WorldWideScience

Sample records for hierarchically structured populations

  1. Bayesian Hierarchical Structure for Quantifying Population Variability to Inform Probabilistic Health Risk Assessments.

    Science.gov (United States)

    Shao, Kan; Allen, Bruce C; Wheeler, Matthew W

    2017-10-01

    Human variability is a very important factor considered in human health risk assessment for protecting sensitive populations from chemical exposure. Traditionally, to account for this variability, an interhuman uncertainty factor is applied to lower the exposure limit. However, using a fixed uncertainty factor rather than probabilistically accounting for human variability can hardly support probabilistic risk assessment advocated by a number of researchers; new methods are needed to probabilistically quantify human population variability. We propose a Bayesian hierarchical model to quantify variability among different populations. This approach jointly characterizes the distribution of risk at background exposure and the sensitivity of response to exposure, which are commonly represented by model parameters. We demonstrate, through both an application to real data and a simulation study, that using the proposed hierarchical structure adequately characterizes variability across different populations. © 2016 Society for Risk Analysis.

  2. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  3. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  4. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  5. Hierarchical spatial genetic structure in a distinct population segment of greater sage-grouse

    Science.gov (United States)

    Oyler-McCance, Sara J.; Casazza, Michael L.; Fike, Jennifer A.; Coates, Peter S.

    2014-01-01

    Greater sage-grouse (Centrocercus urophasianus) within the Bi-State Management Zone (area along the border between Nevada and California) are geographically isolated on the southwestern edge of the species’ range. Previous research demonstrated that this population is genetically unique, with a high proportion of unique mitochondrial DNA (mtDNA) haplotypes and with significant differences in microsatellite allele frequencies compared to populations across the species’ range. As a result, this population was considered a distinct population segment (DPS) and was recently proposed for listing as threatened under the U.S. Endangered Species Act. A more comprehensive understanding of the boundaries of this genetically unique population (where the Bi-State population begins) and an examination of genetic structure within the Bi-State is needed to help guide effective management decisions. We collected DNA from eight sampling locales within the Bi-State (N = 181) and compared those samples to previously collected DNA from the two most proximal populations outside of the Bi-State DPS, generating mtDNA sequence data and amplifying 15 nuclear microsatellites. Both mtDNA and microsatellite analyses support the idea that the Bi-State DPS represents a genetically unique population, which has likely been separated for thousands of years. Seven mtDNA haplotypes were found exclusively in the Bi-State population and represented 73 % of individuals, while three haplotypes were shared with neighboring populations. In the microsatellite analyses both STRUCTURE and FCA separate the Bi-State from the neighboring populations. We also found genetic structure within the Bi-State as both types of data revealed differences between the northern and southern part of the Bi-State and there was evidence of isolation-by-distance. STRUCTURE revealed three subpopulations within the Bi-State consisting of the northern Pine Nut Mountains (PNa), mid Bi-State, and White Mountains (WM) following a

  6. Hierarchical population structure in greater sage-grouse provides insight into management boundary delineation

    Science.gov (United States)

    Todd B. Cross; David E. Naugle; John C. Carlson; Michael K. Schwartz

    2016-01-01

    Understanding population structure is important for guiding ongoing conservation and restoration efforts. The greater sage-grouse (Centrocercus urophasianus) is a species of concern distributed across 1.2 million km2 of western North America. We genotyped 1499 greater sagegrouse from 297 leks across Montana, North Dakota and South Dakota using a 15 locus...

  7. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  8. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    Directory of Open Access Journals (Sweden)

    Chunping Liu

    Full Text Available Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE, whereas it has a scattered and patchy distribution in South China (SC. In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM. Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278 among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  9. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    Science.gov (United States)

    Liu, Chunping; Tsuda, Yoshiaki; Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  10. Genetic Structure and Hierarchical Population Divergence History of Acer mono var. mono in South and Northeast China

    Science.gov (United States)

    Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species’ evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST = 0.073; G′ST = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species’ more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study. PMID:24498039

  11. Trees and Hierarchical Structures

    CERN Document Server

    Haeseler, Arndt

    1990-01-01

    The "raison d'etre" of hierarchical dustering theory stems from one basic phe­ nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das­ sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.

  12. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong; Wu, Tao

    2017-01-01

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced

  13. Processing of hierarchical syntactic structure in music.

    Science.gov (United States)

    Koelsch, Stefan; Rohrmeier, Martin; Torrecuso, Renzo; Jentschke, Sebastian

    2013-09-17

    Hierarchical structure with nested nonlocal dependencies is a key feature of human language and can be identified theoretically in most pieces of tonal music. However, previous studies have argued against the perception of such structures in music. Here, we show processing of nonlocal dependencies in music. We presented chorales by J. S. Bach and modified versions in which the hierarchical structure was rendered irregular whereas the local structure was kept intact. Brain electric responses differed between regular and irregular hierarchical structures, in both musicians and nonmusicians. This finding indicates that, when listening to music, humans apply cognitive processes that are capable of dealing with long-distance dependencies resulting from hierarchically organized syntactic structures. Our results reveal that a brain mechanism fundamental for syntactic processing is engaged during the perception of music, indicating that processing of hierarchical structure with nested nonlocal dependencies is not just a key component of human language, but a multidomain capacity of human cognition.

  14. Discovering hierarchical structure in normal relational data

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten

    2014-01-01

    -parametric generative model for hierarchical clustering of similarity based on multifurcating Gibbs fragmentation trees. This allows us to infer and display the posterior distribution of hierarchical structures that comply with the data. We demonstrate the utility of our method on synthetic data and data of functional...

  15. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong

    2017-08-03

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional fluidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.

  16. Zeolitic materials with hierarchical porous structures.

    Science.gov (United States)

    Lopez-Orozco, Sofia; Inayat, Amer; Schwab, Andreas; Selvam, Thangaraj; Schwieger, Wilhelm

    2011-06-17

    During the past several years, different kinds of hierarchical structured zeolitic materials have been synthesized due to their highly attractive properties, such as superior mass/heat transfer characteristics, lower restriction of the diffusion of reactants in the mesopores, and low pressure drop. Our contribution provides general information regarding types and preparation methods of hierarchical zeolitic materials and their relative advantages and disadvantages. Thereafter, recent advances in the preparation and characterization of hierarchical zeolitic structures within the crystallites by post-synthetic treatment methods, such as dealumination or desilication; and structured devices by in situ and ex situ zeolite coatings on open-cellular ceramic foams as (non-reactive as well as reactive) supports are highlighted. Specific advantages of using hierarchical zeolitic catalysts/structures in selected catalytic reactions, such as benzene to phenol (BTOP) and methanol to olefins (MTO) are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evaluating Hierarchical Structure in Music Annotations.

    Science.gov (United States)

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  18. Evaluating Hierarchical Structure in Music Annotations

    Directory of Open Access Journals (Sweden)

    Brian McFee

    2017-08-01

    Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  19. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  20. Hierarchical Fiber Structures Made by Electrospinning Polymers

    Science.gov (United States)

    Reneker, Darrell H.

    2009-03-01

    A filter for water purification that is very thin, with small interstices and high surface area per unit mass, can be made with nanofibers. The mechanical strength of a very thin sheet of nanofibers is not great enough to withstand the pressure drop of the fluid flowing through. If the sheet of nanofibers is made thicker, the strength will increase, but the flow will be reduced to an impractical level. An optimized filter can be made with nanometer scale structures supported on micron scale structures, which are in turn supported on millimeter scale structures. This leads to a durable hierarchical structure to optimize the filtration efficiency with a minimum amount of material. Buckling coils,ootnotetextTao Han, Darrell H Reneker, Alexander L. Yarin, Polymer, Volume 48, issue 20 (September 21, 2007), p. 6064-6076. electrical bending coilsootnotetextDarrell H. Reneker and Alexander L. Yarin, Polymer, Volume 49, Issue 10 (2008) Pages 2387-2425, DOI:10.1016/j.polymer.2008.02.002. Feature Article. and pendulum coilsootnotetextT. Han, D.H. Reneker, A.L. Yarin, Polymer, Volume 49, (2008) Pages 2160-2169, doi:10.1016/jpolymer.2008.01.0487878. spanning dimensions from a few microns to a few centimeters can be collected from a single jet by controlling the position and motion of a collector. Attractive routes to the design and construction of hierarchical structures for filtration are based on nanofibers supported on small coils that are in turn supported on larger coils, which are supported on even larger overlapping coils. ``Such top-down'' hierarchical structures are easy to make by electrospinning. In one example, a thin hierarchical structure was made, with a high surface area and small interstices, having an open area of over 50%, with the thinnest fibers supported at least every 15 microns.

  1. Hierarchically structured materials for lithium batteries

    International Nuclear Information System (INIS)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-01-01

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg −1 ), new energy storage systems, such as lithium–oxygen (Li–O 2 ) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li–O 2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime. (paper)

  2. Hierarchical structure in the distribution of galaxies

    International Nuclear Information System (INIS)

    Schulman, L.S.; Seiden, P.E.; Technion - Israel Institute of Technology, Haifa; IBM Thomas J. Watson Research Center, Yorktown Heights, NY)

    1986-01-01

    The distribution of galaxies has a hierarchical structure with power-law correlations. This is usually thought to arise from gravity alone acting on an originally uniform distributioon. If, however, the original process of galaxy formation occurs through the stimulated birth of one galaxy due to a nearby recently formed galaxy, and if this process occurs near its percolation threshold, then a hierarchical structure with power-law correlations arises at the time of galaxy formation. If subsequent gravitational evolution within an expanding cosmology is such as to retain power-law correlations, the initial r exp -1 dropoff can steepen to the observed r exp -1.8. The distribution of galaxies obtained by this process produces clustering and voids, as observed. 23 references

  3. Additive Manufacturing of Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division. Polymers and Coatings

    2016-08-30

    Additive manufacturing has become a tool of choice for the development of customizable components. Developments in this technology have led to a powerful array of printers that t serve a variety of needs. However, resin development plays a crucial role in leading the technology forward. This paper addresses the development and application of printing hierarchical porous structures. Beginning with the development of a porous scaffold, which can be functionalized with a variety of materials, and concluding with customized resins for metal, ceramic, and carbon structures.

  4. Population structure of Atlantic Mackerel inferred from RAD-seq derived SNP markers: effects of sequence clustering parameters and hierarchical SNP selection

    KAUST Repository

    Rodrí guez-Ezpeleta, Naiara; Bradbury, Ian R.; Mendibil, Iñ aki; Á lvarez, Paula; Cotano, Unai; Irigoien, Xabier

    2016-01-01

    : the maximum number of mismatches allowed to merge reads into a locus and the relatedness of the individuals used for genotype calling and SNP selection. Our study resolves the population structure of the Atlantic mackerel, but, most importantly, provides

  5. Inferring hierarchical clustering structures by deterministic annealing

    International Nuclear Information System (INIS)

    Hofmann, T.; Buhmann, J.M.

    1996-01-01

    The unsupervised detection of hierarchical structures is a major topic in unsupervised learning and one of the key questions in data analysis and representation. We propose a novel algorithm for the problem of learning decision trees for data clustering and related problems. In contrast to many other methods based on successive tree growing and pruning, we propose an objective function for tree evaluation and we derive a non-greedy technique for tree growing. Applying the principles of maximum entropy and minimum cross entropy, a deterministic annealing algorithm is derived in a meanfield approximation. This technique allows us to canonically superimpose tree structures and to fit parameters to averaged or open-quote fuzzified close-quote trees

  6. Population structure of Atlantic Mackerel inferred from RAD-seq derived SNP markers: effects of sequence clustering parameters and hierarchical SNP selection

    KAUST Repository

    Rodríguez-Ezpeleta, Naiara

    2016-03-03

    Restriction-site associated DNA sequencing (RAD-seq) and related methods are revolutionizing the field of population genomics in non-model organisms as they allow generating an unprecedented number of single nucleotide polymorphisms (SNPs) even when no genomic information is available. Yet, RAD-seq data analyses rely on assumptions on nature and number of nucleotide variants present in a single locus, the choice of which may lead to an under- or overestimated number of SNPs and/or to incorrectly called genotypes. Using the Atlantic mackerel (Scomber scombrus L.) and a close relative, the Atlantic chub mackerel (Scomber colias), as case study, here we explore the sensitivity of population structure inferences to two crucial aspects in RAD-seq data analysis: the maximum number of mismatches allowed to merge reads into a locus and the relatedness of the individuals used for genotype calling and SNP selection. Our study resolves the population structure of the Atlantic mackerel, but, most importantly, provides insights into the effects of alternative RAD-seq data analysis strategies on population structure inferences that are directly applicable to other species.

  7. Hierarchical differences in population coding within auditory cortex.

    Science.gov (United States)

    Downer, Joshua D; Niwa, Mamiko; Sutter, Mitchell L

    2017-08-01

    Most models of auditory cortical (AC) population coding have focused on primary auditory cortex (A1). Thus our understanding of how neural coding for sounds progresses along the cortical hierarchy remains obscure. To illuminate this, we recorded from two AC fields: A1 and middle lateral belt (ML) of rhesus macaques. We presented amplitude-modulated (AM) noise during both passive listening and while the animals performed an AM detection task ("active" condition). In both fields, neurons exhibit monotonic AM-depth tuning, with A1 neurons mostly exhibiting increasing rate-depth functions and ML neurons approximately evenly distributed between increasing and decreasing functions. We measured noise correlation ( r noise ) between simultaneously recorded neurons and found that whereas engagement decreased average r noise in A1, engagement increased average r noise in ML. This finding surprised us, because attentive states are commonly reported to decrease average r noise We analyzed the effect of r noise on AM coding in both A1 and ML and found that whereas engagement-related shifts in r noise in A1 enhance AM coding, r noise shifts in ML have little effect. These results imply that the effect of r noise differs between sensory areas, based on the distribution of tuning properties among the neurons within each population. A possible explanation of this is that higher areas need to encode nonsensory variables (e.g., attention, choice, and motor preparation), which impart common noise, thus increasing r noise Therefore, the hierarchical emergence of r noise -robust population coding (e.g., as we observed in ML) enhances the ability of sensory cortex to integrate cognitive and sensory information without a loss of sensory fidelity. NEW & NOTEWORTHY Prevailing models of population coding of sensory information are based on a limited subset of neural structures. An important and under-explored question in neuroscience is how distinct areas of sensory cortex differ in their

  8. Hierarchical structure of moral stages assessed by a sorting task

    NARCIS (Netherlands)

    Boom, J.; Brugman, D.; Van der Heijden, P.G.M.

    2001-01-01

    Following criticism of Kohlberg’s theory of moral judgment, an empirical re-examination of hierarchical stage structure was desirable. Utilizing Piaget’s concept of reflective abstraction as a basis, the hierarchical stage structure was investigated using a new method. Study participants (553 Dutch

  9. Hierarchical regression analysis in structural Equation Modeling

    NARCIS (Netherlands)

    de Jong, P.F.

    1999-01-01

    In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

  10. Modular Assembly of Hierarchically Structured Polymers

    Science.gov (United States)

    Leophairatana, Porakrit

    The synthesis of macromolecules with complex yet highly controlled molecular architectures has attracted significant attention in the past few decades due to the growing demand for specialty polymers that possess novel properties. Despite recent efforts, current synthetic routes lack the ability to control several important architectural variables while maintaining low polydispersity index. This dissertation explores a new synthetic scheme for the modular assembly of hierarchically structured polymers (MAHP) that allows virtually any complex polymer to be assembled from a few basic molecular building blocks using a single common coupling chemistry. Complex polymer structures can be assembled from a molecular toolkit consisting of (1) copper-catalyzed azide-alkyne cycloaddition (CuAAC), (2) linear heterobifunctional macromonomers, (3) a branching heterotrifunctional molecule, (4) a protection/deprotection strategy, (5) "click" functional solid substrates, and (6) functional and responsive polymers. This work addresses the different challenges that emerged during the development of this synthetic scheme, and presents strategies to overcome those challenges. Chapter 3 investigates the alkyne-alkyne (i.e. Glaser) coupling side reactions associated with the atom transfer radical polymerization (ATRP) synthesis of alkyne-functional macromonomers, as well as with the CuAAC reaction of alkyne functional building blocks. In typical ATRP synthesis of unprotected alkyne functional polymers, Glaser coupling reactions can significantly compromise the polymer functionality and undermine the success of subsequent click reactions in which the polymers are used. Two strategies are reported that effectively eliminate these coupling reactions: (1) maintaining low temperature post-ATRP upon exposure to air, followed by immediate removal of copper catalyst; and (2) adding excess reducing agents post-ATRP, which prevents the oxidation of Cu(I) catalyst required by the Glaser coupling

  11. Facile fabrication of superhydrophobic surfaces with hierarchical structures.

    Science.gov (United States)

    Lee, Eunyoung; Lee, Kun-Hong

    2018-03-06

    Hierarchical structures were fabricated on the surfaces of SUS304 plates using a one-step process of direct microwave irradiation under a carbon dioxide atmosphere. The surface nanostructures were composed of chrome-doped hematite single crystals. Superhydrophobic surfaces with a water contact angle up to 169° were obtained by chemical modification of the hierarchical structures. The samples maintained superhydrophobicity under NaCl solution up to 2 weeks.

  12. Quantum Ising model on hierarchical structures

    International Nuclear Information System (INIS)

    Lin Zhifang; Tao Ruibao.

    1989-11-01

    A quantum Ising chain with both the exchange couplings and the transverse fields arranged in a hierarchical way is considered. Exact analytical results for the critical line and energy gap are obtained. It is shown that when R 1 not= R 2 , where R 1 and R 2 are the hierarchical parameters for the exchange couplings and the transverse fields, respectively, the system undergoes a phase transition in a different universality class from the pure quantum Ising chain with R 1 =R 2 =1. On the other hand, when R 1 =R 2 =R, there exists a critical value R c dependent on the furcating number of the hierarchy. In case of R > R c , the system is shown to exhibit as Ising-like critical point with the critical behaviour the same as in the pure case, while for R c the system belongs to another universality class. (author). 19 refs, 2 figs

  13. Hierarchically structured distributed microprocessor network for control

    International Nuclear Information System (INIS)

    Greenwood, J.R.; Holloway, F.W.; Rupert, P.R.; Ozarski, R.G.; Suski, G.J.

    1979-01-01

    To satisfy a broad range of control-analysis and data-acquisition requirements for Shiva, a hierarchical, computer-based, modular-distributed control system was designed. This system handles the more than 3000 control elements and 1000 data acquisition units in a severe high-voltage, high-current environment. The control system design gives one a flexible and reliable configuration to meet the development milestones for Shiva within critical time limits

  14. Road Network Selection Based on Road Hierarchical Structure Control

    Directory of Open Access Journals (Sweden)

    HE Haiwei

    2015-04-01

    Full Text Available A new road network selection method based on hierarchical structure is studied. Firstly, road network is built as strokes which are then classified into hierarchical collections according to the criteria of betweenness centrality value (BC value. Secondly, the hierarchical structure of the strokes is enhanced using structural characteristic identification technique. Thirdly, the importance calculation model was established according to the relationships among the hierarchical structure of the strokes. Finally, the importance values of strokes are got supported with the model's hierarchical calculation, and with which the road network is selected. Tests are done to verify the advantage of this method by comparing it with other common stroke-oriented methods using three kinds of typical road network data. Comparision of the results show that this method had few need to semantic data, and could eliminate the negative influence of edge strokes caused by the criteria of BC value well. So, it is better to maintain the global hierarchical structure of road network, and suitable to meet with the selection of various kinds of road network at the same time.

  15. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities

    Science.gov (United States)

    Royle, J. Andrew; Dorazio, Robert M.

    2008-01-01

    A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.

  16. A Hierarchical Dispatch Structure for Distribution Network Pricing

    OpenAIRE

    Yuan, Zhao; Hesamzadeh, Mohammad Reza

    2015-01-01

    This paper presents a hierarchical dispatch structure for efficient distribution network pricing. The dispatch coordination problem in the context of hierarchical network operators are addressed. We formulate decentralized generation dispatch into a bilevel optimization problem in which main network operator and the connected distribution network operator optimize their costs in two levels. By using Karush-Kuhn-Tucker conditions and Fortuny-Amat McCarl linearization, the bilevel optimization ...

  17. Hierarchical structure of stock price fluctuations in financial markets

    International Nuclear Information System (INIS)

    Gao, Ya-Chun; Cai, Shi-Min; Wang, Bing-Hong

    2012-01-01

    The financial market and turbulence have been broadly compared on account of the same quantitative methods and several common stylized facts they share. In this paper, the She–Leveque (SL) hierarchy, proposed to explain the anomalous scaling exponents deviating from Kolmogorov monofractal scaling of the velocity fluctuation in fluid turbulence, is applied to study and quantify the hierarchical structure of stock price fluctuations in financial markets. We therefore observed certain interesting results: (i) the hierarchical structure related to multifractal scaling generally presents in all the stock price fluctuations we investigated. (ii) The quantitatively statistical parameters that describe SL hierarchy are different between developed financial markets and emerging ones, distinctively. (iii) For the high-frequency stock price fluctuation, the hierarchical structure varies with different time periods. All these results provide a novel analogy in turbulence and financial market dynamics and an insight to deeply understand multifractality in financial markets. (paper)

  18. Detecting the overlapping and hierarchical community structure in complex networks

    International Nuclear Information System (INIS)

    Lancichinetti, Andrea; Fortunato, Santo; Kertesz, Janos

    2009-01-01

    Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this community structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here, we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling different hierarchical levels of organization to be investigated. Tests on real and artificial networks give excellent results.

  19. New insight in magnetic saturation behavior of nickel hierarchical structures

    Science.gov (United States)

    Ma, Ji; Zhang, Jianxing; Liu, Chunting; Chen, Kezheng

    2017-09-01

    It is unanimously accepted that non-ferromagnetic inclusions in a ferromagnetic system will lower down total saturation magnetization in unit of emu/g. In this study, ;lattice strain; was found to be another key factor to have critical impact on magnetic saturation behavior of the system. The lattice strain determined assembling patterns of primary nanoparticles in hierarchical structures and was intimately related with the formation process of these architectures. Therefore, flower-necklace-like and cauliflower-like nickel hierarchical structures were used as prototype systems to evidence the relationship between assembling patterns of primary nanoparticles and magnetic saturation behaviors of these architectures. It was found that the influence of lattice strain on saturation magnetization outperformed that of non-ferromagnetic inclusions in these hierarchical structures. This will enable new insights into fundamental understanding of related magnetic effects.

  20. Hierarchical data structures for graphics program languages

    International Nuclear Information System (INIS)

    Gonauser, M.; Schinner, P.; Weiss, J.

    1978-01-01

    Graphic data processing with a computer makes exacting demands on the interactive capability of the program language and the management of the graphic data. A description of the structure of a graphics program language which has been shown by initial practical experiments to possess a particularly favorable interactive capability is followed by the evaluation of various data structures (list, tree, ring) with respect to their interactive capability in processing graphics. A practical structure is proposed. (orig.) [de

  1. Hierarchical structure of correlation functions for single jets

    International Nuclear Information System (INIS)

    Lupia, S.; Giovannini, A.; Ugoccioni, R.

    1993-01-01

    Theoretical basis of void scaling function properties of hierarchical structure in rapidity and p T intervals are explored. Their phenomenological consequences are analyzed at single jet level by using Monte Carlo methods in e + e - annihilation. It is found that void scaling function study provides an interesting alternative approach for characterizing single jets of different origin. (orig.)

  2. Hierarchical structure of correlation functions for single jets

    Energy Technology Data Exchange (ETDEWEB)

    Lupia, S. (Dipt. di Fisica Teorica, Univ. di Torino, and INFN, Sezione di Torino (Italy)); Giovannini, A. (Dipt. di Fisica Teorica, Univ. di Torino, and INFN, Sezione di Torino (Italy)); Ugoccioni, R. (Dipt. di Fisica Teorica, Univ. di Torino, and INFN, Sezione di Torino (Italy))

    1993-08-01

    Theoretical basis of void scaling function properties of hierarchical structure in rapidity and p[sub T] intervals are explored. Their phenomenological consequences are analyzed at single jet level by using Monte Carlo methods in e[sup +]e[sup -] annihilation. It is found that void scaling function study provides an interesting alternative approach for characterizing single jets of different origin. (orig.)

  3. On Structure, Family and Parameter Estimation of Hierarchical Archimedean Copulas

    Czech Academy of Sciences Publication Activity Database

    Górecki, J.; Hofert, M.; Holeňa, Martin

    2017-01-01

    Roč. 87, č. 17 (2017), s. 3261-3324 ISSN 0094-9655 R&D Projects: GA ČR GA17-01251S Institutional support: RVO:67985807 Keywords : copula estimation * goodness-of-fit * Hierarchical Archimedean copula * structure determination Subject RIV: IN - Informatics, Computer Science OBOR OECD: Statistics and probability Impact factor: 0.757, year: 2016

  4. Content Consumption and Hierarchical Structures of Web-Supported Courses

    Science.gov (United States)

    Hershkovitz, Arnon; Hardof-Jaffe, Sharon; Nachmias, Rafi

    2014-01-01

    This study presents an empirical investigation of the relationship between the hierarchical structure of content delivered to students within a Learning Management System (LMS) and its actual consumption. To this end, campus-wide data relating to 1,203 courses were collected from the LMS' servers and were subsequently analyzed using data mining…

  5. Micro-nanofibers with hierarchical structure by bubbfil-spinning

    Directory of Open Access Journals (Sweden)

    Liu Peng

    2015-01-01

    Full Text Available Bubbfil spinning is used to fabricate micro/nanofibers with hierarchical structure. The wall of a polymer film is attenuated unevenly by a blowing air. The burst of the bubble results in film fragments with different thickness, as a result, different sizes of fibers are obtained.

  6. Enhanced water desalination performance through hierarchically-structured ceramic membranes

    NARCIS (Netherlands)

    Liu, Tong; Lei, Libin; Gu, Jianqiang; Wang, Yao; Winnubst, Louis; Chen, Chusheng; Ye, Chunsong; Chen, Fanglin

    2017-01-01

    Developments of membrane water desalination are impeded by low water vapor flux across the membrane. We present an innovative membrane design to significantly enhance the water vapor flux. A bilayer zirconia-based membrane with a thick hierarchically-structured support and a thin functional layer is

  7. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    Science.gov (United States)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  8. Hierarchical structure for risk criteria applicable to nuclear power plants

    International Nuclear Information System (INIS)

    Hall, R.E.; Mitra, S.P.

    1985-01-01

    This paper discusses the development of a hierarchical structure for risk criteria applicable to nuclear power plants. The structure provides a unified framework to systematically analyze the implications of different types of criteria, each focusing on a particular aspect of nuclear power plant risks. The framework allows investigation of the specific coverage of a particular criterion and comparison of different criteria with regard to areas to which they apply. 5 refs., 2 figs

  9. Biomedical application of hierarchically built structures based on metal oxides

    Science.gov (United States)

    Korovin, M. S.; Fomenko, A. N.

    2017-12-01

    Nowadays, the use of hierarchically built structures in biology and medicine arouses much interest. The aim of this work is to review and summarize the available literature data about hierarchically organized structures in biomedical application. Nanoparticles can serve as an example of such structures. Medicine holds a special place among various application methods of similar systems. Special attention is paid to inorganic nanoparticles based on different metal oxides and hydroxides, such as iron, zinc, copper, and aluminum. Our investigations show that low-dimensional nanostructures based on aluminum oxides and hydroxides have an inhibitory effect on tumor cells and possess an antimicrobial activity. At the same time, it is obvious that the large-scale use of nanoparticles by humans needs to thoroughly study their properties. Special attention should be paid to the study of nanoparticle interaction with living biological objects. The numerous data show that there is no clear understanding of interaction mechanisms between nanoparticles and various cell types.

  10. A new hierarchical method to find community structure in networks

    Science.gov (United States)

    Saoud, Bilal; Moussaoui, Abdelouahab

    2018-04-01

    Community structure is very important to understand a network which represents a context. Many community detection methods have been proposed like hierarchical methods. In our study, we propose a new hierarchical method for community detection in networks based on genetic algorithm. In this method we use genetic algorithm to split a network into two networks which maximize the modularity. Each new network represents a cluster (community). Then we repeat the splitting process until we get one node at each cluster. We use the modularity function to measure the strength of the community structure found by our method, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our method are highly effective at discovering community structure in both computer-generated and real-world network data.

  11. Growth Mechanism of Pumpkin-Shaped Vaterite Hierarchical Structures

    Science.gov (United States)

    Ma, Guobin; Xu, Yifei; Wang, Mu

    2015-03-01

    CaCO3-based biominerals possess sophisticated hierarchical structures and promising mechanical properties. Recent researches imply that vaterite may play an important role in formation of CaCO3-based biominerals. However, as a less common polymorph of CaCO3, the growth mechanism of vaterite remains not very clear. Here we report the growth of a pumpkin-shaped vaterite hierarchical structure with a six-fold symmetrical axis and lamellar microstructure. We demonstrate that the growth is controlled by supersaturation and the intrinsic crystallographic anisotropy of vaterite. For the scenario of high supersaturation, the nucleation rate is higher than the lateral extension rate, favoring the ``double-leaf'' spherulitic growth. Meanwhile, nucleation occurs preferentially in as determined by the crystalline structure of vaterite, modulating the grown products with a hexagonal symmetry. The results are beneficial for an in-depth understanding of the biomineralization of CaCO3. The growth mechanism may also be applicable to interpret the formation of similar hierarchical structures of other materials. The authors gratefully acknowledge the financial support from National Science Foundation of China (Grant Nos. 51172104 and 50972057) and National Key Basic Research Program of China (Grant No. 2010CB630705).

  12. Localizing age-related individual differences in a hierarchical structure

    OpenAIRE

    Salthouse, Timothy A.

    2004-01-01

    Data from 33 separate studies were combined to create an aggregate data set consisting of 16 cognitive variables and 6832 different individuals who ranged between 18 and 95 years of age. Analyses were conducted to determine where in a hierarchical structure of cognitive abilities individual differences associated with age, gender, education, and self-reported health could be localized. The results indicated that each type of individual difference characteristic exhibited a d...

  13. Hierarchical drivers of reef-fish metacommunity structure.

    Science.gov (United States)

    MacNeil, M Aaron; Graham, Nicholas A J; Polunin, Nicholas V C; Kulbicki, Michel; Galzin, René; Harmelin-Vivien, Mireille; Rushton, Steven P

    2009-01-01

    Coral reefs are highly complex ecological systems, where multiple processes interact across scales in space and time to create assemblages of exceptionally high biodiversity. Despite the increasing frequency of hierarchically structured sampling programs used in coral-reef science, little progress has been made in quantifying the relative importance of processes operating across multiple scales. The vast majority of reef studies are conducted, or at least analyzed, at a single spatial scale, ignoring the implicitly hierarchical structure of the overall system in favor of small-scale experiments or large-scale observations. Here we demonstrate how alpha (mean local number of species), beta diversity (degree of species dissimilarity among local sites), and gamma diversity (overall species richness) vary with spatial scale, and using a hierarchical, information-theoretic approach, we evaluate the relative importance of site-, reef-, and atoll-level processes driving the fish metacommunity structure among 10 atolls in French Polynesia. Process-based models, representing well-established hypotheses about drivers of reef-fish community structure, were assembled into a candidate set of 12 hierarchical linear models. Variation in fish abundance, biomass, and species richness were unevenly distributed among transect, reef, and atoll levels, establishing the relative contribution of variation at these spatial scales to the structure of the metacommunity. Reef-fish biomass, species richness, and the abundance of most functional-groups corresponded primarily with transect-level habitat diversity and atoll-lagoon size, whereas detritivore and grazer abundances were largely correlated with potential covariates of larval dispersal. Our findings show that (1) within-transect and among-atoll factors primarily drive the relationship between alpha and gamma diversity in this reef-fish metacommunity; (2) habitat is the primary correlate with reef-fish metacommunity structure at

  14. Hierarchical sets: analyzing pangenome structure through scalable set visualizations

    Science.gov (United States)

    2017-01-01

    Abstract Motivation: The increase in available microbial genome sequences has resulted in an increase in the size of the pangenomes being analyzed. Current pangenome visualizations are not intended for the pangenome sizes possible today and new approaches are necessary in order to convert the increase in available information to increase in knowledge. As the pangenome data structure is essentially a collection of sets we explore the potential for scalable set visualization as a tool for pangenome analysis. Results: We present a new hierarchical clustering algorithm based on set arithmetics that optimizes the intersection sizes along the branches. The intersection and union sizes along the hierarchy are visualized using a composite dendrogram and icicle plot, which, in pangenome context, shows the evolution of pangenome and core size along the evolutionary hierarchy. Outlying elements, i.e. elements whose presence pattern do not correspond with the hierarchy, can be visualized using hierarchical edge bundles. When applied to pangenome data this plot shows putative horizontal gene transfers between the genomes and can highlight relationships between genomes that is not represented by the hierarchy. We illustrate the utility of hierarchical sets by applying it to a pangenome based on 113 Escherichia and Shigella genomes and find it provides a powerful addition to pangenome analysis. Availability and Implementation: The described clustering algorithm and visualizations are implemented in the hierarchicalSets R package available from CRAN (https://cran.r-project.org/web/packages/hierarchicalSets) Contact: thomasp85@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28130242

  15. An interference cancellation strategy for broadcast in hierarchical cell structure

    KAUST Repository

    Yang, Yuli

    2014-12-01

    In this paper, a hierarchical cell structure is considered, where public safety broadcasting is fulfilled in a femtocell located within a macrocell. In the femtocell, also known as local cell, an access point broadcasts to each local node (LN) over an orthogonal frequency sub-band independently. Since the local cell shares the spectrum licensed to the macrocell, a given LN is interfered by transmissions of the macrocell user (MU) in the same sub-band. To improve the broadcast performance in the local cell, a novel scheme is proposed to mitigate the interference from the MU to the LN while achieving diversity gain. For the sake of performance evaluation, ergodic capacity of the proposed scheme is quantified and a corresponding closed-form expression is obtained. By comparing with the traditional scheme that suffers from the MU\\'s interference, numerical results substantiate the advantage of the proposed scheme and provide a useful tool for the broadcast design in hierarchical cell systems.

  16. An interference cancellation strategy for broadcast in hierarchical cell structure

    KAUST Repository

    Yang, Yuli; Aï ssa, Sonia; Eltawil, Ahmed M.; Salama, Khaled N.

    2014-01-01

    In this paper, a hierarchical cell structure is considered, where public safety broadcasting is fulfilled in a femtocell located within a macrocell. In the femtocell, also known as local cell, an access point broadcasts to each local node (LN) over an orthogonal frequency sub-band independently. Since the local cell shares the spectrum licensed to the macrocell, a given LN is interfered by transmissions of the macrocell user (MU) in the same sub-band. To improve the broadcast performance in the local cell, a novel scheme is proposed to mitigate the interference from the MU to the LN while achieving diversity gain. For the sake of performance evaluation, ergodic capacity of the proposed scheme is quantified and a corresponding closed-form expression is obtained. By comparing with the traditional scheme that suffers from the MU's interference, numerical results substantiate the advantage of the proposed scheme and provide a useful tool for the broadcast design in hierarchical cell systems.

  17. Hierarchical structure of biological systems: a bioengineering approach.

    Science.gov (United States)

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M

    2014-01-01

    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems.

  18. Dynamic control of quadruped robot with hierarchical control structure

    International Nuclear Information System (INIS)

    Wang, Yu-Zhang; Furusho, Junji; Okajima, Yosuke.

    1988-01-01

    For moving on irregular terrain, such as the inside of a nuclear power plant and outer space, it is generally recognized that the multilegged walking robot is suitable. This paper proposes a hierarchical control structure for the dynamic control of quadruped walking robots. For this purpose, we present a reduced order model which can approximate the original higher order model very well. Since this reduced order model does not require much computational time, it can be used in the real-time control of a quadruped walking robot. A hierarchical control experiment is shown in which the optimal control algorithm using a reduced order model is calculated by one microprocessor, and the other control algorithm is calculated by another microprocessor. (author)

  19. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains P 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  20. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains ⩾ 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  1. Hierarchical structure of the otolith of adult wild carp

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhuo; Gao Yonghua [State key laboratory of new ceramics and fine processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-04-30

    The otolith of adult wild carp contains a pair of asterisci, a pair of lappilli and a pair of sagittae. Current research works are mainly restricted to the field of the daily ring structure. The purpose of this work is to explore the structural characteristics of carp's otolith in terms of hierarchy from nanometer to millimeter scale by transmission election microscope (TEM) and scanning electron microscope (SEM). Based on the observation, carp's lapillus is composed of ordered aragonite crystals. Seven hierarchical levels of the microstructure were proposed and described with the scheme representing a complete organization in detail. SEM studies show not only the clear daily growth increment, but also the morphology within the single daily increment. The domain structure of crystal orientation in otolith was observed for the first time. Furthermore, TEM investigation displays that the lapillus is composed of aragonite crystals with nanometer scale. Four hierarchical levels of the microstructure of the sagitta are also proposed. The asteriscus which is composed of nanometer scale vaterite crystals is considered to have a uniform structure.

  2. Hierarchical structure of the otolith of adult wild carp

    International Nuclear Information System (INIS)

    Li Zhuo; Gao Yonghua; Feng Qingling

    2009-01-01

    The otolith of adult wild carp contains a pair of asterisci, a pair of lappilli and a pair of sagittae. Current research works are mainly restricted to the field of the daily ring structure. The purpose of this work is to explore the structural characteristics of carp's otolith in terms of hierarchy from nanometer to millimeter scale by transmission election microscope (TEM) and scanning electron microscope (SEM). Based on the observation, carp's lapillus is composed of ordered aragonite crystals. Seven hierarchical levels of the microstructure were proposed and described with the scheme representing a complete organization in detail. SEM studies show not only the clear daily growth increment, but also the morphology within the single daily increment. The domain structure of crystal orientation in otolith was observed for the first time. Furthermore, TEM investigation displays that the lapillus is composed of aragonite crystals with nanometer scale. Four hierarchical levels of the microstructure of the sagitta are also proposed. The asteriscus which is composed of nanometer scale vaterite crystals is considered to have a uniform structure.

  3. Three-dimensional hierarchical structures for fog harvesting.

    Science.gov (United States)

    Andrews, H G; Eccles, E A; Schofield, W C E; Badyal, J P S

    2011-04-05

    Conventional fog-harvesting mechanisms are effectively pseudo-2D surface phenomena in terms of water droplet-plant interactions. In the case of the Cotula fallax plant, a unique hierarchical 3D arrangement formed by its leaves and the fine hairs covering them has been found to underpin the collection and retention of water droplets on the foliage for extended periods of time. The mechanisms of water capture and release as a function of the surface 3D structure and chemistry have been identified. Of particular note is that water is retained throughout the entirety of the plant and held within the foliage itself (rather than in localized regions). Individual plant hairs form matlike structures capable of supporting water droplets; these hairs wrap around water droplets in a 3D fashion to secure them via a fine nanoscale groove structure that prevents them from easily falling to the ground.

  4. Colloidal quantum dot solar cells exploiting hierarchical structuring

    KAUST Repository

    Labelle, André J.

    2015-02-11

    Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells that feature transfer-stamped solution-processed pyramid-shaped electrodes employed in a hierarchically structured device. The pyramids increase, by up to a factor of 2, the external quantum efficiency of the device at absorption-limited wavelengths near the absorber band edge. We show that absorption enhancement can be optimized with increased pyramid angle with an appreciable net improvement in power conversion efficiency, that is, with the gain in current associated with improved absorption and extraction overcoming the smaller fractional decrease in open-circuit voltage associated with increased junction area. We show that the hierarchical combination of micron-scale structured electrodes with nanoscale films provides for an optimized enhancement at absorption-limited wavelengths. We fabricate 54.7° pyramid-patterned electrodes, conformally apply the quantum dot films, and report pyramid CQD solar cells that exhibit a 24% improvement in overall short-circuit current density with champion devices providing a power conversion efficiency of 9.2%.

  5. HD-RNAS: An automated hierarchical database of RNA structures

    Directory of Open Access Journals (Sweden)

    Shubhra Sankar eRay

    2012-04-01

    Full Text Available One of the important goals of most biological investigations is to classify and organize the experimental findings so that they are readily useful for deriving generalized rules. Although there is a huge amount of information on RNA structures in PDB, there are redundant files, ambiguous synthetic sequences etc. Moreover, a systematic hierarchical organization, reflecting RNA classification, is missing in PDB. In this investigation, we have classified all the available RNA crystal structures from PDB through a programmatic approach. Hence, it would be now a simple assignment to regularly update the classification as and when new structures are released. The classification can further determine (i a non-redundant set of RNA structures and (ii if available, a set of structures of identical sequence and function, which can highlight structural polymorphism, ligand-induced conformational alterations etc. Presently, we have classified the available structures (2095 PDB entries having RNA chain longer than 9 nucleotides solved by X-ray crystallography or NMR spectroscopy into nine functional classes. The structures of same function and same source are mostly seen to be similar with subtle differences depending on their functional complexation. The web-server is available online at http://www.saha.ac.in/biop/www/HD-RNAS.html and is updated regularly.

  6. Genomic analysis of the hierarchical structure of regulatory networks

    Science.gov (United States)

    Yu, Haiyuan; Gerstein, Mark

    2006-01-01

    A fundamental question in biology is how the cell uses transcription factors (TFs) to coordinate the expression of thousands of genes in response to various stimuli. The relationships between TFs and their target genes can be modeled in terms of directed regulatory networks. These relationships, in turn, can be readily compared with commonplace “chain-of-command” structures in social networks, which have characteristic hierarchical layouts. Here, we develop algorithms for identifying generalized hierarchies (allowing for various loop structures) and use these approaches to illuminate extensive pyramid-shaped hierarchical structures existing in the regulatory networks of representative prokaryotes (Escherichia coli) and eukaryotes (Saccharomyces cerevisiae), with most TFs at the bottom levels and only a few master TFs on top. These masters are situated near the center of the protein–protein interaction network, a different type of network from the regulatory one, and they receive most of the input for the whole regulatory hierarchy through protein interactions. Moreover, they have maximal influence over other genes, in terms of affecting expression-level changes. Surprisingly, however, TFs at the bottom of the regulatory hierarchy are more essential to the viability of the cell. Finally, one might think master TFs achieve their wide influence through directly regulating many targets, but TFs with most direct targets are in the middle of the hierarchy. We find, in fact, that these midlevel TFs are “control bottlenecks” in the hierarchy, and this great degree of control for “middle managers” has parallels in efficient social structures in various corporate and governmental settings. PMID:17003135

  7. Hierarchical Structure in Semicrystalline Polymers Tethered to Nanospheres

    KAUST Repository

    Kim, Sung A

    2014-01-28

    We report on structural and dynamic transitions of polymers tethered to nanoparticles. In particular, we use X-ray diffraction, vibrational spectroscopy, and thermal measurements to investigate multiscale structure and dynamic transitions of poly(ethylene glycol) (PEG) chains densely grafted to SiO2 nanoparticles. The approach used for synthesizing these hybrid particles leads to homogeneous SiO2-PEG composites with polymer grafting densities as high as 1.5 chains/nm2, which allows the hybrid materials to exist as self-suspended suspensions with distinct hierarchical structure and thermal properties. On angstrom and nanometer length scales, the tethered PEG chains exhibit more dominant TTG conformations and helix unit cell structure, in comparison to the untethered polymer. The nanoparticle tethered PEG chains are also reported to form extended crystallites on tens of nanometers length scales and to exhibit more stable crystalline structure on small dimensions. On length scales comparable to the size of each hybrid SiO 2-PEG unit, the materials are amorphous presumably as a result of the difficulty fitting the nanoparticle anchors into the PEG crystal lattice. This structural change produces large effects on the thermal transitions of PEG molecules tethered to nanoparticles. © 2014 American Chemical Society.

  8. Microfabrication of hierarchical structures for engineered mechanical materials

    Science.gov (United States)

    Vera Canudas, Marc

    Materials found in nature present, in some cases, unique properties from their constituents that are of great interest in engineered materials for applications ranging from structural materials for the construction of bridges, canals and buildings to the fabrication of new lightweight composites for airplane and automotive bodies, to protective thin film coatings, amongst other fields. Research in the growing field of biomimetic materials indicates that the micro-architectures present in natural materials are critical to their macroscopic mechanical properties. A better understanding of the effect that structure and hierarchy across scales have on the material properties will enable engineered materials with enhanced properties. At the moment, very few theoretical models predict mechanical properties of simple materials based on their microstructures. Moreover these models are based on observations from complex biological systems. One way to overcome this challenge is through the use of microfabrication techniques to design and fabricate simple materials, more appropriate for the study of hierarchical organizations and microstructured materials. Arrays of structures with controlled geometry and dimension can be designed and fabricated at different length scales, ranging from a few hundred nanometers to centimeters, in order to mimic similar systems found in nature. In this thesis, materials have been fabricated in order to gain fundamental insight into the complex hierarchical materials found in nature and to engineer novel materials with enhanced mechanical properties. The materials fabricated here were mechanically characterized and compared to simple mechanics models to describe their behavior with the goal of applying the knowledge acquired to the design and synthesis of future engineered materials with novel properties.

  9. Visualization of hierarchically structured information for human-computer interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Suh Hyun; Lee, J. K.; Choi, I. K.; Kye, S. C.; Lee, N. K. [Dongguk University, Seoul (Korea)

    2001-11-01

    Visualization techniques can be used to support operator's information navigation tasks on the system especially consisting of an enormous volume of information, such as operating information display system and computerized operating procedure system in advanced control room of nuclear power plants. By offering an easy understanding environment of hierarchically structured information, these techniques can reduce the operator's supplementary navigation task load. As a result of that, operators can pay more attention on the primary tasks and ultimately improve the cognitive task performance. In this report, an interface was designed and implemented using hyperbolic visualization technique, which is expected to be applied as a means of optimizing operator's information navigation tasks. 15 refs., 19 figs., 32 tabs. (Author)

  10. Does pop music exist? Hierarchical structure in phonographic markets

    Science.gov (United States)

    Buda, Andrzej

    2012-11-01

    I find a topological arrangement of assets traded in phonographic markets which has associated a meaningful economic taxonomy. I continue using the Minimal Spanning Tree and the correlations between assets, but now outside the stock markets. This is the first attempt to use these methods on phonographic markets where we have artists instead of stocks. The value of an artist is defined by record sales. The graph is obtained starting from the matrix of correlation coefficients computed between the world’s most popular 30 artists by considering the synchronous time evolution of the difference of the logarithm of weekly record sales. This method provides the hierarchical structure of the phonographic market and information on which music genre is meaningful according to customers. Statistical properties (including the Hurst exponent) of weekly record sales in the phonographic market are also discussed.

  11. Tensegrity I. Cell structure and hierarchical systems biology

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.

  12. Bioinspired Omnidirectional Self-Stable Reflectors with Multiscale Hierarchical Structures.

    Science.gov (United States)

    Han, Zhiwu; Mu, Zhengzhi; Li, Bo; Feng, Xiaoming; Wang, Ze; Zhang, Junqiu; Niu, Shichao; Ren, Luquan

    2017-08-30

    Structured surfaces, demonstrating various wondrous physicochemical performances, are ubiquitous phenomena in nature. Butterfly wings with impressive structural colors are an interesting example for multiscale hierarchical structures (MHSs). However, most natural structural colors are relatively unstable and highly sensitive to incident angles, which limit their potential practical applications to a certain extent. Here, we reported a bioinspired color reflector with omnidirectional reflective self-stable (ORS) properties, which is inspired by the wing scales of Papilio palinurus butterfly. Through experimental exploration and theoretical analysis, it was found that the vivid colors of such butterfly wings are structure-based and possess novel ORS properties, which attributes to the multiple optical actions between light and the complex structures coupling the inverse opal-like structures (IOSs) and stacked lamellar ridges (SLRs). On the basis of this, we designed and successfully fabricated the SiO 2 -based bioinspired color reflectors (BCRs) through a facile and effective biotemplate method. It was confirmed that the MHSs in biotemplate are inherited by the obtained SiO 2 -based BCRs. More importantly, the SiO 2 -based BCRs also demonstrated the similar ORS properties in a wide wavelength range. We forcefully anticipate that the reported MHS-based ORS performance discovered in butterfly wing scales here could offer new thoughts for scientists to solve unstable reflection issues in particular optical field. The involved biotemplate fabrication method offers a facile and effective strategy for fabricating functional nanomaterials or bioinspired nanodevices with 3D complex nanostructures, such as structured optical devices, displays, and optoelectronic equipment.

  13. An open-population hierarchical distance sampling model

    Science.gov (United States)

    Sollmann, Rachel; Beth Gardner,; Richard B Chandler,; Royle, J. Andrew; T Scott Sillett,

    2015-01-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for direct estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for island scrub-jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying number of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  14. An open-population hierarchical distance sampling model.

    Science.gov (United States)

    Sollmann, Rahel; Gardner, Beth; Chandler, Richard B; Royle, J Andrew; Sillett, T Scott

    2015-02-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for Island Scrub-Jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying numbers of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  15. Hierarchical spatial structure of stream fish colonization and extinction

    Science.gov (United States)

    Hitt, N.P.; Roberts, J.H.

    2012-01-01

    Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182-194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life-history traits such as spawning mound construction, associations with mound-building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound-building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound-building fishes serve as keystone species for colonization of headwater streams.

  16. Structure of urban movements: polycentric activity and entangled hierarchical flows.

    Directory of Open Access Journals (Sweden)

    Camille Roth

    Full Text Available The spatial arrangement of urban hubs and centers and how individuals interact with these centers is a crucial problem with many applications ranging from urban planning to epidemiology. We utilize here in an unprecedented manner the large scale, real-time 'Oyster' card database of individual person movements in the London subway to reveal the structure and organization of the city. We show that patterns of intraurban movement are strongly heterogeneous in terms of volume, but not in terms of distance travelled, and that there is a polycentric structure composed of large flows organized around a limited number of activity centers. For smaller flows, the pattern of connections becomes richer and more complex and is not strictly hierarchical since it mixes different levels consisting of different orders of magnitude. This new understanding can shed light on the impact of new urban projects on the evolution of the polycentric configuration of a city and the dense structure of its centers and it provides an initial approach to modeling flows in an urban system.

  17. Interaction of light with hematite hierarchical structures: Experiments and simulations

    Science.gov (United States)

    Distaso, Monica; Zhuromskyy, Oleksander; Seemann, Benjamin; Pflug, Lukas; Mačković, Mirza; Encina, Ezequiel; Taylor, Robin Klupp; Müller, Rolf; Leugering, Günter; Spiecker, Erdmann; Peschel, Ulf; Peukert, Wolfgang

    2017-03-01

    Mesocrystalline particles have been recognized as a class of multifunctional materials with potential applications in different fields. However, the internal organization of nanocomposite mesocrystals and its influence on the final properties have not yet been investigated. In this paper, a novel strategy based on electrodynamic simulations is developed to shed light on how the internal structure of mesocrystals influences their optical properties. In a first instance, a unified design protocol is reported for the fabrication of hematite/PVP particles with different morphologies such as pseudo-cubes, rods-like and apple-like structures and controlled particle size distributions. The optical properties of hematite/PVP mesocrystals are effectively simulated by taking their aggregate and nanocomposite structure into consideration. The superposition T-Matrix approach accounts for the aggregate nature of mesocrystalline particles and validate the effective medium approximation used in the framework of the Mie theory and electromagnetic simulation such as Finite Element Method. The approach described in our paper provides the framework to understand and predict the optical properties of mesocrystals and more general, of hierarchical nanostructured particles.

  18. Hierarchical Sets: Analyzing Pangenome Structure through Scalable Set Visualizations

    DEFF Research Database (Denmark)

    Pedersen, Thomas Lin

    2017-01-01

    of hierarchical sets by applying it to a pangenome based on 113 Escherichia and Shigella genomes and find it provides a powerful addition to pangenome analysis. The described clustering algorithm and visualizations are implemented in the hierarchicalSets R package available from CRAN (https...

  19. Copper oxide assisted cysteine hierarchical structures for immunosensor application

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Chandra Mouli [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India); Sumana, Gajjala, E-mail: sumanagajjala@gmail.com [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Tiwari, Ida [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India)

    2014-09-08

    The present work describes the promising electrochemical immunosensing strategy based on copper (II) assisted hierarchical cysteine structures (CuCys) varying from star to flower like morphology. The CuCys having average size of 10 μm have been synthesised using L-Cysteine as initial precursor in presence of copper oxide under environmentally friendly conditions in aqueous medium. To delineate the synthesis mechanism, detailed structural investigations have been carried out using characterization techniques such as X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The electrochemical behaviour of self-assembled CuCys on gold electrode shows surface controlled electrode reaction with an apparent electron transfer rate constant of 3.38 × 10{sup −4 }cm s{sup −1}. This innovative platform has been utilized to fabricate an immunosensor by covalently immobilizing monoclonal antibodies specific for Escherichia coli O157:H7 (E. coli). Under the optimal conditions, the fabricated immunosensor is found to be sensitive and specific for the detection of E. coli with a detection limit of 10 cfu/ml.

