify host genes important for growth of the intracellular protozoan parasite Toxoplasma gondii at tissue oxygen tensions. Among the genes identified by this screen, we focused on the hexokinase 2 (HK2) gene because its expression is regulated by hypoxia-inducible transcription factor 1 (HIF-1), which is important for Toxoplasma growth. Toxoplasma increases host HK2 transcript and protein levels in a HIF-1-dependent manner. In addition, parasite growth at 3% oxygen is restored in HIF-1-deficient cells transfected with HK2 expression plasmids. Both HIF-1 activation and HK2 expression were accompanied by increases in host glycolytic flux, suggesting that enhanced HK2 expression in parasite-infected cells is functionally significant. Parasite dependence on host HK2 and HIF-1 expression is not restricted to transformed cell lines, as both are required for parasite growth in nontransformed C2C12 myoblasts and HK2 is upregulated in vivo following infection. While HK2 is normally associated with the cytoplasmic face of the outer mitochondrial membrane at physiological O2 levels, HK2 relocalizes to the host cytoplasm following infection, a process that is required for parasite growth at 3% oxygen. Taken together, our findings show that HIF-1-dependent expression and relocalization of HK2 represent a novel mechanism by which Toxoplasma establishes its replicative niche at tissue oxygen tensions. Little is known regarding how the host cell contributes to the survival of the intracellular parasite Toxoplasma gondii at oxygen levels that mimic those found in tissues. Our previous work showed that Toxoplasma activates the expression of an oxygen-regulated transcription factor that is required for

  6. Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells.

    Science.gov (United States)

    Kim, Dong Hwan; Sung, Bokyung; Kang, Yong Jung; Hwang, Seong Yeon; Kim, Min Jeong; Yoon, Jeong-Hyun; Im, Eunok; Kim, Nam Deuk

    2015-12-01

    The effects of sulforaphane (a natural product commonly found in broccoli) was investigated on hypoxia inducible factor-1α (HIF-1α) expression in HCT116 human colon cancer cells and AGS human gastric cancer cells. We found that hypoxia-induced HIF-1α protein expression in HCT116 and AGS cells, while treatment with sulforaphane markedly and concentration-dependently inhibited HIF-1α expression in both cell lines. Treatment with sulforaphane inhibited hypoxia-induced vascular endothelial growth factor (VEGF) expression in HCT116 cells. Treatment with sulforaphane modulated the effect of hypoxia on HIF-1α stability. However, degradation of HIF-1α by sulforaphane was not mediated through the 26S proteasome pathway. We also found that the inhibition of HIF-1α by sulforaphane was not mediated through AKT and extracellular signal-regulated kinase phosphorylation under hypoxic conditions. Finally, hypoxia-induced HCT116 cell migration was inhibited by sulforaphane. These data suggest that sulforaphane may inhibit human colon cancer progression and cancer cell angiogenesis by inhibiting HIF-1α and VEGF expression. Taken together, these results indicate that sulforaphane is a new and potent chemopreventive drug candidate for treating patients with human colon cancer.

  7. The Differential Role of Hif1β/Arnt and the Hypoxic Response in Adipose Function, Fibrosis, and Inflammation

    Science.gov (United States)

    Lee, Kevin Y.; Gesta, Stephane; Boucher, Jeremie; Wang, Xiaohui L.; Kahn, C. Ronald

    2011-01-01

    In obesity, adipocytes distant from vasculature become hypoxic and dysfunctional. This hypoxic response is mediated by hypoxia inducible factors (Hif1α, Hif2α, and Hif3α), and their obligate partner Hif1β (Arnt). We show that mice lacking Hif1β in fat (FH1βKO) are lean, exhibit reduced adipocyte size, and are protected from age and diet-induced glucose intolerance. There is also reduced Vegf and vascular permeability in FH1βKO fat, but diet-induced inflammation and fibrosis is unchanged. Adipocytes from FH1βKO mice have reduced glucose uptake due to decreased Glut1 and Glut4, which is mirrored in 3T3-L1 adipocytes with Hif1β knockdown. Hif1β knockdown cells also fail to respond appropriately to hypoxia with reduced cellular respiration and reduced mitochondrial gene expression. Some, but not all, of these effects are reproduced by Hif1α knockdown. Thus, Hif1β/Arnt regulates glucose uptake, mitochondrial gene expression, and vascular permeability to control adipose mass and function, providing a novel target for obesity therapy. PMID:21982709

  8. Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance

    Science.gov (United States)

    Vukovic, Milica; Guitart, Amelie V.; Sepulveda, Catarina; Villacreces, Arnaud; O'Duibhir, Eoghan; Panagopoulou, Theano I.; Ivens, Alasdair; Menendez-Gonzalez, Juan; Iglesias, Juan Manuel; Allen, Lewis; Glykofrydis, Fokion; Subramani, Chithra; Armesilla-Diaz, Alejandro; Post, Annemarie E.M.; Schaak, Katrin; Gezer, Deniz; So, Chi Wai Eric; Holyoake, Tessa L.; Wood, Andrew; O'Carroll, Dónal; Ratcliffe, Peter J.

    2015-01-01

    Leukemogenesis occurs under hypoxic conditions within the bone marrow (BM). Knockdown of key mediators of cellular responses to hypoxia with shRNA, namely hypoxia-inducible factor-1α (HIF-1α) or HIF-2α, in human acute myeloid leukemia (AML) samples results in their apoptosis and inability to engraft, implicating HIF-1α or HIF-2α as therapeutic targets. However, genetic deletion of Hif-1α has no effect on mouse AML maintenance and may accelerate disease development. Here, we report the impact of conditional genetic deletion of Hif-2α or both Hif-1α and Hif-2α at different stages of leukemogenesis in mice. Deletion of Hif-2α accelerates development of leukemic stem cells (LSCs) and shortens AML latency initiated by Mll-AF9 and its downstream effectors Meis1 and Hoxa9. Notably, the accelerated initiation of AML caused by Hif-2α deletion is further potentiated by Hif-1α codeletion. However, established LSCs lacking Hif-2α or both Hif-1α and Hif-2α propagate AML with the same latency as wild-type LSCs. Furthermore, pharmacological inhibition of the HIF pathway or HIF-2α knockout using the lentiviral CRISPR-Cas9 system in human established leukemic cells with MLL-AF9 translocation have no impact on their functions. We therefore conclude that although Hif-1α and Hif-2α synergize to suppress the development of AML, they are not required for LSC maintenance. PMID:26642852

  9. Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in non-small cell lung cancer cells.

    Science.gov (United States)

    Zhou, Fang; Du, Jin; Wang, Jianjun

    2017-04-01

    Albendazole (ABZ) has an anti-tumor ability and inhibits HIF-1α activity. HIF-1α is associated with glycolysis and vascular endothelial cell growth factor (VEGF) expression, which plays an important role in cancer progression. These clues indicate that ABZ exerts an anti-cancer effect by regulating glycolysis and VEGF expression. The aim of this study is to clarify the effects of ABZ on non-small cell lung cancer (NSCLC) cells and explore the underlying molecular mechanisms. The expression levels of HIF-1α and VEGF were detected using western blot analysis, and the effect of ABZ on glycolysis was evaluated by measuring the relative activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) and detecting the production of lactate in A549 and H1299 cells. The results showed that ABZ decreased the expression levels of HIF-1α and VEGF and suppressed glycolysis in under hypoxia, but not normoxic condition. Inhibiting HIF-1α also suppressed glycolysis and VEGF expression. Additionally, ABZ inhibited the volume and weight, decreased the relative activities of HK, PK, and LDH, and reduced the levels of HIF-1α and VEGF of A549 xenografts in mouse models. In conclusion, ABZ inhibited growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and VEGF expression.

  10. Hypoxia Inducible Factor-1α (HIF-1 α and its Role in Tumour Progression to Malignancy

    Directory of Open Access Journals (Sweden)

    Gaurav Mrinal Sharma

    2008-07-01

    Full Text Available Hypoxia is a condition in which an area of the body or a tissue is deprived of sufficient supply of oxygen. The lack of nutrients in a hypoxic tissue generally causes apoptosis but some cells are able to adapt to this hypoxic environment and resist apoptosis. This adaptation occurs as a result of gene activation. Hypoxia is a characteristic feature of many cancers and is the stimulus for overexpression of HIF-1α - a basic loop-helix PAS protein family subunit of HIF, which allows the cell to adapt and survive in hostile environment. The presence of hypoxia and HIF-1α is correlated with an increased risk of metastasis and techniques that can inhibit hypoxia inducible factor may be instrumental in finding a cure for cancer.

  11. Relative Expression of HIF-1α mRNA in Rat Heart, Brain and Blood During Induced Systemic Hypoxia

    Directory of Open Access Journals (Sweden)

    Syarifah Dewi

    2009-11-01

    Full Text Available Hypoxia is a pathological condition in which the body as a whole or region of the body (tissue or cell deprived of adequate oxygen supply. The transcriptional regulator hypoxia inducible factor-1 (HIF-1 is an essential mediator of O2 homeostasis. Unlike the β sub unit (HIF-1β, the activity of HIF-1α is controlled in an oxygen-dependent manner. It has been reported that the stability and expression of HIF-1α during hypoxia is remarkably higher than those under normoxic conditions.The aim of this study was to analyze the adaptive tissue responses during induced systemic hypoxia by comparation of relative expression of mRNA HIF-1α in rat heart, brain and blood. Twenty-five male Sprague Dawley rats were subjected to systemic hypoxia by placing them in the hypoxic chamber supplied by 8-10% of O2 for 0, 1, 7, 14 and 21 days, respectively. The relative expression level of HIF-1α mRNA in brain, heart and leucocyte cells were analyzed using quantitative RT-PCR assay (Real Time PCR based on Pfaff's formula. This study demonstrates that the increased of relative expression of HIF-1α mRNA during induced systemic hypoxia reached its maximum level at day 7 (in heart or at day 14 (in brain, whereas in leucocyte cells the stimulation of HIF-1α expression was intensively maintained up to 21 days although the expression has reached the remarkably high level. We could conclude that HIF-1α as an oxygen sensing during systemic hypoxia has different capacity and sensitivity in brain, heart and blood tissues, due to the importance of oxygen homeostasis in each tissue.

  12. The metabolic bone disease associated with the Hyp mutation is independent of osteoblastic HIF1α expression

    Directory of Open Access Journals (Sweden)

    Julia M. Hum

    2017-06-01

    Full Text Available Fibroblast growth factor-23 (FGF23 controls key responses to systemic phosphate increases through its phosphaturic actions on the kidney. In addition to stimulation by phosphate, FGF23 positively responds to iron deficiency anemia and hypoxia in rodent models and in humans. The disorder X-linked hypophosphatemia (XLH is characterized by elevated FGF23 in concert with an intrinsic bone mineralization defect. Indeed, the Hyp mouse XLH model has disturbed osteoblast to osteocyte differentiation with altered expression of a wide variety of genes, including FGF23. The transcription factor Hypoxia inducible factor-1α (HIF1α has been implicated in regulating FGF23 production and plays a key role in proper bone cell differentiation. Thus the goals of this study were to determine whether HIF1α activation could influence FGF23, and to test osteoblastic HIF1α production on the Hyp endocrine and skeletal phenotypes in vivo. Treatment of primary cultures of osteoblasts/osteocytes and UMR-106 cells with the HIF activator AG490 resulted in rapid HIF1α stabilization and increased Fgf23 mRNA (50–100 fold; p < 0.01–0.001 in a time- and dose-dependent manner. Next, the Phex gene deletion in the Hyp mouse was bred onto mice with a HIF1α/Osteocalcin (OCN-Cre background. Although HIF1α effects on bone could be detected, FGF23-related phenotypes due to the Hyp mutation were independent of HIF1α in vivo. In summary, FGF23 can be driven by ectopic HIF1α activation under normal iron conditions in vitro, but factors independent of HIF1α activity after mature osteoblast formation are responsible for the disease phenotypes in Hyp mice in vivo.

  13. Host - HIF- 1alpha Pathway And Hypoxia: In Vitro Studies And Mathematical Model

    Science.gov (United States)

    2016-08-30

    downstream molecular activities are the same when cells are exposed to CoCl2 rather than a low-O2 environment . It is also impossible to correlate...apoptosis. “The implication from these observations is that the brain naturally functions in a low, but controlled, oxygen environment . Acute imbalances...genetics and epigenetics . J. Physiol. 591(Pt 9), 2245–2257. Semenza, G. L. (2004). Hydroxylation of HIF-1: oxygen sensing at the molecular level

  14. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization.

    Science.gov (United States)

    Fan, Di; Coughlin, Laura A; Neubauer, Megan M; Kim, Jiwoong; Kim, Min Soo; Zhan, Xiaowei; Simms-Waldrip, Tiffany R; Xie, Yang; Hooper, Lora V; Koh, Andrew Y

    2015-07-01

    Candida albicans colonization is required for invasive disease. Unlike humans, adult mice with mature intact gut microbiota are resistant to C. albicans gastrointestinal (GI) colonization, but the factors that promote C. albicans colonization resistance are unknown. Here we demonstrate that commensal anaerobic bacteria-specifically clostridial Firmicutes (clusters IV and XIVa) and Bacteroidetes-are critical for maintaining C. albicans colonization resistance in mice. Using Bacteroides thetaiotamicron as a model organism, we find that hypoxia-inducible factor-1α (HIF-1α), a transcription factor important for activating innate immune effectors, and the antimicrobial peptide LL-37 (CRAMP in mice) are key determinants of C. albicans colonization resistance. Although antibiotic treatment enables C. albicans colonization, pharmacologic activation of colonic Hif1a induces CRAMP expression and results in a significant reduction of C. albicans GI colonization and a 50% decrease in mortality from invasive disease. In the setting of antibiotics, Hif1a and Camp (which encodes CRAMP) are required for B. thetaiotamicron-induced protection against C. albicans colonization of the gut. Thus, modulating C. albicans GI colonization by activation of gut mucosal immune effectors may represent a novel therapeutic approach for preventing invasive fungal disease in humans.

  15. Inhibition of HIF-1{alpha} activity by BP-1 ameliorates adjuvant induced arthritis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, J. [Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago (United States); Thippegowda, P.B., E-mail: btprabha@uic.edu [Department of Pharmacology, (M/C 868), College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612 (United States); Kanum, S.A. [Department of Chemistry, Yuvaraj' s College, University of Mysore, Mysore (India)

    2009-09-18

    Rheumatoid arthritis (RA) is a chronic inflammatory, angiogenic disease. Inflamed synovitis is a hallmark of RA which is hypoxic in nature. Vascular endothelial growth factor (VEGF), one of the key regulators of angiogenesis, is overexpressed in the pathogenesis of RA. VEGF expression is regulated by hypoxia-inducible factor-1{alpha} (HIF-1{alpha}), a master regulator of homeostasis which plays a pivotal role in hypoxia-induced angiogenesis. In this study we show that synthetic benzophenone analogue, 2-benzoyl-phenoxy acetamide (BP-1) can act as a novel anti-arthritic agent in an experimental adjuvant induced arthritis (AIA) rat model by targeting VEGF and HIF-1{alpha}. BP-1 administered hypoxic endothelial cells and arthritic animals clearly showed down regulation of VEGF expression. Further, BP-1 inhibits nuclear translocation of HIF-1{alpha}, which in turn suppresses transcription of the VEGF gene. These results suggest a further possible clinical application of the BP-1 derivative as an anti-arthritic agent in association with conventional chemotherapeutic agents.

  16. Simulation predicts IGFBP2-HIF1α interaction drives glioblastoma growth.

    Directory of Open Access Journals (Sweden)

    Ka Wai Lin

    2015-04-01

    Full Text Available Tremendous strides have been made in improving patients' survival from cancer with one glaring exception: brain cancer. Glioblastoma is the most common, aggressive and highly malignant type of primary brain tumor. The average overall survival remains less than 1 year. Notably, cancer patients with obesity and diabetes have worse outcomes and accelerated progression of glioblastoma. The root cause of this accelerated progression has been hypothesized to involve the insulin signaling pathway. However, while the process of invasive glioblastoma progression has been extensively studied macroscopically, it has not yet been well characterized with regards to intracellular insulin signaling. In this study we connect for the first time microscale insulin signaling activity with macroscale glioblastoma growth through the use of computational modeling. Results of the model suggest a novel observation: feedback from IGFBP2 to HIF1α is integral to the sustained growth of glioblastoma. Our study suggests that downstream signaling from IGFI to HIF1α, which has been the target of many insulin signaling drugs in clinical trials, plays a smaller role in overall tumor growth. These predictions strongly suggest redirecting the focus of glioma drug candidates on controlling the feedback between IGFBP2 and HIF1α.

  17. VEGF, HIF-1α expression and MVD as an angiogenic network in familial breast cancer.

    Science.gov (United States)

    Saponaro, Concetta; Malfettone, Andrea; Ranieri, Girolamo; Danza, Katia; Simone, Giovanni; Paradiso, Angelo; Mangia, Anita

    2013-01-01

    Angiogenesis, which plays an important role in tumor growth and progression of breast cancer, is regulated by a balance between pro- and anti-angiogenic factors. Expression of vascular endothelial growth factor (VEGF) is up-regulated during hypoxia by hypoxia-inducible factor-1α (HIF-1α). It is known that there is an interaction between HIF-1α and BRCA1 carrier cancers, but little has been reported about angiogenesis in BRCA1-2 carrier and BRCAX breast cancers. In this study, we investigated the expression of VEGF and HIF-1α and microvessel density (MVD) in 26 BRCA1-2 carriers and 58 BRCAX compared to 77 sporadic breast cancers, by immunohistochemistry. VEGF expression in BRCA1-2 carriers was higher than in BRCAX cancer tissues (p = 0.0001). Furthermore, VEGF expression was higher in both BRCA1-2 carriers and BRCAX than the sporadic group (p<0.0001). VEGF immunoreactivity was correlated with poor tumor grade (p = 0.0074), hormone receptors negativity (p = 0.0206, p = 0.0002 respectively), and MIB-1-labeling index (p = 0.0044) in familial cancers (BRCA1-2 and BRCAX). The percentage of nuclear HIF-1α expression was higher in the BRCA1-2 carriers than in BRCAX cancers (p<0.05), and in all familial than in sporadic tumor tissues (p = 0.0045). A higher MVD was observed in BRCA1-2 carrier than in BRCAX and sporadic cancer tissues (p = 0.002, p = 0.0001 respectively), and in all familial tumors than in sporadic tumors (p = 0.01). MVD was positively related to HIF-1α expression in BRCA1-2 carriers (r = 0.521, p = 0.006), and, in particular, we observed a highly significant correlation in the familial group (r = 0.421, p<0.0001). Our findings suggest that angiogenesis plays a crucial role in BRCA1-2 carrier breast cancers. Prospective studies in larger BRCA1-2 carrier series are needed to improve the best therapeutic strategies for this subgroup of breast cancer patients.

  18. Nitric oxide causes macrophage migration via the HIF-1-stimulated small GTPases Cdc42 and Rac1.

    Science.gov (United States)

    Zhou, Jie; Dehne, Nathalie; Brüne, Bernhard

    2009-09-15

    Hypoxia-inducible factor 1 (HIF-1) is a key regulator of tumor development. Recently, the tumor microenvironment, with the presence of tumor-associated macrophages (TAMs), has gained considerable interest. The mechanisms of macrophage/TAM migration as well as the role of HIF-1 in macrophages for tumor progression are still under debate. We present evidence that under normoxic conditions, nitric oxide (NO) promotes macrophage migration. The response was impaired in macrophages from leukocyte conditional HIF-1 alpha(-/-) mice. NO production and cell migration in response to cytokines were attenuated in macrophages from iNOS(-/-) mice, suggesting that iNOS-derived NO transmits cytokine signaling toward cell migration. We further identified the small GTPases Cdc42 and Rac1 as effectors of the NO-HIF axis to drive macrophage migration by modulating the actin cytoskeleton. Our observations strengthen the role of HIF-1 in macrophages as a target of NO in facilitating functional responses such as migration.

  19. Cytoglobin expression in oxidative stressed liver during systemic chronic normobaric hypoxia and relation with HIF-1α

    Directory of Open Access Journals (Sweden)

    Sri W.A. Jusman

    2014-10-01

    Full Text Available Background: Liver is sensitive against hypoxia and hypoxia will stabilize HIF-1α. At the same time, hypoxia will produce reactive oxygen species (ROS which can be scavenged by Cygb. The purpose of our study is to know, if normobaric hypoxia can induce Cygb expression and its association with HIF-1α stabilization.Methods: This is an experimental study using 28 male Sprague-Dawley rats, 150-200 g weight. Rats are divided into 7 groups: control group and treatment groups that are kept in hypoxic chamber (10% O2: 90% N2 for 6 hours, 1, 2, 3, 7 and 14 days. All rats are euthanized after treatment and liver tissue are isolated, homogenized and analyzed for oxidative stress parameter, expression of Cygb and HIF-1α.Results: Expression of Cygb mRNA and protein was increased on the day-1 after treatment and reach the maximum expression on the day-2 of hypoxia treatment. But, the expression was decreased after the day-3 and slightly increased at the day-14 of hypoxia. The correlation between expression of Cygb and oxidative stress parameter was strongly correlated. Cygb mRNA, as well as protein, showed the same kinetic as the HIF-1, all increased about day-1 and day-2.Conclusion: Systemic chronic hypoxia and/or oxidative stress up-regulated HIF-1α mRNA which is correlated with the Cygb mRNA and protein expression. Cygb mRNA as well as Cygb protein showed the same kinetic as the HIF-1, all increased about day-1 and day-2 suggesting that Cygb could be under the regulation of HIF-1, but could be controlled also by other factor than HIF-1.

  20. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas [Laboratory of Biochemistry, School of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa (Greece); Institute of Biomedical Research and Technology (BIOMED), 51 Papanastasiou str., 41222 Larissa (Greece); Simos, George, E-mail: simos@med.uth.gr [Laboratory of Biochemistry, School of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa (Greece); Institute of Biomedical Research and Technology (BIOMED), 51 Papanastasiou str., 41222 Larissa (Greece)

    2010-07-16

    Research highlights: {yields} Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; {yields} Kaempferol causes cytoplasmic mislocalization of HIF-1{alpha} by impairing the MAPK pathway. {yields} Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1{alpha} subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1{alpha} as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC{sub 50} = 5.16 {mu}M). The mechanism of this inhibition did not involve suppression of HIF-1{alpha} protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC{sub 50} = 4.75 {mu}M). Exposure of Huh7 cells to 10 {mu}{Mu} kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 {mu}M) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.

  1. Vanillin Suppresses Cell Motility by Inhibiting STAT3-Mediated HIF-1α mRNA Expression in Malignant Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Eun-Ji Park

    2017-03-01

    Full Text Available Recent studies have shown that vanillin has anti-cancer, anti-mutagenic, and anti-metastatic activity; however, the precise molecular mechanism whereby vanillin inhibits metastasis and cancer progression is not fully elucidated. In this study, we examined whether vanillin has anti-cancer and anti-metastatic activities via inhibition of hypoxia-inducible factor-1α (HIF-1α in A2058 and A375 human malignant melanoma cells. Immunoblotting and quantitative real time (RT-PCR analysis revealed that vanillin down-regulates HIF-1α protein accumulation and the transcripts of HIF-1α target genes related to cancer metastasis including fibronectin 1 (FN1, lysyl oxidase-like 2 (LOXL2, and urokinase plasminogen activator receptor (uPAR. It was also found that vanillin significantly suppresses HIF-1α mRNA expression and de novo HIF-1α protein synthesis. To understand the suppressive mechanism of vanillin on HIF-1α expression, chromatin immunoprecipitation was performed. Consequently, it was found that vanillin causes inhibition of promoter occupancy by signal transducer and activator of transcription 3 (STAT3, but not nuclear factor-κB (NF-κB, on HIF1A. Furthermore, an in vitro migration assay revealed that the motility of melanoma cells stimulated by hypoxia was attenuated by vanillin treatment. In conclusion, we demonstrate that vanillin might be a potential anti-metastatic agent that suppresses metastatic gene expression and migration activity under hypoxia via the STAT3-HIF-1α signaling pathway.

  2. Molecular characterization of mudskipper (Boleophthalmus pectinirostris) hypoxia-inducible factor-1α (HIF-1α) and analysis of its function in monocytes/macrophages

    Science.gov (United States)

    Li, Chang-Hong; Chen, Jiong

    2017-01-01

    Hypoxia-inducible factor-1α (HIF-1α) plays a critical role in immune and inflammatory responses and is important in controlling a variety of processes in monocytes and macrophages. However, very little information is available about the functions of HIF-1α in fish monocytes/macrophages (MO/MФ). In this study, the cDNA sequence of the mudskipper (Boleophthalmus pectinirostris) HIF-1α gene (BpHIF-1α) was determined. Sequence comparison and phylogenetic tree analysis showed that BpHIF-1α is clustered in the fish HIF-1α tree. Constitutive expression of BpHIF-1α mRNA was detected by real-time quantitative PCR in all tested tissues, and the expression was found to be dramatically increased in the skin, liver, spleen, and kidney after Edwardsiella tarda infection. In addition, hypoxia and infection induced the expression of the BpHIF-1α transcript and protein in MO/MФ, respectively. Hypoxia caused an increase in phagocytic and bactericidal capacity of mudskipper MO/MФ in a BpHIF-1α-dependent manner. BpHIF-1α induced an anti-inflammatory status in MO/MФ upon E. tarda infection and hypoxia. Therefore, BpHIF-1α may play a predominant role in the modulation of mudskipper MO/MФ function in the innate immune system. PMID:28542591

  3. HIF-1 Alpha and Placental Growth Factor in Pregnancies Complicated With Preeclampsia: A Qualitative and Quantitative Analysis.

    Science.gov (United States)

    Rath, Gayatri; Aggarwal, Ruby; Jawanjal, Poonam; Tripathi, Richa; Batra, Aruna

    2016-01-01

    The pathophysiology of preeclampsia is not clearly understood worldwide. Hypoxia inducible factor 1α (HIF-1α) is thought to be the preliminary factor for the hypoxic conditions prevailing in preeclampsia, which causes imbalance in the expression of angiogenic proteins. A proangiogenic protein, placental growth factor (PIGF), is reported to be dysregulated in preeclampsia. Therefore, this study focuses on the investigation of HIF-1α and PIGF in preeclamptic conditions and a possible molecular association between them. Placental tissue (n = 45 + 45) and serum samples (n = 80 + 80) of preeclamptic patients and healthy control were collected and processed for the analysis of HIF-1α and PIGF by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). In preeclamptic group, the significant nuclear and cytoplasmic expression of HIF-1α was noticed in syncytiotrophoblast (P = 0.0001) but in control placenta, it was localized to cytoplasm (P = 0.0001). The intensity of PIGF expression was lower in syncytiotrophoblast cytoplasm (P = 0.0001) in preeclamptic cases as compared with control. Also, the significant upregulated concentration of HIF-1α and downregulated PIGF was observed in serum samples of preeclamptic woman (P = 0.0001). Thus, there was a significant direct negative correlation between HIF-1α and PIGF both at tissue and serum level (P preeclampsia. © 2014 Wiley Periodicals, Inc.

  4. Fascaplysin Exerts Anti-Cancer Effects through the Downregulation of Survivin and HIF-1α and Inhibition of VEGFR2 and TRKA

    Directory of Open Access Journals (Sweden)

    Taek-In Oh

    2017-09-01

    Full Text Available Fascaplysin has been reported to exert anti-cancer effects by inhibiting cyclin-dependent kinase 4 (CDK4; however, the precise mode of action by which fascaplysin suppresses tumor growth is not clear. Here, we found that fascaplysin has stronger anti-cancer effects than other CDK4 inhibitors, including PD0332991 and LY2835219, on lung cancer cells that are wild-type or null for retinoblastoma (RB, indicating that unknown target molecules might be involved in the inhibition of tumor growth by fascaplysin. Fascaplysin treatment significantly decreased tumor angiogenesis and increased cleaved-caspase-3 in xenografted tumor tissues. In addition, survivin and HIF-1α were downregulated in vitro and in vivo by suppressing 4EBP1-p70S6K1 axis-mediated de novo protein synthesis. Kinase screening assays and drug-protein docking simulation studies demonstrated that fascaplysin strongly inhibited vascular endothelial growth factor receptor 2 (VEGFR2 and tropomyosin-related kinase A (TRKA via DFG-out non-competitive inhibition. Overall, these results suggest that fascaplysin inhibits TRKA and VEGFR2 and downregulates survivin and HIF-1α, resulting in suppression of tumor growth. Fascaplysin, therefore, represents a potential therapeutic approach for the treatment of multiple types of solid cancer.

  5. Intrauterine ischemic reperfusion switches the fetal transcriptional pattern from HIF-1α- to P53-dependent regulation in the murine brain.

    Directory of Open Access Journals (Sweden)

    Yupeng Dong

    Full Text Available Ischemic reperfusion (IR during the perinatal period is a known causative factor of fetal brain damage. So far, both morphologic and histologic evidence has shown that fetal brain damage can be observed only several hours to days after an IR insult has occurred. Therefore, to prevent fetal brain damage under these circumstances, a more detailed understanding of the underlying molecular mechanisms involved during an acute response to IR is necessary. In the present work, pregnant mice were exposed to IR on day 18 of gestation by clipping one side of the maternal uterine horn. Simultaneous fetal electrocardiography was performed during the procedure to verify that conditions resulting in fetal brain damage were met. Fetal brain sampling within 30 minutes after IR insult revealed molecular evidence that a fetal response was indeed triggered in the form of inhibition of the Akt-mTOR-S6 synthesis pathway. Interestingly, significant changes in mRNA levels for both HIF-1α and p53 were apparent and gene regulation patterns were observed to switch from a HIF-1α-dependent to a p53-dependent process. Moreover, pre-treatment with pifithrin-α, a p53 inhibitor, inhibited protein synthesis almost completely, revealing the possibility of preventing fetal brain damage by prophylactic pifithrin-α treatment.

  6. Aminoflavone, a ligand of the Aryl Hydrocarbon Receptor (AhR), inhibits HIF-1α expression in an AhR-independent fashion

    Science.gov (United States)

    Terzuoli, Erika; Puppo, Maura; Rapisarda, Annamaria; Uranchimeg, Badarch; Cao, Liang; Burger, Angelika M.; Ziche, Marina; Melillo, Giovanni

    2010-01-01

    Aminoflavone (AF), the active component of a novel anticancer agent (AFP464) in phase I clinical trials, is a ligand of the aryl hydrocarbon receptor (AhR). AhR dimerizes with HIF-1β/ARNT, which is shared with HIF-1α, a transcription factor critical for the response of cells to oxygen deprivation. To address whether pharmacological activation of the AhR pathway might be a potential mechanism for inhibition of HIF-1, we tested the effects of AF on HIF-1 expression. AF inhibited HIF-1α transcriptional activity and protein accumulation in MCF-7 cells. However, inhibition of HIF-1α by AF was independent from a functional AhR pathway. Indeed, AF inhibited HIF-1α expression in AhR100 cells, in which the AhR pathway is functionally impaired, yet did not induce cytotoxicity, providing evidence that these effects are mediated by distinct signaling pathways. Moreover, AF was inactive in MDA-MB-231 cells, yet inhibited HIF-1α in MDA-MB-231 cells transfected with the SULT1A1 gene. AF inhibited HIF-1α mRNA expression by approximately 50%. Notably, actinomycin-D completely abrogated the ability of AF to down-regulate HIF-1α mRNA, indicating that active transcription was required for the inhibition of HIF-1α expression. Finally, AF inhibited HIF-1α protein accumulation and the expression of HIF-1-target genes in MCF-7 xenografts. These results demonstrate that AF inhibits HIF-1α in an AhR-independent fashion and they unveil additional activities of AF that may be relevant for its further clinical development. PMID:20736373

  7. Klebsiella pneumoniae Siderophores Induce Inflammation, Bacterial Dissemination, and HIF-1α Stabilization during Pneumonia.

    Science.gov (United States)

    Holden, Victoria I; Breen, Paul; Houle, Sébastien; Dozois, Charles M; Bachman, Michael A

    2016-09-13

    Klebsiella pneumoniae is a Gram-negative pathogen responsible for a wide range of infections, including pneumonia and bacteremia, and is rapidly acquiring antibiotic resistance. K. pneumoniae requires secretion of siderophores, low-molecular-weight, high-affinity iron chelators, for bacterial replication and full virulence. The specific combination of siderophores secreted by K. pneumoniae during infection can impact tissue localization, systemic dissemination, and host survival. However, the effect of these potent iron chelators on the host during infection is unknown. In vitro, siderophores deplete epithelial cell iron, induce cytokine secretion, and activate the master transcription factor hypoxia inducible factor-1α (HIF-1α) protein that controls vascular permeability and inflammatory gene expression. Therefore, we hypothesized that siderophore secretion by K. pneumoniae directly contributes to inflammation and bacterial dissemination during pneumonia. To examine the effects of siderophore secretion independently of bacterial growth, we performed infections with tonB mutants that persist in vivo but are deficient in siderophore import. Using a murine model of pneumonia, we found that siderophore secretion by K. pneumoniae induces the secretion of interleukin-6 (IL-6), CXCL1, and CXCL2, as well as bacterial dissemination to the spleen, compared to siderophore-negative mutants at an equivalent bacterial number. Furthermore, we determined that siderophore-secreting K. pneumoniae stabilized HIF-1α in vivo and that bacterial dissemination to the spleen required alveolar epithelial HIF-1α. Our results indicate that siderophores act directly on the host to induce inflammatory cytokines and bacterial dissemination and that HIF-1α is a susceptibility factor for bacterial invasion during pneumonia. Klebsiella pneumoniae causes a wide range of bacterial diseases, including pneumonia, urinary tract infections, and sepsis. To cause infection, K. pneumoniae steals

  8. Centchroman regulates breast cancer angiogenesis via inhibition of HIF-1α/VEGFR2 signalling axis.

    Science.gov (United States)

    Dewangan, Jayant; Kaushik, Shweta; Rath, Srikanta Kumar; Balapure, Anil K

    2018-01-15

    Angiogenesis is a recognized hallmark of cancer which promotes cancer cell progression and metastasis. Inhibition of angiogenesis to attenuate cancer growth is becoming desirable strategy for breast cancer management. The present study is aimed to investigate the antiangiogenic efficacy of a novel selective estrogen receptor modulator Centchroman (CC) on human breast cancer cells. Effect of CC on cell viability was evaluated using Sulforhodamine B assay. Endothelial cell proliferation, wound healing, Boyden chamber cell invasion, tube formation and chorioallantoic membrane (CAM) assays were performed to assess the effect of CC on migration, invasion and angiogenesis. Apoptosis, reactive oxygen species generation, caspase-3/7 and intracellular calcium ion level were measured through flow cytometry. Expression levels of HIF-1α, VEGF, VEGFR2, AKT and ERK were assessed by western blot analysis. CC selectively induces apoptosis in human breast cancer cells without affecting non-tumorigenic breast epithelial cells MCF-10A. Moreover, it inhibits migratory, invasive and mammosphere forming potential of breast cancer. Furthermore, CC also inhibited VEGF-induced migration, invasion and tube formation of HUVECs in vitro. CC effectively inhibited neovasculature formation in chicken CAM. Western blot analysis demonstrated that CC inhibited expression of HIF-1α and its downstream target VEGF. Interestingly, CC also suppressed VEGFR2 phosphorylation and consequently attenuated AKT and ERK phosphorylation. Our findings suggest that CC downregulates VEGF-induced angiogenesis by modulating HIF-1α/VEGFR2 pathway and recommend it (CC) as a potential therapeutic drug for breast cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. ELK3 promotes the migration and invasion of liver cancer stem cells by targeting HIF-1α.

    Science.gov (United States)

    Lee, Joon Ho; Hur, Wonhee; Hong, Sung Woo; Kim, Jung-Hee; Kim, Sung Min; Lee, Eun Byul; Yoon, Seung Kew

    2017-02-01

    Hepatocellular carcinoma (HCC) is the fifth most common solid cancer and the third most common cause of cancer-related mortality. HCC develops via a multistep process associated with genetic aberrations that facilitate HCC invasion and migration and promote metastasis. A growing body of evidence indicates that cancer stem cells (CSCs) are responsible for tumorigenesis, cancer cell invasion and metastasis. Despite the extremely small proportion of cancer cells represented by this subpopulation of HCC cells, CSCs play a key role in cancer metastasis and poor prognosis. ELK3 (Net/SAP-2/Erp) is a transcription factor that is activated by the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. It plays several important roles in various physiological processes, including cell migration, invasion, wound healing, angiogenesis and tumorigenesis. In the present study, we investigated the role of ELK3 in cancer cell invasion and metastasis in CD133+/CD44+ liver cancer stem cells (LCSCs). We isolated LCSCs expressing CD133 and CD44 from Huh7 HCC cells and evaluated their metastatic potential using invasion and migration assays. We found that CD133+/CD44+ cells had increased metastatic potential compared with non-CD133+/CD44+ cells. We also demonstrated that ELK3 expression was upregulated in CD133+/CD44+ cells and that this aberration enhanced cell migration and invasion. In addition, we identified the molecular mechanism by which ELK3 promotes cancer cell migration and invasion. We found that silencing of ELK3 expression in CD133+/CD44+ LCSCs attenuated their metastatic potential by modulating the expression of heat shock-induced factor-1α (HIF-1α). Collectively, the results of the present study demonstrated that ELK3 overexpression promoted metastasis in CD133+/CD44+ cells by regulating HIF-1α expression and that silencing of ELK3 expression attenuated the metastatic potential of CD133+/CD44+ LCSCs. In conclusion, modulation of ELK3 expression may

  10. Cobalt Chloride Upregulates Impaired HIF-1α Expression to Restore Sevoflurane Post-conditioning-Dependent Myocardial Protection in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jianjiang Wu

    2017-06-01

    Full Text Available Previous studies from our group have demonstrated that sevoflurane post-conditioning (SPC protects against myocardial ischemia reperfusion injury via elevating the intranuclear expression of hypoxia inducible factor-1 alpha (HIF-1α. However, diabetic SPC is associated with decreased myocardial protection and disruption of the HIF-1 signaling pathway. Previous studies have demonstrated that cobalt chloride (CoCl2 can upregulate HIF-1α expression under diabetic conditions, but whether myocardial protection by SPC can be restored afterward remains unclear. We established a rat model of type 2 diabetes and a Langendorff isolated heart model of ischemia-reperfusion injury. Prior to reperfusion, 2.4% sevoflurane was used as a post-conditioning treatment. The diabetic rats were treated with CoCl2 24 h before the experiment. At the end of reperfusion, tests were performed to assess myocardial function, infarct size, mitochondrial morphology, nitric oxide (NO, Mitochondrial reactive oxygen species (ROS, mitochondrial respiratory function and enzyme activity, HIF-1α, vascular endothelial growth factor (VEGF and endothelial NO synthase (eNOS protein levels. In addition, myocardial protection by SPC was monitored after the blood glucose levels were lowered by insulin. The diabetic state was associated with deficient SPC protection and decreased HIF-1α expression. After treating the diabetic rats with CoCl2, SPC significantly upregulated the expression of HIF-1α, VEGF and eNOS, which markedly improved cardiac function, NO, mitochondrial respiratory function, and enzyme activity and decreased the infarction areas and ROS. In addition, these effects were not influenced by blood glucose levels. This study proved that CoCl2activates the HIF-1α signaling pathway, which restores SPC-dependent myocardial protection under diabetic conditions, and the protective effects of SPC were independent of blood glucose levels.

  11. Increased Levels of VEGF-A and HIF-1α in Turkish Children with Crimean-Congo Hemorrhagic Fever

    Directory of Open Access Journals (Sweden)

    Murat Sefikogullari

    2017-04-01

    Full Text Available Background: Crimean-Congo Hemorrhagic Fever (CCHF is a disease characterized by serious course, including acute viral fever, ecchymosis, thrombocytopenia, liver dysfunction and high rate of mortality. Hypoxia Inducible Factor-1α (HIF-1α and Vascular Endothelial Growth Factor-A (VEGF-A play an important role both in the inflamma­tory process and plasma leakage. The aim of this study was to define HIF-1α and VEGF-A serum levels obtained from CCHF patients and control group and to investigate whether these factors were correlated with the pathogenesis of this disease.Methods: Thirty cases younger than 17 yr confirmed by RT-PCR and/or ELISA for CCHF were included in this study. Thirty age and sex matched healthy peoples were enrolled as controls. Blood samples collected from the pa­tient and control groups. Serum levels of HIF-1α and VEGF-A were measured with ELISA.Results: Levels of HIF-1α and VEGF-A were statistically significantly increased in CCHF patients compared to the control group (P< 0.05.  A significant positive correlation was found between the levels of HIF-1α and VEGF-A in the patient group (P< 0.01. The levels of ALT, AST, CK, aPTT, WBC and Thrombocyte count were significantly higher in the patients than in the control group (P< 0.001. A positive correlation was found among the levels of AST and CK from biochemical parame­ters and VEGF and HIF-1α in the patient group (P< 0.05Conclusion: HIF-1α and VEGF-A might play an important role in CCHF pathogenesis.

  12. Inhibition of HIF-1α decreases expression of pro-inflammatory IL-6 and TNF-α in diabetic retinopathy.

    Science.gov (United States)

    Gao, Xiuhua; Li, Yonghua; Wang, Hongxia; Li, Chuanbao; Ding, Jianguang

    2017-12-01

    Recent studies demonstrate that pro-inflammatory cytokines (PICs, i.e. IL-1β, IL-6 and TNF-α) in retinal tissues are likely involved in the development of diabetic retinopathy (DR). In this report, we particularly examined contributions of hypoxia inducible factor subtype 1α (HIF-1α) to the expression of PICs and their receptors in diabetic retina. Streptozotocin (STZ) was systemically injected to induce hyperglycaemia in rats. ELISA and Western blot analysis were employed to determine the levels of HIF-1α and PICs as well as PIC receptors in retinal tissues of control rats and STZ rats. The levels of retinal HIF-1α were significantly increased in STZ rats 4-10 weeks after induction of hyperglycaemia as compared with control animals. With increasing HIF-1α retinal PICs including IL-1β, IL-6 and TNF-α, their respective receptors, namely IL-1R, IL-6R and TNFR1, were also elevated in STZ rats. Moreover, inhibition of HIF-1α by injection of 2-methoxyestradiol (2-MET) significantly decreased the amplified expression IL-6, TNF-α, IL-6R and TNFR1 in diabetic retina, but did not modify IL-1β pathway. In addition, we examined protein expression of Caspase-3 indicating cell apoptosis in the retina of STZ rats after infusing 2-MET, demonstrating that 2-MET attenuated an increase in Caspase-3 evoked by STZ. Hypoxia inducible factor subtype 1α (HIF-1α) activated in diabetic retina is likely to play a role in regulating pathophysiological process via IL-6 and TNF-α mechanism. This has pharmacological implications to target specific HIF-1α, IL-6 and TNF-α signalling pathway for dysfunction and vulnerability related to DR. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Pneumococcal infection of respiratory cells exposed to welding fumes; Role of oxidative stress and HIF-1 alpha.