  20. A hierarchical structure approach to MultiSensor Information Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maren, A.J. (Tennessee Univ., Tullahoma, TN (United States). Space Inst.); Pap, R.M.; Harston, C.T. (Accurate Automation Corp., Chattanooga, TN (United States))

    1989-01-01

    A major problem with image-based MultiSensor Information Fusion (MSIF) is establishing the level of processing at which information should be fused. Current methodologies, whether based on fusion at the pixel, segment/feature, or symbolic levels, are each inadequate for robust MSIF. Pixel-level fusion has problems with coregistration of the images or data. Attempts to fuse information using the features of segmented images or data relies an a presumed similarity between the segmentation characteristics of each image or data stream. Symbolic-level fusion requires too much advance processing to be useful, as we have seen in automatic target recognition tasks. Image-based MSIF systems need to operate in real-time, must perform fusion using a variety of sensor types, and should be effective across a wide range of operating conditions or deployment environments. We address this problem through developing a new representation level which facilitates matching and information fusion. The Hierarchical Scene Structure (HSS) representation, created using a multilayer, cooperative/competitive neural network, meets this need. The MSS is intermediate between a pixel-based representation and a scene interpretation representation, and represents the perceptual organization of an image. Fused HSSs will incorporate information from multiple sensors. Their knowledge-rich structure aids top-down scene interpretation via both model matching and knowledge-based,region interpretation.

  1. A hierarchical structure approach to MultiSensor Information Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maren, A.J. [Tennessee Univ., Tullahoma, TN (United States). Space Inst.; Pap, R.M.; Harston, C.T. [Accurate Automation Corp., Chattanooga, TN (United States)

    1989-12-31

    A major problem with image-based MultiSensor Information Fusion (MSIF) is establishing the level of processing at which information should be fused. Current methodologies, whether based on fusion at the pixel, segment/feature, or symbolic levels, are each inadequate for robust MSIF. Pixel-level fusion has problems with coregistration of the images or data. Attempts to fuse information using the features of segmented images or data relies an a presumed similarity between the segmentation characteristics of each image or data stream. Symbolic-level fusion requires too much advance processing to be useful, as we have seen in automatic target recognition tasks. Image-based MSIF systems need to operate in real-time, must perform fusion using a variety of sensor types, and should be effective across a wide range of operating conditions or deployment environments. We address this problem through developing a new representation level which facilitates matching and information fusion. The Hierarchical Scene Structure (HSS) representation, created using a multilayer, cooperative/competitive neural network, meets this need. The MSS is intermediate between a pixel-based representation and a scene interpretation representation, and represents the perceptual organization of an image. Fused HSSs will incorporate information from multiple sensors. Their knowledge-rich structure aids top-down scene interpretation via both model matching and knowledge-based,region interpretation.

  2. Transfer printing of 3D hierarchical gold structures using a sequentially imprinted polymer stamp

    International Nuclear Information System (INIS)

    Zhang Fengxiang; Low, Hong Yee

    2008-01-01

    Complex three-dimensional (3D) hierarchical structures on polymeric materials are fabricated through a process referred to as sequential imprinting. In this work, the sequentially imprinted polystyrene film is used as a soft stamp to replicate hierarchical structures onto gold (Au) films, and the Au structures are then transferred to a substrate by transfer printing at an elevated temperature and pressure. Continuous and isolated 3D structures can be selectively fabricated with the assistance of thermo-mechanical deformation of the polymer stamp. Hierarchical Au structures are achieved without the need for a corresponding three-dimensionally patterned mold

  3. The Emergence of Hierarchical Structure in Human Language

    Directory of Open Access Journals (Sweden)

    Shigeru eMiyagawa

    2013-02-01

    Full Text Available We propose a novel account for the emergence of human language syntax. Like many evolutionary innovations, language arose from the adventitious combination of two pre-existing, simpler systems that had been evolved for other functional tasks. The first system, Type E(xpression, is found in birdsong, where it marks territory, mating availability, and similar ‘expressive’ functions. The second system, Type L(exical, has been suggestively found in non-human primate calls and in honeybee waggle dances, where it demarcates predicates with one or more ‘arguments,’ such as combinations of calls in monkeys or compass headings set to sun position in honeybees. We show that human language syntax is composed of two layers that parallel these two independently evolved systems: an E layer resembling the Type E system of birdsong and an L layer providing words. The existence of the E and L layers can be confirmed using standard linguistic methodology. Each layer, E and L, when considered separately, are characterizable as finite state systems, as observed in several non-human species. When the two systems are put together they interact, yielding the unbounded, non-finite state, hierarchical structure that serves as the hallmark of ful

  4. Interactive computer graphics displays for hierarchical data structures

    International Nuclear Information System (INIS)

    Cahn, D.F.; Murano, C.V.

    1980-05-01

    An interactive computer graphical display program was developed as an aid to user visualization and manipulation of hierarchically structured data systems such as thesauri. In the present configuration, a thesaurus term and its primary and secondary conceptual neighbors are presented to the user in tree graph form on a CRT; the user then designates, via light pen or keyboard, any of the neighbors as the next term of interest and receives a new display centered on this term. By successive specification of broader, narrower, and related terms, the user can course rapidly through the thesaurus space and refine his search file. At any stage, he deals with a term-centered, conceptually meaningful picture of a localized portion of the thesaurus, and is freed from the artificial difficulties of handling the traditional alphabetized thesaurus. Intentional limitation of the associative range of each display frame, and the use of color, case, and interconnecting vectors to encode relationships among terms, enhance interpretability of the display. Facile movement through the term space, provided by interactive computation, allows the display to remain simple, and is an essential element of the system. 3 figures

  5. A Dynamic Construction Algorithm for the Compact Patricia Trie Using the Hierarchical Structure.

    Science.gov (United States)

    Jung, Minsoo; Shishibori, Masami; Tanaka, Yasuhiro; Aoe, Jun-ichi

    2002-01-01

    Discussion of information retrieval focuses on the use of binary trees and how to compact it to use less memory and take less time. Explains retrieval algorithms and describes data structure and hierarchical structure. (LRW)

  6. D Nearest Neighbour Search Using a Clustered Hierarchical Tree Structure

    Science.gov (United States)

    Suhaibah, A.; Uznir, U.; Anton, F.; Mioc, D.; Rahman, A. A.

    2016-06-01

    Locating and analysing the location of new stores or outlets is one of the common issues facing retailers and franchisers. This is due to assure that new opening stores are at their strategic location to attract the highest possible number of customers. Spatial information is used to manage, maintain and analyse these store locations. However, since the business of franchising and chain stores in urban areas runs within high rise multi-level buildings, a three-dimensional (3D) method is prominently required in order to locate and identify the surrounding information such as at which level of the franchise unit will be located or is the franchise unit located is at the best level for visibility purposes. One of the common used analyses used for retrieving the surrounding information is Nearest Neighbour (NN) analysis. It uses a point location and identifies the surrounding neighbours. However, with the immense number of urban datasets, the retrieval and analysis of nearest neighbour information and their efficiency will become more complex and crucial. In this paper, we present a technique to retrieve nearest neighbour information in 3D space using a clustered hierarchical tree structure. Based on our findings, the proposed approach substantially showed an improvement of response time analysis compared to existing approaches of spatial access methods in databases. The query performance was tested using a dataset consisting of 500,000 point locations building and franchising unit. The results are presented in this paper. Another advantage of this structure is that it also offers a minimal overlap and coverage among nodes which can reduce repetitive data entry.

  7. On Hierarchical Extensions of Large-Scale 4-regular Grid Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Patel, A.; Knudsen, Thomas Phillip

    2004-01-01

    dependencies between the number of nodes and the distances in the structures. The perfect square mesh is introduced for hierarchies, and it is shown that applying ordered hierarchies in this way results in logarithmic dependencies between the number of nodes and the distances, resulting in better scaling...... structures. For example, in a mesh of 391876 nodes the average distance is reduced from 417.33 to 17.32 by adding hierarchical lines. This is gained by increasing the number of lines by 4.20% compared to the non-hierarchical structure. A similar hierarchical extension of the torus structure also results...

  8. Hierarchical modeling and its numerical implementation for layered thin elastic structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin-Rae [Hongik University, Sejong (Korea, Republic of)

    2017-05-15

    Thin elastic structures such as beam- and plate-like structures and laminates are characterized by the small thickness, which lead to classical plate and laminate theories in which the displacement fields through the thickness are assumed linear or higher-order polynomials. These classical theories are either insufficient to represent the complex stress variation through the thickness or may encounter the accuracy-computational cost dilemma. In order to overcome the inherent problem of classical theories, the concept of hierarchical modeling has been emerged. In the hierarchical modeling, the hierarchical models with different model levels are selected and combined within a structure domain, in order to make the modeling error be distributed as uniformly as possible throughout the problem domain. The purpose of current study is to explore the potential of hierarchical modeling for the effective numerical analysis of layered structures such as laminated composite. For this goal, the hierarchical models are constructed and the hierarchical modeling is implemented by selectively adjusting the level of hierarchical models. As well, the major characteristics of hierarchical models are investigated through the numerical experiments.

  9. Wetting and Dewetting Transitions on Submerged Superhydrophobic Surfaces with Hierarchical Structures.

    Science.gov (United States)

    Wu, Huaping; Yang, Zhe; Cao, Binbin; Zhang, Zheng; Zhu, Kai; Wu, Bingbing; Jiang, Shaofei; Chai, Guozhong

    2017-01-10

    The wetting transition on submersed superhydrophobic surfaces with hierarchical structures and the influence of trapped air on superhydrophobic stability are predicted based on the thermodynamics and mechanical analyses. The dewetting transition on the hierarchically structured surfaces is investigated, and two necessary thermodynamic conditions and a mechanical balance condition for dewetting transition are proposed. The corresponding thermodynamic phase diagram of reversible transition and the critical reversed pressure well explain the experimental results reported previously. Our theory provides a useful guideline for precise controlling of breaking down and recovering of superhydrophobicity by designing superhydrophobic surfaces with hierarchical structures under water.

  10. Topology of foreign exchange markets using hierarchical structure methods

    Science.gov (United States)

    Naylor, Michael J.; Rose, Lawrence C.; Moyle, Brendan J.

    2007-08-01

    This paper uses two physics derived hierarchical techniques, a minimal spanning tree and an ultrametric hierarchical tree, to extract a topological influence map for major currencies from the ultrametric distance matrix for 1995-2001. We find that these two techniques generate a defined and robust scale free network with meaningful taxonomy. The topology is shown to be robust with respect to method, to time horizon and is stable during market crises. This topology, appropriately used, gives a useful guide to determining the underlying economic or regional causal relationships for individual currencies and to understanding the dynamics of exchange rate price determination as part of a complex network.

  11. Estimating temporal trend in the presence of spatial complexity: a Bayesian hierarchical model for a wetland plant population undergoing restoration.

    Directory of Open Access Journals (Sweden)

    Thomas J Rodhouse

    Full Text Available Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas] population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones" with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity--a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.

  12. Scaling behavior in urban development process of Tokyo City and hierarchical dynamical structure

    International Nuclear Information System (INIS)

    Matsuba, Ikuo; Namatame, Masanori

    2003-01-01

    We study a geometric structure of urban development process which pays particular attention to scaling properties in the settlement area and inhabitant population through changes in the scaling exponents. Both the degree to which the space is fulfilled and the rate at which it is filled are obtained for the residential development in Tokyo. For distances larger than the city boundary, there is a sharp cross-over to a suburban region with a quite intriguing variation with a distance from the center of the city. The population densities in this region are found to collapse into a single scaling function with the scaling exponent 0.678 in the early 1990s in which the growth of the population attenuates. We propose a cellular automata model using the simulated annealing method that succeeds in reproducing the qualitative similar structural complexity of the actual city by taking into account the transportation system, especially railroad network. Finally, a possible theoretical consideration is given in analogous with fluid dynamics. Scaling of the population density is obtained assuming that there is a dynamical hierarchical structure in the scaling region where the stationarity is fulfilled. The theoretically obtained exponent 2/3 agrees well with the observed one

  13. Principal Covariates Clusterwise Regression (PCCR): Accounting for Multicollinearity and Population Heterogeneity in Hierarchically Organized Data.

    Science.gov (United States)

    Wilderjans, Tom Frans; Vande Gaer, Eva; Kiers, Henk A L; Van Mechelen, Iven; Ceulemans, Eva

    2017-03-01

    In the behavioral sciences, many research questions pertain to a regression problem in that one wants to predict a criterion on the basis of a number of predictors. Although in many cases, ordinary least squares regression will suffice, sometimes the prediction problem is more challenging, for three reasons: first, multiple highly collinear predictors can be available, making it difficult to grasp their mutual relations as well as their relations to the criterion. In that case, it may be very useful to reduce the predictors to a few summary variables, on which one regresses the criterion and which at the same time yields insight into the predictor structure. Second, the population under study may consist of a few unknown subgroups that are characterized by different regression models. Third, the obtained data are often hierarchically structured, with for instance, observations being nested into persons or participants within groups or countries. Although some methods have been developed that partially meet these challenges (i.e., principal covariates regression (PCovR), clusterwise regression (CR), and structural equation models), none of these methods adequately deals with all of them simultaneously. To fill this gap, we propose the principal covariates clusterwise regression (PCCR) method, which combines the key idea's behind PCovR (de Jong & Kiers in Chemom Intell Lab Syst 14(1-3):155-164, 1992) and CR (Späth in Computing 22(4):367-373, 1979). The PCCR method is validated by means of a simulation study and by applying it to cross-cultural data regarding satisfaction with life.

  14. Diagnostic Classifiers: Revealing how Neural Networks Process Hierarchical Structure

    NARCIS (Netherlands)

    Veldhoen, S.; Hupkes, D.; Zuidema, W.

    2016-01-01

    We investigate how neural networks can be used for hierarchical, compositional semantics. To this end, we define the simple but nontrivial artificial task of processing nested arithmetic expressions and study whether different types of neural networks can learn to add and subtract. We find that

  15. Interference mitigation for broadcast in hierarchical cell structure networks: Transmission strategy and area spectral efficiency

    KAUST Repository

    Yang, Yuli; Salama, Khaled N.; Aï ssa, Sonia

    2014-01-01

    In this paper, a hierarchical cell structure (HCS) is considered, where an access point (AP) broadcasts to local nodes (LNs) over orthogonal frequency subbands within a local cell located in a macrocell. Since the local cell shares the spectrum

  16. Web Application for Hierarchical Organizational Structure Optimization – Human Resource Management Case Study

    Directory of Open Access Journals (Sweden)

    Kofjač Davorin

    2015-08-01

    Full Text Available Background and Purpose: In a complex strictly hierarchical organizational structure, undesired oscillations may occur, which have not yet been adequately addressed. Therefore, parameter values, which define fluctuations and transitions from one state to another, need to be optimized to prevent oscillations and to keep parameter values between lower and upper bounds. The objective was to develop a simulation model of hierarchical organizational structure as a web application to help in solving the aforementioned problem.

  17. Hierarchical population monitoring of greater sage-grouse (Centrocercus urophasianus) in Nevada and California—Identifying populations for management at the appropriate spatial scale

    Science.gov (United States)

    Coates, Peter S.; Prochazka, Brian G.; Ricca, Mark A.; Wann, Gregory T.; Aldridge, Cameron L.; Hanser, Steven E.; Doherty, Kevin E.; O'Donnell, Michael S.; Edmunds, David R.; Espinosa, Shawn P.

    2017-08-10

    Population ecologists have long recognized the importance of ecological scale in understanding processes that guide observed demographic patterns for wildlife species. However, directly incorporating spatial and temporal scale into monitoring strategies that detect whether trajectories are driven by local or regional factors is challenging and rarely implemented. Identifying the appropriate scale is critical to the development of management actions that can attenuate or reverse population declines. We describe a novel example of a monitoring framework for estimating annual rates of population change for greater sage-grouse (Centrocercus urophasianus) within a hierarchical and spatially nested structure. Specifically, we conducted Bayesian analyses on a 17-year dataset (2000–2016) of lek counts in Nevada and northeastern California to estimate annual rates of population change, and compared trends across nested spatial scales. We identified leks and larger scale populations in immediate need of management, based on the occurrence of two criteria: (1) crossing of a destabilizing threshold designed to identify significant rates of population decline at a particular nested scale; and (2) crossing of decoupling thresholds designed to identify rates of population decline at smaller scales that decouple from rates of population change at a larger spatial scale. This approach establishes how declines affected by local disturbances can be separated from those operating at larger scales (for example, broad-scale wildfire and region-wide drought). Given the threshold output from our analysis, this adaptive management framework can be implemented readily and annually to facilitate responsive and effective actions for sage-grouse populations in the Great Basin. The rules of the framework can also be modified to identify populations responding positively to management action or demonstrating strong resilience to disturbance. Similar hierarchical approaches might be beneficial

  18. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.

    Science.gov (United States)

    Nitta, Tohru

    2017-10-01

    We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).

  19. A Simple Hierarchical Pooling Data Structure for Loop Closure

    Science.gov (United States)

    2016-10-16

    performance empirically on the KITTI [9], Oxford [6] and TUM RGB- D [29] datasets, as well as demonstrate extensions to general image retrieval on the...of a BoW where each word is an element of a dictionary of descriptors obtained off-line by hierarchical k-means clustering, with each word weighted by...to the inverse docu- ment frequency. This standard pipeline, with different clustering procedures to generate the dictionary and different features

  20. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient.

    Science.gov (United States)

    Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L

    2012-09-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients.

  1. Obstacle Avoidance of a Mobile Robot with Hierarchical Structure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Gyu [Yeungnam College of Science and Technolgy, Taegu (Korea)

    2001-06-01

    This paper proposed a new hierarchical fuzzy-neural network algorithm for navigation of a mobile robot within unknown dynamic environment. Proposed navigation algorithm used the learning ability of the neural network and the feasibility of control highly nonlinear system of fuzzy theory. The proposed navigation algorithm used fuzzy algorithm for goal approach and fuzzy-network for effective collision avoidance. Some computer simulation results for a mobile robot equipped with ultrasonic range sensors show that the suggested navigation algorithm is very effective to escape in stationary and moving obstacles environment. (author). 11 refs., 14 figs., 2 tabs.

  2. The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability

    Science.gov (United States)

    Huang, Ying; Zha, Guangyu; Luo, Qiaojie; Zhang, Jianxiang; Zhang, Feng; Li, Xiaohui; Zhao, Shifang; Zhu, Weipu; Li, Xiaodong

    2014-01-01

    The deficient osseointegration and implant-associated infections are pivotal issues for the long-term clinical success of endosteal Ti implants, while development of functional surfaces that can simultaneously overcome these problems remains highly challenging. This study aimed to fabricate sophisticated Ti implant surface with both osteogenic inducing activity and inherent antibacterial ability simply via tailoring surface topographical features. Micro/submciro/nano-scale structure was constructed on Ti by three cumulative subtractive methods, including sequentially conducted sandblasting as well as primary and secondary acid etching treatment. Topographical features of this hierarchical structure can be well tuned by the time of the secondary acid treatment. Ti substrate with mere micro/submicro-scale structure (MS0-Ti) served as a control to examine the influence of hierarchical structures on surface properties and biological activities. Surface analysis indicated that all hierarchically structured surfaces possessed exactly the same surface chemistry as that of MS0-Ti, and all of them showed super-amphiphilicity, high surface free energy, and high protein adsorption capability. Biological evaluations revealed surprisingly antibacterial ability and excellent osteogenic activity for samples with optimized hierarchical structure (MS30-Ti) when compared with MS0-Ti. Consequently, for the first time, a hierarchically structured Ti surface with topography-induced inherent antibacterial capability and excellent osteogenic activity was constructed. PMID:25146099

  3. A novel method for a multi-level hierarchical composite with brick-and-mortar structure.

    Science.gov (United States)

    Brandt, Kristina; Wolff, Michael F H; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  4. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    Science.gov (United States)

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-07-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  5. Structure-function relationship in complex brain networks expressed by hierarchical synchronization

    International Nuclear Information System (INIS)

    Zhou Changsong; Zemanova, Lucia; Zamora-Lopez, Gorka; Hilgetag, Claus C; Kurths, Juergen

    2007-01-01

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks

  6. Structure-function relationship in complex brain networks expressed by hierarchical synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Changsong [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Zemanova, Lucia [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Zamora-Lopez, Gorka [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Hilgetag, Claus C [Jacobs University Bremen, Campus Ring 6, Rm 116, D-28759 Bremen (Germany); Kurths, Juergen [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany)

    2007-06-15

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.

  7. Hierarchical modular structure enhances the robustness of self-organized criticality in neural networks

    International Nuclear Information System (INIS)

    Wang Shengjun; Zhou Changsong

    2012-01-01

    One of the most prominent architecture properties of neural networks in the brain is the hierarchical modular structure. How does the structure property constrain or improve brain function? It is thought that operating near criticality can be beneficial for brain function. Here, we find that networks with modular structure can extend the parameter region of coupling strength over which critical states are reached compared to non-modular networks. Moreover, we find that one aspect of network function—dynamical range—is highest for the same parameter region. Thus, hierarchical modularity enhances robustness of criticality as well as function. However, too much modularity constrains function by preventing the neural networks from reaching critical states, because the modular structure limits the spreading of avalanches. Our results suggest that the brain may take advantage of the hierarchical modular structure to attain criticality and enhanced function. (paper)

  8. BiOCl nanowire with hierarchical structure and its Raman features

    International Nuclear Information System (INIS)

    Tian Ye; Guo Chuanfei; Guo Yanjun; Wang Qi; Liu Qian

    2012-01-01

    BiOCl is a promising V-VI-VII-compound semiconductor with excellent optical and electrical properties, and has great potential applications in photo-catalysis, photoelectric, etc. We successfully synthesize BiOCl nanowire with a hierarchical structure by combining wet etch (top-down) with liquid phase crystal growth (bottom-up) process, opening a novel method to construct ordered bismuth-based nanostructures. The morphology and lattice structures of Bi nanowires, β-Bi 2 O 3 nanowires and BiOCl nanowires with the hierarchical structure are investigated by scanning electron microscope (SEM) and transition electron microscope (TEM). The formation mechanism of such ordered BiOCl hierarchical structure is considered to mainly originate from the highly preferred growth, which is governed by the lattice match between (1 1 0) facet of BiOCl and (2 2 0) or (0 0 2) facet of β-Bi 2 O 3 . A schematic model is also illustrated to depict the formation process of the ordered BiOCl hierarchical structure. In addition, Raman properties of the BiOCl nanowire with the hierarchical structure are investigated deeply.

  9. Fabrication and properties of dual-level hierarchical structures mimicking gecko foot hairs.

    Science.gov (United States)

    Zhang, Peng; Liu, Shiyuan; Lv, Hao

    2013-02-01

    In nature, geckos have extraordinary adhesive capabilities. The multi-scale hierarchical structure of the gecko foot hairs, especially the high-aspect-ratio structure of its micro-scale seta and nano-scale spatulae is the critical factor of the gecko's ability to adopt and stick to any different surface with powerful adhesion force. In this paper, we present a simple and effective approach to fabricate dual-level hierarchical structures mimicking gecko foot hairs. Polydimethyl-siloxane (PDMS) hierarchical arrays were fabricated by demolding from a double stack mold that was composed of an SU-8 mold by thick film photolithography and a silicon mold by inductively coupled plasma (ICP) etching. Top pillars of the fabricated structures have 3 micom diameter and 18 microm in height, while base pillars have 25 microm diameter and 40 microm in height. The water droplet contact angle tests indicate that the hierarchical structures increase the hydrophobic property significantly compared with the single-level arrays and the unstructured polymers, exhibiting superhydrophobicity (154.2 degrees) like the Tokay gecko's (160.9 degrees). The shear force tests show that the top pillars make attachment through side contact with a value of about 0.25 N/cm2, and moreover, the hierarchical structures are demonstrated to be more suitable for contacting with rough surfaces.

  10. Hierarchical modelling of temperature and habitat size effects on population dynamics of North Atlantic cod

    DEFF Research Database (Denmark)

    Mantzouni, Irene; Sørensen, Helle; O'Hara, Robert B.

    2010-01-01

    and Beverton and Holt stock–recruitment (SR) models were extended by applying hierarchical methods, mixed-effects models, and Bayesian inference to incorporate the influence of these ecosystem factors on model parameters representing cod maximum reproductive rate and carrying capacity. We identified......Understanding how temperature affects cod (Gadus morhua) ecology is important for forecasting how populations will develop as climate changes in future. The effects of spawning-season temperature and habitat size on cod recruitment dynamics have been investigated across the North Atlantic. Ricker...

  11. Band structures of two dimensional solid/air hierarchical phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.L.; Tian, X.G. [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, C.Q., E-mail: chencq@tsinghua.edu.cn [Department of Engineering Mechanics, AML and CNMM, Tsinghua University, Beijing 100084 (China)

    2012-06-15

    The hierarchical phononic crystals to be considered show a two-order 'hierarchical' feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  12. An approach to separating the levels of hierarchical structure building in language and mathematics.

    Science.gov (United States)

    Makuuchi, Michiru; Bahlmann, Jörg; Friederici, Angela D

    2012-07-19

    We aimed to dissociate two levels of hierarchical structure building in language and mathematics, namely 'first-level' (the build-up of hierarchical structure with externally given elements) and 'second-level' (the build-up of hierarchical structure with internally represented elements produced by first-level processes). Using functional magnetic resonance imaging, we investigated these processes in three domains: sentence comprehension, arithmetic calculation (using Reverse Polish notation, which gives two operands followed by an operator) and a working memory control task. All tasks required the build-up of hierarchical structures at the first- and second-level, resulting in a similar computational hierarchy across language and mathematics, as well as in a working memory control task. Using a novel method that estimates the difference in the integration cost for conditions of different trial durations, we found an anterior-to-posterior functional organization in the prefrontal cortex, according to the level of hierarchy. Common to all domains, the ventral premotor cortex (PMv) supports first-level hierarchy building, while the dorsal pars opercularis (POd) subserves second-level hierarchy building, with lower activation for language compared with the other two tasks. These results suggest that the POd and the PMv support domain-general mechanisms for hierarchical structure building, with the POd being uniquely efficient for language.

  13. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka populations

    Directory of Open Access Journals (Sweden)

    Habicht Christopher

    2011-02-01

    Full Text Available Abstract Background Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance and ecology (spawning habitat and timing driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s may maintain the genetic variation of outlier loci. Results For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. Conclusions First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second

  14. Population structure in Argentina.

    Directory of Open Access Journals (Sweden)

    Marina Muzzio

    Full Text Available We analyzed 391 samples from 12 Argentinian populations from the Center-West, East and North-West regions with the Illumina Human Exome Beadchip v1.0 (HumanExome-12v1-A. We did Principal Components analysis to infer patterns of populational divergence and migrations. We identified proportions and patterns of European, African and Native American ancestry and found a correlation between distance to Buenos Aires and proportion of Native American ancestry, where the highest proportion corresponds to the Northernmost populations, which is also the furthest from the Argentinian capital. Most of the European sources are from a South European origin, matching historical records, and we see two different Native American components, one that spreads all over Argentina and another specifically Andean. The highest percentages of African ancestry were in the Center West of Argentina, where the old trade routes took the slaves from Buenos Aires to Chile and Peru. Subcontinentaly, sources of this African component are represented by both West Africa and groups influenced by the Bantu expansion, the second slightly higher than the first, unlike North America and the Caribbean, where the main source is West Africa. This is reasonable, considering that a large proportion of the ships arriving at the Southern Hemisphere came from Mozambique, Loango and Angola.

  15. Masking effects of speech and music: does the masker's hierarchical structure matter?

    Science.gov (United States)

    Shi, Lu-Feng; Law, Yvonne

    2010-04-01

    Speech and music are time-varying signals organized by parallel hierarchical rules. Through a series of four experiments, this study compared the masking effects of single-talker speech and instrumental music on speech perception while manipulating the complexity of hierarchical and temporal structures of the maskers. Listeners' word recognition was found to be similar between hierarchically intact and disrupted speech or classical music maskers (Experiment 1). When sentences served as the signal, significantly greater masking effects were observed with disrupted than intact speech or classical music maskers (Experiment 2), although not with jazz or serial music maskers, which differed from the classical music masker in their hierarchical structures (Experiment 3). Removing the classical music masker's temporal dynamics or partially restoring it affected listeners' sentence recognition; yet, differences in performance between intact and disrupted maskers remained robust (Experiment 4). Hence, the effect of structural expectancy was largely present across maskers when comparing them before and after their hierarchical structure was purposefully disrupted. This effect seemed to lend support to the auditory stream segregation theory.

  16. From hierarchies to levels : new solutions for games with hierarchical structure

    NARCIS (Netherlands)

    Álvarez-Mozos, M.; van den Brink, R.; van der Laan, G.; Tejada, O.

    2017-01-01

    Recently, applications of cooperative game theory to economic allocation problems have gained popularity. In many of these problems, players are organized according to either a hierarchical structure or a levels structure that restrict the players’ possibilities to cooperate. In this paper, we

  17. Asymmetric block copolymer membranes with ultrahigh porosity and hierarchical pore structure by plain solvent evaporation

    KAUST Repository

    Yu, H.

    2016-09-14

    Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.

  18. On Hierarchical Extensions of Large-Scale 4-regular Grid Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Patel, A.; Knudsen, Thomas Phillip

    It is studied how the introduction of ordered hierarchies in 4-regular grid network structures decreses distances remarkably, while at the same time allowing for simple topological routing schemes. Both meshes and tori are considered; in both cases non-hierarchical structures have power law depen...

  19. Asymmetric block copolymer membranes with ultrahigh porosity and hierarchical pore structure by plain solvent evaporation

    KAUST Repository

    Yu, H.; Qiu, Xiaoyan; Behzad, Ali Reza; Musteata, Valentina-Elena; Smilgies, D.-M.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-01-01

    Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.

  20. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei

    2011-01-01

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  1. Preparation of disk-like particles with micro/nano hierarchical structures.

    Science.gov (United States)

    Meng, Zhen; Yang, Wenbo; Chen, Pengpeng; Wang, Weina; Jia, Xudong; Xi, Kai

    2013-10-15

    A facile, reproductive method has been successfully developed to produce disk-like microparticles self-assembled from monodispersed hybrid silica nanoparticles under certain circumstance. The disk-like microparticles with micro/nano hierarchical structures could be obtained in large amount under a mild condition and further used to biomimetic design of the superhydrophobic surface of lotus leaf. After traditional surface modification with dodecyltrichlorosiliane, the static contact angle of water on the surface with micro/nano hierarchical structure could reach 168.8°. The method of surface modification could be further simplified by click reaction with the introduction of thiol groups under mild condition. The present strategy for constructing the surface with micro/nano hierarchical structures offers the advantage of simple and large area fabrication, which enables a variety of superhydrophobic applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Hierarchical structure for audio-video based semantic classification of sports video sequences

    Science.gov (United States)

    Kolekar, M. H.; Sengupta, S.

    2005-07-01

    A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.

  3. Hierarchical structure graphitic-like/MoS2 film as superlubricity material

    Science.gov (United States)

    Gong, Zhenbin; Jia, Xiaolong; Ma, Wei; Zhang, Bin; Zhang, Junyan

    2017-08-01

    Friction and wear result in a great amount of energy loss and the invalidation of mechanical parts, thus it is necessary to minimize friction in practical application. In this study, the graphitic-like/MoS2 films with hierarchical structure were synthesized by the combination of pulse current plasma chemical-vapor deposition and medium frequency unbalanced magnetron sputtering in preheated environment. This hierarchical structure composite with multilayer nano sheets endows the films excellent tribological performance, which easily achieves macro superlubricity (friction coefficient ∼0.004) under humid air. Furthermore, it is expected that hierarchical structure of graphitic-like/MoS2 films could match the requirements of large scale, high bear-capacity and wear-resistance of actual working conditions, which could be widely used in the industrial production as a promising superlubricity material.

  4. Hierarchical fiber-optic-based sensing system: impact damage monitoring of large-scale CFRP structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Banshoya, Hidehiko; Takeda, Nobuo; Tsukamoto, Haruka

    2011-01-01

    This study proposes a novel fiber-optic-based hierarchical sensing concept for monitoring randomly induced damage in large-scale composite structures. In a hierarchical system, several kinds of specialized devices are hierarchically combined to form a sensing network. Specifically, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with an optical fiber network through transducing mechanisms. The distributed devices detect damage, and the fiber-optic network gathers the damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of a hierarchical sensing system through comparison with existing fiber-optic-based systems, and an impact damage detection system was then proposed to validate the new concept. The sensor devices were developed based on comparative vacuum monitoring (CVM), and Brillouin-based distributed strain measurement was utilized to identify damaged areas. Verification tests were conducted step-by-step, beginning with a basic test using a single sensor unit, and, finally, the proposed monitoring system was successfully verified using a carbon fiber reinforced plastic (CFRP) fuselage demonstrator. It was clearly confirmed that the hierarchical system has better repairability, higher robustness, and a wider monitorable area compared to existing systems

  5. Hierarchical Structure in Semicrystalline Polymers Tethered to Nanospheres

    KAUST Repository

    Kim, Sung A; Archer, Lynden A.

    2014-01-01

    We report on structural and dynamic transitions of polymers tethered to nanoparticles. In particular, we use X-ray diffraction, vibrational spectroscopy, and thermal measurements to investigate multiscale structure and dynamic transitions of poly

  6. Hierarchically structured carbon nanotubes for energy conversion and storage

    Science.gov (United States)

    Du, Feng

    As the world population continues to increase, large amounts of energy are consumed. Reality pushes us to find new energy or use our current energy more efficiently. Researches on energy conversion and storage have become increasingly important and essential. This grand challenge research has led to a recent focus on nanostructured materials. Carbon nanomaterials such as carbon nanotubes (CNTs) play a critical role in all of these nanotechnology challenges. CNTs have a very large surface area, a high electrochemical accessibility, high electronic conductivity and strong mechanical properties. This combination of properties makes them promising materials for energy device applications, such as FETs, supercapacitors, fuel cells, and lithium batteries. This study focuses on exploring the possibility of using vertically aligned carbon nanotubes (VA-CNTs) as the electrode materials in these energy applications. For the application of electrode materials, electrical conductive, vertically aligned CNTs with controllable length and diameter were synthesized. Several CVD methods for VA-CNT growth have been explored, although the iron / aluminum pre-coated catalyst CVD system was the main focus. A systematic study of several factors, including growth time, temperature, gas ratio, catalyst coating was conducted. The mechanism of VA-CNTs was discussed and a model for VA-CNT length / time was proposed to explain the CNT growth rate. Furthermore, the preferential growth of semiconducting (up to 96 atom% carbon) VA-SWNTs by using a plasma enhanced CVD process combined with fast heating was also explored, and these semiconducting materials have been directly used for making FETs using simple dispersion in organic solvent, without any separation and purification. Also, by inserting electron-accepting nitrogen atoms into the conjugated VA-CNT structure during the growth process, we synthesized vertically aligned nitrogen containing carbon nanotubes (VA-NCNTs). After purification of

  7. Hierarchically structured nanocarbon electrodes for flexible solid lithium batteries

    KAUST Repository

    Wei, Di

    2013-09-01

    The ever increasing demand for storage of electrical energy in portable electronic devices and electric vehicles is driving technological improvements in rechargeable batteries. Lithium (Li) batteries have many advantages over other rechargeable battery technologies, including high specific energy and energy density, operation over a wide range of temperatures (-40 to 70. °C) and a low self-discharge rate, which translates into a long shelf-life (~10 years) [1]. However, upon release of the first generation of rechargeable Li batteries, explosions related to the shorting of the circuit through Li dendrites bridging the anode and cathode were observed. As a result, Li metal batteries today are generally relegated to non-rechargeable primary battery applications, because the dendritic growth of Li is associated with the charging and discharging process. However, there still remain significant advantages in realizing rechargeable secondary batteries based on Li metal anodes because they possess superior electrical conductivity, higher specific energy and lower heat generation due to lower internal resistance. One of the most practical solutions is to use a solid polymer electrolyte to act as a physical barrier against dendrite growth. This may enable the use of Li metal once again in rechargeable secondary batteries [2]. Here we report a flexible and solid Li battery using a polymer electrolyte with a hierarchical and highly porous nanocarbon electrode comprising aligned multiwalled carbon nanotubes (CNTs) and carbon nanohorns (CNHs). Electrodes with high specific surface area are realized through the combination of CNHs with CNTs and provide a significant performance enhancement to the solid Li battery performance. © 2013 Elsevier Ltd.

  8. Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell

    Science.gov (United States)

    Song, Jingru; Fan, Cuncai; Ma, Hansong; Wei, Yueguang

    2015-06-01

    In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variation-section pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.

  9. Dynamical community structure of populations evolving on genotype networks

    International Nuclear Information System (INIS)

    Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna

    2015-01-01

    Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics

  10. Topology of the correlation networks among major currencies using hierarchical structure methods

    Science.gov (United States)

    Keskin, Mustafa; Deviren, Bayram; Kocakaplan, Yusuf

    2011-02-01

    We studied the topology of correlation networks among 34 major currencies using the concept of a minimal spanning tree and hierarchical tree for the full years of 2007-2008 when major economic turbulence occurred. We used the USD (US Dollar) and the TL (Turkish Lira) as numeraires in which the USD was the major currency and the TL was the minor currency. We derived a hierarchical organization and constructed minimal spanning trees (MSTs) and hierarchical trees (HTs) for the full years of 2007, 2008 and for the 2007-2008 period. We performed a technique to associate a value of reliability to the links of MSTs and HTs by using bootstrap replicas of data. We also used the average linkage cluster analysis for obtaining the hierarchical trees in the case of the TL as the numeraire. These trees are useful tools for understanding and detecting the global structure, taxonomy and hierarchy in financial data. We illustrated how the minimal spanning trees and their related hierarchical trees developed over a period of time. From these trees we identified different clusters of currencies according to their proximity and economic ties. The clustered structure of the currencies and the key currency in each cluster were obtained and we found that the clusters matched nicely with the geographical regions of corresponding countries in the world such as Asia or Europe. As expected the key currencies were generally those showing major economic activity.

  11. Multiscale mining of fMRI data with hierarchical structured sparsity

    International Nuclear Information System (INIS)

    Jenatton, R.; Obozinski, G.; Bach, F.; Gramfort, Alexandre; Michel, Vincent; Thirion, Bertrand; Eger, Evelyne

    2012-01-01

    Reverse inference, or 'brain reading', is a recent paradigm for analyzing functional magnetic resonance imaging (fMRI) data, based on pattern recognition and statistical learning. By predicting some cognitive variables related to brain activation maps, this approach aims at decoding brain activity. Reverse inference takes into account the multivariate information between voxels and is currently the only way to assess how precisely some cognitive information is encoded by the activity of neural populations within the whole brain. However, it relies on a prediction function that is plagued by the curse of dimensionality, since there are far more features than samples, i.e., more voxels than fMRI volumes. To address this problem, different methods have been proposed, such as, among others, univariate feature selection, feature agglomeration and regularization techniques. In this paper, we consider a sparse hierarchical structured regularization. Specifically, the penalization we use is constructed from a tree that is obtained by spatially-constrained agglomerative clustering. This approach encodes the spatial structure of the data at different scales into the regularization, which makes the overall prediction procedure more robust to inter-subject variability. The regularization used induces the selection of spatially coherent predictive brain regions simultaneously at different scales. We test our algorithm on real data acquired to study the mental representation of objects, and we show that the proposed algorithm not only delineates meaningful brain regions but yields as well better prediction accuracy than reference methods. (authors)

  12. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  13. Hierarchically structured identification and classification method for vibrational monitoring of reactor components

    International Nuclear Information System (INIS)

    Saedtler, E.

    1981-01-01

    The dissertation discusses: 1. Approximative filter algorithms for identification of systems and hierarchical structures. 2. Adaptive statistical pattern recognition and classification. 3. Parameter selection, extraction, and modelling for an automatic control system. 4. Design of a decision tree and an adaptive diagnostic system. (orig./RW) [de

  14. Electrochemical design of ZnO hierarchical structures for dye-sensitized solar cells

    Czech Academy of Sciences Publication Activity Database

    Guerin, V. M.; Rathouský, Jiří; Pauporté, T.

    2012-01-01

    Roč. 102, JUL 2012 (2012), s. 8-14 ISSN 0927-0248 R&D Projects: GA AV ČR KAN100400702 Institutional research plan: CEZ:AV0Z40400503 Keywords : ZnO hierarchical structures * epitaxy * dye-sensitized solar cell Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.630, year: 2012

  15. ERP Responses to Violations in the Hierarchical Structure of Functional Categories in Japanese Verb Conjugation

    Science.gov (United States)

    Kobayashi, Yuki; Sugioka, Yoko; Ito, Takane

    2018-01-01

    An event-related potential experiment was conducted in order to investigate readers' response to violations in the hierarchical structure of functional categories in Japanese, an agglutinative language where functional heads like Negation (Neg) as well as Tense (Tns) are realized as suffixes. A left-lateralized negativity followed by a P600 was…

  16. Mapping the Hierarchical Layout of the Structural Network of the Macaque Prefrontal Cortex

    NARCIS (Netherlands)

    Goulas, A.; Uylings, H.B.M.; Stiers, P.

    2014-01-01

    A consensus on the prefrontal cortex (PFC) holds that it is pivotal for flexible behavior and the integration of the cognitive, affective, and motivational domains. Certain models have been put forth and a dominant model postulates a hierarchical anterior-posterior gradient. The structural

  17. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions.

    Science.gov (United States)

    Sun, Junming; Karim, Ayman M; Li, Xiaohong Shari; Rainbolt, James; Kovarik, Libor; Shin, Yongsoon; Wang, Yong

    2015-12-04

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.

  18. Axiomatizations of Banzhaf Permisson Values for Games with a Hierarchical Permission Structure.

    NARCIS (Netherlands)

    van den Brink, J.R.

    2010-01-01

    In games with a permission structure it is assumed that players in a cooperative transferable utility game are hierarchically ordered in the sense that there are players that need permission from other players before they are allowed to cooperate. We provide axiomatic characterizations of Banzhaf

  19. Symptom structure of PTSD: support for a hierarchical model separating core PTSD symptoms from dysphoria

    NARCIS (Netherlands)

    Rademaker, Arthur R.; van Minnen, Agnes; Ebberink, Freek; van Zuiden, Mirjam; Hagenaars, Muriel A.; Geuze, Elbert

    2012-01-01

    As of yet, no collective agreement has been reached regarding the precise factor structure of posttraumatic stress disorder (PTSD). Several alternative factor-models have been proposed in the last decades. The current study examined the fit of a hierarchical adaptation of the Simms et al. (2002)

  20. Task Switching in a Hierarchical Task Structure: Evidence for the Fragility of the Task Repetition Benefit

    Science.gov (United States)

    Lien, Mei-Ching; Ruthruff, Eric

    2004-01-01

    This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms.…

  1. Biomimetic "Cactus Spine" with Hierarchical Groove Structure for Efficient Fog Collection.

    Science.gov (United States)

    Bai, Fan; Wu, Juntao; Gong, Guangming; Guo, Lin

    2015-07-01

    A biomimetic "cactus spine" with hierarchical groove structure is designed and fabricated using simple electrospinning. This novel artificial cactus spine possesses excellent fog collection and water transportation ability. A model cactus equipped with artificial spines also shows a great water storage capacity. The results can be helpful in the development of water collectors and may make a contribution to the world water crisis.

  2. The role of supramolecular chemistry in stimuli responsive and hierarchically structured functional organic materials

    NARCIS (Netherlands)

    Schenning, A.P.H.J.; Bastiaansen, C.W.M.; Broer, D.J.; Debije, M.G.

    2014-01-01

    ABSTRACT: In this review, we show the important role of supramolecular chemistry in the fabrication of stimuli responsive and hierarchically structured liquid crystalline polymer networks. Supramolecular interactions can be used to create three dimensional order or as molecular triggers in materials

  3. Delineating the Structure of Normal and Abnormal Personality: An Integrative Hierarchical Approach

    Science.gov (United States)

    Markon, Kristian E.; Krueger, Robert F.; Watson, David

    2008-01-01

    Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed. PMID:15631580

  4. Delineating the structure of normal and abnormal personality: an integrative hierarchical approach.

    Science.gov (United States)

    Markon, Kristian E; Krueger, Robert F; Watson, David

    2005-01-01

    Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed.

  5. Hierarchical structure and cytocompatibility of fish scales from Carassius auratus

    International Nuclear Information System (INIS)

    Fang, Zhou; Wang, Yukun; Feng, Qingling; Kienzle, Arne; Müller, Werner E.G.

    2014-01-01

    To study the structure and the cytocompatibility of fish scales from Carassius auratus, scanning electron microscopy (SEM) was used to observe the morphology of fish scales treated with different processing methods. Based on varying morphologies and components, the fish scales can be divided into three regions on the surface and three layers in vertical. The functions of these three individual layers were analyzed. SEM results show that the primary inorganic components are spherical or cubic hydroxyapatite (HA) nanoparticles. The fish scales have an ∼ 60° overlapped plywood structure of lamellas in the fibrillary plate. The plywood structure consists of co-aligned type I collagen fibers, which are parallel to the HA lamellas. X-ray diffraction (XRD), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) and Fourier transform infrared (FTIR) analysis indicate that the main components are HA and type I collagen fibers. MC3T3-E1 cell culture results show a high cytocompatibility and the ability to guide cell proliferation and migration along the scale ridge channels of the fish scales. This plywood structure provides inspiration for a structure-enhanced composite material. - Highlights: • The Carassius auratus fish scale can be divided into 3 layers rather than 2. • The functions of these three individual layers were firstly analyzed. • The fish scale shows a high cytocompatibility. • The fish scale can guide cells migration along the scale ridge channels

  6. Hierarchical structure and cytocompatibility of fish scales from Carassius auratus

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhou [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, Yukun [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kienzle, Arne; Müller, Werner E.G. [Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Johannes Gutenberg-Universität, Duesbergweg 6, Mainz 55099 (Germany)

    2014-10-01

    To study the structure and the cytocompatibility of fish scales from Carassius auratus, scanning electron microscopy (SEM) was used to observe the morphology of fish scales treated with different processing methods. Based on varying morphologies and components, the fish scales can be divided into three regions on the surface and three layers in vertical. The functions of these three individual layers were analyzed. SEM results show that the primary inorganic components are spherical or cubic hydroxyapatite (HA) nanoparticles. The fish scales have an ∼ 60° overlapped plywood structure of lamellas in the fibrillary plate. The plywood structure consists of co-aligned type I collagen fibers, which are parallel to the HA lamellas. X-ray diffraction (XRD), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) and Fourier transform infrared (FTIR) analysis indicate that the main components are HA and type I collagen fibers. MC3T3-E1 cell culture results show a high cytocompatibility and the ability to guide cell proliferation and migration along the scale ridge channels of the fish scales. This plywood structure provides inspiration for a structure-enhanced composite material. - Highlights: • The Carassius auratus fish scale can be divided into 3 layers rather than 2. • The functions of these three individual layers were firstly analyzed. • The fish scale shows a high cytocompatibility. • The fish scale can guide cells migration along the scale ridge channels.

  7. Band structures of two dimensional solid/air hierarchical phononic crystals

    International Nuclear Information System (INIS)

    Xu, Y.L.; Tian, X.G.; Chen, C.Q.

    2012-01-01

    The hierarchical phononic crystals to be considered show a two-order “hierarchical” feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  8. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.

    Science.gov (United States)

    Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian

    2016-06-13

    Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

  9. Inferring cetacean population densities from the absolute dynamic topography of the ocean in a hierarchical Bayesian framework.

    Directory of Open Access Journals (Sweden)

    Mario A Pardo

    Full Text Available We inferred the population densities of blue whales (Balaenoptera musculus and short-beaked common dolphins (Delphinus delphis in the Northeast Pacific Ocean as functions of the water-column's physical structure by implementing hierarchical models in a Bayesian framework. This approach allowed us to propagate the uncertainty of the field observations into the inference of species-habitat relationships and to generate spatially explicit population density predictions with reduced effects of sampling heterogeneity. Our hypothesis was that the large-scale spatial distributions of these two cetacean species respond primarily to ecological processes resulting from shoaling and outcropping of the pycnocline in regions of wind-forced upwelling and eddy-like circulation. Physically, these processes affect the thermodynamic balance of the water column, decreasing its volume and thus the height of the absolute dynamic topography (ADT. Biologically, they lead to elevated primary productivity and persistent aggregation of low-trophic-level prey. Unlike other remotely sensed variables, ADT provides information about the structure of the entire water column and it is also routinely measured at high spatial-temporal resolution by satellite altimeters with uniform global coverage. Our models provide spatially explicit population density predictions for both species, even in areas where the pycnocline shoals but does not outcrop (e.g. the Costa Rica Dome and the North Equatorial Countercurrent thermocline ridge. Interannual variations in distribution during El Niño anomalies suggest that the population density of both species decreases dramatically in the Equatorial Cold Tongue and the Costa Rica Dome, and that their distributions retract to particular areas that remain productive, such as the more oceanic waters in the central California Current System, the northern Gulf of California, the North Equatorial Countercurrent thermocline ridge, and the more

  10. An XML-hierarchical data structure for ENSDF

    International Nuclear Information System (INIS)

    Hurst, Aaron M.

    2016-01-01

    A data structure based on an eXtensible Markup Language (XML) hierarchy according to experimental nuclear structure data in the Evaluated Nuclear Structure Data File (ENSDF) is presented. A Python-coded translator has been developed to interpret the standard one-card records of the ENSDF datasets, together with their associated quantities defined according to field position, and generate corresponding representative XML output. The quantities belonging to this mixed-record format are described in the ENSDF manual. Of the 16 ENSDF records in total, XML output has been successfully generated for 15 records. An XML-translation for the Comment Record is yet to be implemented; this will be considered in a separate phase of the overall translation effort. Continuation records, not yet implemented, will also be treated in a future phase of this work. Several examples are presented in this document to illustrate the XML schema and methods for handling the various ENSDF data types. However, the proposed nomenclature for the XML elements and attributes need not necessarily be considered as a fixed set of constructs. Indeed, better conventions may be suggested and a consensus can be achieved amongst the various groups of people interested in this project. The main purpose here is to present an initial phase of the translation effort to demonstrate the feasibility of interpreting ENSDF datasets and creating a representative XML-structured hierarchy for data storage.

  11. Hierarchical Bayesian inference of the initial mass function in composite stellar populations

    Science.gov (United States)

    Dries, M.; Trager, S. C.; Koopmans, L. V. E.; Popping, G.; Somerville, R. S.

    2018-03-01

    The initial mass function (IMF) is a key ingredient in many studies of galaxy formation and evolution. Although the IMF is often assumed to be universal, there is continuing evidence that it is not universal. Spectroscopic studies that derive the IMF of the unresolved stellar populations of a galaxy often assume that this spectrum can be described by a single stellar population (SSP). To alleviate these limitations, in this paper we have developed a unique hierarchical Bayesian framework for modelling composite stellar populations (CSPs). Within this framework, we use a parametrized IMF prior to regulate a direct inference of the IMF. We use this new framework to determine the number of SSPs that is required to fit a set of realistic CSP mock spectra. The CSP mock spectra that we use are based on semi-analytic models and have an IMF that varies as a function of stellar velocity dispersion of the galaxy. Our results suggest that using a single SSP biases the determination of the IMF slope to a higher value than the true slope, although the trend with stellar velocity dispersion is overall recovered. If we include more SSPs in the fit, the Bayesian evidence increases significantly and the inferred IMF slopes of our mock spectra converge, within the errors, to their true values. Most of the bias is already removed by using two SSPs instead of one. We show that we can reconstruct the variable IMF of our mock spectra for signal-to-noise ratios exceeding ˜75.

  12. INFOGRAPHIC MODELING OF THE HIERARCHICAL STRUCTURE OF THE MANAGEMENT SYSTEM EXPOSED TO AN INNOVATIVE CONFLICT

    Directory of Open Access Journals (Sweden)

    Chulkov Vitaliy Olegovich

    2012-12-01

    Full Text Available This article deals with the infographic modeling of hierarchical management systems exposed to innovative conflicts. The authors analyze the facts that serve as conflict drivers in the construction management environment. The reasons for innovative conflicts include changes in hierarchical structures of management systems, adjustment of workers to new management conditions, changes in the ideology, etc. Conflicts under consideration may involve contradictions between requests placed by customers and the legislation, any risks that may originate from the above contradiction, conflicts arising from any failure to comply with any accepted standards of conduct, etc. One of the main objectives of the theory of hierarchical structures is to develop a model capable of projecting potential innovative conflicts. Models described in the paper reflect dynamic changes in patterns of external impacts within the conflict area. The simplest model element is a monad, or an indivisible set of characteristics of participants at the pre-set level. Interaction between two monads forms a diad. Modeling of situations that involve a different number of monads, diads, resources and impacts can improve methods used to control and manage hierarchical structures in the construction industry. However, in the absence of any mathematical models employed to simulate conflict-related events, processes and situations, any research into, projection and management of interpersonal and group-to-group conflicts are to be performed in the legal environment

  13. Human population structure detection via multilocus genotype clustering

    Directory of Open Access Journals (Sweden)

    Starmer Joshua

    2007-06-01

    Full Text Available Abstract Background We describe a hierarchical clustering algorithm for using Single Nucleotide Polymorphism (SNP genetic data to assign individuals to populations. The method does not assume Hardy-Weinberg equilibrium and linkage equilibrium among loci in sample population individuals. Results We show that the algorithm can assign sample individuals highly accurately to their corresponding ethnic groups in our tests using HapMap SNP data and it is also robust to admixed populations when tested with Perlegen SNP data. Moreover, it can detect fine-scale population structure as subtle as that between Chinese and Japanese by using genome-wide high-diversity SNP loci. Conclusion The algorithm provides an alternative approach to the popular STRUCTURE program, especially for fine-scale population structure detection in genome-wide association studies. This is the first successful separation of Chinese and Japanese samples using random SNP loci with high statistical support.