    Science.gov (United States)

    Grigg, Jonathan; Miyashita, Lisa; Suri, Reetika

    2017-01-01

    Welders are more susceptible to pneumococcal pneumonia. The mechanisms are yet unclear. Pneumococci co-opt the platelet activating factor receptor (PAFR) to infect respiratory epithelial cells. We previously reported that exposure of respiratory cells to welding fumes (WF), upregulates PAFR-dependent pneumococcal infection. The signaling pathway for this response is unknown, however, in intestinal cells, hypoxia-inducible factor-1 α (HIF 1α) is reported to mediate PAFR-dependent infection. We sought to assess whether oxidative stress plays a role in susceptibility to pneumococcal infection via the platelet activating factor receptor. We also sought to evaluate the suitability of nasal epithelial PAFR expression in welders as a biomarker of susceptibility to infection. Finally, we investigated the generalisability of the effect of welding fumes on pneumococcal infection and growth using a variety of different welding fume samples. Nasal epithelial PAFR expression in welders and controls was analysed by flow cytometry. WF were collected using standard methodology. The effect of WF on respiratory cell reactive oxygen species production, HIF-1α expression, and pneumococcal infection was determined using flow cytometry, HIF-1α knockdown and overexpression, and pneumococcal infection assays. We found that nasal PAFR expression is significantly increased in welders compared with controls and that WF significantly increased reactive oxygen species production, HIF-1α and PAFR expression, and pneumococcal infection of respiratory cells. In unstimulated cells, HIF-1α knockdown decreased PAFR expression and HIF-1α overexpression increased PAFR expression. However, in knockdown cells pneumococcal infection was paradoxically increased and in overexpressing cells infection was unaffected. Nasal epithelial PAFR expression may be used as a biomarker of susceptibility to pneumococcal infection in order to target individuals, particularly those at high risk such as welders

  14. Role of HIF-1 on phosphofructokinase and fructose 1, 6-bisphosphatase expression during hypoxia in the white shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Cota-Ruiz, Keni; Leyva-Carrillo, Lilia; Peregrino-Uriarte, Alma B; Valenzuela-Soto, Elisa M; Gollas-Galván, Teresa; Gómez-Jiménez, Silvia; Hernández, Jesús; Yepiz-Plascencia, Gloria

    2016-08-01

    HIF-1 is a transcription factor that controls a widespread range of genes in metazoan organisms in response to hypoxia and is composed of α and β subunits. In shrimp, phosphofructokinase (PFK) and fructose bisphosphatase (FBP) are up-regulated in hypoxia. We hypothesized that HIF-1 is involved in the regulation of PFK and FBP genes in shrimp hepatopancreas under hypoxia. Long double stranded RNA (dsRNA) intramuscular injection was utilized to silence simultaneously both HIF-1 subunits, and then, we measured the relative expression of PFK and FBP, as well as their corresponding enzymatic activities in hypoxic shrimp hepatopancreas. The results indicated that HIF-1 participates in the up-regulation of PFK transcripts under short-term hypoxia since the induction caused by hypoxia (~1.6 and ~4.2-fold after 3 and 48h, respectively) is significantly reduced in the dsRNA animals treated. Moreover, PFK activity was significantly ~2.8-fold augmented after 3h in hypoxia alongside to an ~1.9-fold increment in lactate. However, when animals were dsRNA treated, both were significantly reduced. On the other hand, FBP transcripts were ~5.3-fold up-regulated in long-term hypoxic conditions (48h). HIF-1 is involved in this process since FBP transcripts were not induced by hypoxia when HIF-1 was silenced. Conversely, the FBP activity was not affected by hypoxia, which suggests its possible regulation at post-translational level. Taken together, these results position HIF-1 as a prime transcription factor in coordinating glucose metabolism through the PFK and FBP genes among others, in shrimp under low oxygen environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Enhancing Immune Checkpoint Inhibitor Therapy In Kidney Cancer

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0141 TITLE: Enhancing Immune Checkpoint Inhibitor therapy in Kidney Cancer PRINCIPAL INVESTIGATOR: Hans-Joerg Hammers...Immune Checkpoint Inhibitor therapy in Kidney Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 15-1-0141 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...to develop strategies to enhance immune checkpoint inhibition in kidney cancer . The work is designed to test different strategies to induce or

  16. Role of Hypoxia-inducible factor-1 and its target genes in human lung adenocarcinoma cells after photon- versus carbon ion irradiation; Expression HIF-1-abhaengiger Gene in humanen Lungenadenokarzinom (A549)-Zellen und deren Regulation nach Photonen- und Schwerionenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Bill, Verena Maria

    2013-11-26

    Exposed to hypoxia tumor cells are notably resistant to photon irradiation. The hypoxiainducible transcription factor 1α (HIF-1α) seems to play a fundamental role in this resistance, while its role after heavy-ion beam remains unknown. The intention of this study was to determine how A549-cells (non-small-cell lung carcinoma) react in different oxygenation states after irradiation with photons or heavy ions, particularly in regards to their expression of HIF-1 target genes. Resistance of hypoxic A549 cells after photon irradiation was documented by cellular and clonogenic survival. In contrast, cellular survival after heavy-ion irradiation in hypoxic cells was not elevated to normoxic cells. Among the oxygen dependent regulation of HIF-1 target genes, gene expression analyses showed an increased expression of GLUT-1, LDH-A, PDK-1 and VEGF after photon irradiation but not after heavy-ion irradiation after 48 hours in normoxic cells. As expected, CDKN1A as inhibitor of cell cycle progression showed higher expression after both radiation forms; interestingly CDKN1A was also in an oxygen dependent manner lightly upregulated. In western blot analyses we demonstrated a significant increase of HIF-1 and GLUT-1 caused by hypoxia, but only a tendency of increased protein level in hypoxia after photon irradiation and no changes after heavy-ion irradiation. Significantly higher protein level of secreted VEGF-A could be measured 72 hours after photon irradiation in normoxic cells by ELISA analyses. Controversially discussed, I could not detect an association between HIF-1 and SCF or Trx-1 in A549-cells in this study. Whereas Trx-1-expression was neither influenced by changed oxygen partial pressure nor irradiation, I could show increased SCF mRNA by quantitative Real Time-PCR and secreted protein level by ELISA after photon irradiation independent of oxygen state. In summary, this study showed that HIF-1 and its target genes (GLUT-1, LDHA; PDK, VEGF) and also SCF was

  17. HIF-1α-l-PGDS-PPARγ regulates hypoxia-induced ANP secretion in beating rat atria.

    Science.gov (United States)

    Li, Xiang; Zhang, Ying; Zhang, Bo; Liu, Xia; Hong, Lan; Liu, Li-Ping; Wu, Cheng-Zhe; Cui, Xun

    2018-01-01

    Lipocalin-type prostaglandin D synthase (L-PGDS) and peroxisome proliferator activated receptor γ (PPARγ) play important roles in cardiovascular diseases. Nevertheless, effects of hypoxia-inducible factor 1α (HIF-1α) on L-PGDS and PPARγ protein levels and its role in hypoxia-induced atrial natriuretic peptide (ANP) secretion are unclear. In perfused beating rat atria, we observed that hypoxia significantly increased HIF-1α protein levels and stimulated ANP secretion, while upregulating L-PGDS. Hypoxia-induced ANP secretion was clearly attenuated by HIF-1α antagonist 2-methoxyestradiol, downregulating both HIF-1α and L-PGDS protein levels. It was also attenuated by L-PGDS antagonists, AT-56 and HQL-49, downregulating L-PGDS protein levels. In addition, hypoxia-induced ANP secretion was accompanied by increased PPARγ protein levels and was strongly attenuated by PPARγ antagonist GW9662. Hypoxia-induced increase in atrial PPARγ protein levels were dramatically inhibited by both 2-methoxyestradiol and AT-56. These results indicated that hypoxia promotes ANP secretion, at least in part, by activating HIF-1α-l-PGDS-PPARγ signaling in beating rat atria. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. CD133 Modulate HIF-1α Expression under Hypoxia in EMT Phenotype Pancreatic Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Koki Maeda

    2016-06-01

    Full Text Available Although CD133 is a known representative cancer stem cell marker, its function in tumor aggressiveness under hypoxia is not fully known. The aim of this study is to demonstrate that CD133 regulates hypoxia inducible factor (HIF-1α expression with tumor migration. The CD133+ pancreatic cancer cell line, Capan1M9, was compared with the CD133− cell line, shCD133M9, under hypoxia. HIF-1α expression levels were compared by Western blot, HIF-1α nucleus translocation assay and real-time (RT-PCR. The hypoxia responsive element (HRE was observed by luciferase assay. The migration ability was analyzed by migration and wound healing assays. Epithelial mesenchymal transition (EMT related genes were analyzed by real-time RT-PCR. HIF-1α was highly expressed in Capan1M9 compared to shCD133M9 under hypoxia because of the high activation of HRE. Furthermore, the migration ability of Capan1M9 was higher than that of shCD133M9 under hypoxia, suggesting higher expression of EMT related genes in Capan1M9 compared to shCD133M9. Conclusion: HIF-1α expression under hypoxia in CD133+ pancreatic cancer cells correlated with tumor cell migration through EMT gene expression. Understanding the function of CD133 in cancer aggressiveness provides a novel therapeutic approach to eradicate pancreatic cancer stem cells.

  19. Acute hypoxic stress: Effect on blood parameters, antioxidant enzymes, and expression of HIF-1alpha and GLUT-1 genes in largemouth bass (Micropterus salmoides).

    Science.gov (United States)

    Yang, S; Yan, T; Wu, H; Xiao, Q; Fu, H M; Luo, J; Zhou, J; Zhao, L L; Wang, Y; Yang, S Y; Sun, J L; Ye, X; Li, S J

    2017-08-01

    Dissolved oxygen (DO) plays a crucial role in survival, growth, and normal physiological functions of aquatic organisms. Nevertheless, the mechanisms involved in hypoxic stress and adaptation have not been fully elucidated in Largemouth bass (Micropterus salmoides). To reveal the effect of acute hypoxia on Largemouth bass, we simulated acute hypoxia (DO: 1.2 ± 0.2 mg/L) in the laboratory and analyzed physiological parameters (RBCs, Hb, SOD, CAT, NA + /K + -ATPase, GPx, and MDA) and gene expression (HIF-1alpha and GLUT-1) in Largemouth bass exposed to various durations of acute hypoxia (0, 1, 2, 4, 8, 12, and 24 h). Our results indicated that acute hypoxic exposure significantly increased RBCs but decreased Hb. In addition, antioxidant enzyme activity was enhanced significantly in the liver and muscles at the initial stage of acute hypoxic exposure, but decreased significantly in gills during the entire process of hypoxic exposure. Furthermore, the expression levels of HIF-1alpha and GLUT-1 mRNA were significantly up-regulated in Largemouth bass under acute hypoxic exposure. In conclusion, our study provides a valuable basis for further elucidation of hypoxic adaptation and facilitates husbandry for an economically valuable species. Copyright © 2017. Published by Elsevier Ltd.

  20. Nanoparticle delivery of HIF1α siRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer

    OpenAIRE

    Chen, Wei-Hua; Lecaros, Rumwald Leo G.; Tseng, Yu-Cheng; Huang, Leaf; Hsu, Yih-Chih

    2015-01-01

    Combination therapy has become a major strategy in cancer treatment. We used anisamide-targeted lipid–calcium–phosphate (LCP) nanoparticles to efficiently deliver HIF1α siRNA to the cytoplasm of sigma receptor-expressing SCC4 and SAS cells that were also subjected to photodynamic therapy (PDT). HIF1α siRNA nanoparticles effectively reduced HIF1α expression, increased cell death, and significantly inhibited cell growth following photosan-mediated photodynamic therapy in cultured cells. Intrave...

  1. Genome-wide analysis reveals NRP1 as a direct HIF1 alpha-E2F7 target in the regulation of motorneuron guidance in vivo

    NARCIS (Netherlands)

    de Bruin, Alain; Cornelissen, Peter W. A.; Kirchmaier, Bettina C.; Mokry, Michal; Iich, Elhadi; Nirmala, Ella; Liang, Kuo-Hsuan; Vegh, Anna M. D.; Scholman, Koen T.; Koerkamp, Marian J. Groot; Holstege, Frank C.; Cuppen, Edwin; Schulte-Merker, Stefan; Bakker, Walbert J.

    2016-01-01

    In this study, we explored the existence of a transcriptional network co-regulated by E2F7 and HIF1 alpha, as we show that expression of E2F7, like HIF1 alpha, is induced in hypoxia, and because of the previously reported ability of E2F7 to interact with HIF1 alpha. Our genome-wide analysis uncovers

  2. HIF-1-dependent regulation of lifespan in Caenorhabditis elegans by the acyl-CoA-binding protein MAA-1

    DEFF Research Database (Denmark)

    Shamalnasab, Mehrnaz; Dhaoui, Manel; Thondamal, Manjunatha

    2017-01-01

    In yeast, the broadly conserved acyl-CoA-binding protein (ACBP) is a negative regulator of stress resistance and longevity. Here, we have turned to the nematode C. elegans as a model organism in which to determine whether ACBPs play similar roles in multicellular organisms. We systematically...... inactivated each of the seven C. elegans ACBP paralogs and found that one of them, maa-1 (which encodes membrane-associated ACBP 1), is indeed involved in the regulation of longevity. In fact, loss of maa-1 promotes lifespan extension and resistance to different types of stress. Through genetic and gene...... of the proteome. Our work extends to C. elegans the role of ACBP in aging, implicates HIF-1 in the increase of lifespan of maa-1-deficient worms, and sheds light on the anti-aging function of HIF-1. Given that both ACBP and HIF-1 are highly conserved, our results suggest the possible involvement of these proteins...

  3. HAF drives the switch of HIF-1α to HIF-2α by activating the NF-κB pathway, leading to malignant behavior of T24 bladder cancer cells.

    Science.gov (United States)

    Guan, Zhenfeng; Ding, Chen; Du, Yiqing; Zhang, Kai; Zhu, Jian Ning; Zhang, Tingting; He, Dalin; Xu, Shan; Wang, Xinyang; Fan, Jinhai

    2014-02-01

    Hypoxia is a characteristic feature of solid tumors, leading to malignant behavior. During this process, HIF family members (HIFs) and the NF-κB pathway are activated. In addition, the hypoxia-associated factor (HAF) is reported to participate in the regulation of HIFs. However, the precise relationship among HIFs, HAF and the NF-κB pathway in bladder cancer (BC) remains unknown. In the current investigation, T24 BC cells were exposed to hypoxia, or by plasmid transfection to overexpress HAF or RelA (P65) to demonstrate their roles. The results indicate that hypoxia leads to the elevation of HAF plus activation of the NF-κB pathway, accompanied by the switch of HIF-1α to HIF-2α, resulting in the enhanced ability of malignancy in T24 cells. In order to further demonstrate the significance of this switch, HIF-1α and HIF-2α were co-transfected into T24 cells with HIF-β, respectively. The following results indicate that the T24hif-2α/β cells show enhanced ability of malignancy, accompanied by the maintenance of stem-cell markers, but the T24hif-1α/β cells show higher expression of metabolism-related genes. Boyden assays and wound-healing assays indicate the enhanced ability of malignancy for T24hif-2α/β. Thus, we conclude that on the hypoxic microenvironment, the switching of HIF-1α to HIF-2α, which is driven by HAF through activating the NF-κB pathway, contributes to the malignancy of T24 cells, accompanied by the maintenance of stem-cell markers. This provides us an avenue for understanding the progression of bladder cancer.

  4. Differential expression of OPN, VEGF-A, and HIF-1α and its clinical significance in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    ZHENG Yan

    2013-01-01

    Full Text Available ObjectiveTo investigate the expression patterns of osteopontin (OPN, vascular endothelial growth factor-A (VEGF-A, and hypoxia-inducible factor-1α(HIF-1α in primary hepatocellular carcinoma (HCC and determine the clinical significance of this differential expression profile. MethodsImmunohistochemical staining of OPN, VEGF-A, and HIF-1α was carried out on primary HCC tissues from 90 patients, HCC-adjacent cirrhosis tissues from 20 of those patients, and normal liver tissues from 15 healthy controls. Correlations between expression levels and HCC clinicopathological characteristics were assessed by Spearman's correlation coefficient. ResultsThe majority of HCC tissues showed positive immunostaining for OPN (69/90, 76.67%, VEGF-A (64/90, 71.11%, and HIF-1α (66/90, 73.33%. OPN- and VEGF-A-positivity were significantly higher than the results from the cirrhosis tissues and normal tissues. HIF-1α-positivity was similar between the HCC and cirrhosis tissues, but both were significantly different from the normal tissues. The differential expressions of OPN, VEGF-A, and HIF-1α were significantly correlated with tumor thrombus, capsular integrity, tumor differentiation and stage, and metastasis (P<0.05. ConclusionHCC tissues overexpress OPN, VEGF-A, and HIF-1α and this differential profile may be related to HCC progression. Future investigations of this triad of factors may provide novel insights into the biological characteristics of HCC and reveal important targets of molecular therapy.

  5. Reciprocal relationship between expression of hypoxia inducible factor 1alpha (HIF-1alpha) and the pro-apoptotic protein bid in ex vivo colorectal cancer.

    Science.gov (United States)

    Seenath, M M; Roberts, D; Cawthorne, C; Saunders, M P; Armstrong, G R; O'Dwyer, S T; Stratford, I J; Dive, C; Renehan, A G

    2008-08-05

    Hypoxia inducible factor 1 (HIF-1) represses the transcription of pro-apoptotic bid in colorectal cancer cells in vitro. To assess the clinical relevance of this observation, HIF-1alpha and Bid were assessed in serial sections of 39 human colorectal adenocarcinomas by immunohistochemistry. In high HIF-1alpha nuclear-positive cell subpopulations, there was a significant reduction in Bid expression (ANOVA, P=0.04). Given the role of Bid in drug-induced apoptosis, these data add impetus to strategies targeting HIF-1 for therapeutic gain.

  6. Pretreatment HIF-1α and GLUT-1 expressions do not correlate with outcome after preoperative chemoradiotherapy in rectal cancer

    DEFF Research Database (Denmark)

    Havelund, Birgitte Mayland; Sørensen, Flemming Brandt; Lindebjerg, Jan

    2011-01-01

    The aim of the present study was to investigate hypoxia-inducible factor 1α (HIF-1α) and glucose transporter-1 (GLUT-1) expressions as predictors of response and survival after chemoradiotherapy in pretreatment biopsy specimens from patients with rectal cancer.......The aim of the present study was to investigate hypoxia-inducible factor 1α (HIF-1α) and glucose transporter-1 (GLUT-1) expressions as predictors of response and survival after chemoradiotherapy in pretreatment biopsy specimens from patients with rectal cancer....

  7. Marine Natural Products as Inhibitors of Hypoxic Signaling in Tumors.

    Science.gov (United States)

    Nagle, Dale G; Zhou, Yu-Dong

    2009-06-01

    Marine natural products have become a major source of new chemical entities in the discovery of potential anticancer agents that potently suppress various antitumor molecular targets. As a consequence of insufficient vascularization, hypoxic regions form within rapidly growing solid tumor masses. Specific alterations of gene expression in these hypoxic tumor cells help facilitate the survival and metastatic spread of solid tumors. The transcriptional response to cellular hypoxia is primarily mediated by the transcription factor hypoxia-inducible factor-1 (HIF-1) that regulates the expression of more than 100 genes involved in cellular adaptation and survival under hypoxic stress. Clinical studies in cancer patients indicate that HIF-1 activation is directly correlated with advanced disease stages and treatment resistance. HIF-1 has emerged as an important tumor-selective molecular target for anticancer drug discovery. As a result, natural product-based inhibitors of HIF-1 activation have been identified from plants and microorganisms. Recently, structurally unique natural products from marine sponges, crinoids, and algae have been identified as HIF-1 activation inhibitors. The US National Cancer Institute's Open Repository of marine invertebrate and algae extracts has proven to be a valuable source of natural product HIF-1 inhibitors. Among the active compounds identified, certain marine natural products have also been shown to suppress the hypoxic induction of HIF-1 target genes such as vascular endothelial growth factor (VEGF). Some of these marine HIF-1 inhibitors act by interfering with the generation of mitochondrial signaling molecules in hypoxic cells. However, the precise mechanisms of action for many newly identified marine natural product HIF-1 inhibitors remain unresolved.

  8. Myeloid cell leukemia-1 (Mc1-1 is a candidate target gene of hypoxia-inducible factor-1 (HIF-1 in the testis

    Directory of Open Access Journals (Sweden)

    Palladino Michael A

    2012-12-01

    Full Text Available Abstract Background Spermatic cord torsion can lead to testis ischemia (I and subsequent ischemia-reperfusion (I/R causing germ cell-specific apoptosis. Previously, we demonstrated that the hypoxia-inducible factor-1 (HIF-1 transcription factor, a key regulator of physiological responses to hypoxia, is abundant in Leydig cells in normoxic and ischemic testes. We hypothesize that testicular HIF-1 activates the expression of antiapoptotic target genes to protect Leydig cells from apoptosis. In silico analysis of testis genes containing a consensus hypoxia response element (HRE, 5’-RCGTG-3’ identified myeloid cell leukemia-1 (Mcl-1 as a potential HIF-1 target gene. The purpose of this study was to determine whether HIF-1 shows DNA-binding activity in normoxic and ischemic testes and whether Mcl-1 is a target gene of testicular HIF-1. Methods The testicular HIF-1 DNA-binding capacity was analyzed in vitro using a quantitative enzyme-linked immunosorbent assay (ELISA and electrophoretic mobility shift assays (EMSA. MCL-1 protein expression was evaluated by immunoblot analysis and immunohistochemistry. The binding of testicular HIF-1 to the Mcl-1 gene was examined via chromatin immunoprecipitation (ChIP analysis. Results The ELISA and EMSA assays demonstrated that testicular HIF-1 from normoxic and ischemic testes binds DNA equally strongly, suggesting physiological roles for HIF-1 in the normoxic testis, unlike most tissues in which HIF-1 is degraded under normoxic conditions and is only activated by hypoxia. MCL-1 protein was determined to be abundant in both normoxic and ischemic testes and expressed in Leydig cells. In a pattern identical to that of HIF-1 expression, the steady-state levels of MCL-1 were not significantly affected by I or I/R and MCL-1 co-localized with HIF-1α in Leydig cells. Chromatin immunoprecipitation (ChIP analysis using a HIF-1 antibody revealed sequences enriched for the Mcl-1 promoter. Conclusions The results

  9. HIF-1α inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression

    Directory of Open Access Journals (Sweden)

    Bache Matthias

    2010-11-01

    Full Text Available Abstract Background Hypoxia induces activation of the HIF-1 pathway and is an essential characteristic of malignant gliomas. Hypoxia has been linked to tumor progression, therapy resistance and poor prognosis. However, little is known about the impact of HIF-1α inhibition on radioresistance of malignant glioma. Methods In this study, we investigated the effects of the inhibition of HIF-1α on cell survival and radiosensitivity in U251MG and U343MG glioma cells, using two different strategies. HIF-1α inhibition was achieved by siRNA targeting of HIF-1α or via chetomin, a disruptor of interactions between HIF-1α and p300. The inhibition of the HIF-1 pathway was monitored by quantitative real-time PCR and Western blot analyses of the expression levels of HIF-1α and CA9. CA9 expression was investigated as a potential indicator of the efficacy of HIF-1 inhibition and the resulting radiosensitivity of malignant glioma cell lines was determined by clonogenic assay after irradiation under normoxic (2-10 Gy or hypoxic (2-15 Gy conditions. Results Although siRNA and chetomin show distinct modes of action, both attenuated the hypoxia-induced radioresistance of malignant glioma cell lines U251MG (DMF10: 1.35 and 1.18 and U343MG (DMF10: 1.78 and 1.48. However, siRNA and chetomin showed diverse effects on radiosensitivity under normoxic conditions in U251MG (DMF10: 0.86 and 1.35 and U343MG (DMF10: 1.33 and 1.02 cells. Conclusions Results from this in vitro study suggest that inhibition of HIF-1α is a promising strategy to sensitize human malignant gliomas to radiotherapy and that CA9 could serve as an indicator of effective HIF-1-related radiosensitization.

  10. Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    Energy Technology Data Exchange (ETDEWEB)

    Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda; Mohlin, Sofie; Påhlman, Sven, E-mail: sven.pahlman@med.lu.se

    2015-06-05

    Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leads to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma.

  11. Hypoxia and P. gingivalis Synergistically Induce HIF-1 and NF-κB Activation in PDL Cells and Periodontal Diseases

    Directory of Open Access Journals (Sweden)

    L. Gölz

    2015-01-01

    Full Text Available Periodontitis is characterized by deep periodontal pockets favoring the proliferation of anaerobic bacteria like Porphyromonas gingivalis (P. gingivalis, a periodontal pathogen frequently observed in patients suffering from periodontal inflammation. Therefore, the aim of the present study was to investigate the signaling pathways activated by lipopolysaccharide (LPS of P. gingivalis (LPS-PG and hypoxia in periodontal ligament (PDL cells. The relevant transcription factors nuclear factor-kappa B (NF-κB and hypoxia inducible factor-1 (HIF-1 were determined. In addition, we analyzed the expression of interleukin- (IL- 1β, matrix metalloproteinase-1 (MMP-1, and vascular endothelial growth factor (VEGF in PDL cells on mRNA and protein level. This was accomplished by immunohistochemistry of healthy and inflamed periodontal tissues. We detected time-dependent additive effects of LPS-PG and hypoxia on NF-κB and HIF-1α activation in PDL cells followed by an upregulation of IL-1β, MMP-1, and VEGF expression. Immunohistochemistry performed on tissue samples of gingivitis and periodontitis displayed an increase of NF-κB, HIF-1, and VEGF immunoreactivity in accordance with disease progression validating the importance of the in vitro results. To conclude, the present study underlines the significance of NF-κB and HIF-1α and their target genes VEGF, IL-1β, and MMP-1 in P. gingivalis and hypoxia induced periodontal inflammatory processes.

  12. HIF-1-dependent regulation of lifespan in Caenorhabditis elegans by the acyl-CoA-binding protein MAA-1.

    Science.gov (United States)

    Shamalnasab, Mehrnaz; Dhaoui, Manel; Thondamal, Manjunatha; Harvald, Eva Bang; Færgeman, Nils J; Aguilaniu, Hugo; Fabrizio, Paola

    2017-07-27

    In yeast, the broadly conserved acyl-CoA-binding protein (ACBP) is a negative regulator of stress resistance and longevity. Here, we have turned to the nematode C. elegans as a model organism in which to determine whether ACBPs play similar roles in multicellular organisms. We systematically inactivated each of the seven C. elegans ACBP paralogs and found that one of them, maa-1 (which encodes membrane-associated ACBP 1), is indeed involved in the regulation of longevity. In fact, loss of maa-1 promotes lifespan extension and resistance to different types of stress. Through genetic and gene expression studies we have demonstrated that HIF-1, a master transcriptional regulator of adaptation to hypoxia, plays a central role in orchestrating the anti-aging response induced by MAA-1 deficiency. This response relies on the activation of molecular chaperones known to contribute to maintenance of the proteome. Our work extends to C. elegans the role of ACBP in aging, implicates HIF-1 in the increase of lifespan of maa-1-deficient worms, and sheds light on the anti-aging function of HIF-1. Given that both ACBP and HIF-1 are highly conserved, our results suggest the possible involvement of these proteins in the age-associated decline in proteostasis in mammals.

  13. HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo

    Science.gov (United States)

    Imanirad, Parisa; Kartalaei, Parham Solaimani; Crisan, Mihaela; Vink, Chris; Yamada-Inagawa, Tomoko; de Pater, Emma; Kurek, Dorota; Kaimakis, Polynikis; van der Linden, Reiner; Speck, Nancy; Dzierzak, Elaine

    2014-01-01

    Hypoxia affects many physiologic processes during early stages of mammalian ontogeny, particularly placental and vascular development. In the adult, the hypoxic bone marrow microenvironment plays a role in regulating hematopoietic stem cell (HSC) function. HSCs are generated from the major vasculature of the embryo, but whether the hypoxic response affects the generation of these HSCs is as yet unknown. Here we examined whether Hypoxia Inducible Factor1-alpha (HIF1α), a key modulator of the response to hypoxia, is essential for HSC development. We found hypoxic cells in embryonic tissues that generate and expand hematopoietic cells (aorta, placenta and fetal liver), and specifically aortic endothelial and hematopoietic cluster cells. A Cre/loxP conditional knockout (cKO) approach was taken to delete HIF1α in Vascular Endothelial-Cadherin expressing endothelial cells, the precursors to definitive hematopoietic cells. Functional assays show that HSC and hematopoietic progenitor cells (HPC) are significantly reduced in cKO aorta and placenta. Moreover, decreases in phenotypic aortic hematopoietic cluster cells in cKO embryos indicate that HIF1α is necessary for generation and/or expansion of HPC and HSCs. cKO adult BM HSCs are also affected under transplantation conditions. Thus, HIF1α is a regulator of HSC generation and function beginning at the earliest embryonic stages. PMID:24141110

  14. HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo

    Directory of Open Access Journals (Sweden)

    Parisa Imanirad

    2014-01-01

    Full Text Available Hypoxia affects many physiologic processes during early stages of mammalian ontogeny, particularly placental and vascular development. In the adult, the hypoxic bone marrow microenvironment plays a role in regulating hematopoietic stem cell (HSC function. HSCs are generated from the major vasculature of the embryo, but whether the hypoxic response affects the generation of these HSCs is as yet unknown. Here we examined whether Hypoxia Inducible Factor1-alpha (HIF1α, a key modulator of the response to hypoxia, is essential for HSC development. We found hypoxic cells in embryonic tissues that generate and expand hematopoietic cells (aorta, placenta and fetal liver, and specifically aortic endothelial and hematopoietic cluster cells. A Cre/loxP conditional knockout (cKO approach was taken to delete HIF1α in Vascular Endothelial-Cadherin expressing endothelial cells, the precursors to definitive hematopoietic cells. Functional assays show that HSC and hematopoietic progenitor cells (HPCs are significantly reduced in cKO aorta and placenta. Moreover, decreases in phenotypic aortic hematopoietic cluster cells in cKO embryos indicate that HIF1α is necessary for generation and/or expansion of HPCs and HSCs. cKO adult BM HSCs are also affected under transplantation conditions. Thus, HIF1α is a regulator of HSC generation and function beginning at the earliest embryonic stages.

  15. Opposite prognostic roles of HIF1β and HIF2β expressions in bone metastatic clear cell renal cell cancer

    DEFF Research Database (Denmark)

    Szendroi, Attila; Szász, A. Marcell; Kardos, Magdolna

    2016-01-01

    BACKGROUND: Prognostic markers of bone metastatic clear cell renal cell cancer (ccRCC) are poorly established. We tested prognostic value of HIF1β/HIF2β and their selected target genes in primary tumors and corresponding bone metastases. RESULTS: Expression of HIF2β was lower in mRCC both at mRNA...

  16. p300 and p53 levels determine activation of HIF-1 downstream targets in invasive breast cancer

    NARCIS (Netherlands)

    Vleugel, M.M.; Shvarts, D.; Wall, E. van der; Diest, P.J. van

    2006-01-01

    In previous studies, we noted that overexpression of hypoxia-inducible factor (HIF)–1a in breast cancer, especially the diffuse form, does not always lead to functional activation of its downstream genes. Transcriptional activity of HIF-1 may be repressed by p53 through competition

  17. Pien Tze Huang Inhibits Hypoxia-Induced Angiogenesis via HIF-1α/VEGF-A Pathway in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Hongwei Chen

    2015-01-01

    Full Text Available Hypoxia-induced angiogenesis plays an important role in the development and metastasis of solid tumors and is highly regulated by HIF-1α/VEGF-A pathway. Therefore, inhibiting tumor angiogenesis via suppression of HIF-1α/VEGF-A signaling represents a promising strategy for anticancer treatment. As a traditional Chinese medicine formula, Pien Tze Huang (PZH has long been used as a folk remedy for cancer in China and Southeast Asia. Previously, we reported that PZH inhibits colorectal cancer (CRC growth both in vivo and in vitro. To elucidate the antitumor mechanisms of PZH, in the present study we used human umbilical vein endothelial cells (HUVEC and colorectal carcinoma HCT-8 cells to evaluate the effects of PZH on hypoxia-induced angiogenesis and investigated the underlying molecular mechanisms. We found that PZH could inhibit hypoxia-induced migration and tube formation of HUVEC cells in a dose-dependent manner, although the low concentrations of PZH had no effect on HUVEC viability. Moreover, PZH inhibited hypoxia-induced activation of HIF-1α signaling and the expression of VEGF-A and/or VEGFR2 in both HCT-8 and HUVEC cells. Collectively, our findings suggest that PZH can inhibit hypoxia-induced tumor angiogenesis via suppression of HIF-1α/VEGF-A pathway.

  18. PML promotes metastasis of triple-negative breast cancer through transcriptional regulation of HIF1A target genes.

    Science.gov (United States)

    Ponente, Manfredi; Campanini, Letizia; Cuttano, Roberto; Piunti, Andrea; Delledonne, Giacomo A; Coltella, Nadia; Valsecchi, Roberta; Villa, Alessandra; Cavallaro, Ugo; Pattini, Linda; Doglioni, Claudio; Bernardi, Rosa

    2017-02-23

    Elucidating the molecular basis of tumor metastasis is pivotal for eradicating cancer-related mortality. Triple-negative breast cancer (TNBC) encompasses a class of aggressive tumors characterized by high rates of recurrence and metastasis, as well as poor overall survival. Here, we find that the promyelocytic leukemia protein PML exerts a prometastatic function in TNBC that can be targeted by arsenic trioxide. We found that, in TNBC patients, constitutive HIF1A activity induces high expression of PML, along with a number of HIF1A target genes that promote metastasis at multiple levels. Intriguingly, PML controls the expression of these genes by binding to their regulatory regions along with HIF1A. This mechanism is specific to TNBC cells and does not occur in other subtypes of breast cancer where PML and prometastatic HIF1A target genes are underexpressed. As a consequence, PML promotes cell migration, invasion, and metastasis in TNBC cell and mouse models. Notably, pharmacological inhibition of PML with arsenic trioxide, a PML-degrading agent used to treat promyelocytic leukemia patients, delays tumor growth, impairs TNBC metastasis, and cooperates with chemotherapy by preventing metastatic dissemination. In conclusion, we report identification of a prometastatic pathway in TNBC and suggest clinical development toward the use of arsenic trioxide for TNBC patients.

  19. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity.

    Science.gov (United States)

    Cheng, Shih-Chin; Quintin, Jessica; Cramer, Robert A; Shepardson, Kelly M; Saeed, Sadia; Kumar, Vinod; Giamarellos-Bourboulis, Evangelos J; Martens, Joost H A; Rao, Nagesha Appukudige; Aghajanirefah, Ali; Manjeri, Ganesh R; Li, Yang; Ifrim, Daniela C; Arts, Rob J W; van der Veer, Brian M J W; van der Meer, Brian M J W; Deen, Peter M T; Logie, Colin; O'Neill, Luke A; Willems, Peter; van de Veerdonk, Frank L; van der Meer, Jos W M; Ng, Aylwin; Joosten, Leo A B; Wijmenga, Cisca; Stunnenberg, Hendrik G; Xavier, Ramnik J; Netea, Mihai G

    2014-09-26

    Epigenetic reprogramming of myeloid cells, also known as trained immunity, confers nonspecific protection from secondary infections. Using histone modification profiles of human monocytes trained with the Candida albicans cell wall constituent β-glucan, together with a genome-wide transcriptome, we identified the induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, high lactate production, and a high ratio of nicotinamide adenine dinucleotide (NAD(+)) to its reduced form (NADH), reflecting a shift in metabolism with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1-Akt-HIF-1α (hypoxia-inducible factor-1α) pathway. Inhibition of Akt, mTOR, or HIF-1α blocked monocyte induction of trained immunity, whereas the adenosine monophosphate-activated protein kinase activator metformin inhibited the innate immune response to fungal infection. Mice with a myeloid cell-specific defect in HIF-1α were unable to mount trained immunity against bacterial sepsis. Our results indicate that induction of aerobic glycolysis through an Akt-mTOR-HIF-1α pathway represents the metabolic basis of trained immunity. Copyright © 2014, American Association for the Advancement of Science.

  20. Gamma rays induce a p53-independent mitochondrial biogenesis that is counter-regulated by HIF1α

    Science.gov (United States)

    Bartoletti-Stella, A; Mariani, E; Kurelac, I; Maresca, A; Caratozzolo, M F; Iommarini, L; Carelli, V; Eusebi, L H; Guido, A; Cenacchi, G; Fuccio, L; Rugolo, M; Tullo, A; Porcelli, A M; Gasparre, G

    2013-01-01

    Mitochondrial biogenesis is an orchestrated process that presides to the regulation of the organelles homeostasis within a cell. We show that γ-rays, at doses commonly used in the radiation therapy for cancer treatment, induce an increase in mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence, in the presence of a functional p53. Although the main effector of the response to γ-rays is the p53-p21 axis, we demonstrated that mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a murine double minute 2 (MDM2)-mediated hypoxia-inducible factor 1α (HIF1α) degradation, leading to the release of peroxisome-proliferator activated receptor gamma co-activator 1β inhibition by HIF1α, thus promoting mitochondrial biogenesis. Mimicking hypoxia by HIF1α stabilization, in fact, blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally, we also show in vivo that post-radiotherapy mitochondrial DNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of cell senescence. PMID:23764844

  1. Decursin reduce radio-resistance of hypoxic regions under the proton beam therapy by induced HIF-1α degradation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Kim, Kye Ryung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Protons induce cancer-cell apoptosis in vitro and block blood vessel formation in vivo through the generation of reactive oxygen species (ROS). The fact that proton severely inhibits blood vessel development in zebrafish embryos suggests a higher sensitivity of vascular endothelial cells to proton beam. Decursin, a coumarin compound, was originally isolated from Angelica gigas Nakai (Dang Gui). A. gigas root has been traditionally used in Korean folk medicine for the treatment of anemia and other common diseases. In previous reports, decursin was reported to exhibit anti-tumor activity against various cancer cells and to inhibit the activities of the androgen and androgen-receptor (AR) signaling pathway in prostate cancer, induction of cell cycle arrest and apoptosis in various cancer cells, such as prostate, breast, bladder, and colon cancer cells. Decursin also inhibits VEGF-induced angiogenesis through the suppression of the VEGFR-2-signaling pathway. However, the mechanism of decursin mediates change of HIF-1α activities is not clear. In this research, we identified regulations of the HIF-1α and the anti-angiogenesis effects of decursin in proton-beam-irradiated human lung cancer, prostate cancer and Hepatic cancer cells. We investigated the underlying mechanisms of positive effects of protonbeam-induced anti-angiogenesis. Our data indicate that the groups co-treated with decursin and a proton-beam had significant reduced HIF-1α activity compared with the groups treated with only a proton beam under the hypoxic condition caused by DFX(desferrioxamine). Decursin was found to induced HIF-1α degradation. Therefore, we suggest that decursin may be a potential candidate for use as a sensitizer for proton-beaminduced cell apoptosis. Here we have shown that decursin successfully reduced HIF-1α stability under hypoxic condition by induced desferrioxamine. We showed novel candidates for anti-angiogenic compound, decursin, leading to complete inhibition of radio

  2. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer.

    Science.gov (United States)

    Archer, Stephen L; Gomberg-Maitland, Mardi; Maitland, Michael L; Rich, Stuart; Garcia, Joe G N; Weir, E Kenneth

    2008-02-01

    Pulmonary arterial hypertension (PAH) is a lethal syndrome characterized by vascular obstruction and right ventricular failure. Although the fundamental cause remains elusive, many predisposing and disease-modifying abnormalities occur, including endothelial injury/dysfunction, bone morphogenetic protein receptor-2 gene mutations, decreased expression of the O(2)-sensitive K(+) channel (Kv1.5), transcription factor activation [hypoxia-inducible factor-1alpha (HIF-1alpha) and nuclear factor-activating T cells], de novo expression of survivin, and increased expression/activity of both serotonin transporters and platelet-derived growth factor receptors. Together, these abnormalities create a cancerlike, proliferative, apoptosis-resistant phenotype in pulmonary artery smooth muscle cells (PASMCs). A possible unifying mechanism for PAH comes from studies of fawn-hooded rats, which manifest spontaneous PAH and impaired O(2) sensing. PASMC mitochondria normally produce reactive O(2) species (ROS) in proportion to P(O2). Superoxide dismutase 2 (SOD2) converts intramitochondrial superoxide to diffusible H(2)O(2), which serves as a redox-signaling molecule, regulating pulmonary vascular tone and structure through effects on Kv1.5 and transcription factors. O(2) sensing is mediated by this mitochondria-ROS-HIF-1alpha-Kv1.5 pathway. In PAH and cancer, mitochondrial metabolism and redox signaling are reversibly disordered, creating a pseudohypoxic redox state characterized by normoxic decreases in ROS, a shift from oxidative to glycolytic metabolism and HIF-1alpha activation. Three newly recognized mitochondrial abnormalities disrupt the mitochondria-ROS-HIF-1alpha-Kv1.5 pathway: 1) mitochondrial pyruvate dehydrogenase kinase activation, 2) SOD2 deficiency, and 3) fragmentation and/or hyperpolarization of the mitochondrial reticulum. The pyruvate dehydrogenase kinase inhibitor, dichloroacetate, corrects the mitochondrial abnormalities in experimental models of PAH and human

  3. Angelica sinensis Exerts Angiogenic and Anti-apoptotic Effects Against Cerebral Ischemia-Reperfusion Injury by Activating p38MAPK/HIF-1[Formula: see text]/VEGF-A Signaling in Rats.

    Science.gov (United States)

    Cheng, Chin-Yi; Ho, Tin-Yun; Hsiang, Chien-Yun; Tang, Nou-Ying; Hsieh, Ching-Liang; Kao, Shung-Te; Lee, Yu-Chen

    2017-11-09

    This study evaluated the effects of Angelica sinensis extract [Dang Gui (DG)] administered before 60[Formula: see text]min of middle cerebral artery occlusion followed by 3[Formula: see text]d of reperfusion and investigated the involvement of mitogen-activated protein kinase (MAPK)/hypoxia-inducible factor (HIF)-1[Formula: see text] signaling in the cortical ischemic penumbra. DG was intraperitoneally administered at a dose of 0.25[Formula: see text]g/kg (DG-0.25g), 0.5[Formula: see text]g/kg (DG-0.5g), or 1[Formula: see text]g/kg (DG-1g) 30[Formula: see text]min before the onset of cerebral ischemia. Our study results revealed that DG-0.5g and DG-1g pretreatment effectively attenuated cerebral infarct and improved neurological deficits. DG-0.5g and DG-1g pretreatment significantly downregulated glial fibrillary acidic protein (GFAP), cytochrome c, and cleaved caspase-3 expression and upregulated phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK, phospho-cAMP response element-binding protein (p-CREB)/CREB, cytosolic and mitochondrial phospho-Bad (p-Bad)/Bad ratios, and HIF-1[Formula: see text], vascular endothelial growth factor-A (VEGF-A), phospho-90 kDa ribosomal S6 kinase (p-p90RSK), and von Willebrand factor (vWF) expression in the cortical ischemic penumbra. Pretreatment with SB203580, a p38 MAPK inhibitor, dramatically abrogated the upregulating effects of DG-1g on p-p38 MAPK/p38 MAPK, p-CREB/CREB, and p-Bad/Bad ratios and HIF-1[Formula: see text], VEGF-A, and vWF expression and the downregulating effects of DG-1g on GFAP, cytochrome c, cleaved caspase-3, and cerebral infarction. DG-0.5g and DG-1g pretreatment provided neuroprotective effects against astrocyte-mediated cerebral infarction by activating angiogenic and anti-apoptotic signaling. Moreover, the angiogenic and anti-apoptotic effects of DG pretreatment can be attributed to the activation of p38 MAPK/HIF-1[Formula: see text]/VEGF-A/vWF signaling and p38 MAPK/HIF-1[Formula: see text

  4. Microorganisms having enhanced tolerance to inhibitors and stress

    Science.gov (United States)

    Brown, Steven D.; Yang, Shihui

    2014-07-29

    The present invention provides genetically modified strains of microorganisms that display enhanced tolerance to stress and/or inhibitors such as sodium acetate and vanillin. The enhanced tolerance can be achieved by increasing the expression of a protein of the Sm-like superfamily such as a bacterial Hfq protein and a fungal Sm or Lsm protein. Further, the present invention provides methods of producing alcohol from biomass materials by using the genetically modified microorganisms of the present invention.

  5. Modeling the dynamics of hypoxia inducible factor-1α (HIF-1α) within single cells and 3D cell culture systems.

    Science.gov (United States)

    Leedale, Joseph; Herrmann, Anne; Bagnall, James; Fercher, Andreas; Papkovsky, Dmitri; Sée, Violaine; Bearon, Rachel N

    2014-12-01

    HIF (hypoxia inducible factor) is an oxygen-regulated transcription factor that mediates the intracellular response to hypoxia in human cells. There is increasing evidence that cell signaling pathways encode temporal information, and thus cell fate may be determined by the dynamics of protein levels. We have developed a mathematical model to describe the transient dynamics of the HIF-1α protein measured in single cells subjected to hypoxic shock. The essential characteristics of these data are modeled with a system of differential equations describing the feedback inhibition between HIF-1α and prolyl hydroxylases (PHD) oxygen sensors. Heterogeneity in the single-cell data is accounted through parameter variation in the model. We previously identified the PHD2 isoform as the main PHD sensor responsible for controlling the HIF-1α transient response, and make here testable predictions regarding HIF-1α dynamics subject to repetitive hypoxic pulses. The model is further developed to describe the dynamics of HIF-1α in cells cultured as 3D spheroids, with oxygen dynamics parameterized using experimental measurements of oxygen within spheroids. We show that the dynamics of HIF-1α and transcriptional targets of HIF-1α display a non-monotone response to the oxygen dynamics. Specifically we demonstrate that the dynamic transient behavior of HIF-1α results in differential dynamics in transcriptional targets. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Immunohistological expression of HIF-1α, GLUT-1, Bcl-2 and Ki-67 in consecutive biopsies during chemoradiotherapy in patients with rectal cancer

    DEFF Research Database (Denmark)

    Havelund, Birgitte Mayland; Sørensen, Flemming Brandt; Pløen, John

    2013-01-01

    receiving preoperative CRT (>50.4 Gy and Uracil/Tegafur). Immunohistological expressions of HIF-1α, GLUT-1, Bcl-2 and Ki-67 were investigated in biopsies taken before treatment, after 2, 4 and 6 weeks of CRT and in specimens from the operation. Decreasing expressions of HIF-1α, Bcl-2 and Ki-67 were observed...

  7. Differential pattern of HIF-1α expression in HNSCC cancer stem cells after carbon ion or photon irradiation: one molecular explanation of the oxygen effect.

    Science.gov (United States)

    Wozny, Anne-Sophie; Lauret, Alexandra; Battiston-Montagne, Priscillia; Guy, Jean-Baptiste; Beuve, Michael; Cunha, Micaela; Saintigny, Yannick; Blond, Emilie; Magne, Nicolas; Lalle, Philippe; Ardail, Dominique; Alphonse, Gersende; Rodriguez-Lafrasse, Claire

    2017-05-09

    Head and neck squamous cell carcinoma (HNSCC) are resistant to standard treatments, partly due to cancer stem cells (CSCs) localised in hypoxic niches. Compared to X-rays, carbon ion irradiation relies on better ballistic properties, higher relative biological effectiveness and the absence of oxygen effect. Hypoxia-inducible factor-1α (HIF-1α) is involved in the resistance to photons, whereas its role in response to carbon ions remains unclear. Two HNSCC cell lines and their CSC sub-population were studied in response to photons or carbon ion irradiation, in normoxia or hypoxia, after inhibition or not of HIF-1α. Under hypoxia, compared to non-CSCs, HIF-1α is expressed earlier in CSCs. A combined effect photons/hypoxia, less observed with carbon ions, results in a synergic and earlier HIF-1α expression in both subpopulations. The diffuse ROS production by photons is concomitant with HIF-1α expression and essential to its activation. There is no oxygen effect in response to carbon ions and the ROS localised in the track might be insufficient to stabilise HIF-1α. Finally, in hypoxia, cells were sensitised to both types of radiations after HIF-1α inhibition. Hypoxia-inducible factor-1α plays a main role in the response of CSCs and non-CSCs to carbon ion and photon irradiations, which makes the HIF-1α targeting an attractive therapeutic challenge.

  8. VEGF, HIF-1α and PEDF expression in the retina of streptozotocin-induced diabetics rats treated with ozone

    Directory of Open Access Journals (Sweden)

    Ting-Yu Xie

    2016-02-01

    Full Text Available AIM:To study vascular endothelial growth factor(VEGF, pigment epithelium derived factor(PEDFand hypoxia inducible factor-1α(HIF-1αexpression in retinal and serum in ozone-treated streptozotocin(STZ-induced diabetic rats and to determine the possible efficacy of ozone therapy for diabetic retinopathy(DR.METHODS:Seventy male Sprague-Dawley rats were used. Group A(n=10received a normal diet, diabetic molding established by intraperitoneal injection of STZ(50mg/ml, then divided into three groups, group B without any intervene; and groups C and D given oxygen and ozone clyster treatment respectively, twice per week for 1mo. Retina and blood were taken under general anesthesia. Reverse transcription-polymerase chain reaction(RT-PCRand enzyme-linked immunosorbent assay(ELISAmethods were used to study retinal and serum VEGF, HIF-1α and PEDF expression.RESULTS:VEGF occurred mostly in the inner layer of the retina; the difference of VEGF in the retina among each group has statistical difference(F=23.923; P=0.000; in which, group D closer to group A, but still has statistical difference(PP>0.05except for no difference between group A and D(P>0.05, others as same result as retinal VEGF expression.HIF-1α expression decreased in ozone-treated rats(group Dcompared with control group(PPP>0.05. Overall, PEDF expression was lower than VEGF and HIF-1α, and groups A and D showed more expression than groups B and C, but the differences were not significant(P >0.05.CONCLUSION: Ozone administration can reduce the VEGF and HIF-1α expression and ozone may have potential uses in its treatment.

  9. HIF-1alpha and HIF-2alpha are differentially activated in distinct cell populations in retinal ischaemia.

    Directory of Open Access Journals (Sweden)

    Freya M Mowat

    Full Text Available BACKGROUND: Hypoxia plays a key role in ischaemic and neovascular disorders of the retina. Cellular responses to oxygen are mediated by hypoxia-inducible transcription factors (HIFs that are stabilised in hypoxia and induce the expression of a diverse range of genes. The purpose of this study was to define the cellular specificities of HIF-1alpha and HIF-2alpha in retinal ischaemia, and to determine their correlation with the pattern of retinal hypoxia and the expression profiles of induced molecular mediators. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the tissue distribution of retinal hypoxia during oxygen-induced retinopathy (OIR in mice using the bio-reductive drug pimonidazole. We measured the levels of HIF-1alpha and HIF-2alpha proteins by Western blotting and determined their cellular distribution by immunohistochemistry during the development of OIR. We measured the temporal expression profiles of two downstream mediators, vascular endothelial growth factor (VEGF and erythropoietin (Epo by ELISA. Pimonidazole labelling was evident specifically in the inner retina. Labelling peaked at 2 hours after the onset of hypoxia and gradually declined thereafter. Marked binding to Müller glia was evident during the early hypoxic stages of OIR. Both HIF-1alpha and HIF-2alpha protein levels were significantly increased during retinal hypoxia but were evident in distinct cellular distributions; HIF-1alpha stabilisation was evident in neuronal cells throughout the inner retinal layers whereas HIF-2alpha was restricted to Müller glia and astrocytes. Hypoxia and HIF-alpha stabilisation in the retina were closely followed by upregulated expression of the downstream mediators VEGF and EPO. CONCLUSIONS/SIGNIFICANCE: Both HIF-1alpha and HIF-2alpha are activated in close correlation with retinal hypoxia but have contrasting cell specificities, consistent with differential roles in retinal ischaemia. Our findings suggest that HIF-2alpha activation

  10. The role of factor inhibiting HIF (FIH-1 in inhibiting HIF-1 transcriptional activity in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Enfeng Wang

    Full Text Available Glioblastoma multiforme (GBM accounts for about 38% of primary brain tumors in the United States. GBM is characterized by extensive angiogenesis induced by vascular growth factors and cytokines. The transcription of these growth factors and cytokines is regulated by the Hypoxia-Inducible-Factor-1(HIF-1, which is a key regulator mediating the cellular response to hypoxia. It is known that Factor Inhibiting HIF-1, or FIH-1, is also involved in the cellular response to hypoxia and has the capability to physically interact with HIF-1 and block its transcriptional activity under normoxic conditions. Delineation of the regulatory role of FIH-1 will help us to better understand the molecular mechanism responsible for tumor growth and progression and may lead to the design of new therapies targeting cellular pathways in response to hypoxia. Previous studies have shown that the chromosomal region of 10q24 containing the FIH-1 gene is often deleted in GBM, suggesting a role for the FIH-1 in GBM tumorigenesis and progression. In the current study, we found that FIH-1 is able to inhibit HIF-mediated transcription of GLUT1 and VEGF-A, even under hypoxic conditions in human glioblastoma cells. FIH-1 has been found to be more potent in inhibiting HIF function than PTEN. This observation points to the possibility that deletion of 10q23-24 and loss or decreased expression of FIH-1 gene may lead to a constitutive activation of HIF-1 activity, an alteration of HIF-1 targets such as GLUT-1 and VEGF-A, and may contribute to the survival of cancer cells in hypoxia and the development of hypervascularization observed in GBM. Therefore FIH-1 can be potential therapeutic target for the treatment of GBM patients with poor prognosis.

  11. SU-C-303-02: Correlating Metabolic Response to Radiation Therapy with HIF-1alpha Expression

    Energy Technology Data Exchange (ETDEWEB)

    Campos, D [University of Wisconsin Madison, Madison, WI (United States); Peeters, W [Radboud University Medical Center, Nijmegen, GA (United States); Nickel, K [University of Wisconsin, Madison, WI (United States); Eliceiri, K; Kimple, R; Van Der Kogel, A; Kissick, M [University of Wisconsin, Madison, Wisconsin (United States)

    2015-06-15

    Purpose: To understand radiation induced alterations in cellular metabolism which could be used to assess treatment or normal tissue response to aid in patient-specific adaptive radiotherapy. This work aims to compare the metabolic response of two head and neck cell lines, one malignant (UM-SCC-22B) and one benign (Normal Oral Keratinocyte), to ionizing radiation. Responses are compared to alterations in HIF-1alpha expression. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Measurements of metabolism and HIF-1alpha expression were taken before and X minutes after a 10 Gy dose of radiation delivered via an orthovoltage x-ray source. In vitro changes in metabolic activity were measured via fluorescence lifetime imaging (FLIM) to assess the mean lifetime of NADH autofluorescence following a dose of 10 Gy. HIF-1alpha expression was measured via immunohistochemical staining of in vitro treated cells and expression was quantified using the FIJI software package. Results: FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways for malignant cells; whereas this benign cell line showed little change in metabolic signature. Immunohistochemical analysis showed significant changes in HIF-1alpha expression in response to 10 Gy of radiation that correlate to metabolic profiles. Conclusion: Radiation induces significant changes in metabolic activity and HIF-1alpha expression. These alterations occur on time scales approximating the duration of common radiation treatments (approximately tens of minutes). Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response.

  12. Upregulation of CREM/ICER suppresses wound endothelial CRE-HIF-1α-VEGF-dependent signaling and impairs angiogenesis in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Milad S. Bitar

    2015-01-01

    Full Text Available Impaired angiogenesis and endothelial dysfunction in type 2 diabetes constitute dominant risk factors for non-healing wounds and most forms of cardiovascular disease. We propose that diabetes shifts the ‘angiogenic balance’ in favor of an excessive anti-angiogenic phenotype. Herein, we report that diabetes impairs in vivo sponge angiogenic capacity by decreasing VEGF expression and fibrovascular invasion, and reciprocally enhances the formation of angiostatic molecules, such as thrombospondins, NFκB and FasL. Defective in vivo angiogenesis prompted cellular studies in cultured endothelial cells derived from subcutaneous sponge implants (SIECs of control and Goto-Kakizaki rats. Ensuing data from diabetic SIECs demonstrated a marked upregulation in cAMP-PKA-CREB signaling, possibly stemming from increased expression of adenylyl cyclase isoforms 3 and 8, and decreased expression of PDE3. Mechanistically, we found that oxidative stress and PKA activation in diabetes enhanced CREM/ICER expression. This reduces IRS2 cellular content by inhibiting cAMP response element (CRE transcriptional activity. Consequently, a decrease in the activity of Akt-mTOR ensued with a concomitant reduction in the total and nuclear protein levels of HIF-1α. Limiting HIF-1α availability for the specific hypoxia response elements in diabetic SIECs elicited a marked reduction in VEGF expression, both at the mRNA and protein levels. These molecular abnormalities were illustrated functionally by a defect in various pro-angiogenic properties, including cell proliferation, migration and tube formation. A genetic-based strategy in diabetic SIECs using siRNAs against CREM/ICER significantly augmented the PKA-dependent VEGF expression. To this end, the current data identify the importance of CREM/ICER as a negative regulator of endothelial function and establish a link between CREM/ICER overexpression and impaired angiogenesis during the course of diabetes. Moreover, it could

  13. HER Family Receptors are Important Theranostic Biomarkers for Cervical Cancer: Blocking Glucose Metabolism Enhances the Therapeutic Effect of HER Inhibitors

    Science.gov (United States)

    Martinho, Olga; Silva-Oliveira, Renato; Cury, Fernanda P.; Barbosa, Ana Martins; Granja, Sara; Evangelista, Adriane Feijó; Marques, Fábio; Miranda-Gonçalves, Vera; Cardoso-Carneiro, Diana; de Paula, Flávia E.; Zanon, Maicon; Scapulatempo-Neto, Cristovam; Moreira, Marise A.R.; Baltazar, Fátima; Longatto-Filho, Adhemar; Reis, Rui Manuel

    2017-01-01

    Persistent HPV infection alone is not sufficient for cervical cancer development, which requires additional molecular alterations for tumor progression and metastasis ultimately leading to a lethal disease. In this study, we performed a comprehensive analysis of HER family receptor alterations in cervical adenocarcinoma. We detected overexpression of HER protein, mainly HER2, which was an independent prognostic marker for these patients. By using in vitro and in vivo approaches, we provided evidence that HER inhibitors, allitinib and lapatinib, were effective in reducing cervical cancer aggressiveness. Furthermore, combination of these drugs with glucose uptake blockers could overcome the putative HIF1-α-mediated resistance to HER-targeted therapies. Thus, we propose that the use of HER inhibitors in association with glycolysis blockers can be a potentially effective treatment option for HER-positive cervical cancer patients. PMID:28255362

  14. HER Family Receptors are Important Theranostic Biomarkers for Cervical Cancer: Blocking Glucose Metabolism Enhances the Therapeutic Effect of HER Inhibitors.

    Science.gov (United States)

    Martinho, Olga; Silva-Oliveira, Renato; Cury, Fernanda P; Barbosa, Ana Martins; Granja, Sara; Evangelista, Adriane Feijó; Marques, Fábio; Miranda-Gonçalves, Vera; Cardoso-Carneiro, Diana; de Paula, Flávia E; Zanon, Maicon; Scapulatempo-Neto, Cristovam; Moreira, Marise A R; Baltazar, Fátima; Longatto-Filho, Adhemar; Reis, Rui Manuel

    2017-01-01

    Persistent HPV infection alone is not sufficient for cervical cancer development, which requires additional molecular alterations for tumor progression and metastasis ultimately leading to a lethal disease. In this study, we performed a comprehensive analysis of HER family receptor alterations in cervical adenocarcinoma. We detected overexpression of HER protein, mainly HER2, which was an independent prognostic marker for these patients. By using in vitro and in vivo approaches, we provided evidence that HER inhibitors, allitinib and lapatinib, were effective in reducing cervical cancer aggressiveness. Furthermore, combination of these drugs with glucose uptake blockers could overcome the putative HIF1-α-mediated resistance to HER-targeted therapies. Thus, we propose that the use of HER inhibitors in association with glycolysis blockers can be a potentially effective treatment option for HER-positive cervical cancer patients.

  15. IDH mutations associated impact on related cancer epidemiology and subsequent effect toward HIF-1α.

    Science.gov (United States)

    Semukunzi, Herve; Roy, Debmalya; Li, Hongyang; Khan, Ghulam Jilany; Lyu, Xiaodan; Yuan, Shengtao; Lin, Sensen

    2017-05-01

    Particular mutations in the isocitrate dehydrogenase gene (IDH) were discovered in several gliomas citing astrocytoma, oligodendroglioma, and glioblastoma multiform, but also in leukemia; these mutations were discovered in nearly all cases of secondary glioblastomas, they evolve from lower-grade gliomas, but are limited in primary high-grade glioblastoma multiform. These mutations distinctively produce (D)-2-hydroxyglutarate (D-2-HG) from alpha-ketoglutarate (α-KG). (D)-2-hydroxyglutarate is accumulated to very high concentrations which inhibit the function of enzymes that are dependent on alpha-ketoglutarate. This modification leads to a hyper-methylated state of DNA and histones, resulting in different gene expression that can activate oncogenes and inactivate tumor-suppressor genes. In our work we review the impact of the mutations that occur in IDH genes, we focus on their impact on distribution in cancer. As IDH mutations appear in many different conditions we expose the extent of IDH mutations and derivate their impact on cancer prognosis, diagnosis, and even their oncogenicity, we will also link their impact to HIF-1α and derivate some target and finally, we present some of the therapeutics under research and out on market. Copyright © 2017. Published by Elsevier Masson SAS.

  16. Muscle Arnt/Hif1β Is Dispensable in Myofiber Type Determination, Vascularization and Insulin Sensitivity.

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Badin

    Full Text Available Aryl Hydrocarbon Receptor Nuclear Translocator/ hypoxia-inducible factor 1 beta (ARNT/ HIF1β, a member of bHLH-PAS family of transcriptional factors, plays a critical role in metabolic homeostasis, insulin resistance and glucose intolerance. The contributions of ARNT in pancreas, liver and adipose tissue to energy balance through gene regulation have been described. Surprisingly, the impact of ARNT signaling in the skeletal muscles, one of the major organs involved in glucose disposal, has not been investigated, especially in type II diabetes. Here we report that ARNT is expressed in the skeletal muscles, particularly in the energy-efficient oxidative slow-twitch myofibers, which are characterized by increased oxidative capacity, mitochondrial content, vascular supply and insulin sensitivity. However, muscle-specific deletion of ARNT did not change myofiber type distribution, oxidative capacity, mitochondrial content, capillarity, or the expression of genes associated with these features. Consequently, the lack of ARNT in the skeletal muscle did not affect weight gain, lean/fat mass, insulin sensitivity and glucose tolerance in lean mice, nor did it impact insulin resistance and glucose intolerance in high fat diet-induced obesity. Therefore, skeletal muscle ARNT is dispensable for controlling muscle fiber type and metabolic regulation, as well as diet-induced weight control, insulin sensitivity and glucose tolerance.

  17. Muscle Arnt/Hif1β Is Dispensable in Myofiber Type Determination, Vascularization and Insulin Sensitivity.

    Science.gov (United States)

    Badin, Pierre-Marie; Sopariwala, Danesh H; Lorca, Sabina; Narkar, Vihang A

    2016-01-01

    Aryl Hydrocarbon Receptor Nuclear Translocator/ hypoxia-inducible factor 1 beta (ARNT/ HIF1β), a member of bHLH-PAS family of transcriptional factors, plays a critical role in metabolic homeostasis, insulin resistance and glucose intolerance. The contributions of ARNT in pancreas, liver and adipose tissue to energy balance through gene regulation have been described. Surprisingly, the impact of ARNT signaling in the skeletal muscles, one of the major organs involved in glucose disposal, has not been investigated, especially in type II diabetes. Here we report that ARNT is expressed in the skeletal muscles, particularly in the energy-efficient oxidative slow-twitch myofibers, which are characterized by increased oxidative capacity, mitochondrial content, vascular supply and insulin sensitivity. However, muscle-specific deletion of ARNT did not change myofiber type distribution, oxidative capacity, mitochondrial content, capillarity, or the expression of genes associated with these features. Consequently, the lack of ARNT in the skeletal muscle did not affect weight gain, lean/fat mass, insulin sensitivity and glucose tolerance in lean mice, nor did it impact insulin resistance and glucose intolerance in high fat diet-induced obesity. Therefore, skeletal muscle ARNT is dispensable for controlling muscle fiber type and metabolic regulation, as well as diet-induced weight control, insulin sensitivity and glucose tolerance.

  18. Functional and transcriptional induction of aquaporin-1 gene by hypoxia; analysis of promoter and role of Hif-1α.

    Directory of Open Access Journals (Sweden)

    Irene Abreu-Rodríguez

    Full Text Available Aquaporin-1 (AQP1 is a water channel that is highly expressed in tissues with rapid O(2 transport. It has been reported that this protein contributes to gas permeation (CO(2, NO and O(2 through the plasma membrane. We show that hypoxia increases Aqp1 mRNA and protein levels in tissues, namely mouse brain and lung, and in cultured cells, the 9L glioma cell line. Stopped-flow light-scattering experiments confirmed an increase in the water permeability of 9L cells exposed to hypoxia, supporting the view that hypoxic Aqp1 up-regulation has a functional role. To investigate the molecular mechanisms underlying this regulatory process, transcriptional regulation was studied by transient transfections of mouse endothelial cells with a 1297 bp 5' proximal Aqp1 promoter-luciferase construct. Incubation in hypoxia produced a dose- and time-dependent induction of luciferase activity that was also obtained after treatments with hypoxia mimetics (DMOG and CoCl(2 and by overexpressing stabilized mutated forms of HIF-1α. Single mutations or full deletions of the three putative HIF binding domains present in the Aqp1 promoter partially reduced its responsiveness to hypoxia, and transfection with Hif-1α siRNA decreased the in vitro hypoxia induction of Aqp1 mRNA and protein levels. Our results indicate that HIF-1α participates in the hypoxic induction of AQP1. However, we also demonstrate that the activation of Aqp1 promoter by hypoxia is complex and multifactorial and suggest that besides HIF-1α other transcription factors might contribute to this regulatory process. These data provide a conceptual framework to support future research on the involvement of AQP1 in a range of pathophysiological conditions, including edema, tumor growth, and respiratory diseases.

  19. Analysis of CD15, CD57 and HIF-1α in biopsies of patients with peri-implantitis.

    Science.gov (United States)

    de Araújo, Márcia Fernandes; Etchebehere, Renata Margarida; de Melo, Marcelo Luiz Ribeiro; Beghini, Marcela; Severino, Viviane Oliveira; de Castro Côbo, Eliângela; Rocha Rodrigues, Denise Bertulucci; de Lima Pereira, Sanívia Aparecida

    2017-09-01

    Peri-implantitis is an infectious disease characterized by inflammation of the tissues surrounding the implant, bleeding on probing with or without suppuration, and bone loss. Peri-implant lesions contain a leukocyte infiltrate of plasma cells, lymphocytes, macrophages and neutrophils. A survey of the literature did not show any studies reporting an association between hypoxia and peri-implantitis. The aim of the present cross-sectional study was to evaluate histological changes and immunostaining for CD15, CD57 and HIF-1α in the peri-implant mucosa of patients with and without peri-implantitis. Mucosal biopsies were obtained from 18 patients with peri-implantitis and 10 control subjects without peri-implantitis at a private health care center between 2010 and 2012. The sections were fixed in 10% buffered formalin, processed and embedded in paraffin for histopathological and immunohistochemical study. Acanthosis, spongiosis and exocytosis were observed in both groups, with no significant difference between them. The peri-implantitis group showed increased immunostaining for CD15, a neutrophil marker, and HIF-1α, a tissue hypoxia marker, but no significant difference in immunostaining for CD57, a Natural Killer cell marker. The increase in neutrophil (CD15) and hypoxia (HIF-1α) markers in patients with peri-implantitis suggests an active participation of neutrophils and hypoxia in the pathogenesis of this disease. Since the present study was the first to evaluate the expression of CD15, CD57 and HIF-1α in peri-implant tissues, further studies should be performed to better understand the role of these molecules in peri-implantitis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. A gastrin precursor, gastrin-gly, upregulates VEGF expression in colonic epithelial cells through an HIF-1-independent mechanism

    Science.gov (United States)

    Bertrand, Claudine; Kowalski-Chauvel, Aline; Do, Catherine; Résa, Cécile; Najib, Souad; Daulhac, Laurence; Wang, Timothy C.; Ferrand, Audrey; Seva, Catherine

    2013-01-01

    One of the major angiogenic factor released by tumor cells is VEGF. Its high expression is correlated with poor prognosis in colorectal tumors. In colon cancer, gastrin gene expression is also upregulated. In these tumors, gastrin precursors are mainly produced and act as growth factors. Recently, a study has also shown that the gastrin precursor, G-gly induced in vitro tubules formation by vascular endothelial cells suggesting a potential proangiogenic role. Here, we demonstrate that stimulation of human colorectal cancer cell lines with G-gly increases the expression of the proangiogenic factor VEGF at the mRNA and protein levels. In addition, blocking the progastrin autocrine loop leads to a downregulation of VEGF. Although HIF-1 is a major transcriptional activator for VEGF our results suggest an alternative mechanism for VEGF regulation in normoxic conditions, independent of HIF-1 that involves the PI3K/AKT pathway. Indeed we show that G-gly does not lead to HIF-1 accumulation in colon cancer cells. Moreover, we found that G-gly activates the PI3K/AKT pathway and inhibition of this pathway reverses the effects of G-gly observed on VEGF mRNA and protein levels. In correlation with these results, we observed in vivo, on colon tissue sections from transgenic mice overexpressing G-gly, an increase in VEGF expression in absence of HIF-1 accumulation. In conclusion, our study demonstrates that gastrin precursors, known to promote colon epithelial cells proliferation and survival can also contribute to the angiogenesis process by stimulating the expression of the proangiogenic factor VEGF via the PI3K pathway and independently of hypoxia conditions. PMID:19876923

  1. FGF2 translationally induced by hypoxia is involved in negative and positive feedback loops with HIF-1alpha.

    Directory of Open Access Journals (Sweden)

    Caroline Conte

    Full Text Available BACKGROUND: Fibroblast growth factor 2 (FGF2 is a major angiogenic factor involved in angiogenesis and arteriogenesis, however the regulation of its expression during these processes is poorly documented. FGF2 mRNA contains an internal ribosome entry site (IRES, a translational regulator expected to allow mRNA expression during cellular stress. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we have developed a skin ischemia model in transgenic mice expressing a reporter transgene under the control of the FGF2 IRES. The results reveal that FGF2 is induced at the protein level during ischemia, concomitant with HIF-1alpha induction and a decrease in FGF2 mRNA. In addition, the FGF2 IRES is strongly activated under these ischemic conditions associated with hypoxia, whereas cap-dependent translation is repressed by 4E-BP hypophosphorylation. We also show that up-regulation of FGF2 protein expression in response to hypoxia correlates with the increase of FGF2 IRES activity in vitro, in human retinoblasts 911. The use of siRNAs targeting HIF or FGF2 indicates that FGF2 and HIF-1alpha reciprocally regulate their expression/accumulation, by a negative feedback loop in early hypoxia, followed by a positive feedback loop in late hypoxia. CONCLUSION/SIGNIFICANCE: FGF2 expression is up-regulated in vivo and in vitro in response to hypoxia. Strikingly, this up-regulation is not transcriptional. It seems to occur by an IRES-dependent mechanism, revealing new mechanistic aspects of the hypoxic response. In addition, our data show that FGF2 interacts with HIF-1alpha in a unique crosstalk, with distinct stages in early and late hypoxia. These data reveal the physiological importance of IRES-dependent translation during hypoxic stress and underline the complexity of the cellular response to hypoxia, suggesting a novel role of FGF2 in the regulation of HIF-1alpha during the induction of angiogenesis.

  2. Effect of intermittent hypoxia on the cardiac HIF-1/VEGF pathway in experimental type 1 diabetes mellitus

    Science.gov (United States)

    Güzel, Derya; Dursun, Ali Doğan; Fıçıcılar, Hakan; Tekin, Demet; Tanyeli, Ayhan; Akat, Fırat; Topal Çelikkan, Ferda; Sabuncuoğlu, Bizden; Baştuğ, Metin

    2016-01-01

    Objective: High altitude and hypoxic preconditioning have cardioprotective effects by increasing coronary vascularity, reducing post-ischemic injury, and improving cardiac function. Our purpose was to examine if intermittent hypoxia treatment has any restoring effects related to the possible role of the HIF-1/VEGF pathway on diabetic cardiomyopathy. Methods: Wistar Albino male rats (n=34) were divided into four groups: control (C), intermittent hypoxia (IH), diabetes mellitus (DM), and diabetes mellitus plus intermittent hypoxia (DM+IH). Following a streptozotocin (STZ) injection (50 mg/kg, i.p.), blood glucose levels of 250 mg/dL and above were considered as DM. IH and DM+IH groups were exposed to hypoxia 6 h/day for 42 days at a pressure corresponding to 3000 m altitude. Twenty-four hours after the IH protocol, hearts were excised. Hematoxylin and eosin-stained apical parts of the left ventricles were evaluated. Hypoxia inducible factor-1 (HIF-1), vascular endothelial growth factor 164 (VEGF164), and VEGF188 polymerase chain reaction products were run in agarose gel electrophoresis. Band density analysis of UV camera images was performed using Image J. The data were compared by one-way ANOVA, repeated measures two-way ANOVA, and the Kruskal-Wallis test. Results: The percent weight change was lower in the DM group than in the controls (p=0.004). The tissue injury was the highest in the DM group and the least in the IH group. Diabetes decreased, whereas the IH treatment increased the vascularity. A decrease was observed in the VEGF188 mRNA levels in the DM+IH group compared with the C group, but there were no difference in HIF-1α and VEGF164 mRNA levels between the groups. Conclusion: The IH treatment restored the diabetic effects on the heart by reducing tissue injury and increasing the capillarity without transcriptional changes in HIF-1/VEGF correspondingly. PMID:26467365

  3. Altered expression of hypoxia-inducible factor-1α (HIF-1α and its regulatory genes in gastric cancer tissues.

    Directory of Open Access Journals (Sweden)

    Jihan Wang

    Full Text Available Tissue hypoxia induces reprogramming of cell metabolism and may result in normal cell transformation and cancer progression. Hypoxia-inducible factor 1-alpha (HIF-1α, the key transcription factor, plays an important role in gastric cancer development and progression. This study aimed to investigate the underlying regulatory signaling pathway in gastric cancer using gastric cancer tissue specimens. The integration of gene expression profile and transcriptional regulatory element database (TRED was pursued to identify HIF-1α ↔ NFκB1 → BRCA1 → STAT3 ← STAT1 gene pathways and their regulated genes. The data showed that there were 82 differentially expressed genes that could be regulated by these five transcription factors in gastric cancer tissues and these genes formed 95 regulation modes, among which seven genes (MMP1, TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3 were hub molecules that are regulated at least by two of these five transcription factors simultaneously and were associated with hypoxia, inflammation, and immune disorder. Real-Time PCR and western blot showed increasing of HIF-1α in mRNA and protein levels as well as TIMP1, TFF3 in mRNA levels in gastric cancer tissues. The data are the first study to demonstrate HIF-1α-regulated transcription factors and their corresponding network genes in gastric cancer. Further study with a larger sample size and more functional experiments is needed to confirm these data and then translate into clinical biomarker discovery and treatment strategy for gastric cancer.

  4. Distinct microRNA expression signatures are associated with melanoma subtypes and are regulated by HIF1A

    Science.gov (United States)

    Hwang, Hun-Way; Baxter, Laura L.; Loftus, Stacie K.; Cronin, Julia C.; Trivedi, Niraj S.; Borate, Bhavesh; Pavan, William J.

    2014-01-01

    Summary The complex genetic changes underlying metastatic melanoma need to be deciphered to develop new and effective therapeutics. Previously, genome-wide microarray analyses of human melanoma identified two reciprocal gene expression programs, including transcripts regulated by either transforming growth factor, beta 1 (TGFβ1) pathways or microphthalmia-associated transcription factor (MITF)/SRY-box containing gene 10 (SOX10) pathways. We extended this knowledge by discovering that melanoma cell lines with these two expression programs exhibit distinctive microRNA (miRNA) expression patterns. We also demonstrated that hypoxia-inducible factor 1 alpha (HIF1A) is increased in TGFβ1 pathway-expressing melanoma cells and that HIF1A upregulates miR-210, miR-218, miR-224, and miR-452. Reduced expression of these four miRNAs in TGFβ1 pathway-expressing melanoma cells arrests the cell cycle, while their overexpression in mouse melanoma cells increases the expression of the hypoxic response gene Bnip3. Taken together, these data suggest that HIF1A may regulate some of the gene expression and biological behavior of TGFβ1 pathway-expressing melanoma cells, in part via alterations in these four miRNAs. PMID:24767210

  5. EGCG attenuates autoimmune arthritis by inhibition of STAT3 and HIF-1α with Th17/Treg control.

    Directory of Open Access Journals (Sweden)

    Eun-Ji Yang

    Full Text Available Epigallocatechin-3-gallate (EGCG is a green tea polyphenol exerting potent anti-oxidant and anti-inflammatory effects by inhibiting signaling and gene expression. The objective of the study was to evaluate the effect of EGCG on interleukin (IL-1 receptor antagonist knockout (IL-1RaKO autoimmune arthritis models. IL-1RaKO arthritis models were injected intraperitoneally with EGCG three times per week after the first immunization. EGCG decreased the arthritis index and showed protective effects against joint destruction in the IL-1RaKO arthritis models. The expression of pro-inflammatory cytokines, oxidative stress proteins, and p-STAT3 (Y705 and p-STAT3 (S727, mTOR and HIF-1α were significantly lower in mice treated with EGCG. EGCG reduced osteoclast markers in vivo and in vitro along with anti-osteoclastic activity was observed in EGCG-treated IL-1RaKO mice. The proportion of Foxp3(+ Treg cells increased in the spleens of mice treated with EGCG, whereas the proportion of Th17 cells reduced. In vitro, p-STAT3 (Y705 and p-STAT3 (S727, HIF1α and glycolytic pathway molecules were decreased by EGCG. EGCG suppressed the activation of mTOR and subsequently HIF-1α, which is considered as a metabolic check point of Th17/Treg differentiation supporting the therapeutic potential of EGCG in autoimmune arthritis.

  6. Preferential enhancement of tumor radioresponse by a cyclooxygenase-2 inhibitor.

    Science.gov (United States)

    Kishi, K; Petersen, S; Petersen, C; Hunter, N; Mason, K; Masferrer, J L; Tofilon, P J; Milas, L

    2000-03-01

    Cyclooxygenase-2 (COX-2), an inducible isoform of cyclooxygenase, is overexpressed in many types of malignant tumors, where it mediates production of prostaglandins (PGs), which in turn may stimulate tumor growth and protect against damage by cytotoxic agents. This study investigated whether SC-'236, a selective inhibitor of COX-2, potentiates antitumor efficacy of radiation without increasing radiation injury to normal tissue. Mice bearing the sarcoma FSA in the hind legs were treated daily for 10 days with SC-'236 (6 mg/kg given in the drinking water) when tumors were 6 mm in diameter. When tumors reached 8 mm in diameter, the mice were given 11- to 50-Gy single-dose local tumor irradiation with or without SC-'236. SC-'236 inhibited tumor growth on its own, and it greatly enhanced the effect of tumor irradiation. The growth delay was increased from 14.8 days after 25-Gy single dose to 28.4 days after the combined treatment (P = 0.01). SC-'236 reduced TCD50 (radiation dose yielding 50% tumor cure) from 39.2 Gy to 20.9 Gy (enhancement factor = 1.87). SC-'236 did not appreciably alter radiation damage to jejunal crypt cells and tissue involved in the development of radiation-induced leg contractures. The SC-'236-induced enhancement of tumor radioresponse was associated with a decrease in PGE2 levels in FSA tumors. The drug had no effect on radiation-induced apoptosis. Neoangiogenesis was inhibited by SC-'236, which could account for some of the increase in tumor radioresponse. Overall, our findings demonstrated that treatment with a selective inhibitor of COX-2 greatly enhanced tumor radioresponse without markedly affecting normal tissue radioresponse. Thus, COX-2 inhibitors have a high potential for increasing the therapeutic ratio of radiotherapy.

  7. Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions

    DEFF Research Database (Denmark)

    Lundby, Carsten; Gassmann, Max; Pilegaard, Henriette

    2005-01-01

    and 2 (HIFs) are clearly related heterodimeric transcription factors that consist of an oxygen-depended alpha-subunit and a constitutive beta-subunit. With hypoxic exposure, HIF-1alpha and HIF-2alpha protein are stabilized. Upon heterodimerization, HIFs induce the transcription of a variety of genes...... legs exercised at the same absolute workload. In the untrained leg, the exercise bout induced an increase (Palpha fold and HIF-2alpha fold mRNA at 6 h of recovery. In contrast, HIF-1alpha and HIF-2alpha mRNA levels were not altered at any time point in the trained leg. Obviously, HIF-1...... including erythropoietin (EPO), transferrin and its receptor, as well as vascular endothelial growth factor (VEGF) and its receptor. Considering that several of these genes are also induced with exercise, we tested the hypothesis that the mRNA level of HIF-1alpha and HIF-2alpha subunits increases...

  8. Hypoxia in Tumor Angiogenesis and Metastasis: Evaluation of VEGF and MMP Over-expression and Down-Regulation of HIF-1alpha with RNAi in Hypoxic Tumor Cells

    Science.gov (United States)

    Shah, Shruti

    Background: As tumor mass grows beyond a few millimeters in diameter, the angiogenic "switch" is turned on leading to recruitment of blood vessels from surrounding artery and veins. However, the tumor mass is poorly perfused and there are pockets of hypoxia or lower oxygen concentrations relative to normal tissue. Hypoxia-inducing factor-1a (HIF-1a), a transcription factor, is activated when the oxygen concentration is low. Upon activation of HIF-1a, a number of other genes also turn on that allows the tumor to become more aggressive and resistant to therapy. Purpose: The main objectives of this study were to evaluate the effect of hypoxia-induced HIF-1a followed by over-expression of angiogenic and metastatic markers in tumor cells and down-regulation of HIF-1a using nanoparticle-delivered RNA interference therapy. Methods: Human ovarian (SKOV3) and breast (MDA-MB-231) adenocarcinoma cells were incubated under normoxic and hypoxic conditions. Following hypoxia treatment of the cells, HIF-1α, vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP-2), and MMP-9 expression was analyzed qualitatively and quantitatively. For intracellular delivery of HIF-1a gene silencing small interfering RNA (siRNA), type B gelatin nanoparticles were fabricated using the solvent displacement method and the surface was modified with poly(ethylene glycol) (PEG, Mol. wt. 2kDa). Cellular uptake and distribution of the nanoparticles was observed with Cy3-siRNA loaded, FITC-conjugated gelatin nanoparticles. Cytotoxicity of the nanoparticle formulations was evaluated in both the cell lines. siRNA was transfected in the gelatin nanoparticles under hypoxic conditions. Total cellular protein and RNA were extracted for analysis of HIF1a, VEGF, MMP-2 and MMP-9 expression. Results: MDA-MB-231 and SKOV3 cells show increased expression of HIF1a under hypoxic conditions compared to baseline levels at normoxic conditions. ELISA and western blots of VEGF, MMP-2 and MMP-9 appear to

  9. HIF-1α P582S and A588T polymorphisms and digestive system cancer risk-a meta-analysis.

    Science.gov (United States)

    Yang, Xi; Zhang, Chi; Zhu, Hong-Cheng; Qin, Qin; Zhao, Lian-Jun; Liu, Jia; Xu, Li-Ping; Zhang, Qu; Cai, Jing; Ma, Jian-Xin; Cheng, Hong-Yan; Sun, Xin-Chen

    2014-03-01

    Hypoxia-inducible factor-1 (HIF-1) influences cancer progression and metastasis through various mechanisms, and HIF-1α polymorphisms are reportedly associated with many cancers; however, the associations of HIF-1α P582S and A588T polymorphisms with the risk of digestive system cancer remain inconclusive. To understand the role of HIF-1α P582S and A588T genotypes in digestive cancer development, we conducted a comprehensive meta-analysis involving 1,517 cases and 3,740 controls. Overall, the P582S polymorphism was not significantly associated with digestive system cancers in all genotypes. By contrast, the A588T polymorphism was significantly associated with digestive system cancers in the dominant model (TT/AT vs. AA: OR = 3.17, 95% CI: 1.21, 8.25; P heterogeneity digestive system cancer is more pronounced among Caucasians than that among Asians.

  10. Helicase-like transcription factor (Hltf regulates G2/M transition, Wt1/Gata4/Hif-1a cardiac transcription networks, and collagen biogenesis.

    Directory of Open Access Journals (Sweden)

    Rebecca A Helmer

    Full Text Available HLTF/Hltf regulates transcription, remodels chromatin, and coordinates DNA damage repair. Hltf is expressed in mouse brain and heart during embryonic and postnatal development. Silencing Hltf is semilethal. Seventy-four percent of congenic C57BL/6J Hltf knockout mice died, 75% within 12-24 hours of birth. Previous studies in neonatal (6-8 hour postpartum brain revealed silencing Hltf disrupted cell cycle progression, and attenuated DNA damage repair. An RNA-Seq snapshot of neonatal heart transcriptome showed 1,536 of 20,000 total transcripts were altered (p < 0.05 - 10 up- and 1,526 downregulated. Pathway enrichment analysis with MetaCore™ showed Hltf's regulation of the G2/M transition (p=9.726E(-15 of the cell cycle in heart is nearly identical to its role in brain. In addition, Brca1 and 12 members of the Brca1 associated genome surveillance complex are also downregulated. Activation of caspase 3 coincides with transcriptional repression of Bcl-2. Hltf loss caused downregulation of Wt1/Gata4/Hif-1a signaling cascades as well as Myh7b/miR499 transcription. Hltf-specific binding to promoters and/or regulatory regions of these genes was authenticated by ChIP-PCR. Hif-1a targets for prolyl (P4ha1, P4ha2 and lysyl (Plod2 collagen hydroxylation, PPIase enzymes (Ppid, Ppif, Ppil3 for collagen trimerization, and lysyl oxidase (Loxl2 for collagen-elastin crosslinking were downregulated. However, transcription of genes for collagens, fibronectin, Mmps and their inhibitors (Timps was unaffected. The collective downregulation of genes whose protein products control collagen biogenesis caused disorganization of the interstitial and perivascular myocardial collagen fibrillar network as viewed with picrosirius red-staining, and authenticated with spectral imaging. Wavy collagen bundles in control hearts contrasted with collagen fibers that were thin, short and disorganized in Hltf null hearts. Collagen bundles in Hltf null hearts were tangled and

  11. Mitochondrial dysfunction promotes breast cancer cell migration and invasion through HIF1α accumulation via increased production of reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Jia Ma

    Full Text Available Although mitochondrial dysfunction has been observed in various types of human cancer cells, the molecular mechanism underlying mitochondrial dysfunction mediated tumorigenesis remains largely elusive. To further explore the function of mitochondria and their involvement in the pathogenic mechanisms of cancer development, mitochondrial dysfunction clones of breast cancer cells were generated by rotenone treatment, a specific inhibitor of mitochondrial electron transport complex I. These clones were verified by mitochondrial respiratory defect measurement. Moreover, those clones exhibited increased reactive oxygen species (ROS, and showed higher migration and invasive behaviors compared with their parental cells. Furthermore, antioxidant N-acetyl cysteine, PEG-catalase, and mito-TEMPO effectively inhibited cell migration and invasion in these clones. Notably, ROS regulated malignant cellular behavior was in part mediated through upregulation of hypoxia-inducible factor-1 α and vascular endothelial growth factor. Our results suggest that mitochondrial dysfunction promotes cancer cell motility partly through HIF1α accumulation mediated via increased production of reactive oxygen species.

  12. Up-Regulation of ENO1 by HIF-1α in Retinal Pigment Epithelial Cells after Hypoxic Challenge Is Not Involved in the Regulation of VEGF Secretion.

    Directory of Open Access Journals (Sweden)

    Feihui Zheng

    Full Text Available Alpha-enolase (ENO1, a major glycolytic enzyme, is reported to be over-expressed in various cancer tissues. It has been demonstrated to be regulated by the Hypoxia-inducible factor 1-α (HIF-1α, a crucial transcriptional factor implicated in tumor progression and cancer angiogenesis. Choroidal neovascularization (CNV, which is a leading cause of severe vision loss caused by newly formed blood vessels in the choroid, is also engendered by hypoxic stress. In this report, we investigated the expression of ENO1 and the effects of its down-regulation upon cobalt (II chloride-induced hypoxia in retinal pigment epithelial cells, identified as the primary source of ocular angiogenic factors.HIF-1α-diminished retinal pigment epithelial cells were generated by small interfering RNA (siRNA technology in ARPE-19 cells, a human retinal pigment epithelial cell line. Both normal and HIF-1α-diminished ARPE-19 cells were then subjected to hypoxic challenge using cobalt (II chloride (CoCl2 or anaerobic chamber. The relation between ENO1 expression and vascular endothelial growth factor (VEGF secretion by retinal pigment epithelial cells were examined. Protein levels of HIF-1α and ENO1 were analyzed using Western Blot, while VEGF secretion was essayed by enzyme-linked immunosorbent assay (ELISA. Cytotoxicity after hypoxia was detected by Lactate Dehydrogenase (LDH Assay.Upon 24 hr of CoCl2-induced hypoxia, the expression levels of ENO1 and VEGF were increased along with HIF-1α in ARPE-19 cells, both of which can in turn be down-regulated by HIF-1α siRNA application. However, knockdown of ENO1 alone or together with HIF-1α did not help suppress VEGF secretion in hypoxic ARPE-19 cells.ENO1 was demonstrated to be up-regulated by HIF-1α in retinal pigment epithelial cells in response to hypoxia, without influencing VEGF secretion.

  13. Silencing HIF-1α induces TET2 expression and augments ascorbic acid induced 5-hydroxymethylation of DNA in human metastatic melanoma cells.

    Science.gov (United States)

    Fischer, Adam P; Miles, Sarah L

    2017-08-19

    Expression and function of Ten-eleven translocation (TET) enzymes, which initiate DNA demethylation by catalyzing the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine (5 hmC) on methylated DNA, are frequently lost in malignant tissue. This ultimately results in lost expression of methylated tumor suppressor genes. Many malignancies, including melanoma, also aberrantly overexpress the oncogenic hypoxia inducible factor-1α (HIF-1α) transcription factor, however the association between HIF-1α and TET enzyme expression is largely uninvestigated. Interestingly, ascorbic acid, a critical cofactor for optimal TET enzyme function and normoxic regulation of HIF-1α protein stability, is frequently depleted in malignant tissue, and may further contribute to the malignant phenotype. In our studies, we found supplementation of WM9 human metastatic melanoma cells with ascorbic acid significantly increased 5 hmC content, which was abrogated by TET2 knockdown. Moreover, knockdown of HIF-1α increased TET2 gene and protein expression, and further augmented ascorbic acid-induced TET2 dependent 5-hydroxymethylation in both WM9 and T98G glioblastoma cells. Our data provides novel evidence that HIF-1α is involved in regulating TET expression and 5 hmC status of malignant cells. Furthermore, therapeutic intervention to inhibit HIF-1α in conjunction with adjuvant ascorbic acid may promote DNA demethylation and reexpression of critical tumor suppressor genes in malignant cells and warrants further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. BOLD-MRI of breast invasive ductal carcinoma: correlation of R2* value and the expression of HIF-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Min; Guo, Xiaojuan; Wang, Shuangkun [Capital Medical University, Department of Radiology, Beijing Chao Yang Hospital, Beijing (China); Jin, Mulan; Wang, Ying [Capital Medical University Beijing, Department of Pathology, Beijing Chaoyang Hospital, Beijing (China); Li, Jie; Liu, Jun [Capital Medical University Beijing, Department of Breast Surgery, Beijing Chaoyang Hospital, Beijing (China)

    2013-12-15

    To explore the reliability and feasibility of blood oxygenation level-dependent-based functional magnetic resonance imaging (BOLD-fMRI) to depict hypoxia in breast invasive ductal carcinoma. A total of 103 women with 104 invasive ductal carcinomas (IDCs) underwent breast BOLD-fMRI at 3.0 T. Histological specimens were analysed for tumour size, grade, axillary lymph nodes and expression of oestrogen receptors, progesterone receptors, human epidermal growth factor receptor 2, p53, Ki-67 and hypoxia inducible factor 1{alpha} (HIF-1{alpha}). The distribution and reliability of R2* were analysed. Correlations of the R2* value with the prognostic factors and HIF-1{alpha} were respectively analysed. The R2* map of IDC demonstrated a relatively heterogeneous signal. The mean R2* value was (53.4 {+-} 18.2) Hz. The Shapiro-Wilk test (W = 0.971, P = 0.020) suggested that the sample did not follow a normal distribution. The inter-rater and intrarater correlation coefficient was 0.967 and 0.959, respectively. The R2* values of IDCs were significantly lower in patients without axillary lymph nodes metastasis. The R2* value had a weak correlation with Ki67 expression (r = 0.208, P = 0.038). The mean R2* value correlated moderately with the level of HIF-1{alpha} (r = 0.516, P = 0.000). BOLD-fMRI is a simple and non-invasive technique that yields hypoxia information on breast invasive ductal carcinomas. (orig.)

  16. Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyun-Jeong; Ahn, Jeong-Min [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of); Kim, Younghun [Department of Chemical Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701 (Korea, Republic of); Choi, Jinhee, E-mail: jinhchoi@uos.ac.kr [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of)

    2013-07-15

    In the present study, nanotoxicity mechanism associated with silver nanoparticles (AgNPs) exposure was investigated on the nematode, Caenorhabditis elegans focusing on the hypoxia response pathway. In order to test whether AgNPs-induced hypoxia inducible factor-1 (HIF-1) activation was due to hypoxia or to oxidative stress, depletion of dissolved oxygen (DO) in the test media and a rescue effect using an antioxidant were investigated, respectively. The results suggested that oxidative stress was involved in activation of the HIF-1 pathway. We then investigated the toxicological implications of HIF-1 activation by examining the HIF-1 mediated transcriptional response. Of the genes tested, increased expression of the flavin containing monooxygenase-2 (FMO-2) gene was found to be the most significant as induced by AgNPs exposure. We found that AgNPs exposure induced FMO-2 activation in a HIF-1 and p38 MAPK PMK-1 dependent manner, and oxidative stress was involved in it. We conducted all experiments to include comparison of AgNPs and AgNO{sub 3} in order to evaluate whether any observed toxicity was due to dissolution or particle specific. The AgNPs and AgNO{sub 3} did not produce any qualitative differences in terms of exerting toxicity in the pathways observed in this study, however, considering equal amount of silver mass, in every endpoint tested the AgNPs were found to be more toxic than AgNO{sub 3}. These results suggest that Ag nanotoxicity is dependent not only on dissolution of Ag ion but also on particle specific effects and HIF-1–FMO-2 pathway seems to be involved in it. - Highlights: • HIF-1 signaling was investigated in C. elegans exposed to AgNPs and AgNO{sub 3}. • HIF-1 and PMK-1 were needed for AgNPs- and AgNO{sub 3}-induced fmo-2 gene expression. • PMK-1–HIF-1–FMO-2 pathway was dependent on oxidative stress. • AgNPs and AgNO{sub 3} did not produce any qualitative differences in HIF-1 signaling. • AgNPs were more toxic than an equal

  17. HIF-1α and GLUT-1 Expression in Atypical Endometrial Hyperplasia, Type I and II Endometrial Carcinoma: A Potential Role in Pathogenesis.