  14. Action detection by double hierarchical multi-structure space-time statistical matching model

    Science.gov (United States)

    Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang

    2018-03-01

    Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.

  15. Reliability and Hierarchical Structure of DSM-5 Pathological Traits in a Danish Mixed Sample

    DEFF Research Database (Denmark)

    Bo, Sune; Bach, Bo; Mortensen, Erik Lykke

    2016-01-01

    In this study we assessed the DSM-5 trait model in a large Danish sample (n = 1,119) with respect to reliability of the applied Danish version of the Personality Inventory for DSM-5 (PID-5) self-report form by means of internal consistency and item discrimination. In addition, we tested whether...... the five-factor structure of the DSM-5 trait model can be replicated in a Danish independent sample using the PID-5 self-report form. Finally, we examined the hierarchical structure of DSM-5 traits. In terms of internal consistency and item discrimination, the applied PID-5 scales were generally found...... reliable and functional; our data resembled the five-factor structure of previous findings, and we identified a hierarchical structure from one to five factors that was conceptually reasonable and corresponded with existing findings. These results support the new DSM-5 trait model and suggest that it can...

  16. Multiphase static droplet simulations in hierarchically structured super-hydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Shin; Lee, Joon Sang [School of Mechanical Engineering, Yonsei University, Seoul (Korea, Republic of)

    2016-08-15

    The surface of first part of study is textured with microscopic pillars of prototypical top geometries as a rectangle. The second one is textured with a hierarchical structure, composed of secondary pillar structures added on the primary texture. The length ratio between two scales of texture is 1:16. We evaluated the non-wetting characteristics of two types of surfaces by measuring CAs as well as the transition from the Wenzel's to Cassie's regimes. We measure the Contact angles (CAs), using the Lattice Boltzmann model (LBM), for two different surface configurations. We evaluated the effect of the hierarchical structure; the robustness of the Cassie regime is enhanced and the apparent contact angle is increased by the secondary structures. This is achieved by increasing the energy barrier against the transition between wetting and non-wetting regimes.

  17. How Are Researching and Reading Interwieved during Retrieval from Hierarchically Structured Documents?

    DEFF Research Database (Denmark)

    Hertzum, Morten; Lalmas, M.; Frøkjær, Erik

    2001-01-01

    Effective use of information retrieval systems requires that users know when to – temporarily – cease searching to do some reading and where to start reading. In hierarchically structured documents, users can to some extent interchange searching and reading by entering the text at different levels...... information retrieval systems could exploit document structure to return the best points to support reading, rather than merely hits...

  18. A hierarchical structure for risk criteria applicable to nuclear power plants

    International Nuclear Information System (INIS)

    Hall, R.E.; Mitra, S.P.

    1982-01-01

    This paper discusses the development of a hierarchical structure for risk criteria applicable to nuclear power plants. The structure provides a unified framework to systematically analyze the implications of different types of criteria, each focusing on a particular aspect of nuclear power plant risks. The framework allows investigation of the specific coverage of a particular criterion and comparison of different criteria with regard to areas to which they apply

  19. Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas

    Directory of Open Access Journals (Sweden)

    Górecki J.

    2017-01-01

    Full Text Available Several successful approaches to structure determination of hierarchical Archimedean copulas (HACs proposed in the literature rely on agglomerative clustering and Kendall’s correlation coefficient. However, there has not been presented any theoretical proof justifying such approaches. This work fills this gap and introduces a theorem showing that, given the matrix of the pairwise Kendall correlation coefficients corresponding to a HAC, its structure can be recovered by an agglomerative clustering technique.

  20. Dielectric study on hierarchical water structures restricted in cement and wood materials

    International Nuclear Information System (INIS)

    Abe, Fumiya; Nishi, Akihiro; Saito, Hironobu; Asano, Megumi; Watanabe, Seiei; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin; Fukuzaki, Minoru; Sudo, Seiichi; Suzuki, Youki

    2017-01-01

    Dielectric relaxation processes for mortar observed by broadband dielectric spectroscopy were analyzed in the drying and hydration processes for an aging sample in the frequency region from 1 MHz up to 2 MHz. At least two processes for structured water in the kHz frequency region and another mHz relaxation process affected by ionic behaviors were observed. Comparison of the relaxation parameters obtained for the drying and hydration processes suggests an existence of hierarchical water structures in the exchange of water molecules, which are originally exchanged from free water observed at around 20 GHz. The water molecules reflected in the lower frequency process of the two kHz relaxation processes are more restricted and take more homogeneous structures than the higher kHz relaxation process. These structured water usually hidden in large ionic behaviors for wood samples was observed by electrodes covered by a thin Teflon film, and hierarchical water structures were also suggested for wood samples. Dielectric spectroscopy technique is an effective tool to analyze the new concept of hierarchical water structures in complex materials. (paper)

  1. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    Directory of Open Access Journals (Sweden)

    Javed Iqbal

    2015-12-01

    Full Text Available ZnxCu1−xO (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol% hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  2. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Javed, E-mail: tariqjan84@gmail.com, E-mail: javed.suggau@iiu.edu.pk; Jan, Tariq, E-mail: tariqjan84@gmail.com, E-mail: javed.suggau@iiu.edu.pk; Ul-Hassan, Sibt; Umair Ali, M.; Abbas, Fazal [Laboratory of Nanoscience and Technology, Department of Physics, International Islamic University, H-10, Islamabad (Pakistan); Ahmed, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Mansoor, Qaisar; Ismail, Muhammad [Institute of Biomedical and Genetic Engineering (IBGE), Islamabad (Pakistan)

    2015-12-15

    Zn{sub x}Cu{sub 1−x}O (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol%) hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD) results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM) analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  3. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.

    Science.gov (United States)

    Barthlott, W; Mail, M; Neinhuis, C

    2016-08-06

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  4. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications

    Science.gov (United States)

    Mail, M.; Neinhuis, C.

    2016-01-01

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354736

  5. Assessing the multidimensional and hierarchical structure of SERVQUAL.

    Science.gov (United States)

    Ma, Jun; Harvey, Milton E; Hu, Michael Y

    2007-10-01

    Parasuraman, Zeithaml, and Berry introduced SERVQUAL in 1998 as a scale to measure service quality. Since then, researchers have proposed several variations. This study examines the development of the tool. Marketing researchers have first challenged the conceptualization of a perceptions-expectations gap and have concluded that the performance-based measures are adequate to capture consumers' perception of service quality. Some researchers have argued that the five dimensions of the SERVQUAL scale only focus on the process of service delivery and have extended the SERVQUAL scale into six dimensions by including the service outcome dimension. Others have proposed that service quality is a multilevel construct and should be measured accordingly. From a sample of 467 undergraduate students data on service quality toward up-scale restaurants were collected. Using the structural equation approach, two measurement models of service quality were compared, the extended SERVQUAL model and the restructured multilevel SERVQUAL model. Analysis suggested that the latter model fits the data better than the extended one.

  6. Micro-nano hierarchically structured nylon 6,6 surfaces with unique wettability.

    Science.gov (United States)

    Zhang, Liang; Zhang, Xiaoyan; Dai, Zhen; Wu, Junjie; Zhao, Ning; Xu, Jian

    2010-05-01

    A micro-nano hierarchically structured nylon 6,6 surface was easily fabricated by phase separation. Nylon 6,6 plate was swelled by formic acid and then immersed in a coagulate bath to precipitate. Micro particles with nano protrusions were generated and linked together covering over the surface. After dried up, the as-formed surface showed superhydrophilic ability. Inspired by lotus only employing 2-tier structure and ordinary plant wax to maintain superhydrophobicity, paraffin wax, a low surface energy material, was used to modify the hierarchically structured nylon 6,6 surface. The resultant surface had water contact angle (CA) of 155.2+/-1.3 degrees and a low sliding angle. The whole process was carried on under ambient condition and only need a few minutes. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Hierarchical Genetic Analysis of German Cockroach (Blattella germanica) Populations from within Buildings to across Continents

    Science.gov (United States)

    Vargo, Edward L.; Crissman, Jonathan R.; Booth, Warren; Santangelo, Richard G.; Mukha, Dmitry V.; Schal, Coby

    2014-01-01

    Understanding the population structure of species that disperse primarily by human transport is essential to predicting and controlling human-mediated spread of invasive species. The German cockroach (Blattella germanica) is a widespread urban invader that can actively disperse within buildings but is spread solely by human-mediated dispersal over longer distances; however, its population structure is poorly understood. Using microsatellite markers we investigated population structure at several spatial scales, from populations within single apartment buildings to populations from several cities across the U.S. and Eurasia. Both traditional measures of genetic differentiation and Bayesian clustering methods revealed increasing levels of genetic differentiation at greater geographic scales. Our results are consistent with active dispersal of cockroaches largely limited to movement within a building. Their low levels of genetic differentiation, yet limited active spread between buildings, suggests a greater likelihood of human-mediated dispersal at more local scales (within a city) than at larger spatial scales (within and between continents). About half the populations from across the U.S. clustered together with other U.S. populations, and isolation by distance was evident across the U.S. Levels of genetic differentiation among Eurasian cities were greater than those in the U.S. and greater than those between the U.S. and Eurasia, but no clear pattern of structure at the continent level was detected. MtDNA sequence variation was low and failed to reveal any geographical structure. The weak genetic structure detected here is likely due to a combination of historical admixture among populations and periodic population bottlenecks and founder events, but more extensive studies are needed to determine whether signatures of global movement may be present in this species. PMID:25020136

  8. Synthesis of Novel Mesoporous Silica Materials with Hierarchical Pore Structures

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Bon; Choi, Wang Kyu; Choi, Byung Seon; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Porous materials with various pore sizes in the range of micropore (< 2 nm), mesopore (2-50 nm), and macropore (> 50 nm) are attractive due to their many emerging applications such as catalysts, separation systems, and low dielectric constant materials. The discovery of new M41S mesoporous silica families with pore sizes larger than 2 nm in diameter in 1992 extended the applications into much wider pore ranges, bringing in a new prosperous era in porous material research. The synthesis of these silica materials has been mainly accomplished through a self-assembly between surfactant molecules and inorganic species under various pH conditions. Recently, core-shell nanoparticles with a silica core and mesoporous shell under basic conditions were synthesized using the silica nanoparticles as a core, and a silica precursor (TEOS) and cationic surfactant (CTABr) as a material for the formation of the mesoporous shell. The resultant materials were very monodispersive in size and showed a narrow pore size distribution in the range of ca 2-3 nm in diameter, depending on the alkyl-chain length of the surfactants used. In this work, the mesoporous shell coated-fumed silicas (denoted as MS M-5s) were synthesized by using fumed silica instead of the silica nanoparticle as a core based on previous reports. Also, the structural properties of the MS M-5s such as the specific surface area and pore volume were easily controlled by varying the amount of the silica precursor and surfactant. The resultant materials exhibited a BET surface area of ca 279-446 m{sup 2}/g and total pore volume of ca 0.64-0.74 cm{sup 3}/g and showed a narrow pore size distribution (PSD) due to the removal of the organic surfactant molecules

  9. Synthesis and properties of ZnFe2O4 replica with biological hierarchical structure

    International Nuclear Information System (INIS)

    Liu, Hongyan; Guo, Yiping; Zhang, Yangyang; Wu, Fen; Liu, Yun; Zhang, Di

    2013-01-01

    Highlights: • ZFO replica with hierarchical structure was synthesized from butterfly wings. • Biotemplate has a significant impact on the properties of ZFO material. • Our method opens up new avenues for the synthesis of spinel ferrites. -- Abstract: ZnFe 2 O 4 replica with biological hierarchical structure was synthesized from Papilio paris by a sol–gel method followed by calcination. The crystallographic structure and morphology of the obtained samples were characterized by X-ray diffraction, field-emission scanning electron microscope, and transmittance electron microscope. The results showed that the hierarchical structures were retained in the ZFO replica of spinel structure. The magnetic behavior of such novel products was measured by a vibrating sample magnetometer. A superparamagnetism-like behavior was observed due to nanostructuration size effects. In addition, the ZFO replica with “quasi-honeycomb-like structure” showed a much higher specific capacitance of 279.4 F g −1 at 10 mV s −1 in comparison with ZFO powder of 137.3 F g −1 , attributing to the significantly increased surface area. These results demonstrated that ZFO replica is a promising candidate for novel magnetic devices and supercapacitors

  10. Bio-inspired fabrication of stimuli-responsive photonic crystals with hierarchical structures and their applications

    International Nuclear Information System (INIS)

    Lu, Tao; Peng, Wenhong; Zhu, Shenmin; Zhang, Di

    2016-01-01

    When the constitutive materials of photonic crystals (PCs) are stimuli-responsive, the resultant PCs exhibit optical properties that can be tuned by the stimuli. This can be exploited for promising applications in colour displays, biological and chemical sensors, inks and paints, and many optically active components. However, the preparation of the required photonic structures is the first issue to be solved. In the past two decades, approaches such as microfabrication and self-assembly have been developed to incorporate stimuli-responsive materials into existing periodic structures for the fabrication of PCs, either as the initial building blocks or as the surrounding matrix. Generally, the materials that respond to thermal, pH, chemical, optical, electrical, or magnetic stimuli are either soft or aggregate, which is why the manufacture of three-dimensional hierarchical photonic structures with responsive properties is a great challenge. Recently, inspired by biological PCs in nature which exhibit both flexible and responsive properties, researchers have developed various methods to synthesize metals and metal oxides with hierarchical structures by using a biological PC as the template. This review will focus on the recent developments in this field. In particular, PCs with biological hierarchical structures that can be tuned by external stimuli have recently been successfully fabricated. These findings offer innovative insights into the design of responsive PCs and should be of great importance for future applications of these materials. (topical review)

  11. A thick hierarchical rutile TiO2 nanomaterial with multilayered structure

    International Nuclear Information System (INIS)

    Zhu, Shengli; Xie, Guoqiang; Yang, Xianjin; Cui, Zhenduo

    2013-01-01

    Highlights: ► We synthesized a new rutile TiO 2 nanomaterial with a hierarchical nanostructure. ► The nano architecture structure consist of nanorods and nanoflower arrays. ► The rutile TiO 2 nanomaterial is thick in size (several 10 μm). ► The TiO 2 nanomaterials present a multilayer structure. - Abstract: In the present paper, we synthesized a new type of rutile TiO 2 nanomaterial with a hierarchical nanostructure using a novel method, which combined dealloying process with chemical synthesis. The structure characters were examined using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The rutile TiO 2 nanomaterial is thick in size (several 10 μm). The hierarchical structure of the rutile TiO 2 nanomaterial consists of large quantities nanorods and nanoflower arrays. The nanoflowers consist of serveral nanopetals with diameter of 100–200 nm. The cross section of TiO 2 nanomaterials presents a multilayer structure with the layer thickness of about 3–5 μm. The rutile TiO 2 nanomaterial has high specific surface area. The formation mechanism of the rutile TiO 2 nanomaterial was discussed according to the experimental results. The rutile TiO 2 nanomaterial has potential applications in catalysis, photocatalysis and solar cells

  12. Hierarchical ZnO with twinned structure: Morphology evolution, formation mechanism and properties

    International Nuclear Information System (INIS)

    Shi, Ruixia; Song, Xueling; Li, Jia; Yang, Ping

    2015-01-01

    Various hierarchical ZnO architectures constructed by twinned structures have been synthesized via a trisodium citrate assisted hydrothermal method on a large scale. The probable formation mechanisms of hierarchical ZnO structures with twinned structure were proposed and discussed. The hierarchical ZnO with twinned structures are composed of two hemispheres with a center concave junction to join them together at their waists. The ZnO microspheres with rough surfaces were obtained when the concentration of trisodium citrate is 0.1 M. However, the football-like microspheres consisted of hexagonal nanosheets were formed when adding glycerol into the water, which should be attributed to the slower nucleation and growth rate of nanocrystals. The hamburger-like ZnO with different aspect ratio and nonuniform ZnO microspheres were generated due to the different quantity of initial nuclei and growth units when simply modulating the concentration of trisodium citrate. The surface area of football-like ZnO is about 3.51 times of microspheres composed of irregular particles. However their photocatalytic performances are similar under UV light irradiation, which indicates that pore sizes of the sample have more important influences on the photocatalytic activity. - Highlights: • Hierarchical ZnO constructed by twinned structures have been synthesized. • The formation mechanisms of ZnO with twinned structure were discussed. • Football-like microspheres were obtained due to the slower nucleation and growth. • Hamburger-like ZnO was formed due to the amount of initial nuclei and growth units. • Pore sizes have important effects on the photocatalytic activity of sample

  13. Hierarchical ZnO with twinned structure: Morphology evolution, formation mechanism and properties

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ruixia; Song, Xueling; Li, Jia; Yang, Ping, E-mail: mse_yangp@ujn.edu.cn

    2015-04-15

    Various hierarchical ZnO architectures constructed by twinned structures have been synthesized via a trisodium citrate assisted hydrothermal method on a large scale. The probable formation mechanisms of hierarchical ZnO structures with twinned structure were proposed and discussed. The hierarchical ZnO with twinned structures are composed of two hemispheres with a center concave junction to join them together at their waists. The ZnO microspheres with rough surfaces were obtained when the concentration of trisodium citrate is 0.1 M. However, the football-like microspheres consisted of hexagonal nanosheets were formed when adding glycerol into the water, which should be attributed to the slower nucleation and growth rate of nanocrystals. The hamburger-like ZnO with different aspect ratio and nonuniform ZnO microspheres were generated due to the different quantity of initial nuclei and growth units when simply modulating the concentration of trisodium citrate. The surface area of football-like ZnO is about 3.51 times of microspheres composed of irregular particles. However their photocatalytic performances are similar under UV light irradiation, which indicates that pore sizes of the sample have more important influences on the photocatalytic activity. - Highlights: • Hierarchical ZnO constructed by twinned structures have been synthesized. • The formation mechanisms of ZnO with twinned structure were discussed. • Football-like microspheres were obtained due to the slower nucleation and growth. • Hamburger-like ZnO was formed due to the amount of initial nuclei and growth units. • Pore sizes have important effects on the photocatalytic activity of sample.

  14. Complexity of major UK companies between 2006 and 2010: Hierarchical structure method approach

    Science.gov (United States)

    Ulusoy, Tolga; Keskin, Mustafa; Shirvani, Ayoub; Deviren, Bayram; Kantar, Ersin; Çaǧrı Dönmez, Cem

    2012-11-01

    This study reports on topology of the top 40 UK companies that have been analysed for predictive verification of markets for the period 2006-2010, applying the concept of minimal spanning tree and hierarchical tree (HT) analysis. Construction of the minimal spanning tree (MST) and the hierarchical tree (HT) is confined to a brief description of the methodology and a definition of the correlation function between a pair of companies based on the London Stock Exchange (LSE) index in order to quantify synchronization between the companies. A derivation of hierarchical organization and the construction of minimal-spanning and hierarchical trees for the 2006-2008 and 2008-2010 periods have been used and the results validate the predictive verification of applied semantics. The trees are known as useful tools to perceive and detect the global structure, taxonomy and hierarchy in financial data. From these trees, two different clusters of companies in 2006 were detected. They also show three clusters in 2008 and two between 2008 and 2010, according to their proximity. The clusters match each other as regards their common production activities or their strong interrelationship. The key companies are generally given by major economic activities as expected. This work gives a comparative approach between MST and HT methods from statistical physics and information theory with analysis of financial markets that may give new valuable and useful information of the financial market dynamics.

  15. Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer

    Science.gov (United States)

    Vallé, Karine; Belleville, Philippe; Pereira, Franck; Sanchez, Clément

    2006-02-01

    The elaborate performances characterizing natural materials result from functional hierarchical constructions at scales ranging from nanometres to millimetres, each construction allowing the material to fit the physical or chemical demands occurring at these different levels. Hierarchically structured materials start to demonstrate a high input in numerous promising applied domains such as sensors, catalysis, optics, fuel cells, smart biologic and cosmetic vectors. In particular, hierarchical hybrid materials permit the accommodation of a maximum of elementary functions in a small volume, thereby optimizing complementary possibilities and properties between inorganic and organic components. The reported strategies combine sol-gel chemistry, self-assembly routes using templates that tune the material's architecture and texture with the use of larger inorganic, organic or biological templates such as latex, organogelator-derived fibres, nanolithographic techniques or controlled phase separation. We propose an approach to forming transparent hierarchical hybrid functionalized membranes using in situ generation of mesostructured hybrid phases inside a non-porogenic hydrophobic polymeric host matrix. We demonstrate that the control of the multiple affinities existing between organic and inorganic components allows us to design the length-scale partitioning of hybrid nanomaterials with tuned functionalities and desirable size organization from ångström to centimetre. After functionalization of the mesoporous hybrid silica component, the resulting membranes have good ionic conductivity offering interesting perspectives for the design of solid electrolytes, fuel cells and other ion-transport microdevices.

  16. A Facile Method to Fabricate Anisotropic Hydrogels with Perfectly Aligned Hierarchical Fibrous Structures.

    Science.gov (United States)

    Mredha, Md Tariful Islam; Guo, Yun Zhou; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

    2018-03-01

    Natural structural materials (such as tendons and ligaments) are comprised of multiscale hierarchical architectures, with dimensions ranging from nano- to macroscale, which are difficult to mimic synthetically. Here a bioinspired, facile method to fabricate anisotropic hydrogels with perfectly aligned multiscale hierarchical fibrous structures similar to those of tendons and ligaments is reported. The method includes drying a diluted physical hydrogel in air by confining its length direction. During this process, sufficiently high tensile stress is built along the length direction to align the polymer chains and multiscale fibrous structures (from nano- to submicro- to microscale) are spontaneously formed in the bulk material, which are well-retained in the reswollen gel. The method is useful for relatively rigid polymers (such as alginate and cellulose), which are susceptible to mechanical signal. By controlling the drying with or without prestretching, the degree of alignment, size of superstructures, and the strength of supramolecular interactions can be tuned, which sensitively influence the strength and toughness of the hydrogels. The mechanical properties are comparable with those of natural ligaments. This study provides a general strategy for designing hydrogels with highly ordered hierarchical structures, which opens routes for the development of many functional biomimetic materials for biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development of ultralight, super-elastic, hierarchical metallic meta-structures with i3DP technology

    Science.gov (United States)

    Zhang, Dongxing; Xiao, Junfeng; Moorlag, Carolyn; Guo, Qiuquan; Yang, Jun

    2017-11-01

    Lightweight and mechanically robust materials show promising applications in thermal insulation, energy absorption, and battery catalyst supports. This study demonstrates an effective method for creation of ultralight metallic structures based on initiator-integrated 3D printing technology (i3DP), which provides a possible platform to design the materials with the best geometric parameters and desired mechanical performance. In this study, ultralight Ni foams with 3D interconnected hollow tubes were fabricated, consisting of hierarchical features spanning three scale orders ranging from submicron to centimeter. The resultant materials can achieve an ultralight density of as low as 5.1 mg cm-3 and nearly recover after significant compression up to 50%. Due to a high compression ratio, the hierarchical structure exhibits superior properties in terms of energy absorption and mechanical efficiency. The relationship of structural parameters and mechanical response was established. The ability of achieving ultralight density printing approach provides metallic structures with substantial benefits from the hierarchical design and fabrication flexibility to ultralight applications.

  18. Superhydrophobic surface based on a coral-like hierarchical structure of ZnO.

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2010-12-01

    Full Text Available Fabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures on the wettability, such as hierarchical ZnO nanostructures, is rare.This study presents a simple and reproducible method to fabricate a superhydrophobic surface with micro-scale roughness based on zinc oxide (ZnO hierarchical structure, which is grown by the hydrothermal method with an alkaline aqueous solution. Coral-like structures of ZnO were fabricated on a glass substrate with a micro-scale roughness, while the antennas of the coral formed the nano-scale roughness. The fresh ZnO films exhibited excellent superhydrophilicity (the apparent contact angle for water droplet was about 0°, while the ability to be wet could be changed to superhydrophobicity after spin-coating Teflon (the apparent contact angle greater than 168°. The procedure reported here can be applied to substrates consisting of other materials and having various shapes.The new process is convenient and environmentally friendly compared to conventional methods. Furthermore, the hierarchical structure generates the extraordinary solid/gas/liquid three-phase contact interface, which is the essential characteristic for a superhydrophobic surface.

  19. The well-designed hierarchical structure of Musa basjoo for supercapacitors

    Science.gov (United States)

    Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue

    2016-01-01

    Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials. PMID:26842714

  20. The well-designed hierarchical structure of Musa basjoo for supercapacitors

    Science.gov (United States)

    Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue

    2016-02-01

    Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials.

  1. Rapid fabrication of hierarchically structured supramolecular nanocomposite thin films in one minute

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ting; Kao, Joseph

    2016-11-08

    Functional nanocomposites containing nanoparticles of different chemical compositions may exhibit new properties to meet demands for advanced technology. It is imperative to simultaneously achieve hierarchical structural control and to develop rapid, scalable fabrication to minimize degradation of nanoparticle properties and for compatibility with nanomanufacturing. The assembly kinetics of supramolecular nanocomposite in thin films is governed by the energetic cost arising from defects, the chain mobility, and the activation energy for inter-domain diffusion. By optimizing only one parameter, the solvent fraction in the film, the assembly kinetics can be precisely tailored to produce hierarchically structured thin films of supramolecular nanocomposites in approximately one minute. Moreover, the strong wavelength dependent optical anisotropy in the nanocomposite highlights their potential applications for light manipulation and information transmission. The present invention opens a new avenue in designing manufacture-friendly continuous processing for the fabrication of functional nanocomposite thin films.

  2. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    Science.gov (United States)

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  3. The Relationship between Self-Leadership and Personality: A Comparison of Hierarchical Factor Structures

    OpenAIRE

    Houghton, Jeffery D.

    2000-01-01

    This study examined the relationship between self-leadership and personality through an analysis and comparison of hierarchical factor structures. More specifically, this study examined the relationships between the self-leadership dimensions of behavior-focused strategies, natural reward strategies, and constructive thought strategies, and the personality dimensions of extraversion, emotional stability, and conscientiousness. The results of the study provide evidence that the self-leadershi...

  4. Scaling of the first-passage time of biased diffusion on hierarchical comb structures

    International Nuclear Information System (INIS)

    Lin Zhifang; Tao Ruibao.

    1989-12-01

    Biased diffusion on hierarchical comb structures is studied within an exact renormalization group scheme. The scaling exponents of the moments of the first-passage time for random walks are obtained. It is found that the scaling properties of the diffusion depend only on the direction of bias. In this particular case, the presence of bias may give rise to a new multifractality. (author). 7 refs, 2 figs

  5. CTAB-Assisted Hydrothermal Synthesis of WO3 Hierarchical Porous Structures and Investigation of Their Sensing Properties

    Directory of Open Access Journals (Sweden)

    Dan Meng

    2015-01-01

    Full Text Available WO3 hierarchical porous structures were successfully synthesized via cetyltrimethylammonium bromide- (CTAB- assisted hydrothermal method. The structure and morphology were investigated using scanning electron microscope, X-ray diffractometer, transmission electron microscopy, X-ray photoelectron spectra, Brunauer-Emmett-Teller nitrogen adsorption-desorption, and thermogravimetry and differential thermal analysis. The result demonstrated that WO3 hierarchical porous structures with an orthorhombic structure were constructed by a number of nanoparticles about 50–100 nm in diameters. The H2 gas sensing measurements showed that well-defined WO3 hierarchical porous structures with a large specific surface area exhibited the higher sensitivity compared with products without CTAB at all operating temperatures. Moreover, the reversible and fast response to H2 gas and good selectivity were obtained. The results indicated that the WO3 hierarchical porous structures are promising materials for gas sensors.

  6. About Hierarchical XML Structures, Replacement of Relational Data Structures in Construction and Implementation of ERP Systems

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The projects essential objective is to develop a new ERP system, of homogeneous nature, based on XML structures, as a possible replacement for classic ERP systems. The criteria that guide the objective definition are modularity, portability and Web connectivity. This objective is connected to a series of secondary objectives, considering that the technological approach will be filtered through the economic, social and legislative environment for a validation-by-context study. Statistics and cybernetics are to be used for simulation purposes. The homogeneous approach is meant to provide strong modularity and portability, in relation with the n-tier principles, but the main advantage of the model is its opening to the semantic Web, based on a Small enterprise ontology defined with XML-driven languages. Shockwave solutions will be used for implementing client-oriented hypermedia elements and an XML Gate will be de-fined between black box modules, for a clear separation with obvious advantages. Security and the XMLTP project will be an important issue for XML transfers due to the conflict between the open architecture of the Web, the readability of XML data and the privacy elements which have to be preserved within a business environment. The projects finality is oriented on small business but the semantic Web perspective and the surprising new conflict between hierarchical/network data structures and relational ones will certainly widen its scope. The proposed model is meant to fulfill the IT compatibility requirements of the European environment, defined as a knowledge society. The paper is a brief of the contributions of the team re-search at the project type A applied to CNCSIS "Research on the Role of XML in Building Extensible and Homogeneous ERP Systems".

  7. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jieliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Su, Zhengliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Department of Automotive Engineering, Tsinghua University, Beijing 100084 (China); Yan, Shaoze, E-mail: yansz@mail.tsinghua.edu.cn [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China)

    2015-12-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  8. Eigenspaces of networks reveal the overlapping and hierarchical community structure more precisely

    International Nuclear Information System (INIS)

    Ma, Xiaoke; Gao, Lin; Yong, Xuerong

    2010-01-01

    Identifying community structure is fundamental for revealing the structure–functionality relationship in complex networks, and spectral algorithms have been shown to be powerful for this purpose. In a traditional spectral algorithm, each vertex of a network is embedded into a spectral space by making use of the eigenvectors of the adjacency matrix or Laplacian matrix of the graph. In this paper, a novel spectral approach for revealing the overlapping and hierarchical community structure of complex networks is proposed by not only using the eigenvalues and eigenvectors but also the properties of eigenspaces of the networks involved. This gives us a better characterization of community. We first show that the communicability between a pair of vertices can be rewritten in term of eigenspaces of a network. An agglomerative clustering algorithm is then presented to discover the hierarchical communities using the communicability matrix. Finally, these overlapping vertices are discovered with the corresponding eigenspaces, based on the fact that the vertices more densely connected amongst one another are more likely to be linked through short cycles. Compared with the traditional spectral algorithms, our algorithm can identify both the overlapping and hierarchical community without increasing the time complexity O(n 3 ), where n is the size of the network. Furthermore, our algorithm can also distinguish the overlapping vertices from bridges. The method is tested by applying it to some computer-generated and real-world networks. The experimental results indicate that our algorithm can reveal community structure more precisely than the traditional spectral approaches

  9. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles.

    Science.gov (United States)

    Ebert, Daniel; Bhushan, Bharat

    2012-02-15

    Surfaces with a very high apparent water contact angle (CA) and low water contact angle hysteresis (CAH) exhibit many useful characteristics, among them extreme water repellency, low drag for fluid flow, and a self-cleaning effect. The leaf of the Lotus plant (Nelumbo nucifera) achieves these properties using a hierarchical structure with roughness on both the micro- and nanoscale. It is of great interest to create durable surfaces with the so-called "Lotus effect" for many important applications. In this study, hierarchically structured surfaces with Lotus-effect properties were fabricated using micro- and nanosized hydrophobic silica particles and a simple spray method. In addition, hierarchically structured surfaces were prepared by spraying a nanoparticulate coating over a micropatterned surface. To examine the similarities between surfaces using microparticles versus a uniform micropattern as the microstructure, CA and CAH were compared across a range of pitch values for the two types of microstructures. Wear experiments were performed using an atomic force microscope (AFM), a ball-on-flat tribometer, and a water jet apparatus to verify multiscale wear resistance. These surfaces have potential uses in engineering applications requiring Lotus-effect properties and high durability. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    International Nuclear Information System (INIS)

    Zhao, Jieliang; Su, Zhengliang; Yan, Shaoze

    2015-01-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  11. UV-assisted capillary force lithography for engineering biomimetic multiscale hierarchical structures: From lotus leaf to gecko foot hairs

    KAUST Repository

    Jeong, Hoon Eui; Kwak, Rhokyun; Khademhosseini, Ali; Suh, Kahp Y.

    2009-01-01

    This feature article provides an overview of the recently developed two-step UV-assisted capillary force lithography and its application to fabricating well-defined micro/nanoscale hierarchical structures. This method utilizes an oxygen inhibition effect in the course of UV irradiation curing and a two-step moulding process, to form multiscale hierarchical or suspended nanobridge structures in a rapid and reproducible manner. After a brief description of the fabrication principles, several examples of the two-step UV-assisted moulding technique are presented. In addition, emerging applications of the multiscale hierarchical structures are briefly described. © The Royal Society of Chemistry 2009.

  12. Genetic population structure of Shoal Bass within their native range

    Science.gov (United States)

    Taylor, Andrew T.; Tringali, Michael D.; Sammons, Steven M.; Ingram, Travis R.; O'Rouke, Patrick M.; Peterson, Douglas L.; Long, James M.

    2018-01-01

    Endemic to the Apalachicola River basin of the southeastern USA, the Shoal Bass Micropterus cataractae is a fluvial‐specialist sport fish that is imperiled because of anthropogenic habitat alteration. To counter population declines, restorative stocking efforts are becoming an increasingly relevant management strategy. However, population genetic structure within the species is currently unknown, but it could influence management decisions, such as brood source location. Leveraging a collaborative effort to collect and genotype specimens with 16 microsatellite loci, our objective was to characterize hierarchical population structure and genetic differentiation of the Shoal Bass across its native range, including an examination of structuring mechanisms, such as relatedness and inbreeding levels. Specimens identified as Shoal Bass were collected from 13 distinct sites (N ranged from 17 to 209 per location) and were then taxonomically screened to remove nonnative congeners and hybrids (pure Shoal Bass N ranged from 13 to 183 per location). Our results revealed appreciable population structure, with five distinct Shoal Bass populations identifiable at the uppermost hierarchical level that generally corresponded with natural geographic features and anthropogenic barriers. Substructure was recovered within several of these populations, wherein differences appeared related to spatial isolation and local population dynamics. An analysis of molecular variance revealed that 3.6% of the variation in our data set was accounted for among three larger river drainages, but substructure within each river drainage also explained an additional 8.9% of genetic variation, demonstrating that management at a scale lower than the river drainage level would likely best conserve genetic diversity. Results provide a population genetic framework that can inform future management decisions, such as brood source location, so that genetic diversity within and among populations is

  13. Application of Bayesian networks in a hierarchical structure for environmental risk assessment: a case study of the Gabric Dam, Iran.

    Science.gov (United States)

    Malekmohammadi, Bahram; Tayebzadeh Moghadam, Negar

    2018-04-13

    Environmental risk assessment (ERA) is a commonly used, effective tool applied to reduce adverse effects of environmental risk factors. In this study, ERA was investigated using the Bayesian network (BN) model based on a hierarchical structure of variables in an influence diagram (ID). ID facilitated ranking of the different alternatives under uncertainty that were then used to evaluate comparisons of the different risk factors. BN was used to present a new model for ERA applicable to complicated development projects such as dam construction. The methodology was applied to the Gabric Dam, in southern Iran. The main environmental risk factors in the region, presented by the Gabric Dam, were identified based on the Delphi technique and specific features of the study area. These included the following: flood, water pollution, earthquake, changes in land use, erosion and sedimentation, effects on the population, and ecosensitivity. These risk factors were then categorized based on results from the output decision node of the BN, including expected utility values for risk factors in the decision node. ERA was performed for the Gabric Dam using the analytical hierarchy process (AHP) method to compare results of BN modeling with those of conventional methods. Results determined that a BN-based hierarchical structure to ERA present acceptable and reasonable risk assessment prioritization in proposing suitable solutions to reduce environmental risks and can be used as a powerful decision support system for evaluating environmental risks.

  14. Facile method for preparing superoleophobic surfaces with hierarchical microcubic/nanowire structures

    Science.gov (United States)

    Kwak, Wonshik; Hwang, Woonbong

    2016-02-01

    To facilitate the fabrication of superoleophobic surfaces having hierarchical microcubic/nanowire structures (HMNS), even for low surface tension liquids including octane (surface tension = 21.1 mN m-1), and to understand the influences of surface structures on the oleophobicity, we developed a convenient method to achieve superoleophobic surfaces on aluminum substrates using chemical acid etching, anodization and fluorination treatment. The liquid repellency of the structured surface was validated through observable experimental results the contact and sliding angle measurements. The etching condition required to ensure high surface roughness was established, and an optimal anodizing condition was determined, as a critical parameter in building the superoleophobicity. The microcubic structures formed by acid etching are essential for achieving the formation of the hierarchical structure, and therefore, the nanowire structures formed by anodization lead to an enhancement of the superoleophobicity for low surface tension liquids. Under optimized morphology by microcubic/nanowire structures with fluorination treatment, the contact angle over 150° and the sliding angle less than 10° are achieved even for octane.

  15. A hierarchical structure through imprinting of a polyimide precursor without residual layers

    International Nuclear Information System (INIS)

    Pai, I-Ting; Hon, Min-Hsiung; Leu, Ing-Chi

    2008-01-01

    A patterned polyimide without a residual layer is obtained by imprinting with the assistance of a residual solvent. The effects of the wetting behaviors of the poly-amic acid (PAA) solution coated on various surfaces are examined and the formation of hierarchical patterns without residual layers is demonstrated. polydimethylsiloxane (PDMS) and PEI/PDMS are used as imprinting molds with Si and 300 nm SiO 2 /Si as substrates. The results indicate that the various ambits of patterns without a residual layer are formed due to the dewetting phenomena caused by surface tension (Suh 2006 Small 2 832). During imprinting, PDMS with a low surface energy makes the PAA solution flow away from its surface exposing the contact area due to dewetting. Self-organized hierarchical structures are also obtained from this process due to effective dewetting. The present study provides a new approach for fabricating patterns without residual layers and the consequent preparation of hierarchical structures, which is considered to be impossible using the lithographic technique

  16. A hierarchical method for structural topology design problems with local stress and displacement constraints

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Stidsen, Thomas K.

    2005-01-01

    In this paper we present a hierarchical optimization method for finding feasible true 0-1 solutions to finite element based topology design problems. The topology design problems are initially modeled as non-convex mixed 0-1 programs. The hierarchical optimization method is applied to the problem...... and then successively refined as needed. At each level of design mesh refinement, a neighborhood optimization method is used to solve the problem considered. The non-convex topology design problems are equivalently reformulated as convex all-quadratic mixed 0-1 programs. This reformulation enables the use of methods...... of minimizing the weight of a structure subject to displacement and local design-dependent stress constraints. The method iteratively solves a sequence of problems of increasing size of the same type as the original problem. The problems are defined on a design mesh which is initially coarse...

  17. A hierarchical method for discrete structural topology design problems with local stress and displacement constraints

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Stidsen, Thomas K.

    2007-01-01

    In this paper, we present a hierarchical optimization method for finding feasible true 0-1 solutions to finite-element-based topology design problems. The topology design problems are initially modelled as non-convex mixed 0-1 programs. The hierarchical optimization method is applied to the problem...... and then successively refined as needed. At each level of design mesh refinement, a neighbourhood optimization method is used to treat the problem considered. The non-convex topology design problems are equivalently reformulated as convex all-quadratic mixed 0-1 programs. This reformulation enables the use of methods...... of minimizing the weight of a structure subject to displacement and local design-dependent stress constraints. The method iteratively treats a sequence of problems of increasing size of the same type as the original problem. The problems are defined on a design mesh which is initially coarse...

  18. Controlled self-assembly of PbS nanoparticles into macrostar-like hierarchical structures

    International Nuclear Information System (INIS)

    Li, Guowei; Li, Changsheng; Tang, Hua; Cao, Kesheng; Chen, Juan

    2011-01-01

    Graphical abstract: The aggregation and rotation of nanoparticles to adopt parallel orientations in three dimensions was indirectly illustrated by TEM and HRTEM images. Highlights: → Macrostar-like PbS hierarchical structures was successfully synthesized by a simple hydrothermal method and mesostars were assembled from the PbS nanocube building blocks with edge lengths of about 100 nm. → Ostwald-ripening-assisted oriented attachment is believed to play a key role in the growth behavior of novel 3D structures. → Optical properties indicating few defects on the surface of the PbS structure and exhibit large blue-shifts compared to bulk PbS. -- Abstract: The synthesis of macrostar-like PbS hierarchical structures by a simple hydrothermal method at 180 o C for 24 h is proven successful with the assistance of a new surfactant called tetrabutylammonium bromide (TBAB). The as-obtained product is characterized by means of X-ray powder diffraction, field emission scanning electron microscopy, energy dispersive spectrometry, high resolution transmission electron microscopy, and selected area electron diffraction. The presence of TBAB and NaF plays an important role in the formation of PbS macrostructures. Ostwald-ripening-assisted oriented attachment is believed to play a key role in the growth behavior of novel 3D structures. As such, a possible self-assembly mechanism is proposed to explain the formation of the said structures. The present study aims to introduce new insights into understanding the formation process of such unique hierarchical superstructures.

  19. Fabrication of semi-transparent superoleophobic thin film from fabrics and nanoparticle-based hierarchical structure

    Directory of Open Access Journals (Sweden)

    Nishizawa S.

    2013-08-01

    Full Text Available Superoleophobic thin films have many potential applications including fluid transfer, fluid power systems, stain resistant and antifouling materials, and microfluidics among others. Transparency is also desired with superhydrophobicity for their numerous applications; however transparency and oleophobicity are almost incompatible relationship with each other in the point of surface structure. Because oleophobicity required rougher structure at nano-micro scale than hydrophobicity, and these rough structure brings light scattering. So far, there is very few report of the compatible of transparency and superoleophobicity. In this report, we proposed the see-through type fabrics using the nanoparticle-based hierarchical structure thin film for improving both of oleophobicity and transparency. The vacant space between fibrils of fabrics has two important roles: the one is to through the light, another one is to introduce air layer to realize Cassie state of liquid droplet on thin film. To realize the low surface energy and nanoscale rough structure surface on fibrils, we used the spray method with perfluoroalkyl methacrylic copolymer (PMC, silica nano particles and volatile solvent. From the SEM image, the hierarchical structures of nanoparticle were formed uniformly on the fabrics. The transparency of thin film obtained was approximately 61% and the change of transparency between pre-coated fabrics and coated was 11%. From investigation of the surface wettability, the contact angles of oils (rapeseed oil and hexadecane and water droplet on the fabricated film were over 150 degree.

  20. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    International Nuclear Information System (INIS)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-01-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ -1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  1. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    Science.gov (United States)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-04-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ-1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  2. Substrate dependent hierarchical structures of RF sputtered ZnS films

    Science.gov (United States)

    Chalana, S. R.; Mahadevan Pillai, V. P.

    2018-05-01

    RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.

  3. Hierarchical system for autonomous sensing-healing of delamination in large-scale composite structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Sun, Denghao; Takeda, Nobuo

    2014-01-01

    This study combines our hierarchical fiber-optic-based delamination detection system with a microvascular self-healing material to develop the first autonomous sensing-healing system applicable to large-scale composite structures. In this combined system, embedded vascular modules are connected through check valves to a surface-mounted supply tube of a pressurized healing agent while fiber-optic-based sensors monitor the internal pressure of these vascular modules. When delamination occurs, the healing agent flows into the vascular modules breached by the delamination and infiltrates the damage for healing. At the same time, the pressure sensors identify the damaged modules by detecting internal pressure changes. This paper begins by describing the basic concept of the combined system and by discussing the advantages that arise from its hierarchical nature. The feasibility of the system is then confirmed through delamination infiltration tests. Finally, the hierarchical system is validated in a plate specimen by focusing on the detection and infiltration of the damage. Its self-diagnostic function is also demonstrated. (paper)

  4. Structural and photovoltaic characteristics of hierarchical ZnO nanostructures electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Muhammad, E-mail: saleem.malikape@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044 (China); Fang, L. [Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044 (China); Shaukat, Saleem F.; Ahmad, M. Ashfaq [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Akhtar, Majid Niaz; Jamil, Ayesha; Aslam, Samia [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Abbas, Ghazanfar [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2015-04-15

    Highlights: • Hierarchically ZnO nanostructures electrodes were grown using hot plate magnetic stirring at different growth reaction temperature. • We have investigated the effect of working temperature of 160°, 170°, 180°, and 190° on the growth mechanism of nanospheres and on the power conversion efficiency of DSSCs. • ZnO nanospheres with perfect aggregation show superior power conversion efficiency of 1.24% which is about 83% higher than nanoparticles DSSC. • An obvious vogue is that the overall power conversion efficiency decreases as the degree of the spherical aggregation is gradually destroyed. - Abstract: Structural and photovoltaic characteristics of hierarchical ZnO nanostructures solar cell have been studied in relation to growth reaction temperature. It is found that the hierarchical ZnO nanostructures network to act not only as large surface area substrates but also as a transport medium for electrons injected from the dye molecules. The incident photon-to-current conversion efficiency is decreased by increasing the growth reaction temperature of ZnO electrodes. The best conversion efficiency of a 0.25 cm{sup 2} cell is measured to be 1.24% under 100 mW cm{sup −2} irradiation.

  5. Structural and photovoltaic characteristics of hierarchical ZnO nanostructures electrodes

    International Nuclear Information System (INIS)

    Saleem, Muhammad; Fang, L.; Shaukat, Saleem F.; Ahmad, M. Ashfaq; Raza, Rizwan; Akhtar, Majid Niaz; Jamil, Ayesha; Aslam, Samia; Abbas, Ghazanfar

    2015-01-01

    Highlights: • Hierarchically ZnO nanostructures electrodes were grown using hot plate magnetic stirring at different growth reaction temperature. • We have investigated the effect of working temperature of 160°, 170°, 180°, and 190° on the growth mechanism of nanospheres and on the power conversion efficiency of DSSCs. • ZnO nanospheres with perfect aggregation show superior power conversion efficiency of 1.24% which is about 83% higher than nanoparticles DSSC. • An obvious vogue is that the overall power conversion efficiency decreases as the degree of the spherical aggregation is gradually destroyed. - Abstract: Structural and photovoltaic characteristics of hierarchical ZnO nanostructures solar cell have been studied in relation to growth reaction temperature. It is found that the hierarchical ZnO nanostructures network to act not only as large surface area substrates but also as a transport medium for electrons injected from the dye molecules. The incident photon-to-current conversion efficiency is decreased by increasing the growth reaction temperature of ZnO electrodes. The best conversion efficiency of a 0.25 cm 2 cell is measured to be 1.24% under 100 mW cm −2 irradiation

  6. A facile approach to fabricate hierarchically structured poly(3-hexylthiophene-2,5-diyl) films

    DEFF Research Database (Denmark)

    Zhang, Weihua; Zong, Chuanyong; Xie, Jixun

    2017-01-01

    Microstructured surfaces have great potentials to improve the performances and efficiency of optoelectronic devices. In this work, a simple robust approach based on surface instabilities was presented to fabricate poly(3-hexylthiophene-2,5-diyl) (P3HT) films with ridge-like/wrinkled composite...... microstructures. Namely, the hierarchically patterned films were prepared by spin coating the P3HT/tetrahydrofuran (THF) solution on a polydimethylsiloxane (PDMS) substrate to form stable ridge-like structures, followed by solvent vapor swelling to create surface wrinkles with the orientation guided by the ridge......-like structures. During spin coating of the P3HT/THF solution, the ridge-like structures were generated by the in-situ template of the THF swelling-induced creasing structures on the PDMS substrate. To our knowledge, it is the first report that the creasing structures are used as a recoverable template...

  7. Hierarchical structures of correlations networks among Turkey’s exports and imports by currencies

    Science.gov (United States)

    Kocakaplan, Yusuf; Deviren, Bayram; Keskin, Mustafa

    2012-12-01

    We have examined the hierarchical structures of correlations networks among Turkey’s exports and imports by currencies for the 1996-2010 periods, using the concept of a minimal spanning tree (MST) and hierarchical tree (HT) which depend on the concept of ultrametricity. These trees are useful tools for understanding and detecting the global structure, taxonomy and hierarchy in financial markets. We derived a hierarchical organization and build the MSTs and HTs during the 1996-2001 and 2002-2010 periods. The reason for studying two different sub-periods, namely 1996-2001 and 2002-2010, is that the Euro (EUR) came into use in 2001, and some countries have made their exports and imports with Turkey via the EUR since 2002, and in order to test various time-windows and observe temporal evolution. We have carried out bootstrap analysis to associate a value of the statistical reliability to the links of the MSTs and HTs. We have also used the average linkage cluster analysis (ALCA) to observe the cluster structure more clearly. Moreover, we have obtained the bidimensional minimal spanning tree (BMST) due to economic trade being a bidimensional problem. From the structural topologies of these trees, we have identified different clusters of currencies according to their proximity and economic ties. Our results show that some currencies are more important within the network, due to a tighter connection with other currencies. We have also found that the obtained currencies play a key role for Turkey’s exports and imports and have important implications for the design of portfolio and investment strategies.

  8. Synthesis and Characterization of Hierarchical Structured TiO2 Nanotubes and Their Photocatalytic Performance on Methyl Orange

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2015-01-01

    Full Text Available Hierarchical structured TiO2 nanotubes were prepared by mechanical ball milling of highly ordered TiO2 nanotube arrays grown by electrochemical anodization of titanium foil. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, specific surface area analysis, UV-visible absorption spectroscopy, photocurrent measurement, photoluminescence spectra, electrochemical impedance spectra, and photocatalytic degradation test were applied to characterize the nanocomposites. Surface area increased as the milling time extended. After 5 h ball milling, TiO2 hierarchical nanotubes exhibited a corn-like shape and exhibited enhanced photoelectrochemical activity in comparison to commercial P25. The superior photocatalytic activity is suggested to be due to the combined advantages of high surface area of nanoparticles and rapid electron transfer as well as collection of the nanotubes in the hierarchical structure. The hierarchical structured TiO2 nanotubes could be applied into flexible applications on solar cells, sensors, and other photoelectrochemical devices.

  9. A study of hierarchical structure on South China industrial electricity-consumption correlation

    Science.gov (United States)

    Yao, Can-Zhong; Lin, Ji-Nan; Liu, Xiao-Feng

    2016-02-01

    Based on industrial electricity-consumption data of five southern provinces of China from 2005 to 2013, we study the industrial correlation mechanism with MST (minimal spanning tree) and HT (hierarchical tree) models. First, we comparatively analyze the industrial electricity-consumption correlation structure in pre-crisis and after-crisis period using MST model and Bootstrap technique of statistical reliability test of links. Results exhibit that all industrial electricity-consumption trees of five southern provinces of China in pre-crisis and after-crisis time are in formation of chain, and the "center-periphery structure" of those chain-like trees is consistent with industrial specialization in classical industrial chain theory. Additionally, the industrial structure of some provinces is reorganized and transferred in pre-crisis and after-crisis time. Further, the comparative analysis with hierarchical tree and Bootstrap technique demonstrates that as for both observations of GD and overall NF, the industrial electricity-consumption correlation is non-significant clustered in pre-crisis period, whereas it turns significant clustered in after-crisis time. Therefore we propose that in perspective of electricity-consumption, their industrial structures are directed to optimized organization and global correlation. Finally, the analysis of distance of HTs verifies that industrial reorganization and development may strengthen market integration, coordination and correlation of industrial production. Except GZ, other four provinces have a shorter distance of industrial electricity-consumption correlation in after-crisis period, revealing a better performance of regional specialization and integration.

  10. Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures.

    Science.gov (United States)

    Zhang, Xiao-Sheng; Zhu, Fu-Yun; Han, Meng-Di; Sun, Xu-Ming; Peng, Xu-Hua; Zhang, Hai-Xia

    2013-08-27

    This paper reports a novel single-step wafer-level fabrication of superhydrophobic micro/nano dual-scale (MNDS) poly(dimethylsiloxane) (PDMS) films. The MNDS PDMS films were replicated directly from an ultralow-surface-energy silicon substrate at high temperature without any surfactant coating, achieving high precision. An improved deep reactive ion etching (DRIE) process with enhanced passivation steps was proposed to easily realize the ultralow-surface-energy MNDS silicon substrate and also utilized as a post-treatment process to strengthen the hydrophobicity of the MNDS PDMS film. The chemical modification of this enhanced passivation step to the surface energy has been studied by density functional theory, which is also the first investigation of C4F8 plasma treatment at molecular level by using first-principle calculations. From the results of a systematic study on the effect of key process parameters (i.e., baking temperature and time) on PDMS replication, insight into the interaction of hierarchical multiscale structures of polymeric materials during the micro/nano integrated fabrication process is experimentally obtained for the first time. Finite element simulation has been employed to illustrate this new phenomenon. Additionally, hierarchical PDMS pyramid arrays and V-shaped grooves have been developed and are intended for applications as functional structures for a light-absorption coating layer and directional transport of liquid droplets, respectively. This stable, self-cleaning PDMS film with functional micro/nano hierarchical structures, which is fabricated through a wafer-level single-step fabrication process using a reusable silicon mold, shows attractive potential for future applications in micro/nanodevices, especially in micro/nanofluidics.