    Science.gov (United States)

    Al-Sharaky, Dalia Rifaat; Abdou, Asmaa Gaber; Wahed, Moshira Mohammed Abdel; Kassem, Hend Abdou

    2016-05-01

    Hypoxia-Inducible Factor 1α (HIF-1α) is one of the major adaptive responses to hypoxia, regulating the activity of glucose transporter -1 (GLUT-1), responsible for glucose uptake. To evaluate the immunohistochemical expression of both HIF-1α and GLUT-1 in type I and II endometrial carcinoma and their correlation with the available clinicopathologic variables in each type. A retrospective study was conducted on archival blocks diagnosed from pathology department between April 2010 and August 2014 included 9 cases of atypical hyperplasia and 67 cases of endometrial carcinoma. Evaluation of both HIF-1α and GLUT-1 expression using standard immunohistochemical techniques performed on cut sections from selected paraffin embedded blocks. Descriptive analysis of the variables and statistical significances were calculated by non-parametric chi-square test using the Statistical Package for the Social Sciences version 12.0 (SPSS). HIF-1α was expressed in epithelial (88.9%, 52.2%, 61.2% and 50%) and stromal (33.3%, 74.6%. 71.4% and 83.3%) components of hyperplasia, total cases of EC, type I and II EC, respectively. GLUT-1 was expressed in the epithelial component of 88.9%, 98.5%, 98% and 100% of hyperplasia, total EC cases, type I and II EC, respectively. The necrosis related pattern of epithelial HIF-1α expression was in favour of type II (p=0.018) and grade III (p=0.038). HIF-1α H-score was associated with high apoptosis in both type I and total cases of EC (p=0.04). GLUT-1 H-score was negatively correlated with apoptotic count (p=0.04) and associated with high grade (p=0.003) and advanced stage in total EC (p=0.004). GLUT-1 H-score was correlated with the pattern of HIF-1α staining in all cases of EC (p= 0.04). The role of HIF-1α in epithelial cells may differ from that of stromal cells in EC; however they augment the expression of each other supporting the crosstalk between them. The stepwise increase in H- score of GLUT-1 in the studied cases implies its

  18. MicroRNA-455 regulates brown adipogenesis via a novel HIF1an-AMPK-PGC1α signaling network

    DEFF Research Database (Denmark)

    Zhang, Hongbin; Guan, Meiping; Townsend, Kristy L

    2015-01-01

    adipogenesis. miR-455 exhibits a BAT-specific expression pattern and is induced by cold and the browning inducer BMP7. In vitro gain- and loss-of-function studies show that miR-455 regulates brown adipocyte differentiation and thermogenesis. Adipose-specific miR-455 transgenic mice display marked browning...... of subcutaneous white fat upon cold exposure. miR-455 activates AMPKα1 by targeting HIF1an, and AMPK promotes the brown adipogenic program and mitochondrial biogenesis. Concomitantly, miR-455 also targets the adipogenic suppressors Runx1t1 and Necdin, initiating adipogenic differentiation. Taken together...

  19. Involvement of BH4 domain in the regulation of HIF-1-mediated VEGF expression in hypoxic tumor cells

    OpenAIRE

    Del Bufalo, Donatella; Trisciuoglio, Daniela; Gabellini, Chiara; Desideri, Marianna; RAGAZZONI, YLENIA; De Luca, Teresa; Ziparo, Elio

    2011-01-01

    Abstract In addition to act as an antiapoptotic protein, bcl-2 can also promote tumor angiogenesis. In this context, we have previously demonstrated that under hypoxia bcl-2 promotes hypoxia inducible factor 1 (HIF-1) -mediated vascular endothelial growth factor (VEGF) expression in melanoma and breast carcinoma. Here, we report on the role of the BH4 domain in bcl-2 functions, by showing that removal of or mutations at the BH4 domain abrogates the ability of bcl-2 to induce VEGF p...

  20. Hypoxia enhances the angiogenic potential of human dental pulp cells.

    Science.gov (United States)

    Aranha, Andreza M F; Zhang, Zhaocheng; Neiva, Kathleen G; Costa, Carlos A S; Hebling, Josimeri; Nör, Jacques E

    2010-10-01

    Trauma can result in the severing of the dental pulp vessels, leading to hypoxia and ultimately to pulp necrosis. Improved understanding of mechanisms underlying the response of dental pulp cells to hypoxic conditions might lead to better therapeutic alternatives for patients with dental trauma. The purpose of this study was to evaluate the effect of hypoxia on the angiogenic response mediated by human dental pulp stem cells (DPSCs) and human dental pulp fibroblasts (HDPFs). DPSCs and HDPFs were exposed to experimental hypoxic conditions. Hypoxia-inducible transcription factor-1alpha (HIF-1alpha) was evaluated by Western blot and immunocytochemistry, whereas vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) expression was evaluated by enzyme-linked immunosorbent assay. YC-1, an inhibitor of HIF-1alpha, was used to evaluate the functional effect of this transcriptional factor on hypoxia-induced VEGF expression. Conditioned medium from hypoxic and normoxic pulp cells was used to stimulate human dermal microvascular endothelial cells (HDMECs). HDMEC proliferation was measured by WST-1 assay, and angiogenic potential was evaluated by a capillary sprouting assay in 3-dimensional collagen matrices. Hypoxia enhanced HIF-1alpha and VEGF expression in DPSCs and HDPFs. In contrast, hypoxia did not induce bFGF expression in pulp cells. YC-1 partially inhibited hypoxia-induced HIF-1alpha and VEGF in these cells. The growth factor milieu of hypoxic HDPFs (but not hypoxic DPSCs) induced endothelial cell proliferation and sprouting as compared with medium from normoxic cells. Collectively, these data demonstrate that hypoxia induces complex and cell type-specific pro-angiogenic responses and suggest that VEGF (but not bFGF) participates in the revascularization of hypoxic dental pulps. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Correlation between expressions of hypoxia -inducible factor (HIF-1α, blood vessels density, cell proliferation, and apoptosis intensity in canine fibromas and fibrosarcomas

    Directory of Open Access Journals (Sweden)

    Madej Janusz A.

    2014-03-01

    Full Text Available The study aimed to demonstrate the expression of hypoxia-inducible factor (HIF-1α in soft tissue mesenchymal tumours (fibroma and fibrosarcoma in dogs. An attempt was made to correlate the obtained results with density of blood vessels (expression of von Willebrand Factor, vWF, expression of Ki-67 proliferation antigen, and with intensity of apoptosis in studied tumours. The study was performed on paraffin sections of 15 fibromas and 40 fibrosarcomas sampled from 55 female dogs aged 6 to 16 years. Immunohistochemical staining against HIF-1α, vWF, and Ki-67 was performed. Apoptosis was detected with the use of TUNEL reaction. A significantly higher HIF-1α expression was noted in fibrosarcomas in comparison to fibromas (P < 0.0001. HIF-1α expression in fibromas manifested strong positive correlation with tumour vascularity (r = 0.67, P = 0.007. Moreover, HIF-1α expression in fibrosarcomas manifested a moderate positive correlation with tumour malignancy grade (r = 0.44, P = 0.004, tumour vascularity (r = 0.52, P < 0.001, Ki-67 antigen expression (r = 0.42; P = 0.007, and TUNELpositive cells (r = 0.37, P = 0.017. Expression of HIF-1α was detected in 86.7% of fibroma type tumours and in 100% of fibrosarcomas. In all studied tumours expression of HIF-1α manifested positive correlation with the density of blood vessels, and in fibrosarcomas it correlated also with malignancy grade, intensity of Ki-67 expression, and with intensity of apoptosis in tumour cells.

  2. 4-Hydroxyphenylacetic Acid Attenuated Inflammation and Edema via Suppressing HIF-1α in Seawater Aspiration-Induced Lung Injury in Rats

    Directory of Open Access Journals (Sweden)

    Zhongyang Liu

    2014-07-01

    Full Text Available 4-Hydroxyphenylacetic acid (4-HPA is an active component of Chinese herb Aster tataricus which had been widely used in China for the treatment of pulmonary diseases. The aim of this study is to investigate the effect of 4-HPA on seawater aspiration-induced lung injury. Pulmonary inflammation and edema were assessed by enzyme-linked immunosorbent assay (ELISA, bronchoalveolar lavage fluid (BALF white cell count, Evans blue dye analysis, wet to dry weight ratios, and histology study. Hypoxia-inducible factor-1α (HIF-1α siRNA and permeability assay were used to study the effect of 4-HPA on the production of inflammatory cytokines and monolayer permeability in vitro. The results showed that 4-HPA reduced seawater instillation-induced mortality in rats. In lung tissues, 4-HPA attenuated hypoxia, inflammation, vascular leak, and edema, and decreased HIF-1α protein level. In primary rat alveolar epithelial cells (AEC, 4-HPA decreased hypertonicity- and hypoxia-induced HIF-1α protein levels through inhibiting the activations of protein translational regulators and via promoting HIF-1α protein degradation. In addition, 4-HPA lowered inflammatory cytokines levels through suppressing hypertonicity- and hypoxia-induced HIF-1α in NR8383 macrophages. Moreover, 4-HPA decreased monolayer permeability through suppressing hypertonicity and hypoxia-induced HIF-1α, which was mediated by inhibiting vascular endothelial growth factor (VEGF in rat lung microvascular endothelial cell line (RLMVEC. In conclusion, 4-HPA attenuated inflammation and edema through suppressing hypertonic and hypoxic induction of HIF-1α in seawater aspiration-induced lung injury in rats.

  3. HIF-1α had Pivotal Effects on Downregulation of miR-210 Decreasing Viability and Inducing Apoptosis in Hypoxic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Zhiqiang Chang

    2014-01-01

    Full Text Available Hypoxia-inducible factor 1-alpha (HIF-1α and some microRNA (miRNAs play pivotal roles in response to hypoxia-related physiologic and pathophysiologic responses. Up to date, the regulatory mechanisms of these molecules were largely unknown in chondrocytes. In this study, to study the mechanisms of degradation and homeostasis of chondrocytes, the effects of miRNAs and HIF-1α on chondrocytes in physiologic environment were investigated. We found that the overexpression of miR-210 and HIF-1α was present on hypoxia in C28/I2 human chondrocytes significantly by qRT-PCR and western plot. Further study displayed that miR-210 played positive role as a promoter in regulation and its regulated molecules (bcl-xl and PHD-2 in C28/I2 cells on hypoxia by silenced miR-210, silenced HIF-1α, and adding miR-210. Moreover, downregulated miR-210 could significantly repress the viability and increase the apoptosis in C28/I2 cells on hypoxia, compared to those on normoxia. Furthermore, miR-210 could not modulate viability and apoptosis in C28/I2 cells with the HIF-1α knockdown on hypoxia and normoxia. Taken together, this study demonstrated that the MiR-210 was involved in an HIF-1α-dependent way in C28/I2 human chondrocytes for the first time. It also suggested that miR-210 downregulation decreased viability and induced apoptosis in hypoxic chondrocytes depending on HIF-1α.

  4. HIF has Biff - Crosstalk between HIF1a and the family of bHLH/PAS proteins.

    Science.gov (United States)

    Button, Emily L; Bersten, David C; Whitelaw, Murray L

    2017-07-15

    Two decades of research into functions of the ubiquitous transcription factor HIF have revealed pervasive roles in development, oxygen homeostasis, metabolism, cancer and responses to ischemia. Unsurprisingly, HIF activities impinge on many pathologies, for which underlying molecular mechanisms are actively sought. HIF is a member of the heterodimeric bHLH/PAS family of transcription factors, a set of proteins that commonly function in developmental pathways and adaptive responses to environmental or physiological stress. Similarities in the mechanisms that regulate gene targeting by these transcription factors create opportunities for extensive crosstalk between family members. Data supporting pathway interactions between HIF1a and other bHLH/PAS factors, both collaborative and antagonistic, is beginning to surface in the areas of cancer, circadian rhythm, and immune responses. This review summarises the status of HIF1a-bHLH/PAS protein crosstalk and is dedicated to the memory of Lorenz Poellinger, a pioneer investigator into the molecular mechanisms of HIF, AHR, and ARNT bHLH/PAS factors. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  5. A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1

    Science.gov (United States)

    Begley, Ulrike; Sosa, Maria Soledad; Avivar-Valderas, Alvaro; Patil, Ashish; Endres, Lauren; Estrada, Yeriel; Chan, Clement TY; Su, Dan; Dedon, Peter C; Aguirre-Ghiso, Julio A; Begley, Thomas

    2013-01-01

    Emerging evidence points to aberrant regulation of translation as a driver of cell transformation in cancer. Given the direct control of translation by tRNA modifications, tRNA modifying enzymes may function as regulators of cancer progression. Here, we show that a tRNA methyltransferase 9-like (hTRM9L/KIAA1456) mRNA is down-regulated in breast, bladder, colorectal, cervix and testicular carcinomas. In the aggressive SW620 and HCT116 colon carcinoma cell lines, hTRM9L is silenced and its re-expression and methyltransferase activity dramatically suppressed tumour growth in vivo. This growth inhibition was linked to decreased proliferation, senescence-like G0/G1-arrest and up-regulation of the RB interacting protein LIN9. Additionally, SW620 cells re-expressing hTRM9L did not respond to hypoxia via HIF1-α-dependent induction of GLUT1. Importantly, hTRM9L-negative tumours were highly sensitive to aminoglycoside antibiotics and this was associated with altered tRNA modification levels compared to antibiotic resistant hTRM9L-expressing SW620 cells. Our study links hTRM9L and tRNA modifications to inhibition of tumour growth via LIN9 and HIF1-α-dependent mechanisms. It also suggests that aminoglycoside antibiotics may be useful to treat hTRM9L-deficient tumours. PMID:23381944

  6. Hypoxia induces apoptosis and autophagic cell death in human periodontal ligament cells through HIF-1α pathway.

    Science.gov (United States)

    Song, Z-C; Zhou, W; Shu, R; Ni, J

    2012-06-01

    Oxygen deficiency caused by occlusal trauma and smoking can be present in patients with periodontitis. However, biochemical events important in periodontal tissues during hypoxia remain unclear. The aim of this study was to investigate effects of hypoxia on apoptosis and autophagy of human periodontal ligament cells (PDLCs) in vitro. Human PDLCs were obtained and cultured in vitro. Cell viability, apoptosis, autophagy and gene and protein expression were measured in presence and absence of cobalt chloride (CoCl(2)). CoCl(2) induced cytotoxicity of human PDLCs in a concentration-dependent manner dependent on macromolecular synthesis, and resulted in apoptosis and mitochondrial dysfunction. CoCl(2) also induced redistribution of autophagy marker LC3, increased ratio of LC3-IIto LC3-Iand function of lysosomes. Furthermore, CoCl(2) promoted expression of HIF-1α following upregulation of expressions of Bnip3. Significant increases in expression of IL-1β and MMP-8 were also observed. All these results were reversed by pre-treatment with antioxidant N-acetylcysteine. Our data showed that CoCl(2) could induce cytotoxicity through mitochondria- apoptotic and autophagic pathways involved in HIF-1α. CoCl(2 -treated PDLCs may serve as an in vitro model for studies of molecular mechanisms in periodontitis. © 2012 Blackwell Publishing Ltd.

  7. Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1α/VEGF signalling.

    Science.gov (United States)

    Liu, Peng; Atkinson, Samuel J; Akbareian, Sophia E; Zhou, Zhigang; Munsterberg, Andrea; Robinson, Stephen D; Bao, Yongping

    2017-10-04

    Angiogenesis plays an important role in hepatocellular carcinoma (HCC), the inhibition of which is explored for cancer prevention and treatment. The dietary phytochemical sulforaphane (SFN) is known for its anti-cancer properties in vitro and in vivo; but until now, no study has focused on the role of SFN in HCC tumor angiogenesis. In the present study, in vitro cell models using a HCC cell line, HepG2, and human endothelial cells, HUVECs, as well as ex vivo and in vivo models have been used to investigate the anti-tumor and anti-angiogenic effect of SFN. The results showed that SFN decreased HUVEC cell viability, migration and tube formation, all of which are important steps in angiogenesis. More importantly, SFN markedly supressed HepG2-stimulated HUVEC migration, adhesion and tube formation; which may be due to its inhibition on STAT3/HIF-1α/VEGF signalling in HepG2 cells. In addition, SFN significantly reduced HepG2 tumor growth in a modified chick embryo chorioallantoic membrane (CAM) assay, associated with a decrease of HIF-1α and VEGF expression within tumors. Collectively, these findings provide new insights into the inhibitory effect of SFN on HCC tumor angiogenesis as well as tumor growth, and indicate that SFN has potential for the prevention and treatment of HCC.

  8. Chemotherapy triggers HIF-1–dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype

    Science.gov (United States)

    Lu, Haiquan; Samanta, Debangshu; Xiang, Lisha; Zhang, Huimin; Hu, Hongxia; Chen, Ivan; Bullen, John W.; Semenza, Gregg L.

    2015-01-01

    Triple negative breast cancer (TNBC) accounts for 10–15% of all breast cancer but is responsible for a disproportionate share of morbidity and mortality because of its aggressive characteristics and lack of targeted therapies. Chemotherapy induces enrichment of breast cancer stem cells (BCSCs), which are responsible for tumor recurrence and metastasis. Here, we demonstrate that chemotherapy induces the expression of the cystine transporter xCT and the regulatory subunit of glutamate-cysteine ligase (GCLM) in a hypoxia-inducible factor (HIF)-1–dependent manner, leading to increased intracellular glutathione levels, which inhibit mitogen-activated protein kinase kinase (MEK) activity through copper chelation. Loss of MEK-ERK signaling causes FoxO3 nuclear translocation and transcriptional activation of the gene encoding the pluripotency factor Nanog, which is required for enrichment of BCSCs. Inhibition of xCT, GCLM, FoxO3, or Nanog blocks chemotherapy-induced enrichment of BCSCs and impairs tumor initiation. These results suggest that, in combination with chemotherapy, targeting BCSCs by inhibiting HIF-1–regulated glutathione synthesis may improve outcome in TNBC. PMID:26229077

  9. Inhibitors

    Science.gov (United States)

    ... and exercise, immune tolerance therapy, and needs of older adults with hemophilia and an inhibitor. For more information, visit https://www.hemophilia.org/Events-Educational-Programs/Inhibitor-Education/Inhibitor-Education-Summits The NHF’s Inhibitor Education Summits ...

  10. Inhibitors of the interferon response enhance virus replication in vitro.

    Directory of Open Access Journals (Sweden)

    Claire E Stewart

    Full Text Available Virus replication efficiency is influenced by two conflicting factors, kinetics of the cellular interferon (IFN response and induction of an antiviral state versus speed of virus replication and virus-induced inhibition of the IFN response. Disablement of a virus's capacity to circumvent the IFN response enables both basic research and various practical applications. However, such IFN-sensitive viruses can be difficult to grow to high-titer in cells that produce and respond to IFN. The current default option for growing IFN-sensitive viruses is restricted to a limited selection of cell-lines (e.g. Vero cells that have lost their ability to produce IFN. This study demonstrates that supplementing tissue-culture medium with an IFN inhibitor provides a simple, effective and flexible approach to increase the growth of IFN-sensitive viruses in a cell-line of choice. We report that IFN inhibitors targeting components of the IFN response (TBK1, IKK2, JAK1 significantly increased virus replication. More specifically, the JAK1/2 inhibitor Ruxolitinib enhances the growth of viruses that are sensitive to IFN due to (i loss of function of the viral IFN antagonist (due to mutation or species-specific constraints or (ii mutations/host cell constraints that slow virus spread such that it can be controlled by the IFN response. This was demonstrated for a variety of viruses, including, viruses with disabled IFN antagonists that represent live-attenuated vaccine candidates (Respiratory Syncytial Virus (RSV, Influenza Virus, traditionally attenuated vaccine strains (Measles, Mumps and a slow-growing wild-type virus (RSV. In conclusion, supplementing tissue culture-medium with an IFN inhibitor to increase the growth of IFN-sensitive viruses in a cell-line of choice represents an approach, which is broadly applicable to research investigating the importance of the IFN response in controlling virus infections and has utility in a number of practical applications

  11. Graphene Oxide-Copper Nanocomposite-Coated Porous CaP Scaffold for Vascularized Bone Regeneration via Activation of Hif-1α.

    Science.gov (United States)

    Zhang, Wenjie; Chang, Qing; Xu, Ling; Li, Guanglong; Yang, Guangzheng; Ding, Xun; Wang, Xiansong; Cui, Daxiang; Jiang, Xinquan

    2016-06-01

    Graphene has been studied for its in vitro osteoinductive capacity. However, the in vivo bone repair effects of graphene-based scaffolds remain unknown. The aqueous soluble graphene oxide-copper nanocomposites (GO-Cu) are fabricated, which are used to coat porous calcium phosphate (CaP) scaffolds for vascularized bone regeneration. The GO-Cu nanocomposites, containing crystallized CuO/Cu2 O nanoparticles of ≈30 nm diameters, distribute uniformly on the surfaces of the porous scaffolds and maintain a long-term release of Cu ions. In vitro, the GO-Cu coating enhances the adhesion and osteogenic differentiation of rat bone marrow stem cells (BMSCs). It is also found that by activating the Erk1/2 signaling pathway, the GO-Cu nanocomposites upregulate the expression of Hif-1α in BMSCs, resulting in the secretion of VEGF and BMP-2 proteins. When transplanted into rat with critical-sized calvarial defects, the GO-Cu-coated calcium phosphate cement (CPC) scaffolds (CPC/GO-Cu) significantly promote angiogenesis and osteogenesis. Moreover, it is observed via histological sections that the GO-Cu nanocomposites are phagocytosed by multinucleated giant cells. The results suggest that GO-Cu nanocomposite coatings can be utilized as an attractive strategy for vascularized bone regeneration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Role of VHL, HIF1A and SDH on the expression of miR-210: Implications for tumoral pseudo-hypoxic fate.

    Science.gov (United States)

    Merlo, Anna; Bernardo-Castiñeira, Cristóbal; Sáenz-de-Santa-María, Inés; Pitiot, Ana S; Balbín, Milagros; Astudillo, Aurora; Valdés, Nuria; Scola, Bartolomé; Del Toro, Raquel; Méndez-Ferrer, Simón; Piruat, José I; Suarez, Carlos; Chiara, María-Dolores

    2017-01-24

    The hypoxia-inducible factor 1α (HIF-1α) and its microRNA target, miR-210, are candidate tumor-drivers of metabolic reprogramming in cancer. Neuroendocrine neoplasms such as paragangliomas (PGLs) are particularly appealing for understanding the cancer metabolic adjustments because of their associations with deregulations of metabolic enzymes, such as succinate dehydrogenase (SDH), and the von Hippel Lindau (VHL) gene involved in HIF-1α stabilization. However, the role of miR-210 in the pathogenesis of SDH-related tumors remains an unmet challenge. Herein is described an in vivo genetic analysis of the role of VHL, HIF1A and SDH on miR-210 by using knockout murine models, siRNA gene silencing, and analyses of human tumors. HIF-1α knockout abolished hypoxia-induced miR-210 expression in vivo but did not alter its constitutive expression in paraganglia. Normoxic miR-210 levels substantially increased by complete, but not partial, VHL silencing in paraganglia of knockout VHL-mice and by over-expression of p76del-mutated pVHL. Similarly, VHL-mutated PGLs, not those with decreased VHL-gene/mRNA dosage, over-expressed miR-210 and accumulate HIF-1α in most tumor cells. Ablation of SDH activity in SDHD-null cell lines or reduction of the SDHD or SDHB protein levels elicited by siRNA-induced gene silencing did not induce miR-210 whereas the presence of SDH mutations in PGLs and tumor-derived cell lines was associated with mild increase of miR-210 and the presence of a heterogeneous, HIF-1α-positive and HIF-1α-negative, tumor cell population. Thus, activation of HIF-1α is likely an early event in VHL-defective PGLs directly linked to VHL mutations, but it is a late event favored but not directly triggered by SDHx mutations. This combined analysis provides insights into the mechanisms of HIF-1α/miR-210 regulation in normal and tumor tissues potentially useful for understanding the pathogenesis of cancer and other diseases sharing similar underpinnings.

  13. Expression of VEGF and HIF-1α in locally advanced cervical cancer: potential biomarkers for predicting preoperative radiochemotherapy sensitivity and prognosis

    Directory of Open Access Journals (Sweden)

    Zhu PF

    2016-05-01

    Full Text Available Pengfeng Zhu,1 Yangjun Ou,2 Yishan Dong,1 Peizhen Xu,1 Lei Yuan3 1Department of Gynecology, 2Department of Pathology, Changzhou Maternity and Children Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, 3Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People’s Republic of China Abstract: Locally advanced cervical cancer (LACC is an early-stage cervical cancer characterized by a local tumor diameter of ≥4 cm. Patients with LACC have a relatively poor prognosis. Although preoperative radiochemotherapy (PRCT might offer a valuable opportunity for subsequent radical surgery, surgeons should also consider the nonresponsive rate, the adverse effects of PRCT, and the surgical complications before designing a treatment plan. Therefore, biomarkers for predicting PRCT sensitivity and prognosis in patients with LACC are of high importance. We investigated the prognostic significance of vascular endothelial growth factor (VEGF and hypoxia inducible factor-1α (HIF-1α in patients with LACC. A total of 43 patients with LACC who underwent PRCT (one course each of intravenous chemotherapy and after-loading intracavitary brachytherapy followed by a radical hysterectomy during the period 2009–2014 were included in this study. VEGF and HIF-1α expression levels were evaluated by immunohistochemistry in LACC lesions before and after PRCT. In addition, we analyzed the association of these proteins with the clinical response and pathological findings of pelvic lymph node metastasis (PLNM after the subsequent surgery. The total clinical response rate was 81.39% after PRCT, including five complete responses and 30 partial responses. VEGF and HIF-1α expression before PRCT was significantly higher than after PRCT (VEGF: 85.71% vs 66.67%; HIF-1α: 83.33% vs 59.52%, P<0.05. In addition, the same trend was found in patients with PLNM compared to those without PLNM (VEGF: 100% vs 77.78%; HIF-1

  14. Investigating the Regulation and Potential Role of Nonhypoxic Hypoxia Inducible Factor 1 (HIF 1) in Aromatase Inhibitor Resistant Breast Cancer

    Science.gov (United States)

    2015-12-01

    regulation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSONUSAMRMC a. REPORT...significantly decrease the number of mammospheres nor their morphology as compared to untreated cells. Thus, PX-478 did not significantly alter the cancer...expression with drug resistance in different cancer cell types, including chronic myeloid leukemia cells (Zhao et al. 2010), gastric cancer cells (Liu et

  15. Hypoxia Inducible Factor 1-Alpha (HIF-1 Alpha) Is Induced during Reperfusion after Renal Ischemia and Is Critical for Proximal Tubule Cell Survival

    Science.gov (United States)

    Blanco-Sánchez, Ignacio; Sáenz-Morales, David; Aguado-Fraile, Elia; Ponte, Belén; Ramos, Edurne; Sáiz, Ana; Jiménez, Carlos; Ordoñez, Angel; López-Cabrera, Manuel; del Peso, Luis; de Landázuri, Manuel O.; Liaño, Fernando; Selgas, Rafael; Sanchez-Tomero, Jose Antonio; García-Bermejo, María Laura

    2012-01-01

    Acute tubular necrosis (ATN) caused by ischemia/reperfusion (I/R) during renal transplantation delays allograft function. Identification of factors that mediate protection and/or epithelium recovery could help to improve graft outcome. We studied the expression, regulation and role of hypoxia inducible factor 1-alpha (HIF-1 α), using in vitro and in vivo experimental models of I/R as well as human post-transplant renal biopsies. We found that HIF-1 α is stabilized in proximal tubule cells during ischemia and unexpectedly in late reperfusion, when oxygen tension is normal. Both inductions lead to gene expression in vitro and in vivo. In vitro interference of HIF-1 α promoted cell death and in vivo interference exacerbated tissue damage and renal dysfunction. In pos-transplant human biopsies, HIF-1 α was expressed only in proximal tubules which exhibited normal renal structure with a significant negative correlation with ATN grade. In summary, using experimental models and human biopsies, we identified a novel HIF-1 α induction during reperfusion with a potential critical role in renal transplant. PMID:22432008

  16. Use of oral antidiabetic drugs (metformin and pioglitazone) in diabetic patients with breast cancer: how does it effect serum Hif-1 alpha and 8Ohdg levels?

    Science.gov (United States)

    Ece, Harman; Cigdem, Erten; Yuksel, Kucukzeybek; Ahmet, Dirican; Hakan, Er; Oktay, Tarhan Mustafa

    2012-01-01

    The aim was to investigate indicators related to DNA damage and cancer pathogenesis in Type II diabetes cases with breast cancer. It was planned to evaluate the relationship between these markers with oral antidiabetic drugs. Fourty patients and 10 healthy individuals were included in the study. HIF-1α and 8-OHdG are examined in blood samples taken from these individuals with an ELISA Kit. Statistical analysis of data was performed with 95% confidence using Windows package program SPSS 15.0. HIF-1α parameters were found to be meaningfully higher in the patient group than the controls in both pretreatment and posttreatment periods (pmetformin, but not with pioglitazone. Conversely, serum 8-OHdG levels decreased significantly in these patients. When patients were evaluated according to the treatment groups (pioglitazone vs. metformin) no significant differences in terms of serum HIF-1? and 8-OHdG levels between treatment groups. HIF-1α levels decreased significantly in the patient group receiving metformin. However, there was no significant difference in terms of HIF-1α levels in the patients receiving pioglitazone.

  17. Hypoxia inducible factor 1-alpha (HIF-1 alpha is induced during reperfusion after renal ischemia and is critical for proximal tubule cell survival.

    Directory of Open Access Journals (Sweden)

    Elisa Conde

    Full Text Available Acute tubular necrosis (ATN caused by ischemia/reperfusion (I/R during renal transplantation delays allograft function. Identification of factors that mediate protection and/or epithelium recovery could help to improve graft outcome. We studied the expression, regulation and role of hypoxia inducible factor 1-alpha (HIF-1 α, using in vitro and in vivo experimental models of I/R as well as human post-transplant renal biopsies. We found that HIF-1 α is stabilized in proximal tubule cells during ischemia and unexpectedly in late reperfusion, when oxygen tension is normal. Both inductions lead to gene expression in vitro and in vivo. In vitro interference of HIF-1 α promoted cell death and in vivo interference exacerbated tissue damage and renal dysfunction. In pos-transplant human biopsies, HIF-1 α was expressed only in proximal tubules which exhibited normal renal structure with a significant negative correlation with ATN grade. In summary, using experimental models and human biopsies, we identified a novel HIF-1 α induction during reperfusion with a potential critical role in renal transplant.

  18. Erythromycin pretreatment induces tolerance against focal cerebral ischemia through up-regulation of nNOS but not down-regulation of HIF-1α in rats.

    Science.gov (United States)

    Lu, Wei-Cheng; Li, Guang-Yu; Xie, Hui; Qiu, Bo; Yang, Ri-Miao; Guo, Zong-Ze

    2014-05-01

    The purpose of this study was to determine whether the antibiotic erythromycin induces tolerance against focal cerebral ischemia, and the possible underlying mechanism including the involvement of neuronal nitric oxide synthase (nNOS) and hypoxia-inducible factor-1α (HIF-1α). In rat focal cerebral ischemia models, we found that erythromycin preconditioning could significantly decrease the cerebral infarct volume and brain edema. Meanwhile, the neurological deficits from day 4 through 7 after surgery were also remarkably decreased after erythromycin preconditioning. Moreover, erythromycin preconditioning induced significantly increased nNOS levels and decreased HIF-1α levels in both mRNA and protein expression. This study for the first time indicated that erythromycin preconditioning could induce focal brain ischemic tolerance and attenuate brain injury of subsequent transient focal cerebral ischemia. The potential mechanism may be due to up-regulation of nNOS, but the HIF-1α system was not involved.

  19. Loss of PINK1 attenuates HIF-1α induction by preventing 4E-BP1-dependent switch in protein translation under hypoxia.

    Science.gov (United States)

    Lin, William; Wadlington, Natasha L; Chen, Linan; Zhuang, Xiaoxi; Brorson, James R; Kang, Un Jung

    2014-02-19

    Parkinson's disease (PD) has multiple proposed etiologies with implication of abnormalities in cellular homeostasis ranging from proteostasis to mitochondrial dynamics to energy metabolism. PINK1 mutations are associated with familial PD and here we discover a novel PINK1 mechanism in cellular stress response. Using hypoxia as a physiological trigger of oxidative stress and disruption in energy metabolism, we demonstrate that PINK1(-/-) mouse cells exhibited significantly reduced induction of HIF-1α protein, HIF-1α transcriptional activity, and hypoxia-responsive gene upregulation. Loss of PINK1 impairs both hypoxia-induced 4E-BP1 dephosphorylation and increase in the ratio of internal ribosomal entry site (IRES)-dependent to cap-dependent translation. These data suggest that PINK1 mediates adaptive responses by activating IRES-dependent translation, and the impairments in translation and the HIF-1α pathway may contribute to PINK1-associated PD pathogenesis that manifests under cellular stress.

  20. Immunohistological expression of HIF-1α, GLUT-1, Bcl-2 and Ki-67 in consecutive biopsies during chemoradiotherapy in patients with rectal cancer

    DEFF Research Database (Denmark)

    Havelund, Birgitte Mayland; Sørensen, Flemming Brandt; Pløen, John

    2013-01-01

    The aim of this study was to describe the dynamics of HIF-1α, GLUT-1, Bcl-2 and Ki-67 during chemoradiotherapy (CRT) of rectal cancer, and to investigate the fluctuation of these biomarkers in relation to pathological response to CRT. The study included 86 patients with rectal adenocarcinoma...... receiving preoperative CRT (>50.4 Gy and Uracil/Tegafur). Immunohistological expressions of HIF-1α, GLUT-1, Bcl-2 and Ki-67 were investigated in biopsies taken before treatment, after 2, 4 and 6 weeks of CRT and in specimens from the operation. Decreasing expressions of HIF-1α, Bcl-2 and Ki-67 were observed...... during CRT, whereas GLUT-1 overall was unchanged. No significant changes of the markers were observed in the interval between CRT and surgery. A significant association was observed between the presence of residual carcinoma after 6 weeks of treatment and pathological response to CRT, but no association...

  1. Prognostic significance of Ki67 proliferation index, HIF1 alpha index and microvascular density in patients with non-small cell lung cancer brain metastases

    Energy Technology Data Exchange (ETDEWEB)

    Berghoff, A.S. [Medical University of Vienna, Institute of Neurology, Vienna (Austria); Medical University of Vienna, Comprehensive Cancer Center CNS Tumors Unit, Vienna (Austria); Medical University of Vienna, Department of Medicine I, Vienna (Austria); Ilhan-Mutlu, A.; Preusser, M. [Medical University of Vienna, Comprehensive Cancer Center CNS Tumors Unit, Vienna (Austria); Medical University of Vienna, Department of Medicine I, Vienna (Austria); Woehrer, A.; Hainfellner, J.A. [Medical University of Vienna, Institute of Neurology, Vienna (Austria); Medical University of Vienna, Comprehensive Cancer Center CNS Tumors Unit, Vienna (Austria); Hackl, M. [Austrian National Cancer Registry, Statistics Austria, Vienna (Austria); Widhalm, G. [Medical University of Vienna, Comprehensive Cancer Center CNS Tumors Unit, Vienna (Austria); Medical University of Vienna, Department of Neurosurgery, Vienna (Austria); Dieckmann, K. [Medical University of Vienna, Comprehensive Cancer Center CNS Tumors Unit, Vienna (Austria); Medical University of Vienna, Department of Radiotherapy, Vienna (Austria); Melchardt, T. [Paracelsus Medical University Hospital Salzburg, Third Medical Department, Salzburg (Austria); Dome, B. [Medical University of Vienna, Department of Surgery, Vienna (Austria); Heinzl, H. [Medical University of Vienna, Comprehensive Cancer Center CNS Tumors Unit, Vienna (Austria); Medical University of Vienna, Center for Medical Statistics, Informatics, and Intelligent Systems, Vienna (Austria); Birner, P. [Medical University of Vienna, Comprehensive Cancer Center CNS Tumors Unit, Vienna (Austria); Medical University of Vienna, Institute of Clinical Pathology, Vienna (Austria)

    2014-07-15

    Survival upon diagnosis of brain metastases (BM) in patients with non-small cell lung cancer (NSCLC) is highly variable and established prognostic scores do not include tissue-based parameters. Patients who underwent neurosurgical resection as first-line therapy for newly diagnosed NSCLC BM were included. Microvascular density (MVD), Ki67 tumor cell proliferation index and hypoxia-inducible factor 1 alpha (HIF-1 alpha) index were determined by immunohistochemistry. NSCLC BM specimens from 230 patients (151 male, 79 female; median age 56 years; 199 nonsquamous histology) and 53/230 (23.0 %) matched primary tumor samples were available. Adjuvant whole-brain radiation therapy (WBRT) was given to 153/230 (66.5 %) patients after neurosurgical resection. MVD and HIF-1 alpha indices were significantly higher in BM than in matched primary tumors. In patients treated with adjuvant WBRT, low BM HIF-1 alpha expression was associated with favorable overall survival (OS), while among patients not treated with adjuvant WBRT, BM HIF-1 alpha expression did not correlate with OS. Low diagnosis-specific graded prognostic assessment score (DS-GPA), low Ki67 index, high MVD, low HIF-1 alpha index and administration of adjuvant WBRT were independently associated with favorable OS. Incorporation of tissue-based parameters into the commonly used DS-GPA allowed refined discrimination of prognostic subgroups. Ki67 index, MVD and HIF-1 alpha index have promising prognostic value in BM and should be validated in further studies. (orig.) [German] Die Ueberlebensprognose von Patienten mit zerebralen Metastasen eines nicht-kleinzelligen Lungenkarzinoms (NSCLC) ist sehr variabel. Bisher werden gewebsbasierte Parameter nicht in die prognostische Beurteilung inkludiert. Neurochirurgische Resektate zerebraler NSCLC-Metastasen wurden in dieser Studie untersucht. Die Gefaessdichte (''microvascular density'', MVD), der Ki67-Proliferationsindex sowie der HIF-1α-Index wurden mittels

  2. [Effect of leptin on lung fibrosis of silicosis rats and the correlation between leptin and HIF-1α expressions].

    Science.gov (United States)

    Pei, Houshuang; Li, Yongbin; Fan, Delong; Zhu, Shuyang; Zhang, Maowei; Li, Huiting; Chen, Bi; Zhang, Miao; Zhou, Ruijuan

    2014-07-01

    To observe the expression of leptin (LP) and its influence on pulmonary fibrosis in experimental rats with silicosis and the correlation between the expressions of leptin and HIF-1α. A total of 120 male Sprague-Dawley rats were randomly divided into normal control group, silicosis model group, LP intervention groups (consisting of LP5, LP10 and LP20 groups according to the concentration of LP). The rats in the normal control group were intratracheally administered 1 mL normal sodium, and the ones in the other groups were intratracheally given 1 mL SiO₂(40 mg/mL) suspension. The rats in LP intervention groups were intraperitoneally injected with leptin 5, 10, 20 ng/kg.d respectively from the first day. Six rats in each group were sacrificed on the 7th, 14th, 21th and 28th day. The expression of LP on the 7th, 14th, 21th and 28th day and the hydroxyproline content on the 28th day in rat lung tissues were measured by ELISA, and the expressions of HIF-1α and LP proteins in the lung tissues of the silicosis model group were measured by Western blotting. There were significant differences in the expression of LP in the lung tissues at each time point (7th, 14th, 21th and 28th day) among the five groups (F=669.18, 948.67, 1 172.00, 521.55, Psilicosis model group was significantly higher than that in the normal control group (Psilicosis model group. Hydroxyproline content on 28th day was (0.89 ± 0.16), (3.14 ± 0.40), (3.78 ± 0.27), (4.35 ± 0.13), (4.87 ± 0.16) mg/g in normal control group, silicosis model group, LP5, LP10 and LP20 intervention groups, respectively. Compared with the normal control group, hydroxyproline content in the silicosis model group significantly increased (Psilicosis model group, hydroxyproline content in LP intervention groups were significantly raised (Psilicosis. Addition of exogenous leptin can increase the collagen deposition in the lung tissues; meanwhile leptin has a positive correlation with HIF-1α.

  3. Hypoxic regulation of plasminogen activator inhibitor-1 expression in human buccal mucosa fibroblasts stimulated with arecoline.

    Science.gov (United States)

    Tsai, Chung-Hung; Lee, Shiuan-Shinn; Chang, Yu-Chao

    2015-10-01

    Oral submucous fibrosis (OSF) is regarded as a pre-cancerous condition with fibrosis in oral subepithelial connective tissue. Hypoxia-inducible factor (HIF)-1α regulates a wide variety of profibrogenic genes, which are closely associated with tissue fibrosis. The aim of this study was to compare HIF-1α expression in normal buccal mucosa tissues and OSF specimens and further explore the potential mechanisms that may lead to the induction of HIF-1α expression. Twenty-five OSF specimens and six normal buccal mucosa were examined by immunohistochemistry. The expression of HIF-1α from fibroblasts cultured from OSF and normal buccal mucosa was measured by Western blot. Arecoline, a major areca nut alkaloid, was challenged to normal buccal mucosa fibroblasts (BMFs) to elucidate whether HIF-1α expression could affect by arecoline. In addition, the effects of arecoline on plasminogen activator inhibitor (PAI)-1 expression were evaluated in environmental hypoxia. HIF-1α expression was significantly higher in OSF specimens and expressed mainly by fibroblasts, epithelial cells, and inflammatory cells. Fibroblasts derived from OSF were found to exhibit higher HIF-1α protein expression than BMFs (P oral submucosa leading to fibrosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. MiR-142 modulates human pancreatic cancer proliferation and invasion by targeting hypoxia-inducible factor 1 (HIF-1α in the tumor microenvironments

    Directory of Open Access Journals (Sweden)

    Yebin Lu

    2017-02-01

    Full Text Available MicroRNAs regulate most protein-coding genes, including genes important in cancer and other diseases. In this study, we demonstrated that the expression of miR-142 could be significantly suppressed in pancreatic cancer specimens and cell lines compared to their adjacent tissues and normal pancreatic cells. Growth and invasion of PANC-1 and SW1990 cells were attenuated by overexpression of miR-142 in vitro. With the help of bioinformatics analysis, hypoxia-inducible factor 1 (HIF-1α was identified to be a direct target of miR-142, and a luciferase reporter experiment confirmed this discovery. Overexpression of miR-142 decreases protein expression of HIF-1α. In the hypoxic microenvironment, HIF-1α was up-regulated while miR-142 was down-regulated. The invaded cells significantly increased in the hypoxic microenvironment compared to the normoxic microenvironment. The hypoxia treatment induced cells’ proliferation, and invasion could be inhibited by miR-142 overexpression or HIF-1α inhibition. Moreover, expression of epithelial-mesenchymal transition (EMT markers, Vimentin, VEGF-C and E-cad, was altered under hypoxia conditions and regulated by miR-142/HIF-1α. Above all, these findings provided insights on the functional mechanism of miR-142, suggesting that the miR-142/HIF-1α axis may interfere with the proliferative and invasive properties of pancreatic cancer cells, and indicated that miR-142 could be a potential therapeutic target for pancreatic cancer.

  5. Sex-specific differences in the modulation of Growth Differentiation Factor 15 (GDF15) by hyperoxia in vivo and in vitro: Role of Hif-1α.

    Science.gov (United States)

    Zhang, Yuhao; Jiang, Weiwu; Wang, Lihua; Lingappan, Krithika

    2017-10-01

    Male premature neonates are more susceptible than females to the development of bronchopulmonary dysplasia (BPD). The reasons underlying sexually dimorphic outcomes in premature neonates are not known. GDF15 (Growth and differentiation factor 15) is a secreted cytokine and plays a role in cell proliferation, apoptosis, and angiogenesis. In this study, we sought to elucidate the sex-specific expression of Gdf15 in the lung in vivo in neonatal hyperoxic lung injury and its regulation by Hif-1α, and to delineate the differences in GDF15 expression in male and female human umbilical venous endothelial cells in an in vitro model of oxygen toxicity. Following hyperoxia exposure (95% FiO2, PND (postnatal day 1-5: saccular stage of lung development), neonatal male mice (C57BL/6) show increased GDF15 and decreased HIF-1α expression compared to female mice. For the in vitro experiments, male and female HUVECs were exposed to room air condition (21% O2, 5% CO2) or in hyperoxia condition (95% O2, 5% CO2) for up to 72h. Male HUVECs had greater expression of GDF15 mRNA and protein. To study the inter-relationship between GDF15 and HIF-1α, we measured the expression of GDF15 in H441 cells after HIF-1α knockdown using promoter dual luciferase reporter assay, which showed that HIF-1α and GDF15 expression are inversely related under normoxia and hyperoxia. The results indicate that sex differences exist in the expression and modulation of GDF15 by HIF-1α in neonatal hyperoxic injury both in vivo and in vitro. These differences could explain in part the mechanisms behind sex-specific differences in BPD. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The HIF1A functional genetic polymorphism at locus +1772 associates with progression to metastatic prostate cancer and refractoriness to hormonal castration.