  11. High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers

    International Nuclear Information System (INIS)

    Tzounis, Lazaros; Debnath, Subhas; Rooj, Sandip; Fischer, Dieter; Mäder, Edith; Das, Amit; Stamm, Manfred; Heinrich, Gert

    2014-01-01

    A simple and facile method for depositing multiwall carbon nanotubes (MWCNTs) onto the surface of naturally occurring short jute fibers (JFs) is reported. Hierarchical multi-scale structures were formed with CNT-networks uniformly distributed and fully covering the JFs (JF–CNT), as depicted by the scanning electron microscopy (SEM) micrographs. The impact of these hybrid fillers on the mechanical properties of a natural rubber (NR) matrix was systematically investigated. Pristine JFs were cut initially to an average length of 2.0 mm and exposed to an alkali treatment (a-JFs) to remove impurities existing in the raw jute. MWCNTs were treated under mild acidic conditions to generate carboxylic acid moieties. Afterward, MWCNTs were dispersed in an aqueous media and short a-JFs were allowed to react with them. Raman spectroscopy confirmed the chemical interaction between CNTs and JFs. The JF–CNT exposed quite hydrophobic behavior as revealed by the water contact angle measurements, improving the wettability of the non-polar NR. Consequently, the composite interfacial adhesion strength was significantly enhanced while a micro-scale “mechanical interlocking” mechanism was observed from the interphase-section transmission electron microscopy (TEM) images. SEM analysis of the composite fracture surfaces demonstrated the interfacial strength of NR/a-JF and NR/JF–CNT composites, at different fiber loadings. It can be presumed that the CNT-coating effectively compatibillized the composite structure acting as a macromolecular coupling agent. A detailed analysis of stress-strain and dynamic mechanical spectra confirmed the high mechanical performance of the hierarchical composites, consisting mainly of materials arising from natural resources. - Highlights: • Natural rubber (NR) composites reinforced with CNT-modified short jute fibers. • MWCNTs deposited to the surface of jute fibers via non-covalent interactions. • Hierarchical reinforcement structure with

  12. Pseudomonas aeruginosa Population Structure Revisited

    Science.gov (United States)

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  13. Hierarchical organization in the temporal structure of infant-direct speech and song.

    Science.gov (United States)

    Falk, Simone; Kello, Christopher T

    2017-06-01

    Caregivers alter the temporal structure of their utterances when talking and singing to infants compared with adult communication. The present study tested whether temporal variability in infant-directed registers serves to emphasize the hierarchical temporal structure of speech. Fifteen German-speaking mothers sang a play song and told a story to their 6-months-old infants, or to an adult. Recordings were analyzed using a recently developed method that determines the degree of nested clustering of temporal events in speech. Events were defined as peaks in the amplitude envelope, and clusters of various sizes related to periods of acoustic speech energy at varying timescales. Infant-directed speech and song clearly showed greater event clustering compared with adult-directed registers, at multiple timescales of hundreds of milliseconds to tens of seconds. We discuss the relation of this newly discovered acoustic property to temporal variability in linguistic units and its potential implications for parent-infant communication and infants learning the hierarchical structures of speech and language. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Exploring hierarchical and overlapping modular structure in the yeast protein interaction network

    Directory of Open Access Journals (Sweden)

    Zhao Yi

    2010-12-01

    Full Text Available Abstract Background Developing effective strategies to reveal modular structures in protein interaction networks is crucial for better understanding of molecular mechanisms of underlying biological processes. In this paper, we propose a new density-based algorithm (ADHOC for clustering vertices of a protein interaction network using a novel subgraph density measurement. Results By statistically evaluating several independent criteria, we found that ADHOC could significantly improve the outcome as compared with five previously reported density-dependent methods. We further applied ADHOC to investigate the hierarchical and overlapping modular structure in the yeast PPI network. Our method could effectively detect both protein modules and the overlaps between them, and thus greatly promote the precise prediction of protein functions. Moreover, by further assaying the intermodule layer of the yeast PPI network, we classified hubs into two types, module hubs and inter-module hubs. Each type presents distinct characteristics both in network topology and biological functions, which could conduce to the better understanding of relationship between network architecture and biological implications. Conclusions Our proposed algorithm based on the novel subgraph density measurement makes it possible to more precisely detect hierarchical and overlapping modular structures in protein interaction networks. In addition, our method also shows a strong robustness against the noise in network, which is quite critical for analyzing such a high noise network.

  15. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries

    Science.gov (United States)

    Odziomek, Mateusz; Chaput, Frédéric; Rutkowska, Anna; Świerczek, Konrad; Olszewska, Danuta; Sitarz, Maciej; Lerouge, Frédéric; Parola, Stephane

    2017-05-01

    High-performance Li-ion batteries require materials with well-designed and controlled structures on nanometre and micrometre scales. Electrochemical properties can be enhanced by reducing crystallite size and by manipulating structure and morphology. Here we show a method for preparing hierarchically structured Li4Ti5O12 yielding nano- and microstructure well-suited for use in lithium-ion batteries. Scalable glycothermal synthesis yields well-crystallized primary 4-8 nm nanoparticles, assembled into porous secondary particles. X-ray photoelectron spectroscopy reveals presence of Ti+4 only; combined with chemical analysis showing lithium deficiency, this suggests oxygen non-stoichiometry. Electron microscopy confirms hierarchical morphology of the obtained material. Extended cycling tests in half cells demonstrates capacity of 170 mAh g-1 and no sign of capacity fading after 1,000 cycles at 50C rate (charging completed in 72 s). The particular combination of nanostructure, microstructure and non-stoichiometry for the prepared lithium titanate is believed to underlie the observed electrochemical performance of material.

  16. * Hierarchically Structured Electrospun Scaffolds with Chemically Conjugated Growth Factor for Ligament Tissue Engineering.

    Science.gov (United States)

    Pauly, Hannah M; Sathy, Binulal N; Olvera, Dinorath; McCarthy, Helen O; Kelly, Daniel J; Popat, Ketul C; Dunne, Nicholas J; Haut Donahue, Tammy Lynn

    2017-08-01

    The anterior cruciate ligament (ACL) of the knee is vital for proper joint function and is commonly ruptured during sports injuries or car accidents. Due to a lack of intrinsic healing capacity and drawbacks with allografts and autografts, there is a need for a tissue-engineered ACL replacement. Our group has previously used aligned sheets of electrospun polycaprolactone nanofibers to develop solid cylindrical bundles of longitudinally aligned nanofibers. We have shown that these nanofiber bundles support cell proliferation and elongation and the hierarchical structure and material properties are similar to the native human ACL. It is possible to combine multiple nanofiber bundles to create a scaffold that attempts to mimic the macroscale structure of the ACL. The goal of this work was to develop a hierarchical bioactive scaffold for ligament tissue engineering using connective tissue growth factor (CTGF)-conjugated nanofiber bundles and evaluate the behavior of mesenchymal stem cells (MSCs) on these scaffolds in vitro and in vivo. CTGF was immobilized onto the surface of individual nanofiber bundles or scaffolds consisting of multiple nanofiber bundles. The conjugation efficiency and the release of conjugated CTGF were assessed using X-ray photoelectron spectroscopy, assays, and immunofluorescence staining. Scaffolds were seeded with MSCs and maintained in vitro for 7 days (individual nanofiber bundles), in vitro for 21 days (scaled-up scaffolds of 20 nanofiber bundles), or in vivo for 6 weeks (small scaffolds of 4 nanofiber bundles), and ligament-specific tissue formation was assessed in comparison to non-CTGF-conjugated control scaffolds. Results showed that CTGF conjugation encouraged cell proliferation and ligament-specific tissue formation in vitro and in vivo. The results suggest that hierarchical electrospun nanofiber bundles conjugated with CTGF are a scalable and bioactive scaffold for ACL tissue engineering.

  17. Direct reciprocity in structured populations.

    Science.gov (United States)

    van Veelen, Matthijs; García, Julián; Rand, David G; Nowak, Martin A

    2012-06-19

    Reciprocity and repeated games have been at the center of attention when studying the evolution of human cooperation. Direct reciprocity is considered to be a powerful mechanism for the evolution of cooperation, and it is generally assumed that it can lead to high levels of cooperation. Here we explore an open-ended, infinite strategy space, where every strategy that can be encoded by a finite state automaton is a possible mutant. Surprisingly, we find that direct reciprocity alone does not lead to high levels of cooperation. Instead we observe perpetual oscillations between cooperation and defection, with defection being substantially more frequent than cooperation. The reason for this is that "indirect invasions" remove equilibrium strategies: every strategy has neutral mutants, which in turn can be invaded by other strategies. However, reciprocity is not the only way to promote cooperation. Another mechanism for the evolution of cooperation, which has received as much attention, is assortment because of population structure. Here we develop a theory that allows us to study the synergistic interaction between direct reciprocity and assortment. This framework is particularly well suited for understanding human interactions, which are typically repeated and occur in relatively fluid but not unstructured populations. We show that if repeated games are combined with only a small amount of assortment, then natural selection favors the behavior typically observed among humans: high levels of cooperation implemented using conditional strategies.

  18. Statistical discovery of site inter-dependencies in sub-molecular hierarchical protein structuring.

    Science.gov (United States)

    Durston, Kirk K; Chiu, David Ky; Wong, Andrew Kc; Li, Gary Cl

    2012-07-13

    Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families. The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function. Our results

  19. Synthesis and Characterization of Wooden Magnetic Activated Carbon Fibers with Hierarchical Pore Structures

    Directory of Open Access Journals (Sweden)

    Dongna Li

    2018-04-01

    Full Text Available Wooden magnetic activated carbon fibers (WMACFs with hierarchical pore structures were obtained by adding magnetic iron oxide (Fe3O4 nanoparticles into the liquefied wood. The structures and properties of WMACFs were analyzed by scanning electronmicroscopy (SEM, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, N2 adsorption, and vibrating sample magnetometer (VSM. The results showed that WMACFs had high Brunauer-Emmett-Teller (BET surface area (1578 m2/g and total pore volume (0.929 cm3/g, of which 45% was the contribution of small mesopores of 2–3 nm. It is believed that Fe3O4 nanoparticles play an important role in the formation of hierarchical pores. With the Fe3O4 content increasing, the yield rate of WMACFs decreased, and the Fe3O4 crystal plane diffraction peaks and characteristic adsorption peaks were obviously observed. At the same time, it was also found that WMACFs had favorable magnetic properties when the Fe3O4 content was above 1.5%. As a result, WMACFs could be a promising candidate for high efficiency, low cost, and convenient separation for the magnetic field.

  20. Fabrication of hydrophobic surface with hierarchical structure on Mg alloy and its corrosion resistance

    International Nuclear Information System (INIS)

    Wang Jun; Li Dandan; Liu Qi; Yin Xi; Zhang Ying; Jing Xiaoyan; Zhang Milin

    2010-01-01

    A hydrotalcite/hydromagnesite conversion coating with hierarchical structure has been fabricated on a Mg alloy substrate by in situ hydrothermal crystallization method. A MgO layer existing between the hydrotalcite/hydromagnesite film and the substrate was formed prior to the hydrotalcite/hydromagnesite film during the crystallization process. After surface treatment with silane coupling agent, the surface of conversion coating changes from hydrophilic to hydrophobic. Scanning electron microscopy (SEM) revealed that the silylated conversion coating with hierarchical structure maintains the original rough surface of which was composed of numerous micro-scale flakes and beautiful flower-like protrusions. Polarization measurements have shown that the hydrophobic conversion coating exhibited a low corrosion current density value of 0.432 μA/cm 2 , which means that the hydrophobic conversion coating can effectively protect Mg alloy from corrosion. Electrochemical impedance spectroscopy (EIS) showed that the impedance of the hydrophobic conversion coating was 9000 Ω. It means that the coating served as a passive layer with high charge transfer resistance.

  1. The hierarchical structure of childhood personality in five countries: continuity from early childhood to early adolescence.

    Science.gov (United States)

    Tackett, Jennifer L; Slobodskaya, Helena R; Mar, Raymond A; Deal, James; Halverson, Charles F; Baker, Spencer R; Pavlopoulos, Vassilis; Besevegis, Elias

    2012-08-01

    Childhood personality is a rapidly growing area of investigation within individual differences research. One understudied topic is the universality of the hierarchical structure of childhood personality. In the present investigation, parents rated the personality characteristics of 3,751 children from 5 countries and 4 age groups. The hierarchical structure of childhood personality was examined for 1-, 2-, 3-, 4-, and 5-factor models across country (Canada, China, Greece, Russia, and the United States) and age group (3-5, 6-8, 9-11, and 12-14 years of age). Many similarities were noted across both country and age. The Five-Factor Model was salient beginning in early childhood (ages 3-5). Deviations across groups and from adult findings are noted, including the prominent role of antagonism in childhood personality and the high covariation between Conscientiousness and intellect. Future directions, including the need for more explicit attempts to merge temperament and personality models, are discussed. © 2011 The Authors. Journal of Personality © 2011, Wiley Periodicals, Inc.

  2. Near-Infrared Trigged Stimulus-Responsive Photonic Crystals with Hierarchical Structures.

    Science.gov (United States)

    Lu, Tao; Pan, Hui; Ma, Jun; Li, Yao; Zhu, Shenmin; Zhang, Di

    2017-10-04

    Stimuli-responsive photonic crystals (PCs) trigged by light would provide a novel intuitive and quantitative method for noninvasive detection. Inspired by the flame-detecting aptitude of fire beetles and the hierarchical photonic structures of butterfly wings, we herein developed near-infrared stimuli-responsive PCs through coupling photothermal Fe 3 O 4 nanoparticles with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM), with hierarchical photonic structured butterfly wing scales as the template. The nanoparticles within 10 s transferred near-infrared radiation into heat that triggered the phase transition of PNIPAM; this almost immediately posed an anticipated effect on the PNIPAM refractive index and resulted in a composite spectrum change of ∼26 nm, leading to the direct visual readout. It is noteworthy that the whole process is durable and stable mainly owing to the chemical bonding formed between PNIPAM and the biotemplate. We envision that this biologically inspired approach could be utilized in a broad range of applications and would have a great impact on various monitoring processes and medical sensing.

  3. The contribution of reinforcement sensitivity to the personality-psychopathology hierarchical structure in childhood and adolescence.

    Science.gov (United States)

    Slobodskaya, Helena R

    2016-11-01

    This study examined the contribution of reinforcement sensitivity to the hierarchical structure of child personality and common psychopathology in community samples of parent reports of children aged 2-18 (N = 968) and self-reports of adolescents aged 10-18 (N = 1,543) using the Inventory of Child Individual Differences-Short version (ICID-S), the Strengths and Difficulties Questionnaire (SDQ), and the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ). A joint higher-order factor analysis of the ICID-S and SDQ scales suggested a 4-factor solution; congruence coefficients indicated replicability of the factors across the 2 samples at all levels of the personality-psychopathology hierarchy. The canonical correlation analyses indicated that reinforcement sensitivity and personality-psychopathology dimensions shared much of their variance. The main contribution of reinforcement sensitivity was through opposing effects of reward and punishment sensitivities. The superordinate factors Beta and Internalizing were best predicted by reinforcement sensitivity, followed by the Externalizing and Positive personality factors. These findings provide evidence for consistency of the hierarchical structure of personality and common psychopathology across informants and highlight the role of reinforcement systems in the development of normal and abnormal patterns of behavior and affect. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Hierarchically structured self-supported latex films for flexible and semi-transparent electronics

    International Nuclear Information System (INIS)

    Määttänen, Anni; Ihalainen, Petri; Törngren, Björn; Rosqvist, Emil; Pesonen, Markus; Peltonen, Jouko

    2016-01-01

    Graphical abstract: - Highlights: • Transparent self-supported latex films were fabricated by a peel-off process. • Various template substrates were used for creating e.g. hierarchically structured latex films. • Ultra-thin and semi-transparent conductive gold electrodes were evaporated on the latex films.Electrochemical experiments were carried out to verify the applicability of the electrodes. - Abstract: Different length scale alterations in topography, surface texture, and symmetry are known to evoke diverse cell behavior, including adhesion, orientation, motility, cytoskeletal condensation, and modulation of intracellular signaling pathways. In this work, self-supported latex films with well-defined isotropic/anisotropic surface features and hierarchical morphologies were fabricated by a peel-off process from different template surfaces. In addition, the latex films were used as substrates for evaporated ultrathin gold films with nominal thicknesses of 10 and 20 nm. Optical properties and topography of the samples were characterized using UV–vis spectroscopy and Atomic Force Microscopy (AFM) measurements, respectively. The latex films showed high-level transmittance of visible light, enabling the fabrication of semi-transparent gold electrodes. Electrochemical impedance spectroscopy (EIS) measurements were carried out for a number of days to investigate the long-term stability of the electrodes. The effect of 1-octadecanethiol (ODT) and HS(CH_2)_1_1OH (MuOH) thiolation and protein (human serum albumin, HSA) adsorption on the impedance and capacitance was studied. In addition, cyclic voltammetry (CV) measurements were carried out to determine active medicinal components, i.e., caffeic acid with interesting biological activities and poorly water-soluble anti-inflammatory drug, piroxicam. The results show that the fabrication procedure presented in this study enables the formation of platforms with hierarchical morphologies for multimodal (optical and

  5. Hierarchically structured self-supported latex films for flexible and semi-transparent electronics

    Energy Technology Data Exchange (ETDEWEB)

    Määttänen, Anni, E-mail: anni.maattanen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Ihalainen, Petri, E-mail: petri.ihalainen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Törngren, Björn, E-mail: bjorn.torngren@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Rosqvist, Emil, E-mail: emil.rosqvist@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Pesonen, Markus, E-mail: markus.pesonen@abo.fi [Physics, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Peltonen, Jouko, E-mail: jouko.peltonen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland)

    2016-02-28

    Graphical abstract: - Highlights: • Transparent self-supported latex films were fabricated by a peel-off process. • Various template substrates were used for creating e.g. hierarchically structured latex films. • Ultra-thin and semi-transparent conductive gold electrodes were evaporated on the latex films.Electrochemical experiments were carried out to verify the applicability of the electrodes. - Abstract: Different length scale alterations in topography, surface texture, and symmetry are known to evoke diverse cell behavior, including adhesion, orientation, motility, cytoskeletal condensation, and modulation of intracellular signaling pathways. In this work, self-supported latex films with well-defined isotropic/anisotropic surface features and hierarchical morphologies were fabricated by a peel-off process from different template surfaces. In addition, the latex films were used as substrates for evaporated ultrathin gold films with nominal thicknesses of 10 and 20 nm. Optical properties and topography of the samples were characterized using UV–vis spectroscopy and Atomic Force Microscopy (AFM) measurements, respectively. The latex films showed high-level transmittance of visible light, enabling the fabrication of semi-transparent gold electrodes. Electrochemical impedance spectroscopy (EIS) measurements were carried out for a number of days to investigate the long-term stability of the electrodes. The effect of 1-octadecanethiol (ODT) and HS(CH{sub 2}){sub 11}OH (MuOH) thiolation and protein (human serum albumin, HSA) adsorption on the impedance and capacitance was studied. In addition, cyclic voltammetry (CV) measurements were carried out to determine active medicinal components, i.e., caffeic acid with interesting biological activities and poorly water-soluble anti-inflammatory drug, piroxicam. The results show that the fabrication procedure presented in this study enables the formation of platforms with hierarchical morphologies for multimodal

  6. Hierarchical structure of genetic distances: Effects of matrix size, spatial distribution and correlation structure among gene frequencies

    Directory of Open Access Journals (Sweden)

    Flávia Melo Rodrigues

    1998-06-01

    Full Text Available Geographic structure of genetic distances among local populations within species, based on allozyme data, has usually been evaluated by estimating genetic distances clustered with hierarchical algorithms, such as the unweighted pair-group method by arithmetic averages (UPGMA. The distortion produced in the clustering process is estimated by the cophenetic correlation coefficient. This hierarchical approach, however, can fail to produce an accurate representation of genetic distances among populations in a low dimensional space, especially when continuous (clinal or reticulate patterns of variation exist. In the present study, we analyzed 50 genetic distance matrices from the literature, for animal taxa ranging from Platyhelminthes to Mammalia, in order to determine in which situations the UPGMA is useful to understand patterns of genetic variation among populations. The cophenetic correlation coefficients, derived from UPGMA based on three types of genetic distance coefficients, were correlated with other parameters of each matrix, including number of populations, loci, alleles, maximum geographic distance among populations, relative magnitude of the first eigenvalue of covariance matrix among alleles and logarithm of body size. Most cophenetic correlations were higher than 0.80, and the highest values appeared for Nei's and Rogers' genetic distances. The relationship between cophenetic correlation coefficients and the other parameters analyzed was defined by an "envelope space", forming triangles in which higher values of cophenetic correlations are found for higher values in the parameters, though low values do not necessarily correspond to high cophenetic correlations. We concluded that UPGMA is useful to describe genetic distances based on large distance matrices (both in terms of elevated number of populations or alleles, when dimensionality of the system is low (matrices with large first eigenvalues or when local populations are separated

  7. Enhanced photocatalytic properties of hierarchical three-dimensional TiO{sub 2} grown on femtosecond laser structured titanium substrate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ting, E-mail: huangting@bjut.edu.cn; Lu, Jinlong; Xiao, Rongshi; Wu, Qiang; Yang, Wuxiong

    2017-05-01

    Highlights: • The hierarchical 3D-TiO{sub 2} is fabricated on femtosecond laser structured Ti substrate. • The formation mechanism of hierarchical 3D-TiO{sub 2} is proposed. • The structure-induced improvement of photocatalytic activity is reported. - Abstract: Three-dimensional micro-/nanostructured TiO{sub 2} (3D-TiO{sub 2}) fabricated on titanium substrate effectively improves its performance in photocatalysis, dye-sensitized solar cell and lithium-ion battery applications. In this study, the hierarchical 3D-TiO{sub 2} with anatase phase directly grown on femtosecond laser structured titanium substrate is reported. First, the primary columnar arrays were fabricated on the surface of titanium substrate by femtosecond laser structuring. Next, the secondary nano-sheet substructures were grown on the primary columnar arrays by NaOH hydrothermal treatment. Followed by ion-exchange process in HCl and annealing in the air, the hierarchical anatase 3D-TiO{sub 2} was achieved. The hierarchical anatase 3D-TiO{sub 2} exhibited enhanced performances in light harvesting and absorption ability compared to that of nano-sheet TiO{sub 2} grown on flat titanium surface without femtosecond laser structuring. The photocatalytic degradation of methyl orange reveals that photocatalytic efficiency of the hierarchical anatase 3D-TiO{sub 2} was improved by a maximum of 57% compared to that of nano-sheet TiO{sub 2} (55% vs 35%). Meanwhile, the hierarchical anatase 3D-TiO{sub 2} remained mechanically stable and constant in consecutive degradation cycles, which promises significance in practical application.

  8. Synthesis of hierarchical porous materials with ZSM-5 structures via template-free sol–gel method

    Directory of Open Access Journals (Sweden)

    Wei Han et al

    2007-01-01

    Full Text Available Interests are focused on preparation of hierarchical porous materials with zeolite structures by using soft or rigid templates in order to solve diffusion and mass transfer limitations resulting from the small pore sizes of zeolites. Here we develop a convenient template-free sol–gel method to synthesize hierarchical porous materials with ZSM-5 structures. This method involves hydrothermal recrystallization of the xerogel converted from uniform ZSM-5 sol by a vacuum drying process. By utilizing this method we can manipulate the size of zeolite nanocrystals as building units of porous structures based on controlling temperature of recrystallization, consequently obtain hierarchical porous materials with different intercrystalline pore sizes and ZSM-5 structures.

  9. A conceptual modeling framework for discrete event simulation using hierarchical control structures

    Science.gov (United States)

    Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.

    2015-01-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940

  10. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition

    International Nuclear Information System (INIS)

    Hang Tao; Hu Anmin; Ling Huiqin; Li Ming; Mao Dali

    2010-01-01

    Super-hydrophobic nickel films were prepared by a simple and low cost electrodepositing method. The surface morphologies of the films characterized by scanning electronic microscope exhibit hierarchical structure with micro-nanocones array, which can be responsible for their super-hydrophobic characteristic (water contact angle over 150 o ) without chemical modification. The wettability of the film can be varied from super-hydrophobic (water contact angle 154 o ) to relatively hydrophilic (water contact angle 87 o ) by controlling the size of the micro-nanocones. The mechanism of the hydrophobic characteristic of nickel films with this unique structure was illustrated by several models. Such micro-nanostructure and its special wettability are expected to be applied in the practical industry.

  11. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting

    Science.gov (United States)

    Migliaccio, Christopher P.; Lazarus, Nathan

    2015-10-01

    Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.

  12. A conceptual modeling framework for discrete event simulation using hierarchical control structures.

    Science.gov (United States)

    Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D

    2015-08-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.

  13. The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors

    Science.gov (United States)

    Zheng, Kaiwen; Li, Yuanyuan; Zhu, Ming; Yu, Xi; Zhang, Mengyan; Shi, Ling; Cheng, Jue

    2017-10-01

    A hierarchical porous water hyacinth-derived carbon (WHC) is fabricated by pre-carbonization and KOH activation for supercapacitors. The physicochemical properties of WHC are researched by scanning electron microscopy (SEM), N2 adsorption-desorption measurements, X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results indicate that WHC exhibits hierarchical porous structure and high specific surface area of 2276 m2/g. And the electrochemical properties of WHC are studied by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) tests. In a three-electrode test system, WHC shows considerable specific capacitance of 344.9 F/g at a current density of 0.5 A/g, good rate performance with 225.8 F/g even at a current density of 30 A/g, and good cycle stability with 95% of the capacitance retention after 10000 cycles of charge-discharge at a current density of 5 A/g. Moreover, WHC cell delivers an energy density of 23.8 Wh/kg at 0.5 A/g and a power density of 15.7 kW/kg at 10 A/g. Thus, using water hyacinth as carbon source to fabricate supercapacitors electrodes is a promising approach for developing inexpensive, sustainable and high-performance carbon materials. Additionally, this study supports the sustainable development and the control of biological invasion.

  14. Power flow analysis for islanded microgrid in hierarchical structure of control system using optimal control theory

    Directory of Open Access Journals (Sweden)

    Thang Diep Thanh

    2017-12-01

    Full Text Available In environmental uncertainties, the power flow problem in islanded microgrid (MG becomes complex and non-trivial. The optimal power flow (OPL problem is described in this paper by using the energy balance between the power generation and load demand. The paper also presents the hierarchical control structure which consists of primary, secondary, tertiary, and emergency controls. Clearly, optimal power flow (OPL which implements a distributed tertiary control in hierarchical control. MG consists of diesel engine generator (DEG, wind turbine generator (WTG, and photovoltaic (PV power. In the control system considered, operation planning is realized based on profiles such that the MG, load, wind and photovoltaic power must be forecasted in short-period, meanwhile the dispatch source (i.e., DEG needs to be scheduled. The aim of the control problem is to find the dispatch output power by minimizing the total cost of energy that leads to the Hamilton-Jacobi-Bellman equation. Experimental results are presented, showing the effectiveness of optimal control such that the generation allows demand profile.

  15. Photoelectrochemical properties of the TiO2-ZnO nanorod hierarchical structure prepared by hydrothermal process

    Directory of Open Access Journals (Sweden)

    Bao SUN

    2018-02-01

    Full Text Available In order to increase the transport channels of the photogenerated electrons and enhance the photosensitizer loading ability of the electrode, a new TiO2-ZnO nanorod hierarchical structure is prepared through two-step hydrothermal process. First, TiO2 nanorod array is grown on the FTO conductive glass substrate by hydrothermal proess. Then, ZnO sol is coated onto the TiO2 nanorods through dip-coating method and inverted to ZnO seed layer by sintering. Finally, the secondary ZnO nanorods are grown onto the TiO2 nanorods by the sencond hydrothermal method to form the designed TiO2-ZnO nanorod hierarchical structure. A spin-coating assisted successive ionic layer reaction method (SC-SILR is used to deposit the CdS nanocrystals into the TiO2 nanorod array and the TiO2-ZnO nanorod hierarchical structure is used to form the CdS/TiO2 and CdS/TiO2-ZnO nanocomposite films. Different methods, such as SEM, TEM, XRD, UV-Vis and transient photocurrent, are employed to characterize and measure the morphologies, structures, light absorption and photoelectric conversion performance of all the samples, respectively. The results indicate that, compared with the pure TiO2 nanorod array, the TiO2-ZnO nanorod hierarchical structure can load more CdS photosensitizer. The light absorption properties and transient photocurrent performance of the CdS/TiO2-ZnO nanorod hierarchical structure composite film are evidently superior to that of the CdS/TiO2 nanocomposite films. The excellent photoelctrochemical performance of theTiO2-ZnO hierarchical structure reveales its application prospect in photoanode material of the solar cells.

  16. Intrinsic hierarchical structural imperfections in a natural ceramic of bivalve shell with distinctly graded properties.

    Science.gov (United States)

    Jiao, Da; Liu, Zengqian; Zhang, Zhenjun; Zhang, Zhefeng

    2015-07-22

    Despite the extensive investigation on the structure of natural biological materials, insufficient attention has been paid to the structural imperfections by which the mechanical properties of synthetic materials are dominated. In this study, the structure of bivalve Saxidomus purpuratus shell has been systematically characterized quantitatively on multiple length scales from millimeter to sub-nanometer. It is revealed that hierarchical imperfections are intrinsically involved in the crossed-lamellar structure of the shell despite its periodically packed platelets. In particular, various favorable characters which are always pursued in synthetic materials, e.g. nanotwins and low-angle misorientations, have been incorporated herein. The possible contributions of these imperfections to mechanical properties are further discussed. It is suggested that the imperfections may serve as structural adaptations, rather than detrimental defects in the real sense, to help improve the mechanical properties of natural biological materials. This study may aid in understanding the optimizing strategies of structure and properties designed by nature, and accordingly, provide inspiration for the design of synthetic materials.

  17. Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries

    Science.gov (United States)

    Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan

    2017-05-01

    Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.

  18. Hierarchical assembly strategy and multiscale structural origin of exceptional mechanical performance in nacre

    Science.gov (United States)

    Huang, Zaiwang

    Nacre (mother of pearl) is a self-assembled hierarchical nanocomposite in possession of exquisite multiscale architecture and exceptional mechanical properties. Previous work has shown that the highly-ordered brick-mortar-like structure in nacre is assembled via epitaxial growth and the aragonite platelets are pure single-crystals. Our results challenge this conclusion and propose that nacre's individual aragonite platelets are constructed with highly-aligned aragonite nanoparticles mediated by screw dislocation and amorphous aggregation. The underlying physics mechanism why the aragonite nanoparticles choose highly-oriented attachment as its crystallization pathway is rationalized in terms of thermodynamics. The aragonite nanoparticle order-disorder transformation can be triggered by high temperature and mechanical deformation, which in turn confirms that the aragonite nanoparticles are basic building blocks for aragonite platelets. Particularly fascinating is the fracture toughness enhancement of nacre through exquisitely collecting mechanically inferior calcium carbonate (CaCO3) and biomolecules. The sandwich-like microarchitecture with a geometrically staggered arrangement can induce crack deflection along its biopolymer interface, thus significantly enhancing nacre's fracture toughness. Our new findings ambiguously demonstrate that, aside from crack deflection, the advancing crack can invade aragonite platelet, leaving a zigzag crack propagation pathway. These unexpected experimental observations disclose, for the first time, the inevitable structural role of aragonite platelets in enhancing nacre's fracture toughness. Simultaneously, the findings that the crack propagates in a zigzag manner within individual aragonite platelets overturn the previously well-established wisdom that considers aragonite platelets as brittle single-crystals. Moreover, we investigated the dynamical mechanical response of nacre under unixial compression. Our results show that the

  19. Adsorption-Induced Deformation of Hierarchically Structured Mesoporous Silica-Effect of Pore-Level Anisotropy.

    Science.gov (United States)

    Balzer, Christian; Waag, Anna M; Gehret, Stefan; Reichenauer, Gudrun; Putz, Florian; Hüsing, Nicola; Paris, Oskar; Bernstein, Noam; Gor, Gennady Y; Neimark, Alexander V

    2017-06-06

    The goal of this work is to understand adsorption-induced deformation of hierarchically structured porous silica exhibiting well-defined cylindrical mesopores. For this purpose, we performed an in situ dilatometry measurement on a calcined and sintered monolithic silica sample during the adsorption of N 2 at 77 K. To analyze the experimental data, we extended the adsorption stress model to account for the anisotropy of cylindrical mesopores, i.e., we explicitly derived the adsorption stress tensor components in the axial and radial direction of the pore. For quantitative predictions of stresses and strains, we applied the theoretical framework of Derjaguin, Broekhoff, and de Boer for adsorption in mesopores and two mechanical models of silica rods with axially aligned pore channels: an idealized cylindrical tube model, which can be described analytically, and an ordered hexagonal array of cylindrical mesopores, whose mechanical response to adsorption stress was evaluated by 3D finite element calculations. The adsorption-induced strains predicted by both mechanical models are in good quantitative agreement making the cylindrical tube the preferable model for adsorption-induced strains due to its simple analytical nature. The theoretical results are compared with the in situ dilatometry data on a hierarchically structured silica monolith composed by a network of mesoporous struts of MCM-41 type morphology. Analyzing the experimental adsorption and strain data with the proposed theoretical framework, we find the adsorption-induced deformation of the monolithic sample being reasonably described by a superposition of axial and radial strains calculated on the mesopore level. The structural and mechanical parameters obtained from the model are in good agreement with expectations from independent measurements and literature, respectively.

  20. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces

    International Nuclear Information System (INIS)

    Katz, J. Lawrence; Misra, Anil; Spencer, Paulette; Wang, Yong; Bumrerraj, Sauwanan; Nomura, Tsutomu; Eppell, Steven J.; Tabib-Azar, Massood

    2007-01-01

    This paper presents a review plus new data that describes the role hierarchical nanostructural properties play in developing an understanding of the effect of scale on the material properties (chemical, elastic and electrical) of calcified tissues as well as the interfaces that form between such tissues and biomaterials. Both nanostructural and microstructural properties will be considered starting with the size and shape of the apatitic mineralites in both young and mature bovine bone. Microstructural properties for human dentin and cortical and trabecular bone will be considered. These separate sets of data will be combined mathematically to advance the effects of scale on the modeling of these tissues and the tissue/biomaterial interfaces as hierarchical material/structural composites. Interfacial structure and properties to be considered in greatest detail will be that of the dentin/adhesive (d/a) interface, which presents a clear example of examining all three material properties, (chemical, elastic and electrical). In this case, finite element modeling (FEA) was based on the actual measured values of the structure and elastic properties of the materials comprising the d/a interface; this combination provides insight into factors and mechanisms that contribute to premature failure of dental composite fillings. At present, there are more elastic property data obtained by microstructural measurements, especially high frequency ultrasonic wave propagation (UWP) and scanning acoustic microscopy (SAM) techniques. However, atomic force microscopy (AFM) and nanoindentation (NI) of cortical and trabecular bone and the dentin-enamel junction (DEJ) among others have become available allowing correlation of the nanostructural level measurements with those made on the microstructural level

  1. Hierarchical periodic micro/nano-structures on nitinol and their influence on oriented endothelialization and anti-thrombosis

    International Nuclear Information System (INIS)

    Nozaki, Kosuke; Shinonaga, Togo; Ebe, Noriko; Horiuchi, Naohiro; Nakamura, Miho; Tsutsumi, Yusuke; Hanawa, Takao; Tsukamoto, Masahiro; Yamashita, Kimihiro; Nagai, Akiko

    2015-01-01

    The applications of hierarchical micro/nano-structures, which possess properties of two-scale roughness, have been studied in various fields. In this study, hierarchical periodic micro/nano-structures were fabricated on nitinol, an equiatomic Ni–Ti alloy, using a femtosecond laser for the surface modification of intravascular stents. By controlling the laser fluence, two types of surfaces were developed: periodic nano- and micro/nano-structures. Evaluation of water contact angles indicated that the nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. Endothelial cells aligned along the nano-structures on both surfaces, whereas platelets failed to adhere to the micro/nano-surface. Decorrelation between the responses of the two cell types and the results of water contact angle analysis were a result of the pinning effect. This is the first study to show the applicability of hierarchical periodic micro/nano-structures for surface modification of nitinol. - Highlights: • Hierarchical micro/nano-structures were created on nitinol using a femtosecond laser. • The nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. • Endothelial cells aligned along the nano-structures • Platelets failed to adhere to the micro/nano-surface

  2. Hierarchical periodic micro/nano-structures on nitinol and their influence on oriented endothelialization and anti-thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Kosuke [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Shinonaga, Togo [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ebe, Noriko; Horiuchi, Naohiro; Nakamura, Miho; Tsutsumi, Yusuke; Hanawa, Takao [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Tsukamoto, Masahiro [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Yamashita, Kimihiro [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Nagai, Akiko, E-mail: nag-bcr@tmd.ac.jp [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan)

    2015-12-01

    The applications of hierarchical micro/nano-structures, which possess properties of two-scale roughness, have been studied in various fields. In this study, hierarchical periodic micro/nano-structures were fabricated on nitinol, an equiatomic Ni–Ti alloy, using a femtosecond laser for the surface modification of intravascular stents. By controlling the laser fluence, two types of surfaces were developed: periodic nano- and micro/nano-structures. Evaluation of water contact angles indicated that the nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. Endothelial cells aligned along the nano-structures on both surfaces, whereas platelets failed to adhere to the micro/nano-surface. Decorrelation between the responses of the two cell types and the results of water contact angle analysis were a result of the pinning effect. This is the first study to show the applicability of hierarchical periodic micro/nano-structures for surface modification of nitinol. - Highlights: • Hierarchical micro/nano-structures were created on nitinol using a femtosecond laser. • The nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. • Endothelial cells aligned along the nano-structures • Platelets failed to adhere to the micro/nano-surface.

  3. A Persistent Structured Hierarchical Overlay Network to Counter Intentional Churn Attack

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2016-01-01

    Full Text Available The increased use of structured overlay network for a variety of applications has attracted a lot of attention from both research community and attackers. However, the structural constraints, open nature (anybody can join and anybody may leave, and unreliability of its participant nodes significantly affect the performance of these applications and make it vulnerable to a variety of attacks such as eclipse, Sybil, and churn. One attack to compromise the service availability in overlay network is intentional churn (join/leave attack, where a large number of malicious users will join and leave the overlay network so frequently that the entire structure collapses and becomes unavailable. The focus of this paper is to provide a new robust, efficient, and scalable hierarchical overlay architecture that will counter these attacks by providing a structure that can accommodate the fleeting behaviour of nodes without causing much structural inconsistencies. The performance evaluation showed that the proposed architecture has more failure resilience and self-organization as compared to chord based architecture. Experimental results have demonstrated that the effect of failures on an overlay is proportional to the size of failure.

  4. A hierarchical model for structure learning based on the physiological characteristics of neurons

    Institute of Scientific and Technical Information of China (English)

    WEI Hui

    2007-01-01

    Almost all applications of Artificial Neural Networks (ANNs) depend mainly on their memory ability.The characteristics of typical ANN models are fixed connections,with evolved weights,globalized representations,and globalized optimizations,all based on a mathematical approach.This makes those models to be deficient in robustness,efficiency of learning,capacity,anti-jamming between training sets,and correlativity of samples,etc.In this paper,we attempt to address these problems by adopting the characteristics of biological neurons in morphology and signal processing.A hierarchical neural network was designed and realized to implement structure learning and representations based on connected structures.The basic characteristics of this model are localized and random connections,field limitations of neuron fan-in and fan-out,dynamic behavior of neurons,and samples represented through different sub-circuits of neurons specialized into different response patterns.At the end of this paper,some important aspects of error correction,capacity,learning efficiency,and soundness of structural representation are analyzed theoretically.This paper has demonstrated the feasibility and advantages of structure learning and representation.This model can serve as a fundamental element of cognitive systems such as perception and associative memory.Key-words structure learning,representation,associative memory,computational neuroscience

  5. Estimating the Term Structure With a Semiparametric Bayesian Hierarchical Model: An Application to Corporate Bonds1

    Science.gov (United States)

    Cruz-Marcelo, Alejandro; Ensor, Katherine B.; Rosner, Gary L.

    2011-01-01

    The term structure of interest rates is used to price defaultable bonds and credit derivatives, as well as to infer the quality of bonds for risk management purposes. We introduce a model that jointly estimates term structures by means of a Bayesian hierarchical model with a prior probability model based on Dirichlet process mixtures. The modeling methodology borrows strength across term structures for purposes of estimation. The main advantage of our framework is its ability to produce reliable estimators at the company level even when there are only a few bonds per company. After describing the proposed model, we discuss an empirical application in which the term structure of 197 individual companies is estimated. The sample of 197 consists of 143 companies with only one or two bonds. In-sample and out-of-sample tests are used to quantify the improvement in accuracy that results from approximating the term structure of corporate bonds with estimators by company rather than by credit rating, the latter being a popular choice in the financial literature. A complete description of a Markov chain Monte Carlo (MCMC) scheme for the proposed model is available as Supplementary Material. PMID:21765566

  6. Dominance and population structure of freshwater crabs ...

    African Journals Online (AJOL)

    To understand how this would affect wild populations we also investigated the population structure (sex ratio, size distribution, density and population growth) of a wild population. Using Landau's index of linearity (h) we found three captive groups of P. perlatus to show moderate linearity, i.e. h = 0.9; 0.81 and 0.83.

  7. Hierarchically Porous Carbon Materials for CO 2 Capture: The Role of Pore Structure

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Luis [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Barpaga, Dushyant [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Zheng, Jian [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Sabale, Sandip [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Patel, Rajankumar L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Zhang, Ji-Guang [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; McGrail, B. Peter [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Motkuri, Radha Kishan [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States

    2018-01-17

    With advances in porous carbon synthesis techniques, hierarchically porous carbon (HPC) materials are being utilized as relatively new porous carbon sorbents for CO2 capture applications. These HPC materials were used as a platform to prepare samples with differing textural properties and morphologies to elucidate structure-property relationships. It was found that high microporous content, rather than overall surface area was of primary importance for predicting good CO2 capture performance. Two HPC materials were analyzed, each with near identical high surface area (~2700 m2/g) and colossally high pore volume (~10 cm3/g), but with different microporous content and pore size distributions, which led to dramatically different CO2 capture performance. Overall, large pore volumes obtained from distinct mesopores were found to significantly impact adsorption performance. From these results, an optimized HPC material was synthesized that achieved a high CO2 capacity of ~3.7 mmol/g at 25°C and 1 bar.

  8. Functional Biomass Carbons with Hierarchical Porous Structure for Supercapacitor Electrode Materials

    International Nuclear Information System (INIS)

    Chen, Hao; Liu, Duo; Shen, Zhehong; Bao, Binfu; Zhao, Shuyan; Wu, Limin

    2015-01-01

    Highlights: • We successfully prepared bamboo-derived porous carbon with B and N co-doping. • This novel carbon exhibits significantly enhanced specific capacitance and energy density. • The highest specific capacitance exceeds those of most similar carbon materials. • Asymmetric supercapacitor based on this carbon shows satisfactory capacitive performance. - Abstract: This paper presents nitrogen and boron co-doped KOH-activated bamboo-derived carbon as a porous biomass carbon with utility as a supercapacitor electrode material. Owing to the high electrochemical activity promoted by the hierarchical porous structure and further endowed by boron and nitrogen co-doping, electrodes based on the as-obtained material exhibit significantly enhanced specific capacitance and energy density relative to those based on most similar materials. An asymmetric supercapacitor based on this novel carbon material demonstrated satisfactory energy density and electrochemical cycling stability.

  9. Hierarchically structured exergetic and exergoeconomic analysis and evaluation of energy conversion processes

    International Nuclear Information System (INIS)

    Hebecker, Dietrich; Bittrich, Petra; Riedl, Karsten

    2005-01-01

    Evaluation of the efficiency and economic benefit of energy conversion processes and technologies requires a scientifically based analysis. The hierarchically structured exergetic analysis provides a detailed characterization of complex technical systems. By defining corresponding evaluation coefficients, the exergetic efficiency can be assessed for units within the whole system. Based on this exergetic analysis, a thermoeconomic evaluation method is developed. A cost function is defined for all units, subsystems and the total plant, so that the cost flow in the system can be calculated. Three dimensionless coefficients, the Pauer factor, the loss coefficient and the cost factor, enable pinpointing cost intensive process units, allocating cost in cases of co-production and gaining insight for future design improvements. The methodology is demonstrated by a biomass gasification plant producing electricity, heat and cold

  10. Effects of a GPC-PID control strategy with hierarchical structure for a cooling coil unit

    International Nuclear Information System (INIS)

    Xu Min; Li Shaoyuan; Cai Wenjian; Lu Lu

    2006-01-01

    This paper presents a GPC-PID control strategy for a cooling-coil unit in heating, ventilation and air conditioning systems. By analysis of the cooling towers and chillers, different models in the occupied period are considered in each operating condition. Because of the complication of components, well tuned PID controllers are unsatisfied, and the results are poor over a wide range of operation conditions. To solve this problem, a GPC-PID controller with hierarchical structure is proposed based on minimizing the generalized predictive control criterion to tune conventional PID controller parameters. Simulation and experiments show that the proposed controller is able to deal with a wide range of operating conditions and to achieve better performance than conventional methods

  11. Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids

    International Nuclear Information System (INIS)

    Wang Shutao; Song Yanlin; Jiang Lei

    2007-01-01

    Inspired by the lotus effect, we fabricate new microscale and nanoscale hierarchical structured copper mesh films by a simple electrochemical deposition. After modification of the long-chain fatty acid monolayer, these films show superhydrophobic and superoleophilic properties, which could be used for the effective separation of oil and water. The length of the fatty acid chain strongly influences the surface wettability of as-prepared films. It is confirmed that the cooperative effect of the hierarchical structure of the copper film and the nature of the long-chain fatty acid contribute to this unique surface wettability

  12. Hierarchically porous Ni monolith@branch-structured NiCo2O4 for high energy density supercapacitors

    Directory of Open Access Journals (Sweden)

    Mengjie Xu

    2016-06-01

    Full Text Available A variety of NiCo2O4 nanostrucutures ranging from nanowire to nanoplate and branched structures were successfully prepared via a simple hydrothermal process. The experimental results show that NiCo2O4 with branched structures possesses the best overall electrochemical performance. The improvement of energy density was explored in terms of hierarchically three-dimensional (3D metal substrates and a high specific area capacitance, and area energy density is obtained with hierarchically porous Ni monolith synthesized through a controlled combustion procedure.

  13. AFM study of excimer laser patterning of block-copolymer: Creation of ordered hierarchical, hybrid, or recessed structures

    International Nuclear Information System (INIS)

    Švanda, Jan; Siegel, Jakub; Švorčík, Vaclav; Lyutakov, Oleksiy

    2016-01-01

    Highlights: • Combination of bottom-up (BCP separation) and top-down (laser patterning) technologies allows obtaining hierarchical structures. • Surface morphologies were determined by the order of patterning steps (laser modification, annealing, surface reconstruction). • Tuning the order of steps enables the reorientation of BCP domain at large scale, fabrication of hierarchical, hybrid or recessed structures. • The obtained structures can find potential applications in nanotechnology, plasmonics, information storage, sensors and smart surfaces. - Abstract: We report fabrication of the varied range of hierarchical structures by combining bottom-up self-assembly of block copolymer poly(styrene-block-vinylpyridine) (PS-b-P4VP) with top-down excimer laser patterning method. Different procedures were tested, where laser treatment was applied before phase separation and after phase separation or phase separation and surface reconstruction. Laser treatment was performed using either polarized laser light with the aim to create periodical pattern on polymer surface or non-polarized light for preferential removing of polystyrene (PS) part from PS-b-P4VP. Additionally, dye was introduced into one part of block copolymer (P4VP) with the aim to modify its response to laser light. Resulting structures were analyzed by XPS, UV–vis and AFM techniques. Application of polarized laser light leads to creation of structures with hierarchical, recessed or hybrid geometries. Non-polarized laser beam allows pronouncing the block copolymer phase separated structure. Tuning the order of steps or individual step conditions enables the efficient reorientation of block-copolymer domain at large scale, fabrication of hierarchical, hybrid or recessed structures. The obtained structures can find potential applications in nanotechnology, photonics, plasmonics, information storage, optical devices, sensors and smart surfaces.

  14. Au functionalized ZnO rose-like hierarchical structures and their enhanced NO2 sensing performance

    Science.gov (United States)

    Shingange, K.; Swart, H. C.; Mhlongo, G. H.

    2018-04-01

    Herein, we present ZnO rose-like hierarchical nanostructures employed as support to Au nanoparticles to produce Au functionalized three dimensional (3D) ZnO hierarchical nanostructures (Au/ZnO) for NO2 detection using a microwave-assisted method. Comparative analysis of NO2 sensing performance between the pristine ZnO and Au/ZnO rose-like structures at 300 °C revealed improved NO2 response and rapid response-recovery times with Au incorporation owing to a combination of high surface accessibility induced by hierarchical nanostructure design and catalytic activity of the small Au nanoparticles. Structural and optical analyses acquired from X-ray diffraction, scanning electron microscopy, transmission electron microscope and photoluminescence spectroscopy were also performed.

  15. From Nano to Macro: Studying the Hierarchical Structure of the Corneal Extracellular Matrix

    Science.gov (United States)

    Quantock, Andrew J.; Winkler, Moritz; Parfitt, Geraint J.; Young, Robert D.; Brown, Donald J.; Boote, Craig; Jester, James V.

    2014-01-01

    In this review, we discuss current methods for studying ocular extracellular matrix (ECM) assembly from the ‘nano’ to the ‘macro’ levels of hierarchical organization. Since collagen is the major structural protein in the eye, providing mechanical strength and controlling ocular shape, the methods presented focus on understanding the molecular assembly of collagen at the nanometer level using x-ray scattering through to the millimeter to centimeter level using nonlinear optical (NLO) imaging of second harmonic generated (SHG) signals. Three-dimensional analysis of ECM structure is also discussed, including electron tomography, serial block face scanning electron microscopy (SBF-SEM) and digital image reconstruction. Techniques to detect non-collagenous structural components of the ECM are also presented, and these include immunoelectron microscopy and staining with cationic dyes. Together, these various approaches are providing new insights into the structural blueprint of the ocular ECM, and in particular that of the cornea, which impacts upon our current understanding of the control of corneal shape, pathogenic mechanisms underlying ectatic disorders of the cornea and the potential for corneal tissue engineering. PMID:25819457

  16. Shallow Population Genetic Structures of Thread-sail Filefish (Stephanolepis cirrhifer) Populations from Korean Coastal Waters.

    Science.gov (United States)

    Yoon, M; Park, W; Nam, Y K; Kim, D S

    2012-02-01

    Genetic diversities, population genetic structures and demographic histories of the thread-sail filefish Stephanolepis cirrhifer were investigated by nucleotide sequencing of 336 base pairs of the mitochondrial DNA (mtDNA) control region in 111 individuals collected from six populations in Korean coastal waters. A total of 70 haplotypes were defined by 58 variable nucleotide sites. The neighbor-joining tree of the 70 haplotypes was shallow and did not provide evidence of geographical associations. Expansion of S. cirrhifer populations began approximate 51,000 to 102,000 years before present, correlating with the period of sea level rise since the late Pleistocene glacial maximum. High levels of haplotype diversities (0.974±0.029 to 1.000±0.076) and nucleotide diversities (0.014 to 0.019), and low levels of genetic differentiation among populations inferred from pairwise population F ST values (-0.007 to 0.107), support an expansion of the S. cirrhifer population. Hierarchical analysis of molecular variance (AMOVA) revealed weak but significant genetic structures among three groups (F CT = 0.028, p<0.05), and no genetic variation within groups (0.53%; F SC = 0.005, p = 0.23). These results may help establish appropriate fishery management strategies for stocks of S. cirrhifer and related species.

  17. Shallow Population Genetic Structures of Thread-sail Filefish ( Populations from Korean Coastal Waters

    Directory of Open Access Journals (Sweden)

    M. Yoon

    2012-02-01

    Full Text Available Genetic diversities, population genetic structures and demographic histories of the thread-sail filefish Stephanolepis cirrhifer were investigated by nucleotide sequencing of 336 base pairs of the mitochondrial DNA (mtDNA control region in 111 individuals collected from six populations in Korean coastal waters. A total of 70 haplotypes were defined by 58 variable nucleotide sites. The neighbor-joining tree of the 70 haplotypes was shallow and did not provide evidence of geographical associations. Expansion of S. cirrhifer populations began approximate 51,000 to 102,000 years before present, correlating with the period of sea level rise since the late Pleistocene glacial maximum. High levels of haplotype diversities (0.974±0.029 to 1.000±0.076 and nucleotide diversities (0.014 to 0.019, and low levels of genetic differentiation among populations inferred from pairwise population FST values (−0.007 to 0.107, support an expansion of the S. cirrhifer population. Hierarchical analysis of molecular variance (AMOVA revealed weak but significant genetic structures among three groups (FCT = 0.028, p<0.05, and no genetic variation within groups (0.53%; FSC = 0.005, p = 0.23. These results may help establish appropriate fishery management strategies for stocks of S. cirrhifer and related species.

  18. Hierarchical genetic structure of the introduced wasp Vespula germanica in Australia.

    Science.gov (United States)

    Goodisman, M A; Matthews, R W; Crozier, R H

    2001-06-01

    The wasp Vespula germanica is a highly successful invasive pest. This study examined the population genetic structure of V. germanica in its introduced range in Australia. We sampled 1320 workers and 376 males from 141 nests obtained from three widely separated geographical areas on the Australian mainland and one on the island of Tasmania. The genotypes of all wasps were assayed at three polymorphic DNA microsatellite markers. Our analyses uncovered significant allelic differentiation among all four V. germanica populations. Pairwise estimates of genetic divergence between populations agreed with the results of a model-based clustering algorithm which indicated that the Tasmanian population was particularly distinct from the other populations. Within-population analyses revealed that genetic similarity declined with spatial distance, indicating that wasps from nests separated by more than approximately 25 km belonged to separate mating pools. We suggest that the observed genetic patterns resulted from frequent bottlenecks experienced by the V. germanica populations during their colonization of Australia.