    Science.gov (United States)

    Fraga, Avelino; Ribeiro, Ricardo; Príncipe, Paulo; Lobato, Carlos; Pina, Francisco; Maurício, Joaquina; Monteiro, Cátia; Sousa, Hugo; Calais da Silva, F; Lopes, Carlos; Medeiros, Rui

    2014-01-01

    The hypoxia inducible factor 1 alpha (HIF1a) is a key regulator of tumour cell response to hypoxia, orchestrating mechanisms known to be involved in cancer aggressiveness and metastatic behaviour. In this study we sought to evaluate the association of a functional genetic polymorphism in HIF1A with overall and metastatic prostate cancer (PCa) risk and with response to androgen deprivation therapy (ADT). The HIF1A +1772 C>T (rs11549465) polymorphism was genotyped, using DNA isolated from peripheral blood, in 1490 male subjects (754 with prostate cancer and 736 controls cancer-free) through Real-Time PCR. A nested group of cancer patients who were eligible for androgen deprivation therapy was followed up. Univariate and multivariate models were used to analyse the response to hormonal treatment and the risk for developing distant metastasis. Age-adjusted odds ratios were calculated to evaluate prostate cancer risk. Our results showed that patients under ADT carrying the HIF1A +1772 T-allele have increased risk for developing distant metastasis (OR, 2.0; 95%CI, 1.1-3.9) and an independent 6-fold increased risk for resistance to ADT after multivariate analysis (OR, 6.0; 95%CI, 2.2-16.8). This polymorphism was not associated with increased risk for being diagnosed with prostate cancer (OR, 0.9; 95%CI, 0.7-1.2). The HIF1A +1772 genetic polymorphism predicts a more aggressive prostate cancer behaviour, supporting the involvement of HIF1a in prostate cancer biological progression and ADT resistance. Molecular profiles using hypoxia markers may help predict clinically relevant prostate cancer and response to ADT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Implicaciones pronósticas de la expresión de HIF-1Alpha en carcinomas epidermoides de cabeza y cuello

    OpenAIRE

    Cabanillas Farpón, Rubén

    2006-01-01

    Introducción: El Factor Inducible por Hipoxia 1alpha (HIF-1alpha) es un factor de transcripción cuya actividad permite la adaptación celular a los cambios en las presiones parciales de oxígeno. HIF-1alpha se encuentra sobre-expresado en varios tumores humanos y en algunos de ellos su sobre-expresión se ha asociado con un peor pronóstico, sin embargo, su papel en los carcinomas epidermoides de cabeza y cuello (CECC) es controvertido.Material y Método:Análisis retrospectivo de 116 pacientes con...

  8. KAJIAN PERAN MANGANESE-CONTAINING SUPER OXIDE DISMUTASE (MNSOD DALAM REGULASI EKSPRESI HYPOXIA INDUCIBLE FACTOR-1α (HIF-1α PADA KEADAAN HIPOKSIA

    Directory of Open Access Journals (Sweden)

    Masagus Zainuri

    2014-02-01

    Full Text Available AbstrakKekurangan suplai oksigen pada jaringan disebut hipoksia. Sel tumor sering mengalami hipoksia dan menjadi tidak responsif terhadap terapi. Keadaan hipoksia pada jaringan tumor perlu ditanggulangi agar keberhasilan terapi tumor dapat  ditingkatkan.  Pada keadaan hipoksia,  factor  Hypoxia Inducible Factor-1α  (HIF-1α berperan  penting  dalam pengendalian respon selular. Ekspresi gen HIF-1α sangat dipengaruhi oleh status redoks sel. Enzim MnSOD merupakan enzim antioksidan endogen yang berperan sebagai scavenger O2.-yang menghasilkan H2O2 dan O2 , sehingga aktivitas MnSOD akan mempengaruhi status redoks dari sel. Melalui O2.-dan H2O2, MnSOD memiliki peran biphasic terhadap regulasi ekspresi gen HIF-1α, sehingga dapat menekan dampak hipoksia pada jaringan. Sampai saat ini MnSOD belum dimanfaatkan  sebagai  terapi  pendukung  pada  terapi tumor  dan  perlu  dilakukan  banyak  eksperimen  untuk mengeksplorasi potensi MnSOD sebagai terapi adjuvant alternative untuk terapi tumor.Kata Kunci : MnSOD, HIF-1α, Superoksida (O2.-, Hidrogen Peroksida (H2O2AbstractInsufficient oxygen supply in tissue is named hypoxia. Tumor cells frequentlyexperience tissue hypoxia, therefore it becomes irresponsive to the main therapy. Hypoxia of tumor tissue needs to be solved to improve the tumor therapy succeed. In hypoxia, Hypoxia Inducible Factor-1α (HIF-1α plays an essential role in controlling the cellular responses. HIF-1α  gene  expression  is  influenced  by  the  redox stateof the cells. MnSOD enzyme is an endogenous antioxidant enzyme that acting as an O2.-scavenger that producing H2O2 and O2, so that MnSOD activity would affect the redox state of the cells. ViaO2.-and H2O2, MnSOD has a biphasic role for gene expression of HIF-1α regulation and reducing the tissue hypoxia effect. Recently, MnSOD is not an adjuvant therapy for tumor treatment yet, and some experiments are needed to explore MnSOD potential as an alternative

  9. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Li, Ruisheng [Institute of Infectious Diseases, 302 Military Hospital, Beijing 100039 (China); Jia, Ying; Zhao, Yun; Xiao, Dongjie [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Dang, Ningning [Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Wang, Yunshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China)

    2014-07-15

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  10. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches

    Directory of Open Access Journals (Sweden)

    Marco Mineo

    2016-06-01

    Full Text Available Long non-coding RNAs (lncRNAs have an undefined role in the pathobiology of glioblastoma multiforme (GBM. These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2 as a subtype-specific hypoxia-inducible lncRNA, upregulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal, and hypoxia-dependent molecular reprogramming. Among the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Downregulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs’ speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome and targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context.

  11. Hypoxia Downregulates MAPK/ERK but Not STAT3 Signaling in ROS-Dependent and HIF-1-Independent Manners in Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Jan Kučera

    2017-01-01

    Full Text Available Hypoxia is involved in the regulation of stem cell fate, and hypoxia-inducible factor 1 (HIF-1 is the master regulator of hypoxic response. Here, we focus on the effect of hypoxia on intracellular signaling pathways responsible for mouse embryonic stem (ES cell maintenance. We employed wild-type and HIF-1α-deficient ES cells to investigate hypoxic response in the ERK, Akt, and STAT3 pathways. Cultivation in 1% O2 for 24 h resulted in the strong dephosphorylation of ERK and its upstream kinases and to a lesser extent of Akt in an HIF-1-independent manner, while STAT3 phosphorylation remained unaffected. Downregulation of ERK could not be mimicked either by pharmacologically induced hypoxia or by the overexpression. Dual-specificity phosphatases (DUSP 1, 5, and 6 are hypoxia-sensitive MAPK-specific phosphatases involved in ERK downregulation, and protein phosphatase 2A (PP2A regulates both ERK and Akt. However, combining multiple approaches, we revealed the limited significance of DUSPs and PP2A in the hypoxia-mediated attenuation of ERK signaling. Interestingly, we observed a decreased reactive oxygen species (ROS level in hypoxia and a similar phosphorylation pattern for ERK when the cells were supplemented with glutathione. Therefore, we suggest a potential role for the ROS-dependent attenuation of ERK signaling in hypoxia, without the involvement of HIF-1.

  12. Low-dose radiation pretreatment improves survival of human ceiling culture-derived proliferative adipocytes (ccdPAs) under hypoxia via HIF-1 alpha and MMP-2 induction

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Naoki [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Kubota, Yoshitaka, E-mail: kubota-cbu@umin.ac.jp [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Kosaka, Kentarou; Akita, Shinsuke; Sasahara, Yoshitarou; Kira, Tomoe [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Kuroda, Masayuki [Center for Advanced Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Mitsukawa, Nobuyuki [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Bujo, Hideaki [Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, 564-1 Shimoshizu, Sakura-shi, Chiba, #285-8741 (Japan); Satoh, Kaneshige [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan)

    2015-08-07

    Poor survival is a major problem of adipocyte transplantation. We previously reported that VEGF and MMPs secreted from transplanted adipocytes are essential for angiogenesis and adipogenesis. Pretreatment with low-dose (5 Gy) radiation (LDR) increased VEGF, MMP-2, and HIF-1 alpha mRNA expression in human ceiling culture-derived proliferative adipocytes (hccdPAs). Gene expression after LDR differed between adipose-derived stem cells (hASCs) and hccdPAs. Pretreatment with LDR improved the survival of hccdPAs under hypoxia, which is inevitable in the early stages after transplantation. Upregulation of VEGF and MMP-2 after LDR in hccdPAs is mediated by HIF-1 alpha expression. Our results suggest that pretreatment with LDR may improve adipocyte graft survival in a clinical setting through upregulation of VEGF and MMP-2 via HIF-1 alpha. - Highlights: • Ceiling culture-derived proliferative adipocytes (ccdPAs) react to radiation. • Low-dose radiation (LDR) pretreatment improves survival of ccdPAs under hypoxia. • Gene expression after LDR differs between ccdPAs and adipose-derived stem cells. • LDR-induced increase in MMP-2 and VEGF is dependent on HIF-1 alpha induction. • LDR pretreatment may improve the adipocyte graft survival rate in clinical settings.

  13. Increased Expression of Thymosin β Is Independently Correlated with Hypoxia Inducible Factor-1α (HIF-1α and Worse Clinical Outcome in Human Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Seung Yun Lee

    2017-01-01

    Full Text Available Background Thymosin β4 is a multi-functional hormone-like polypeptide, being involved in cell migration, angiogenesis, and tumor metastasis. This study was undertaken to clarify the clinicopathologic implications of thymosin β4 expression in human colorectal cancers (CRCs. Methods We investigated tissue sections from 143 patients with CRC by immunohistochemistry. In addition, we evaluated the expression patterns and the clinico-pathological significance of thymosin β4 expression in association with hypoxia inducible factor-1α (HIF-1α expression in the CRC series. Results High expression of thymosin β4 was significantly correlated with lymphovascular invasion, invasion depth, regional lymph node metastasis, distant metastasis, and TNM stage. Patients with high expression of thymosin β4 showed poor recurrence-free survival (p = .001 and poor overall survival (p = .005 on multivariate analysis. We also found that thymosin β4 and HIF-1α were overexpressed and that thymosin β4 expression increased in parallel with HIF-1α expression in CRC. Conclusions A high expression level of thymosin β4 indicates poor clinical outcomes and may be a useful prognostic factor in CRC. Thymosin β4 is functionally related with HIF-1α and may be a potentially valuable biomarker and possible therapeutic target for CRC.

  14. Inhibition of SRC-3 enhances sensitivity of human cancer cells to histone deacetylase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhengzhi, E-mail: zouzhengzhi@m.scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Luo, Xiaoyong [Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang 471000 (China); Nie, Peipei [KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510000 (China); Wu, Baoyan; Zhang, Tao; Wei, Yanchun [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Wang, Wenyi [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Geng, Guojun; Jiang, Jie [Xiamen Cancer Center, Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Mi, Yanjun, E-mail: myjgj_77@163.com [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China)

    2016-09-09

    SRC-3 is widely expressed in multiple tumor types and involved in cancer cell proliferation and apoptosis. Histone deacetylase (HDAC) inhibitors are promising antitumor drugs. However, the poor efficacy of HDAC inhibitors in solid tumors has restricted its further clinical application. Here, we reported the novel finding that depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors (SAHA and romidepsin). In contrast, overexpression of SRC-3 decreased SAHA-induced cancer cell apoptosis. Furthermore, we found that SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. The combination of bufalin and SAHA was particular efficient in attenuating AKT activation and reducing Bcl-2 levels. Taken together, these accumulating data might guide development of new breast and lung cancer therapies. - Highlights: • Depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors. • Overexpression of SRC-3 enhanced cancer cell resistance to HDAC inhibitors. • SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. • Bufalin synergized with HDAC inhibitor attenuated AKT activation and reduced Bcl-2 levels in human cancer cell.

  15. Hif1α down-regulation is associated with transposition of great arteries in mice treated with a retinoic acid antagonist

    Directory of Open Access Journals (Sweden)

    Amati Francesca

    2010-09-01

    Full Text Available Abstract Background Congenital heart defect (CHD account for 25% of all human congenital abnormalities. However, very few CHD-causing genes have been identified so far. A promising approach for the identification of essential cardiac regulators whose mutations may be linked to human CHD, is the molecular and genetic analysis of heart development. With the use of a triple retinoic acid competitive antagonist (BMS189453 we previously developed a mouse model of congenital heart defects (81%, thymic abnormalities (98% and neural tube defects (20%. D-TGA (D-transposition of great arteries was the most prevalent cardiac defect observed (61%. Recently we were able to partially rescue this abnormal phenotype (CHD were reduced to 64.8%, p = 0.05, by oral administration of folic acid (FA. Now we have performed a microarray analysis in our mouse models to discover genes/transcripts potentially implicated in the pathogenesis of this CHD. Results We analysed mouse embryos (8.5 dpc treated with BMS189453 alone and with BMS189453 plus folic acid (FA by microarray and qRT-PCR. By selecting a fold change (FC ≥ ± 1.5, we detected 447 genes that were differentially expressed in BMS-treated embryos vs. untreated control embryos, while 239 genes were differentially expressed in BMS-treated embryos whose mothers had also received FA supplementation vs. BMS-treated embryos. On the basis of microarray and qRT-PCR results, we further analysed the Hif1α gene. In fact Hif1α is down-regulated in BMS-treated embryos vs. untreated controls (FCmicro = -1.79; FCqRT-PCR = -1.76; p = 0.005 and its expression level is increased in BMS+FA-treated embryos compared to BMS-treated embryos (FCmicro = +1.17; FCqRT-PCR = +1.28: p = 0.005. Immunofluorescence experiments confirmed the under-expression of Hif1α protein in BMS-treated embryos compared to untreated and BMS+FA-treated embryos and, moreover, we demonstrated that at 8.5 dpc, Hif1α is mainly expressed in the embryo heart

  16. Lack of the Transcription Factor Hypoxia-Inducible Factor 1α (HIF-1α) in Macrophages Accelerates the Necrosis of Mycobacterium avium-Induced Granulomas.

    Science.gov (United States)

    Cardoso, Marcos S; Silva, Tânia M; Resende, Mariana; Appelberg, Rui; Borges, Margarida

    2015-09-01

    The establishment of mycobacterial infection is characterized by the formation of granulomas, which are well-organized aggregates of immune cells, namely, infected macrophages. The granuloma's main function is to constrain and prevent dissemination of the mycobacteria while focusing the immune response to a limited area. In some cases these lesions can grow progressively into large granulomas which can undergo central necrosis, thereby leading to their caseation. Macrophages are the most abundant cells present in the granuloma and are known to adapt under hypoxic conditions in order to avoid cell death. Our laboratory has developed a granuloma necrosis model that mimics the human pathology of Mycobacterium tuberculosis, using C57BL/6 mice infected intravenously with a low dose of a highly virulent strain of Mycobacterium avium. In this work, a mouse strain deleted of the hypoxia inducible factor 1α (HIF-1α) under the Cre-lox system regulated by the lysozyme M gene promoter was used to determine the relevance of HIF-1α in the caseation of granulomas. The genetic ablation of HIF-1α in the myeloid lineage causes the earlier emergence of granuloma necrosis and clearly induces an impairment of the resistance against M. avium infection coincident with the emergence of necrosis. The data provide evidence that granulomas become hypoxic before undergoing necrosis through the analysis of vascularization and quantification of HIF-1α in a necrotizing mouse model. Our results show that interfering with macrophage adaptation to hypoxia, such as through HIF-1α inactivation, accelerates granuloma necrosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available The historical success of orthopedic implants has been recently tempered by unexpected pathologies and early failures of some types of Cobalt-Chromium-Molybdenum alloy containing artificial hip implants. Hypoxia-associated responses to Cobalt-alloy metal debris were suspected as mediating this untoward reactivity at least in part. Hypoxia Inducible Factor-1α is a major transcription factor involved in hypoxia, and is a potent coping mechanism for cells to rapidly respond to changing metabolic demands. We measured signature hypoxia associated responses (i.e. HIF-1α, VEGF and TNF-α to Cobalt-alloy implant debris both in vitro (using a human THP-1 macrophage cell line and primary human monocytes/macrophages and in vivo. HIF-1α in peri-implant tissues of failed metal-on-metal implants were compared to similar tissues from people with metal-on-polymer hip arthroplasties, immunohistochemically. Increasing concentrations of cobalt ions significantly up-regulated HIF-1α with a maximal response at 0.3 mM. Cobalt-alloy particles (1 um-diameter, 10 particles/cell induced significantly elevated HIF-1α, VEGF, TNF-α and ROS expression in human primary macrophages whereas Titanium-alloy particles did not. Elevated expression of HIF-1α was found in peri-implant tissues and synovial fluid of people with failing Metal-on-Metal hips (n = 5 compared to failed Metal-on-Polymer articulating hip arthroplasties (n = 10. This evidence suggests that Cobalt-alloy, more than other metal implant debris (e.g. Titanium alloy, can elicit hypoxia-like responses that if unchecked can lead to unusual peri-implant pathologies, such as lymphocyte infiltration, necrosis and excessive fibrous tissue growths.

  18. Folic acid attenuates cobalt chloride-induced PGE2 production in HUVECs via the NO/HIF-1alpha/COX-2 pathway.

    Science.gov (United States)

    Liang, Yuming; Zhen, Xiaozhou; Wang, Kaiwen; Ma, Jing

    2017-08-19

    Prostaglandin E2 (PGE2), an important lipid inflammatory mediator involved in the progression of vascular diseases, can be induced by hypoxia in many cell types. While folic acid has been shown to protect against inflammation in THP-1 cells during hypoxia and hypoxia-induced endothelial cell injury, whether it might do so by attenuating PGE2 production remains unclear. To investigate this we constructed a hypoxia-induced injury model by treating human umbilical vein endothelial cells (HUVECs) with cobalt chloride (CoCl2), which mimics the effects of hypoxia. In CoCl2-treated HUVECs, folic acid significantly attenuated PGE2 production and increased vasoprotective nitric oxide (NO) content. Folic acid also decreased cyclooxygenase-2 (COX-2) and hypoxia-inducible factor 1-alpha (HIF-1α) expression and altered endothelial nitric oxide synthase (eNOS) signaling by increasing p-eNOS((Ser1177)) and decreasing p-eNOS((Thr495)) in a dose-dependent manner. Further investigation of the pathway demonstrated that treatment with 2-Methoxyestradiol (2-MeOE2) and celecoxib both decreased CoCl2-induced COX-2 expression but only 2-MeOE2 decreased HIF-1α expression. The ability of folic acid to down-regulate HIF-1α and COX-2 protein levels was dramatically abrogated by L-NAME treatment, which also decreased eNOS mRNA and NO production. The NO donor sodium nitroprusside also dose-dependently down-regulated HIF-1α and COX-2 protein levels. Overall, these findings suggest a novel application for folic acid in attenuating CoCl2-induced PGE2 production in HUVECs via regulation of the NO/HIF-1α/COX-2 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Expression of HIF-1α and Markers of Angiogenesis Are Not Significantly Different in Triple Negative Breast Cancer Compared to Other Breast Cancer Molecular Subtypes: Implications for Future Therapy.

    Directory of Open Access Journals (Sweden)

    Lamis Yehia

    Full Text Available Triple negative breast cancer lacks estrogen, progesterone and epidermal growth factor receptors rendering it refractory to available targetedtherapies. TNBC is associated with central fibrosis and necrosis, both indicators of tumor hypoxia. Hypoxia inducible factor 1α is up-regulated under hypoxia and its expression is associated with induction of angiogenesis resulting in proliferation, aggressive tumor phenotype and metastasis. In this study we evaluate the potential use of HIF-1α as aTNBC-specific marker.62 TNBC, 64 HER2+, and 64 hormone-receptors positive breast cancer cases were evaluated for central fibrosis and necrosis, HIF-1α, HIF-1β, VEGFR3, CD31 expression and microvessel density. RNA extraction from paraffin-embedded samples, followed by quantitative real-time polymerase chain reaction (qRT-PCR evaluation of HIF-1α and VEGF transcripts was performed on 54 cases (18 from each subtype.HIF-1α protein was expressed in 35.5% TNBC, 45.3% HER2+and 25.0% ER+/PR+ (p = 0.055; χ2 test. PCRanalysis of subgroup of breast cancers, 84.2% expressed HIF-1α protein and its transcripts, while only 66.7% expressed VEGF transcripts simultaneously with the HIF-1α protein and its transcripts. Central fibrosis and necrosis was highest in TNBC (p = 0.015; χ2 test, while MVD was comparable among all groups (p = 0.928; χ2 test. VEGFR3 was highest in TNBC expressing HIF-1α. HIF-1β protein was expressed in 32.0% of HIF-1α(+, and in (44.3% of HIF-1α(- breast cancer cases (p = 0.033; χ2 test. Moreover, HIF-1α expression in cases with central fibrosis and necrosis was highest in the HER2+ followed by the TNBC (p = 0.156; χ2 test.A proportion of TNBC express HIF-1α but not in a significantly different manner from other breast cancer subtypes. The potential of anti-HIF-1α targeted therapy is therefore not a candidate for exclusive use in TNBC, but should be considered in all breast cancers, especially in the setting of clinically aggressive or

  20. Expression of HIF-1α and Markers of Angiogenesis Are Not Significantly Different in Triple Negative Breast Cancer Compared to Other Breast Cancer Molecular Subtypes: Implications for Future Therapy.

    Science.gov (United States)

    Yehia, Lamis; Boulos, Fouad; Jabbour, Mark; Mahfoud, Ziyad; Fakhruddin, Najla; El-Sabban, Marwan

    2015-01-01

    Triple negative breast cancer lacks estrogen, progesterone and epidermal growth factor receptors rendering it refractory to available targetedtherapies. TNBC is associated with central fibrosis and necrosis, both indicators of tumor hypoxia. Hypoxia inducible factor 1α is up-regulated under hypoxia and its expression is associated with induction of angiogenesis resulting in proliferation, aggressive tumor phenotype and metastasis. In this study we evaluate the potential use of HIF-1α as aTNBC-specific marker. 62 TNBC, 64 HER2+, and 64 hormone-receptors positive breast cancer cases were evaluated for central fibrosis and necrosis, HIF-1α, HIF-1β, VEGFR3, CD31 expression and microvessel density. RNA extraction from paraffin-embedded samples, followed by quantitative real-time polymerase chain reaction (qRT-PCR) evaluation of HIF-1α and VEGF transcripts was performed on 54 cases (18 from each subtype). HIF-1α protein was expressed in 35.5% TNBC, 45.3% HER2+and 25.0% ER+/PR+ (p = 0.055; χ2 test). PCRanalysis of subgroup of breast cancers, 84.2% expressed HIF-1α protein and its transcripts, while only 66.7% expressed VEGF transcripts simultaneously with the HIF-1α protein and its transcripts. Central fibrosis and necrosis was highest in TNBC (p = 0.015; χ2 test), while MVD was comparable among all groups (p = 0.928; χ2 test). VEGFR3 was highest in TNBC expressing HIF-1α. HIF-1β protein was expressed in 32.0% of HIF-1α(+), and in (44.3%) of HIF-1α(-) breast cancer cases (p = 0.033; χ2 test). Moreover, HIF-1α expression in cases with central fibrosis and necrosis was highest in the HER2+ followed by the TNBC (p = 0.156; χ2 test). A proportion of TNBC express HIF-1α but not in a significantly different manner from other breast cancer subtypes. The potential of anti-HIF-1α targeted therapy is therefore not a candidate for exclusive use in TNBC, but should be considered in all breast cancers, especially in the setting of clinically aggressive or

  1. The fruit juice of Morinda citrifolia (noni) downregulates HIF-1α protein expression through inhibition of PKB, ERK-1/2, JNK-1 and S6 in manganese-stimulated A549 human lung cancer cells.

    Science.gov (United States)

    Jang, Byeong-Churl

    2012-03-01

    High exposure of manganese is suggested to be a risk factor for many lung diseases. Evidence suggests anticancerous and antiangiogenic effects by products derived from Morinda citrifolia (noni) fruit. In this study, we investigated the effect of noni fruit juice (NFJ) on the expression of HIF-1α, a tumor angiogenic transcription factor in manganese-chloride (manganese)-stimulated A549 human lung carcinoma cells. Treatment with manganese largely induced expression of HIF-1α protein but did not affect HIF-1α mRNA expression in A549 cells, suggesting the metal-mediated co- and/or post-translational HIF-1α upregulation. Manganese treatment also led to increased phosphorylation of extracellular-regulated protein kinase-1/2 (ERK-1/2), c-Jun N-terminal kinase-1 (JNK-1), protein kinase B (PKB), S6 and eukaryotic translation initiation factor-2α (eIF-2α) in A549 cells. Of note, the exposure of NFJ inhibited the manganese-induced HIF-1α protein upregulation in a concentration-dependent manner. Importantly, as assessed by results of pharmacological inhibition and siRNA transfection studies, the effect of NFJ on HIF-1α protein downregulation seemed to be largely associated with the ability of NFJ to interfere with the metal's signaling to activate PKB, ERK-1/2, JNK-1 and S6 in A549 cells. It was further shown that NFJ could repress the induction of HIF-1α protein by desferoxamine or interleukin-1β (IL-1β), another HIF-1α inducer in A549 cells. Thus, the present study provides the first evidence that NFJ has the ability to strongly downregulate manganese-induced HIF-1α protein expression in A549 human lung cancer cells, which may suggest the NFJ-mediated beneficial effects on lung pathologies in which manganese and HIF-1α overexpression play pathogenic roles.

  2. Hypoxia determines survival outcomes of bacterial infection through HIF-1alpha dependent re-programming of leukocyte metabolism.

    Science.gov (United States)

    Thompson, A A R; Dickinson, R S; Murphy, F; Thomson, J P; Marriott, H M; Tavares, A; Willson, J; Williams, L; Lewis, A; Mirchandani, A; Dos Santos Coelho, P; Doherty, C; Ryan, E; Watts, E; Morton, N M; Forbes, S; Stimson, R H; Hameed, A G; Arnold, N; Preston, J A; Lawrie, A; Finisguerra, V; Mazzone, M; Sadiku, P; Goveia, J; Taverna, F; Carmeliet, P; Foster, S J; Chilvers, E R; Cowburn, A S; Dockrell, D H; Johnson, R S; Meehan, R R; Whyte, M K B; Walmsley, S R

    2017-02-10

    Hypoxia and bacterial infection frequently co-exist, in both acute and chronic clinical settings, and typically result in adverse clinical outcomes. To ameliorate this morbidity, we investigated the interaction between hypoxia and the host response. In the context of acute hypoxia, both S. aureus and S. pneumoniae infections rapidly induced progressive neutrophil mediated morbidity and mortality, with associated hypothermia and cardiovascular compromise. Preconditioning animals through longer exposures to hypoxia, prior to infection, prevented these pathophysiological responses and profoundly dampened the transcriptome of circulating leukocytes. Specifically, perturbation of HIF pathway and glycolysis genes by hypoxic preconditioning was associated with reduced leukocyte glucose utilisation, resulting in systemic rescue from a global negative energy state and myocardial protection. Thus we demonstrate that hypoxia preconditions the innate immune response and determines survival outcomes following bacterial infection through suppression of HIF-1α and neutrophil metabolism. The therapeutic implications of this work are that in the context of systemic or tissue hypoxia therapies that target the host response could improve infection associated morbidity and mortality.

  3. Hypoxia determines survival outcomes of bacterial infection through HIF-1alpha dependent re-programming of leukocyte metabolism *

    Science.gov (United States)

    Thompson, A.A.R.; Dickinson, R.S.; Murphy, F.; Thomson, J. P.; Marriott, H.M.; Tavares, A.; Willson, J.; Williams, L.; Lewis, A.; Mirchandani, A.; Dos Santos Coelho, P.; Doherty, C.; Ryan, E.; Watts, E.; Morton, N. M.; Forbes, S.; Stimson, R. H.; Hameed, A. G.; Arnold, N.; Preston, J.A.; Lawrie, A.; Finisguerra, V.; Mazzone, M.; Sadiku, P.; Goveia, J.; Taverna, F.; Carmeliet, P.; Foster, S.J.; Chilvers, E.R.; Cowburn, A.S.; Dockrell, D.H.; Johnson, R.S.; Meehan, R. R.; Whyte, M.K.B.; Walmsley, S.R.

    2017-01-01

    Hypoxia and bacterial infection frequently co-exist, in both acute and chronic clinical settings, and typically result in adverse clinical outcomes. To ameliorate this morbidity, we investigated the interaction between hypoxia and the host response. In the context of acute hypoxia, both S. aureus and S. pneumoniae infections rapidly induced progressive neutrophil mediated morbidity and mortality, with associated hypothermia and cardiovascular compromise. Preconditioning animals through longer exposures to hypoxia, prior to infection, prevented these pathophysiological responses and profoundly dampened the transcriptome of circulating leukocytes. Specifically, perturbation of HIF pathway and glycolysis genes by hypoxic preconditioning was associated with reduced leukocyte glucose utilisation, resulting in systemic rescue from a global negative energy state and myocardial protection. Thus we demonstrate that hypoxia preconditions the innate immune response and determines survival outcomes following bacterial infection through suppression of HIF-1α and neutrophil metabolism. The therapeutic implications of this work are that in the context of systemic or tissue hypoxia therapies that target the host response could improve infection associated morbidity and mortality. PMID:28386604

  4. Identification of a signaling axis HIF-1α/microRNA-210/ISCU independent of SDH mutation that defines a subgroup of head and neck paragangliomas.

    Science.gov (United States)

    Merlo, Anna; de Quiros, Sandra Bernaldo; Secades, Pablo; Zambrano, Iriana; Balbín, Milagros; Astudillo, Aurora; Scola, Bartolomé; Arístegui, Miguel; Suarez, Carlos; Chiara, María-Dolores

    2012-11-01

    Head and neck paragangliomas (HNPGLs) are rare tumors associated with the parasympathetic nervous system. Most are sporadic, but about one third result from germline mutations in succinate dehydrogenase (SDH) genes (SDHB, SDHC, SDHD, SDHA, or SDHAF2). Although a molecular connection between SDH dysfunction and tumor development is still unclear, the most accepted hypothesis proposes a central role of the pseudohypoxic pathway. SDH dysfunction induces abnormal stabilization of the hypoxia-inducible factors (HIFs) that regulate target genes involved in proliferation, apoptosis, angiogenesis, and metabolism. The involvement of these pathways in the development of sporadic HNPGLs is presently unknown. To get some insights into the hypoxic/pseudohypoxic molecular basis of HNPGLs, we attempted to define the gene, microRNA (miRNA), and HIF-1α expression patterns that distinguish tumors from normal paraganglia tissue. Genome microarray and TaqMan low-density arrays were used to analyze gene and miRNA expression, respectively, in 17 HNPGL tumor tissues and three normal human carotid bodies. Twelve HNPGLs were used for validation of data. HIF-1α, SDHB, and iron-sulfur cluster scaffold protein (ISCU) protein expression was analyzed by immunohistochemistry. We found activation of a canonical HIF-1α-related gene expression signaling only in a subset of HNPGLs from patients that did not harbor germline or somatic SDH mutations. The pseudohypoxic signature consisted in the overexpression of both HIF-1α-target genes and the HIF-1α-inducible miRNA, miR-210, and down-regulation of the miR-210 target gene, ISCU1/2. A decreased level of the iron-sulfur-containing protein SDHB was found by immunohistochemical analysis performed in two of these tumors. Collectively, this study unveiled a putative signaling axis of HIF-1α/miRNA-210/ISCU in a subset of HNPGLs that could have an impact on SDHB protein stability by a mechanism independent of SDH mutations, thus providing a foundation

  5. STAT3 inhibitor enhances chemotherapy drug efficacy by ...

    African Journals Online (AJOL)

    STAT3 inhibitor treatment, RNAi or ectopic overexpression of STAT3 or MUC1 in NSCLC cells were used to determine their ... Keywords: STAT3, Non-small cell lung carcinoma, Mucin 1, Chemoresistance, Chemotherapy. Tropical Journal of ..... Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of.

  6. Inhibition of the HIF1α-p300 interaction by quinone- and indandione-mediated ejection of structural Zn(II)

    Science.gov (United States)

    Jayatunga, Madura K. P.; Thompson, Sam; McKee, Tawnya C.; Chan, Mun Chiang; Reece, Kelie M.; Hardy, Adam P.; Sekirnik, Rok; Seden, Peter T.; Cook, Kristina M.; McMahon, James B.; Figg, William D.; Schofield, Christopher J.; Hamilton, Andrew D.

    2014-01-01

    Protein-protein interactions between the hypoxia inducible transcription factor (HIF) and the transcriptional coactivators p300/CBP are potential cancer targets due to their role in the hypoxic response. A natural product based screen led to the identification of indandione and benzoquinone derivatives that reduce the tight interaction between a HIF-1α fragment and the CH1 domain of p300. The indandione derivatives were shown to fragment to give ninhydrin, which was identified as the active species. Both the naphthoquinones and ninhydrin were observed to induce Zn(II) ejection from p300 and the catalytic domain of the histone demethylase KDM4A. Together with previous reports on the effects of reated compounds on HIF-1α and other systems, the results suggest that care should be taken in interpreting biological results obtained with highly electrophilic/ thiol modifying compounds. PMID:25023609

  7. HIF1α is an independent prognostic factor for overall survival in advanced primary epithelial ovarian cancer – a study of the OVCAD Consortium

    Directory of Open Access Journals (Sweden)

    Braicu EI

    2014-09-01

    Full Text Available Elena Ioana Braicu,1 Hrvoje Luketina,1 Rolf Richter,1 Dan Cacsire Castillo-Tong,2 Sandrina Lambrechts,4 Sven Mahner,5 Nicole Concin,6 Monika Mentze,1 Robert Zeillinger,2,3 Ignace Vergote,4 Jalid Sehouli1 1Department of Gynecology, European Competence Center for Ovarian Cancer, Charité – Universitätsmedizin Berlin, Berlin, Germany; 2Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, 3Ludwig Boltzmann Cluster Translational Oncology, General Hospital of Vienna, Vienna, Austria; 4Department of Obstetrics and Gynecology, Universitaire Ziekenhuizen Leuven, Katholieke Universiteit Leuven, Leuven, Belgium; 5Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 6Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, AustriaPurpose: Hypoxia is a common phenomenon encountered in solid cancers, leading to chemotherapy resistance and therefore to aggressiveness of the disease. The homeostatic response to hypoxia is mediated by hypoxia-inducible factor-1 (HIF-1. The aim of this study was to investigate the impact of HIF1α in patients with primary epithelial ovarian cancer.Methods: In this multicentric study, 275 patients with advanced primary epithelial ovarian cancer were included. All patients underwent cytoreductive surgery with maximal surgical effort and adjuvant platinum-based chemotherapy. HIF1α expression was analyzed in tissue lysates, using an enzyme-linked immunosorbent assay.Results: HIF1α was detected in 79.3% of the tissue samples. Patients with increased HIF1α expression (cutoff: 80 pg/mg protein in tumoral tissue lysates were more likely to have less favorable survival. HIF1α (P=0.009, hazard ratio [HR] 2.505, 95% confidence interval [95% CI] 1.252–5.013 together with International Federation of Gynecology and Obstetrics (III versus IV (P=0.013, HR 0.540, 95% CI 0.332–0.878, histology (P=0.007, HR

  8. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells.

    Science.gov (United States)

    Zhang, Huimin; Lu, Haiquan; Xiang, Lisha; Bullen, John W; Zhang, Chuanzhao; Samanta, Debangshu; Gilkes, Daniele M; He, Jianjun; Semenza, Gregg L

    2015-11-10

    Increased expression of CD47 has been reported to enable cancer cells to evade phagocytosis by macrophages and to promote the cancer stem cell phenotype, but the molecular mechanisms regulating CD47 expression have not been determined. Here we report that hypoxia-inducible factor 1 (HIF-1) directly activates transcription of the CD47 gene in hypoxic breast cancer cells. Knockdown of HIF activity or CD47 expression increased the phagocytosis of breast cancer cells by bone marrow-derived macrophages. CD47 expression was increased in mammosphere cultures, which are enriched for cancer stem cells, and CD47 deficiency led to cancer stem cell depletion. Analysis of datasets derived from thousands of patients with breast cancer revealed that CD47 expression was correlated with HIF target gene expression and with patient mortality. Thus, CD47 expression contributes to the lethal breast cancer phenotype that is mediated by HIF-1.

  9. Targeting the ROS-HIF-1-endothelin axis as a therapeutic approach for the treatment of obstructive sleep apnea-related cardiovascular complications.

    Science.gov (United States)

    Belaidi, Elise; Morand, Jessica; Gras, Emmanuelle; Pépin, Jean-Louis; Godin-Ribuot, Diane

    2016-12-01

    Obstructive sleep apnea (OSA) is now recognized as an independent and important risk factor for cardiovascular diseases such as hypertension, coronary heart disease, heart failure and stroke. Clinical and experimental data have confirmed that intermittent hypoxia is a major contributor to these deleterious consequences. The repetitive occurrence of hypoxia-reoxygenation sequences generates significant amounts of free radicals, particularly in moderate to severe OSA patients. Moreover, in addition to hypoxia, reactive oxygen species (ROS) are potential inducers of the hypoxia inducible transcription factor-1 (HIF-1) that promotes the transcription of numerous adaptive genes some of which being deleterious for the cardiovascular system, such as the endothelin-1 gene. This review will focus on the involvement of the ROS-HIF-1-endothelin signaling pathway in OSA and intermittent hypoxia and discuss current and potential therapeutic approaches targeting this pathway to treat or prevent cardiovascular disease in moderate to severe OSA patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Induction of heme oxygenase-1, biliverdin reductase and H-ferritin in lung macrophage in smokers with primary spontaneous pneumothorax: role of HIF-1alpha.

    Directory of Open Access Journals (Sweden)

    Delphine Goven

    2010-05-01

    Full Text Available Few data concern the pathophysiology of primary spontaneous pneumothorax (PSP, which is associated with alveolar hypoxia/reoxygenation. This study tested the hypothesis that PSP is associated with oxidative stress in lung macrophages. We analysed expression of the oxidative stress marker 4-HNE; the antioxidant and anti-inflammatory proteins heme oxygenase-1 (HO-1, biliverdin reductase (BVR and heavy chain of ferritin (H-ferritin; and the transcription factors controlling their expression Nrf2 and HIF-1alpha, in lung samples from smoker and nonsmoker patients with PSP (PSP-S and PSP-NS, cigarette smoke being a risk factor of recurrence of the disease.mRNA was assessed by RT-PCR and proteins by western blot, immunohistochemistry and confocal laser analysis. 4-HNE, HO-1, BVR and H-ferritin were increased in macrophages from PSP-S as compared to PSP-NS and controls (C. HO-1 increase was associated with increased expression of HIF-1alpha mRNA and protein in alveolar macrophages in PSP-S patients, whereas Nrf2 was not modified. To understand the regulation of HO-1, BVR and H-ferritin, THP-1 macrophages were exposed to conditions mimicking conditions in C, PSP-S and PSP-NS patients: cigarette smoke condensate (CS or air exposure followed or not by hypoxia/reoxygenation. Silencing RNA experiments confirmed that HIF-1alpha nuclear translocation was responsible for HO-1, BVR and H-ferritin induction mediated by CS and hypoxia/reoxygenation.PSP in smokers is associated with lung macrophage oxidative stress. The response to this condition involves HIF-1alpha-mediated induction of HO-1, BVR and H-ferritin.

  11. Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells.

    Science.gov (United States)

    Woo, Yu Mi; Shin, Yubin; Lee, Eun Ji; Lee, Sunyoung; Jeong, Seung Hun; Kong, Hyun Kyung; Park, Eun Young; Kim, Hyoung Kyu; Han, Jin; Chang, Minsun; Park, Jong-Hoon

    2015-01-01

    Tamoxifen resistance is often observed in the majority of estrogen receptor-positive breast cancers and it remains as a serious clinical problem in breast cancer management. Increased aerobic glycolysis has been proposed as one of the mechanisms for acquired resistance to chemotherapeutic agents in breast cancer cells such as adriamycin. Herein, we report that the glycolysis rates in LCC2 and LCC9--tamoxifen-resistant human breast cancer cell lines derived from MCF7--are higher than those in MCF7S, which is the parent MCF7 subline. Inhibition of key glycolytic enzyme such as hexokinase-2 resulted in cell growth retardation at higher degree in LCC2 and LCC9 than that in MCF7S. This implies that increased aerobic glycolysis even under O2-rich conditions, a phenomenon known as the Warburg effect, is closely associated with tamoxifen resistance. We found that HIF-1α is activated via an Akt/mTOR signaling pathway in LCC2 and LCC9 cells without hypoxic condition. Importantly, specific inhibition of hexokinase-2 suppressed the activity of Akt/mTOR/HIF-1α axis in LCC2 and LCC9 cells. In addition, the phosphorylated AMPK which is a negative regulator of mTOR was decreased in LCC2 and LCC9 cells compared to MCF7S. Interestingly, either the inhibition of mTOR activity or increase in AMPK activity induced a reduction in lactate accumulation and cell survival in the LCC2 and LCC9 cells. Taken together, our data provide evidence that development of tamoxifen resistance may be driven by HIF-1α hyperactivation via modulation of Akt/mTOR and/or AMPK signaling pathways. Therefore, we suggest that the HIF-1α hyperactivation is a critical marker of increased aerobic glycolysis in accordance with tamoxifen resistance and thus restoration of aerobic glycolysis may be novel therapeutic target for treatment of tamoxifen-resistant breast cancer.

  12. An Experimental Study of Radiation Effect on Normal Tissue: Analysis of HIF-1α, VEGF, eIF2, TIA-1, and TSP-1 Expression.

    Science.gov (United States)

    Aktaş, Caner; Kurtman, Cengiz; Ozbilgin, M Kemal; Tek, Ibrahim; Toprak, Selami Koçak

    2013-12-01

    This study investigated whether or not the stress and hypoxia, which are the effects of radiation on normal vascular endothelium, leading to the release of HIF-1α, VEGF, eIF2, TIA-1, and TSP-1 were related and the possibility of them stimulating angiogenesis.
 Twenty-four male Swiss Albino mice were separated into 4 groups. The first group was the control group (Group 1), and the second, third, and fourth groups were euthanized after 24 h (Group 2), 48 h (Group 3), and 7 days (Group 4), respectively. A single-fractioned 10 Gy of ionizing radiation was applied to all mice's pelvic zone with Co-60. Bladders were removed completely from the pelvic region. Immunohistochemistry and light microscopy were used to investigate whether there would be an increase or not in the angiogenesis pathway by using the HIF-1α, VEGF, eIF2, TIA-1, and TSP-1 antibodies. The HIF-1α antibody showed strong staining in Group 3, while the staining intensity was less in other groups. VEGF showed weak staining in Groups 1 and 4, while moderate staining in Group 2 and strong staining in Group 3 was observed. eIF2 showed strong staining in Groups 1 and 4. Groups 2 and 3 were stained weakly. In the present study, staining with TSP-1 was very strong in the samples belonging to Group 1, while other groups showed very weak staining. When normal tissue was exposed to radiation, the positively effective factors (HIF-1, VEGF, eIF2, and TIA-1) on the angiogenesis pathway were increased while the negative factor (TSP-1) was decreased. Radiation may initiate physiological angiogenesis in the normal tissue and accelerate healing in the damaged normal tissue. None declared.

  13. Minocycline ameliorates hypoxia-induced blood-brain barrier damage by inhibition of HIF-1α through SIRT-3/PHD-2 degradation pathway.

    Science.gov (United States)

    Yang, F; Zhou, L; Wang, D; Wang, Z; Huang, Q-Y

    2015-09-24

    Minocycline, a second-generation tetracycline alleviates neuro-inflammation and protects the blood-brain barrier (BBB) in ischemia stroke. However, the effect of minocycline in hypoxia-induced BBB damage is unclear. Here, we have investigated the effect of minocycline under hypoxia and explored its possible underlying mechanisms. The effect of minocycline was examined in vitro in Human Brain Microvascular Endothelial Cells (HBMECs) using Trans Epithelial Electric Resistance (TEER). Protein and mRNA expression of Hypoxia-Inducible Factors-1α (HIF-1α), matrix metalloproteinases (MMP-2 and MMP-9) and tight junction proteins (TJs) were detected by using Western blot and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The translocation and transcription of HIF-1α were detected by using immunocytochemistry and luciferase reporter assay. In vivo, to adult male Sprague Dawley (SD) rats under hypobaric hypoxia were administered minocycline for 1h and BBB permeability was tested by using Evans Blue and Transmission Electron Microscopy (TEM). Also, reduction of NAD-dependent deacetylase sirtuin-3 (SIRT-3)/proline hydroxylase-2 (PHD-2) signaling pathway was evaluated. Minocycline increased TEER in HBMECs after hypoxia (PMinocycline administration significantly reduced HIF-1α expression, protein and mRNA expression of MMP-2, MMP-9 and Vascular Endothelial Growth Factor (VEGF) (Pminocycline reversed the hypoxia-induced reduction of PHD-2 (Pminocycline were abolished by siRNA-mediated knockdown of SIRT-3 in the brain. Minocycline inhibits HIF-1α-mediated cellular responses and protects BBB integrity through SIRT-3/PHD-2 pathway, proving to be a potential drug for the prevention and treatment of hypoxic brain injuries. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. The effects of ozone therapy on caspase pathways, TNF-α, and HIF-1α in diabetic nephropathy.

    Science.gov (United States)

    Güçlü, Aydın; Erken, Haydar Ali; Erken, Gülten; Dodurga, Yavuz; Yay, Arzu; Özçoban, Özge; Şimşek, Hasan; Akçılar, Aydın; Koçak, Fatma Emel

    2016-03-01

    Accelerated apoptosis plays a vital role in the development of diabetic vascular complications. Ozone may attenuate diabetic nephropathy by means of decreased apoptosis-related genes. The aim of our study was to investigate the effect of ozone therapy on streptozotocin-induced diabetic nephropathy in rats. Also the histopathological changes in diabetic kidney tissue with ozone treatment were evaluated. The rats were randomly divided into six groups (n = 7): control (C), ozone (O), diabetic (D), ozone-treated diabetic (DO), insulin-treated diabetic (DI), and ozone- and insulin-treated diabetic (DOI). D, DI, and DOI groups were induced by a single intraperitoneal injection of streptozotocin. Ozone was given to the O, DO, and DOI groups. Group DI and DOI received subcutaneous (SC) insulin (3 IU). All animals received daily treatment for 6 weeks. Expressions of caspase-1-3-9, HIF-1α, and TNF-α genes were significantly higher in D group compared to C group (p Ozone treatment resulted in significant decrease in the expressions of these genes in diabetic kidney tissue compared to both C and D group (p ozone treatment to insulin therapy resulted in more significantly decrease in the expressions of these genes in diabetic tissue compared to only insulin-treated diabetic group (p ozone treatment resulted in decrease in the renal corpuscular inflammation and normal kidney morphology was observed. Both insulin and ozone therapies apparently improved kidney histological findings with less degenerated tubules and less inflammation of renal corpuscle compared to D, DO, and DI groups. Ozone therapy decreases the expressions of apoptotic genes in diabetic kidney tissue and improves the histopathological changes.

  15. Hypoxia regulates CD44 and its variant isoforms through HIF-1α in triple negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Balaji Krishnamachary

    Full Text Available BACKGROUND: The CD44 transmembrane glycoproteins play multifaceted roles in tumor progression and metastasis. CD44 expression has also been associated with stem-like breast cancer cells. Hypoxia commonly occurs in tumors and is a major cause of radiation and chemo-resistance. Hypoxia is known to inhibit differentiation and facilitates invasion and metastasis. Here we have investigated the effect of hypoxia on CD44 and two of its isoforms in MDA-MB-231 and SUM-149 triple negative human breast cancer cells and MDA-MB-231 tumors using imaging and molecular characterization. METHODS AND FINDINGS: The roles of hypoxia and hypoxia inducible factor (HIF in regulating the expression of CD44 and its variant isoforms (CD44v6, CD44v7/8 were investigated in human breast cancer cells, by quantitative real-time polymerase chain reaction (qRT-PCR to determine mRNA levels, and fluorescence associated cell sorting (FACS to determine cell surface expression of CD44, under normoxic and hypoxic conditions. In vivo imaging studies with tumor xenografts derived from MDA-MD-231 cells engineered to express tdTomato red fluorescence protein under regulation of hypoxia response elements identified co-localization between hypoxic fluorescent regions and increased concentration of (125I-radiolabeled CD44 antibody. CONCLUSIONS: Our data identified HIF-1α as a regulator of CD44 that increased the number of CD44 molecules and the percentage of CD44 positive cells expressing variant exons v6 and v7/8 in breast cancer cells under hypoxic conditions. Data from these cell studies were further supported by in vivo observations that hypoxic tumor regions contained cells with a higher concentration of CD44 expression.

  16. Hypoxia regulates CD44 and its variant isoforms through HIF-1α in triple negative breast cancer.

    Science.gov (United States)

    Krishnamachary, Balaji; Penet, Marie-France; Nimmagadda, Sridhar; Mironchik, Yelena; Raman, Venu; Solaiyappan, Meiyappan; Semenza, Gregg L; Pomper, Martin G; Bhujwalla, Zaver M

    2012-01-01

    The CD44 transmembrane glycoproteins play multifaceted roles in tumor progression and metastasis. CD44 expression has also been associated with stem-like breast cancer cells. Hypoxia commonly occurs in tumors and is a major cause of radiation and chemo-resistance. Hypoxia is known to inhibit differentiation and facilitates invasion and metastasis. Here we have investigated the effect of hypoxia on CD44 and two of its isoforms in MDA-MB-231 and SUM-149 triple negative human breast cancer cells and MDA-MB-231 tumors using imaging and molecular characterization. The roles of hypoxia and hypoxia inducible factor (HIF) in regulating the expression of CD44 and its variant isoforms (CD44v6, CD44v7/8) were investigated in human breast cancer cells, by quantitative real-time polymerase chain reaction (qRT-PCR) to determine mRNA levels, and fluorescence associated cell sorting (FACS) to determine cell surface expression of CD44, under normoxic and hypoxic conditions. In vivo imaging studies with tumor xenografts derived from MDA-MD-231 cells engineered to express tdTomato red fluorescence protein under regulation of hypoxia response elements identified co-localization between hypoxic fluorescent regions and increased concentration of (125)I-radiolabeled CD44 antibody. Our data identified HIF-1α as a regulator of CD44 that increased the number of CD44 molecules and the percentage of CD44 positive cells expressing variant exons v6 and v7/8 in breast cancer cells under hypoxic conditions. Data from these cell studies were further supported by in vivo observations that hypoxic tumor regions contained cells with a higher concentration of CD44 expression.

  17. The Class I HDAC Inhibitor RGFP963 Enhances Consolidation of Cued Fear Extinction

    Science.gov (United States)

    Bowers, Mallory E.; Xia, Bing; Carreiro, Samantha; Ressler, Kerry J.

    2015-01-01

    Evidence indicates that broad, nonspecific histone deacetylase (HDAC) inhibition enhances learning and memory, however, the contribution of the various HDACs to specific forms of learning is incompletely understood. Here, we show that the Class I HDAC inhibitor, RGFP963, enhances consolidation of cued fear extinction. However, RGFP966, a strong…

  18. Analysis of the relationship between ultrasound of breast cancer DOT-SDI and the expression of MVD, VEGF and HIF-1α.

    Science.gov (United States)

    Wang, Hai-long; Zhang, Zhou-long

    2014-09-01

    Ultrasonic light scattering tomography system is a new imaging technique for breast function, which associates with diffused optical tomography (DOT) with ultrasonic examination. It locates breast neoplasm with ultrasonic examination and measures the total hemoglobin concentration inside the tumor with DOT photon emission to reflect the metabolic state of tumors and then comes to synthesis diagnostic index to judge benign and malignant tumors. This diagnosis method has significant affection on diagnosis of benign and malignant tumors at home and abroad. In the development of breast cancer, local tissue hypoxia leads to a large number of new blood vessels when the tumor grows faster than the rate of angiogenesis. A recent study found microvessel density (MVD), vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 alpha (HIF-1α) play a major role in angiogenesis of breast cancer. This study analyses the relationship between breast cancer ultrasound synthesis diagnostic index (SDI) and the expression of MVD, VEGF and HIF-1α by testing the expression level of the breast cancer gene MVD, VEGF and HIF-1α.

  19. Nitric Oxide Modulates Macrophage Responses toMycobacterium tuberculosisInfection through Activation of HIF-1α and Repression of NF-κB.

    Science.gov (United States)

    Braverman, Jonathan; Stanley, Sarah A

    2017-09-01

    IFN-γ is essential for control of Mycobacterium tuberculosis infection in vitro and in vivo. However, the mechanisms by which IFN-γ controls infection remain only partially understood. One of the crucial IFN-γ target genes required for control of M. tuberculosis is inducible NO synthase (iNOS). Although NO produced by iNOS is thought to have direct bactericidal activity against M. tuberculosis , the role of NO as a signaling molecule has been poorly characterized in the context M. tuberculosis infection. In this study, we found that iNOS broadly regulates the macrophage transcriptome during M. tuberculosis infection, activating antimicrobial pathways while also limiting inflammatory cytokine production. The transcription factor hypoxia inducible factor-1α (HIF-1α) was recently shown to be critical for IFN-γ-mediated control of M. tuberculosis infection. We found that HIF-1α function requires NO production, and that HIF-1α and iNOS are linked by a positive feedback loop that amplifies macrophage activation. Furthermore, we found that NO inhibits NF-κB activity to prevent hyperinflammatory responses. Thus, NO activates robust microbicidal programs while also limiting damaging inflammation. IFN-γ signaling must carefully calibrate an effective immune response that does not cause excessive tissue damage, and this study identifies NO as a key player in establishing this balance during M. tuberculosis infection. Copyright © 2017 by The American Association of Immunologists, Inc.

  20. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression

    Science.gov (United States)

    Ning, Chen; Wen, Jiaming; Zhang, Yujin; Dai, Yingbo; Wang, Wei; Zhang, Weiru; Qi, Lin; Grenz, Almut; Eltzschig, Holger K.; Blackburn, Michael R.; Kellems, Rodney E.; Xia, Yang

    2014-01-01

    Priapism is featured with prolonged and painful penile erection and is prevalent among males with sickle cell disease (SCD). The disorder is a dangerous urological and hematological emergency since it is associated with ischemic tissue damage and erectile disability. Here we report that phosphodiesterase-5 (PDE5) gene expression and PDE activity is significantly reduced in penile tissues of two independent priapic models: SCD mice and adenosine deaminase (ADA)-deficient mice. Moreover, using ADA enzyme therapy to reduce adenosine or a specific antagonist to block A2B adenosine receptor (ADORA2B) signaling, we successfully attenuated priapism in both ADA−/− and SCD mice by restoring penile PDE5 gene expression to normal levels. This finding led us to further discover that excess adenosine signaling via ADORA2B activation directly reduces PDE5 gene expression in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. Overall, we reveal that excess adenosine-mediated ADORA2B signaling underlies reduced penile PDE activity by decreasing PDE5 gene expression in a HIF-1α-dependent manner and provide new insight for the pathogenesis of priapism and novel therapies for the disease.—Ning, C., Wen, J., Zhang, Y., Dai, Y., Wang, W., Zhang, W., Qi, L., Grenz, A., Eltzschig, H. K., Blackburn, M. R., Kellems, R. E., Xia, Y. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression. PMID:24614760

  1. Embryonic Stem Cell Differentiation to Functional Arterial Endothelial Cells through Sequential Activation of ETV2 and NOTCH1 Signaling by HIF1α

    Directory of Open Access Journals (Sweden)

    Kit Man Tsang

    2017-09-01

    Full Text Available The generation of functional arterial endothelial cells (aECs from embryonic stem cells (ESCs holds great promise for vascular tissue engineering. However, the mechanisms underlying their generation and the potential of aECs in revascularizing ischemic tissue are not fully understood. Here, we observed that hypoxia exposure of mouse ESCs induced an initial phase of HIF1α-mediated upregulation of the transcription factor Etv2, which in turn induced the commitment to the EC fate. However, sustained activation of HIF1α in these EC progenitors thereafter induced NOTCH1 signaling that promoted the transition to aEC fate. We observed that transplantation of aECs mediated arteriogenesis in the mouse hindlimb ischemia model. Furthermore, transplantation of aECs in mice showed engraftment in ischemic myocardium and restored cardiac function in contrast to ECs derived under normoxia. Thus, HIF1α activation of Etv2 in ESCs followed by NOTCH1 signaling is required for the generation aECs that are capable of arteriogenesis and revascularization of ischemic tissue.

  2. α-Solanine inhibits vascular endothelial growth factor expression by down-regulating the ERK1/2-HIF-1α and STAT3 signaling pathways.

    Science.gov (United States)

    Wen, Zhengde; Huang, Chaohao; Xu, Yaya; Xiao, Yuwu; Tang, Lili; Dai, Juji; Sun, Hongwei; Chen, Bicheng; Zhou, Mengtao

    2016-01-15

    In tumors, vascular endothelial growth factor (VEGF) contributes to angiogenesis, vascular permeability, and tumorigenesis. In our previous study, we found that α-solanine, which is widespread in solanaceae, has a strong anti-cancer effect under normoxia. However, it is unknown whether α-solanine has a similar effect under hypoxia. We used cobalt chloride (CoCl2) to mimic hypoxia in vitro. HIF-1α, which is almost undetectable under normoxia, was significantly increased. Simultaneously, another regulator of VEGF, STAT3, was also significantly activated by CoCl2. We utilized α-solanine in co-culture with CoCl2. α-solanine decreased the expression of VEGF and loss of E-cadherin. α-solanine also suppressed the activation of phospho-ERK1/2 (p-ERK1/2), HIF-1α, and STAT3 signaling. The results provide new evidence that α-solanine has a strong anti-cancer effect via the ERK1/2-HIF-1α and STAT3 signaling pathways and suggest that it may be a potential new drug. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. ERK1/2 and HIF1α Are Involved in Antiangiogenic Effect of Polyphenols-Enriched Fraction from Chilean Propolis

    Directory of Open Access Journals (Sweden)

    Alejandro Cuevas

    2015-01-01

    Full Text Available Propolis has been shown to modulate the angiogenesis in both in vitro and in vivo models. Thus, we aimed to evaluate the antiangiogenic properties of an ethanolic extract of Chilean propolis (EEP and Pinocembrin (Pn. Migration, formation of capillary-like structures of endothelial cells, and sprouting from rat aortic rings were used to assess the antiangiogenic properties of EEP or Pn. In addition, microRNAs and VEGFA mRNA expression were studied by qPCR. ERK1/2 phosphorylation and HIF1α stabilization were assessed by western blot. EEP or Pn attenuated the migration, the capillary-like tube formation, and the sprouting in the in vitro assays. In addition, the activation of HIF1α and ERK1/2 and the VEGFA mRNA expression was significantly inhibited in a dose-dependent manner. In summary, these results suggest that HIF1α and ERK1/2 phosphorylation could be involved in the antiangiogenic effect of Chilean propolis, but more studies are needed to corroborate these findings.

  4. Angiotensin-(1-7) attenuated long-term hypoxia-stimulated cardiomyocyte apoptosis by inhibiting HIF-1α nuclear translocation via Mas receptor regulation.

    Science.gov (United States)

    Chang, Ruey-Lin; Lin, Jing-Wei; Kuo, Wei-Wen; Hsieh, Dennis Jine-Yuan; Yeh, Yu-Lan; Shen, Chia-Yao; Day, Cecilia-Hsuan; Ho, Tsung-Jung; Viswanadha, Vijaya Padma; Huang, Chih-Yang

    2016-02-01

    Extreme hypoxia often leads to myocardial apoptosis and causes heart failure. Angiotensin-(1-7)Ang-(1-7) is well known for its cardio-protective effects. However, the effects of Ang-(1-7) on long-term hypoxia (LTH)-induced apoptosis remain unknown. In this study, we found that Ang-(1-7) reduced myocardial apoptosis caused by hypoxia through the Mas receptor. Activation of the Ang-(1-7)/Mas axis down-regulated the hypoxia pro-apoptotic signaling cascade by decreasing the protein levels of hypoxia-inducible factor 1α (HIF-1α) and insulin-like growth factor binding protein-3 (IGFBP3). Moreover, the Ang-(1-7)/Mas axis further inhibited HIF-1α nuclear translocation. On the other hand, Ang-(1-7) activated the IGF1R/PI3K/Akt signaling pathways, which mediate cell survival. However, the above effects were abolished by A779 treatment or silencing of Mas expression. Taken together, our findings indicate that the Ang-(1-7)/Mas axis protects cardiomyocytes from LTH-stimulated apoptosis. The protective effect of Ang-(1-7) is associated with the inhibition of HIF-1α nuclear translocation and the induction of IGF1R and Akt phosphorylation.

  5. [Effect of RNA interference targeting HIF-1α gene on biological behavior of human esophageal squamous cell carcinoma and gastric adenocarcinoma cells in vitro].

    Science.gov (United States)

    Zeng, Kai-feng; Jin, Hai-lin; Zhang, Wei-feng; Xiao, Bin; Zhu, Hong; Hao, Bo; Shi, Rui-hua

    2011-04-01

    To investigate the effect of hypoxia inducible factor-1α (HIF-1α) on the proliferation, migration and vasculogenic mimicry(VM) in human esophageal squamous cell carcinoma cell line Eca-109 and gastric adenocarcinoma cell line SGC-7901 in vitro. The recombinant plasmid pGCsi-shHIF-1α was transfected into Eca-109 and SGC-7901 cells by Lipofectamine(TM) 2000. The inhibitory effect of HIF-1α was measured at protein level by Western blot under normoxia and hypoxia. The cell proliferation was detected by colony formation and MTT assays. The migration of transfected cells was assayed using Transwell chambers. Whether Eca-109 and SGC-7901 cells could form the capillary tube-like structures (TLSs) was observed by 3-dimensional culture, and the tube formation of transfected cells was detected by tube-like structure formation assay. The expression of HIF-1α protein in each group of transfected cells was significantly suppressed under normoxia and hypoxia (Eca-109: 0.00, 0.74 ± 0.05; 0.00, 1.11 ± 0.06; SGC-7901: 0.00, 0.60 ± 0.05; 0.00, 0.96 ± 0.07, P groups (104.7 ± 9.6, 151.7 ± 4.5; 88.3 ± 5.1, 128.3 ± 6.7, P Eca-109 and SGC-7901 cells could form TLSs when cultured on matrigel, and the number of tubules was significantly increased under hypoxia (30.8 ± 3.9, 34.3 ± 3.4; 26.2 ± 3.4, 30.1 ± 4.1, P groups was significantly inhibited under normoxia and hypoxia (Eca-109: 3.7 ± 2.8, 30.8 ± 3.9; 3.9 ± 2.7, 34.3 ± 3.4; SGC-7901: 4.9 ± 3.5, 26.2 ± 3.4; 5.3 ± 3.6, 30.1 ± 4.1, P Eca-109 and gastric adenocarcinoma cell line SGC-7901 are capable of forming vasculogenic mimicry structures in vitro. The recombinant plasmid pGCsi-shHIF-1α can efficiently suppress their proliferation, migration and vasculogenic mimicry formation.

  6. Polymorphic variation of hypoxia inducible factor-1 A (HIF1A) gene might contribute to the development of knee osteoarthritis: a pilot study.

    Science.gov (United States)

    Fernández-Torres, Javier; Hernández-Díaz, Cristina; Espinosa-Morales, Rolando; Camacho-Galindo, Javier; Galindo-Sevilla, Norma del Carmen; López-Macay, Ámbar; Zamudio-Cuevas, Yessica; Martínez-Flores, Karina; Santamaría-Olmedo, Mónica Guadalupe; Pineda, Carlos; Granados, Julio; Martínez-Nava, Gabriela Angélica; Gutiérrez, Marwin; López-Reyes, Alberto G

    2015-08-21

    Osteoarthritis (OA) is a multifactorial degenerative condition of the whole joint with a complex pathogenesis whose development and progression is significantly mediated by interactions between the joint cartilage and articular tissues, particularly, proinflammatory mediators and oxidative stress, which results in cartilage deterioration and subchondral bone destruction. HIF-1 alpha regulates oxygen homeostasis in hypoxic tissues such as joint cartilage; efficiency of transcriptional activity of the HIF1A gene is strongly influenced by the presence of polymorphic variants. Given the loss of articular cartilage and with intention to restore damaged tissue, WISP-1 participates in the development of subchondral bone; further, its expression is highly increased in chondrocytes of OA patients. The aim of this study was to evaluate gene frequencies of HIF1A and WISP1 polymorphisms in Mexican patients suffering from knee OA. We determined HIF1A rs11549465 (P582S), rs11549467 (A588T), and rs2057482 (C191T), and WISP1 rs2929970 (A2364G) polymorphisms in 70 Mexican patients with knee OA and compare them to those present in 66 ethnically matched healthy controls. Genotyping for these polymorphisms was performed by Real-Time PCR using TaqMan probes. Gene frequencies exhibited a significant increase of the CC genotype of rs11549465 polymorphism in knee OA patients as compared with those present in controls (P = 0.003 OR = 5.7, 95% CI = 1.7-21.6); CT genotype and T allele showed decreased frequency in the knee OA group vs. the controls (P = 0.003 OR = 0.2, CI = 0.05-0.6; and P = 0.004 OR = 0.2, CI = 0.05-0.65, respectively). Allele frequencies of the other polymorphic variants were similar in both patients and controls. These results suggest that the presence of the rs11549465 SNP (HIF1A) plays a role protective in the loss of articular cartilage in our population, and offers the possibility to further study the molecular mechanisms within

  7. Correlation between {sup 18}F-fluoromisonidazole PET and expression of HIF-1α and VEGF in newly diagnosed and recurrent malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Nobuyuki; Ogawa, Daisuke; Miyake, Keisuke; Tamiya, Takashi [Kagawa University, Department of Neurological Surgery, Faculty of Medicine, Kagawa (Japan); Lin, Wei [Kagawa University, Department of Neurological Surgery, Faculty of Medicine, Kagawa (Japan); Fourth Military Medical University, Department of Neurosurgery, Xijing Hospital, Xi' an (China); Cao, Wei-Dong [Fourth Military Medical University, Department of Neurosurgery, Xijing Hospital, Xi' an (China); Haba, Reiji [Kagawa University, Department of Diagnostic Pathology, Faculty of Medicine, Kagawa (Japan); Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro [Kagawa University, Department of Radiology, Faculty of Medicine, Kagawa (Japan)

    2014-10-15

    Hypoxia and its consequences at the molecular level promote tumour progression and affect patient prognosis. One of the main early cellular events evoked by hypoxia is induction of hypoxia-inducible factor 1 (HIF-1) and subsequent upregulation of vascular endothelial growth factor (VEGF). In this study we sought to determine whether hypoxia detected by {sup 18}F-fluoromisonidazole (FMISO) PET accurately reflects the expression of HIF-1α and VEGF in the tumour and can be used as a biomarker of antiangiogenic treatment and as a prognostic factor in newly diagnosed and recurrent malignant gliomas. Enrolled in this study were 32 patients with newly diagnosed glioma and 16 with recurrent glioma of grade III or grade IV. All the patients had undergone FMISO PET preoperatively. The maximum tumour-to-blood FMISO activity ratio (T/B{sub max}) was used to evaluate the degree of tumour hypoxia and the hypoxic volume (HV) was calculated using a tumour-to-blood FMISO uptake ratio of ≥1.2. Immunohistochemical expressions of HIF-1α and VEGF were evaluated semiquantitatively using the immunoreactivity score (IRS, scores 0 to 12) and the correlation was examined between IRS of HIF-1α or VEGF and FMISO uptake of the tumour (SUV{sub tumour}) using navigation-based sampling. Survival was estimated using the Kaplan-Meier method in relation to the T/B{sub max} and the HV. The T/B{sub max} and the HV in grade IV gliomas were significantly higher than in grade III gliomas (P < 0.01 and P < 0.01, respectively). Moderate to strong HIF-1α and VEGF expression was observed in the majority of malignant gliomas. The IRS of HIF-1α and VEGF in the tumour were not significantly different between grade III and grade IV gliomas. The IRS of HIF-1α in the tumour did not correlate with the SUV{sub tumour} of FMISO in either newly diagnosed or recurrent glioma. There was a significant but weak correlation between the IRS of VEGF and the SUV{sub tumour} of FMISO in newly diagnosed glioma, but not

  8. Immunohistochemical profile of HIF-1α, VEGF-A, VEGFR2 and MMP9 proteins in tegumentary leishmaniasis Estudo da expressão imunohistoquímica das proteínas HIF-1α, VEGF-A, VEGFR2 e MMP9 em leishmaniose tegumentar americana

    Directory of Open Access Journals (Sweden)

    Carlos Alberto de Carvalho Fraga

    2012-10-01

    Full Text Available BACKGROUND: Leishmaniasis is one of the most important infectious diseases worldwide. Our study can provide more knowledge about angiogenic and hypoxic events in leishmaniasis. We attempted to verify whether the HIF-1 α protein expression may be associated to VEGF-A, VEGFR2 and MMP9 in leishmanial lesions. OBJECTIVES: Besides understanding the pathway, we performed the correlation of VEGF-A, VEGFR2 and MMP9 proteins. METHODS: In this study, we gathered 54 paraffin blocks taken from skin lesions in patients from northern Minas Gerais, Brazil, with confirmed diagnosis of tegumentary leishmaniasis. Immunohistochemistry was used to evaluate the expression of the proteins. The expression of HIF-1α was categorized into two groups according to the median: HIF-1 α lower and HIF-1 α higher. RESULTS: We observed increase of VEGFR2 and MMP9 protein expressions in HIF-1 α higher group of epithelial cells. Spearman analyses in epithelial cells showed correlation between VEGF-A and MMP9, VEGFR2 and MMP9 protein expression. CONCLUSIONS: HIF-1 α higher group showed increase of VEGFR2 and MMP9 proteins. In epithelial cells, VEGF-A was correlated to MMP9 protein. Furthermore, considering leukocyte cells, VEGFR2 was negatively correlated to MMP9 protein levels. This pathway possibly prepares the cells for a higher activity in a hypoxic or an angiogenic microenvironment. Other in vitro and in vivo studies may clarify the activation mechanism and the response from the proteins HIF-1 α, VEGFR2 and MMP-9 in tegumentary leishmaniasis.FUNDAMENTOS: A leishmaniose é uma das mais importantes doenças infecciosas em todo o mundo. Em leishmaniose, tem sido sugerido que muitas características da lesão está associado a eventos de hipóxia, podendo este ter um papel fundamental na evolução da doença. OBJETIVO: O presente estudo pode fornecer dados acerca do fenômeno hipóxia e da angiogênese em leishmaniose tegumentar americana. Buscou-se verificar se a express

  9. Methylprednisolone inhibits the proliferation and affects the differentiation of rat spinal cord-derived neural progenitor cells cultured in low oxygen conditions by inhibiting HIF-1α and Hes1 in vitro.

    Science.gov (United States)

    Wang, Wenhao; Wang, Peng; Li, Shiyuan; Yang, Jiewen; Liang, Xinjun; Tang, Yong; Li, Yuxi; Yang, Rui; Wu, Yanfeng; Shen, Huiyong

    2014-09-01

    Although there is much controversy over the use of methylprednisolone (MP), it is one of the main drugs used in the treatment of acute spinal cord injury (SCI). The induction of the proliferation and differentiation of endogenous neural progenitor cells (NPCs) is considered a promising mode of treatment for SCI. However, the effects of MP on spinal cord-derived endogenous NPCs in a low oxygen enviroment remain to be delineated. Thus, the aim of this study was to investigate the potential effects of MP on NPCs cultured under low oxygen conditions in vitro and to elucidate the molecular mechanisms involved. Fetal rat spinal cord-derived NPCs were harvested and divided into 4 groups: 2 groups of cells cultured under normal oxygen conditions and treated with or without MP, and 2 groups incubated in 3% O2 (low oxygen) treated in a similar manner. We found that MP induced suppressive effects on NPC proliferation even under low oxygen conditions (3% O2). The proportion of nestin-positive NPCs decreased from 51.8±2.46% to 36.17±3.55% following the addition of MP and decreased more significantly to 27.20±2.68% in the cells cultured in 3% O2. In addition, a smaller number of glial fibrillary acidic protein (GFAP)-positive cells and a greater number of microtubule-associated protein 2 (MAP2)-positive cells was observed following the addition of MP under both normal (normoxic) and low oxygen (hypoxic) conditions. In response to MP treatment, hypoxia-inducible factor-1α (HIF-1α) and the Notch signaling pathway downstream protein, Hes1, but not the upstream Notch-1 intracelluar domain (NICD), were inhibited. After blocking NICD with a γ-secretase inhibitor (DAPT) MP still inhibited the expression of Hes1. Our results provide insight into the molecular mechanisms responsible for the MP-induced inhibition of proliferation and its effects on differentiation and suggest that HIF-1α and Hes1 play an important role in this effect.

  10. Expression of MUC17 is regulated by HIF1α-mediated hypoxic responses and requires a methylation-free hypoxia responsible element in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Sho Kitamoto

    Full Text Available MUC17 is a type 1 membrane-bound glycoprotein that is mainly expressed in the digestive tract. Recent studies have demonstrated that the aberrant overexpression of MUC17 is correlated with the malignant potential of pancreatic ductal adenocarcinomas (PDACs; however, the exact regulatory mechanism of MUC17 expression has yet to be identified. Here, we provide the first report of the MUC17 regulatory mechanism under hypoxia, an essential feature of the tumor microenvironment and a driving force of cancer progression. Our data revealed that MUC17 was significantly induced by hypoxic stimulation through a hypoxia-inducible factor 1α (HIF1α-dependent pathway in some pancreatic cancer cells (e.g., AsPC1, whereas other pancreatic cancer cells (e.g., BxPC3 exhibited little response to hypoxia. Interestingly, these low-responsive cells have highly methylated CpG motifs within the hypoxia responsive element (HRE, 5'-RCGTG-3', a binding site for HIF1α. Thus, we investigated the demethylation effects of CpG at HRE on the hypoxic induction of MUC17. Treatment of low-responsive cells with 5-aza-2'-deoxycytidine followed by additional hypoxic incubation resulted in the restoration of hypoxic MUC17 induction. Furthermore, DNA methylation of HRE in pancreatic tissues from patients with PDACs showed higher hypomethylation status as compared to those from non-cancerous tissues, and hypomethylation was also correlated with MUC17 mRNA expression. Taken together, these findings suggested that the HIF1α-mediated hypoxic signal pathway contributes to MUC17 expression, and DNA methylation of HRE could be a determinant of the hypoxic inducibility of MUC17 in pancreatic cancer cells.

  11. Associations among pretreatment tumor necrosis and the expression of HIF-1α and PD-L1 in advanced oral squamous cell carcinoma and the prognostic impact thereof.

    Science.gov (United States)

    Chen, Tseng-Cheng; Wu, Chen-Tu; Wang, Cheng-Ping; Hsu, Wan-Lun; Yang, Tsung-Lin; Lou, Pei-Jen; Ko, Jenq-Yuh; Chang, Yih-Leong

    2015-11-01

    The treatment strategies for advanced oral squamous cell carcinoma (OSCC), especially with necrotic changes, are not effective. The programmed death ligand 1 (PD-L1) immune escape may be one of the underlying sources of resistance. Furthermore, anti-PD-L1 directed immunotherapy may be another choice for adjuvant therapy. Therefore, the expression of PD-L1 in advanced OSCC with necrotic changes is very important. A total of 218 eligible patients with advanced stage (stage III/IV) OSCC and neck metastasis were enrolled. The presence of necrosis was reviewed by pretreatment magnetic resonance imaging. Paired paraffin-embedded primary tumor and metastatic lymph nodes (LN) sections were stained with antibodies against hypoxia-inducible factor-1α (HIF-1α) and PD-L1. Moderate-to strong HIF-1α nuclear staining in >10% and cell surface PD-L1 expression in >5% of OSCC cells were recorded as a positive result. For advanced OSCC with necrotic changes, there was substantial agreement in primary tumor (kappa value 0.54) and almost perfect agreement in metastatic LN (kappa value 0.86) between HIF-1α and PD-L1 expression. The patients with both necrosis and positive PD-L1 expression in OSCC surrounding necrosis had worse disease control and survival outcomes. After multivariate analysis, metastatic LN necrosis and positive PD-L1 expression were found to be significant independent adverse factors. Advanced OSCC patients with both necrosis and positive PD-L1 expression in OSCC surrounding necrosis had worse outcome. The aggressive behavior of advanced OSCC could be partially related to PD-L1 immune escape. These patients may be good candidates for anti-PD-L1 immunotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Bioavailability, Intracellular Mobilization of Nickel, and HIF-1α Activation in Human Lung Epithelial Cells Exposed to Metallic Nickel and Nickel Oxide Nanoparticles

    Science.gov (United States)

    Liu, Xinyuan; Smith, Ashley; McNeil, Kevin; Weston, Paula; Zhitkovich, Anatoly; Hurt, Robert; Kane, Agnes B.

    2011-01-01

    Micron-sized particles of poorly soluble nickel compounds, but not metallic nickel, are established human and rodent carcinogens. In contrast, little is known about the toxic effects of a growing number of Ni-containing materials in the nano-sized range. Here, we performed physicochemical characterization of NiO and metallic Ni nanoparticles and examined their metal ion bioavailability and toxicological properties in human lung epithelial cells. Cellular uptake of metallic Ni and NiO nanoparticles, but not metallic Ni microparticles, was associated with the release of Ni(II) ions after 24–48 h as determined by Newport Green fluorescence. Similar to soluble NiCl2, NiO nanoparticles induced stabilization and nuclear translocation of hypoxia-inducible factor 1α (HIF-1α) transcription factor followed by upregulation of its target NRDG1 (Cap43). In contrast to no response to metallic Ni microparticles, nickel nanoparticles caused a rapid and prolonged activation of the HIF-1α pathway that was stronger than that induced by soluble Ni (II). Soluble NiCl2 and NiO nanoparticles were equally toxic to H460 human lung epithelial cells and primary human bronchial epithelial cells; metallic Ni nanoparticles showed lower toxicity and Ni microparticles were nontoxic. Cytotoxicity induced by all forms of Ni occurred concomitant with activation of an apoptotic response, as determined by dose- and time-dependent cleavage of caspases and poly (ADP-ribose) polymerase. Our results show that metallic Ni nanoparticles, in contrast to micron-sized Ni particles, activate a toxicity pathway characteristic of carcinogenic Ni compounds. Moderate cytotoxicity and sustained activation of the HIF-1α pathway by metallic Ni nanoparticles could promote cell transformation and tumor progression. PMID:21828359

  13. The vitamin D analogue ED71 but Not 1,25(OH2D3 targets HIF1α protein in osteoclasts.

    Directory of Open Access Journals (Sweden)

    Yuiko Sato

    Full Text Available Although both an active form of the vitamin D metabolite, 1,25(OH2D3, and the vitamin D analogue, ED71 have been used to treat osteoporosis, anti-bone resorbing activity is reportedly seen only in ED71- but not in 1,25(OH2D3 -treated patients. In addition, how ED71 inhibits osteoclast activity in patients has not been fully characterized. Recently, HIF1α expression in osteoclasts was demonstrated to be required for development of post-menopausal osteoporosis. Here we show that ED71 but not 1,25(OH2D3, suppress HIF1α protein expression in osteoclasts in vitro. We found that 1,25(OH2D3 or ED71 function in osteoclasts requires the vitamin D receptor (VDR. ED71 was significantly less effective in inhibiting M-CSF and RANKL-stimulated osteoclastogenesis than was 1,25(OH2D3 in vitro. Downregulation of c-Fos protein and induction of Ifnβ mRNA in osteoclasts, both of which reportedly block osteoclastogenesis induced by 1,25(OH2D3 in vitro, were both significantly higher following treatment with 1,25(OH2D3 than with ED71. Thus, suppression of HIF1α protein activity in osteoclasts in vitro, which is more efficiently achieved by ED71 rather than by 1,25(OH2D3, could be a reliable read-out in either developing or screening reagents targeting osteoporosis.

  14. HIF-1α and HIF-2α: siblings in promoting angiogenesis of residual hepatocellular carcinoma after high-intensity focused ultrasound ablation.

    Directory of Open Access Journals (Sweden)

    Lun Wu

    Full Text Available BACKGROUND: High-intensity focused ultrasound (HIFU is a widely applied to treatment for unresectable hepatocellular carcinoma. However, insufficient HIFU can result in rapid progression of the residual tumor. The mechanism of such rapid growth of the residual tumor after HIFU ablation is poorly understood. OBJECTIVE: The aim of this study was to investigate the dynamic angiogenesis of residual tumor, and the temporal effect and mechanism of the HIF-1, 2α in the residual tumor angiogenesis. METHODS: Xenograft tumors of HepG2 cells were created by subcutaneously inoculating nude mice (athymic BALB/c nu/nu mice with hepatoma cells. About thirty days after inoculation, all mice (except control group were treated by HIFU and assigned randomly to 7 groups according to various time intervals (1st, 3rd, 5th day (d and 1st, 2nd, 3rd, 4th week (w. The residual tumor tissues were obtained from the experimental groups at various time points. Protein levels of HIF-1α, HIF-2α, VEGF-A, and EphA2 were quantified by immunohistochemistry analysis and Western Blot assays, and mRNA levels measured by Q-PCR. Microvascular density was calculated with counting of CD31 positive vascular endothelial cells by immunohistochemical staining. RESULTS: Compared with the control group, protein and mRNA levels of HIF-1α reached their highest levels on the 3rd day (P<0.01, then decreased (P<0.05. HIF-2α expression reached its highest level on the 2nd week compared with control group (P<0.01, then decreased (2 w-4 w (P<0.05. The protein and mRNA levels of VEGF-A and EphA2 in the residual tumor tissues group that received HIFU were significantly decreased until 1 week compared with the control group (P<0.01. However, the levels increased compared to controls in 2-4 weeks (P<0.05. Similar results were obtained for MVD expression (P<0.05. CONCLUSION: Insufficient HIFU ablation promotes the angiogenesis in residual carcinoma tissue over time. The data indicate that the HIF-1, 2

  15. Structural insights into binding of small molecule inhibitors to Enhancer of Zeste Homolog 2

    Science.gov (United States)

    Kalinić, Marko; Zloh, Mire; Erić, Slavica

    2014-11-01

    Enhancer of Zeste Homolog 2 (EZH2) is a SET domain protein lysine methyltransferase (PKMT) which has recently emerged as a chemically tractable and therapeutically promising epigenetic target, evidenced by the discovery and characterization of potent and highly selective EZH2 inhibitors. However, no experimental structures of the inhibitors co-crystallized to EZH2 have been resolved, and the structural basis for their activity and selectivity remains unknown. Considering the need to minimize cross-reactivity between prospective PKMT inhibitors, much can be learned from understanding the molecular basis for selective inhibition of EZH2. Thus, to elucidate the binding of small-molecule inhibitors to EZH2, we have developed a model of its fully-formed cofactor binding site and used it to carry out molecular dynamics simulations of protein-ligand complexes, followed by molecular mechanics/generalized born surface area calculations. The obtained results are in good agreement with biochemical inhibition data and reflect the structure-activity relationships of known ligands. Our findings suggest that the variable and flexible post-SET domain plays an important role in inhibitor binding, allowing possibly distinct binding modes of inhibitors with only small variations in their structure. Insights from this study present a good basis for design of novel and optimization of existing compounds targeting the cofactor binding site of EZH2.

  16. Combining the pan-aurora kinase inhibitor AMG 900 with histone deacetylase inhibitors enhances antitumor activity in prostate cancer.

    Science.gov (United States)

    Paller, Channing J; Wissing, Michel D; Mendonca, Janet; Sharma, Anup; Kim, Eugene; Kim, Hea-Soo; Kortenhorst, Madeleine S Q; Gerber, Stephanie; Rosen, Marc; Shaikh, Faraz; Zahurak, Marianna L; Rudek, Michelle A; Hammers, Hans; Rudin, Charles M; Carducci, Michael A; Kachhap, Sushant K

    2014-10-01

    Histone deacetylase inhibitors (HDACIs) are being tested in clinical trials for the treatment of solid tumors. While most studies have focused on the reexpression of silenced tumor suppressor genes, a number of genes/pathways are downregulated by HDACIs. This provides opportunities for combination therapy: agents that further disable these pathways through inhibition of residual gene function are speculated to enhance cell death in combination with HDACIs. A previous study from our group indicated that mitotic checkpoint kinases such as PLK1 and Aurora A are downregulated by HDACIs. We used in vitro and in vivo xenograft models of prostate cancer (PCA) to test whether combination of HDACIs with the pan-aurora kinase inhibitor AMG 900 can synergistically or additively kill PCA cells. AMG 900 and HDACIs synergistically decreased cell proliferation activity and clonogenic survival in DU-145, LNCaP, and PC3 PCA cell lines compared to single-agent treatment. Cellular senescence, polyploidy, and apoptosis was significantly increased in all cell lines after combination treatment. In vivo xenograft studies indicated decreased tumor growth and decreased aurora B kinase activity in mice treated with low-dose AMG 900 and vorinostat compared to either agent alone. Pharmacodynamics was assessed by scoring for phosphorylated histone H3 through immunofluorescence. Our results indicate that combination treatment with low doses of AMG 900 and HDACIs could be a promising therapy for future clinical trials against PCA. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  17. PDE 5 inhibitor improves insulin sensitivity by enhancing mitochondrial function in adipocytes.

    Science.gov (United States)

    Yu, Hea Min; Chung, Hyo Kyun; Kim, Koon Soon; Lee, Jae Min; Hong, Jun Hwa; Park, Kang Seo

    2017-11-04

    Adipocytes are involved in many metabolic disorders. It was recently reported that phosphodiesterase type 5 (PDE5) is expressed in human adipose tissue. In addition, PDE5 inhibitors have been shown to improve insulin sensitivity in humans. However, the mechanism underlying the role of PDE5 inhibitors as an insulin sensitizer remains largely unknown. The present study was undertaken to investigate the role of the PDE5 inhibitor udenafil in insulin signaling in adipocytes and whether this is mediated through the regulation of mitochondrial function. To study the mechanism underlying the insulin sensitizing action of PDE5 inhibitors, we evaluated quantitative changes in protein or mRNA levels of mitochondrial oxidative phosphorylation (OxPhos) complex, oxygen consumption rate (OCR), and fatty acid oxidation with varying udenafil concentrations in 3T3-L1 cells. Our cell study suggested that udenafil enhanced the insulin signaling pathway in 3T3-L1 cells. Following udenafil treatment, basal mitochondrial OCR, maximal OxPhos capacity, and OxPhos gene expression significantly increased. Finally, we examined whether udenafil can affect the fatty acid oxidation process. Treatment of 3T3-L1 cells with udenafil (10 and 20 μM) significantly increased fatty acid oxidation rate in a dose-dependent manner. In addition, the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) significantly increased. We demonstrated that the PDE5 inhibitor udenafil enhances insulin sensitivity by improving mitochondrial function in 3T3-L1 cells. This might be the mechanism underlying the PDE5 inhibitor-enhanced insulin signaling in adipocytes. This also suggests that udenafil may provide benefit in the treatment of type 2 diabetes and other related cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Phosphodiesterase inhibitors enhance object memory independent of cerebral blood flow and glucose utilization in rats.

    Science.gov (United States)

    Rutten, Kris; Van Donkelaar, Eva L; Ferrington, Linda; Blokland, Arjan; Bollen, Eva; Steinbusch, Harry Wm; Kelly, Paul At; Prickaerts, Jos Hhj

    2009-07-01

    Phosphodiesterase (PDE) inhibitors prevent the breakdown of the second messengers, cyclic AMP (cAMP) and cyclic GMP (cGMP), and are currently studied as possible targets for cognitive enhancement. Earlier studies indicated beneficial effects of PDE inhibitors in object recognition. In this study we tested the effects of three PDE inhibitors on spatial memory as assessed in a place and object recognition task. Furthermore, as both cAMP and cGMP are known vasodilators, the effects of PDE inhibition on cognitive functions could be explained by enhancement of cerebrovascular function. We examined this possibility by measuring the effects of PDE5 and PDE4 inhibitor treatment on local cerebral blood flow and glucose utilization in rats using [14C]-iodoantipyrine and [14C]-2-deoxyglucose quantitative autoradiography, respectively. In the spatial location task, PDE5 inhibition (cGMP) with vardenafil enhanced only early phase consolidation, PDE4 inhibition (cAMP) with rolipram enhanced only late phase consolidation, and PDE2 inhibition (cAMP and cGMP) with Bay 60-7550 enhanced both consolidation processes. Furthermore, PDE5 inhibition had no cerebrovascular effects in hippocampal or rhinal areas. PDE4 inhibition increased rhinal, but not hippocampal blood flow, whereas it decreased glucose utilization in both areas. In general, PDE5 inhibition decreased the ratio between blood flow and glucose utilization, indicative of general oligaemia; whereas PDE4 inhibition increased this ratio, indicative of general hyperemia. Both oligaemic and hyperemic conditions are detrimental for brain function and do not explain memory enhancement. These results underscore the specific effects of cAMP and cGMP on memory consolidation (object and spatial memory) and provide evidence that the underlying mechanisms of PDE inhibition on cognition are independent of cerebrovascular effects.

  19. Oroxylin A inhibits glycolysis-dependent proliferation of human breast cancer via promoting SIRT3-mediated SOD2 transcription and HIF1α destabilization.

    Science.gov (United States)

    Wei, L; Zhou, Y; Qiao, C; Ni, T; Li, Z; You, Q; Guo, Q; Lu, N

    2015-04-09

    Alterations of cellular metabolism play a central role in the development and progression of cancer. Oroxylin A, an active flavonoid of a Chinese traditional medicinal plant, was previously shown to modulate glycolysis in cancer cells. However, the mechanism by which oroxylin A regulates glycolysis is still not well defined. Here, we show that oroxylin A inhibits glycolysis in breast cancer cells via the Sirtuin 3 (SIRT3)-mediated destabilization of hypoxia-inducible factor 1α (HIF1α), which controls glycolytic gene expression. Oroxylin A promotes superoxide dismutase (SOD2) gene expression through SIRT3-regulated DNA-binding activity of FOXO3a and increases the activity of SOD2 by promoting SIRT3-mediated deacetylation. In vivo, oroxylin A inhibits the growth of transplanted human breast tumors associated with glycolytic suppression. These data indicate that oroxylin A inhibits glycolysis-dependent proliferation of breast cancer cells, through the suppression of HIF1α stabilization via SIRT3 activation, providing preclinical information for the cancer therapies of SIRT3 stimulation.

  20. Altered expression of mRNA for HIF-1alpha and its target genes RTP801 and VEGF in patients with oral lichen planus.

    Science.gov (United States)

    Ding, M; Xu, J Y; Fan, Y

    2010-04-01

    To explore a potential causal contribution of the transcription factor HIF-1alpha and its target gene, RTP801 and VEGF, to the development of oral lichen planus (OLP). Design relevant: Twenty-two adult OLP patients were enrolled in this study. All OLP diagnoses were verified by histopathological characteristics. Normal mucous specimens were collected from 12 controls after various oral surgeries. RNA was isolated from OLP and control specimens. Microarray was performed using BiostarH-40s gene chip. Expression of HIF-1alpha, VEGF and RTP801 was evaluated using quantitative real-time polymerase chain reaction (qPCR). Unpaired t-test and one-way ANOVA was used for statistical analysis. Microarray results showed that RTP801 expression was lower in OLP than in controls (779 vs 3090). qPCR further confirmed that expression of RTP801 was similarly lower in OLP than in controls (0.363 vs 1.473, P oral mucosa of OLP is hypoxic. Genes that are activated by hypoxia, such as RTP801 and VEGF, and their signal cascades may be novel potential therapeutic targets for OLP.

  1. Mitochondrial Respiration Inhibitors Suppress Protein Translation and Hypoxic Signaling via the Hyperphosphorylation and Inactivation of Translation Initiation Factor eIF2α and Elongation Factor eEF2

    Science.gov (United States)

    Li, Jun; Mahdi, Fakhri; Du, Lin; Datta, Sandipan; Nagle, Dale G.; Zhou, Yu-Dong

    2011-01-01

    Over 20000 lipid extracts of plants and marine organisms were evaluated in a human breast tumor T47D cell-based reporter assay for hypoxia-inducible factor-1 (HIF-1) inhibitory activity. Bioassay-guided isolation and dereplication-based structure elucidation of an active extract from the Bael tree (Aegle marmelos) afforded two protolimonoids, skimmiarepin A (1) and skimmiarepin C (2). In T47D cells, 1 and 2 inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.063 µM and 0.068 µM, respectively. Compounds 1 and 2 also suppressed hypoxic induction of the HIF-1 target genes GLUT-1 and VEGF. Mechanistic studies revealed that 1 and 2 inhibited HIF-1 activation by blocking the hypoxia-induced accumulation of HIF-1α protein. At the range of concentrations that inhibited HIF-1 activation, 1 and 2 suppressed cellular respiration by selectively inhibiting the mitochondrial electron transport chain at complex I (NADH dehydrogenase). Further investigation indicated that mitochondrial respiration inhibitors such as 1 and rotenone induced the rapid hyperphosphorylation and inhibition of translation initiation factor eIF2α and elongation factor eEF2. The inhibition of protein translation may account for the short-term exposure effects exerted by mitochondrial inhibitors on cellular signaling, while the suppression of cellular ATP production may contribute to the inhibitory effects following extended treatment periods. PMID:21875114

  2. Protein kinase CK2 inhibition is associated with the destabilization of HIF-1α in human cancer cells

    DEFF Research Database (Denmark)

    Guerra, Barbara; Rasmussen, Tine D. L.; Schnitzler, Alexander

    2015-01-01

    Screening for protein kinase CK2 inhibitors of the structural diversity compound library (DTP NCI/NIH) led to the discovery of 4-[(E)-(fluoren-9-ylidenehydrazinylidene)-methyl]benzoic acid (E9). E9 induces apoptotic cell death in various cancer cell lines and upon hypoxia, the compound suppresses...