  19. Hierarchical structure of ecological and non-ecological processes of differentiation shaped ongoing gastropod radiation in the Malawi Basin.

    Science.gov (United States)

    Van Bocxlaer, Bert

    2017-09-13

    Ecological processes, non-ecological processes or a combination of both may cause reproductive isolation and speciation, but their specific roles and potentially complex interactions in evolutionary radiations remain poorly understood, which defines a central knowledge gap at the interface of microevolution and macroevolution. Here I examine genome scans in combination with phenotypic and environmental data to disentangle how ecological and non-ecological processes contributed to population differentiation and speciation in an ongoing radiation of Lanistes gastropods from the Malawi Basin. I found a remarkable hierarchical structure of differentiation mechanisms in space and time: neutral and mutation-order processes are older and occur mainly between regions, whereas more recent adaptive processes are the main driver of genetic differentiation and reproductive isolation within regions. The strongest differentiation occurs between habitats and between regions, i.e. when ecological and non-ecological processes act synergistically. The structured occurrence of these processes based on the specific geographical setting and ecological opportunities strongly influenced the potential for evolutionary radiation. The results highlight the importance of interactions between various mechanisms of differentiation in evolutionary radiations, and suggest that non-ecological processes are important in adaptive radiations, including those of cichlids. Insight into such interactions is critical to understanding large-scale patterns of organismal diversity. © 2017 The Author(s).

  20. The Green Bank Ammonia Survey: Observations of Hierarchical Dense Gas Structures in Cepheus-L1251

    Science.gov (United States)

    Keown, Jared; Di Francesco, James; Kirk, Helen; Friesen, Rachel K.; Pineda, Jaime E.; Rosolowsky, Erik; Ginsburg, Adam; Offner, Stella S. R.; Caselli, Paola; Alves, Felipe; Chacón-Tanarro, Ana; Punanova, Anna; Redaelli, Elena; Seo, Young Min; Matzner, Christopher D.; Chun-Yuan Chen, Michael; Goodman, Alyssa A.; Chen, How-Huan; Shirley, Yancy; Singh, Ayushi; Arce, Hector G.; Martin, Peter; Myers, Philip C.

    2017-11-01

    We use Green Bank Ammonia Survey observations of NH3 (1, 1) and (2, 2) emission with 32″ FWHM resolution from a ˜10 pc2 portion of the Cepheus-L1251 molecular cloud to identify hierarchical dense gas structures. Our dendrogram analysis of the NH3 data results in 22 top-level structures, which reside within 13 lower-level parent structures. The structures are compact (0.01 {pc}≲ {R}{eff}≲ 0.1 {pc}) and are spatially correlated with the highest H2 column density portions of the cloud. We also compare the ammonia data to a catalog of dense cores identified by higher-resolution (18.″2 FWHM) Herschel Space Observatory observations of dust continuum emission from Cepheus-L1251. Maps of kinetic gas temperature, velocity dispersion, and NH3 column density, derived from detailed modeling of the NH3 data, are used to investigate the stability and chemistry of the ammonia-identified and Herschel-identified structures. We show that the dust and dense gas in the structures have similar temperatures, with median T dust and T K measurements of 11.7 ± 1.1 K and 10.3 ± 2.0 K, respectively. Based on a virial analysis, we find that the ammonia-identified structures are gravitationally dominated, yet may be in or near a state of virial equilibrium. Meanwhile, the majority of the Herschel-identified dense cores appear to be not bound by their own gravity and instead confined by external pressure. CCS (20 - 10) and HC5N (9-8) emission from the region reveal broader line widths and centroid velocity offsets when compared to the NH3 (1, 1) emission in some cases, likely due to these carbon-based molecules tracing the turbulent outer layers of the dense cores.

  1. Motion Tree Delineates Hierarchical Structure of Protein Dynamics Observed in Molecular Dynamics Simulation.

    Directory of Open Access Journals (Sweden)

    Kei Moritsugu

    Full Text Available Molecular dynamics (MD simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a "Motion Tree", to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations. The method was first applied to the MD trajectory of substrate-free adenylate kinase to clarify the usefulness of the Motion Tree, which illustrated a clear-cut dynamics picture of the inter-domain motions involving the ATP/AMP lid and the core domain together with the associated amplitudes and correlations. The comparison of two Motion Trees calculated from MD simulations of ligand-free and -bound glutamine binding proteins clarified changes in inherent dynamics upon ligand binding appeared in both large domains and a small loop that stabilized ligand molecule. Another application to a huge protein, a multidrug ATP binding cassette (ABC transporter, captured significant increases of fluctuations upon binding a drug molecule observed in both large scale inter-subunit motions and a motion localized at a transmembrane helix, which may be a trigger to the subsequent structural change from inward-open to outward-open states to transport the drug molecule. These applications demonstrated the capabilities of Motion Trees to provide an at-a-glance view of various sizes of functional motions inherent in the complicated MD trajectory.

  2. Hierarchical mixture of experts and diagnostic modeling approach to reduce hydrologic model structural uncertainty: STRUCTURAL UNCERTAINTY DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Moges, Edom [Civil and Environmental Engineering Department, Washington State University, Richland Washington USA; Demissie, Yonas [Civil and Environmental Engineering Department, Washington State University, Richland Washington USA; Li, Hong-Yi [Hydrology Group, Pacific Northwest National Laboratory, Richland Washington USA

    2016-04-01

    In most water resources applications, a single model structure might be inadequate to capture the dynamic multi-scale interactions among different hydrological processes. Calibrating single models for dynamic catchments, where multiple dominant processes exist, can result in displacement of errors from structure to parameters, which in turn leads to over-correction and biased predictions. An alternative to a single model structure is to develop local expert structures that are effective in representing the dominant components of the hydrologic process and adaptively integrate them based on an indicator variable. In this study, the Hierarchical Mixture of Experts (HME) framework is applied to integrate expert model structures representing the different components of the hydrologic process. Various signature diagnostic analyses are used to assess the presence of multiple dominant processes and the adequacy of a single model, as well as to identify the structures of the expert models. The approaches are applied for two distinct catchments, the Guadalupe River (Texas) and the French Broad River (North Carolina) from the Model Parameter Estimation Experiment (MOPEX), using different structures of the HBV model. The results show that the HME approach has a better performance over the single model for the Guadalupe catchment, where multiple dominant processes are witnessed through diagnostic measures. Whereas, the diagnostics and aggregated performance measures prove that French Broad has a homogeneous catchment response, making the single model adequate to capture the response.

  3. Hierarchical structure and mechanical properties of snake (Naja atra) and turtle (Ocadia sinensis) eggshells.

    Science.gov (United States)

    Chang, Yin; Chen, Po-Yu

    2016-02-01

    studied while there are very few studies on reptilian eggshells and most of them focused on mineralization and embryotic development. For the first time, the hierarchical structure and mechanical properties of snake and turtle eggshells are comprehensively and comparatively studied. Both snake and turtle eggshells are multilayer, hierarchically-structured composites consisting mainly of keratin yet their mechanical behaviors are distinctly different. Turtle eggshells are stiff and rigid, while snake eggshells are highly extensible (>200%) and reversible due to multiple deformation stages, phase transition of keratin and various toughening mechanisms. We believe that this study will make positive scientific impact and interest the broad and multidisciplinary readership. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Construction of 3D Arrays of Cylindrically Hierarchical Structures with ZnO Nanorods Hydrothermally Synthesized on Optical Fiber Cores

    Directory of Open Access Journals (Sweden)

    Weixuan Jing

    2014-01-01

    Full Text Available With ZnO nanorods hydrothermally synthesized on manually assembled arrays of optical fiber cores, 3D arrays of ZnO nanorod-based cylindrically hierarchical structures with nominal pitch 250 μm or 375 μm were constructed. Based on micrographs of scanning electron microscopy and image processing operators of MATLAB software, the 3D arrays of cylindrically hierarchical structures were quantitatively characterized. The values of the actual diameters, the actual pitches, and the parallelism errors suggest that the process capability of the manual assembling is sufficient and the quality of the 3D arrays of cylindrically hierarchical structures is acceptable. The values of the characteristic parameters such as roughness, skewness, kurtosis, correlation length, and power spectrum density show that the surface morphologies of the cylindrically hierarchical structures not only were affected significantly by Zn2+ concentration of the growth solution but also were anisotropic due to different curvature radii of the optical fiber core at side and front view.

  5. Synthesis of a hierarchically structured zeolite-templated carbon starting from fly ash-derived zeolite X

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-05-01

    Full Text Available A hierarchically structured zeolite derived from coal fly ash was used as a hard templating agent for the synthesis of a templated carbonaceous material. The samples were characterized using XRD, SEM, TEM, TGA, EDS and BET. The resulting carbon had...

  6. Hierarchical structure of the European countries based on debts as a percentage of GDP during the 2000-2011 period

    Science.gov (United States)

    Kantar, Ersin; Deviren, Bayram; Keskin, Mustafa

    2014-11-01

    We investigate hierarchical structures of the European countries by using debt as a percentage of Gross Domestic Product (GDP) of the countries as they change over a certain period of time. We obtain the topological properties among the countries based on debt as a percentage of GDP of European countries over the period 2000-2011 by using the concept of hierarchical structure methods (minimal spanning tree, (MST) and hierarchical tree, (HT)). This period is also divided into two sub-periods related to 2004 enlargement of the European Union, namely 2000-2004 and 2005-2011, in order to test various time-window and observe the temporal evolution. The bootstrap techniques is applied to see a value of statistical reliability of the links of the MSTs and HTs. The clustering linkage procedure is also used to observe the cluster structure more clearly. From the structural topologies of these trees, we identify different clusters of countries according to their level of debts. Our results show that by the debt crisis, the less and most affected Eurozone’s economies are formed as a cluster with each other in the MSTs and hierarchical trees.

  7. Morphologies and wetting properties of copper film with 3D porous micro-nano hierarchical structure prepared by electrochemical deposition

    International Nuclear Information System (INIS)

    Wang, Hongbin; Wang, Ning; Hang, Tao; Li, Ming

    2016-01-01

    Highlights: • A 3D porous micro-nano hierarchical structure Cu films were prepared. • The evolution of morphology and wettability with deposition time was reported. • The effects of EDA on the microscopic morphology were revealed. • A high contact angle of 162.1° was measured when deposition time is 5 s. • The mechanism of super-hydrophobicity was illustrated by two classical models. - Abstract: Three-dimensional porous micro-nano hierarchical structure Cu films were prepared by electrochemical deposition with the Hydrogen bubble dynamic template. The morphologies of the deposited films characterized by Scanning Electronic Microscopy (SEM) exhibit a porous micro-nano hierarchical structure, which consists of three levels in different size scales, namely the honeycomb-like microstructure, the dendritic substructure and the nano particles. Besides, the factors which influenced the microscopic morphology were studied, including the deposition time and the additive Ethylene diamine. By measuring the water contact angle, the porous copper films were found to be super-hydrophobic. The maximum of the contact angles could reach as high as 162.1°. An empirical correlation between morphologies and wetting properties was revealed for the first time. The pore diameter increased simultaneously with the deposition time while the contact angle decreased. The mechanism was illustrated by two classical models. Such super-hydrophobic three-dimensional hierarchical micro-nano structure is expected to have practical application in industry.

  8. Synthesis and Visible-Light Photocatalytic Property of Bi2WO6Hierarchical Octahedron-Like Structures

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2008-01-01

    Full Text Available Abstract A novel octahedron-like hierarchical structure of Bi2WO6has been fabricated by a facile hydrothermal method in high quantity. XRD, SEM, TEM, and HRTEM were used to characterize the product. The results indicated that this kind of Bi2WO6crystals had an average size of ~4 μm, constructed by quasi-square single-crystal nanosheets assembled in a special fashion. The formation of octahedron-like hierarchical structure of Bi2WO6depended crucially on the pH value of the precursor suspensions. The photocatalytic activity of the hierarchical Bi2WO6structures toward RhB degradation under visible light was investigated, and it was found to be significantly better than that of the sample fabricated by SSR. The better photocatalytic property should be strongly associated with the high specific surface area and the abundant pore structure of the hierarchical octahedron-like Bi2WO6.

  9. Biomolecule-Assisted Hydrothermal Synthesis and Self-Assembly of Bi2Te3 Nanostring-Cluster Hierarchical Structure

    DEFF Research Database (Denmark)

    Mi, Jianli; Lock, Nina; Sun, Ting

    2010-01-01

    A simple biomolecule-assisted hydrothermal approach has been developed for the fabrication of Bi2Te3 thermoelectric nanomaterials. The product has a nanostring-cluster hierarchical structure which is composed of ordered and aligned platelet-like crystals. The platelets are100 nm in diameter...

  10. Predicting allergic contact dermatitis: a hierarchical structure activity relationship (SAR) approach to chemical classification using topological and quantum chemical descriptors

    Science.gov (United States)

    Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.

    2008-06-01

    A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.

  11. Population Structure of West Greenland Narwhals

    DEFF Research Database (Denmark)

    Riget, F.; Dietz, R.; Møller, P.

    The hypothesis that different populations of narwhals in the West Greenland area exist has been tested by different biomarkers (metal and organochlorine concentrations, stable isotopes and DNA). Samples of muscle, liver, kidney, blubber and skin tissues of narwhals from West Greenland have been...... isotopes could not support the population structure with two West Greenland populations suggested by the genetic study....

  12. Impact of hierarchical modular structure on ranking of individual nodes in directed networks

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Naoki [Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Kawamura, Yoji [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Kori, Hiroshi [PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)], E-mail: masuda@mist.i.u-tokyo.ac.jp

    2009-11-15

    Many systems, ranging from biological and engineering systems to social systems, can be modeled as directed networks, with links representing directed interaction between two nodes. To assess the importance of a node in a directed network, various centrality measures based on different criteria have been proposed. However, calculating the centrality of a node is often difficult because of the overwhelming size of the network or because the information held about the network is incomplete. Thus, developing an approximation method for estimating centrality measures is needed. In this study, we focus on modular networks; many real-world networks are composed of modules, where connection is dense within a module and sparse across different modules. We show that ranking-type centrality measures, including the PageRank, can be efficiently estimated once the modular structure of a network is extracted. We develop an analytical method to evaluate the centrality of nodes by combining the local property (i.e. indegree and outdegree of nodes) and the global property (i.e. centrality of modules). The proposed method is corroborated by real data. Our results provide a linkage between the ranking-type centrality values of modules and those of individual nodes. They also reveal the hierarchical structure of networks in the sense of subordination (not nestedness) laid out by connectivity among modules of different relative importance. The present study raises a novel motive for identifying modules in networks.

  13. A Hierarchical structure of key performance indicators for operation management and continuous improvement in production systems.

    Science.gov (United States)

    Kang, Ningxuan; Zhao, Cong; Li, Jingshan; Horst, John A

    2016-01-01

    Key performance indicators (KPIs) are critical for manufacturing operation management and continuous improvement (CI). In modern manufacturing systems, KPIs are defined as a set of metrics to reflect operation performance, such as efficiency, throughput, availability, from productivity, quality and maintenance perspectives. Through continuous monitoring and measurement of KPIs, meaningful quantification and identification of different aspects of operation activities can be obtained, which enable and direct CI efforts. A set of 34 KPIs has been introduced in ISO 22400. However, the KPIs in a manufacturing system are not independent, and they may have intrinsic mutual relationships. The goal of this paper is to introduce a multi-level structure for identification and analysis of KPIs and their intrinsic relationships in production systems. Specifically, through such a hierarchical structure, we define and layer KPIs into levels of basic KPIs, comprehensive KPIs and their supporting metrics, and use it to investigate the relationships and dependencies between KPIs. Such a study can provide a useful tool for manufacturing engineers and managers to measure and utilize KPIs for CI.

  14. Impact of hierarchical modular structure on ranking of individual nodes in directed networks

    International Nuclear Information System (INIS)

    Masuda, Naoki; Kawamura, Yoji; Kori, Hiroshi

    2009-01-01

    Many systems, ranging from biological and engineering systems to social systems, can be modeled as directed networks, with links representing directed interaction between two nodes. To assess the importance of a node in a directed network, various centrality measures based on different criteria have been proposed. However, calculating the centrality of a node is often difficult because of the overwhelming size of the network or because the information held about the network is incomplete. Thus, developing an approximation method for estimating centrality measures is needed. In this study, we focus on modular networks; many real-world networks are composed of modules, where connection is dense within a module and sparse across different modules. We show that ranking-type centrality measures, including the PageRank, can be efficiently estimated once the modular structure of a network is extracted. We develop an analytical method to evaluate the centrality of nodes by combining the local property (i.e. indegree and outdegree of nodes) and the global property (i.e. centrality of modules). The proposed method is corroborated by real data. Our results provide a linkage between the ranking-type centrality values of modules and those of individual nodes. They also reveal the hierarchical structure of networks in the sense of subordination (not nestedness) laid out by connectivity among modules of different relative importance. The present study raises a novel motive for identifying modules in networks.

  15. Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors

    International Nuclear Information System (INIS)

    Liu, Dong; Shen, Jun; Liu, Nianping; Yang, Huiyu; Du, Ai

    2013-01-01

    Activated carbon aerogels (ACAs) with hierarchically porous structures and high specific surface area have been prepared via CO 2 and KOH activation processes. The pore structures of ACAs are characterized by N 2 adsorption/desorption and scanning electron microscopy. The experimental results show that the ACAs contain three types of pores: micropores with diameters below 2 nm, small mesopores with diameters from 2 to 4 nm and large pores or channels with diameters over 30 nm. The typical sample ACAs-4, which possess pore volume of 2.73 cm 3 g −1 and specific surface area of 2119 m 2 g −1 , exhibits high specific capacitances of 250 F g −1 and 198 F g −1 at the current densities of 0.5 A g −1 and 20 A g −1 respectively in 6 M KOH aqueous solution. Furthermore, the resultant ACAs electrode materials also exhibit high power density, good cycling stability and long lifetime. With these features, ACAs are expected to be promising electrode materials for electrical double layer capacitors

  16. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanli, E-mail: flmeng@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Hou, Nannan [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Ge, Sheng [Department of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Sun, Bai [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Jin, Zhen, E-mail: zjin@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Shen, Wei; Kong, Lingtao; Guo, Zheng [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Yufeng, E-mail: sunyufeng118@126.com [Department of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Wu, Hao; Wang, Chen [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Li, Minqiang [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-03-25

    Highlights: • Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets were synthesized. • The flower-like hierarchical structured ZnO exhibited higher response and shorter response and recovery times. • The sensing mechanism of the flower-like hierarchical has been systematically analyzed. - Abstract: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets (FHPSCZNs) were synthesized by a one-pot wet-chemical method followed by an annealing treatment, which combined the advantages between flower-like hierarchical structure and porous single-crystalline structure. XRD, SEM and HRTEM were used to characterize the synthesized FHPSCZN samples. The sensing properties of the FHPSCZN sensor were also investigated by comparing with ZnO powder sensor, which exhibited higher response and shorter response and recovery times. The sensing mechanism of the FHPSCZN sensor has been further analyzed from the aspects of electronic transport and gas diffusion.

  17. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Meng, Fanli; Hou, Nannan; Ge, Sheng; Sun, Bai; Jin, Zhen; Shen, Wei; Kong, Lingtao; Guo, Zheng; Sun, Yufeng; Wu, Hao; Wang, Chen; Li, Minqiang

    2015-01-01

    Highlights: • Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets were synthesized. • The flower-like hierarchical structured ZnO exhibited higher response and shorter response and recovery times. • The sensing mechanism of the flower-like hierarchical has been systematically analyzed. - Abstract: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets (FHPSCZNs) were synthesized by a one-pot wet-chemical method followed by an annealing treatment, which combined the advantages between flower-like hierarchical structure and porous single-crystalline structure. XRD, SEM and HRTEM were used to characterize the synthesized FHPSCZN samples. The sensing properties of the FHPSCZN sensor were also investigated by comparing with ZnO powder sensor, which exhibited higher response and shorter response and recovery times. The sensing mechanism of the FHPSCZN sensor has been further analyzed from the aspects of electronic transport and gas diffusion

  18. Hydrothermal synthesis of copper sulfide with novel hierarchical structures and its application in lithium-ion batteries

    International Nuclear Information System (INIS)

    Chen, Guang-Yi; Wei, Zhi-Yong; Jin, Bo; Zhong, Xiao-Bin; Wang, Heng; Zhang, Wan-Xi; Liang, Ji-Cai; Jiang, Qing

    2013-01-01

    Novel stick-like CuS hierarchical structures have been fabricated by a hydrothermal approach use β-cyclodextrin as ligand and structure-directing agent. SEM and TEM characterizations show that the CuS stick-like structures are composed of tens to hundreds of well-arranged and self-assembled nanoplates with a thickness of about 25 nm. The mechanism for the formation of the final stick-like hierarchical structures is proposed and discussed. β-cyclodextrin is found to be the key factor in controlling the morphologies. Meanwhile, the possibility of using CuS as the electrode material for lithium ion batteries (LIBs) is studied. Electrochemical measurements reveal that the as-prepared CuS exhibits outstanding cycle stability, indicating that it might find possible application as a cathode material for LIBs in the long term.

  19. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures.

    Science.gov (United States)

    Schargott, M

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  20. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    Energy Technology Data Exchange (ETDEWEB)

    Schargott, M [Institute of Mechanics, Technische Universitaet Berlin, Strd 17 Juni 135, 10623 Berlin (Germany)], E-mail: martin.schargott@tu-berlin.de

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  1. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    International Nuclear Information System (INIS)

    Schargott, M

    2009-01-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface

  2. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure

    OpenAIRE

    Yingzhi Li; Qinghua Zhang; Junxian Zhang; Lei Jin; Xin Zhao; Ting Xu

    2015-01-01

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific ca...

  3. Symbolic trephinations and population structure

    Directory of Open Access Journals (Sweden)

    László Szathmáry

    2006-12-01

    Full Text Available The sample examined consists of 19 skulls with symbolic trephinations and 86 skulls without trepanations dated from the X century. Skulls were all excavated in the Great Hungarian Plain in the Carpathian Basin, which was occupied by the Hungarian conquerors at the end of the IX century. The variations of 12 cranial dimensions of the trephined skulls were investigated and compared to the skulls without trepanations after performing a discriminant analysis. The classification results evince that the variability of non-trephined skulls shows a more homogeneous and a more characteristic picture of their own group than the trephined samples, which corresponds to the notion, formed by archaeological evidence and written historical sources, of a both ethnically and socially differing population of the Hungarian conquerors. According to historical research, a part of the population was of Finno-Ugric origin, while the military leading layer of society can be brought into connection with Turkic ethnic groups. All the same, individuals dug up with rich grave furniture and supposed to belong to this upper stratum of society are primarily characterized by the custom of symbolic trephination, and, as our results demonstrate, craniologically they seem to be more heterogeneous.

  4. Population structure and adaptation in fishes

    DEFF Research Database (Denmark)

    Limborg, Morten

    Marine fishes represent a valuable resource for the global economy and food consumption. Accordingly, many species experience high levels of exploitation necessitating effective management plans. However, long term sustainability may be jeopardized from insufficient knowledge about intra-specific......Marine fishes represent a valuable resource for the global economy and food consumption. Accordingly, many species experience high levels of exploitation necessitating effective management plans. However, long term sustainability may be jeopardized from insufficient knowledge about intra......-specific population structure and adaptive divergence. The large population sizes and high migration rates common to most marine fishes impede the differentiating effect of genetic drift, having led to expectations of no population structure and that the occurrence of local adaptation should be rare in these species....... Comprehensive genetic analyses on the small pelagic fish European sprat (Sprattus sprattus) revealed significant population structure throughout its distribution with an overall pattern of reduced connectivity across environmental transition zones. Population structure reflected both historical separations over...

  5. Personality in chimpanzees (Pan troglodytes: exploring the hierarchical structure and associations with the vasopressin V1A receptor gene.

    Directory of Open Access Journals (Sweden)

    Robert D Latzman

    Full Text Available One of the major contributions of recent personality psychology is the finding that traits are related to each other in an organized hierarchy. To date, however, researchers have yet to investigate this hierarchy in nonhuman primates. Such investigations are critical in confirming the cross-species nature of trait personality helping to illuminate personality as neurobiologically-based and evolutionarily-derived dimensions of primate disposition. Investigations of potential genetic polymorphisms associated with hierarchical models of personality among nonhuman primates represent a critical first step. The current study examined the hierarchical structure of chimpanzee personality as well as sex-specific associations with a polymorphism in the promoter region of the vasopressin V1a receptor gene (AVPR1A, a gene associated with dispositional traits, among 174 chimpanzees. Results confirmed a hierarchical structure of personality across species and, despite differences in early rearing experiences, suggest a sexually dimorphic role of AVPR1A polymorphisms on hierarchical personality profiles at a higher-order level.

  6. Personality in Chimpanzees (Pan troglodytes): Exploring the Hierarchical Structure and Associations with the Vasopressin V1A Receptor Gene

    Science.gov (United States)

    Latzman, Robert D.; Hopkins, William D.; Keebaugh, Alaine C.; Young, Larry J.

    2014-01-01

    One of the major contributions of recent personality psychology is the finding that traits are related to each other in an organized hierarchy. To date, however, researchers have yet to investigate this hierarchy in nonhuman primates. Such investigations are critical in confirming the cross-species nature of trait personality helping to illuminate personality as neurobiologically-based and evolutionarily-derived dimensions of primate disposition. Investigations of potential genetic polymorphisms associated with hierarchical models of personality among nonhuman primates represent a critical first step. The current study examined the hierarchical structure of chimpanzee personality as well as sex-specific associations with a polymorphism in the promoter region of the vasopressin V1a receptor gene (AVPR1A), a gene associated with dispositional traits, among 174 chimpanzees. Results confirmed a hierarchical structure of personality across species and, despite differences in early rearing experiences, suggest a sexually dimorphic role of AVPR1A polymorphisms on hierarchical personality profiles at a higher-order level. PMID:24752497

  7. Hierarchical ZnO microspheres built by sheet-like network: Large-scale synthesis and structurally enhanced catalytic performances

    International Nuclear Information System (INIS)

    Zhu Guoxing; Liu Yuanjun; Ji Zhenyuan; Bai Song; Shen Xiaoping; Xu Zheng

    2012-01-01

    Highlights: ► Hierarchical ZnO microspheres were prepared through a facile precursor procedure in the absence of self-assembled templates, organic additives, or matrices. ► The building blocks of microspheres, sheet-like ZnO networks, are porous mesocrystal terminated with (0 1 −1 0) crystal planes. ► The hierarchical ZnO microsphere catalyst exhibits structure-induced enhancement of catalytic performance and a strong durability. - Abstract: Large-scale novel hierarchical ZnO microspheres were fabricated by a facile precursor procedure in the absence of self-assembled templates, organic additives, or matrices. A field emission scanning electron microscopy (FESEM) image reveals that the ZnO microspheres with diameter of 5–18 μm are built by sheet-like ZnO networks with average thickness of 40 nm and length of several microns. High resolution transmission electron microscopy (HRTEM) image indicates that the building blocks, sheet-like ZnO networks, are porous mesocrystal terminated with {0 1 −1 0} crystal planes. A potential application of the ZnO microspheres as a catalyst in the synthesis of 5-substituted 1H-tetrazoles was investigated. It was found that the hierarchical ZnO microsphere catalyst exhibits structure-induced enhancement of catalytic performance and a strong durability.

  8. [Genetic structure of natural populations

    International Nuclear Information System (INIS)

    1988-01-01

    Our efforts in the first eight months were concentrated in obtaining a genomic clone of the copper-zinc superoxide dismutase (SOD) in Drosophila melanogaster and other Drosophila species. This we have now successfully accomplished. We seek to understand the role of SOD in radioresistance; how genetic variation in this enzyme is maintained in populations; and relevant aspects of its evolution that may contribute to these goals as well as to an understanding of molecular evolution in general. To accomplish these goals we are undertaking the following experiments: cloning and sequencing of (at least) one F allele, one S allele, and the null allele for SOD; cloning and sequencing SOD from species related to D. melanogaster; and cloning and sequencing the SOD gene from several independently sampled S and F alleles in D. melanogaster. We are also preparing to test the radioprotective effects of SOD. 67 refs

  9. Improvements to the hierarchically structured ZnO nanosphere based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yongzhe; Wu Lihui; Liu Yanping; Xie Erqing, E-mail: zhangyzh04@126.co, E-mail: xieeq@lzu.edu.c [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2009-04-21

    Hierarchically structured ZnO nanospheres are synthesized by a wet-chemical method and ZnO sphere-consisting films are applied to dye-sensitized solar cells (DSSCs). It is found that the overall light-to-electricity conversion efficiency ({eta}) is significantly enhanced from 0.474% to 1.03% due to light scattering compared with the ZnO nanoparticle-based DSSC. However, the fill factor (FF) and open-circuit voltage (V{sub oc}) decrease obviously. After annealing the films in an oxygen environment and placing a ZnO blocking layer on the fluorine-doped SnO{sub 2} (FTO) conducting substrate, the FF and V{sub oc} are greatly improved and {eta} increases from 1.03% to 1.59% and 2.25%, respectively. According to the results of x-ray diffraction and photoluminescence, the significant improvements in the cell performances might be due to the suppression of the recombination and the decrease in the resistances existing in the cell.

  10. Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells

    International Nuclear Information System (INIS)

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A

    2011-01-01

    Fluctuations in the size of the apical cell surface have been associated with apical constriction and tissue invagination. However, it is currently not known if apical oscillatory behaviors are a unique property of constricting cells or if they constitute a universal feature of the force balance between cells in multicellular tissues. Here, we set out to determine whether oscillatory cell behaviors occur in parallel with cell intercalation during the morphogenetic process of axis elongation in the Drosophila embryo. We applied multi-color, time-lapse imaging of living embryos and SIESTA, an integrated tool for automated and semi-automated cell segmentation, tracking, and analysis of image sequences. Using SIESTA, we identified cycles of contraction and expansion of the apical surface in intercalating cells and characterized them at the molecular, cellular, and tissue scales. We demonstrate that apical oscillations are anisotropic, and this anisotropy depends on the presence of intact cell–cell junctions and spatial cues provided by the anterior–posterior patterning system. Oscillatory cell behaviors during axis elongation are associated with the hierarchical assembly and disassembly of contractile actomyosin structures at the medial cortex of the cell, with actin localization preceding myosin II and with the localization of both proteins preceding changes in cell shape. We discuss models to explain how the architecture of cytoskeletal networks regulates their contractile behavior and the mechanisms that give rise to oscillatory cell behaviors in intercalating cells

  11. Mastering algebra retrains the visual system to perceive hierarchical structure in equations.

    Science.gov (United States)

    Marghetis, Tyler; Landy, David; Goldstone, Robert L

    2016-01-01

    Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.

  12. Hierarchically structured Co₃O₄@Pt@MnO₂ nanowire arrays for high-performance supercapacitors.

    Science.gov (United States)

    Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping

    2013-10-17

    Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2-based nanowire arrays for constructing next-generation supercapacitors.

  13. Facile synthesis of mesoporous silica sublayer with hierarchical pore structure on ceramic membrane using anionic polyelectrolyte.

    Science.gov (United States)

    Kang, Taewook; Oh, Seogil; Kim, Honggon; Yi, Jongheop

    2005-06-21

    A facile method for introducing mesoporous silica sublayer onto the surface of a ceramic membrane for use in liquid-phase separation is described. To reduce the electrostatic repulsion between the mesoporous silica sol and the ceramic membrane in highly acidic conditions (pH ceramic membrane, as confirmed by experimental titration data. Consistent with the titration results, the amount of mesoporous silica particles on the surface of the ceramic membrane was low, in the absence of PSS- treatment, whereas mesoporous silica sublayer with hierarchical pore structure was produced, when 1 wt % PSS- was used. The results show that mesoporous silica grows in the confined surface, eventually forming a multistacked surface architecture. The mesoporous silica sublayer contained uniform, ordered (P6 mm) mesopores of ca. 7.5 nm from mesoporous silica as well as macropores ( approximately mum) from interparticle voids, as evidenced by transmission electron microscopy and scanning electron microscopy analyses. The morphologies of the supported mesoporous silica could be manipulated, thus permitting the generation of uniform needlelike forms or uniform spheroid particles by varying the concentration of PSS-.

  14. Interference mitigation for broadcast in hierarchical cell structure networks: Transmission strategy and area spectral efficiency

    KAUST Repository

    Yang, Yuli

    2014-10-01

    In this paper, a hierarchical cell structure (HCS) is considered, where an access point (AP) broadcasts to local nodes (LNs) over orthogonal frequency subbands within a local cell located in a macrocell. Since the local cell shares the spectrum licensed to the macrocell, a given LN is interfered with by the macrocell user (MU)\\'s transmissions over the same subband. To improve the performance of the AP\\'s broadcast service, a novel transmission strategy is proposed to mitigate the interference from the MU to the LN while achieving diversity gain. For the purpose of performance evaluation, the ergodic capacity of the proposed scheme is quantified, and the corresponding closed-form expression is obtained. By comparing with the traditional transmission scheme, which suffers from MU\\'s interference, illustrative numerical results substantiate that the proposed scheme achieves better performance than the traditional scheme as the MU-LN mean channel power gain is larger than half of the AP-LN mean channel power gain. Subsequently, we develop an optimized network design by maximizing the area spectral efficiency (ASE) of the AP\\'s broadcast in the local cell.

  15. Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites.

    Science.gov (United States)

    Li, Xueqin; Hao, Changlong; Tang, Bochong; Wang, Yue; Liu, Mei; Wang, Yuanwei; Zhu, Yihua; Lu, Chenguang; Tang, Zhiyong

    2017-02-09

    Due to their high specific surface area and good electric conductivity, nitrogen-doped porous carbons (NPCs) and carbon nanotubes (CNTs) have attracted much attention for electrochemical energy storage applications. In the present work, we firstly prepared MWCNT/ZIF-8 composites by decoration of zeolitic imidazolate frameworks (ZIF-8) onto the surface of multi-walled CNTs (MWCNTs), then obtained MWCNT/NPCs by the direct carbonization of MWCNT/ZIF-8. By controlling the reaction conditions, MWCNT/ZIF-8 with three different particle sizes were synthesized. The effect of NPCs size on capacitance performance has been evaluated in detail. The MWCNT/NPC with large-sized NPC (MWCNT/NPC-L) displayed the highest specific capacitance of 293.4 F g -1 at the scan rate of 5 mV s -1 and only lost 4.2% of capacitance after 10 000 cyclic voltammetry cycles, which was attributed to the hierarchically structured pores, N-doping and high electrical conductivity. The studies of symmetric two-electrode supercapacitor cells also confirmed MWCNT/NPC-L as efficient electrode materials that have good electrochemical performance, especially for high-rate applications.

  16. Hierarchically structured graphene-carbon nanotube-cobalt hybrid electrocatalyst for seawater battery

    Science.gov (United States)

    Suh, Dong Hoon; Park, Sul Ki; Nakhanivej, Puritut; Kim, Youngsik; Hwang, Soo Min; Park, Ho Seok

    2017-12-01

    The design of cost-effective and highly active catalysts is a critical challenge. Inspired by the strong points of stability and conductivity of carbon nanotubes (CNTs), high catalytic activity of Co nanoparticles, and rapid ion diffusion and large accessible area of three-dimensional (3D) graphene, we demonstrate a novel strategy to construct a hierarchical hybrid structure consisting of Co/CoOx nanoparticles-incorporated CNT branches onto the 3D reduced graphene oxide (rGO) architecture. The surface-modified 3D rGO by steam activation process has a large surface area and abundant defect sites, which serve as active sites to uniformly grow Co/CoOx nanoparticles. Furthermore, the CNTs preserve their performance stably by encapsulating Co nanoparticles, while the uniformly decorated Co/CoOx nanoparticles exhibit superior electrocatalytic activity toward oxygen evolution/reduction reaction due to highly exposed active sites. Employing the hybrid particle electrocatalyst, the seawater battery operates stably at 0.01 mA cm-2 during 50 cycles, owing to the good electrocatalytic ability.

  17. An Empirical Examination of the Relationship Between Test Factor Structure and Test Hierarchical Structure.

    Science.gov (United States)

    Bart, William M.; Airasian, Peter W.

    The question of whether test factor structure is indicative of the test item hierarchy was examined. Data from 1,000 subjects on two sets of five bivalued Law School Admission Test items, which were analyzed with latent trait methods of Bock and Lieberman and of Christoffersson in Psychometrika, were analyzed with an ordering-theoretic method to…

  18. Structural Group-based Auditing of Missing Hierarchical Relationships in UMLS

    Science.gov (United States)

    Chen, Yan; Gu, Huanying(Helen); Perl, Yehoshua; Geller, James

    2009-01-01

    The Metathesaurus of the UMLS was created by integrating various source terminologies. The inter-concept relationships were either integrated into the UMLS from the source terminologies or specially generated. Due to the extensive size and inherent complexity of the Metathesaurus, the accidental omission of some hierarchical relationships was inevitable. We present a recursive procedure which allows a human expert, with the support of an algorithm, to locate missing hierarchical relationships. The procedure starts with a group of concepts with exactly the same (correct) semantic type assignments. It then partitions the concepts, based on child-of hierarchical relationships, into smaller, singly rooted, hierarchically connected subgroups. The auditor only needs to focus on the subgroups with very few concepts and their concepts with semantic type reassignments. The procedure was evaluated by comparing it with a comprehensive manual audit and it exhibits a perfect error recall. PMID:18824248

  19. Population structure, genetic variation and linkage disequilibrium in perennial ryegrass populations divergently selected for freezing tolerance

    Directory of Open Access Journals (Sweden)

    Mallikarjuna Rao eKovi

    2015-11-01

    Full Text Available Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF] and 27 of Unselected [US] from the second generation of the two divergently selected populations and an unselected control population were genotyped using 278 genome-wide SNPs derived from Lolium perenne L. transcriptome sequence. Our studies showed that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two Fst outlier methods; finite island model (fdist by LOSITAN and hierarchical structure model using ARLEQUIN detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation and abiotic stress and might be the potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  20. Understanding uncertainties in non-linear population trajectories: a Bayesian semi-parametric hierarchical approach to large-scale surveys of coral cover.

    Directory of Open Access Journals (Sweden)

    Julie Vercelloni

    Full Text Available Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.

  1. Synthesis and properties of ZnFe{sub 2}O{sub 4} replica with biological hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongyan; Guo, Yiping, E-mail: ypguo@sjtu.edu.cn; Zhang, Yangyang; Wu, Fen; Liu, Yun; Zhang, Di, E-mail: zhangdi@sjtu.edu.cn

    2013-09-20

    Highlights: • ZFO replica with hierarchical structure was synthesized from butterfly wings. • Biotemplate has a significant impact on the properties of ZFO material. • Our method opens up new avenues for the synthesis of spinel ferrites. -- Abstract: ZnFe{sub 2}O{sub 4} replica with biological hierarchical structure was synthesized from Papilio paris by a sol–gel method followed by calcination. The crystallographic structure and morphology of the obtained samples were characterized by X-ray diffraction, field-emission scanning electron microscope, and transmittance electron microscope. The results showed that the hierarchical structures were retained in the ZFO replica of spinel structure. The magnetic behavior of such novel products was measured by a vibrating sample magnetometer. A superparamagnetism-like behavior was observed due to nanostructuration size effects. In addition, the ZFO replica with “quasi-honeycomb-like structure” showed a much higher specific capacitance of 279.4 F g{sup −1} at 10 mV s{sup −1} in comparison with ZFO powder of 137.3 F g{sup −1}, attributing to the significantly increased surface area. These results demonstrated that ZFO replica is a promising candidate for novel magnetic devices and supercapacitors.

  2. Fabrication of three-dimensional poly(ε-caprolactone) scaffolds with hierarchical pore structures for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingchun [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Luo, Houyong [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Yan [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhou, Yan [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237 (China); Ye, Zhaoyang, E-mail: zhaoyangye@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237 (China); Tan, Wensong [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237 (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2013-05-01

    The physical properties of tissue engineering scaffolds such as microstructures play important roles in controlling cellular behaviors and neotissue formation. Among them, the pore size stands out as a key determinant factor. In the present study, we aimed to fabricate porous scaffolds with pre-defined hierarchical pore sizes, followed by examining cell growth in these scaffolds. This hierarchical porous microstructure was implemented via integrating different pore-generating methodologies, including salt leaching and thermal induced phase separation (TIPS). Specifically, large (L, 200–300 μm), medium (M, 40–50 μm) and small (S, < 10 μm) pores were able to be generated. As such, three kinds of porous scaffolds with a similar porosity of ∼ 90% creating pores of either two (LS or MS) or three (LMS) different sizes were successfully prepared. The number fractions of different pores in these scaffolds were determined to confirm the hierarchical organization of pores. It was found that the interconnectivity varied due to the different pore structures. Besides, these scaffolds demonstrated similar compressive moduli under dry and hydrated states. The adhesion, proliferation, and spatial distribution of human fibroblasts within the scaffolds during a 14-day culture were evaluated with MTT assay and fluorescence microscopy. While all three scaffolds well supported the cell attachment and proliferation, the best cell spatial distribution inside scaffolds was achieved with LMS, implicating that such a controlled hierarchical microstructure would be advantageous in tissue engineering applications. Highlights: ► The scaffolds with dual-pore and triple-pore structures were fabricated. ► Triple-pore structure had better interconnectivity than dual-pore structures. ► Better cell migration and distribution were found on the triple-pore structures. ► The medium pore size (45–50 μm) was appropriate for cell migration. ► Scaffolds with triple-pore structure

  3. 3D NEAREST NEIGHBOUR SEARCH USING A CLUSTERED HIERARCHICAL TREE STRUCTURE

    Directory of Open Access Journals (Sweden)

    A. Suhaibah

    2016-06-01

    Full Text Available Locating and analysing the location of new stores or outlets is one of the common issues facing retailers and franchisers. This is due to assure that new opening stores are at their strategic location to attract the highest possible number of customers. Spatial information is used to manage, maintain and analyse these store locations. However, since the business of franchising and chain stores in urban areas runs within high rise multi-level buildings, a three-dimensional (3D method is prominently required in order to locate and identify the surrounding information such as at which level of the franchise unit will be located or is the franchise unit located is at the best level for visibility purposes. One of the common used analyses used for retrieving the surrounding information is Nearest Neighbour (NN analysis. It uses a point location and identifies the surrounding neighbours. However, with the immense number of urban datasets, the retrieval and analysis of nearest neighbour information and their efficiency will become more complex and crucial. In this paper, we present a technique to retrieve nearest neighbour information in 3D space using a clustered hierarchical tree structure. Based on our findings, the proposed approach substantially showed an improvement of response time analysis compared to existing approaches of spatial access methods in databases. The query performance was tested using a dataset consisting of 500,000 point locations building and franchising unit. The results are presented in this paper. Another advantage of this structure is that it also offers a minimal overlap and coverage among nodes which can reduce repetitive data entry.

  4. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage

    Science.gov (United States)

    Yu, Dingshan; Goh, Kunli; Wang, Hong; Wei, Li; Jiang, Wenchao; Zhang, Qiang; Dai, Liming; Chen, Yuan

    2014-07-01

    Micro-supercapacitors are promising energy storage devices that can complement or even replace batteries in miniaturized portable electronics and microelectromechanical systems. Their main limitation, however, is the low volumetric energy density when compared with batteries. Here, we describe a hierarchically structured carbon microfibre made of an interconnected network of aligned single-walled carbon nanotubes with interposed nitrogen-doped reduced graphene oxide sheets. The nanomaterials form mesoporous structures of large specific surface area (396 m2 g-1) and high electrical conductivity (102 S cm-1). We develop a scalable method to continuously produce the fibres using a silica capillary column functioning as a hydrothermal microreactor. The resultant fibres show a specific volumetric capacity as high as 305 F cm-3 in sulphuric acid (measured at 73.5 mA cm-3 in a three-electrode cell) or 300 F cm-3 in polyvinyl alcohol (PVA)/H3PO4 electrolyte (measured at 26.7 mA cm-3 in a two-electrode cell). A full micro-supercapacitor with PVA/H3PO4 gel electrolyte, free from binder, current collector and separator, has a volumetric energy density of ~6.3 mWh cm-3 (a value comparable to that of 4 V-500 µAh thin-film lithium batteries) while maintaining a power density more than two orders of magnitude higher than that of batteries, as well as a long cycle life. To demonstrate that our fibre-based, all-solid-state micro-supercapacitors can be easily integrated into miniaturized flexible devices, we use them to power an ultraviolet photodetector and a light-emitting diode.

  5. Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures.

    Science.gov (United States)

    Wang, Pengwei; Zhao, Tianyi; Bian, Ruixin; Wang, Guangyan; Liu, Huan

    2017-12-26

    Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.

  6. Classification of Hyperspectral Images by SVM Using a Composite Kernel by Employing Spectral, Spatial and Hierarchical Structure Information

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2018-03-01

    Full Text Available In this paper, we introduce a novel classification framework for hyperspectral images (HSIs by jointly employing spectral, spatial, and hierarchical structure information. In this framework, the three types of information are integrated into the SVM classifier in a way of multiple kernels. Specifically, the spectral kernel is constructed through each pixel’s vector value in the original HSI, and the spatial kernel is modeled by using the extended morphological profile method due to its simplicity and effectiveness. To accurately characterize hierarchical structure features, the techniques of Fish-Markov selector (FMS, marker-based hierarchical segmentation (MHSEG and algebraic multigrid (AMG are combined. First, the FMS algorithm is used on the original HSI for feature selection to produce its spectral subset. Then, the multigrid structure of this subset is constructed using the AMG method. Subsequently, the MHSEG algorithm is exploited to obtain a hierarchy consist of a series of segmentation maps. Finally, the hierarchical structure information is represented by using these segmentation maps. The main contributions of this work is to present an effective composite kernel for HSI classification by utilizing spatial structure information in multiple scales. Experiments were conducted on two hyperspectral remote sensing images to validate that the proposed framework can achieve better classification results than several popular kernel-based classification methods in terms of both qualitative and quantitative analysis. Specifically, the proposed classification framework can achieve 13.46–15.61% in average higher than the standard SVM classifier under different training sets in the terms of overall accuracy.

  7. Organosilane with gemini-type structure as the mesoporogen for synthesis of hierarchical porous ZSM-5 zeolite

    KAUST Repository

    Zhu, Haibo; Abou-Hamad, Edy; Chen, Yin; Saih, Youssef; Liu, Weibing; Basset, Jean-Marie; Samal, Akshaya Kumar

    2016-01-01

    A new kind of organosilane (1,6-bis (diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double hydrolysable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveals information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratios, which confirms this organosilane has high flexibility of using as template for the synthesis of hierarchical porous zeolite.

  8. Organosilane with gemini-type structure as the mesoporogen for synthesis of hierarchical porous ZSM-5 zeolite

    KAUST Repository

    Zhu, Haibo

    2016-02-08

    A new kind of organosilane (1,6-bis (diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double hydrolysable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveals information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratios, which confirms this organosilane has high flexibility of using as template for the synthesis of hierarchical porous zeolite.

  9. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach

    Directory of Open Access Journals (Sweden)

    Buer Jan

    2004-12-01

    Full Text Available Abstract Background Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN of organisms is important for understanding the structure and function of these fundamental cellular networks and essential for the emerging modular biology. So far, the global connectivity structure of TRN has not been well studied and consequently not applied for the identification of functional modules. Moreover, network motifs such as feed forward loop are recently proposed to be basic building blocks of TRN. However, their relationship to functional modules is not clear. Results In this work we proposed a top-down approach to identify modules in the TRN of E. coli. By studying the global connectivity structure of the regulatory network, we first revealed a five-layer hierarchical structure in which all the regulatory relationships are downward. Based on this regulatory hierarchy, we developed a new method to decompose the regulatory network into functional modules and to identify global regulators governing multiple modules. As a result, 10 global regulators and 39 modules were identified and shown to have well defined functions. We then investigated the distribution and composition of the two basic network motifs (feed forward loop and bi-fan motif in the hierarchical structure of TRN. We found that most of these network motifs include global regulators, indicating that these motifs are not basic building blocks of modules since modules should not contain global regulators. Conclusion The transcriptional regulatory network of E. coli possesses a multi-layer hierarchical modular structure without feedback regulation at transcription level. This hierarchical structure builds the basis for a new and simple decomposition method which is suitable for the identification of functional modules and global regulators in the transcriptional regulatory network of E

  10. Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors

    Science.gov (United States)

    Choi, Bong Gill; Huh, Yun Suk; Hong, Won Hi; Erickson, David; Park, Ho Seok

    2013-04-01

    Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g-1, three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features.Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR

  11. An Approach to Structure Determination and Estimation of Hierarchical Archimedean Copulas and its Application to Bayesian Classification

    Czech Academy of Sciences Publication Activity Database

    Górecki, J.; Hofert, M.; Holeňa, Martin

    2016-01-01

    Roč. 46, č. 1 (2016), s. 21-59 ISSN 0925-9902 R&D Projects: GA ČR GA13-17187S Grant - others:Slezská univerzita v Opavě(CZ) SGS/21/2014 Institutional support: RVO:67985807 Keywords : Copula * Hierarchical archimedean copula * Copula estimation * Structure determination * Kendall’s tau * Bayesian classification Subject RIV: IN - Informatics, Computer Science Impact factor: 1.294, year: 2016

  12. Structured population models in biology and epidemiology

    CERN Document Server

    Ruan, Shigui

    2008-01-01

    This book consists of six chapters written by leading researchers in mathematical biology. These chapters present recent and important developments in the study of structured population models in biology and epidemiology. Topics include population models structured by age, size, and spatial position; size-structured models for metapopulations, macroparasitc diseases, and prion proliferation; models for transmission of microparasites between host populations living on non-coincident spatial domains; spatiotemporal patterns of disease spread; method of aggregation of variables in population dynamics; and biofilm models. It is suitable as a textbook for a mathematical biology course or a summer school at the advanced undergraduate and graduate level. It can also serve as a reference book for researchers looking for either interesting and specific problems to work on or useful techniques and discussions of some particular problems.

  13. Hydrothermal deposition and photochromic performances of three kinds of hierarchical structure arrays of WO3 thin films

    International Nuclear Information System (INIS)

    Ding, Defang; Shen, Yi; Ouyang, Yali; Li, Zhen

    2012-01-01

    Three kinds of tungsten oxide (WO 3 ) thin films have been fabricated by a simple hydrothermal deposition method. Scanning electron microscopy images of the products revealed that the capping agents did impact the microstructure of WO 3 films. Films prepared without capping agents were ordered nanorod arrays, while the ones obtained with ethanol and oxalic acid revealed peeled-orange-like and cauliflower-like hierarchical structure arrays, respectively. Both of the two hierarchical structures were composed of much thinner nanorods compared with the one obtained without capping agents. All the WO 3 films exhibited good photochromic properties and the two with inducers performed even better, which could be due to the changes in the microstructure that increased the amount of photogenerated electron–hole pairs and the proton diffusion rates. - Highlights: ► Ordered WO 3 nanorod arrays were prepared by hydrothermal deposition process. ► Two hierarchical WO 3 structure arrays were obtained with ethanol and oxalic acid. ► Mechanism for the improved photochromic performances of WO 3 films is proposed.

  14. Page Layout Analysis of the Document Image Based on the Region Classification in a Decision Hierarchical Structure

    Directory of Open Access Journals (Sweden)

    Hossein Pourghassem

    2010-10-01

    Full Text Available The conversion of document image to its electronic version is a very important problem in the saving, searching and retrieval application in the official automation system. For this purpose, analysis of the document image is necessary. In this paper, a hierarchical classification structure based on a two-stage segmentation algorithm is proposed. In this structure, image is segmented using the proposed two-stage segmentation algorithm. Then, the type of the image regions such as document and non-document image is determined using multiple classifiers in the hierarchical classification structure. The proposed segmentation algorithm uses two algorithms based on wavelet transform and thresholding. Texture features such as correlation, homogeneity and entropy that extracted from co-occurrenc matrix and also two new features based on wavelet transform are used to classifiy and lable the regions of the image. The hierarchical classifier is consisted of two Multilayer Perceptron (MLP classifiers and a Support Vector Machine (SVM classifier. The proposed algorithm is evaluated on a database consisting of document and non-document images that provides from Internet. The experimental results show the efficiency of the proposed approach in the region segmentation and classification. The proposed algorithm provides accuracy rate of 97.5% on classification of the regions.

  15. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure.

    Science.gov (United States)

    Li, Yingzhi; Zhang, Qinghua; Zhang, Junxian; Jin, Lei; Zhao, Xin; Xu, Ting

    2015-09-23

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific capacitance of 204 F g(-1) at 1 A g(-1); good rate capability, as indicated by the residual initial capacitance of 85.5% at 10 A g(-1); and a long cycle life. These performance characteristics are attributed to the outstanding hierarchical structures of the electrode material. Appropriate carbonization conditions enable the bio-carbon materials to inherit the inherent hierarchical texture of the original biomass, thereby facilitating effective channels for fast ion transfer. The macropores and mesopores that result from chemical activation significantly increase the specific surface area and also play the role of temporary ion-buffering reservoirs, further shortening the ionic diffusion distance.

  16. Hydrothermal deposition and photochromic performances of three kinds of hierarchical structure arrays of WO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Defang; Shen, Yi, E-mail: sysy7373@163.com; Ouyang, Yali; Li, Zhen

    2012-10-01

    Three kinds of tungsten oxide (WO{sub 3}) thin films have been fabricated by a simple hydrothermal deposition method. Scanning electron microscopy images of the products revealed that the capping agents did impact the microstructure of WO{sub 3} films. Films prepared without capping agents were ordered nanorod arrays, while the ones obtained with ethanol and oxalic acid revealed peeled-orange-like and cauliflower-like hierarchical structure arrays, respectively. Both of the two hierarchical structures were composed of much thinner nanorods compared with the one obtained without capping agents. All the WO{sub 3} films exhibited good photochromic properties and the two with inducers performed even better, which could be due to the changes in the microstructure that increased the amount of photogenerated electron-hole pairs and the proton diffusion rates. - Highlights: Black-Right-Pointing-Pointer Ordered WO{sub 3} nanorod arrays were prepared by hydrothermal deposition process. Black-Right-Pointing-Pointer Two hierarchical WO{sub 3} structure arrays were obtained with ethanol and oxalic acid. Black-Right-Pointing-Pointer Mechanism for the improved photochromic performances of WO{sub 3} films is proposed.

  17. Hierarchical spatial genetic structure of Common Eiders (Somateria mollissima) breeding along a migratory corridor

    Science.gov (United States)

    Sonsthagen, S.A.; Talbot, S.L.; Lanctot, Richard B.; Scribner, K.T.; McCracken, K.G.

    2009-01-01

    Documentation of spatial genetic discordance among breeding populations of Arctic-nesting avian species is important, because anthropogenic change is altering environmental linkages at micro- and macrogeographic scales. We estimated levels of population subdivision within Pacific Common Eiders (Somateria mollissima v-nigrum) breeding on 12 barrier islands in the western Beaufort Sea, Alaska, using molecular markers and capture—mark—recapture (CMR) data. Common Eider populations were genetically structured on a microgeographic scale. Regional comparisons between populations breeding on island groups separated by 90 km (Mikkelsen Bay and Simpson Lagoon) revealed structuring at 14 microsatellite loci (F ST = 0.004, P Sea are strongly philopatric to island groups rather than to a particular island. Despite the apparent high site fidelity of females, coalescence-based models of gene flow suggest that asymmetrical western dispersal occurs between island groups and is likely mediated by Mikkelsen Bay females stopping early on spring migration at Simpson Lagoon to breed. Alternatively, late-arriving females may be predisposed to nest in Simpson Lagoon because of the greater availability and wider distribution of nesting habitat. Our results indicate that genetic discontinuities, mediated by female philopatry, can exist at microgeographic scales along established migratory corridors.

  18. The structure of nearby clusters of galaxies Hierarchical clustering and an application to the Leo region

    CERN Document Server

    Materne, J

    1978-01-01

    A new method of classifying groups of galaxies, called hierarchical clustering, is presented as a tool for the investigation of nearby groups of galaxies. The method is free from model assumptions about the groups. The scaling of the different coordinates is necessary, and the level from which one accepts the groups as real has to be determined. Hierarchical clustering is applied to an unbiased sample of galaxies in the Leo region. Five distinct groups result which have reasonable physical properties, such as low crossing times and conservative mass-to-light ratios, and which follow a radial velocity- luminosity relation. Only 4 out of 39 galaxies were adopted as field galaxies. (27 refs).

  19. Coexistence of competing stage-structured populations.

    KAUST Repository

    Fujiwara, Masami

    2011-10-05

    This paper analyzes the stability of a coexistence equilibrium point of a model for competition between two stage-structured populations. In this model, for each population, competition for resources may affect any one of the following population parameters: reproduction, juvenile survival, maturation rate, or adult survival. The results show that the competitive strength of a population is affected by (1) the ratio of the population parameter influenced by competition under no resource limitation (maximum compensatory capacity) over the same parameter under a resource limitation due to competition (equilibrium rate) and (2) the ratio of interspecific competition over intraspecific competition; this ratio was previously shown to depend on resource-use overlap. The former ratio, which we define as fitness, can be equalized by adjusting organisms\\' life history strategies, thereby promoting coexistence. We conclude that in addition to niche differentiation among populations, the life history strategies of organisms play an important role in coexistence.

  20. Hierarchical analysis of urban space

    OpenAIRE

    Kataeva, Y.

    2014-01-01

    Multi-level structure of urban space, multitude of subjects of its transformation, which follow asymmetric interests, multilevel system of institutions which regulate interaction in the "population business government -public organizations" system, determine the use of hierarchic approach to the analysis of urban space. The article observes theoretical justification of using this approach to study correlations and peculiarities of interaction in urban space as in an intricately organized syst...

  1. Facile and tunable synthesis of hierarchical mesoporous silica materials ranging from flower structure with wrinkled edges to hollow structure with coarse surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Nanjing, E-mail: nanjing.hao@dartmouth.edu [Dartmouth College, Thayer School of Engineering (United States); Li, Laifeng; Tang, Fangqiong, E-mail: tangfq@mail.ipc.ac.cn [Chinese Academy of Sciences, Technical Institute of Physics and Chemistry (China)

    2016-11-15

    Mesoporous silica materials have attracted great attention in many fields. However, facile and tunable synthesis of hierarchical mesoporous silica structures is still a big challenge, and thus the development of them still lags behind. Herein, well-defined mesoporous silica flower structure with wrinkled edges and mesoporous silica hollow structure with coarse surface were synthesized simply by using poly(vinylpyrrolidone) and hexadecylamine as cotemplates in different water/ethanol solvent systems. The shape evolution from flower to hollow can be easily realized by tuning the volume ratio of water to ethanol, and the yields of both materials can reach gram scale. The formation mechanisms of mesoporous silica flower and hollow structures were also experimentally investigated and discussed. These novel hierarchical structures having unique physicochemical properties may bring many interesting insights into scientific research and technological application.

  2. Population structure of the Classic period Maya.

    Science.gov (United States)

    Scherer, Andrew K

    2007-03-01

    This study examines the population structure of Classic period (A.D. 250-900) Maya populations through analysis of odontometric variation of 827 skeletons from 12 archaeological sites in Mexico, Guatemala, Belize, and Honduras. The hypothesis that isolation by distance characterized Classic period Maya population structure is tested using Relethford and Blangero's (Hum Biol 62 (1990) 5-25) approach to R matrix analysis for quantitative traits. These results provide important biological data for understanding ancient Maya population history, particularly the effects of the competing Tikal and Calakmul hegemonies on patterns of lowland Maya site interaction. An overall F(ST) of 0.018 is found for the Maya area, indicating little among-group variation for the Classic Maya sites tested. Principal coordinates plots derived from the R matrix analysis show little regional patterning in the data, though the geographic outliers of Kaminaljuyu and a pooled Pacific Coast sample did not cluster with the lowland Maya sites. Mantel tests comparing the biological distance matrix to a geographic distance matrix found no association between genetic and geographic distance. In the Relethford-Blangero analysis, most sites possess negative or near-zero residuals, indicating minimal extraregional gene flow. The exceptions were Barton Ramie, Kaminaljuyu, and Seibal. A scaled R matrix analysis clarifies that genetic drift is a consideration for understanding Classic Maya population structure. All results indicate that isolation by distance does not describe Classic period Maya population structure. (c) 2006 Wiley-Liss, Inc.

  3. A Hierarchical FEM approach for Simulation of Geometrical and Material induced Instability of Composite Structures

    DEFF Research Database (Denmark)

    Hansen, Anders L.; Lund, Erik; Pinho, Silvestre T.

    2009-01-01

    In this paper a hierarchical FE approach is utilized to simulate delamination in a composite plate loaded in uni-axial compression. Progressive delamination is modelled by use of cohesive interface elements that are automatically embedded. The non-linear problem is solved quasi-statically in whic...

  4. Towards directional assembly of hierarchical structures: aniline oligomers as the model precursors

    Czech Academy of Sciences Publication Activity Database

    Zhao, Y.; Stejskal, Jaroslav; Wang, J.

    2013-01-01

    Roč. 5, č. 7 (2013), s. 2620-2626 ISSN 2040-3364 R&D Projects: GA ČR GAP205/12/0911 Institutional support: RVO:61389013 Keywords : aniline oligomers * hierarchical nanostructures * microflowers Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.739, year: 2013

  5. Calculating evolutionary dynamics in structured populations.

    Directory of Open Access Journals (Sweden)

    Charles G Nathanson

    2009-12-01

    Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.

  6. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles.

    Science.gov (United States)

    Lin, Naibo; Liu, Xiang Yang

    2015-11-07

    This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted

  7. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors

    Science.gov (United States)

    Sun, Zhipeng; Firdoz, Shaik; Ying-Xuan Yap, Esther; Li, Lan; Lu, Xianmao

    2013-05-01

    We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization.We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly

  8. One-Step Synthesis of Hierarchical ZSM-5 Using Cetyltrimethylammonium as Mesoporogen and Structure-Directing Agent

    OpenAIRE

    Meng, Lingqian; Mezari, Brahim; Goesten, Maarten G.; Hensen, Emiel J. M.

    2017-01-01

    Hierarchical ZSM-5 zeolite is hydrothermally synthesized in a single step with cetyltrimethylammonium (CTA) hydroxide acting as mesoporogen and structure-directing agent. Essential to this synthesis is the replacement of NaOH with KOH. An in-depth solid-state NMR study reveals that, after early electrostatic interaction between condensed silica and the head group of CTA, ZSM-5 crystallizes around the structure-directing agent. The crucial aspect of using KOH instead of NaOH lies in the faster...

  9. Structural stability of nonlinear population dynamics.

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  10. Structural stability of nonlinear population dynamics

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  11. Hierarchical temporal structure in music, speech and animal vocalizations: jazz is like a conversation, humpbacks sing like hermit thrushes.

    Science.gov (United States)

    Kello, Christopher T; Bella, Simone Dalla; Médé, Butovens; Balasubramaniam, Ramesh

    2017-10-01

    Humans talk, sing and play music. Some species of birds and whales sing long and complex songs. All these behaviours and sounds exhibit hierarchical structure-syllables and notes are positioned within words and musical phrases, words and motives in sentences and musical phrases, and so on. We developed a new method to measure and compare hierarchical temporal structures in speech, song and music. The method identifies temporal events as peaks in the sound amplitude envelope, and quantifies event clustering across a range of timescales using Allan factor (AF) variance. AF variances were analysed and compared for over 200 different recordings from more than 16 different categories of signals, including recordings of speech in different contexts and languages, musical compositions and performances from different genres. Non-human vocalizations from two bird species and two types of marine mammals were also analysed for comparison. The resulting patterns of AF variance across timescales were distinct to each of four natural categories of complex sound: speech, popular music, classical music and complex animal vocalizations. Comparisons within and across categories indicated that nested clustering in longer timescales was more prominent when prosodic variation was greater, and when sounds came from interactions among individuals, including interactions between speakers, musicians, and even killer whales. Nested clustering also was more prominent for music compared with speech, and reflected beat structure for popular music and self-similarity across timescales for classical music. In summary, hierarchical temporal structures reflect the behavioural and social processes underlying complex vocalizations and musical performances. © 2017 The Author(s).

  12. Population structure of Staphylococcus aureus in China

    NARCIS (Netherlands)

    Yan, Xiaomei

    2015-01-01

    The present PhD research was aimed at analysing the population structure of Staphylococcus aureus in China. Between 2000 and 2005 we found that patients from a single Chinese hospital showed increasing trends in antimicrobial resistance. Among methicillin-resistant S. aureus (MRSA), resistance

  13. Social structural consequences of population growth.

    Science.gov (United States)

    Adams, R E

    1981-01-01

    Estimates from archaeological data of the numbers in the elite classes, nonelite occupational specialists, density of population, city size, and size of political units in the ancient Maya civilization suggest that there was a quantum shift in rate of development in the Early Classic period, associated with intensification of agriculture, and that the social structure approximated to a generalized feudal pattern.

  14. A hierarchical integrated population model for greater sage-grouse (Centrocercus urophasianus) in the Bi-State Distinct Population Segment, California and Nevada

    Science.gov (United States)

    Coates, Peter S.; Halstead, Brian J.; Blomberg, Erik J.; Brussee, Brianne; Howe, Kristy B.; Wiechman, Lief; Tebbenkamp, Joel; Reese, Kerry P.; Gardner, Scott C.; Casazza, Michael L.

    2014-01-01

    rate (i.e., finite rate of change, λ) and specific demographic parameters that explain sources of variation in λ within different subpopulations would be valuable for making conservation and management decisions for this DPS. During 2003–12, agencies and universities collaborated to conduct extensive monitoring of sage-grouse populations within the Bi-State DPS. Data regarding lek attendance, movement, and survival of sage-grouse across multiple life stages were documented. Specifically, sage-grouse from nearly all subpopulations were marked and tracked across multiple seasons using radio-telemetry techniques. A hierarchical integrated population modeling (IPM) approach was used to derive demographic parameters for the Bi-State DPS using the large amount of data collected over a 10-year period. This modeling approach allows integration of multiple data sources to inform population growth rates and population vital rates for the Bi-State DPS overall, as well as for individual subpopulations. These models are more informative than other models because they integrate inputs of demographic data (for example, survival and fecundity rates) and survey data (for example, lek observations). The findings here will help characterize population growth rates within the Bi-State DPS.

  15. Osteogenic activity of titanium surfaces with hierarchical micro/nano-structures obtained by hydrofluoric acid treatment

    Directory of Open Access Journals (Sweden)

    Liang J

    2017-02-01

    Full Text Available Jianfei Liang,1,* Shanshan Xu,1,* Mingming Shen,2,* Bingkun Cheng,3 Yongfeng Li,4 Xiangwei Liu,1 Dongze Qin,1 Anuj Bellare,5 Liang Kong1 1State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, 2Department of Stomatology, Xinhua Hospital of Beijing, Beijing, 3Department of Oral and Maxillofacial Surgery, School of Stomatology, The Second Hospital of Hebei Medical University, Shijiazhuang, 4Department of Stomatology, Chinese PLA 532 Hospital, Huangshan, People’s Republic of China; 5Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA *These authors contributed equally to this work Abstract: An easier method for constructing the hierarchical micro-/nano-structures on the surface of dental implants in the clinic is needed. In this study, three different titanium surfaces with microscale grooves (width 0.5–1, 1–1.5, and 1.5–2 µm and nanoscale nanoparticles (diameter 20–30, 30–50, and 50–100 nm, respectively were obtained by treatment with different concentrations of hydrofluoric acid (HF and at different etching times (1%, 3 min; 0.5%, 12 min; and 1.5%, 12 min, respectively; denoted as groups HF1, HF2, and HF3. The biological response to the three different titanium surfaces was evaluated by in vitro human bone marrow-derived mesenchymal stem cell (hBMMSC experiments and in vivo animal experiments. The results showed that cell adhesion, proliferation, alkaline phosphatase activity, and mineralization of hBMMSCs were increased in the HF3 group. After the different surface implants were inserted into the distal femurs of 40 rats, the bone–implant contact in groups HF1, HF2, and HF3 was 33.17%±2.2%, 33.82%±3.42%, and 41.04%±3.08%, respectively. Moreover, the maximal pullout

  16. The role of the hierarchical theory in explaining the capital structure of the firms based on enterprise life cycle model

    Directory of Open Access Journals (Sweden)

    Jamal Bahiri Saleth

    2016-01-01

    Full Text Available Capital structure is a controversial issue in the field of corporate finance. There are several studies to find a way to determine the optimal capital structure to minimize the cost of capital and maximize the corporate value. In fact, capital structure is a combination of firms’ liabilities and capital to meet long term assets. This paper investigates the role of the hierarchical theory in explaining the capital structure of the firms based on enterprise life cycle model on selected firms listed on Tehran Stock Exchange (TSE using three methods of net equities, net liabilities and retained earnings. The study uses Park and Chen’s (2006 method [Park, Y., & Chen, K. H. (2006. The effect of accounting conservatism and life-cycle stages on firm valuation. Journal of Applied Business Research (JABR, 22(3, 75-92.] to categorize the life cycle of 81 randomly selected firms from TSE over the period 2007-2012. The results indicate that the hierarchical theory represents the growing firms better than the matured firms do. The results also show that firms were more willing to reduce their dividend per share for financing their projects.

  17. Familial identification: population structure and relationship distinguishability.

    Science.gov (United States)

    Rohlfs, Rori V; Fullerton, Stephanie Malia; Weir, Bruce S

    2012-02-01

    With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these results indicate that caution is warranted in the application of familial searching in structured populations, such as in the United States.

  18. Phytophthora infestans population structure: A worldwide scale

    International Nuclear Information System (INIS)

    Cardenas, Martha; Danies, Giovanna; Tabima, Javier; Bernal, Adriana; Restrepo, Silvia

    2012-01-01

    Phytophthora infestans, the causal agent of late blight disease in potato and other members of the Solanaceae family, is responsible for causing the Irish potato famine and, even today, it causes enormous economic losses all over the world. For the establishment of an adequate pest management strategy, the determination of the pathogen's population structure is required. To characterize P. infestans populations worldwide two allozymes, Gpi (Glucose-6-phospate isomerase) and Pep (Pep tidase), the RG57 DNA RFLP fingerprinting probe, as well as resistance to the fungicide metalaxyl and mating type, have been used as markers. P. infestans populations in Mexico have been one of the main focuses of research in the population biology of this pathogen because this country has been considered as one of the possible centers of origin of this oomycete. In this review we present the population structure of P. infestans in Mexico, Europe, Africa, Asia, North America, and South America, expanding it on the present situation of P. infestans in Colombia. Finally, we will discuss different lines of research that are being carried out today with respect to P. infestans in Colombia, which have shown the importance of continuing the study of this devastating plant pathogen in our country.

  19. Phytophthora infestans population structure: a worldwide scale

    Directory of Open Access Journals (Sweden)

    Martha Cárdenas Toquica

    2012-05-01

    Full Text Available Phytophthora infestans, the causal agent of late blight disease in potato and other members of the Solanaceae family, is responsible for causing the Irish potato famine and, even today, it causes enormous economic losses all over the world. For the establishment of an adequate pest management strategy, the determination of population structure is required. To characterize P. infestans populations worldwide two allozymes, Gpi (Glucose-6-phospate isomerase and Pep (Peptidase, the RG57 DNA RFLP fingerprinting probe, as well as resistance to the fungicide metalaxyl and the mating type, have been used as markers. P. infestans populations in Mexico have been one of the main focuses of research in the population biology of this pathogen because this country has been considered as one of the possible centers of origin of this oomycete. In this review we present the population structure of P. infestans in Mexico, Europe, Africa, Asia, North America, and South America expanding on the present situation of P. infestans in Colombia. Finally, we will discuss different lines of research that are being carried out today with respect to P. infestans in Colombia, which have shown the importance of continuing the study of this devastating plant pathogen in our country.

  20. Familial identification: population structure and relationship distinguishability.

    Directory of Open Access Journals (Sweden)

    Rori V Rohlfs

    2012-02-01

    Full Text Available With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these results indicate that caution is warranted in the application of familial searching in structured populations, such as in the United States.

  1. The type I error rate for in vivo Comet assay data when the hierarchical structure is disregarded

    DEFF Research Database (Denmark)

    Hansen, Merete Kjær; Kulahci, Murat

    the type I error rate is greater than the nominal _ at 0.05. Closed-form expressions based on scaled F-distributions using the Welch-Satterthwaite approximation are provided to show how the type I error rate is aUected. With this study we hope to motivate researchers to be more precise regarding......, and this imposes considerable impact on the type I error rate. This study aims to demonstrate the implications that result from disregarding the hierarchical structure. DiUerent combinations of the factor levels as they appear in a literature study give type I error rates up to 0.51 and for all combinations...

  2. Genetic structure of Rajaka caste and affinities with other caste populations of Andhra Pradesh, India.

    Science.gov (United States)

    Parvatheesam, C; Babu, B V; Babu, M C

    1997-01-01

    The present study gives an account of the genetic structure in terms of distribution of a few genetic markers, viz., A1A2B0, Rh(D), G6PD deficiency and haemoglobin among the Rajaka caste population of Andhra Pradesh, India. The genetic relationships of the Rajaka caste with other Andhra caste populations were investigated in terms of genetic distance, i.e., Sq B (mn) of Balakrishnan and Sanghvi. Relatively lesser distance was established between the Rajaka and two Panchama castes. Also, the pattern of genetic distance corroborates the hierarchical order of the Hindu varna system.

  3. Structured population dynamics: continuous size and discontinuous stage structures.

    Science.gov (United States)

    Buffoni, Giuseppe; Pasquali, Sara

    2007-04-01

    A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.

  4. Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jubouri, Sama M. [Chemical Engineering & Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Curry, Nicholas A. [Materials Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Holmes, Stuart M., E-mail: stuart.holmes@manchester.ac.uk [Chemical Engineering & Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-12-15

    A hierarchical structured composite made from clinoptilolite supported on date stones carbon is synthesized using two techniques. The composites are manufactured by fixing a natural zeolite (clinoptilolite) to the porous surface of date stones carbon or by direct hydrothermal synthesis on to the surface to provide a supported high surface area ion-exchange material for metal ion removal from aqueous streams. The fixing of the clinoptilolite is achieved using sucrose and citric acid as a binder. The composites and pure clinoptilolite were compared to test the efficacy for the removal of Sr{sup 2+} ions from an aqueous phase. The encapsulation of the Sr{sup 2+} using either vitrification or a geo-polymer addition was tested to ensure that the hazardous waste can be made safe for disposal. The hierarchical structured composites were shown to achieve a higher ion exchange capacity per gram of zeolite than the pure clinoptilolite (65 mg/g for the pure natural clinoptilolite and 72 mg/g for the pure synthesized clinoptilolite) with the synthesized composite (160 mg/g) having higher capacity than the natural clinoptilolite composite (95 mg/g). The rate at which the equilibria were established followed the same trend showing the composite structure facilitates diffusion to the ion-exchange sites in the zeolite.

  5. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    International Nuclear Information System (INIS)

    Martínez-Calderon, M.; Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M.

    2016-01-01

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm"2 were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  6. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Calderon, M., E-mail: mmcalderon@ceit.es [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M. [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain)

    2016-06-30

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm{sup 2} were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  7. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  8. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    Science.gov (United States)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  9. The Origin of Hierarchical Structure in Self-Assembled Graphene Oxide Papers and the Effect on Mechanical Properties

    Science.gov (United States)

    Nandy, Krishanu

    The quest for new materials with ever improving properties has motivated interest in bulk nanostructured materials. Graphene, a two-dimensional sheet of hexagonally arranged carbon atoms, has been of particular interest given its exceptional mechanical, thermal, optical and electrical properties. Graphene oxide is a chemically modified form of graphene in which the honeycomb lattice of carbon atoms is decorated with oxygen bearing functional groups. Graphene oxide represents a facile route for the production of large quantities of graphene based materials, is stable in aqueous and polar organic solvents and has the potential for further chemical modification. In this dissertation, the origin and influence of hierarchical structure on the mechanical properties of graphene oxide paper and graphene oxide paper based materials has been investigated. Free-standing papers derived from graphene oxide are of interest as structural materials due to their impressive mechanical properties. While studies have investigated the mechanical properties of graphene oxide papers, little is known about the formation mechanism. Using a series of flash-freezing experiments on graphene oxide papers undergoing formation, a stop-motion animation of the fabrication process was obtained. The results explain the origin of the hierarchical nature of graphene oxide papers and provide a method for the tailoring of graphene oxide based materials. An in depth study of fusion of graphene oxide papers demonstrates a simple single-step route for the fabrication of practical materials derived from graphene oxide papers. Fused papers retain the properties of constituent papers allowing for the fabrication of mechanical heterostructures that replicate the hierarchical nature of natural materials. The contribution of the hierarchical nature of graphene oxide papers to the mechanical properties was examined by comparing papers formed by two different mechanisms. The intermediate length scale structures

  10. Trading Stages: Life Expectancies in Structured Populations

    Science.gov (United States)

    Tuljapurkar, Shripad; Coulson, Tim; Horvitz, Carol

    2012-01-01

    Interest in stage-and age structured models has recently increased because they can describe quantitative traits such as size that are left out of age-only demography. Available methods for the analysis of effects of vital rates on lifespan in stage-structured models have not been widely applied because they are hard to use and interpret, and tools for age and stage structured populations are missing. We present easily interpretable expressions for the sensitivities and elasticities of life expectancy to vital rates in age-stage models, and illustrate their application with two biological examples. Much of our approach relies on trading of time and mortality risk in one stage for time and risk in others. Our approach contributes to the new framework of the study of age- and stage-structured biodemography. PMID:22664576

  11. Fairness and Trust in Structured Populations

    Directory of Open Access Journals (Sweden)

    Corina E. Tarnita

    2015-07-01

    Full Text Available Classical economic theory assumes that people are rational and selfish, but behavioral experiments often point to inconsistent behavior, typically attributed to “other regarding preferences.” The Ultimatum Game, used to study fairness, and the Trust Game, used to study trust and trustworthiness, have been two of the most influential and well-studied examples of inconsistent behavior. Recently, evolutionary biologists have attempted to explain the evolution of such preferences using evolutionary game theoretic models. While deterministic evolutionary game theoretic models agree with the classical economics predictions, recent stochastic approaches that include uncertainty and the possibility of mistakes have been successful in accounting for both the evolution of fairness and the evolution of trust. Here I explore the role of population structure by generalizing and expanding these existing results to the case of non-random interactions. This is a natural extension since such interactions do not occur randomly in the daily lives of individuals. I find that, in the limit of weak selection, population structure increases the space of fair strategies that are selected for but it has little-to-no effect on the optimum strategy played in the Ultimatum Game. In the Trust Game, in the limit of weak selection, I find that some amount of trust and trustworthiness can evolve even in a well-mixed population; however, the optimal strategy, although trusting if the return on investment is sufficiently high, is never trustworthy. Population structure biases selection towards strategies that are both trusting and trustworthy trustworthy and reduces the critical return threshold, but, much like in the case of fairness, it does not affect the winning strategy. Further considering the effects of reputation and structure, I find that they act synergistically to promote the evolution of trustworthiness.

  12. Population structure of Staphylococcus aureus in China

    OpenAIRE

    Yan, Xiaomei

    2015-01-01

    The present PhD research was aimed at analysing the population structure of Staphylococcus aureus in China. Between 2000 and 2005 we found that patients from a single Chinese hospital showed increasing trends in antimicrobial resistance. Among methicillin-resistant S. aureus (MRSA), resistance against rifampicin doubled to 68%. Staphylococcal food poisoning (SFP) is frequent in China. Two predominant S. aureus lineages, ST6 and ST943, were identified causing outbreaks of SFP in Southern China...

  13. Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chunping; Lu, Zhong; Zhao, Huiping; Yang, Hao, E-mail: hyangwit@hotmail.com; Chen, Rong, E-mail: rchenhku@hotmail.com

    2015-10-30

    Graphical abstract: - Highlights: • Hierarchical bismuth nanostructures were synthesized by galvanic replacement reaction. • The bismuth coating shows superhydrophobicity after being modified by stearic acid. • Wetting transition could be realized by alternation of irradiation and modification. - Abstract: Special wettability such as superhydrophobicity and superhydrophilicity has aroused considerable attention in recent years, especially for the surface that can be switched between superhydrophobicity and superhydrophilicity. In this work, hierarchical bismuth nanostructures with hyperbranched dendritic architectures were synthesized via the galvanic replacement reaction between zinc plate and BiCl{sub 3} in ethylene glycol solution, which was composed of a trunk, branches (secondary branch), and leaves (tertiary branch). After being modified by stearic acid, the as-prepared bismuth coating shows superhydrophobicity with a high water contact angle of 164.8° and a low sliding angle of 3°. More importantly, a remarkable surface wettability transition between superhydrophobicity and superhydrophilicity could be easily realized by the alternation of UV–vis irradiation and modification with stearic acid. The tunable wetting behavior of bismuth coating could be used as smart materials to make a great application in practice.

  14. Hierarchically structured self-supported latex films for flexible and semi-transparent electronics

    Science.gov (United States)

    Määttänen, Anni; Ihalainen, Petri; Törngren, Björn; Rosqvist, Emil; Pesonen, Markus; Peltonen, Jouko

    2016-02-01

    Different length scale alterations in topography, surface texture, and symmetry are known to evoke diverse cell behavior, including adhesion, orientation, motility, cytoskeletal condensation, and modulation of intracellular signaling pathways. In this work, self-supported latex films with well-defined isotropic/anisotropic surface features and hierarchical morphologies were fabricated by a peel-off process from different template surfaces. In addition, the latex films were used as substrates for evaporated ultrathin gold films with nominal thicknesses of 10 and 20 nm. Optical properties and topography of the samples were characterized using UV-vis spectroscopy and Atomic Force Microscopy (AFM) measurements, respectively. The latex films showed high-level transmittance of visible light, enabling the fabrication of semi-transparent gold electrodes. Electrochemical impedance spectroscopy (EIS) measurements were carried out for a number of days to investigate the long-term stability of the electrodes. The effect of 1-octadecanethiol (ODT) and HS(CH2)11OH (MuOH) thiolation and protein (human serum albumin, HSA) adsorption on the impedance and capacitance was studied. In addition, cyclic voltammetry (CV) measurements were carried out to determine active medicinal components, i.e., caffeic acid with interesting biological activities and poorly water-soluble anti-inflammatory drug, piroxicam. The results show that the fabrication procedure presented in this study enables the formation of platforms with hierarchical morphologies for multimodal (optical and electrical) real-time monitoring of length-scale-dependent biomaterial-surface interactions.

  15. Biomimetic fabrication and tunable wetting properties of three-dimensional hierarchical ZnO structures by combining soft lithography templated with lotus leaf and hydrothermal treatments

    OpenAIRE

    Dai, Shuxi; Zhang, Dianbo; Shi, Qing; Han, Xiao; Wang, Shujie; Du, Zuliang

    2013-01-01

    Three-dimensional hierarchical ZnO films with lotus-leaf-like micro/nano structures were successfully fabricated via a biomimetic route combining sol-gel technique, soft lithography and hydrothermal treatments. PDMS mold replicated from a fresh lotus leaf was used to imprint microscale pillar structures directly into a ZnO sol film. Hierarchical ZnO micro/nano structures were subsequently fabricated by a low-temperature hydrothermal growth of secondary ZnO nanorod arrays on the micro-structur...

  16. Enhanced photoelectrochemical properties of F-containing TiO2 sphere thin film induced by its novel hierarchical structure

    International Nuclear Information System (INIS)

    Dong Xiang; Tao Jie; Li Yingying; Zhu Hong

    2009-01-01

    The novel nanostructured F-containing TiO 2 (F-TiO 2 ) sphere was directly synthesized on the surface of Ti foil in the solution of NH 4 F and HCl by one-step hydrothermal approach under low-temperature condition. The samples were characterized respectively by means of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results showed that the F-TiO 2 sphere was hierarchical structure, which composed of porous octahedron crystals with one truncated cone, leading to a football-like morphology. XPS results indicated that F - anions were just physically adsorbed on the surface of TiO 2 microspheres. The studies on the optical properties of the F-TiO 2 were carried out by UV-vis light absorption spectrum. The surface fluorination of the spheres, the unique nanostructure induced accessible macropores or mesopores, and the increased light-harvesting abilities were crucial for the high photoelectrochemical activity of the synthesized F-TiO 2 sphere for water-splitting. The photocurrent density of the F-TiO 2 sphere thin film was more than two times than that of the P25 thin film. Meanwhile, a formation mechanism was briefly proposed. This approach could provide a facile method to synthesize F-TiO 2 microsphere with a special morphology and hierarchical structure in large scale.

  17. Effect of hierarchical pore structure on ALP expression of MC3T3-E1 cells on bioglass films.

    Science.gov (United States)

    Yu, Cuixia; Zhuang, Junjun; Dong, Lingqing; Cheng, Kui; Weng, Wenjian

    2017-08-01

    Hierarchical porous bioglass films on the tantalum were designed to enhance osteointegration of metallic implants. The films were prepared by a sol-gel method using P123 as the mesopore template and polystyrene microsphere as the nanopore template. The films with 5.4nm mesopores and 100nm nanopores (MBG-100) elicited an obviously elongated morphology of the cultured MC3T3-E1 cells, as a result, a higher alkaline phosphatase level was expressed. It is suggested that the nanopores play an important role in regulating cellular behavior by initial protein adsorption through nanopore curvatures. The mesopores were proven very effective for loading rhBMP-2, and the rhBMP-2 loaded on MBG-100 films showed a better function of enhancing osteogenic differentiation, which is attributed to that the nanopore structure could expedite rhBMP-2 release and provide a microenvironment for intensifying the interaction of rhBMP-2 with the cells. Hence, the cell osteogenic differentiation can be enhanced by hierarchical porous bioglass films through both the porous structure and rhBMP-2 induction. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor – new design principles for biomimetic materials

    Directory of Open Access Journals (Sweden)

    Anna J. Schulte

    2011-05-01

    Full Text Available Hierarchically structured flower leaves (petals of many plants are superhydrophobic, but water droplets do not roll-off when the surfaces are tilted. On such surfaces water droplets are in the “Cassie impregnating wetting state”, which is also known as the “petal effect”. By analyzing the petal surfaces of different species, we discovered interesting new wetting characteristics of the surface of the flower of the wild pansy (Viola tricolor. This surface is superhydrophobic with a static contact angle of 169° and very low hysteresis, i.e., the petal effect does not exist and water droplets roll-off as from a lotus (Nelumbo nucifera leaf. However, the surface of the wild pansy petal does not possess the wax crystals of the lotus leaf. Its petals exhibit high cone-shaped cells (average size 40 µm with a high aspect ratio (2.1 and a very fine cuticular folding (width 260 nm on top. The applied water droplets are in the Cassie–Baxter wetting state and roll-off at inclination angles below 5°. Fabricated hydrophobic polymer replicas of the wild pansy were prepared in an easy two-step moulding process and possess the same wetting characteristics as the original flowers. In this work we present a technical surface with a new superhydrophobic, low adhesive surface design, which combines the hierarchical structuring of petals with a wetting behavior similar to that of the lotus leaf.

  19. Hierarchical structure of the energy landscape of proteins revisited by time series analysis. II. Investigation of explicit solvent effects

    Science.gov (United States)

    Alakent, Burak; Camurdan, Mehmet C.; Doruker, Pemra

    2005-10-01

    Time series analysis tools are employed on the principal modes obtained from the Cα trajectories from two independent molecular-dynamics simulations of α-amylase inhibitor (tendamistat). Fluctuations inside an energy minimum (intraminimum motions), transitions between minima (interminimum motions), and relaxations in different hierarchical energy levels are investigated and compared with those encountered in vacuum by using different sampling window sizes and intervals. The low-frequency low-indexed mode relationship, established in vacuum, is also encountered in water, which shows the reliability of the important dynamics information offered by principal components analysis in water. It has been shown that examining a short data collection period (100ps) may result in a high population of overdamped modes, while some of the low-frequency oscillations (memory: future conformations are less dependent on previous conformations due to the lowering of energy barriers in hierarchical levels of the energy landscape. In short-time dynamics (sight contradicts. However, this comes about because water enhances the transitions between minima and forces the protein to reduce its already inherent inability to maintain oscillations observed in vacuum. Some of the frequencies lower than 10cm-1 are found to be overdamped, while those higher than 20cm-1 are slightly increased. As for the long-time dynamics in water, it is found that random-walk motion is maintained for approximately 200ps (about five times of that in vacuum) in the low-indexed modes, showing the lowering of energy barriers between the higher-level minima.

  20. Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data?

    NARCIS (Netherlands)

    Odong, T.L.; Heerwaarden, van J.; Jansen, J.; Hintum, van T.J.L.; Eeuwijk, van F.A.

    2011-01-01

    Despite the availability of newer approaches, traditional hierarchical clustering remains very popular in genetic diversity studies in plants. However, little is known about its suitability for molecular marker data. We studied the performance of traditional hierarchical clustering techniques using

  1. Hierarchical spatial segregation of two Mediterranean vole species: the role of patch-network structure and matrix composition.

    Science.gov (United States)

    Pita, Ricardo; Lambin, Xavier; Mira, António; Beja, Pedro

    2016-09-01

    According to ecological theory, the coexistence of competitors in patchy environments may be facilitated by hierarchical spatial segregation along axes of environmental variation, but empirical evidence is limited. Cabrera and water voles show a metapopulation-like structure in Mediterranean farmland, where they are known to segregate along space, habitat, and time axes within habitat patches. Here, we assess whether segregation also occurs among and within landscapes, and how this is influenced by patch-network and matrix composition. We surveyed 75 landscapes, each covering 78 ha, where we mapped all habitat patches potentially suitable for Cabrera and water voles, and the area effectively occupied by each species (extent of occupancy). The relatively large water vole tended to be the sole occupant of landscapes with high habitat amount but relatively low patch density (i.e., with a few large patches), and with a predominantly agricultural matrix, whereas landscapes with high patch density (i.e., many small patches) and low agricultural cover, tended to be occupied exclusively by the small Cabrera vole. The two species tended to co-occur in landscapes with intermediate patch-network and matrix characteristics, though their extents of occurrence were negatively correlated after controlling for environmental effects. In combination with our previous studies on the Cabrera-water vole system, these findings illustrated empirically the occurrence of hierarchical spatial segregation, ranging from within-patches to among-landscapes. Overall, our study suggests that recognizing the hierarchical nature of spatial segregation patterns and their major environmental drivers should enhance our understanding of species coexistence in patchy environments.

  2. Nanocrystalline TiO{sub 2} photocatalytic membranes with a hierarchical mesoporous multilayer structure: synthesis, characterization, and multifunction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.; Dionysiou, D.D. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0071 (United States); Sofranko, A.C. [Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904-4741 (United States)

    2006-05-19

    A novel sol-gel dip-coating process to fabricate nanocrystalline TiO{sub 2} photocatalytic membranes with a robust hierarchical mesoporous multilayer and improved performance has been studied. Various titania sols containing poly(oxyethylenesorbitan monooleate) (Tween 80) surfactant as a pore-directing agent to tailor-design the porous structure of TiO{sub 2} materials at different molar ratios of Tween 80/isopropyl alcohol/acetic acid/titanium tetraisopropoxide = R:45:6:1 have been synthesized. The sols are dip-coated on top of a homemade porous alumina substrate to fabricate TiO{sub 2}/Al{sub 2}O{sub 3} composite membranes, dried, and calcined, and this procedure is repeated with varying sols in succession. The resulting asymmetric mesoporous TiO{sub 2} membrane with a thickness of 0.9 {mu}m exhibits a hierarchical change in pore diameter from 2-6, through 3-8, to 5-11 nm from the top to the bottom layer. Moreover, the corresponding porosity is incremented from 46.2, through 56.7, to 69.3 %. Compared to a repeated-coating process using a single sol, the hierarchical multilayer process improves water permeability significantly without sacrificing the organic retention and photocatalytic activity of the TiO{sub 2} membranes. The prepared TiO{sub 2} photocatalytic membrane has great potential in developing highly efficient water treatment and reuse systems, for example, decomposition of organic pollutants, inactivation of pathogenic microorganisms, physical separation of contaminants, and self-antifouling action because of its multifunctional capability. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  3. A Hierarchical Phosphorus Nanobarbed Nanowire Hybrid: Its Structure and Electrochemical Properties.

    Science.gov (United States)

    Zhao, Dan; Li, Beibei; Zhang, Jinying; Li, Xin; Xiao, Dingbin; Fu, Chengcheng; Zhang, Lihui; Li, Zhihui; Li, Jun; Cao, Daxian; Niu, Chunming

    2017-06-14

    Nanostructured phosphorus-carbon composites are promising materials for Li-ion and Na-ion battery anodes. A hierarchical phosphorus hybrid, SiC@graphene@P, has been synthesized by the chemical vapor deposition of phosphorus on the surfaces of barbed nanowires, where the barbs are vertically grown graphene nanosheets and the cores are SiC nanowires. A temperature-gradient vaporization-condensation method has been used to remove the unhybridized phosphorus particles formed by homogeneous nucleation. The vertically grown barb shaped graphene nanosheets and a high concentration of edge carbon atoms induced a fibrous red phosphorus (f-RP) growth with its {001} planes in parallel to {002} planes of nanographene sheets and led to a strong interpenetrated interface interaction between phosphorus and the surfaces of graphene nanosheets. This hybridization has been demonstrated to significantly enhance the electrochemical performances of phosphorus.

  4. Control Strategies for Islanded Microgrid using Enhanced Hierarchical Control Structure with Multiple Current-Loop Damping Schemes

    DEFF Research Database (Denmark)

    Han, Yang; Shen, Pan; Zhao, Xin

    2017-01-01

    In this paper, the modeling, controller design, and stability analysis of the islanded microgrid (MG) using enhanced hierarchical control structure with multiple current loop damping schemes is proposed. The islanded MG is consisted of the parallel-connected voltage source inverters using LCL...... output filters, and the proposed control structure includes: the primary control with additional phase-shift loop, the secondary control for voltage amplitude and frequency restoration, the virtual impedance loops which contains virtual positive- and negative-sequence impedance loops at fundamental...... frequency, and virtual variable harmonic impedance loop at harmonic frequencies, and the inner voltage and current loop controllers. A small-signal model for the primary and secondary controls with additional phase-shift loop is presented, which shows an over-damped feature from eigenvalue analysis...

  5. Hierarchical Micro/Nano Structures by Combined Self-Organized Dewetting and Photopatterning of Photoresist Thin Films.

    Science.gov (United States)

    Sachan, Priyanka; Kulkarni, Manish; Sharma, Ashutosh

    2015-11-17

    Photoresists are the materials of choice for micro/nanopatterning and device fabrication but are rarely used as a self-assembly material. We report for the first time a novel interplay of self-assembly and photolithography for fabrication of hierarchical and ordered micro/nano structures. We create self-organized structures by the intensified dewetting of unstable thin (∼10 nm to 1 μm) photoresist films by annealing them in an optimal solvent and nonsolvent liquid mixture that allows spontaneous dewetting to form micro/nano smooth dome-like structures. The density, size (∼100 nm to millimeters), and curvature/contact angle of the dome/droplet structures are controlled by the film thickness, composition of the dewetting liquid, and time of annealing. Ordered dewetted structures are obtained simply by creating spatial variation of viscosity by ultraviolet exposure or by photopatterning before dewetting. Further, the structures thus fabricated are readily photopatterned again on the finer length scales after dewetting. We illustrate the approach by fabricating several three-dimensional structures of varying complexity with secondary and tertiary features.

  6. Genome Scan for Selection in Structured Layer Chicken Populations Exploiting Linkage Disequilibrium Information.

    Directory of Open Access Journals (Sweden)

    Mahmood Gholami

    Full Text Available An increasing interest is being placed in the detection of genes, or genomic regions, that have been targeted by selection because identifying signatures of selection can lead to a better understanding of genotype-phenotype relationships. A common strategy for the detection of selection signatures is to compare samples from distinct populations and to search for genomic regions with outstanding genetic differentiation. The aim of this study was to detect selective signatures in layer chicken populations using a recently proposed approach, hapFLK, which exploits linkage disequilibrium information while accounting appropriately for the hierarchical structure of populations. We performed the analysis on 70 individuals from three commercial layer breeds (White Leghorn, White Rock and Rhode Island Red, genotyped for approximately 1 million SNPs. We found a total of 41 and 107 regions with outstanding differentiation or similarity using hapFLK and its single SNP counterpart FLK respectively. Annotation of selection signature regions revealed various genes and QTL corresponding to productions traits, for which layer breeds were selected. A number of the detected genes were associated with growth and carcass traits, including IGF-1R, AGRP and STAT5B. We also annotated an interesting gene associated with the dark brown feather color mutational phenotype in chickens (SOX10. We compared FST, FLK and hapFLK and demonstrated that exploiting linkage disequilibrium information and accounting for hierarchical population structure decreased the false detection rate.

  7. Assembly of CdS Quantum Dots onto Hierarchical TiO2 Structure for Quantum Dots Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Syed Mansoor Ali

    2015-05-01

    Full Text Available Quantum dot (QD sensitized solar cells based on Hierarchical TiO2 structure (HTS consisting of spherical nano-urchins on transparent conductive fluorine doped tin oxide glass substrate is fabricated. The hierarchical TiO2 structure consisting of spherical nano-urchins on transparent conductive fluorine doped tin oxide glass substrate synthesized by hydrothermal route. The CdS quantum dots were grown by the successive ionic layer adsorption and reaction deposition method. The quantum dot sensitized solar cell based on the hierarchical TiO2 structure shows a current density JSC = 1.44 mA, VOC = 0.46 V, FF = 0.42 and η = 0.27%. The QD provide a high surface area and nano-urchins offer a highway for fast charge collection and multiple scattering centers within the photoelectrode.

  8. Mapping population-based structural connectomes.

    Science.gov (United States)

    Zhang, Zhengwu; Descoteaux, Maxime; Zhang, Jingwen; Girard, Gabriel; Chamberland, Maxime; Dunson, David; Srivastava, Anuj; Zhu, Hongtu

    2018-05-15

    Advances in understanding the structural connectomes of human brain require improved approaches for the construction, comparison and integration of high-dimensional whole-brain tractography data from a large number of individuals. This article develops a population-based structural connectome (PSC) mapping framework to address these challenges. PSC simultaneously characterizes a large number of white matter bundles within and across different subjects by registering different subjects' brains based on coarse cortical parcellations, compressing the bundles of each connection, and extracting novel connection weights. A robust tractography algorithm and streamline post-processing techniques, including dilation of gray matter regions, streamline cutting, and outlier streamline removal are applied to improve the robustness of the extracted structural connectomes. The developed PSC framework can be used to reproducibly extract binary networks, weighted networks and streamline-based brain connectomes. We apply the PSC to Human Connectome Project data to illustrate its application in characterizing normal variations and heritability of structural connectomes in healthy subjects. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Contextual effects in visual working memory reveal hierarchically structured memory representations.

    Science.gov (United States)

    Brady, Timothy F; Alvarez, George A

    2015-01-01

    Influential slot and resource models of visual working memory make the assumption that items are stored in memory as independent units, and that there are no interactions between them. Consequently, these models predict that the number of items to be remembered (the set size) is the primary determinant of working memory performance, and therefore these models quantify memory capacity in terms of the number and quality of individual items that can be stored. Here we demonstrate that there is substantial variance in display difficulty within a single set size, suggesting that limits based on the number of individual items alone cannot explain working memory storage. We asked hundreds of participants to remember the same sets of displays, and discovered that participants were highly consistent in terms of which items and displays were hardest or easiest to remember. Although a simple grouping or chunking strategy could not explain this individual-display variability, a model with multiple, interacting levels of representation could explain some of the display-by-display differences. Specifically, a model that includes a hierarchical representation of items plus the mean and variance of sets of the colors on the display successfully accounts for some of the variability across displays. We conclude that working memory representations are composed only in part of individual, independent object representations, and that a major factor in how many items are remembered on a particular display is interitem representations such as perceptual grouping, ensemble, and texture representations.

  10. Falling Leaves Inspired ZnO Nanorods-Nanoslices Hierarchical Structure for Implant Surface Modification with Two Stage Releasing Features.

    Science.gov (United States)

    Liao, Hang; Miao, Xinxin; Ye, Jing; Wu, Tianlong; Deng, Zhongbo; Li, Chen; Jia, Jingyu; Cheng, Xigao; Wang, Xiaolei

    2017-04-19

    Inspired from falling leaves, ZnO nanorods-nanoslices hierarchical structure (NHS) was constructed to modify the surfaces of two widely used implant materials: titanium (Ti) and tantalum (Ta), respectively. By which means, two-stage release of antibacterial active substances were realized to address the clinical importance of long-term broad-spectrum antibacterial activity. At early stages (within 48 h), the NHS exhibited a rapid releasing to kill the bacteria around the implant immediately. At a second stage (over 2 weeks), the NHS exhibited a slow releasing to realize long-term inhibition. The excellent antibacterial activity of ZnO NHS was confirmed once again by animal test in vivo. According to the subsequent experiments, the ZnO NHS coating exhibited the great advantage of high efficiency, low toxicity, and long-term durability, which could be a feasible manner to prevent the abuse of antibiotics on implant-related surgery.

  11. Hierarchical linear modeling (HLM) of longitudinal brain structural and cognitive changes in alcohol-dependent individuals during sobriety

    DEFF Research Database (Denmark)

    Yeh, P.H.; Gazdzinski, S.; Durazzo, T.C.

    2007-01-01

    faster brain volume gains, which were also related to greater smoking and drinking severities. Over 7 months of abstinence from alcohol, sALC compared to nsALC showed less improvements in visuospatial learning and memory despite larger brain volume gains and ventricular shrinkage. Conclusions: Different......)-derived brain volume changes and cognitive changes in abstinent alcohol-dependent individuals as a function of smoking status, smoking severity, and drinking quantities. Methods: Twenty non-smoking recovering alcoholics (nsALC) and 30 age-matched smoking recovering alcoholics (sALC) underwent quantitative MRI...... time points. Using HLM, we modeled volumetric and cognitive outcome measures as a function of cigarette and alcohol use variables. Results: Different hierarchical linear models with unique model structures are presented and discussed. The results show that smaller brain volumes at baseline predict...

  12. A Decentralized Approach to the Formulation of Hypotheses: A Hierarchical Structural Model for a Prion Self-Assembled System

    Science.gov (United States)

    Wang, Mingyang; Zhang, Feifei; Song, Chao; Shi, Pengfei; Zhu, Jin

    2016-07-01

    Innovation in hypotheses is a key transformative driver for scientific development. The conventional centralized hypothesis formulation approach, where a dominant hypothesis is typically derived from a primary phenomenon, can, inevitably, impose restriction on the range of conceivable experiments and legitimate hypotheses, and ultimately impede understanding of the system of interest. We report herein the proposal of a decentralized approach for the formulation of hypotheses, through initial preconception-free phenomenon accumulation and subsequent reticular logical reasoning processes. The two-step approach can provide an unbiased, panoramic view of the system and as such should enable the generation of a set of more coherent and therefore plausible hypotheses. As a proof-of-concept demonstration of the utility of this open-ended approach, a hierarchical model has been developed for a prion self-assembled system, allowing insight into hitherto elusive static and dynamic features associated with this intriguing structure.

  13. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors

    International Nuclear Information System (INIS)

    Zampieri, Alessandro; Mabande, Godwin T.P.; Selvam, Thangaraj; Schwieger, Wilhelm; Rudolph, Alexander; Hermann, Ralph; Sieber, Heino; Greil, Peter

    2006-01-01

    Biomorphic self-supporting MFI-type zeolite frameworks with hierarchical porosity and complex architecture were prepared using a 2-step (in-situ seeding and secondary crystal growth) hydrothermal synthesis in the presence of a biological template (Luffa sponge), employed as a macroscale sacrificial structure builder. The bio-inspired zeolitic replica inherited the complex spongy morphology and the intricate open-porous architecture of the biotemplate. Moreover, it exhibited reasonable mechanical stability in order to study the applicability of the biomorphic catalyst in a technical catalytic process. A bio-inspired catalytic reactor utilising the self-supporting ZSM-5 scaffold in monolithic configuration was developed in order to test the catalytic performance of the material

  14. Calcium Carbonate Polymorphs Growing in the Presence of Sericin: A New Composite Mimicking the Hierarchic Structure of Nacre

    Directory of Open Access Journals (Sweden)

    Linda Pastero

    2018-06-01

    Full Text Available Bioinspired self-assembled composite materials are appealing both for their industrial applications and importance in natural sciences, and represent a stimulating topic in the area of materials science, biology, and medicine. The function of the organic matrix has been studied from the biological, chemical, crystallographic, and engineering point of view. Little attention has been paid to the effect of one of the two main components of the organic matrix, the sericin fraction, on the growth morphology of calcium carbonate polymorphs. In the present work, we address this issue experimentally, emphasizing the morphological effects of sericin on calcite and aragonite crystals, and on the formation of a sericin-aragonite-calcite self-assembled composite with a hierarchic structure comparable to that of natural nacre.