  3. Suppression of hypoxia-inducible factor-1alpha and its downstream genes reduces acute hyperglycemia-enhanced hemorrhagic transformation in a rat model of cerebral ischemia.

    Science.gov (United States)

    Chen, Chunhua; Ostrowski, Robert P; Zhou, Changman; Tang, Jiping; Zhang, John H

    2010-07-01

    We evaluated a role of hypoxia-inducible factor-1alpha (HIF-1alpha) and its downstream genes in acute hyperglycemia-induced hemorrhagic transformation in a rat model of focal cerebral ischemia. Male Sprague-Dawley rats weighing 280-300 g (n = 105) were divided into sham, 90 min middle cerebral artery occlusion (MCAO), MCAO plus HIF-1alpha inhibitors, 2-methoxyestradiol (2ME2) or 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), groups. Rats received an injection of 50% dextrose (6 ml/kg intraperitoneally) at 15 min before MCAO. HIF-1alpha inhibitors were administered at the onset of reperfusion. The animals were examined for neurological deficits and sacrificed at 6, 12, 24, and 72 hr following MCAO. The cerebral tissues were collected for histology, zymography, and Western blot analysis. The expression of HIF-1alpha was increased in ischemic brain tissues after MCAO and reduced by HIF-1alpha inhibitors. In addition, 2ME2 reduced the expression of vascular endothelial growth factor (VEGF) and the elevation of active matrix metalloproteinase-2 and -9 (MMP-2/MMP-9) in the ipsilateral hemisphere. Both 2ME2 and YC-1 reduced infarct volume and ameliorated neurological deficits. However, only 2ME2 attenuated hemorrhagic transformation in the ischemic territory. In conclusion, the inhibition of HIF-1alpha and its downstream genes attenuates hemorrhagic conversion of cerebral infarction and ameliorates neurological deficits after focal cerebral ischemia.

  4. Chronic cerebral hypoperfusion-induced impairment of Aβ clearance requires HB-EGF-dependent sequential activation of HIF1α and MMP9.

    Science.gov (United States)

    Ashok, Anushruti; Rai, Nagendra Kumar; Raza, Waseem; Pandey, Rukmani; Bandyopadhyay, Sanghamitra

    2016-11-01

    Chronic cerebral hypoperfusion (CCH) manifests Alzheimer's Disease (AD) neuropathology, marked by increased amyloid beta (Aβ). Besides, hypoxia stimulates Heparin-binding EGF-like growth factor (HB-EGF) mRNA expression in the hippocampus. However, involvement of HB-EGF in CCH-induced Aβ pathology remains unidentified. Here, using Bilateral Common Carotid Artery Occlusion mouse model, we explored the mechanism of HB-EGF regulated Aβ induction in CCH. We found that HB-EGF inhibition suppressed, while exogenous-HB-EGF triggered hippocampal Aβ, proving HB-EGF-dependent Aβ increase. We also detected that HB-EGF affected the expression of primary Aβ transporters, receptor for advanced glycation end-products (RAGE) and lipoprotein receptor-related protein-1 (LRP-1), indicating impaired Aβ clearance across the blood-brain barrier (BBB). An HB-EGF-dependent loss in BBB integrity supported impaired Aβ clearance. The effect of HB-EGF on Amyloid Precursor Protein pathway was relatively insignificant, suggesting a lesser effect on Aβ generation. Delving into BBB disruption mechanism demonstrated HB-EGF-mediated stimulation of Matrix metalloprotease-9 (MMP9), which affected BBB via HB-EGF-ectodomain shedding and epidermal growth factor receptor activation. Examining the intersection of HB-EGF-regulated pathway and hypoxia revealed HB-EGF-dependent increase in transcription factor, Hypoxia-inducible factor-1alpha (HIF1α). Further, via binding to hypoxia-responsive elements in MMP9 gene, HIF1α stimulated MMP9 expression, and therefore appeared as a prominent intermediary in HB-EGF-induced BBB damage. Overall, our study reveals the essential role of HB-EGF in triggering CCH-mediated Aβ accumulation. The proposed mechanism involves an HB-EGF-dependent HIF1α increase, generating MMP9 that stimulates soluble-HB-EGF/EGFR-induced BBB disintegration. Consequently, CCH-mediated hippocampal RAGE and LRP-1 deregulation together with BBB damage impair Aβ transport and clearance

  5. Transcriptomic changes triggered by hypoxia: evidence for HIF-1α-independent, [Na+]i/[K+]i-mediated, excitation-transcription coupling.

    Directory of Open Access Journals (Sweden)

    Svetlana V Koltsova

    Full Text Available This study examines the relative impact of canonical hypoxia-inducible factor-1alpha- (HIF-1α and Na+i/K+i-mediated signaling on transcriptomic changes evoked by hypoxia and glucose deprivation. Incubation of RASMC in ischemic conditions resulted in ∼3-fold elevation of [Na+]i and 2-fold reduction of [K+]i. Using global gene expression profiling we found that Na+,K+-ATPase inhibition by ouabain or K+-free medium in rat aortic vascular smooth muscle cells (RASMC led to the differential expression of dozens of genes whose altered expression was previously detected in cells subjected to hypoxia and ischemia/reperfusion. For further investigations, we selected Cyp1a1, Fos, Atf3, Klf10, Ptgs2, Nr4a1, Per2 and Hes1, i.e. genes possessing the highest increments of expression under sustained Na+,K+-ATPase inhibition and whose implication in the pathogenesis of hypoxia was proved in previous studies. In ouabain-treated RASMC, low-Na+, high-K+ medium abolished amplification of the [Na+]i/[K+]i ratio as well as the increased expression of all tested genes. In cells subjected to hypoxia and glucose deprivation, dissipation of the transmembrane gradient of Na+ and K+ completely eliminated increment of Fos, Atf3, Ptgs2 and Per2 mRNAs and sharply diminished augmentation expression of Klf10, Edn1, Nr4a1 and Hes1. In contrast to low-Na+, high-K+ medium, RASMC transfection with Hif-1a siRNA attenuated increments of Vegfa, Edn1, Klf10 and Nr4a1 mRNAs triggered by hypoxia but did not impact Fos, Atf3, Ptgs2 and Per2 expression. Thus, our investigation demonstrates, for the first time, that Na+i/K+i-mediated, Hif-1α- -independent excitation-transcription coupling contributes to transcriptomic changes evoked in RASMC by hypoxia and glucose deprivation.

  6. Re-purposing clinical kinase inhibitors to enhance chemosensitivity by overriding checkpoints

    Science.gov (United States)

    Beeharry, Neil; Banina, Eugenia; Hittle, James; Skobeleva, Natalia; Khazak, Vladimir; Deacon, Sean; Andrake, Mark; Egleston, Brian L; Peterson, Jeffrey R; Astsaturov, Igor; Yen, Timothy J

    2014-01-01

    Inhibitors of the DNA damage checkpoint kinase, Chk1, are highly effective as chemo- and radio-sensitizers in preclinical studies but are not well-tolerated by patients. We exploited the promiscuous nature of kinase inhibitors to screen 9 clinically relevant kinase inhibitors for their ability to sensitize pancreatic cancer cells to a sub-lethal concentration of gemcitabine. Bosutinib, dovitinib, and BEZ-235 were identified as sensitizers that abrogated the DNA damage checkpoint. We further characterized bosutinib, an FDA-approved Src/Abl inhibitor approved for chronic myelogenous leukemia. Unbeknownst to us, we used an isomer (Bos-I) that was unknowingly synthesized and sold to the research community as “authentic” bosutinib. In vitro and cell-based assays showed that both the authentic bosutinib and Bos-I inhibited DNA damage checkpoint kinases Chk1 and Wee1, with Bos-I showing greater potency. Imaging data showed that Bos-I forced cells to override gemcitabine-induced DNA damage checkpoint arrest and destabilized stalled replication forks. These inhibitors enhanced sensitivity to the DNA damaging agents’ gemcitabine, cisplatin, and doxorubicin in pancreatic cancer cell lines. The in vivo efficacy of Bos-I was validated using cells derived directly from a pancreatic cancer patient’s tumor. Notably, the xenograft studies showed that the combination of gemcitabine and Bos-I was significantly more effective in suppressing tumor growth than either agent alone. Finally, we show that the gatekeeper residue in Wee1 dictates its sensitivity to the 2 compounds. Our strategy to screen clinically relevant kinase inhibitors for off-target effects on cell cycle checkpoints is a promising approach to re-purpose drugs as chemosensitizers. PMID:24955955

  7. The prognostic value of expression of HIF1α, EGFR and VEGF-A, in localized prostate cancer for intermediate- and high-risk patients treated with radiation therapy with or without androgen deprivation therapy

    Directory of Open Access Journals (Sweden)

    Weber Damien C

    2012-04-01

    Full Text Available Abstract Purpose Androgens stimulate the production of hypoxia-inducible factor (HIF1α and ultimately vascular endothelial growth factor (VEGF-A. Additionally, epithelial growth factor (EGF mediates HIF1α production. Carbonic anhydrase IX (CAIX expression is associated with tumor cell hypoxia in a variety of malignancies. This study assesses the prognostic relation between HIF1α, VEGF-A, EGF Receptor and CAIX expression by immunochemistry in diagnostic samples of patients with intermediate- and high-risk localized prostate cancer treated with radiation therapy, with or without androgen deprivation therapy (ADT. Materials and methods Between 1994 and 2004, 103 prostate cancer patients (mean age, 68.7 ± 6.2, with prostate cancer (mean PSA, 13.3 ± 3.7, were treated with radiation therapy (RT, median dose, 74 Gy. Fifty seven (55.3% patients received ADT (median duration, 6 months; range, 0 – 24. Median follow-up was 97.6 months (range, 5.9 – 206.8. Results Higher EGFR expression was significantly (p = 0.04 correlated with higher Gleason scores. On univariate analysis, HIF1α nuclear expression was a significant (p = 0.02 prognostic factor for biological progression-free survival (bPFS. A trend towards significance (p = 0.05 was observed with EGFR expression and bPFS. On multivariate analysis, low HIF1α nuclear (p = 0.01 and high EGFR (p = 0.04 expression remained significant adverse prognostic factors. Conclusions Our study suggests that high nuclear expression of HIF1α and low EGFR expression in diagnostic biopsies of prostate cancer patients treated with RT ± ADT is associated with a good prognosis.

  8. ENMD-1198, a novel tubulin-binding agent reduces HIF-1alpha and STAT3 activity in human hepatocellular carcinoma(HCC) cells, and inhibits growth and vascularization in vivo.

    Science.gov (United States)

    Moser, Christian; Lang, Sven A; Mori, Akira; Hellerbrand, Claus; Schlitt, Hans J; Geissler, Edward K; Fogler, William E; Stoeltzing, Oliver

    2008-07-23

    Hepatocellular carcinoma (HCC) represents a highly vascularized tumor entity and the process of angiogenesis is essential for the growth of HCC. Importantly, the pro-angiogenic transcription factors HIF-1alpha and STAT3 have been implicated in HCC progression, thus representing interesting targets for molecular targeted therapy. We hypothesized that therapeutic inhibition of HIF-1alpha could be achieved by using a novel tubulin-binding agent (ENMD-1198). ENMD-1198 is an analog of 2-methoxyestradiol (2ME2) with antiproliferative and antiangiogenic activity. The human HCC cell lines HUH-7 and HepG2 were used for experiments. Effects of ENMD-1198 on constitutive and inducible (hypoxia, growth factors) activation of signaling cascades, including HIF-1alpha and STAT3, were investigated by Western blotting. Changes in VEGF expression were determined by real-time PCR. Effects of ENMD-1198 on cancer cell migration and invasion were evaluated in in vitro-assays. The growth-inhibitory effects of ENMD-1198 (200 mg/kg/day) were determined in a subcutaneous tumor model (HUH-7). ENMD-1198 inhibited the phosphorylation of MAPK/Erk, PI-3K/Akt and FAK. Moreover, activation of HIF-1alpha and STAT3 was dramatically reduced by ENMD-1198, which resulted in lower VEGF mRNA expression (P < 0.05). In addition, tumor cell migratory and invasive properties were significantly inhibited (P < 0.05, for both). In vivo, treatment with ENMD-1198 led to a significant reduction in tumor growth, tumor vascularization, and numbers of proliferating tumor cells (P < 0.05 for all). The novel microtubule destabilizing agent ENMD-1198 is suitable for inhibiting HIF-1alpha and STAT3 in human HCC cells and leads to reduced tumor growth and vascularization in vivo. Hence, inhibition of HIF-1alpha and STAT3 could prove valuable for therapy of hepatocellular carcinoma.

  9. ENMD-1198, a novel tubulin-binding agent reduces HIF-1alpha and STAT3 activity in human hepatocellular carcinoma(HCC cells, and inhibits growth and vascularization in vivo

    Directory of Open Access Journals (Sweden)

    Schlitt Hans J

    2008-07-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC represents a highly vascularized tumor entity and the process of angiogenesis is essential for the growth of HCC. Importantly, the pro-angiogenic transcription factors HIF-1α and STAT3 have been implicated in HCC progression, thus representing interesting targets for molecular targeted therapy. We hypothesized that therapeutic inhibition of HIF-1α could be achieved by using a novel tubulin-binding agent (ENMD-1198. ENMD-1198 is an analog of 2-methoxyestradiol (2ME2 with antiproliferative and antiangiogenic activity. Methods The human HCC cell lines HUH-7 and HepG2 were used for experiments. Effects of ENMD-1198 on constitutive and inducible (hypoxia, growth factors activation of signaling cascades, including HIF-1α and STAT3, were investigated by Western blotting. Changes in VEGF expression were determined by real-time PCR. Effects of ENMD-1198 on cancer cell migration and invasion were evaluated in in vitro-assays. The growth-inhibitory effects of ENMD-1198 (200 mg/kg/day were determined in a subcutaneous tumor model (HUH-7. Results ENMD-1198 inhibited the phosphorylation of MAPK/Erk, PI-3K/Akt and FAK. Moreover, activation of HIF-1α and STAT3 was dramatically reduced by ENMD-1198, which resulted in lower VEGF mRNA expression (P In vivo, treatment with ENMD-1198 led to a significant reduction in tumor growth, tumor vascularization, and numbers of proliferating tumor cells (P Conclusion The novel microtubule destabilizing agent ENMD-1198 is suitable for inhibiting HIF-1α and STAT3 in human HCC cells and leads to reduced tumor growth and vascularization in vivo. Hence, inhibition of HIF-1α and STAT3 could prove valuable for therapy of hepatocellular carcinoma.

  10. INVITED REVIEW: Inhibitors of myostatin as methods of enhancing muscle growth and development.

    Science.gov (United States)

    Chen, P R; Lee, K

    2016-08-01

    With the increasing demand for affordable, high-quality meat, livestock and poultry producers must continually find ways to maximize muscle growth in their animals without compromising palatability of the meat products. Muscle mass relies on myoblast proliferation during prenatal or prehatch stages and fiber hypertrophy through protein synthesis and nuclei donation by satellite cells after birth or hatch. Therefore, understanding the cellular and molecular mechanisms of myogenesis and muscle development is of great interest. Myostatin is a well-known negative regulator of muscle growth and development that inhibits proliferation and differentiation in myogenic cells as well as protein synthesis in existing muscle fibers. In this review, various inhibitors of myostatin activity or signaling are examined that may be used in animal agriculture for enhancing muscle growth. Myostatin inhibitors are relevant as potential therapies for muscle-wasting diseases and muscle weakness in humans and animals. Currently, there are no commercial myostatin inhibitors for agriculture or biomedical purposes because the safest and most effective option has yet to be identified. Further investigation of myostatin inhibitors and administration strategies may revolutionize animal production and the medical field.

  11. In vivo evaluation of the effects of simultaneous inhibition of GLUT-1 and HIF-1α by antisense oligodeoxynucleotides on the radiosensitivity of laryngeal carcinoma using micro 18F-FDG PET/CT.

    Science.gov (United States)

    Shen, Li-Fang; Zhao, Xin; Zhou, Shui-Hong; Lu, Zhong-Jie; Zhao, Kui; Fan, Jun; Zhou, Min-Li

    2017-05-23

    Hypoxia-inducible factor 1α (HIF-1α) and glucose transporter-1 (GLUT-1) are two important hypoxic markers associated with the radioresistance of cancers including laryngeal carcinoma. We evaluated whether the simultaneous inhibition of GLUT-1 and HIF-1α expression improved the radiosensitivity of laryngeal carcinoma. We explored whether the expression of HIF-1α and GLUT-1 was correlated with 2'-deoxy-2'-[18F]fluoro-D-glucose (18F-FDG) uptake and whether 18F-FDG positron emission tomography-computed tomography (PET/CT) was appropriate for early evaluation of the response of laryngeal carcinoma to targeted treatment in vivo. To verify the above hypotheses, an in vivo model was applied by subcutaneously injecting Hep-2 (2 × 107/mL × 0.2 mL) and Tu212 cells (2 × 107/mL × 0.2 mL) into nude mice. The effects of HIF-1α antisense oligodeoxynucleotides (AS-ODNs) (100 μg) and GLUT-1 AS-ODNs (100 μg) on the radiosensitivity of laryngeal carcinoma were assessed by tumor volume and weight, microvessel density (MVD), apoptosis index (AI) and necrosis in vivo based on a full factorial (23) design. 18F-FDG-PET/CT was taken before and after the treatment of xenografts. The relationships between HIF-1α and GLUT-1 expression and 18F-FDG uptake in xenografts were estimated and the value of 18F-FDG-PET/CT was assessed after treating the xenografts. 10 Gy X-ray irradiation decreased the weight of Hep-2 xenografts 8 and 12 days after treatment, and the weights of Tu212 xenografts 8 days after treatment. GLUT-1 AS-ODNs decreased the weight of Tu212 xenografts 12 days after treatment. There was a synergistic interaction among the three treatments (GLUT-1 AS-ODNs, HIF-1α AS-ODNs and 10Gy X-ray irradiation) in increasing apoptosis, decreasing MVD, and increasing necrosis in Hep-2 xenografts 8 days after treatment (p GLUT1 and HIF-1α expression and therapeutic effect (necrosis, apoptosis). Simultaneous inhibition of HIF-1α and GLUT-1 expression might increase the

  12. Nickel nanoparticles enhance platelet-derived growth factor-induced chemokine expression by mesothelial cells via prolonged mitogen-activated protein kinase activation.

    Science.gov (United States)

    Glista-Baker, Ellen E; Taylor, Alexia J; Sayers, Brian C; Thompson, Elizabeth A; Bonner, James C

    2012-10-01

    Pleural diseases (fibrosis and mesothelioma) are a major concern for individuals exposed by inhalation to certain types of particles, metals, and fibers. Increasing attention has focused on the possibility that certain types of engineered nanoparticles (NPs), especially those containing nickel, might also pose a risk for pleural diseases. Platelet-derived growth factor (PDGF) is an important mediator of fibrosis and cancer that has been implicated in the pathogenesis of pleural diseases. In this study, we discovered that PDGF synergistically enhanced nickel NP (NiNP)-induced increases in mRNA and protein levels of the profibrogenic chemokine monocyte chemoattractant protein-1 (MCP-1 or CCL2), and the antifibrogenic IFN-inducible CXC chemokine (CXCL10) in normal rat pleural mesothelial 2 (NRM2) cells in vitro. Carbon black NPs (CBNPs), used as a negative control NP, did not cause a significant increase in CCL2 or CXCL10 in the absence or presence of PDGF. NiNPs prolonged PDGF-induced phosphorylation of the mitogen-activated protein kinase family termed extracellular signal-regulated kinases (ERK)-1 and -2 for up to 24 hours, and NiNPs also synergistically increased PDGF-induced hypoxia-inducible factor (HIF)-1α protein levels in NRM2 cells. Inhibition of ERK-1,2 phosphorylation with the mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, blocked the synergistic increase in CCL2, CXCL10, and HIF-1α levels induced by PDGF and NiNPs. Moreover, the antioxidant, N-acetyl-L-cysteine (NAC), significantly reduced HIF-1α, ERK-1,2 phosphorylation, and CCL2 protein levels that were synergistically increased by the combination of PDGF and NiNPs. These data indicate that NiNPs enhance the activity of PDGF in regulating chemokine production in NRM2 cells through a mechanism involving reactive oxygen species generation and prolonged activation of ERK-1,2.

  13. A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1α driven immunosuppression and improve immunotherapies of cancer.

    Science.gov (United States)

    Hatfield, Stephen M; Sitkovsky, Michail

    2016-08-01

    Hypoxic and adenosine rich tumor microenvironments represent an important barrier that must be overcome to enable T and NK cells to reject tumors. The A2A adenosine receptor (A2AR) on activated immune cells was identified as a critical and non-redundant mediator of physiological immunosuppression. Observations showing that tumor-protecting A2AR also suppress and redirect the anti-tumor immune response pointed to the importance of inhibiting this pathway to improve cancer immunotherapy. We advocated (i) blocking immunosuppressive adenosine-A2AR-cAMP-mediated intracellular signaling by A2AR antagonists and (ii) weakening hypoxia-HIF-1α-mediated accumulation of extracellular adenosine by oxygenation agents that also inhibits CD39/CD73 adenosine-generating enzymes. In view of commencing clinical trials of synthetic A2AR antagonists in combination with cancer immunotherapies, we discuss their promise and exclusion criteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. (18)F-FDG imaging of human atherosclerotic carotid plaques reflects gene expression of the key hypoxia marker HIF-1α

    DEFF Research Database (Denmark)

    Pedersen, Sune Folke; Græbe, Martin; Hag, Anne Mette F

    2013-01-01

    To investigate the association between gene expression of key molecular markers of hypoxia and inflammation in atherosclerotic carotid lesions with 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) uptake as determined clinically by positron emission tomography (PET). Studies using PET have demonstra......To investigate the association between gene expression of key molecular markers of hypoxia and inflammation in atherosclerotic carotid lesions with 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) uptake as determined clinically by positron emission tomography (PET). Studies using PET have...... between hypoxia and glucose metabolism in vivo. The marker of inflammation CD68 is also associated with (18)F-FDG-uptake (SUVmax). As CD68 and HIF-1α gene expression co-variate their information is overlapping....

  15. A HIF-1α-driven feed-forward loop augments HIF signalling in Hep3B cells by upregulation of ARNT.

    Science.gov (United States)

    Mandl, M; Lieberum, M-K; Depping, R

    2016-06-30

    Oxygen-deprived (hypoxic) areas are commonly found within neoplasms caused by excessive cell proliferation. The transcription factor Aryl hydrocarbon receptor nuclear translocator (ARNT) is part of the hypoxia-inducible factor (HIF) pathway, which mediates adaptive responses to ensure cellular survival under hypoxic conditions. HIF signalling leads to metabolic alterations, invasion/metastasis and the induction of angiogenesis in addition to radio-chemoresistance of tumour cells. Activation of the HIF pathway is based on the abundance of HIF-α subunits, which are regulated in an oxygen-dependent manner and form transcriptional active complexes with ARNT or ARNT2 (also referred as HIF-1β and HIF-2β, respectively). ARNT is considered to be unaffected by hypoxia but certain cell lines, including Hep3B cells, are capable to elevate this transcription factor in response to oxygen deprivation, which implies an advantage. Therefore, the aim of this study was to elucidate the mechanism of hypoxia-dependent ARNT upregulation and to determine implications on HIF signalling. Gene silencing and overexpression techniques were used to alter the expression pattern of HIF transcription factors under normoxic and hypoxic conditions. qRT-PCR and western blotting were performed to measure gene and protein expression, respectively. HIF activity was determined by reporter gene assays. The results revealed a HIF-1α-dependent mechanism leading to ARNT upregulation in hypoxia. Forced expression of ARNT increased reporter activity under normoxic and hypoxic conditions. In conclusion, these findings indicate a novel feed-forward loop and suggest that ARNT might be a limiting factor. Augmented HIF signalling in terms of elevated target gene expression might be advantageous for tumour cells.

  16. AEG-1 is associated with hypoxia-induced hepatocellular carcinoma chemoresistance via regulating PI3K/AKT/HIF-1alpha/MDR-1 pathway.

    Science.gov (United States)

    Xie, Yong; Zhong, De-Wu

    2016-01-01

    Hypoxia is a common characteristic of hepatocellular carcinoma (HCC) associated with reduced response to chemotherapy, thus increasing the probability of tumor recurrence. Astrocyte elevated gene-1 (AEG-1) has been involved in a wide array of cancer progression including proliferation, chemoresistance, angiogenesis and metastasis, but its effect on HCC chemoresistance induced by hypoxia is unclear. In this study, expression of AEG-1 and multiple drug resistance (MDR-1) were examined in HCC using immunohistochemical staining and RT-PCR. Furthermore, their expression levels were detected in HCC HepG2 cells in normoxia or hypoxia via RT-PCR and Western blot assays. Specific shRNAs were used to silence AEG-1 expression in HepG2 cells. Results showed AEG-1 and MDR-1 expression were higher in HCC tissues than in adjacent normal tissues. Incubation of HepG2 cells in hypoxia increased expression of AEG-1 and MDR-1, compared to incubation in normoxia. Exposure to hypoxia blunted sensitivity of HepG2 cells to Adriamycin, 5-fluorouracil and cis-platinum, as evidenced by modest alterations in cell viability and apoptosis rate, however the sensitivity was elevated with AEG-1 knockdown. PI3K/AKT/HIF-1/MDR-1 pathway was attenuated following AEG-1 knockdown in hypoxia. Based on these data, it was suggested that AEG-1 is associated with hypoxia-induced hepatocellular carcinoma chemoresistance via regulating PI3K/AKT/HIF-1/MDR-1 pathway. This study uncovered a novel potential target for development of an effective therapy against hypoxia-induced HCC chemoresistance.

  17. Chloroquine enhances cobalt chloride-induced leukemic cell differentiation via the suppression of autophagy at the late phase.

    Science.gov (United States)

    Yan, Zhao-Wen; Hou, Jia-Kai; He, Wei; Fan, Li; Huang, Ying

    2013-01-18

    We previously reported that moderate hypoxia and hypoxia-mimetic agents including cobalt chloride (CoCl(2)) induce differentiation of human acute myeloid leukemia (AML) cells through hypoxia-inducible factor-1 α (HIF-1 α), which interacts with and enhances transcriptional activity of CCAAT-enhancer binding factor alpha and Runx1/AML1, two important transcriptional factors for hematopoietic cell differentiation. Here, we show that autophagy inhibitor chloroquine (CQ) increases HIF-1 α accumulation, thus potentiating CoCl(2)-induced growth arrest and differentiation of leukemic cells. Furthermore, the increased effect of CQ on differentiation induction is dependent of the inhibition of autophagosome maturation and degradation, since this sensitization could be mimicked by the suppression of expression of both lysosome-associated membrane proteins 1 and 2 (LAMP1 and LAMP2). These findings not only provide the evidence that CQ is a sensitizer for CoCl(2)-induced differentiation of leukemic cells but also possibly propose the new therapeutic strategy for differentiation induction of AML. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers.

    Science.gov (United States)

    Tedim, J; Poznyak, S K; Kuznetsova, A; Raps, D; Hack, T; Zheludkevich, M L; Ferreira, M G S

    2010-05-01

    The present work reports the synthesis of layered double hydroxides (LDHs) nanocontainers loaded with different corrosion inhibitors (vanadate, phosphate, and 2-mercaptobenzothiazolate) and the characterization of the resulting pigments by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The anticorrosion activity of these nanocontainers with respect to aluminum alloy AA2024 was investigated by electrochemical impedance spectroscopy (EIS). The bare metallic substrates were immersed in dispersions of nanocontainers in sodium chloride solution and tested to understand the inhibition mechanisms and efficiency. The nanocontainers were also incorporated into commercial coatings used for aeronautical applications to study the active corrosion protection properties in systems of industrial relevance. The results show that an enhancement of the active protection effect can be reached when nanocontainers loaded with different inhibitors are combined in the same protective coating system.

  19. Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes.

    Science.gov (United States)

    Klumpen, Eva; Hoffschröer, Nadine; Zeis, Bettina; Gigengack, Ulrike; Dohmen, Elias; Paul, Rüdiger J

    2017-01-01

    Heat stress in ectotherms involves direct (e.g. protein damage) and/or indirect effects (temperature-induced hypoxia and ROS formation), which cause activation of the transcription factors (TF) heat shock factor 1 (HSF-1) and/or hypoxia-inducible factor 1 (HIF-1). The present study focused on the links between stress (ROS) signals, nuclear (n) and cytoplasmic (c) HSF-1/HIF-1 levels, and stress gene expression on mRNA and protein levels (e.g. heat-shock protein 90, HSP90) upon acute heat and ROS (H2 O2 ) stress. Acute heat stress (30°C) evoked fluctuations in ROS level. Different feeding regimens, which affected the glutathione (GSH) level, allowed altering the frequency of ROS fluctuations. Other data showed fluctuation frequency to depend also on ROS production rate. The heat-induced slow or fast ROS fluctuations (at high or low GSH levels) evoked slow or fast fluctuations in the levels of nHIF-1α, nHSF-1 and gene products (mRNAs and protein), albeit after different time delays. Time delays to ROS fluctuations were, for example,shorter for nHIF-1α than for nHSF-1 fluctuations, and nHIF-1α fluctuations preceded and nHSF-1 fluctuations followed fluctuations in HSP90 mRNA level. Cytoplasmic TF levels either changed little (cHIF-1α) or showed a steady increase (cHSF-1). Applying acute H2 O2 stress (at 20°C) revealed effects on nHIF-1α and mRNA levels, but no significant effects on nHSF-1 level. Transcriptome data additionally showed coordinated fluctuations of mRNA levels upon acute heat stress, involving mRNAs for HSPs and other stress proteins, with all corresponding genes carrying DNA binding motifs for HIF-1 and HSF-1. This study provided evidence for promoting effects of ROS and HIF-1 on early haemoglobin, HIF-1α and HSP90 mRNA expressions upon heat or ROS stress. The increasing cHSF-1 level likely affected nHSF-1 level and later HSP90 mRNA expression. Heat stress evoked ROS fluctuations, with this stress signal forwarded via nHIF-1 and nHSF-1

  20. Caffeine intake enhances the benefits of sodium glucose transporter 2 inhibitor.

    Science.gov (United States)

    Hashimoto, Yoshitaka; Tanaka, Muhei; Yamazaki, Masahiro; Nakano, Koji; Ushigome, Emi; Okada, Hiroshi; Oda, Yohei; Nakamura, Naoto; Fukui, Michiaki

    2016-10-01

    The effect of sodium glucose transporter 2 (SGLT-2) inhibitors is dependent on the glomerular filtration rate. It has been reported that caffeine intake increases glomerular filtration rate. However, the effect of caffeine intake on urinary glucose excretion in patients who take SGLT-2 inhibitors is unclear. Six patients with type 2 diabetes took part in a randomized, open-label, crossover pilot study. The patients took SGLT-2 inhibitors (ipragliflozin) for 9 days. On day 3, 6 and 9, the patients were assigned to one of three studies: Water 500, patients drank 500 mL of water in 3 h; Water 1500, patients drank 1500 mL of water in 3 h; and Caffeine 500, patients drank 500 mL of water with 400 mg of caffeine in 3 h. In all of the studies, the patients' urine was collected over a 6-h period. In addition, we enrolled 60 patients with type 2 diabetes who newly took SGLT-2 inhibitors in a 3-month follow-up cohort study to investigate the effect of caffeine intake on glucose control. Caffeine intake was evaluated using questionnaires. The 6-h median (interquartile range) urinary glucose excretion was 9.5 (8.5-9.7) g in Water 500, 12.2 (10.3-27.2) g in Water 1500 and 15.7 (11.4-21.4) g in Caffeine 500 (p = 0.005 vs Water 500). In the cohort study, multiple regression analysis demonstrated that log (caffeine intake) was associated with a change in HbA 1c (β = -0.299, p = 0.043) after adjusting for covariates. Caffeine intake enhanced the effect of SGLT-2 inhibitors. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand?

    Science.gov (United States)

    Whittle, Nigel; Singewald, Nicolas

    2014-04-01

    A novel strategy to treat anxiety and fear-related disorders such as phobias, panic and PTSD (post-traumatic stress disorder) is combining CBT (cognitive behavioural therapy), including extinction-based exposure therapy, with cognitive enhancers. By targeting and boosting mechanisms underlying learning, drug development in this field aims at designing CBT-augmenting compounds that help to overcome extinction learning deficits, promote long-term fear inhibition and thus support relapse prevention. Progress in revealing the role of epigenetic regulation of specific genes associated with extinction memory generation has opened new avenues in this direction. The present review examines recent evidence from pre-clinical studies showing that increasing histone acetylation, either via genetic or pharmacological inhibition of HDACs (histone deacetylases) by e.g. vorinostat/SAHA (suberoylanilide hydroxamic acid), entinostat/MS-275, sodium butyrate, TSA (trichostatin A) or VPA (valproic acid), or by targeting HATs (histone acetyltransferases), augments fear extinction and, importantly, generates a long-term extinction memory that can protect from return of fear phenomena. The molecular mechanisms and pathways involved including BDNF (brain-derived neurotrophic factor) and NMDA (N-methyl-D-aspartate) receptor signalling are just beginning to be revealed. First studies in healthy humans are in support of extinction-facilitating effects of HDAC inhibitors. Very recent evidence that HDAC inhibitors can rescue deficits in extinction-memory-impaired rodents indicates a potential clinical utility of this approach also for exposure therapy-resistant patients. Important future work includes investigation of the long-term safety aspects of HDAC inhibitor treatment, as well as design of isotype(s)-specific inhibitors. Taken together, HDAC inhibitors display promising potential as pharmacological adjuncts to augment the efficacy of exposure-based approaches in anxiety and trauma therapy.

  2. Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents.

    Science.gov (United States)

    Kim, Sun-Ki; Jin, Yong-Su; Choi, In-Geol; Park, Yong-Cheol; Seo, Jin-Ho

    2015-05-01

    Fermentation inhibitors present in lignocellulose hydrolysates are inevitable obstacles for achieving economic production of biofuels and biochemicals by industrial microorganisms. Here we show that spermidine (SPD) functions as a chemical elicitor for enhanced tolerance of Saccharomyces cerevisiae against major fermentation inhibitors. In addition, the feasibility of constructing an engineered S. cerevisiae strain capable of tolerating toxic levels of the major inhibitors without exogenous addition of SPD was explored. Specifically, we altered expression levels of the genes in the SPD biosynthetic pathway. Also, OAZ1 coding for ornithine decarboxylase (ODC) antizyme and TPO1 coding for the polyamine transport protein were disrupted to increase intracellular SPD levels through alleviation of feedback inhibition on ODC and prevention of SPD excretion, respectively. Especially, the strain with combination of OAZ1 and TPO1 double disruption and overexpression of SPE3 not only contained spermidine content of 1.1mg SPD/g cell, which was 171% higher than that of the control strain, but also exhibited 60% and 33% shorter lag-phase period than that of the control strain under the medium containing furan derivatives and acetic acid, respectively. While we observed a positive correlation between intracellular SPD contents and tolerance phenotypes among the engineered strains accumulating different amounts of intracellular SPD, too much SPD accumulation is likely to cause metabolic burden. Therefore, genetic perturbations for intracellular SPD levels should be optimized in terms of metabolic burden and SPD contents to construct inhibitor tolerant yeast strains. We also found that the genes involved in purine biosynthesis and cell wall and chromatin stability were related to the enhanced tolerance phenotypes to furfural. The robust strains constructed in this study can be applied for producing chemicals and advanced biofuels from cellulosic hydrolysates. Copyright © 2015

  3. Targeting MTA1/HIF-1alpha Signaling by Pterostilbene in Combination with Histone Deacetylase Inhibitor Attenuates Prostate Cancer Progression (Open Access)

    Science.gov (United States)

    2017-08-30

    isolated. Prostate tissues were used for RNA and protein isolation as well as for histological and immunohistochemical (IHC) analysis. Blood was...embedded tissues and mounted on slides. Histological sections were prepared by hematoxylin and eosin (H&E) staining and were evaluated by pathologists...monitoring body weight, and by necropsy at the conclusion of the study. Gross anatomy of UGS clearly indicated smaller prostates in agent- treated mice

  4. [Transcription factors NF-kB, HIF-1, HIF-2, growth factor VEGF, VEGFR2 and carboanhydrase IX mRNA and protein level in the development of kidney cancer metastasis].

    Science.gov (United States)

    Spirina, L V; Usynin, Y A; Yurmazov, Z A; Slonimskaya, E M; Kolegova, E S; Kondakova, I V

    2017-01-01

    Here, we have investigated the participation of nuclear factors NF-kB, HIF-1 and HIF-2, VEGF, VEGFR2, and carboanhydrase IX in clear-cell renal cancer. We have determined the expression and protein level of transcription factors, VEGF, VEGFR2, and carboanhydrase IX in tumor and normal tissues of 30 patients with kidney cancer. The Real-Time PCR and ELISA were used in the study. The low levels of HIF-1 mRNA expression associated with high levels of HIF-1 protein were also associated with metastasis. The expression levels of VEGF, VEGFR2, and their protein levels are increased in primary tumors of patients with disseminated kidney cancer compared to nonmetastatic cancer. No correlation was revealed between the content of mRNA and encoded proteins in the kidney cancer tissues. The changes in the ratios of mRNA levels and the respective proteins (HIF-1α, HIF-2, NF-kB, VEGF, VEGFR2, and carboanhydrase IX) may contribute to kidney-cancer metastasis.

  5. Discovery of Inhibitors of Insulin-Regulated Aminopeptidase as Cognitive Enhancers

    Directory of Open Access Journals (Sweden)

    Hanna Andersson

    2012-01-01

    Full Text Available The hexapeptide angiotensin IV (Ang IV is a metabolite of angiotensin II (Ang II and plays a central role in the brain. It was reported more than two decades ago that intracerebroventricular injection of Ang IV improved memory and learning in the rat. Several hypotheses have been put forward to explain the positive effects of Ang IV and related analogues on cognition. It has been proposed that the insulin-regulated aminopeptidase (IRAP is the main target of Ang IV. This paper discusses progress in the discovery of inhibitors of IRAP as potential enhancers of cognitive functions. Very potent inhibitors of the protease have been synthesised, but pharmacokinetic issues (including problems associated with crossing the blood-brain barrier remain to be solved. The paper also briefly presents an overview of the status in the discovery of inhibitors of ACE and renin, and of AT1R antagonists and AT2R agonists, in order to enable other discovery processes within the RAS system to be compared. The paper focuses on the relationship between binding affinities/inhibition capacity and the structures of the ligands that interact with the target proteins.

  6. HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody in vivo.

    Science.gov (United States)

    Booth, Laurence; Roberts, Jane L; Poklepovic, Andrew; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Dent, Paul

    2017-10-27

    Patients whose NSCLC tumors become afatinib resistant presently have few effective therapeutic options to extend their survival. Afatinib resistant NSCLC cells were sensitive to clinically relevant concentrations of the irreversible pan-HER inhibitor neratinib, but not by the first generation ERBB1/2/4 inhibitor lapatinib. In multiple afatinib resistant NSCLC clones, HDAC inhibitors reduced the expression of ERBB1/3/4, but activated c-SRC, which resulted in higher total levels of ERBB1/3 phosphorylation. Neratinib also rapidly reduced the expression of ERBB1/2/3/4, c-MET and of mutant K-/N-RAS; K-RAS co-localized with phosphorylated ATG13 and with cathepsin B in vesicles. Combined exposure of cells to [neratinib + HDAC inhibitors] caused inactivation of mTORC1 and mTORC2, enhanced autophagosome and subsequently autolysosome formation, and caused an additive to greater than additive induction of cell death. Knock down of Beclin1 or ATG5 prevented HDAC inhibitors or neratinib from reducing ERBB1/3/4 and K-/N-RAS expression and reduced [neratinib + HDAC inhibitor] lethality. Neratinib and HDAC inhibitors reduced the expression of multiple HDAC proteins via autophagy that was causal in the reduced expression of PD-L1, PD-L2 and ornithine decarboxylase, and increased expression of Class I MHCA. In vivo, neratinib and HDAC inhibitors interacted to suppress the growth of 4T1 mammary tumors, an effect that was enhanced by an anti-PD-1 antibody. Our data support the premises that neratinib lethality can be enhanced by HDAC inhibitors, that neratinib may be a useful therapeutic tool in afatinib resistant NSCLC, and that [neratinib + HDAC inhibitor] exposure facilitates anti-tumor immune responses.

  7. Hypoxia-increased RAGE expression regulates chemotaxis and pro-inflammatory cytokines release through nuclear translocation of NF-κ B and HIF1α in THP-1 cells.

    Science.gov (United States)

    Bai, Wei; Zhou, Jing; Zhou, Na; Liu, Qin; Cui, Jian; Zou, Wei; Zhang, Wei

    2018-01-15

    The potential role of hypoxia in mediating the receptor for advanced glycation end products (RAGE) expression deserves to be confirmed. And the role of RAGE in hypoxia-induced chemotaxis and inflammation is still unclear. In present study, THP-1 cells were pretreated with siRNA to block HIF1α, NF-κ B, or RAGE, followed by exposed to hypoxia (combined with H 2 O 2 or SNP), and then RAGE expression, nuclear translocation of HIF1α and NF-κ B, release of TNF-α and IL-1β, as well as expression of MCP-1 and CCR2 were measured. The results revealed that RAGE mRNA and protein in THP-1 cells were significantly increased after exposed into hypoxia atmosphere, especially into the solution containing SNP or H 2 O 2 . Moreover, SNP or H 2 O 2 exposure could further amplify hypoxia-induced nuclear translocation of HIF-1α and NF-κ B. Knockdown HIF-1α or NF-κ B by siRNAs could reduce hypoxia- and oxidative stress-induced RAGE hyper-expression. And pretreatment THP-1 cells with RAGE siRNA or NF-κ B siRNA could reduce hypoxia- and oxidative stress-induced expression of MCP-1 and CCR2, and release of TNF-α and IL-1β. Thus, hypoxia not only increases RAGE expression in THP-1 cells by promoting nuclear translocation of NF-κ B and HIF1α, but also regulates chemotaxis and pro-inflammatory cytokines release, which may be partially mediated through upregulation of RAGE expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Expression of microRNA-155 and mRNA Hypoxia Inducible Factor Alpha (HIF1A in the early and advanced stages of ovarian cancer patients blood plasma

    Directory of Open Access Journals (Sweden)

    S.N. Chasanah

    2017-02-01

    The aim of this study is to determine whether there are differences in the expression of miR-155 and mRNA HIF1A in plasma ovarian cancer patients at the early stage compared with the advanced stage. The samples using blood plasma from ovarian cancer patients RSUP Dr. Sardjito with 32 ovarian cancer patients early stages and 20 ovarian cancer patients advanced stages. Total RNA was isolated from blood plasma samples of ovarian cancer patients.  cDNA synthesis from total RNA was performed to obtain cDNA. The expression of miR-155 and HIF1A were calculated using qPCR. qPCR results were analyzed using Biorad CFX Manager Software.  The analysis showed that the expression of miR-155 were 2,18 times lower (p-value = 0,018* in the plasma of advanced stage ovarian cancer compared with early stage, the differences were statistically significant (p value≤ 0,05. Whereas the mRNA expression HIF1A were 2,46 times higher (p-value = 0,039* in the plasma of advanced stage ovarian cancer compared with early stage, the differences were statistically significant (p value≤ 0,05.  This study has proved that miR-155 expression is downregulated and followed by upregulation of mRNA expression HIF1A at an advanced stage ovarian cancer compared with early stage.    Keywords: Plasma, stage ovarian cancer, microRNA-155, mRNA HIF1A

  9. Novel Pathway for Hypoxia-Induced Proliferation and Migration in Human Mesenchymal Stem Cells: Involvement of HIF-1α, FASN, and mTORC1.

    Science.gov (United States)

    Lee, Hyun Jik; Ryu, Jung Min; Jung, Young Hyun; Oh, Sang Yub; Lee, Sei-Jung; Han, Ho Jae

    2015-07-01

    The control of stem cells by oxygen signaling is an important way to improve various stem cell physiological functions and metabolic nutrient alteration. Lipid metabolism alteration via hypoxia is thought to be a key factor in controlling stem cell fate and function. However, the interaction between hypoxia and the metabolic and functional changes to stem cells is incompletely described. This study aimed to identify hypoxia-inducible lipid metabolic enzymes that can regulate umbilical cord blood (UCB)-derived human mesenchymal stem cell (hMSC) proliferation and migration and to demonstrate the signaling pathway that controls functional change in UCB-hMSCs. Our results indicate that hypoxia treatment stimulates UCB-hMSC proliferation, and expression of two lipogenic enzymes: fatty acid synthase (FASN) and stearoyl-CoA desaturase-1 (SCD1). FASN but not SCD1 is a key enzyme for regulation of UCB-hMSC proliferation and migration. Hypoxia-induced FASN expression was controlled by the hypoxia-inducible factor-1 alpha (HIF-1α)/SCAP/SREBP1 pathway. Mammalian target of rapamycin (mTOR) was phosphorylated by hypoxia, whereas inhibition of FASN by cerulenin suppressed hypoxia-induced mTOR phosphorylation as well as UCB-hMSC proliferation and migration. RAPTOR small interfering RNA transfection significantly inhibited hypoxia-induced proliferation and migration. Hypoxia-induced mTOR also regulated CDK2, CDK4, cyclin D1, cyclin E, and F-actin expression as well as that of c-myc, p-cofilin, profilin, and Rho GTPase. Taken together, the results suggest that mTORC1 mainly regulates UCB-hMSC proliferation and migration under hypoxia conditions via control of cell cycle and F-actin organization modulating factors. In conclusion, the HIF-1α/FASN/mTORC1 axis is a key pathway linking hypoxia-induced lipid metabolism with proliferation and migration in UCB-hMSCs. Stem Cells 2015;33:2182-2195. © 2015 AlphaMed Press.