  15. Native South American genetic structure and prehistory inferred from hierarchical modeling of mtDNA.

    Science.gov (United States)

    Lewis, Cecil M; Long, Jeffrey C

    2008-03-01

    Genetic diversity in Native South Americans forms a complex pattern at both the continental and local levels. In comparing the West to the East, there is more variation within groups and smaller genetic distances between groups. From this pattern, researchers have proposed that there is more variation in the West and that a larger, more genetically diverse, founding population entered the West than the East. Here, we question this characterization of South American genetic variation and its interpretation. Our concern arises because others have inferred regional variation from the mean variation within local populations without taking into account the variation among local populations within the same region. This failure produces a biased view of the actual variation in the East. In this study, we analyze the mitochondrial DNA sequence between positions 16040 and 16322 of the Cambridge reference sequence. Our sample represents a total of 886 people from 27 indigenous populations from South (22), Central (3), and North America (2). The basic unit of our analyses is nucleotide identity by descent, which is easily modeled and proportional to nucleotide diversity. We use a forward modeling strategy to fit a series of nested models to identity by descent within and between all pairs of local populations. This method provides estimates of identity by descent at different levels of population hierarchy without assuming homogeneity within populations, regions, or continents. Our main discovery is that Eastern South America harbors more genetic variation than has been recognized. We find no evidence that there is increased identity by descent in the East relative to the total for South America. By contrast, we discovered that populations in the Western region, as a group, harbor more identity by descent than has been previously recognized, despite the fact that average identity by descent within groups is lower. In this light, there is no need to postulate separate founding

  16. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing; Wang, Runwei; Li, Ang; Huang, Weiwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity

  17. A novel 3D structure composed of strings of hierarchical TiO{sub 2} spheres formed on TiO{sub 2} nanobelts with high photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yongjian [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Suzhou Institute, North China Electric Power University, Suzhou 215123 (China); Song, Dandan; Li, Xiaodan; Yu, Yue [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China)

    2014-03-15

    A novel hierarchical titanium dioxide (TiO{sub 2}) composite nanostructure with strings of anatase TiO{sub 2} hierarchical micro-spheres and rutile nanobelts framework (TiO{sub 2} HSN) is successfully synthesized via a one-step hydrothermal method. Particularly, the strings of hierarchical spheres are assembled by very thin TiO{sub 2} nanosheets, which are composed of highly crystallized anatase nanocrystals. Meanwhile, the HSN has a large surface area of 191 m{sup 2}/g, which is about 3 times larger than Degussa P25. More importantly, the photocatalytic activity of HSN and P25 were evaluated by the photocatalytic oxidation decomposition of methyl orange (MO) under UV light illumination, and the TiO{sub 2} HSN shows enhanced photocatalytic activity compared with Degussa P25, as result of its continuous hierarchical structures, special conductive channel and large specific surface area. With these features, the hierarchical TiO{sub 2} may have more potential applications in the fields of dye-sensitized solar cells and lithium ion batteries. -- Graphical abstract: Novel TiO{sub 2} with anatase micro-spheres and rutile nanobelts is synthesized. Enhanced photocatalysis is attributed to hierarchical structures (3D spheres), conductive channel (1D nanobelts) and large specific surface area (2D nanosheet). Highlights: • The novel TiO{sub 2} nanostructure (HSN) is fabricated for the first time. • HSN is composed of strings of anatase hierarchical spheres and rutile nanobelt. • HSN presents a larger S{sub BET} of 191 m{sup 2}/g, 3 times larger than the Degussa P25 (59 m{sup 2}/g). • HSN owns three kinds of dimensional TiO{sub 2} (1D, 2D and 3D) simultaneously. • HSN exhibits better photocatalytic performance compared with Degussa P25.

  18. Exploring the hierarchical structure of the MMPI-2-RF Personality Psychopathology Five in psychiatric patient and university student samples.

    Science.gov (United States)

    Bagby, R Michael; Sellbom, Martin; Ayearst, Lindsay E; Chmielewski, Michael S; Anderson, Jaime L; Quilty, Lena C

    2014-01-01

    In this study our goal was to examine the hierarchical structure of personality pathology as conceptualized by Harkness and McNulty's (1994) Personality Psychopathology Five (PSY-5) model, as recently operationalized by the MMPI-2-RF (Ben-Porath & Tellegen, 2011) PSY-5r scales. We used Goldberg's (2006) "bass-ackwards" method to obtain factor structure using PSY-5r item data, successively extracting from 1 to 5 factors in a sample of psychiatric patients (n = 1,000) and a sample of university undergraduate students (n = 1,331). Participants from these samples had completed either the MMPI-2 or the MMPI-2-RF. The results were mostly consistent across the 2 samples, with some differences at the 3-factor level. In the patient sample a factor structure representing 3 broad psychopathology domains (internalizing, externalizing, and psychoticism) emerged; in the student sample the 3-factor level represented what is more commonly observed in "normal-range" personality models (negative emotionality, introversion, and disconstraint). At the 5-factor level the basic structure was similar across the 2 samples and represented well the PSY-5r domains.

  19. Population structure and recruitment of penaeid shrimps in ...

    African Journals Online (AJOL)

    Population structure and recruitment of penaeid shrimps in mozambique. ... This study characterizes the population structure and identifies nursery areas and recruitment seasons of penaeid shrimps in the ... AJOL African Journals Online.

  20. Hierarchical Cantor set in the large scale structure with torus geometry

    Energy Technology Data Exchange (ETDEWEB)

    Murdzek, R. [Physics Department, ' Al. I. Cuza' University, Blvd. Carol I, Nr. 11, Iassy 700506 (Romania)], E-mail: rmurdzek@yahoo.com

    2008-12-15

    The formation of large scale structures is considered within a model with string on toroidal space-time. Firstly, the space-time geometry is presented. In this geometry, the Universe is represented by a string describing a torus surface. Thereafter, the large scale structure of the Universe is derived from the string oscillations. The results are in agreement with the cellular structure of the large scale distribution and with the theory of a Cantorian space-time.

  1. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu; Schrader, Alex M.; Lee, Dong Woog; Gallo, Adair; Chen, Szu-Ying; Kaufman, Yair; Das, Saurabh; Israelachvili, Jacob N.

    2015-01-01

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and

  2. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu

    2015-12-28

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and

  3. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing

    2016-08-03

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity is investigated by adding an organosilane surfactant as a mesopore-generating agent.

  4. Fukunaga-Koontz feature transformation for statistical structural damage detection and hierarchical neuro-fuzzy damage localisation

    Science.gov (United States)

    Hoell, Simon; Omenzetter, Piotr

    2017-07-01

    Considering jointly damage sensitive features (DSFs) of signals recorded by multiple sensors, applying advanced transformations to these DSFs and assessing systematically their contribution to damage detectability and localisation can significantly enhance the performance of structural health monitoring systems. This philosophy is explored here for partial autocorrelation coefficients (PACCs) of acceleration responses. They are interrogated with the help of the linear discriminant analysis based on the Fukunaga-Koontz transformation using datasets of the healthy and selected reference damage states. Then, a simple but efficient fast forward selection procedure is applied to rank the DSF components with respect to statistical distance measures specialised for either damage detection or localisation. For the damage detection task, the optimal feature subsets are identified based on the statistical hypothesis testing. For damage localisation, a hierarchical neuro-fuzzy tool is developed that uses the DSF ranking to establish its own optimal architecture. The proposed approaches are evaluated experimentally on data from non-destructively simulated damage in a laboratory scale wind turbine blade. The results support our claim of being able to enhance damage detectability and localisation performance by transforming and optimally selecting DSFs. It is demonstrated that the optimally selected PACCs from multiple sensors or their Fukunaga-Koontz transformed versions can not only improve the detectability of damage via statistical hypothesis testing but also increase the accuracy of damage localisation when used as inputs into a hierarchical neuro-fuzzy network. Furthermore, the computational effort of employing these advanced soft computing models for damage localisation can be significantly reduced by using transformed DSFs.

  5. The TiO2 Hierarchical Structure with Nanosheet Spheres for Improved Photoelectric Performance in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Yin, Xin; Guan, Yingli; Song, Lixin; Xie, Xueyao; Du, Pingfan; Xiong, Jie

    2018-04-01

    A bi-layer photoanode is successfully fabricated for dye-sensitized solar cells (DSSCs) composed of P25/TiO2 nanorod (P25/TNR) as the underlayer and TiO2 nanosheet spheres (TNSs) as the light-scattering layer. Notably, the P25-TNR provides multiple functions, including more dye loading, more efficient charge transport and a lower electron recombination rate for the photoanode. Besides, the unique structure of TNS can significantly improve the light-harvesting capacity, boosting the light-harvesting efficiency. Therefore, an enhanced short-circuit current and power conversion efficiency of 18.04 mA cm-2 and 5.99%, respectively, were achieved for the P25/TNR-TNS-based DSSC, which was better than that of the P25-TNS-based (15.17 mA cm-2, 5.36%) and bare TNS-based (11.43 mA cm-2, 4.14%) DSSCs. This indicates that this bi-layer structure effectively combines the advantages of the one-dimensional (1D) nanostructure and three-dimensional (3D) hierarchical structure. In short, this work demonstrates the possibility of fabricating desirable photoanodes for high-performance DSSCs by rational design of nanostructures and effective combination of multi-functional components.

  6. Flexible Near-Field Nanopatterning with Ultrathin, Conformal Phase Masks on Nonplanar Substrates for Biomimetic Hierarchical Photonic Structures.

    Science.gov (United States)

    Kwon, Young Woo; Park, Junyong; Kim, Taehoon; Kang, Seok Hee; Kim, Hyowook; Shin, Jonghwa; Jeon, Seokwoo; Hong, Suck Won

    2016-04-26

    Multilevel hierarchical platforms that combine nano- and microstructures have been intensively explored to mimic superior properties found in nature. However, unless directly replicated from biological samples, desirable multiscale structures have been challenging to efficiently produce to date. Departing from conventional wafer-based technology, new and efficient techniques suitable for fabricating bioinspired structures are highly desired to produce three-dimensional architectures even on nonplanar substrates. Here, we report a facile approach to realize functional nanostructures on uneven microstructured platforms via scalable optical fabrication techniques. The ultrathin form (∼3 μm) of a phase grating composed of poly(vinyl alcohol) makes the material physically flexible and enables full-conformal contact with rough surfaces. The near-field optical effect can be identically generated on highly curved surfaces as a result of superior conformality. Densely packed nanodots with submicron periodicity are uniformly formed on microlens arrays with a radius of curvature that is as low as ∼28 μm. Increasing the size of the gratings causes the production area to be successfully expanded by up to 16 in(2). The "nano-on-micro" structures mimicking real compound eyes are transferred to flexible and stretchable substrates by sequential imprinting, facilitating multifunctional optical films applicable to antireflective diffusers for large-area sheet-illumination displays.

  7. Self-assembly of NiO/graphene with three-dimension hierarchical structure as high performance electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bing; Zhuang, Hua; Fang, Tao; Jiao, Zheng; Liu, Ruizhe; Ling, Xuetao [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Lu, Bo [Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444 (China); Jiang, Yong, E-mail: jiangyong@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2014-06-01

    Highlights: • 3D hierarchical NiO/graphene is prepared by a refluxing method with aqua-based solvent. • Time-dependent experiments are carried out to investigate formation mechanism. • Hierarchical sphere is formed through self-assembly of NiO grown on disc-shaped CTAB micelles. • It delivers a capacitance of 555 F g{sup −1} at 1 A g{sup −1} with 90.8% retention after 2000 cycles. - Abstract: This article reports a facile preparation of NiO/graphene composite by the combination of a controlled refluxing method with water based solvent in the presence of cetyltrimethylammonium bromide and subsequent annealing. X-ray diffraction and scanning electron microscopy reveal that the graphene nanosheets are uniformly wrapped by hierarchical porous NiO spheres with three-dimension hierarchical structure in the product. The composite shows highly improved electrochemical performance as electrode material for supercapacitor. The three-dimension hierarchical structure NiO/graphene composite delivers a first discharge capacitance of 555 F g{sup −1} and remains a reversible capacitance up to 504 F g{sup −1} after 2000 cycles at a current of 1 A g{sup −1} in three-electrode system. Contrarily, the pure NiO shows only a first discharge capacitance of 166 F g{sup −1} and remains only a reversible capacitance of 107 F g{sup −1} after 2000 cycles. The NiO/graphene composite also exhibits ameliorative rate capacitance of 402.9 F g{sup −1} at the current density of 5 A g{sup −1}. The enhanced electrochemical performances are ascribed to the higher surface area, the stable three-dimension hierarchical structure and the synergistic effects between the conductive graphene and porous NiO spheres.

  8. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.

    2012-01-01

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157

  9. Hierarchical core-shell structure of ZnO nanorod@NiO/MoO₂ composite nanosheet arrays for high-performance supercapacitors.

    Science.gov (United States)

    Hou, Sucheng; Zhang, Guanhua; Zeng, Wei; Zhu, Jian; Gong, Feilong; Li, Feng; Duan, Huigao

    2014-08-27

    A hierarchical core-shell structure of ZnO nanorod@NiO/MoO2 composite nanosheet arrays on nickel foam substrate for high-performance supercapacitors was constructed by a two-step solution-based method involving two hydrothermal processes followed by a calcination treatment. Compared to one composed of pure NiO/MoO2 composite nanosheets, the hierarchical core-shell structure electrode displays better pseudocapacitive behaviors in 2 M KOH, including high areal specific capacitance values of 1.18 F cm(-2) at 5 mA cm(-2) and 0.6 F cm(-2) at 30 mA cm(-2) as well as relatively good rate capability at high current densities. Furthermore, it also shows remarkable cycle stability, remaining at 91.7% of the initial value even after 4000 cycles at a current density of 10 mA cm(-2). The enhanced pseudocapacitive behaviors are mainly due to the unique hierarchical core-shell structure and the synergistic effect of combining ZnO nanorod arrays and NiO/MoO2 composite nanosheets. This novel hierarchical core-shell structure shows promise for use in next-generation supercapacitors.

  10. Self-Concepts in Reading, Writing, Listening, and Speaking: A Multidimensional and Hierarchical Structure and Its Generalizability across Native and Foreign Languages

    Science.gov (United States)

    Arens, A. Katrin; Jansen, Malte

    2016-01-01

    Academic self-concept has been conceptualized as a multidimensional and hierarchical construct. Previous research has mostly focused on its multidimensionality, distinguishing between verbal and mathematical self-concept domains, and only a few studies have examined the factorial structure within specific self-concept domains. The present study…

  11. Self-assembled 3D-hierarchical structure Cu2ZnSnS4 photocathodes by tuning anion ratios in precursor solution

    International Nuclear Information System (INIS)

    Wen, Xin; Shao, Hansen; Fu, Gao; Zhou, Yong; Zou, Zhigang; Luo, Wenjun; Guan, Zhongjie

    2016-01-01

    Cu 2 ZnSnS 4 (CZTS) is one of the most promising light capture materials for solar cells or solar fuels. Construction of 3D hierarchical structure is very important for efficient optoelectronic devices. It is challenging to directly fabricate 3D hierarchical structure CZTS film by a facile solution method. Herein, we present a one-step sol–gel method for fabrication of CZTS thin films with 3D hierarchical structures. For the first time, it is found that the morphologies of thin films can be adjusted between dense, porous and 3D hierarchical structures by tuning anion ratios of Cl − /Ac − in precursor solution. Further analysis suggests the formation of intermediate phases of SnO 2 nanoparticles and SnS 2 nanosheets by tuning ratios of Cl − /Ac − in precursor solution, which has important effects on the formation of different nanostructures of CZTS. This study can deepen understanding of anion’ effect on morphologies of samples using a solution method and forms a reference to prepare novel nanostructures of other materials. (paper)

  12. Sustainable solid-state strategy to hierarchical core-shell structured Fe 3 O 4 @graphene towards a safer and green sodium ion full battery

    KAUST Repository

    Ding, Xiang; Huang, Xiaobing; Jin, Junling; Ming, Hai; Wang, Limin; Ming, Jun

    2017-01-01

    A sustainable solid-state strategy of SPEX milling is developed to coat metal oxide (e.g., Fe3O4) with tunable layers of graphene, and a new hierarchical core-shell structured Fe3O4@graphene composite is constructed. The presented green process can

  13. Secular dynamics of hierarchical multiple systems composed of nested binaries, with an arbitrary number of bodies and arbitrary hierarchical structure - II. External perturbations: flybys and supernovae

    Science.gov (United States)

    Hamers, Adrian S.

    2018-05-01

    We extend the formalism of a previous paper to include the effects of flybys and instantaneous perturbations such as supernovae on the long-term secular evolution of hierarchical multiple systems with an arbitrary number of bodies and hierarchy, provided that the system is composed of nested binary orbits. To model secular encounters, we expand the Hamiltonian in terms of the ratio of the separation of the perturber with respect to the barycentre of the multiple system, to the separation of the widest orbit. Subsequently, we integrate over the perturber orbit numerically or analytically. We verify our method for secular encounters and illustrate it with an example. Furthermore, we describe a method to compute instantaneous orbital changes to multiple systems, such as asymmetric supernovae and impulsive encounters. The secular code, with implementation of the extensions described in this paper, is publicly available within AMUSE, and we provide a number of simple example scripts to illustrate its usage for secular and impulsive encounters and asymmetric supernovae. The extensions presented in this paper are a next step towards efficiently modelling the evolution of complex multiple systems embedded in star clusters.

  14. Biomimetics Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    This book presents an overview of the general field of biomimetics - lessons from nature. It presents various examples of biomimetics, including roughness-induced superomniphobic surfaces which provide functionality of commercial interest. The major focus in the book is on lotus effect, rose petal effect, shark skin effect, and gecko adhesion.  For each example, the book first presents characterization of an object to understand how a natural object provides functionality, followed by modeling and then fabrication of structures in the lab using nature’s route to verify one’s understanding of nature and provide guidance for development of optimum structures. Once it is understood how nature does it, examples of fabrication of optimum structures using smart materials and fabrication techniques, are presented. Examples of nature inspired objects are also presented throughout.

  15. Design of 3D Graphene-Oxide Spheres and Their Derived Hierarchical Porous Structures for High Performance Supercapacitors.

    Science.gov (United States)

    Li, Zhuangnan; Gadipelli, Srinivas; Yang, Yuchen; Guo, Zhengxiao

    2017-11-01

    Graphene-oxide (GO) based porous structures are highly desirable for supercapacitors, as the charge storage and transfer can be enhanced by advancement in the synthesis. An effective route is presented of, first, synthesis of three-dimensional (3D) assembly of GO sheets in a spherical architecture (GOS) by flash-freezing of GO dispersion, and then development of hierarchical porous graphene (HPG) networks by facile thermal-shock reduction of GOS. This leads to a superior gravimetric specific capacitance of ≈306 F g -1 at 1.0 A g -1 , with a capacitance retention of 93% after 10 000 cycles. The values represent a significant capacitance enhancement by 30-50% compared with the GO powder equivalent, and are among the highest reported for GO-based structures from different chemical reduction routes. Furthermore, a solid-state flexible supercapacitor is fabricated by constructing the HPG with polymer gel electrolyte, exhibiting an excellent areal specific capacitance of ≈220 mF cm -2 at 1.0 mA cm -2 with exceptional cyclic stability. The work reveals a facile but efficient synthesis approach of GO-based materials to enhance the capacitive energy storage. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hierarchical structured graphene/metal oxide/porous carbon composites as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Guo, Rong; Yue, Wenbo; Ren, Yu; Zhou, Wuzong

    2016-01-01

    Highlights: • CeO 2 and Co 3 O 4 nanoparticles display different behavior within CMK-3. • CMK-3-CeO 2 and Co 3 O 4 show various electrochemical properties • CMK-3-CeO 2 and Co 3 O 4 are further wrapped by graphene nanosheets. • Graphene-encapsulated composites show better electrochemical performances. - Abstract: As a novel anode material for lithium-ion batteries, CeO 2 displays imperceptible volumetric and morphological changes during the lithium insertion and extraction processes, and thereby exhibits good cycling stability. However, the low theoretical capacity and poor electronic conductivity of CeO 2 hinder its practical application. In contrast, Co 3 O 4 possesses high theoretical capacity, but undergoes huge volume change during cycling. To overcome these issues, CeO 2 and Co 3 O 4 nanoparticles are formed inside the pores of CMK-3 and display various electrochemical behaviors due to the different morphological structures of CeO 2 and Co 3 O 4 within CMK-3. Moreover, the graphene/metal oxide/CMK-3 composites with a hierarchical structure are then prepared and exhibit better electrochemical performances than metal oxides with or without CMK-3. This novel synthesis strategy is hopefully employed in the electrode materials design for Li-ion batteries or other energy conversion and storage devices.

  17. Effect of pre-tension on the peeling behavior of a bio-inspired nano-film and a hierarchical adhesive structure

    Science.gov (United States)

    Peng, Zhilong; Chen, Shaohua

    2012-10-01

    Inspired by the reversible adhesion behaviors of geckos, the effects of pre-tension in a bio-inspired nano-film and a hierarchical structure on adhesion are studied theoretically. In the case with a uniformly distributing pre-tension in a spatula-like nano-film under peeling, a closed-form solution to a critical peeling angle is derived, below or above which the peel-off force is enhanced or reduced, respectively, compared with the case without pre-tension. The effects of a non-uniformly distributing pre-tension on adhesion are further investigated for both a spatula-like nano-film and a hierarchical structure-like gecko's seta. Compared with the case without pre-tension, the pre-tension, no matter uniform or non-uniform, can increase the adhesion force not only for the spatula-like nano-film but also for the hierarchical structure at a small peeling angle, while decrease it at a relatively large peeling angle. Furthermore, if the pre-tension is large enough, the effective adhesion energy of a hierarchical structure tends to vanish at a critical peeling angle, which results in spontaneous detachment of the hierarchical structure from the substrate. The present theoretical predictions can not only give some explanations on the existing experimental observation that gecko's seta always detaches at a specific angle and no apparent adhesion force can be detected above the critical angle but also provide a deep understanding for the reversible adhesion mechanism of geckos and be helpful to the design of biomimetic reversible adhesives.

  18. Population genetic structure analysis in endangered Hordeum ...

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... populations are grown by few local farmers in low-input farming systems. Based on 117 random ... Triticeae of the Poaceae (Graminae) family found throughout the ... populations and phylogeography is made easy by the.

  19. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi; Hemar, Yacine; Hilliou, loic; Gilbert, Elliot P.; McGillivray, Duncan James; Williams, Martin A. K.; Chaieb, Saharoui

    2015-01-01

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  20. Orthogonal Higher Order Structure of the WISC-IV Spanish Using Hierarchical Exploratory Factor Analytic Procedures

    Science.gov (United States)

    McGill, Ryan J.; Canivez, Gary L.

    2016-01-01

    As recommended by Carroll, the present study examined the factor structure of the Wechsler Intelligence Scale for Children-Fourth Edition Spanish (WISC-IV Spanish) normative sample using higher order exploratory factor analytic techniques not included in the WISC-IV Spanish Technical Manual. Results indicated that the WISC-IV Spanish subtests were…

  1. Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas

    Czech Academy of Sciences Publication Activity Database

    Górecki, J.; Hofert, M.; Holeňa, Martin

    2017-01-01

    Roč. 5, č. 1 (2017), s. 75-87 ISSN 2300-2298 R&D Projects: GA ČR GA17-01251S Institutional support: RVO:67985807 Keywords : structure determination * agglomerative clustering * Kendall’s tau * Archimedean copula Subject RIV: IN - Informatics, Computer Science OBOR OECD: Statistics and probability

  2. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi

    2015-12-14

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  3. One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation

    International Nuclear Information System (INIS)

    Rukosuyev, Maxym V.; Lee, Jason; Cho, Seong Jin; Lim, Geunbae; Jun, Martin B.G.

    2014-01-01

    Highlights: • Superhydrophobic surface patterns by femtosecond laser ablation in open air. • Micron scale ridge-like structure with superimposed submicron convex features. • Hydrophobic or even superhydrophobic behavior with no additional silanization. - Abstract: Hydrophobic surface properties are sought after in many areas of research, engineering, and consumer product development. Traditionally, hydrophobic surfaces are produced by using various types of coatings. However, introduction of foreign material onto the surface is often undesirable as it changes surface chemistry and cannot provide a long lasting solution (i.e. reapplication is needed). Therefore, surface modification by transforming the base material itself can be preferable in many applications. Femtosecond laser ablation is one of the methods that can be used to create structures on the surface that will exhibit hydrophobic behavior. The goal of the presented research was to create micro and nano-scale patterns that will exhibit hydrophobic properties with no additional post treatment. As a result, dual scale patterned structures were created on the surface of steel aluminum and tungsten carbide samples. Ablation was performed in the open air with no subsequent treatment. Resultant surfaces appeared to be strongly hydrophobic or even superhydrophobic with contact angle values of 140° and higher. In conclusion, the nature of surface hydrophobicity proved to be highly dependent on surface morphology as the base materials used are intrinsically hydrophilic. It was also proven that the hydrophobicity inducing structures could be manufactured using femtosecond laser machining in a single step with no subsequent post treatment

  4. One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Rukosuyev, Maxym V.; Lee, Jason [Mechanical Engineering, University of Victoria (Canada); Cho, Seong Jin; Lim, Geunbae [Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of); Jun, Martin B.G., E-mail: mbgjun@uvic.ca [Mechanical Engineering, University of Victoria (Canada)

    2014-09-15

    Highlights: • Superhydrophobic surface patterns by femtosecond laser ablation in open air. • Micron scale ridge-like structure with superimposed submicron convex features. • Hydrophobic or even superhydrophobic behavior with no additional silanization. - Abstract: Hydrophobic surface properties are sought after in many areas of research, engineering, and consumer product development. Traditionally, hydrophobic surfaces are produced by using various types of coatings. However, introduction of foreign material onto the surface is often undesirable as it changes surface chemistry and cannot provide a long lasting solution (i.e. reapplication is needed). Therefore, surface modification by transforming the base material itself can be preferable in many applications. Femtosecond laser ablation is one of the methods that can be used to create structures on the surface that will exhibit hydrophobic behavior. The goal of the presented research was to create micro and nano-scale patterns that will exhibit hydrophobic properties with no additional post treatment. As a result, dual scale patterned structures were created on the surface of steel aluminum and tungsten carbide samples. Ablation was performed in the open air with no subsequent treatment. Resultant surfaces appeared to be strongly hydrophobic or even superhydrophobic with contact angle values of 140° and higher. In conclusion, the nature of surface hydrophobicity proved to be highly dependent on surface morphology as the base materials used are intrinsically hydrophilic. It was also proven that the hydrophobicity inducing structures could be manufactured using femtosecond laser machining in a single step with no subsequent post treatment.

  5. Hierarchical formation of large scale structures of the Universe: observations and models

    International Nuclear Information System (INIS)

    Maurogordato, Sophie

    2003-01-01

    In this report for an Accreditation to Supervise Research (HDR), the author proposes an overview of her research works in cosmology. These works notably addressed the large scale distribution of the Universe (with constraints on the scenario of formation, and on the bias relationship, and the structuring of clusters), the analysis of galaxy clusters during coalescence, mass distribution within relaxed clusters [fr

  6. Construct Validity of the WISC-IV with a Referred Sample: Direct versus Indirect Hierarchical Structures

    Science.gov (United States)

    Canivez, Gary L.

    2014-01-01

    The Wechsler Intelligence Scale for Children--Fourth Edition (WISC-IV) is one of the most frequently used intelligence tests in clinical assessments of children with learning difficulties. Construct validity studies of the WISC-IV have generally supported the higher order structure with four correlated first-order factors and one higher-order…

  7. Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

    Directory of Open Access Journals (Sweden)

    Julia Patzsch

    2017-05-01

    Full Text Available Mesoscopic, nanoporous carbon tubes were synthesized by a combination of the Stoeber process and the use of electrospun macrosized polystyrene fibres as structure directing templates. The obtained carbon tubes have a macroporous nature characterized by a thick wall structure and a high specific surface area of approximately 500 m²/g resulting from their micro- and mesopores. The micropore regime of the carbon tubes is composed of turbostratic graphitic areas observed in the microstructure. The employed templating process was also used for the synthesis of silicon carbide tubes. The characterization of all porous materials was performed by nitrogen adsorption at 77 K, Raman spectroscopy, infrared spectroscopy, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM as well as transmission electron microscopy (TEM. The adsorption of carbon dioxide on the carbon tubes at 25 °C at pressures of up to 30 bar was studied using a volumetric method. At 26 bar, an adsorption capacity of 4.9 mmol/g was observed. This is comparable to the adsorption capacity of molecular sieves and vertically aligned carbon nanotubes. The high pressure adsorption process of CO2 was found to irreversibly change the microporous structure of the carbon tubes.

  8. Hierarchical, decentralized control system for large-scale smart-structures

    International Nuclear Information System (INIS)

    Algermissen, Stephan; Fröhlich, Tim; Monner, Hans Peter

    2014-01-01

    Active control of sound and vibration has gained much attention in all kinds of industries in the past decade. Future prospects for maximizing airline passenger comfort are especially promising. The objectives of recent research projects in this area are the reduction of noise transmission through thin walled structures such as fuselages, linings or interior elements. Besides different external noise sources, such as the turbulent boundary layer, rotor or jet noise, the actuator and sensor placement as well as different control concepts are addressed. Mostly, the work is focused on a single panel or section of the fuselage, neglecting the fact that for effective noise reduction the entire fuselage has to be taken into account. Nevertheless, extending the scope of an active system from a single panel to the entire fuselage increases the effort for control hardware dramatically. This paper presents a control concept for large structures using distributed control nodes. Each node has the capability to execute a vibration or noise controller for a specific part or section of the fuselage. For maintenance, controller tuning or performance measurement, all nodes are connected to a host computer via Universal Serial Bus (USB). This topology allows a partitioning and distributing of tasks. The nodes execute the low-level control functions. High-level tasks like maintenance, system identification and control synthesis are operated by the host using streamed data from the nodes. By choosing low-price nodes, a very cost effective way of implementing an active system for large structures is realized. Besides the system identification and controller synthesis on the host computer, a detailed view on the hardware and software concept for the nodes is given. Finally, the results of an experimental test of a system running a robust vibration controller at an active panel demonstrator are shown. (paper)

  9. Exact Solutions of the Hierarchical Korteweg-de Vries Equation of Micro structured Granular Materials

    International Nuclear Information System (INIS)

    Abourabia, A.M.; El-Danaf, T.S.; Morad, A.M.

    2008-01-01

    The problem under consideration are related to wave propagation in micro structured materials, characterized by higher-order nonlinear and higher-order dispersive effects; particularly, the wave propagation in dilatant granular materials. In the present paper the model equation is solved analytically by exact method called Jacobi elliptic method. The types of solutions are defined and discussed over a wide range of material parameters (two dispersion parameters and one microstructure parameter). The dispersion properties and the relation between group and phase velocities of the model equation are studied. The diagrams are drawn to illustrate the physical properties of the exact solutions

  10. Hierarchical bounding structures for efficient virial computations: Towards a realistic molecular description of cholesterics

    Science.gov (United States)

    Tortora, Maxime M. C.; Doye, Jonathan P. K.

    2017-12-01

    We detail the application of bounding volume hierarchies to accelerate second-virial evaluations for arbitrary complex particles interacting through hard and soft finite-range potentials. This procedure, based on the construction of neighbour lists through the combined use of recursive atom-decomposition techniques and binary overlap search schemes, is shown to scale sub-logarithmically with particle resolution in the case of molecular systems with high aspect ratios. Its implementation within an efficient numerical and theoretical framework based on classical density functional theory enables us to investigate the cholesteric self-assembly of a wide range of experimentally relevant particle models. We illustrate the method through the determination of the cholesteric behavior of hard, structurally resolved twisted cuboids, and report quantitative evidence of the long-predicted phase handedness inversion with increasing particle thread angles near the phenomenological threshold value of 45°. Our results further highlight the complex relationship between microscopic structure and helical twisting power in such model systems, which may be attributed to subtle geometric variations of their chiral excluded-volume manifold.

  11. Spatial and population genetic structure of microsatellites in white pine

    Science.gov (United States)

    Paula E. Marquardt; Bryan K. Epperson

    2004-01-01

    We evaluated the population genetic structure of seven microsatellite loci for old growth and second growth populations of eastern white pine (Pinus strobus). From each population, located within Hartwick Pines State Park, Grayling, Michigan, USA, 120-122 contiguous trees were sampled for genetic analysis. Within each population, genetic diversity...

  12. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly; Zimmermann, Elizabeth; Schaible, Eric; Tang, Simon; Alliston, Tamara; Ritchie, Robert

    2011-08-19

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-­ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-­scale, fracture properties, evaluated using in-situ scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with in-situ tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-­induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-­scales, loss of plasticity from suppressed fibrillar sliding at sub-­micron scales, and the loss and damage of collagen at the nano-­scales, the latter being assessed using Raman and Fourier-Transform-Infrared spectroscopy and a fluorometric assay.

  13. Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer

    Science.gov (United States)

    Liang, Yeru; Wu, Dingcai; Fu, Ruowen

    2013-01-01

    Electrospinning offers a powerful route for building one-dimensional (1D) micro/nanostructures, but a common requirement for toxic or corrosive organic solvents during the preparation of precursor solution has limited their large scale synthesis and broad applications. Here we report a facile and low-cost way to prepare 1D porous carbon microfibers by using an electrospun fiber-like natural product, i.e., silk cocoon, as precursor. We surprisingly found that by utilizing a simple carbonization treatment, the cocoon microfiber can be directly transformed into 1D carbon microfiber of ca. 6 μm diameter with a unique three-dimensional porous network structure composed of interconnected carbon nanoparticles of 10~40 nm diameter. We further showed that the as-prepared carbon product presents superior electrochemical performance as binder-free electrodes of supercapacitors and good adsorption property toward organic vapor.

  14. Hierarchically templated beads with tailored pore structure for phosphopeptide capture and phosphoproteomics

    DEFF Research Database (Denmark)

    Wierzbicka, Celina; Torsetnes, Silje B.; Jensen, Ole N.

    2017-01-01

    Two templating approaches to produce imprinted phosphotyrosine capture beads with a controllable pore structure are reported and compared with respect to their ability to enrich phosphopeptides from a tryptic peptide mixture. The beads were prepared by the polymerization of urea-based host monomers...... and crosslinkers inside the pores of macroporous silica beads with both free and immobilized template. In the final step the silica was removed by fluoride etching resulting in mesoporous polymer replicas with narrow pore size distributions, pore diameters ≈ 10 nm and surface area > 260 m2 g-1. The beads displayed...... pronounced phosphotyrosine affinity and selectivity in binding tests using model peptides in acetonitrile rich solutions with a performance surpassing solution polymerized bulk imprinted materials. Tests of the beads for the enrichment of phosphopeptides from tryptic digests of twelve proteins revealed both...

  15. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  16. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Wang, Yaming [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO{sub 3} solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  17. Technical and economic viability of electric power plants on the basis of renewable energy resources regarding hierarchical structure

    Directory of Open Access Journals (Sweden)

    Balzannikov Mikhail

    2017-01-01

    Full Text Available The article deals with power stations working on the basis of non-renewable energy resources and finite resources which will inevitably come to depletion in the future. These installations produce considerable negative impact on the environment, including air pollution. It is noted that considerable amounts of emissions of harmful substances accounts for the share of small thermal installations which aren’t always considered in calculations of pollution. The author specifies that emission reduction of harmful substances should be achieved due to wider use of environmentally friendly renewable energy resources. It is recommended to use hierarchical structure with the priority of ecological and social conditions of the region for technical and economic viability of consumers’ power supply systems and installations, based on renewable energy resources use. At the same time the author suggests considering federal, regional and object levels of viability. It is recommended to consider the main stages of lifecycle of an object for object level: designing, construction, operation, reconstruction of an object and its preservation. The author shows the example of calculation of power plant efficiency, based on renewable energy resources during its reconstruction, followed by power generation increase.

  18. Hierarchical structured Sm2O3 modified CuO nanoflowers as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Zhang, Xiaojuan; He, Mingqian; He, Ping; Liu, Hongtao; Bai, Hongmei; Chen, Jingchao; He, Shaoying; Zhang, Xingquan; Dong, Faqing; Chen, Yang

    2017-12-01

    By a simple and cost effective chemical precipitation-hydrothermal method, novel hierarchical structured Sm2O3 modified CuO nanoflowers are prepared and investigated as electrode materials for supercapacitors. The physical properties of prepared materials are characterized by XRD, FE-SEM, EDX and FTIR techniques. Furthermore, electrochemical performances of prepared materials are investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum in 1.0 M KOH electrolyte. The resulting Sm2O3 modified CuO based electrodes exhibit obviously enhanced capacitive properties owing to the unique nanostructures and strong synergistic effects. It is worth noting that the optimized SC-3 based electrode exhibits the best electrochemical performances in all prepared electrodes, including higher specific capacitance (383.4 F g-1 at 0.5 A g-1) and good rate capability (393.2 F g-1 and 246.3 F g-1 at 0.3 A g-1 and 3.0 A g-1, respectively), as well as excellent cycling stability (84.6% capacitance retention after 2000 cycles at 1.0 A g-1). The present results show that Sm2O3 is used as a promising modifier to change the morphology and improve electrochemical performances of CuO materials.

  19. Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors

    Science.gov (United States)

    Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping

    2013-10-01

    Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2-based nanowire arrays for constructing next-generation supercapacitors.

  20. Surprising transformation of a block copolymer into a high performance polystyrene ultrafiltration membrane with a hierarchically organized pore structure

    KAUST Repository

    Shevate, Rahul

    2018-02-08

    We describe the preparation of hierarchical polystyrene nanoporous membranes with a very narrow pore size distribution and an extremely high porosity. The nanoporous structure is formed as a result of unusual degradation of the poly(4-vinyl pyridine) block from self-assembled poly(styrene)-b-poly(4-vinyl pyridine) (PS-b-P4VP) membranes through the formation of an unstable pyridinium intermediate in an alkaline medium. During this process, the confined swelling and controlled degradation produced a tunable pore size. We unequivocally confirmed the successful elimination of the P4VP block from a PS-b-P4VPVP membrane using 1D/2D NMR spectroscopy and other characterization techniques. Surprisingly, the long range ordered surface porosity was preserved even after degradation of the P4VP block from the main chain of the diblock copolymer, as revealed by SEM. Aside from a drastically improved water flux (∼67% increase) compared to the PS-b-P4VP membrane, the hydraulic permeability measurements validated pH independent behaviour of the isoporous PS membrane over a wide pH range from 3 to 10. The effect of the pore size on protein transport rate and selectivity (a) was investigated for lysozyme (Lys), bovine serum albumin (BSA) and globulin-γ (IgG). A high selectivity of 42 (Lys/IgG) and 30 (BSA/IgG) was attained, making the membranes attractive for size selective separation of biomolecules from their synthetic model mixture solutions.

  1. Interactive computer graphics displays for hierarchical data structures. [Description of THESGRAF, in FORTRAN IV for CDC and IBM computers

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, D.F.; Murano, C.V.

    1980-05-01

    An interactive computer graphical display program was developed as an aid to user visualization and manipulation of hierarchically structured data systems such as thesauri. In the present configuration, a thesaurus term and its primary and secondary conceptual neighbors are presented to the user in tree graph form on a CRT; the user then designates, via light pen or keyboard, any of the neighbors as the next term of interest and receives a new display centered on this term. By successive specification of broader, narrower, and related terms, the user can course rapidly through the thesaurus space and refine his search file. At any stage, he deals with a term-centered, conceptually meaningful picture of a localized portion of the thesaurus, and is freed from the artificial difficulties of handling the traditional alphabetized thesaurus. Intentional limitation of the associative range of each display frame, and the use of color, case, and interconnecting vectors to encode relationships among terms, enhance interpretability of the display. Facile movement through the term space, provided by interactive computation, allows the display to remain simple, and is an essential element of the system. 3 figures.

  2. Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles.

    Science.gov (United States)

    Hao, Yao-Ming; Lou, Shi-Yun; Zhou, Shao-Min; Yuan, Rui-Jian; Zhu, Gong-Yu; Li, Ning

    2012-02-02

    In this study, a series of manganese [Mn]-doped zinc oxide [ZnO] hierarchical microspheres [HMSs] are prepared by hydrothermal method only using zinc acetate and manganese acetate as precursors and ethylene glycol as solvent. X-ray diffraction indicates that all of the as-obtained samples including the highest Mn (7 mol%) in the crystal lattice of ZnO have a pure phase (hexagonal wurtzite structure). A broad Raman spectrum from as-synthesized doping samples ranges from 500 to 600 cm-1, revealing the successful doping of paramagnetic Mn2+ ions in the host ZnO. Optical absorption analysis of the samples exhibits a blueshift in the absorption band edge with increasing dopant concentration, and corresponding photoluminescence spectra show that Mn doping suppresses both near-band edge UV emission and defect-related blue emission. In particular, magnetic measurements confirm robust room-temperature ferromagnetic behavior with a high Curie temperature exceeding 400 K, signifying that the as-formed Mn-doped ZnO HMSs will have immense potential in spintronic devices and spin-based electronic technologies.

  3. Student conceptions about the DNA structure within a hierarchical organizational level: Improvement by experiment- and computer-based outreach learning.

    Science.gov (United States)

    Langheinrich, Jessica; Bogner, Franz X

    2015-01-01

    As non-scientific conceptions interfere with learning processes, teachers need both, to know about them and to address them in their classrooms. For our study, based on 182 eleventh graders, we analyzed the level of conceptual understanding by implementing the "draw and write" technique during a computer-supported gene technology module. To give participants the hierarchical organizational level which they have to draw, was a specific feature of our study. We introduced two objective category systems for analyzing drawings and inscriptions. Our results indicated a long- as well as a short-term increase in the level of conceptual understanding and in the number of drawn elements and their grades concerning the DNA structure. Consequently, we regard the "draw and write" technique as a tool for a teacher to get to know students' alternative conceptions. Furthermore, our study points the modification potential of hands-on and computer-supported learning modules. © 2015 The International Union of Biochemistry and Molecular Biology.

  4. Pt hierarchical structure catalysts on BaTiO{sub 3}/Ti electrode for methanol and ethanol electrooxidations

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chenguo; He, Xiaoshan; Xia, Chuanhui [Department of Applied Physics, Chongqing University, Chongqing 400044 (China)

    2010-03-15

    Electrooxidations of methanol and ethanol have been investigated on different Pt catalytic titanium-supported electrodes in both acidic and alkaline media using cyclic voltammetry. BaTiO{sub 3} is used for the first time to make a nanoscaled roughness on the surface of Ti foil in order to effectively deposit Pt hierarchical structure and block foulness in solution reactions. The morphology of BaTiO{sub 3} nanocube on Ti foil, Pt catalysts deposited on BaTiO{sub 3}/Ti and Ti foil electrodes are characterized by field emission scanning electron microscopy. The results indicate that Pt nanoflowers can be effectively grown on the Ti foil covered with 1 {mu}m layer of BaTiO{sub 3} nanocubes and the catalytic oxidation behaviors to methanol and ethanol are much better than those of the Pt/Ti electrode as Pt nanoparticles can hardly be deposited on the smooth surface of the Ti foil. The Pt/BaTiO{sub 3}/Ti electrode could be adopted as excellent catalytic anode in fuel cells. (author)

  5. How can we predict microstructural changes caused by the multiscale irradiation process occurred in materials having complicated and hierarchical structures?

    International Nuclear Information System (INIS)

    Morishita, Kazunori; Watanabe, Yoshiyuki; Yoshimatsu, Jun-ichi

    2008-01-01

    Challenging efforts are discussed to establish an advanced methodology for prediction of material's property and performance changes by irradiation, which will be necessary by all means for the advanced reactor maintenance technology in the future. The changes of material's properties and performance caused by irradiation, such as irradiation-induced hardening, ductility loss, and material's degradation leading to reduction in reactor lifetime, are primarily determined by microstructural changes in materials during irradiation, where athermal lattice defects are continuously produced by collisions between an irradiating particle and a target material atom, and subsequently the defects are aggregated via diffusion in the form of dislocation loops, voids, and solute precipitation. These radiation damage processes are in essence multiscale phenomena, which involve varying time- and length-scales, from ballistic binary collisions to collective atomic motion in the thermal spike stage followed by the thermal activation process. In this report, the multiscale modeling approach is proposed to understand the processes in materials having complicated and hierarchical structures. (author)

  6. Visualising the demographic factors which shape population age structure

    Directory of Open Access Journals (Sweden)

    Tom Wilson

    2016-09-01

    Full Text Available Background: The population pyramid is one of the most popular tools for visualising population age structure. However, it is difficult to discern from the diagram the relative effects of different demographic components on the size of age-specific populations, making it hard to understand exactly how a population's age structure is formed. Objective: The aim of this paper is to introduce a type of population pyramid which shows how births, deaths, and migration have shaped a population's age structure. Methods: Births, deaths, and population data were obtained from the Human Mortality Database and the Australian Bureau of Statistics. A variation on the conventional population pyramid, termed here a components-of-change pyramid, was created. Based on cohort population accounts, it illustrates how births, deaths, and net migration have created the population of each age group. A simple measure which summarises the impact of net migration on age structure is also suggested. Results: Example components-of-change pyramids for several countries and subnational regions are presented, which illustrate how births, deaths, and net migration have fashioned current population age structures. The influence of migration is shown to vary greatly between populations. Conclusions: The new type of pyramid aids interpretation of a population's age structure and helps to understand its demographic history over the last century.

  7. Underground population defense structures in China

    Energy Technology Data Exchange (ETDEWEB)

    Wukasch, E.

    The design and construction ofunderground shelters to protect the Chinese population in the event of nuclear war are described. Built in the style of World War II air raid shelters and designed as neighborhood defense facilities, these are not judged to be adequate for nuclear defense needs, particularly the needs of urban populations. However, 80% of China's population is rural and 1/3 of this has lived underground for centuries in cliff dwellings and atrium houses. It is, therefore, concluded that China's rural population has a better chance the the population of any other country for long-term survival from the later consequences, as well as the immediate shock, of an urban nuclear attack. (LCL)

  8. Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies.

    Science.gov (United States)

    Malik, Salman A; Ng, Wing H; Bowen, James; Tang, Justin; Gomez, Alessandro; Kenyon, Anthony J; Day, Richard M

    2016-04-01

    Microsphere-based controlled release technologies have been utilized for the long-term delivery of proteins, peptides and antibiotics, although their synthesis poses substantial challenges owing to formulation complexities, lack of scalability, and cost. To address these shortcomings, we used the electrospray process as a reproducible, synthesis technique to manufacture highly porous (>94%) microspheres while maintaining control over particle structure and size. Here we report a successful formulation recipe used to generate spherical poly(lactic-co-glycolic) acid (PLGA) microspheres using the electrospray (ES) coupled with a novel thermally induced phase separation (TIPS) process with a tailored Liquid Nitrogen (LN2) collection scheme. We show how size, shape and porosity of resulting microspheres can be controlled by judiciously varying electrospray processing parameters and we demonstrate examples in which the particle size (and porosity) affect release kinetics. The effect of electrospray treatment on the particles and their physicochemical properties are characterized by scanning electron microscopy, confocal Raman microscopy, thermogravimetric analysis and mercury intrusion porosimetry. The microspheres manufactured here have successfully demonstrated long-term delivery (i.e. 1week) of an active agent, enabling sustained release of a dye with minimal physical degradation and have verified the potential of scalable electrospray technologies for an innovative TIPS-based microsphere production protocol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Developing a novel hierarchical approach for multiscale structural reliability predictions for ultra-high consequence applications

    Energy Technology Data Exchange (ETDEWEB)

    Emery, John M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coffin, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robbins, Brian A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carroll, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Field, Richard V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jeremy Yoo, Yung Suk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kacher, Josh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Microstructural variabilities are among the predominant sources of uncertainty in structural performance and reliability. We seek to develop efficient algorithms for multiscale calcu- lations for polycrystalline alloys such as aluminum alloy 6061-T6 in environments where ductile fracture is the dominant failure mode. Our approach employs concurrent multiscale methods, but does not focus on their development. They are a necessary but not sufficient ingredient to multiscale reliability predictions. We have focused on how to efficiently use concurrent models for forward propagation because practical applications cannot include fine-scale details throughout the problem domain due to exorbitant computational demand. Our approach begins with a low-fidelity prediction at the engineering scale that is sub- sequently refined with multiscale simulation. The results presented in this report focus on plasticity and damage at the meso-scale, efforts to expedite Monte Carlo simulation with mi- crostructural considerations, modeling aspects regarding geometric representation of grains and second-phase particles, and contrasting algorithms for scale coupling.

  10. A bayesian approach to inferring the genetic population structure of sugarcane accessions from INTA (Argentina

    Directory of Open Access Journals (Sweden)

    Mariana Inés Pocovi

    2015-06-01

    Full Text Available Understanding the population structure and genetic diversity in sugarcane (Saccharum officinarum L. accessions from INTA germplasm bank (Argentina will be of great importance for germplasm collection and breeding improvement as it will identify diverse parental combinations to create segregating progenies with maximum genetic variability for further selection. A Bayesian approach, ordination methods (PCoA, Principal Coordinate Analysis and clustering analysis (UPGMA, Unweighted Pair Group Method with Arithmetic Mean were applied to this purpose. Sixty three INTA sugarcane hybrids were genotyped for 107 Simple Sequence Repeat (SSR and 136 Amplified Fragment Length Polymorphism (AFLP loci. Given the low probability values found with AFLP for individual assignment (4.7%, microsatellites seemed to perform better (54% for STRUCTURE analysis that revealed the germplasm to exist in five optimum groups with partly corresponding to their origin. However clusters shown high degree of admixture, F ST values confirmed the existence of differences among groups. Dissimilarity coefficients ranged from 0.079 to 0.651. PCoA separated sugarcane in groups that did not agree with those identified by STRUCTURE. The clustering including all genotypes neither showed resemblance to populations find by STRUCTURE, but clustering performed considering only individuals displaying a proportional membership > 0.6 in their primary population obtained with STRUCTURE showed close similarities. The Bayesian method indubitably brought more information on cultivar origins than classical PCoA and hierarchical clustering method.

  11. Formation process of hierarchical structures in crystalline polymers as analyzed by simultaneous measurements of small-angle X-ray scattering and other techniques

    International Nuclear Information System (INIS)

    Yamamoto, Katsuhiro; Sakurai, Shinichi

    2006-01-01

    Crystalline polymers spontaneously form hierarchical structures, which provide us a potential use as a specialty material. Recently, not only a crystalline homopolymer but also semi-crystalline block copolymers and crystalline polymer blends have been attracting interests for the study of a hierarchical structure. In order to analyze such hierarchical structures in a variety of length scales, a simultaneous measurement of small-(SAXS) and wide-angle (WAXS) X-ray scattering with differential scanning calorimetry (DSC), or with small-angle light scattering (Hv-SALS) are most suitable. In this review, we show some examples of the simultaneous measurements. With DSC, exothermic heat flow can be simultaneously measured with X-ray scattering. On the other hand, with Hv-SALS it is possible to analyze evolution of a spherulitic structure, which is the structure at the highest rank in the hierarchy. For both cases, one can realize that it is impossible to obtain good statistics for SAXS and WAXS measurements without synchrotron radiations. (author)

  12. Hierarchical structured graphene/metal oxide/porous carbon composites as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rong [Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Yue, Wenbo, E-mail: wbyue@bnu.edu.cn [Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Ren, Yu [National Institute of Clean-and-Low-Carbon Energy, Beijing 102209 (China); Zhou, Wuzong [School of Chemistry, University of St. Andrews, St. Andrews, Fite KY16 9ST (United Kingdom)

    2016-01-15

    Highlights: • CeO{sub 2} and Co{sub 3}O{sub 4} nanoparticles display different behavior within CMK-3. • CMK-3-CeO{sub 2} and Co{sub 3}O{sub 4} show various electrochemical properties • CMK-3-CeO{sub 2} and Co{sub 3}O{sub 4} are further wrapped by graphene nanosheets. • Graphene-encapsulated composites show better electrochemical performances. - Abstract: As a novel anode material for lithium-ion batteries, CeO{sub 2} displays imperceptible volumetric and morphological changes during the lithium insertion and extraction processes, and thereby exhibits good cycling stability. However, the low theoretical capacity and poor electronic conductivity of CeO{sub 2} hinder its practical application. In contrast, Co{sub 3}O{sub 4} possesses high theoretical capacity, but undergoes huge volume change during cycling. To overcome these issues, CeO{sub 2} and Co{sub 3}O{sub 4} nanoparticles are formed inside the pores of CMK-3 and display various electrochemical behaviors due to the different morphological structures of CeO{sub 2} and Co{sub 3}O{sub 4} within CMK-3. Moreover, the graphene/metal oxide/CMK-3 composites with a hierarchical structure are then prepared and exhibit better electrochemical performances than metal oxides with or without CMK-3. This novel synthesis strategy is hopefully employed in the electrode materials design for Li-ion batteries or other energy conversion and storage devices.

  13. Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus spp.) studied by multilocus genotyping of single spores

    DEFF Research Database (Denmark)

    Holtgrewe-Stukenbrock, Eva; Rosendahl, Søren

    2005-01-01

    A nested multiplex PCR (polymerase chain reaction) approach was used for multilocus genotyping of arbuscular mycorrhizal fungal populations. This method allowed us to amplify multiple loci from Glomus single spores in a single PCR amplification. Variable introns in the two protein coding genes Gm......FOX2 and GmTOR2 were applied as codominant genetic markers together with the LSU rDNA.   Genetic structure of Glomus spp. populations from an organically and a conventionally cultured field were compared by hierarchical sampling of spores from four plots in each field. Multilocus genotypes were...

  14. Genetic structure of Potentilla acaulis (Rosaceae) populations ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... populations based on randomly amplified polymorphic. DNA (RAPD) in habitat ..... the correlation between ΦST values and genetic distances was highly ... Propagule recruitment from genets of perennial clonal plants could ...

  15. Estimating population age structure using otolith morphometrics

    DEFF Research Database (Denmark)

    Doering-Arjes, P.; Cardinale, M.; Mosegaard, Henrik

    2008-01-01

    known-age fish individuals. Here we used known-age Atlantic cod (Gadus morhua) from the Faroe Bank and Faroe Plateau stocks. Cod populations usually show quite large variation in growth rates and otolith shape. We showed that including otolith morphometrics into ageing processes has the potential...... populations. The intercalibration method was successful but generalization from one stock to another remains problematic. The development of an otolith growth model is needed for generalization if an operational method for different populations is required in the future....... to make ageing objective, accurate, and fast. Calibration analysis indicated that a known-age sample from the same population and environment is needed to obtain robust calibration; using a sample from a different stock more than doubles the error rate, even in the case of genetically highly related...

  16. Coexistence of competing stage-structured populations.

    KAUST Repository

    Fujiwara, Masami; Pfeiffer, Georgia; Boggess, May; Day, Sarah; Walton, Jay

    2011-01-01

    -use overlap. The former ratio, which we define as fitness, can be equalized by adjusting organisms' life history strategies, thereby promoting coexistence. We conclude that in addition to niche differentiation among populations, the life history strategies

  17. Mental structures and hierarchical brain processing. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    Science.gov (United States)

    Petkov, C. I.

    2014-09-01

    Fitch proposes an appealing hypothesis that humans are dendrophiles, who constantly build mental trees supported by analogous hierarchical brain processes [1]. Moreover, it is argued that, by comparison, nonhuman animals build flat or more compact behaviorally-relevant structures. Should we thus expect less impressive hierarchical brain processes in other animals? Not necessarily.

  18. The role of river drainages in shaping the genetic structure of capybara populations.

    Science.gov (United States)

    Byrne, María Soledad; Quintana, Rubén Darío; Bolkovic, María Luisa; Cassini, Marcelo H; Túnez, Juan Ignacio

    2015-12-01

    The capybara, Hydrochoerus hydrochaeris, is an herbivorous rodent widely distributed throughout most of South American wetlands that lives closely associated with aquatic environments. In this work, we studied the genetic structure of the capybara throughout part of its geographic range in Argentina using a DNA fragment of the mitochondrial control region. Haplotypes obtained were compared with those available for populations from Paraguay and Venezuela. We found 22 haplotypes in 303 individuals. Hierarchical AMOVAs were performed to evaluate the role of river drainages in shaping the genetic structure of capybara populations at the regional and basin scales. In addition, two landscape genetic models, isolation by distance and isolation by resistance, were used to test whether genetic distance was associated with Euclidean distance (i.e. isolation by distance) or river corridor distance (i.e. isolation by resistance) at the basin scale. At the regional scale, the results of the AMOVA grouping populations by mayor river basins showed significant differences between them. At the basin scale, we also found significant differences between sub-basins in Paraguay, together with a significant correlation between genetic and river corridor distance. For Argentina and Venezuela, results were not significant. These results suggest that in Paraguay, the current genetic structure of capybaras is associated with the lack of dispersion corridors through permanent rivers. In contrast, limited structuring in Argentina and Venezuela is likely the result of periodic flooding facilitating dispersion.

  19. Population Genetic Structure and Evidence of Demographic Expansion of the Ayu (Plecoglossus altivelis in East Asia

    Directory of Open Access Journals (Sweden)

    Ye-Seul Kwan

    2012-10-01

    Full Text Available Plecoglossus altivelis (ayu is an amphidromous fish widely distributed in Northeastern Asia from the East China Sea to the northern Japanese coastal waters, encompassing the Korean Peninsula within its range. The shore lines of northeastern region in Asia have severely fluctuated following glaciations in the Quaternary. In the present study, we investigate the population genetic structure and historical demographic change of P. altivelis at a population level in East Asia. Analysis of molecular variance (AMOVA based on 244 mitochondrial control region DNA sequences clearly showed that as the sampling scope extended to a larger geographic area, genetic differentiation began to become significant, particularly among Northeastern populations. A series of hierarchical AMOVA could detect the genetic relationship of three closely located islands between Korea and Japan that might have been tightly connected by the regional Tsushima current. Neutrality and mismatch distribution analyses revealed a strong signature of a recent population expansion of P. altivelis in East Asia, estimated at 126 to 391 thousand years ago during the late Pleistocene. Therefore it suggests that the present population of P. altivelis traces back to its approximate demographic change long before the last glacial maximum. This contrasts our a priori expectation that the most recent glacial event might have the most crucial effect on the present day demography of marine organisms through bottleneck and subsequent increase of effective population size in this region.

  20. One-step synthesis of g-C{sub 3}N{sub 4} hierarchical porous structure nanosheets with dramatic ultraviolet light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jing; Wang, Yong; Huang, Jianfeng, E-mail: huangjfsust@126.com; Cao, Liyun; Li, Jiayin; Hai, Guojuan; Bai, Zhe

    2016-12-15

    Highlights: • g-C{sub 3}N{sub 4} nanosheets with hierarchical porous structure were synthesized via one step. • The band gap of the nanosheets was wider and investigated in detail. • The nanosheets can degrade almost all of the RhB within 9 min. • The photocurrent of the nanosheets is 5.97 times as high as that of the P-25. - Abstract: Graphitic carbon nitride (g-C{sub 3}N{sub 4}) nanosheets with hierarchical porous structure were synthesized via one-step thermal condensation-oxidation process. The microstructure of g-C{sub 3}N{sub 4} was characterized to explain the dramatic ultraviolet light photocatalytic activity. The results showed that g-C{sub 3}N{sub 4} hierarchical aggregates were assembled by nanosheets with a length of 1–2 μm and a thickness of 20–30 nm. And the N{sub 2}-adsorption/desorption isotherms further informed the presence of fissure form mesoporous structure. An enhanced photocurrent of 37.2 μA was obtained, which is almost 5 times higher than that of P-25. Besides, the g-C{sub 3}N{sub 4} nanosheets displayed the degradation of Rhodamine B with 99.4% removal efficiency in only 9 min. Such highly photocatalytic activity could be attributed to the nano platelet morphology which improves electron transport ability along the in-plane direction. In addition, the hierarchical porous structure adapted a wider band gap of C{sub 3}N{sub 4}. Therefore, the photoinduced electron-hole pairs have a stronger oxidation-reduction potential for photocatalysis.

  1. Extensive population genetic structure in the giraffe

    Directory of Open Access Journals (Sweden)

    Grether Gregory F

    2007-12-01

    Full Text Available Abstract Background A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (Giraffa camelopardalis are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation. Results By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations. Conclusion Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate in situ and ex situ management, not only of pelage morphs, but also of local populations.

  2. Evolution of Hierarchical Structure and Spatial Pattern of Coastal Cities in China – Based on the Data of Distribution of Marine-Related Enterprises

    Directory of Open Access Journals (Sweden)

    Wang Lili

    2017-11-01

    Full Text Available In this paper, a comprehensive research of the evolution of the hierarchical structure and spatial pattern of coastal cities in China was conducted based on the data of distribution of the headquarters and subsidiaries of marine-related enterprises in 1995, 2005 and 2015 using the city network research method proposed by Taylor. The results of the empirical research showed: China’s coastal city network had an obvious hierarchical characteristics of “national coastal cityregional coastal city-sub-regional coastal city-local coastal city”, in the 20 years of development process, the hierarchies of coastal cities in China showed a hierarchical progressive evolution; in past 20 years, the spatial pattern and network structure of coastal cities in China tended to be complete, and the city network was more uniform, forming a “three tiers and three urban agglomerations” network structure; the strength of connection among the cities was obviously strengthened, and the efficiency of urban spatial connection was improved overall.

  3. Population structure and genetic diversity of Sudanese native chickens

    African Journals Online (AJOL)

    The objectives of this study were to analyze genetic diversity and population structure of Sudanese native chicken breeds involved in a conservation program. Five Sudanese native chicken breeds were compared with populations studied previously, which included six purebred lines, six African populations and one ...

  4. Population Genetic Structure and Gene Flow Among Nigerian Goats ...

    African Journals Online (AJOL)

    Population Genetic structure in 200 indigenous goats sampled across four states from the South-Western and South Southern region of Nigeria was assessed using 7 microsatellite DNA markers. Observed Analysis of molecular genetic variation (AMOVA) was higher within populations (3.47) than among populations (1.84) ...

  5. Genetic diversity and population structure of sweet cassava using ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the population structure and genetic diversity among 66 sweet cassava (Manihot esculenta Crantz) traditional accessions collected in Maringa, Parana, Brazil, using microsatellite molecular markers. Population structure was analyzed by means of genetic distances and ...

  6. Genetic diversity and population structure of Chinese honeybees ...

    African Journals Online (AJOL)

    Genetic diversity and population structure of Chinese honeybees (Apis cerana) under microsatellite markers. T Ji, L Yin, G Chen. Abstract. Using 21 microsatellite markers and PCR method, the polymorphisms of 20 Apis cerana honeybee populations across China was investigated and the genetic structure and diversity of ...

  7. A Structure for Population Education: Goals, Generalizations, and Behavioral Objectives.

    Science.gov (United States)

    Lane, Mary Turner; Wileman, Ralph E.

    This book is written to assist anyone who wants to learn about, teach, or plan curricula for population education. A structure is provided that educators can use for first graders or for high school students. Chapter 1 identifies the population phenomenon and the need to study it. Chapter 2 gives the elements of the structure: goals,…

  8. Modeling evolutionary games in populations with demographic structure

    DEFF Research Database (Denmark)

    Li, Xiang-Yi; Giaimo, Stefano; Baudisch, Annette

    2015-01-01

    interactions, but usually omits life history and the demographic structure of the population. Here we show how an integration of both aspects can substantially alter the underlying evolutionary dynamics. We study the replicator dynamics of strategy interactions in life stage structured populations. Individuals...

  9. Joint genome-wide prediction in several populations accounting for randomness of genotypes: A hierarchical Bayes approach. I: Multivariate Gaussian priors for marker effects and derivation of the joint probability mass function of genotypes.

    Science.gov (United States)

    Martínez, Carlos Alberto; Khare, Kshitij; Banerjee, Arunava; Elzo, Mauricio A

    2017-03-21

    It is important to consider heterogeneity of marker effects and allelic frequencies in across population genome-wide prediction studies. Moreover, all regression models used in genome-wide prediction overlook randomness of genotypes. In this study, a family of hierarchical Bayesian models to perform across population genome-wide prediction modeling genotypes as random variables and allowing population-specific effects for each marker was developed. Models shared a common structure and differed in the priors used and the assumption about residual variances (homogeneous or heterogeneous). Randomness of genotypes was accounted for by deriving the joint probability mass function of marker genotypes conditional on allelic frequencies and pedigree information. As a consequence, these models incorporated kinship and genotypic information that not only permitted to account for heterogeneity of allelic frequencies, but also to include individuals with missing genotypes at some or all loci without the need for previous imputation. This was possible because the non-observed fraction of the design matrix was treated as an unknown model parameter. For each model, a simpler version ignoring population structure, but still accounting for randomness of genotypes was proposed. Implementation of these models and computation of some criteria for model comparison were illustrated using two simulated datasets. Theoretical and computational issues along with possible applications, extensions and refinements were discussed. Some features of the models developed in this study make them promising for genome-wide prediction, the use of information contained in the probability distribution of genotypes is perhaps the most appealing. Further studies to assess the performance of the models proposed here and also to compare them with conventional models used in genome-wide prediction are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Population structure of Han nationality in Central-Southern China.

    Science.gov (United States)

    Liu, Qiu-Ling; Chen, Ye-Fei; He, Xin; Shi, Yan-Wei; Wu, Wei-Wei; Zhao, Hu; Lu, De-Jian

    2017-07-01

    Knowledge of population structure is very important for forensic genetics. However, the population substructure in Central-Southern China Han nationality has still not been fully described. In this study, we investigated the genetic diversity of 15 forensic autosomal STR loci from 6879 individuals in 12 Han populations subdivided by administrative provinces in Central-Southern China. The statistical analysis of genetic variation showed that genetic differentiation among these populations was very small with a F st value of 0.0009. The Discriminant Analysis of Principal Components (DAPC) showed that there were no obvious population clusters in Central-Southern China Han population. In practice, the population structure effect in Central-Southern China Han population can be negligible in forensic identification and paternity testing. Copyright © 2017. Published by Elsevier B.V.

  11. Pulsed adiabatic structure and complete population transfer

    International Nuclear Information System (INIS)

    Shore, B.W.

    1992-10-01

    Population can be transferred between atomic or molecular energy states in a variety of ways. The basic idea of adiabatic transfer, discussed in many textbooks, is as follows. One begins with an atom that is in some single energy state (an eigenstate of an initial Hamiltonian). This energy state is one of many possible states, known variously as the unperturbed states or basis states or diabatic states. Next one begins to change the Hamiltonian very slowly. The changes may occur in either the diagonal elements (the basis state energies) or in the off-diagonal elements (interactions between basis states). If there are off-diagonal elements then the Hamiltonian will no longer commute with the original one. Because the Hamiltonian is no longer the one that was used to define the original basis states, it will cause these states to become mixed. However, if the change is sufficiently slow, the system can remain in a single eigenstate of the changing Hamiltonian -- an adiabatic state, composed of a combination of basis states. Finally, at some later time, one examines the system once again in the original basis. One finds that the population has undergone a change, and now resides in a different unperturbed state. One has produced population transfer. There are many illustrative examples of adiabatic passage, both theory and experiment. The author mentions briefly two common examples, inelastic collisions between atoms, and the static Stark effect in Rydberg atoms, before continuing with the main objective, a discussion of adiabatic passage induced by laser pulses

  12. Fine resolution mapping of population age-structures for health and development applications.

    Science.gov (United States)

    Alegana, V A; Atkinson, P M; Pezzulo, C; Sorichetta, A; Weiss, D; Bird, T; Erbach-Schoenberg, E; Tatem, A J

    2015-04-06

    The age-group composition of populations varies considerably across the world, and obtaining accurate, spatially detailed estimates of numbers of children under 5 years is important in designing vaccination strategies, educational planning or maternal healthcare delivery. Traditionally, such estimates are derived from population censuses, but these can often be unreliable, outdated and of coarse resolution for resource-poor settings. Focusing on Nigeria, we use nationally representative household surveys and their cluster locations to predict the proportion of the under-five population in 1 × 1 km using a Bayesian hierarchical spatio-temporal model. Results showed that land cover, travel time to major settlements, night-time lights and vegetation index were good predictors and that accounting for fine-scale variation, rather than assuming a uniform proportion of under 5 year olds can result in significant differences in health metrics. The largest gaps in estimated bednet and vaccination coverage were in Kano, Katsina and Jigawa. Geolocated household surveys are a valuable resource for providing detailed, contemporary and regularly updated population age-structure data in the absence of recent census data. By combining these with covariate layers, age-structure maps of unprecedented detail can be produced to guide the targeting of interventions in resource-poor settings.

  13. Population structure and genetic diversity of native and invasive populations of Solanum rostratum (Solanaceae.

    Directory of Open Access Journals (Sweden)

    Jiali Zhao

    Full Text Available We investigate native and introduced populations of Solanum rostratum, an annual, self-compatible plant that has been introduced around the globe. This study is the first to compare the genetic diversity of Solanum rostratum between native and introduced populations. We aim to (1 determine the level of genetic diversity across the studied regions; (2 explore the likely origins of invasive populations in China; and (3 investigate whether there is the evidence of multiple introductions into China.We genotyped 329 individuals at 10 microsatellite loci to determine the levels of genetic diversity and to investigate population structure of native and introduced populations of S. rostratum. We studied five populations in each of three regions across two continents: Mexico, the U.S.A. and China.We found the highest genetic diversity among Mexican populations of S. rostratum. Genetic diversity was significantly lower in Chinese and U.S.A. populations, but we found no regional difference in inbreeding coefficients (F IS or population differentiation (F ST. Population structure analyses indicate that Chinese and U.S.A. populations are more closely related to each other than to sampled Mexican populations, revealing that introduced populations in China share an origin with the sampled U.S.A. populations. The distinctiveness between some introduced populations indicates multiple introductions of S. rostratum into China.

  14. Hierarchical structures constructed by BiOX (X = Cl, I) nanosheets on CNTs/carbon composite fibers for improved photocatalytic degradation of methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Baicheng, E-mail: baichengweng@gmail.com; Xu, Fenghua; Xu, Jianguang [Yancheng Institute of Technology, Materials Engineering Department (China)

    2014-12-15

    A hierarchical structure (CNTs/CFs-NSs) of BiOX (X = Cl, I) nanosheets (NSs) on carbon fibers (CFs) embedded with aligned carbon nanotubes (CNTs) with improved photocatalytic activities has been developed on a large scale. In the CNTs/CFs obtained by centrifugal spinning, CNTs align along the axis of the CFs, form π–π stacking interactions with CFs and strength the electrical conductivity of CFs, which favors the electron collection and transportation. Cross-flake BiOX NSs were uniformly grown on the surface of CNTs/CFs through a successive ionic layer adsorption and reaction process. The as-prepared BiOX NSs are less than 20 nm in thickness with dominant reactive (001) facets that are almost fully exposed, promoting the photocatalytic properties. The hierarchical CNTs/CFs-NSs show 3- and 2-fold improved photocatalytic activities for degradation of methyl orange for BiOCl and BiOI compared to corresponding neat NSs, respectively, given the synergistic effects of CNTs/CFs and NSs. Moreover, these novel hierarchical structures with stable performance enhance the recycled ability for the photocatalyst.

  15. Hierarchical structures constructed by BiOX (X = Cl, I) nanosheets on CNTs/carbon composite fibers for improved photocatalytic degradation of methyl orange

    International Nuclear Information System (INIS)

    Weng, Baicheng; Xu, Fenghua; Xu, Jianguang

    2014-01-01

    A hierarchical structure (CNTs/CFs-NSs) of BiOX (X = Cl, I) nanosheets (NSs) on carbon fibers (CFs) embedded with aligned carbon nanotubes (CNTs) with improved photocatalytic activities has been developed on a large scale. In the CNTs/CFs obtained by centrifugal spinning, CNTs align along the axis of the CFs, form π–π stacking interactions with CFs and strength the electrical conductivity of CFs, which favors the electron collection and transportation. Cross-flake BiOX NSs were uniformly grown on the surface of CNTs/CFs through a successive ionic layer adsorption and reaction process. The as-prepared BiOX NSs are less than 20 nm in thickness with dominant reactive (001) facets that are almost fully exposed, promoting the photocatalytic properties. The hierarchical CNTs/CFs-NSs show 3- and 2-fold improved photocatalytic activities for degradation of methyl orange for BiOCl and BiOI compared to corresponding neat NSs, respectively, given the synergistic effects of CNTs/CFs and NSs. Moreover, these novel hierarchical structures with stable performance enhance the recycled ability for the photocatalyst

  16. Stability patterns for a size-structured population model and its stage-structured counterpart

    DEFF Research Database (Denmark)

    Zhang, Lai; Pedersen, Michael; Lin, Zhigui

    2015-01-01

    In this paper we compare a general size-structured population model, where a size-structured consumer feeds upon an unstructured resource, to its simplified stage-structured counterpart in terms of equilibrium stability. Stability of the size-structured model is understood in terms of an equivale...... to the population level....

  17. Population structure analysis using rare and common functional variants

    Directory of Open Access Journals (Sweden)

    Ding Lili

    2011-11-01

    Full Text Available Abstract Next-generation sequencing technologies now make it possible to genotype and measure hundreds of thousands of rare genetic variations in individuals across the genome. Characterization of high-density genetic variation facilitates control of population genetic structure on a finer scale before large-scale genotyping in disease genetics studies. Population structure is a well-known, prevalent, and important factor in common variant genetic studies, but its relevance in rare variants is unclear. We perform an extensive population structure analysis using common and rare functional variants from the Genetic Analysis Workshop 17 mini-exome sequence. The analysis based on common functional variants required 388 principal components to account for 90% of the variation in population structure. However, an analysis based on rare variants required 532 significant principal components to account for similar levels of variation. Using rare variants, we detected fine-scale substructure beyond the population structure identified using common functional variants. Our results show that the level of population structure embedded in rare variant data is different from the level embedded in common variant data and that correcting for population structure is only as good as the level one wishes to correct.

  18. Earthworm ecology affects the population structure of their Verminephrobacter symbionts

    DEFF Research Database (Denmark)

    Macedo Viana, Flavia Daniela; Jensen, Christopher Erik; Macey, Michael

    2016-01-01

    from two contrasting ecological types of earthworm hosts: the high population density, fast reproducing compost worms, Eisenia andrei and E. fetida, and the low-density, slow reproducing Aporrectodea tuberculata, commonly found in garden soils; for both types, three distinct populations were...... across host individuals from the same population. Thus, host ecology shapes the population structure of the Verminephrobacter symbionts. The homogeneous symbiont populations in the compost worms indicate that Verminephrobacter can be transferred bi-parentally or via leaky horizontal transmission in high...

  19. Population activity structure of excitatory and inhibitory neurons.

    Directory of Open Access Journals (Sweden)

    Sean R Bittner

    Full Text Available Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  20. Population activity structure of excitatory and inhibitory neurons.

    Science.gov (United States)

    Bittner, Sean R; Williamson, Ryan C; Snyder, Adam C; Litwin-Kumar, Ashok; Doiron, Brent; Chase, Steven M; Smith, Matthew A; Yu, Byron M

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  1. Training set optimization under population structure in genomic selection.

    Science.gov (United States)

    Isidro, Julio; Jannink, Jean-Luc; Akdemir, Deniz; Poland, Jesse; Heslot, Nicolas; Sorrells, Mark E

    2015-01-01

    Population structure must be evaluated before optimization of the training set population. Maximizing the phenotypic variance captured by the training set is important for optimal performance. The optimization of the training set (TRS) in genomic selection has received much interest in both animal and plant breeding, because it is critical to the accuracy of the prediction models. In this study, five different TRS sampling algorithms, stratified sampling, mean of the coefficient of determination (CDmean), mean of predictor error variance (PEVmean), stratified CDmean (StratCDmean) and random sampling, were evaluated for prediction accuracy in the presence of different levels of population structure. In the presence of population structure, the most phenotypic variation captured by a sampling method in the TRS is desirable. The wheat dataset showed mild population structure, and CDmean and stratified CDmean methods showed the highest accuracies for all the traits except for test weight and heading date. The rice dataset had strong population structure and the approach based on stratified sampling showed the highest accuracies for all traits. In general, CDmean minimized the relationship between genotypes in the TRS, maximizing the relationship between TRS and the test set. This makes it suitable as an optimization criterion for long-term selection. Our results indicated that the best selection criterion used to optimize the TRS seems to depend on the interaction of trait architecture and population structure.

  2. Population activity structure of excitatory and inhibitory neurons

    Science.gov (United States)

    Doiron, Brent

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. PMID:28817581

  3. Dynamics of a structured neuron population

    International Nuclear Information System (INIS)

    Pakdaman, Khashayar; Salort, Delphine; Perthame, Benoît

    2010-01-01

    We study the dynamics of assemblies of interacting neurons. For large fully connected networks, the dynamics of the system can be described by a partial differential equation reminiscent of age-structure models used in mathematical ecology, where the 'age' of a neuron represents the time elapsed since its last discharge. The nonlinearity arises from the connectivity J of the network. We prove some mathematical properties of the model that are directly related to qualitative properties. On the one hand, we prove that it is well-posed and that it admits stationary states which, depending upon the connectivity, can be unique or not. On the other hand, we study the long time behaviour of solutions; both for small and large J, we prove the relaxation to the steady state describing asynchronous firing of the neurons. In the middle range, numerical experiments show that periodic solutions appear expressing re-synchronization of the network and asynchronous firing

  4. Population genetic structure in wild and aquaculture populations of Hemibarbus maculates inferred from microsatellites markers

    Directory of Open Access Journals (Sweden)

    Linlin Li

    2017-03-01

    Full Text Available The objective of this study was to investigate 4 aquaculture populations Shanghai (SH, Hangzhou (HZ, Kaihua (KH and Xianju (XJ and one wild population Yingshan (YS of spotted barbell (Hemibarbus maculates to assess their genetic diversity level and investigate the genetic structure of the populations. The dendrogram and STRUCTURE revealed that the populations XJ, KH, and HZ jointly formed one cluster, to which the populations SH and YS were sequentially adhered. The genetic diversity of the cultured populations maintained better, possible due to favourable hatchery conditions that decreased the effect of environmental selection present in wild populations. The results of the present study will contribute to the management of spotted barbell genetic resources, but also demonstrates how the genetic diversity of freshwater species is vulnerable to human activity.

  5. Context updates are hierarchical

    Directory of Open Access Journals (Sweden)

    Anton Karl Ingason

    2016-10-01

    Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.

  6. Resolving the Framework Position of Organic Structure-Directing Agents in Hierarchical Zeolites via Polarized Stimulated Raman Scattering.

    Science.gov (United States)

    Fleury, Guillaume; Steele, Julian A; Gerber, Iann C; Jolibois, F; Puech, P; Muraoka, Koki; Keoh, Sye Hoe; Chaikittisilp, Watcharop; Okubo, Tatsuya; Roeffaers, Maarten B J

    2018-04-05

    The direct synthesis of hierarchically intergrown silicalite-1 can be achieved using a specific diquaternary ammonium agent. However, the location of these molecules in the zeolite framework, which is critical to understand the formation of the material, remains unclear. Where traditional characterization tools have previously failed, herein we use polarized stimulated Raman scattering (SRS) microscopy to resolve molecular organization inside few-micron-sized crystals. Through a combination of experiment and first-principles calculations, our investigation reveals the preferential location of the templating agent inside the linear pores of the MFI framework. Besides illustrating the attractiveness of SRS microscopy in the field of material science to study and spatially resolve local molecular distribution as well as orientation, these results can be exploited in the design of new templating agents for the preparation of hierarchical zeolites.

  7. Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/TiO2 nanofibers heterostructures

    International Nuclear Information System (INIS)

    Cao, Tieping; Li, Yuejun; Wang, Changhua; Wei, Liming; Shao, Changlu; Liu, Yichun

    2010-01-01

    Combining the versatility of electrospinning technique and hydrothermal growth of nanostructures enabled the fabrication of hierarchical CeO 2 /TiO 2 nanofibrous mat. The as-prepared hierarchical heterostructure consisted of CeO 2 nanostructures growing on the primary TiO 2 nanofibers. Interestingly, not only were secondary CeO 2 nanostructures successfully grown on TiO 2 nanofibers substrates, but also the CeO 2 nanostructures were uniformly distributed without aggregation on TiO 2 nanofibers. By selecting different alkaline source, CeO 2 /TiO 2 heterostructures with CeO 2 nanowalls or nanoparticles were facilely fabricated. The photocatalytic studies suggested that the CeO 2 /TiO 2 heterostructures showed enhanced photocatalytic efficiency of photodegradation of dye pollutants compared with bare TiO 2 nanofibers under UV light irradiation.

  8. Hierarchical architecture of active knits

    International Nuclear Information System (INIS)

    Abel, Julianna; Luntz, Jonathan; Brei, Diann

    2013-01-01

    Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm. (paper)

  9. The Genetic Structure of Australian Populations of Mycosphaerella musicola Suggests Restricted Gene Flow at the Continental Scale.

    Science.gov (United States)

    Hayden, H L; Carlier, J; Aitken, E A B

    2005-05-01

    ABSTRACT Mycosphaerella musicola causes Sigatoka disease of banana and is endemic to Australia. The population genetic structure of M. musicola in Australia was examined by applying single-copy restriction fragment length polymorphism probes to hierarchically sampled populations collected along the Australian east coast. The 363 isolates studied were from 16 plantations at 12 sites in four different regions, and comprised 11 populations. These populations displayed moderate levels of gene diversity (H = 0.142 to 0.369) and similar levels of genotypic richness and evenness. Populations were dominated by unique genotypes, but isolates sharing the same genotype (putative clones) were detected. Genotype distribution was highly localized within each population, and the majority of putative clones were detected for isolates sampled from different sporodochia in the same lesion or different lesions on a plant. Multilocus gametic disequilibrium tests provided further evidence of a degree of clonality within the populations at the plant scale. A complex pattern of population differentiation was detected for M. musicola in Australia. Populations sampled from plantations outside the two major production areas were genetically very different to all other populations. Differentiation was much lower between populations of the two major production areas, despite their geographic separation of over 1,000 km. These results suggest low gene flow at the continental scale due to limited spore dispersal and the movement of infected plant material.

  10. A general modeling framework for describing spatially structured population dynamics

    Science.gov (United States)

    Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan

    2017-01-01

    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance

  11. Analysis of genetic diversity and population structure in upland ...

    Indian Academy of Sciences (India)

    Mulugeta Seyoum

    2018-06-09

    Jun 9, 2018 ... diversity and population structure at DNA level, 302 elite upland cotton germplasm accessions ...... conservation of cotton germplasm in China (English abstract). ... and Alishah O. 2011 Inter simple sequence repeats (ISSR).

  12. Genetic diversity and population structure of endangered Aquilaria ...

    Indian Academy of Sciences (India)

    2015-12-03

    Dec 3, 2015 ... ... Aromatic and Economic Plants, CSIR - North-East Institute of Science and Technology ... and population structure is receiving tremendous attention for effective .... unreliable detection and to increase the quality of data. The.

  13. The population genomics of begomoviruses: global scale population structure and gene flow

    Directory of Open Access Journals (Sweden)

    Prasanna HC

    2010-09-01

    Full Text Available Abstract Background The rapidly growing availability of diverse full genome sequences from across the world is increasing the feasibility of studying the large-scale population processes that underly observable pattern of virus diversity. In particular, characterizing the genetic structure of virus populations could potentially reveal much about how factors such as geographical distributions, host ranges and gene flow between populations combine to produce the discontinuous patterns of genetic diversity that we perceive as distinct virus species. Among the richest and most diverse full genome datasets that are available is that for the dicotyledonous plant infecting genus, Begomovirus, in the Family Geminiviridae. The begomoviruses all share the same whitefly vector, are highly recombinogenic and are distributed throughout tropical and subtropical regions where they seriously threaten the food security of the world's poorest people. Results We focus here on using a model-based population genetic approach to identify the genetically distinct sub-populations within the global begomovirus meta-population. We demonstrate the existence of at least seven major sub-populations that can further be sub-divided into as many as thirty four significantly differentiated and genetically cohesive minor sub-populations. Using the population structure framework revealed in the present study, we further explored the extent of gene flow and recombination between genetic populations. Conclusions Although geographical barriers are apparently the most significant underlying cause of the seven major population sub-divisions, within the framework of these sub-divisions, we explore patterns of gene flow to reveal that both host range differences and genetic barriers to recombination have probably been major contributors to the minor population sub-divisions that we have identified. We believe that the global Begomovirus population structure revealed here could

  14. Genetic diversity and population structure of leaf-nosed bat ...

    African Journals Online (AJOL)

    Genetic variation and population structure of the leaf-nosed bat Hipposideros speoris were estimated using 16S rRNA sequence and microsatellite analysis. Twenty seven distinct mitochondrial haplotypes were identified from 186 individuals, sampled from eleven populations. FST test revealed significant variations ...

  15. Structured populations with distributed recruitment : from PDE to delay formulation

    NARCIS (Netherlands)

    Calsina, Àngel; Diekmann, Odo; Farkas, József Z.

    2016-01-01

    In this work, first, we consider a physiologically structured population model with a distributed recruitment process. That is, our model allows newly recruited individuals to enter the population at all possible individual states, in principle. The model can be naturally formulated as a first-order

  16. Genetic structure of populations and differentiation in forest trees

    Science.gov (United States)

    Raymond P. Guries; F. Thomas Ledig

    1981-01-01

    Electrophoretic techniques permit population biologists to analyze genetic structure of natural populations by using large numbers of allozyme loci. Several methods of analysis have been applied to allozyme data, including chi-square contingency tests, F-statistics, and genetic distance. This paper compares such statistics for pitch pine (Pinus rigida...

  17. Population structure and expansion of kuruma shrimp ( Penaeus ...

    African Journals Online (AJOL)

    Sequence analyses on the specific intron from the elongation factor-1α gene were conducted to examine the population genetic structure and expansion of kuruma shrimp (Penaeus japonicus) off Taiwan. Five populations including 119 individuals were separately sampled from the north of East China Sea (ECS), west of ...

  18. Genetic structure of West Greenland populations of lumpfish Cyclopterus lumpus

    DEFF Research Database (Denmark)

    Mayoral, Elsa Garcia; Olsen, M.; Hedeholm, R.

    2016-01-01

    In this study, 11 microsatellite markers were used to determine the structure of West Greenlandic lumpfish Cyclopterus lumpus populations across six spawning locations spanning >1500 km and compared with neighbouring populations in Canada and Iceland. To evaluate whether data allow for identifica...

  19. Mapping fields of 137Cs contamination in soils in the context of their stability and hierarchical spatial structure

    Science.gov (United States)

    Korobova, E.; Romanov, S.

    2009-04-01

    Technogenic radioisotopes now dispersed in the environment are involved in natural and technogenic processes forming specific geochemical fields and serving as tracers of modern mass migration and geofield transformation. Cs-137 radioisotopes having a comparatively long life time are known for a fast fixation by the top soil layer; radiocesium activity can be measured in the surface layer in field conditions. This makes 137Cs rather convenient for the study and modeling a behavior of toxic elements in soils [1-3, 5] and for the investigation of relative stability and hierarchical fractal structures of the soil contamination of the atmospheric origin [2]. The objective of the experimental study performed on the test site in Bryansk region was to find and prove polycentric regularities in the structure of 137Cs contamination field formed after the Chernobyl accident in natural conditions. Such a character of spatial variability can be seen on the maps showing different soil parameters and chemical element distribution measured in grids [3-5]. The research was undertaken to support our idea of the regular patterns in the contamination field structure that enables to apply a mathematical theory of the field to the geochemical fields modeling on the basis of a limited number of direct measurements sufficient to reproduce the configuration and main parameters of the geochemical field structure on the level of the elementary landscape geochemical system (top-slope-bottom). Cs-137 field measurements were verified by a direct soil sampling. Soil cores dissected into subsamples with increments of 2, 5 and 10 cm, were taken to the depth of 40 cm at points with various surface activity located at different elements of relief. According to laboratory measurements 137Cs inventory in soils varied from 344 to 3448 kBq/m2 (983 kBq/m2 on the average). From 95,1% to 98,0% to of the total inventory was retained in the top 20-cm soil layer. This confirmed that field gamma spectrometry

  20. Synthesis of flower-like BaTiO3/Fe3O4 hierarchically structured particles and their electrorheological and magnetic properties.

    Science.gov (United States)

    Wang, Baoxiang; Yin, Yichao; Liu, Chenjie; Yu, Shoushan; Chen, Kezheng

    2013-07-21

    Flower-like BaTiO3/Fe3O4 hierarchically structured particles composed of nano-scale structures on micro-scale materials were synthesized by a simple solvothermal approach and characterized by the means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), magnetic testing and rotary viscometer. The influences on the morphology and structure of solvothermal times, type and amount of surfactant, EG : H2O ratio, etc. were studied. Magnetic testing results show that the samples have strong magnetism and they exhibit superparamagnetic behavior, as evidenced by no coercivity and the remanence at room temperature, due to their very small sizes, observed on the M-H loop. The saturation magnetization (M(s)) value can achieve 18.3 emu g(-1). The electrorheological (ER) effect was investigated using a suspension of the flower-like BaTiO3/Fe3O4 hierarchically structured particles dispersed in silicone oil. We can observe a slight shear-thinning behavior of shear viscosity at a low shear rate region even at zero applied electric field and a Newtonian fluid behavior at high shear rate regions.

  1. Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus across Africa

    Directory of Open Access Journals (Sweden)

    Bezault Etienne

    2011-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian (RST = 0.38 - 0.69. This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (RST = 0.24 - 0.32. The lowest differentiations were observed among connected populations within a basin (RST = 0.015 in the Volta basin. Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053. The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097 in the Volta populations. Conclusions This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were

  2. Plasmodium vivax Diversity and Population Structure across Four Continents.

    Science.gov (United States)

    Koepfli, Cristian; Rodrigues, Priscila T; Antao, Tiago; Orjuela-Sánchez, Pamela; Van den Eede, Peter; Gamboa, Dionicia; van Hong, Nguyen; Bendezu, Jorge; Erhart, Annette; Barnadas, Céline; Ratsimbasoa, Arsène; Menard, Didier; Severini, Carlo; Menegon, Michela; Nour, Bakri Y M; Karunaweera, Nadira; Mueller, Ivo; Ferreira, Marcelo U; Felger, Ingrid

    2015-01-01

    Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999-2008. Diversity was highest in South-East Asia (mean allelic richness 10.0-12.8), intermediate in the South Pacific (8.1-9.9) Madagascar and Sudan (7.9-8.4), and lowest in South America and Central Asia (5.5-7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60-80% in Latin American populations, suggesting that typing of 2-6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11-0.16) between South American and all other populations, and lowest (0.04-0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations.

  3. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient

    OpenAIRE

    Vangestel, C; Mergeay, Joachim; Dawson, D. A; Callens, T; Vandomme, V; Lens, L

    2012-01-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierar...

  4. Competition in size-structured populations: mechanisms inducing cohort formation and population cycles

    NARCIS (Netherlands)

    de Roos, A.M.; Persson, L.

    2003-01-01

    In this paper we investigate the consequences of size-dependent competition among the individuals of a consumer population by analyzing the dynamic properties of a physiologically structured population model. Only 2 size-classes of individuals are distinguished: juveniles and adults. Juveniles and

  5. Synthesis of Pt@TiO2@CNTs Hierarchical Structure Catalyst by Atomic Layer Deposition and Their Photocatalytic and Photoelectrochemical Activity.

    Science.gov (United States)

    Liao, Shih-Yun; Yang, Ya-Chu; Huang, Sheng-Hsin; Gan, Jon-Yiew

    2017-04-29

    Pt@TiO2@CNTs hierarchical structures were prepared by first functionalizing carbon nanotubes (CNTs) with nitric acid at 140 °C. Coating of TiO2 particles on the CNTs at 300 °C was then conducted by atomic layer deposition (ALD). After the TiO2@CNTs structure was fabricated, Pt particles were deposited on the TiO2 surface as co-catalyst by plasma-enhanced ALD. The saturated deposition rates of TiO2 on a-CNTs were 1.5 Å/cycle and 0.4 Å/cycle for substrate-enhanced process and linear process, respectively. The saturated deposition rate of Pt on TiO2 was 0.39 Å/cycle. The photocatalytic activities of Pt@TiO2@CNTs hierarchical structures were higher than those without Pt co-catalyst. The particle size of Pt on TiO2@CNTs was a key factor to determine the efficiency of methylene blue (MB) degradation. The Pt@TiO2@CNTs of 2.41 ± 0.27 nm exhibited the best efficiency of MB degradation.

  6. Self-assembly of nano/micro-structured Fe3O4 microspheres among 3D rGO/CNTs hierarchical networks with superior lithium storage performances

    International Nuclear Information System (INIS)

    Liu, Jinlong; Feng, Haibo; Wang, Xipeng; Qian, Dong; Jiang, Jianbo; Li, Junhua; Peng, Sanjun; Deng, Miao; Liu, Youcai

    2014-01-01

    Nano/micro-structured Fe 3 O 4 microspheres among three-dimensional (3D) reduced graphene oxide (rGO)/carbon nanotubes (CNTs) hierarchical networks (the ternary composite is denoted as rGCFs) have been synthesized using a facile, self-assembled and one-pot hydrothermal approach. The rGCFs composite exhibits superior lithium storage performances: initial discharge and charge capacities of 1452 and 1036 mAh g −1 , respectively, remarkable rate capability at current densities from 100 mA g −1 to 10 A g −1 and outstanding cycling performance up to 200 cycles. The highly enhanced electrochemical performances of rGCFs depend heavily on the robust 3D rGO/CNTs hierarchical networks, the stable nano/microstructures of active Fe 3 O 4 microspheres and the positive synergistic effects of building components. The systematic structure characterizations and electrochemical investigations provide insightful understanding towards the relationship between structure/morphology and lithium storage performances, which may pave the way for the rational design of composite materials with desirable goals. (papers)

  7. Stage-Structured Population Dynamics of AEDES AEGYPTI

    Science.gov (United States)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  8. Effect of Population Structure Change on Carbon Emission in China

    Directory of Open Access Journals (Sweden)

    Wen Guo

    2016-03-01

    Full Text Available This paper expanded the Logarithmic Mean Divisia Index (LMDI model through the introduction of urbanization, residents’ consumption, and other factors, and decomposed carbon emission changes in China into carbon emission factor effect, energy intensity effect, consumption inhibitory factor effect, urbanization effect, residents’ consumption effect, and population scale effect, and then explored contribution rates and action mechanisms of the above six factors on change in carbon emissions in China. Then, the effect of population structure change on carbon emission was analyzed by taking 2003–2012 as a sample period, and combining this with the panel data of 30 provinces in China. Results showed that in 2003–2012, total carbon emission increased by 4.2117 billion tons in China. The consumption inhibitory factor effect, urbanization effect, residents’ consumption effect, and population scale effect promoted the increase in carbon emissions, and their contribution ratios were 27.44%, 12.700%, 74.96%, and 5.90%, respectively. However, the influence of carbon emission factor effect (−2.54% and energy intensity effect (−18.46% on carbon emissions were negative. Population urbanization has become the main population factor which affects carbon emission in China. The “Eastern aggregation” phenomenon caused the population scale effect in the eastern area to be significantly higher than in the central and western regions, but the contribution rate of its energy intensity effect (−11.10 million tons was significantly smaller than in the central (−21.61 million tons and western regions (−13.29 million tons, and the carbon emission factor effect in the central area (−3.33 million tons was significantly higher than that in the eastern (−2.00 million tons and western regions (−1.08 million tons. During the sample period, the change in population age structure, population education structure, and population occupation structure

  9. Transmutations across hierarchical levels

    International Nuclear Information System (INIS)

    O'Neill, R.V.

    1977-01-01

    The development of large-scale ecological models depends implicitly on a concept known as hierarchy theory which views biological systems in a series of hierarchical levels (i.e., organism, population, trophic level, ecosystem). The theory states that an explanation of a biological phenomenon is provided when it is shown to be the consequence of the activities of the system's components, which are themselves systems in the next lower level of the hierarchy. Thus, the behavior of a population is explained by the behavior of the organisms in the population. The initial step in any modeling project is, therefore, to identify the system components and the interactions between them. A series of examples of transmutations in aquatic and terrestrial ecosystems are presented to show how and why changes occur. The types of changes are summarized and possible implications of transmutation for hierarchy theory, for the modeler, and for the ecological theoretician are discussed

  10. Comparative population structure of cavity-nesting sea ducks

    Science.gov (United States)

    Pearce, John M.; Eadie, John M.; Savard, Jean-Pierre L.; Christensen, Thomas K.; Berdeen, James; Taylor, Eric J.; Boyd, Sean; Einarsson, Árni

    2014-01-01

    A growing collection of mtDNA genetic information from waterfowl species across North America suggests that larger-bodied cavity-nesting species exhibit greater levels of population differentiation than smaller-bodied congeners. Although little is known about nest-cavity availability for these species, one hypothesis to explain differences in population structure is reduced dispersal tendency of larger-bodied cavity-nesting species due to limited abundance of large cavities. To investigate this hypothesis, we examined population structure of three cavity-nesting waterfowl species distributed across much of North America: Barrow's Goldeneye (Bucephala islandica), Common Goldeneye (B. clangula), and Bufflehead (B. albeola). We compared patterns of population structure using both variation in mtDNA control-region sequences and band-recovery data for the same species and geographic regions. Results were highly congruent between data types, showing structured population patterns for Barrow's and Common Goldeneye but not for Bufflehead. Consistent with our prediction, the smallest cavity-nesting species, the Bufflehead, exhibited the lowest level of population differentiation due to increased dispersal and gene flow. Results provide evidence for discrete Old and New World populations of Common Goldeneye and for differentiation of regional groups of both goldeneye species in Alaska, the Pacific Northwest, and the eastern coast of North America. Results presented here will aid management objectives that require an understanding of population delineation and migratory connectivity between breeding and wintering areas. Comparative studies such as this one highlight factors that may drive patterns of genetic diversity and population trends.

  11. Genetic population structure of the vulnerable bog fritillary butterfly.

    Science.gov (United States)

    Vandewoestijne, S; Baguette, M

    2004-01-01

    Populations of the bog fritillary butterfly Proclossiana eunomia (Lepidoptera, Nymphalidae) occur in patchy habitat in central and western Europe. P. eunomia is a vulnerable species in the Belgian Ardennes and the number of occupied sites has significantly decreased in this region since the 1960s. RAPD (random amplified polymorphic DNA) markers were used to study the consequences of habitat loss and fragmentation on the genetic population structure of this species. Gene diversity was lower in populations with smaller population sizes. Genetic subdivision was high (Fst=0.0887) considering the small spatial scale of this study (150 km2). The most geographically isolated population was also the most genetically differentiated one. The genetic population structure and genetic differentiation detected in this study were explained by (1) differences in altitude of the sampled locations and, (2) lower dispersal propensity and dispersal rate in fragmented landscapes versus continuous landscapes. Results from the RAPD analyses were compared with a previous allozyme based study on the same populations. The results of this study suggest that increased fragmentation has lead to a greater genetic differentiation between remaining P. eunomia populations.

  12. Assessing population genetic structure via the maximisation of genetic distance

    Directory of Open Access Journals (Sweden)

    Toro Miguel A

    2009-11-01

    Full Text Available Abstract Background The inference of the hidden structure of a population is an essential issue in population genetics. Recently, several methods have been proposed to infer population structure in population genetics. Methods In this study, a new method to infer the number of clusters and to assign individuals to the inferred populations is proposed. This approach does not make any assumption on Hardy-Weinberg and linkage equilibrium. The implemented criterion is the maximisation (via a simulated annealing algorithm of the averaged genetic distance between a predefined number of clusters. The performance of this method is compared with two Bayesian approaches: STRUCTURE and BAPS, using simulated data and also a real human data set. Results The simulations show that with a reduced number of markers, BAPS overestimates the number of clusters and presents a reduced proportion of correct groupings. The accuracy of the new method is approximately the same as for STRUCTURE. Also, in Hardy-Weinberg and linkage disequilibrium cases, BAPS performs incorrectly. In these situations, STRUCTURE and the new method show an equivalent behaviour with respect to the number of inferred clusters, although the proportion of correct groupings is slightly better with the new method. Re-establishing equilibrium with the randomisation procedures improves the precision of the Bayesian approaches. All methods have a good precision for FST ≥ 0.03, but only STRUCTURE estimates the correct number of clusters for FST as low as 0.01. In situations with a high number of clusters or a more complex population structure, MGD performs better than STRUCTURE and BAPS. The results for a human data set analysed with the new method are congruent with the geographical regions previously found. Conclusion This new method used to infer the hidden structure in a population, based on the maximisation of the genetic distance and not taking into consideration any assumption about Hardy

  13. Patterns of admixture and population structure in native populations of Northwest North America.

    Directory of Open Access Journals (Sweden)

    Paul Verdu

    2014-08-01

    Full Text Available The initial contact of European populations with indigenous populations of the Americas produced diverse admixture processes across North, Central, and South America. Recent studies have examined the genetic structure of indigenous populations of Latin America and the Caribbean and their admixed descendants, reporting on the genomic impact of the history of admixture with colonizing populations of European and African ancestry. However, relatively little genomic research has been conducted on admixture in indigenous North American populations. In this study, we analyze genomic data at 475,109 single-nucleotide polymorphisms sampled in indigenous peoples of the Pacific Northwest in British Columbia and Southeast Alaska, populations with a well-documented history of contact with European and Asian traders, fishermen, and contract laborers. We find that the indigenous populations of the Pacific Northwest have higher gene diversity than Latin American indigenous populations. Among the Pacific Northwest populations, interior groups provide more evidence for East Asian admixture, whereas coastal groups have higher levels of European admixture. In contrast with many Latin American indigenous populations, the variance of admixture is high in each of the Pacific Northwest indigenous populations, as expected for recent and ongoing admixture processes. The results reveal some similarities but notable differences between admixture patterns in the Pacific Northwest and those in Latin America, contributing to a more detailed understanding of the genomic consequences of European colonization events throughout the Americas.

  14. Population genetic structure in natural and reintroduced beaver (Castor fiber populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Kautenburger, R.

    2008-12-01

    Full Text Available Castor fiber Linnaeus, 1758 is the only indigenous species of the genus Castor in Europe and Asia. Due to extensive hunting until the beginning of the 20th century, the distribution of the formerly widespread Eurasian beaver was dramatically reduced. Only a few populations remained and these were in isolated locations, such as the region of the German Elbe River. The loss of genetic diversity in small or captive populations throughgenetic drift and inbreeding is a severe conservation problem. However, the reintroduction of beaver populations from several regions in Europe has shown high viability and populations today are growing fast. In the present study we analysed the population genetic structure of a natural and two reintroduced beaver populations in Germany and Austria. Furthermore, we studied the genetic differentiation between two beaver species, C. fiber and the American beaver (C. canadensis, using RAPD (Random Amplified Polymorphic DNA as a genetic marker. The reintroduced beaver populations of different origins and the autochthonous population of the Elbe River showed a similar low genetic heterogeneity. There was an overall high genetic similarity in the species C. fiber, and no evidence was found for a clear subspecific structure in the populations studied.

  15. Effects of heat treatment on the hierarchical porous structure and electro-capacitive properties of RuO2/activated carbon nanofiber composites

    International Nuclear Information System (INIS)

    Jun, Ye Ri; Kim, Bo Hye

    2016-01-01

    Electrochemical capacitors based on hierarchical porous activated carbon nanofiber (RuO 2 /ACNF) composites are fabricated by one-step electrospinning, and then stabilized at different activation temperatures. The effect of the activation temperature on the structural properties and electrochemical behavior of the RuO 2 /ACNF composites is intensively investigated in 6 M KOH electrolyte. The RuO 2 /ACNF-800 composites activated at high temperature possess abundant mesopores and larger pores, which improve the electrochemical performance, especially at high charge–discharge rates. The energy storage capabilities of the RuO 2 /ACNF-800 electrode prepared at high temperature are as follows: a maximum specific capacitance of 150 F/g and an energy density of 14–20 Wh/kg in the respective power density range of 400 to 10 000 W/kg in an aqueous solution. Furthermore, this electrode exhibits high-rate electrochemical performance with a specific capacitance reduction of less than 28% of the initial value at a discharge current of 20 mA/cm 2 . Therefore, the hierarchical porous RuO 2 /ACNF composites with well-developed mesoporous structure provide low resistance for charge diffusion and a short pathway for ion transportation, yielding good capacitive behavior

  16. Effects of heat treatment on the hierarchical porous structure and electro-capacitive properties of RuO{sub 2}/activated carbon nanofiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Ye Ri; Kim, Bo Hye [Div. of Science Education, Chemistry Education Major, Daegu University, Daegu (Korea, Republic of)

    2016-11-15

    Electrochemical capacitors based on hierarchical porous activated carbon nanofiber (RuO{sub 2} /ACNF) composites are fabricated by one-step electrospinning, and then stabilized at different activation temperatures. The effect of the activation temperature on the structural properties and electrochemical behavior of the RuO{sub 2} /ACNF composites is intensively investigated in 6 M KOH electrolyte. The RuO{sub 2} /ACNF-800 composites activated at high temperature possess abundant mesopores and larger pores, which improve the electrochemical performance, especially at high charge–discharge rates. The energy storage capabilities of the RuO{sub 2} /ACNF-800 electrode prepared at high temperature are as follows: a maximum specific capacitance of 150 F/g and an energy density of 14–20 Wh/kg in the respective power density range of 400 to 10 000 W/kg in an aqueous solution. Furthermore, this electrode exhibits high-rate electrochemical performance with a specific capacitance reduction of less than 28% of the initial value at a discharge current of 20 mA/cm{sup 2}. Therefore, the hierarchical porous RuO{sub 2} /ACNF composites with well-developed mesoporous structure provide low resistance for charge diffusion and a short pathway for ion transportation, yielding good capacitive behavior.

  17. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors.

    Science.gov (United States)

    Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong

    2015-01-01

    Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.

  18. Genetic diversity and population structure of Eleutheronema rhadinum in the East and South China Seas revealed in mitochondrial COI sequences

    Science.gov (United States)

    Sun, Xinxu; Xu, Dongdong; Lou, Bao; Zhang, Tao; Xin, Jian; Guo, Yaoshi; Ma, Shilei

    2013-11-01

    Eleutheronema rhadinum is a potential commercial fisheries species and is subject to intense exploitation in China. Knowledge on the population structure of E. rhadinum in Chinese coastal waters, which is important for sustainable exploitation and proper resource management, is lacking. In the present study, the genetic diversity and population structure of E. rhadinum were evaluated using a 564-base pair fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 76 specimens were collected from three localities around the East (Qidong and Zhoushan) and South China Seas (Zhuhai). Among these individuals, nine polymorphic sites were detected and 11 distinct haplotypes were defined. High levels of haplotype diversity ( h =0.759±0.035) and low levels of nucleotide diversity ( π= 0.001 98±0.003 26) were observed in these populations. Hierarchical analysis of molecular variance (AMOVA) indicated that 96.72% of the genetic variation occurred within the populations, whereas 3.28% occurred among populations. No significant genealogical branches or clusters were recognized on the neighbor-joining tree. Intra-group variation among populations was significant ( φ st=0.032 85, PTests of neutral evolution and mismatch distribution suggest that E. rhadinum may have experienced a population expansion. The present study provides basic information for the conservation and sustainable exploitation of this species.

  19. The scale of population structure in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Alexander Platt

    2010-02-01

    Full Text Available The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene flow. This paper examines the detailed global population structure of Arabidopsis thaliana. Using a set of 5,707 plants collected from around the globe and genotyped at 149 SNPs, we show that while A. thaliana as a species self-fertilizes 97% of the time, there is considerable variation among local groups. This level of outcrossing greatly limits observed heterozygosity but is sufficient to generate considerable local haplotypic diversity. We also find that in its native Eurasian range A. thaliana exhibits continuous isolation by distance at every geographic scale without natural breaks corresponding to classical notions of