  10. Role of HIF1A, VEGFA and VEGFR2 SNPs in the Susceptibility and Progression of COPD in a Spanish Population

    Science.gov (United States)

    Baz-Dávila, Rebeca; Espinoza-Jiménez, Adriana; Rodríguez-Pérez, María del Cristo; Zulueta, Javier; Varo, Nerea; Montejo, Ángela; Almeida-González, Delia; Aguirre-Jaime, Armando; Córdoba-Lanús, Elizabeth; Casanova, Ciro

    2016-01-01

    Hypoxia is involved in the development of chronic inflammatory processes. Under hypoxic conditions HIF1A, VEGF and VEGFR2 are expressed and mediate the course of the resultant disease. The aim of the present study was to define the associations between tSNPs in these genes and COPD susceptibility and progression in a Spanish cohort. The T alleles in rs3025020 and rs833070 SNPs (VEGFA gene) were less frequent in the group of COPD cases and were associated with a lower risk of developing the disease (OR = 0.60; 95% CI = 0. 39–0.93; p = 0.023 and OR = 0.60; 95% CI = 0.38–0.96; p = 0.034, respectively) under a dominant model of inheritance. The haplotype in which both SNPs presented the T allele confirmed the association found (OR = 0.02; 95% CI = 0.00 to 0.66; p = 0.03). Moreover, patients with COPD carrying the T allele in homozygosis in rs3025020 SNP showed higher lung function values and this association remained constant during 3 years of follow-up. In conclusion, T allele in rs833070 and rs3025020 may confer a protective effect to COPD susceptibility in a Spanish population and the association of the SNP rs3025020 with lung function may be suggesting a role for VEGF in the progression of the disease. PMID:27163696

  11. Role of HIF1A, VEGFA and VEGFR2 SNPs in the Susceptibility and Progression of COPD in a Spanish Population.

    Directory of Open Access Journals (Sweden)

    Rebeca Baz-Dávila

    Full Text Available Hypoxia is involved in the development of chronic inflammatory processes. Under hypoxic conditions HIF1A, VEGF and VEGFR2 are expressed and mediate the course of the resultant disease. The aim of the present study was to define the associations between tSNPs in these genes and COPD susceptibility and progression in a Spanish cohort. The T alleles in rs3025020 and rs833070 SNPs (VEGFA gene were less frequent in the group of COPD cases and were associated with a lower risk of developing the disease (OR = 0.60; 95% CI = 0. 39-0.93; p = 0.023 and OR = 0.60; 95% CI = 0.38-0.96; p = 0.034, respectively under a dominant model of inheritance. The haplotype in which both SNPs presented the T allele confirmed the association found (OR = 0.02; 95% CI = 0.00 to 0.66; p = 0.03. Moreover, patients with COPD carrying the T allele in homozygosis in rs3025020 SNP showed higher lung function values and this association remained constant during 3 years of follow-up. In conclusion, T allele in rs833070 and rs3025020 may confer a protective effect to COPD susceptibility in a Spanish population and the association of the SNP rs3025020 with lung function may be suggesting a role for VEGF in the progression of the disease.

  12. p38alpha blockade inhibits colorectal cancer growth in vivo by inducing a switch from HIF1alpha- to FoxO-dependent transcription.

    Science.gov (United States)

    Chiacchiera, F; Matrone, A; Ferrari, E; Ingravallo, G; Lo Sasso, G; Murzilli, S; Petruzzelli, M; Salvatore, L; Moschetta, A; Simone, C

    2009-09-01

    Colorectal cancer cell (CRC) fate is governed by an intricate network of signaling pathways, some of which are the direct target of DNA mutations, whereas others are functionally deregulated. As a consequence, cells acquire the ability to grow under nutrients and oxygen shortage conditions. We earlier reported that p38alpha activity is necessary for proliferation and survival of CRCs in a cell type-specific manner and regardless of their phenotype and genotype. Here, we show that p38alpha sustains the expression of HIF1alpha target genes encoding for glycolytic rate-limiting enzymes, and that its inhibition causes a drastic decrease in ATP intracellular levels in CRCs. Prolonged inactivation of p38alpha triggers AMPK-dependent nuclear localization of FoxO3A and subsequent activation of its target genes, leading to autophagy, cell cycle arrest and cell death. In vivo, pharmacological blockade of p38alpha inhibits CRC growth in xenografted nude mice and azoxymethane-treated Apc(Min) mice, achieving both a cytostatic and cytotoxic effect, associated with high nuclear expression of FoxO3A and increased expression of its target genes p21 and PTEN. Hence, inhibition of p38alpha affects the aerobic glycolytic metabolism specific of cancer cells and might be taken advantage of as a therapeutic strategy targeted against CRCs.

  13. The antihypertension drug doxazosin inhibits tumor growth and angiogenesis by decreasing VEGFR-2/Akt/mTOR signaling and VEGF and HIF-1α expression.

    Science.gov (United States)

    Park, Mi Sun; Kim, Boh-Ram; Dong, Seung Myung; Lee, Seung-Hoon; Kim, Dae-Yong; Rho, Seung Bae

    2014-07-15

    Doxazosin is an α1 adrenergic receptor blocker that also exerts antitumor effects. However, the underlying mechanisms by which it modulates PI3K/Akt intracellular signaling are poorly understood. In this study, we reveal that doxazosin functions as a novel antiangiogenic agent by inhibiting vascular endothelial growth factor (VEGF)-induced cell migration and proliferation. It also inhibited VEGF-induced capillary-like structure tube formation in vitro. Doxazosin inhibited the phosphorylation of VEGF receptor-2 (VEGFR-2) and downstream signaling, including PI3K, Akt, 3-phosphoinositide-dependent protein kinase 1 (PDK1), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor 1 (HIF-1α). However, it had no effect on VEGF-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Furthermore, doxazosin reduced tumor growth and suppressed tumor vascularization in a xenograft human ovarian cancer model. These results provide evidence that doxazosin functions in the endothelial cell system to modulate angiogenesis by inhibiting Akt and mTOR phosphorylation and interacting with VEGFR-2.

  14. Synthetic Tet-inducible artificial microRNAs targeting β-catenin or HIF-1α inhibit malignant phenotypes of bladder cancer cells T24 and 5637.

    Science.gov (United States)

    Zhan, Yonghao; Liu, Yuchen; Lin, Junhao; Fu, Xing; Zhuang, Chengle; Liu, Li; Xu, Wen; Li, Jianfa; Chen, Mingwei; Zhao, Guoping; Huang, Weiren; Cai, Zhiming

    2015-11-06

    Ribonucleic acid interference (RNAi) based on microRNA (miRNA) may provide efficient and safe therapeutic opportunities. However, natural microRNAs can not easily be regulated and usually cause few phenotypic changes. Using the engineering principles of synthetic biology, we provided a novel and standard platform for the generation of tetracycline (Tet)-inducible vectors that express artificial microRNAs in a dosage-dependent manner. The vector generates a Pol II promoter-mediated artificial microRNA which was flanked by ribozyme sequences. In order to prove the utility of this platform, we chose β-catenin and HIF-1α as the functional targets and used the bladder cancer cell lines 5637 and T24 as the test models. We found that the Tet-inducible artificial microRNAs can effectively silence the target genes and their downstream genes, and induce anti-cancer effects in the two bladder cancer cell lines. These devices can inhibit proliferation, induce apoptosis, and suppress migration of the bladder cancer cell lines 5637 and T24. The Tet-inducible synthetic artificial microRNAs may represent a kind of novel therapeutic strategies for treating human bladder cancer.

  15. EGL-9 controls C. elegans host defense specificity through prolyl hydroxylation-dependent and -independent HIF-1 pathways.

    Directory of Open Access Journals (Sweden)

    Lyly G Luhachack

    Full Text Available Understanding host defense against microbes is key to developing new and more effective therapies for infection and inflammatory disease. However, how animals integrate multiple environmental signals and discriminate between different pathogens to mount specific and tailored responses remains poorly understood. Using the genetically tractable model host Caenorhabditis elegans and pathogenic bacterium Staphylococcus aureus, we describe an important role for hypoxia-inducible factor (HIF in defining the specificity of the host response in the intestine. We demonstrate that loss of egl-9, a negative regulator of HIF, confers HIF-dependent enhanced susceptibility to S. aureus while increasing resistance to Pseudomonas aeruginosa. In our attempt to understand how HIF could have these apparently dichotomous roles in host defense, we find that distinct pathways separately regulate two opposing functions of HIF: the canonical pathway is important for blocking expression of a set of HIF-induced defense genes, whereas a less well understood noncanonical pathway appears to be important for allowing the expression of another distinct set of HIF-repressed defense genes. Thus, HIF can function either as a gene-specific inducer or repressor of host defense, providing a molecular mechanism by which HIF can have apparently opposing roles in defense and inflammation. Together, our observations show that HIF can set the balance between alternative pathogen-specific host responses, potentially acting as an evolutionarily conserved specificity switch in the host innate immune response.

  16. The HSP90 inhibitor alvespimycin enhances the potency of telomerase inhibition by imetelstat in human osteosarcoma.

    Science.gov (United States)

    Hu, Yafang; Bobb, Daniel; He, Jianping; Hill, D Ashley; Dome, Jeffrey S

    2015-01-01

    The unsatisfactory outcomes for osteosarcoma necessitate novel therapeutic strategies. This study evaluated the effect of the telomerase inhibitor imetelstat in pre-clinical models of human osteosarcoma. Because the chaperone molecule HSP90 facilitates the assembly of telomerase protein, the ability of the HSP90 inhibitor alvespimycin to potentiate the effect of the telomerase inhibitor was assessed. The effect of single or combined treatment with imetelstat and alvespimycin on long-term growth was assessed in osteosarcoma cell lines (143B, HOS and MG-63) and xenografts derived from 143B cells. Results indicated that imetelstat as a single agent inhibited telomerase activity, induced telomere shortening, and inhibited growth in all 3 osteosarcoma cell lines, though the bulk cell cultures did not undergo growth arrest. Combined treatment with imetelstat and alvespimycin resulted in diminished telomerase activity and shorter telomeres compared to either agent alone as well as higher levels of γH2AX and cleaved caspase-3, indicative of increased DNA damage and apoptosis. With dual telomerase and HSP90 inhibition, complete growth arrest of bulk cell cultures was achieved. In xenograft models, all 3 treatment groups significantly inhibited tumor growth compared with the placebo-treated control group, with the greatest effect seen in the combined treatment group (imetelstat, p = 0.045, alvespimycin, p = 0.034; combined treatment, p = 0.004). In conclusion, HSP90 inhibition enhanced the effect of telomerase inhibition in pre-clinical models of osteosarcoma. Dual targeting of telomerase and HSP90 warrants further investigation as a therapeutic strategy.

  17. Role of P-Glycoprotein Inhibitors in the Bioavailability Enhancement of Solid Dispersion of Darunavir

    Directory of Open Access Journals (Sweden)

    Saleha Rehman

    2017-01-01

    Full Text Available Objective. The aim of the present study was to improve bioavailability of an important antiretroviral drug, Darunavir (DRV, which has low water solubility and poor intestinal absorption through solid dispersion (SD approach incorporating polymer with P-glycoprotein inhibitory potential. Methods. A statistical approach where design of experiment (DoE was used to prepare SD of DRV with incorporation of P-glycoprotein inhibitors. Using DoE, different methods of preparation, like melt, solvent evaporation, and spray drying method, utilizing carriers like Kolliphor TPGS and Soluplus were evaluated. The optimized SD was characterized by DSC, FTIR, XRD, and SEM and further evaluated for enhancement in absorption using everted gut sac model, effect of food on absorption of DRV, and in vivo prospect. Results and Discussion. DSC, FTIR, XRD, and SEM confirmed the amorphicity of drug in SD. Oral bioavailability studies revealed better absorption of DRV when given with food. Absorption studies and in vivo study findings demonstrated great potential of Kolliphor TPGS as P-glycoprotein inhibitor for increasing intestinal absorption and thus bioavailability of DRV. Conclusion. It is concluded that SD of DRV with the incorporation of Kolliphor TPGS was potential and promising approach in increasing bioavailability of DRV as well as minimizing its extrusion via P-glycoprotein efflux transporters.

  18. TAK1 inhibitor NG25 enhances doxorubicin-mediated apoptosis in breast cancer cells.

    Science.gov (United States)

    Wang, Zhenyu; Zhang, Huiyuan; Shi, Minghao; Yu, Yang; Wang, Hao; Cao, Wen-Ming; Zhao, Yanling; Zhang, Hong

    2016-09-07

    Doxorubicin (Dox, Adriamycin) has been widely used in breast cancer treatment. But its severe cardio-toxic side effects limited the clinical use. Dox treatment can induce DNA damage and other accompanying effects in cancer cells, and subsequently activates nuclear factor κB (NF-κB) pathway which has a strong pro-survival role in different types of malignancy. We hypothesize that blocking NF-κB pathway may sensitize breast cancer cells to Dox chemotherapy. TGFβ-activated kinase-1 (TAK1) is a key intracellular molecule participating in genotoxic stresses-induced NF-κB activation. Targeting TAK1 as a strategy to enhance cancer treatment efficacy has been studied in several malignancies. We showed that NG25, a synthesized TAK1 inhibitor, greatly enhanced Dox treatment efficacy in a panel of breast cancer cell lines. In this pre-clinical study, we found that NG25 partially blocked Dox-induced p38 phosphorylation and IκBα degradation and enhanced Dox-induced cytotoxic effects and apoptosis in all breast cancer cell lines tested. Taken together, we provided clear evidence that NG25 sensitizes the breast cancer cells to Dox treatment in vitro. This combination may be an effective and feasible therapeutic option maximizing Dox efficacy and meanwhile minimizing Dox side effects in treating breast cancer.

  19. Plasminogen Activator Inhibitor-1 Is Critical in Alcohol-Enhanced Acute Lung Injury in Mice.

    Science.gov (United States)

    Poole, Lauren G; Massey, Veronica L; Siow, Deanna L; Torres-Gonzáles, Edilson; Warner, Nikole L; Luyendyk, James P; Ritzenthaler, Jeffrey D; Roman, Jesse; Arteel, Gavin E

    2017-09-01

    Chronic alcohol exposure is a clinically important risk factor for the development of acute respiratory distress syndrome, the most severe form of acute lung injury (ALI). However, the mechanisms by which alcohol sensitizes the lung to development of this disease are poorly understood. We determined the role of the antifibrinolytic protein plasminogen activator inhibitor-1 (PAI-1) in alcohol enhancement of experimental endotoxin-induced ALI. Wild-type, PAI-1-/-, and integrin β3-/- mice were fed ethanol-containing Lieber-DeCarli liquid or a control diet for 6 weeks, followed by systemic LPS challenge. LPS administration triggered coagulation cascade activation as evidenced by increased plasma thrombin-antithrombin levels and pulmonary fibrin deposition. Ethanol-exposed animals showed enhanced PAI-1 expression and pulmonary fibrin deposition with coincident exaggeration of pulmonary inflammatory edematous injury. PAI-1 deficiency markedly reduced pulmonary fibrin deposition and greatly reduced inflammation and injury without impacting upstream coagulation. Interestingly, pulmonary platelet accumulation was effectively abolished by PAI-1 deficiency in ethanol/LPS-challenged mice. Moreover, mice lacking integrin αIIBβ3, the primary platelet receptor for fibrinogen, displayed a dramatic reduction in early inflammatory changes after ethanol/LPS challenge. These results indicate that the mechanism whereby alcohol exaggerates LPS-induced lung injury requires PAI-1-mediated pulmonary fibrin accumulation, and suggest a novel mechanism whereby alcohol contributes to inflammatory ALI by enhancing fibrinogen-platelet engagement.

  20. The selective serotonin reuptake inhibitor, escitalopram, enhances inhibition of prepotent responding and spatial reversal learning

    Science.gov (United States)

    Brown, Holden D.; Amodeo, Dionisio A.; Sweeney, John A.; Ragozzino, Michael E.

    2011-01-01

    Previous findings indicate treatment with a selective serotonin reuptake inhibitor (SSRI) facilitates behavioral flexibility when conditions require inhibition of a learned response pattern. The present experiment investigated whether acute treatment with the SSRI, escitalopram, affects behavioral flexibility when conditions require inhibition of a naturally-biased response pattern (elevated conflict test) and/or reversal of a learned response pattern (spatial reversal learning). An additional experiment was carried out to determine whether escitalopram, at doses that affected behavioral flexibility, also reduced anxiety as tested in the elevated plus-maze. In each experiment, Long-Evans rats received an intraperitoneal injection of either saline or escitalopram (0.03, 0.3 or 1.0 mg/kg) 30 minutes prior to behavioral testing. Escitalopram, at all doses tested, enhanced acquisition in the elevated conflict test, but did not affect performance in the elevated plus-maze. Escitalopram (0.3 and 1.0 mg/kg) did not alter acquisition of the spatial discrimination, but facilitated reversal learning. In the elevated conflict and spatial reversal learning test, escitalopram enhanced the ability to maintain the relevant strategy after being initially selected. The present findings suggest that enhancing serotonin transmission with a SSRI facilitates inhibitory processes when conditions require a shift away from either a naturally-biased response pattern or a learned choice pattern. PMID:22219222

  1. Diversities in hepatic HIF-1, IGF-I/IGFBP-1, LDH/ICD, and their mRNA expressions induced by CoCl(2) in Qinghai-Tibetan plateau mammals and sea level mice.

    Science.gov (United States)

    Chen, Xue-Qun; Wang, Shi-Jun; Du, Ji-Zeng; Chen, Xiao-Cheng

    2007-01-01

    Ochotona curzoniae and Microtus oeconomus are the native mammals living on the Qinghai-Tibetan-Plateau of China. The molecular mechanisms of their acclimatization to the Plateau-hypoxia remain unclear. Expressions of hepatic hypoxia-inducible factor (HIF)-1alpha, insulin-like growth factor-I (IGF-I)/IGF binding protein (BP)-1(IGFBP-1; including genes), and key metabolic enzymatic genes [lactate dehydrogenase (LDH)-A/isocitrate dehydrogenase (ICD)] are compared in Qinghai-Tibetan-Plateau mammals and sea-level mice after injection of CoCl(2) (20, 40, or 60 mg/kg) and normobaric hypoxia (16.0% O(2), 10.8% O(2), and 8.0% O(2)) for 6 h, tested by histochemistry, Western blot analysis, ELISA, and RT-PCR. Major results are CoCl(2) markedly increased 1) HIF-1alpha only in mice, 2) hepatic and circulatory IGF-I in M. oeconomus, 3) hepatic IGFBP-1 in mice and O. curzoniae, and 4) LDH-A but reduced ICD mRNA in mice (CoCl(2) 20 mg/kg) but were unchanged in the Tibetan mammals. Normobaric hypoxia markedly 1) increased HIF-1alpha and LDH-A mRNA in mice and M. oeconomus (8.0% O(2)) not in O. curzoniae, and 2) reduced ICD mRNA in mice and M. oeconomus (8.0% O(2)) not in O. curzoniae. Results suggest that 1) HIF-1alpha responsiveness to hypoxia is distinct in lowland mice and plateau mammals, reflecting a diverse tolerance of the three species to hypoxia; 2) CoCl(2) induces diversities in HIF-1, IGF-I/IGFBP-1 protein or genes in mice, M. oeconomus, and O. curzoniae. In contrast, HIF-1 mediates IGFBP-1 transcription only in mice and in M. oeconomus (subjected to severe hypoxia); 3) differences in IGF-I/IGFBP-1 expressions induced by CoCl(2) reflect significant diversities in hormone regulation and cell protection from damage; and 4) activation of anaerobic glycolysis and reduction of Krebs cycle represents strategies of lowland-animals vs. the stable metabolic homeostasis of plateau-acclimatized mammals.

  2. Drug Repositioning of Proton Pump Inhibitors for Enhanced Efficacy and Safety of Cancer Chemotherapy

    Directory of Open Access Journals (Sweden)

    Kenji Ikemura

    2017-12-01

    Full Text Available Proton pump inhibitors (PPIs, H+/K+-ATPase inhibitors, are the most commonly prescribed drugs for the treatment of gastroesophageal reflux and peptic ulcer diseases; they are highly safe and tolerable. Since PPIs are frequently used in cancer patients, studies investigating interactions between PPIs and anticancer agents are of particular importance to achieving effective and safe cancer chemotherapy. Several studies have revealed that PPIs inhibit not only the H+/K+-ATPase in gastric parietal cells, but also the vacuolar H+-ATPase (V-ATPase overexpressed in tumor cells, as well as the renal basolateral organic cation transporter 2 (OCT2 associated with pharmacokinetics and/or renal accumulation of various drugs, including anticancer agents. In this mini-review, we summarize the current knowledge regarding the impact of PPIs on the efficacy and safety of cancer chemotherapeutics via inhibition of targets other than the H+/K+-ATPase. Co-administration of clinical doses of PPIs protected kidney function in patients receiving cisplatin and fluorouracil, presumably by decreasing accumulation of cisplatin in the kidney via OCT2 inhibition. In addition, co-administration or pretreatment with PPIs could inhibit H+ transport via the V-ATPase in tumor cells, resulting in lower extracellular acidification and intracellular acidic vesicles to enhance the sensitivity of the tumor cells to the anticancer agents. In the present mini-review, we suggest that PPIs enhance the efficacy and safety of anticancer agents via off-target inhibition (e.g., of OCT2 and V-ATPase, rather than on-target inhibition of the H+/K+-ATPase. The present findings should provide important information to establish novel supportive therapy with PPIs during cancer chemotherapy.

  3. Recent Advances in Developing Inhibitors for Hypoxia-Inducible Factor Prolyl Hydroxylases and Their Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2015-11-01

    Full Text Available Hypoxia-inducible factor (HIF prolyl hydroxylases (PHDs are members of the 2-oxoglutarate dependent non-heme iron dioxygenases. Due to their physiological roles in regulation of HIF-1α stability, many efforts have been focused on searching for selective PHD inhibitors to control HIF-1α levels for therapeutic applications. In this review, we first describe the structure of PHD2 as a molecular basis for structure-based drug design (SBDD and various experimental methods developed for measuring PHD activity. We further discuss the current status of the development of PHD inhibitors enabled by combining SBDD approaches with high-throughput screening. Finally, we highlight the clinical implications of small molecule PHD inhibitors.

  4. Small interfering RNA targeting mcl-1 enhances proteasome inhibitor-induced apoptosis in various solid malignant tumors

    Directory of Open Access Journals (Sweden)

    Zhou Wei

    2011-11-01

    Full Text Available Abstract Background Targeting the ubiquitin-proteasome pathway is a promising approach for anticancer strategies. Recently, we found Bik accumulation in cancer cell lines after they were treated with bortezomib. However, recent evidence indicates that proteasome inhibitors may also induce the accumulation of anti-apoptotic Bcl-2 family members. The current study was designed to analyze the levels of several anti-apoptotic members of Bcl-2 family in different human cancer cell lines after they were treated with proteasome inhibitors. Methods Different human cancer cell lines were treated with proteasome inhibitors. Western blot were used to investigate the expression of Mcl-1 and activation of mitochondrial apoptotic signaling. Cell viability was investigated using SRB assay, and induction of apoptosis was measured using flow cytometry. Results We found elevated Mcl-1 level in human colon cancer cell lines DLD1, LOVO, SW620, and HCT116; human ovarian cancer cell line SKOV3; and human lung cancer cell line H1299, but not in human breast cancer cell line MCF7 after they were treated with bortezomib. This dramatic Mcl-1 accumulation was also observed when cells were treated with other two proteasome inhibitors, MG132 and calpain inhibitor I (ALLN. Moreover, our results showed Mcl-1 accumulation was caused by stabilization of the protein against degradation. Reducing Mcl-1 accumulation by Mcl-1 siRNA reduced Mcl-1 accumulation and enhanced proteasome inhibitor-induced cell death and apoptosis, as evidenced by the increased cleavage of caspase-9, caspase-3, and poly (ADP-ribose polymerase. Conclusions Our results showed that it was not only Bik but also Mcl-1 accumulation during the treatment of proteasome inhibitors, and combining proteasome inhibitors with Mcl-1 siRNA would enhance the ultimate anticancer effect suggesting this combination might be a more effective strategy for cancer therapy.

  5. mTOR signaling disruption from myeloid-derived suppressive cells protects against immune-mediated hepatic injury through the HIF1α-dependent glycolytic pathway.

    Science.gov (United States)

    Chen, Xi; Zhang, Zhengguo; Bi, Yujing; Fu, Zan; Gong, Pingsheng; Li, Yan; Yu, Qing; Jia, Anna; Wang, Jian; Xue, Lixiang; Yang, Hui; Liu, Guangwei

    2016-12-01

    The mechanistic target of rapamycin (mTOR) pathway integrates diverse environmental inputs, including immune signals and metabolic cues, to direct innate and adaptive immune responses. Myeloid-derived suppressive cells (MDSCs) are a heterogeneous cell population that plays a crucial regulatory effect in immune-related diseases. However, whether mTOR signaling affects the functions of MDSCs remains largely unexplored. Here, we show that mTOR signaling is a pivotal, negative determinant of MDSC function in immune-mediated hepatic injury (IMH) diseases. In the context of IMH, the blocking of mTOR with rapamycin or mTOR-deficient CD11b+Gr1+ MDSCs mediates the protection against IMH; mTOR with rapamycin and mTOR-deficient CD11b+Gr1+ MDSCs are suppressive immune modulators that result in less IFN-γ-producing TH1 cells and more Foxp3+ Tregs Mechanistically, mTOR activity down-regulation in MDSCs induced iNOS expressions and NO productions. Pharmacologic inhibitions of iNOS completely eliminate MDSC-suppressive function and lose their inducible effects on T cell differentiation. Importantly, HIF1α-dependent glycolytic activity is responsible for mTOR-deficient, increased MDSC functional changes in IMH inflammation. Thus, these data demonstrate that mTOR acts as a fundamental "rheostat" in MDSCs to link immunologic signals to glycolytic pathways and functional fitness and highlights a central role of metabolic programming of MDSC-suppressive activity in protecting against immune hepatic injuries. © Society for Leukocyte Biology.

  6. Hypoxia regulates FGFR3 expression via HIF-1α and miR-100 and contributes to cell survival in non-muscle invasive bladder cancer.

    Science.gov (United States)

    Blick, C; Ramachandran, A; Wigfield, S; McCormick, R; Jubb, A; Buffa, F M; Turley, H; Knowles, M A; Cranston, D; Catto, J; Harris, A L

    2013-07-09

    Non-muscle invasive (NMI) bladder cancer is characterised by increased expression and activating mutations of FGFR3. We have previously investigated the role of microRNAs in bladder cancer and have shown that FGFR3 is a target of miR-100. In this study, we investigated the effects of hypoxia on miR-100 and FGFR3 expression, and the link between miR-100 and FGFR3 in hypoxia. Bladder cancer cell lines were exposed to normoxic or hypoxic conditions and examined for the expression of FGFR3 by quantitative PCR (qPCR) and western blotting, and miR-100 by qPCR. The effect of FGFR3 and miR-100 on cell viability in two-dimensional (2-D) and three-dimensional (3-D) was examined by transfecting siRNA or mimic-100, respectively. In NMI bladder cancer cell lines, FGFR3 expression was induced by hypoxia in a transcriptional and HIF-1α-dependent manner. Increased FGFR3 was also in part dependent on miR-100 levels, which decreased in hypoxia. Knockdown of FGFR3 led to a decrease in phosphorylation of the downstream kinases mitogen-activated protein kinase (MAPK) and protein kinase B (PKB), which was more pronounced under hypoxic conditions. Furthermore, transfection of mimic-100 also decreased phosphorylation of MAPK and PKB. Finally, knocking down FGFR3 profoundly decreased 2-D and 3-D cell growth, whereas introduction of mimic-100 decreased 3-D growth of cells. Hypoxia, in part via suppression of miR-100, induces FGFR3 expression in bladder cancer, both of which have an important role in maintaining cell viability under conditions of stress.

  7. Hnf-1β transcription factor is an early hif-1α-independent marker of epithelial hypoxia and controls renal repair.

    Directory of Open Access Journals (Sweden)

    Stanislas Faguer

    Full Text Available Epithelial repair following acute kidney injury (AKI requires epithelial-mesenchyme-epithelial cycling associated with transient re-expression of genes normally expressed during kidney development as well as activation of growth factors and cytokine-induced signaling. In normal kidney, the Hnf-1β transcription factor drives nephrogenesis, tubulogenesis and epithelial homeostasis through the regulation of epithelial planar cell polarity and expression of developmental or tubular segment-specific genes. In a mouse model of ischemic AKI induced by a 2-hours hemorrhagic shock, we show that expression of this factor is tightly regulated in the early phase of renal repair with a biphasic expression profile (early down-regulation followed by transient over-expression. These changes are associated to tubular epithelial differentiation as assessed by KSP-cadherin and megalin-cubilin endocytic complex expression analysis. In addition, early decrease in Hnf1b expression is associated with the transient over-expression of one of its main target genes, the suppressor of cytokine signaling Socs3, which has been shown essential for renal repair. In vitro, hypoxia induced early up-regulation of Hnf-1β from 1 to 24 hours, independently of the hypoxia-inducible factor Hif-1α. When prolonged, hypoxia induced Hnf-1β down-regulation while normoxia led to Hnf-1β normalization. Last, Hnf-1β down-regulation using RNA interference in HK-2 cells led to phenotype switch from an epithelial to a mesenchyme state. Taken together, we showed that Hnf-1β may drive recovery from ischemic AKI by regulating both the expression of genes important for homeostasis control during organ repair and the state of epithelial cell differentiation.

  8. The bioanalytical molecular pharmacology of the N-methyl-D-aspartate (NMDA) receptor nexus and the oxygen-responsive transcription factor HIF-1α: putative mechanisms and regulatory pathways unravel the intimate hypoxia connection.

    Science.gov (United States)

    Haddad, John J

    2013-07-01

    Hypoxia-mediated regulation of N-methyl-D-aspartate (NMDA) receptor (NMDAR) is phenomenal. NMDAR is no doubt an intriguing paradoxical glutamate receptor (GluR) with versatile actions. GluRs play a pivotal role in brain physiology and pathophysiology under ischemia and oxygen deprivation, where NMDARs are major contributors. Activation of NMDARs is closely associated with the kinetics of intracellular calcium (Ca(2+)) release, a main player in neuronal cell death in the central nervous system (CNS). However, CNS exposure to hypoxia modulates NMDAR/Ca(2+) physiology in such a way that there is a small window of operating neuroprotection, rather than the classical neuroinjurious effects manifested upon Ca(2+) release. The NMDAR connection with hypoxia-inducible factor-1α (HIF-1α), a transcription factor considered master regulator of oxygen sensing mechanisms, is not well established in the CNS. However, scanning the literature yielded a wealth of NMDAR/hypoxia connection but that with HIF-1α is not prominent. It is worth mentioning that this is not a comprehensive review on the effect of hypoxia on NMDAR physiology, rather this synopsis sheds light on the putative mechanisms involving HIF-1α and NMDAR regulation. Understanding the evidence of this intimate connection and its ramifications may bear potential applications in unraveling hypoxia-mediated injury, neuronal cell death and, most importantly, adaptive, neuroprotective mechanisms to oxygen deprivation.

  9. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study

    Directory of Open Access Journals (Sweden)

    Hermanova Marketa

    2010-05-01

    Full Text Available Abstract Background We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2 and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA and inhibitors of lipoxygenases (LOX and cyclooxygenases (COX. This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Methods Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Results Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2 or SH-SY5Y after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX in combination with ATRA in both cell lines. Conclusions Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  10. Probenecid Treatment Enhances Retinal and Brain Delivery of N-4-Benzoylaminophenylsulfonylglycine, An Anionic Aldose Reductase Inhibitor

    Science.gov (United States)

    Sunkara, Gangadhar; Ayalasomayajula, Surya P.; DeRuiter, Jack; Kompella, Uday B.

    2009-01-01

    Anion efflux transporters are expected to minimize target tissue delivery of N-[4-(benzoylaminophenyl)sulfonyl]glycine (BAPSG), a novel carboxylic acid aldose reductase inhibitor, which exists as a monocarboxylate anion at physiological conditions. Therefore, the objective of this study was to determine whether BAPSG delivery to various eye tissues including the retina and the brain can be enhanced by probenecid, a competitive inhibitor of anion transporters. To determine the influence of probenecid on eye and brain distribution of BAPSG, probenecid was administered intraperitoneally (120 mg/kg body weight; i.p.) 20 minutes prior to BAPSG (50 mg/kg; i.p.) administration. Drug disposition in various eye tissues including the retina and the brain was determined at 15 min, 1, 2 and 4 hr after BAPSG dose in male Sprauge-Dawley rats. To determine whether probenecid alters plasma clearance of BAPSG, influence of probenecid (120 mg/kg; i.p.) on the plasma pharmacokinetics of intravenously administered BAPSG (15 mg/kg) was studied as well. Finally, the effect of probenecid co-administration on the ocular tissue distribution of BAPSG was assessed in rabbits following topical (eye drop) administration. Following pretreatment with probenecid in the rat study, retinal delivery at 1 hr was increased by about 11 fold (2580 vs 244 ng/gm; pprobenecid pretreatment, significant BAPSG levels were detectable in the brain (45 ± 20 ng/gm) at 1 hr, unlike controls where the drug was not detectable. Plasma concentrations, plasma elimination half-life, and total body clearance of intravenously administered BAPSG were not altered by i.p. probenecid pretreatment. In the topical dosing study, a significant decline in BAPSG delivery was observed in the iris-ciliary body but no significant changes were observed in other tissues of the anterior segment of the eye including tears. Thus, inhibition of anion transporters is a useful approach to elevate retinal and brain delivery of BAPSG. PMID

  11. The PKD inhibitor CID755673 enhances cardiac function in diabetic db/db mice.

    Directory of Open Access Journals (Sweden)

    Kylie Venardos

    Full Text Available The development of diabetic cardiomyopathy is a key contributor to heart failure and mortality in obesity and type 2 diabetes (T2D. Current therapeutic interventions for T2D have limited impact on the development of diabetic cardiomyopathy. Clearly, new therapies are urgently needed. A potential therapeutic target is protein kinase D (PKD, which is activated by metabolic insults and implicated in the regulation of cardiac metabolism, contractility and hypertrophy. We therefore hypothesised that PKD inhibition would enhance cardiac function in T2D mice. We first validated the obese and T2D db/db mouse as a model of early stage diabetic cardiomyopathy, which was characterised by both diastolic and systolic dysfunction, without overt alterations in left ventricular morphology. These functional characteristics were also associated with increased PKD2 phosphorylation in the fed state and a gene expression signature characteristic of PKD activation. Acute administration of the PKD inhibitor CID755673 to normal mice reduced both PKD1 and 2 phosphorylation in a time and dose-dependent manner. Chronic CID755673 administration to T2D db/db mice for two weeks reduced expression of the gene expression signature of PKD activation, enhanced indices of both diastolic and systolic left ventricular function and was associated with reduced heart weight. These alterations in cardiac function were independent of changes in glucose homeostasis, insulin action and body composition. These findings suggest that PKD inhibition could be an effective strategy to enhance heart function in obese and diabetic patients and provide an impetus for further mechanistic investigations into the role of PKD in diabetic cardiomyopathy.

  12. Investigate the Metabolic Reprogramming of Saccharomyces cerevisiae for Enhanced Resistance to Mixed Fermentation Inhibitors via 13C Metabolic Flux Analysis.

    Directory of Open Access Journals (Sweden)

    Weihua Guo

    Full Text Available The fermentation inhibitors from the pretreatment of lignocellulosic materials, e.g., acetic acid and furfural, are notorious due to their negative effects on the cell growth and chemical production. However, the metabolic reprogramming of the cells under these stress conditions, especially metabolic response for resistance to mixed inhibitors, has not been systematically investigated and remains mysterious. Therefore, in this study, 13C metabolic flux analysis (13C-MFA, a powerful tool to elucidate the intracellular carbon flux distributions, has been applied to two Saccharomyces cerevisiae strains with different tolerances to the inhibitors under acetic acid, furfural, and mixed (i.e., acetic acid and furfural stress conditions to unravel the key metabolic responses. By analyzing the intracellular carbon fluxes as well as the energy and cofactor utilization under different conditions, we uncovered varied metabolic responses to different inhibitors. Under acetate stress, ATP and NADH production was slightly impaired, while NADPH tended towards overproduction. Under furfural stress, ATP and cofactors (including both NADH and NADPH tended to be overproduced. However, under dual-stress condition, production of ATP and cofactors was severely impaired due to synergistic stress caused by the simultaneous addition of two fermentation inhibitors. Such phenomenon indicated the pivotal role of the energy and cofactor utilization in resisting the mixed inhibitors of acetic acid and furfural. Based on the discoveries, valuable insights are provided to improve the tolerance of S. cerevisiae strain and further enhance lignocellulosic fermentation.

  13. The enhancement of radiosensitivity by celecoxib, selective cyclooxygenase-2 inhibitor, on human cancer cells expressing differential levels of cyclooxygenase-2

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Hong Ryull; Shin, You Keun; Kim, Hyun Seok [National Cancer Center, Seoul (Korea, Republic of); Seong, Jin Sil; Suh, Chang Ok; Kim, Gwi Eon [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2003-09-01

    To investigate the modulation of radiosensitivity by celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, on cancer cells over- and under-expressing COX-2. A clonogenic radiation survival analysis was performed on A549 human lung and MCF-7 human breast cancer cell lines incubated in both 1 and 10% fetal bovine serum (FBS) containing media. The apoptosis in both cell lines was measured after treatment with radiation and/or celecoxib. Celecoxib enhanced the radiation sensitivity of the A549 cells in the medium containing the 10% FBS, with radiation enhancement ratios of 1.58 and 1.81 respectively, at surviving fractions of 0.1, with 30 {mu} M and 50 {mu} M celecoxib. This enhanced radiosensitivity disappeared in the medium containing the 1% FBS. Celecoxib did not change the radiation sensitivity of the MCF-7 cells in either media. The induction of apoptosis by celecoxib and radiation was not synergistic in either cell line. Celecoxib, a selective COX-2 inhibitor, preferentially enhanced the effect of radiation on COX-2 over-expressing cancer cells compared to the cells with a low expression, and this effect disappeared on incubation of the cells during drug treatment in the medium with suboptimal serum concentration. Apoptosis did not appear to be the underlying mechanism of this radiation enhancement effect due to celecoxib on the A549 cells. These findings suggest radiosensitization by a selective COX-2 inhibitor is COX-2 dependent.

  14. Tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis.

    Directory of Open Access Journals (Sweden)

    Yohsuke Hanaoka

    Full Text Available Tissue inhibitors of metalloproteinases (TIMPs regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme, its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.

  15. Novel Efficient Cell-Penetrating, Peptide-Mediated Strategy for Enhancing Telomerase Inhibitor Oligonucleotides.

    Science.gov (United States)

    Muñoz-Alarcón, Andrés; Eriksson, Jonas; Langel, Ülo

    2015-12-01

    At present, there are several therapeutic approaches for targeting telomerase in tumors. One in particular, currently undergoing clinical trials, is based on synthetic lipid-modified oligonucleotide antagonists aimed at inhibiting the ribonucleoprotein subunit of human telomerase. However, while enabling efficient uptake, the lipid modifications reduce the potency of the therapeutic oligonucleotides compared to nonmodified oligonucleotides. Moreover, lipid modification may increase oligonucleotide accumulation in the liver causing undesirable hepatotoxicity. Noncovalent complexation strategies for cell-penetrating peptide (CPP)-mediated delivery present an option to circumvent the need for potency-reducing modifications, while allowing for a highly efficient uptake, and could significantly improve the efficiency of telomerase-targeting cancer therapeutics. Delivery of a nonlipidated locked nucleic acid/2'-O-methyl mixmer significantly inhibits the telomerase activity in treated HeLa cells. The inhibitory effect was further improved through addition of a CPP. Furthermore, calculated IC50-values for the oligonucleotide delivered by CPPs into HeLa cells are more than 20 times lower than telomerase inhibitor Imetelstat, currently undergoing clinical trials. These results emphasize the potential of CPP-mediated delivery of future pharmaceuticals and provide means by which to enhance an already promising therapeutic strategy for cancer treatment.

  16. Nintedanib, a triple angiokinase inhibitor, enhances cytotoxic therapy response in pancreatic cancer.

    Science.gov (United States)

    Awasthi, Niranjan; Hinz, Stefan; Brekken, Rolf A; Schwarz, Margaret A; Schwarz, Roderich E

    2015-03-01

    Angiogenesis remains a sensible target for pancreatic ductal adenocarcinoma (PDAC) therapy. VEGF, PDGF, FGF and their receptors are expressed at high levels and correlate with poor prognosis in human PDAC. Nintedanib is a triple angiokinase inhibitor that targets VEGFR1/2/3, FGFR1/2/3 and PDGFRα/β signaling. We investigated the antitumor activity of nintedanib alone or in combination with the cytotoxic agent gemcitabine in experimental PDAC. Nintedanib inhibited proliferation of cells from multiple lineages found in PDAC, with gemcitabine enhancing inhibitory effects. Nintedanib blocked PI3K/MAPK activity and induced apoptosis in vitro and in vivo. In a heterotopic model, net local tumor growth compared to controls (100%) was 60.8 ± 10.5% in the gemcitabine group, -2.1 ± 9.9% after nintedanib therapy and -12.4 ± 16% after gemcitabine plus nintedanib therapy. Effects of therapy on intratumoral proliferation, microvessel density and apoptosis corresponded with tumor growth inhibition data. In a PDAC survival model, median animal survival after gemcitabine, nintedanib and gemcitabine plus nintedanib was 25, 31 and 38 days, respectively, compared to 16 days in controls. The strong antitumor activity of nintedanib in experimental PDAC supports the potential of nintedanib-controlled mechanisms as targets for improved clinical PDAC therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.

    Science.gov (United States)

    Hernández-García, Susana; San-Segundo, Laura; González-Méndez, Lorena; Corchete, Luis A; Misiewicz-Krzeminska, Irena; Martín-Sánchez, Montserrat; López-Iglesias, Ana-Alicia; Algarín, Esperanza Macarena; Mogollón, Pedro; Díaz-Tejedor, Andrea; Paíno, Teresa; Tunquist, Brian; Mateos, María-Victoria; Gutiérrez, Norma C; Díaz-Rodriguez, Elena; Garayoa, Mercedes; Ocio, Enrique M

    2017-12-01

    Kinesin spindle protein inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (ARRY-520), an inhibitor of this protein, has demonstrated activity in heavily pre-treated multiple myeloma patients. The aim of the work herein was to investigate the activity of filanesib in combination with pomalidomide plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. The ability of filanesib to enhance the activity of pomalidomide plus dexamethasone was studied in several in vitro and in vivo models. Mechanisms of this synergistic combination were dissected by gene expression profiling, immunostaining, cell cycle and short interfering ribonucleic acid studies. Filanesib showed in vitro, ex vivo, and in vivo synergy with pomalidomide plus dexamethasone treatment. Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and was shown to be mediated by the impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, the triple combination increased the activation of the proapoptotic protein BAX, which has previously been associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone, and supported the initiation of a recently activated trial being conducted by the Spanish Myeloma group which is investigating this combination in relapsed myeloma patients. Copyright© 2017 Ferrata Storti Foundation.

  18. Structural and functional analysis of the related transcriptional enhancer factor-1 and NF-κB interaction.

    Science.gov (United States)

    Ma, Jieliang; Zhang, Li; Tipton, Aaron R; Wu, Jiaping; Messmer-Blust, Angela F; Philbrick, Melissa J; Qi, Yajuan; Liu, Song-Tao; Liu, Hongsheng; Li, Jian; Guo, Shaodong

    2014-01-15

    The related transcriptional enhancer factor-1 (RTEF-1) increases gene transcription of hypoxia-inducible factor 1α (HIF-1α) and enhances angiogenesis in endothelium. Both hypoxia and inflammatory factor TNF-α regulate gene expression of HIF-1α, but how RTEF-1 and TNF-α coordinately regulate HIF-1α gene transcription is unclear. Here, we found that RTEF-1 interacts with p65 subunit of NF-κB, a primary mediator of TNF-α. RTEF-1 increased HIF-1α promoter activity, whereas expression of p65 subunit inhibited the stimulatory effect. By contrast, knockdown of p65 markedly enhanced RTEF-1 stimulation on the HIF-1α promoter activity (7-fold). A physical interaction between RTEF-1 and p65 was confirmed by coimmunoprecipitation experiments in cells and glutathione S-transferase (GST)-pull-down assays. A computational analysis of RTEF-1 crystal structures revealed that a conserved surface of RTEF-1 potentially interacts with p65 via four amino acid residues located at T347, Y349, R351, and Y352. We performed site-directed mutagenesis and GST-pull-down assays and demonstrated that Tyr352 (Y352) in RTEF-1 is a key site for the formation of RTEF-1 and p65-NF-κB complex. An alanine mutation at Y352 of RTEF-1 disrupted the interaction of RTEF-1 with p65. Moreover, expression of RTEF-1 decreased TNF-α-induced HIF-1α promoter activity, IL-1β, and IL-6 mRNA levels in cells; however, the effect of RTEF-1 was largely lost when Y352 was mutated to alanine. These results indicate that RTEF-1 interacts with p65-NF-κB through Y352 and that they antagonize each other for HIF-1α transcriptional activation, suggesting a novel mechanism by which RTEF-1 regulates gene expression, linking hypoxia to inflammation.

  19. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakabayashi, Hiroko; Ohta, Yasuharu, E-mail: yohta@yamaguchi-u.ac.jp; Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio, E-mail: tanizawa@yamaguchi-u.ac.jp

    2013-05-03

    Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1{sup −/−} A{sup y}/a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the