WorldWideScience

Sample records for hierarchical temporal memory

  1. Evaluation of hierarchical temporal memory for a real world application

    OpenAIRE

    Melis, Wim J.C.; Chizuwa, Shuhei; Kameyama, Michitaka

    2010-01-01

    A large number of real world applications, such as user support systems, can still not be performed easily by conventional algorithms in comparison with the human brain. Such intelligence is often implemented, by using probability based systems. This paper focuses on comparing the implementation of a cellular phone intention estimation example on a Bayesian Network and Hierarchical Temporal Memory. It is found that Hierarchical Temporal Memory is a system that requires little effort for desig...

  2. Extended hierarchical temporal memory for visual object tracking

    Science.gov (United States)

    Kryś, Sebastian; Jankowski, Stanisław

    2011-10-01

    A system for simultaneous multi-obstacle recognition and tracking is proposed. Based on the novel Hierarchical Temporal Memory algorithm, it is design for application in vision problems but generally not constrained to it. Thanks to its modular and mostly parallel architecture it can be easily implemented in distributed environment attaining significant computation speed and thus it is suited for real-time processing tasks like visual data processing in mobile robotics. Derived from standard neural network paradigm the system can extract information concerning position, relative speed and type of an obstacle in a dynamically changing environment. It can be easily enhanced for basic prediction tasks.

  3. Incremental learning by message passing in hierarchical temporal memory.

    Science.gov (United States)

    Rehn, Erik M; Maltoni, Davide

    2014-08-01

    Hierarchical temporal memory (HTM) is a biologically inspired framework that can be used to learn invariant representations of patterns in a wide range of applications. Classical HTM learning is mainly unsupervised, and once training is completed, the network structure is frozen, thus making further training (i.e., incremental learning) quite critical. In this letter, we develop a novel technique for HTM (incremental) supervised learning based on gradient descent error minimization. We prove that error backpropagation can be naturally and elegantly implemented through native HTM message passing based on belief propagation. Our experimental results demonstrate that a two-stage training approach composed of unsupervised pretraining and supervised refinement is very effective (both accurate and efficient). This is in line with recent findings on other deep architectures.

  4. Classifying Human Body Acceleration Patterns Using a Hierarchical Temporal Memory

    Science.gov (United States)

    Sassi, Federico; Ascari, Luca; Cagnoni, Stefano

    This paper introduces a novel approach to the detection of human body movements during daily life. With the sole use of one wearable wireless triaxial accelerometer attached to one's chest, this approach aims at classifying raw acceleration data robustly, to detect many common human behaviors without requiring any specific a-priori knowledge about movements. The proposed approach consists of feeding sensory data into a specifically trained Hierarchical Temporal Memory (HTM) to extract invariant spatial-temporal patterns that characterize different body movements. The HTM output is then classified using a Support Vector Machine (SVM) into different categories. The performance of this new HTM+SVM combination is compared with a single SVM using real-word data corresponding to movements like "standing", "walking", "jumping" and "falling", acquired from a group of different people. Experimental results show that the HTM+SVM approach can detect behaviors with very high accuracy and is more robust, with respect to noise, than a classifier based solely on SVMs.

  5. Hierarchical Temporal Memory Based on Spin-Neurons and Resistive Memory for Energy-Efficient Brain-Inspired Computing

    OpenAIRE

    Fan, Deliang; Sharad, Mrigank; Sengupta, Abhronil; Roy, Kaushik

    2014-01-01

    Hierarchical temporal memory (HTM) tries to mimic the computing in cerebral-neocortex. It identifies spatial and temporal patterns in the input for making inferences. This may require large number of computationally expensive tasks like, dot-product evaluations. Nano-devices that can provide direct mapping for such primitives are of great interest. In this work we show that the computing blocks for HTM can be mapped using low-voltage, fast-switching, magneto-metallic spin-neurons combined wit...

  6. Evaluation of the hierarchical temporal memory soft computing platform and its VLSI architecture

    OpenAIRE

    Melis, W.J.C.; Chizuwa, S.; Kameyama, M.

    2009-01-01

    A large number of real world applications, like user support systems, can still not be performed easily by conventional algorithms in comparison with the human brain. Recently, such intelligence has often been reached by using probability based systems. This paper presents results on the implementation of one such user support system, namely an intention estimation information appliance system, on a Bayesian network as well as hierarchical temporal memory. The latter is a new and quite promis...

  7. Properties of Sparse Distributed Representations and their Application to Hierarchical Temporal Memory

    OpenAIRE

    Ahmad, Subutai; Hawkins, Jeff

    2015-01-01

    Empirical evidence demonstrates that every region of the neocortex represents information using sparse activity patterns. This paper examines Sparse Distributed Representations (SDRs), the primary information representation strategy in Hierarchical Temporal Memory (HTM) systems and the neocortex. We derive a number of properties that are core to scaling, robustness, and generalization. We use the theory to provide practical guidelines and illustrate the power of SDRs as the basis of HTM. Our ...

  8. Application of Numenta® Hierarchical Temporal Memory for land-use classification

    Directory of Open Access Journals (Sweden)

    J.E. Meroño

    2010-01-01

    Full Text Available The aim of this paper is to present the application of memoryprediction theory, implemented in the form of a Hierarchical Temporal Memory (HTM, for land-use classification. Numenta®HTM is a new computing technology that replicates the structure and function of the human neocortex. In this study, a photogram, received by a photogrammetric UltraCamD® sensor of Vexcel, and data on 1 513 plots in Manzanilla (Huelva, Spain were used to validate the classification, achieving an overall classification accuracy of 90.4%. The HTMapproach appears to hold promise for land-use classification.

  9. Hierarchical Temporal Memory Based on Spin-Neurons and Resistive Memory for Energy-Efficient Brain-Inspired Computing.

    Science.gov (United States)

    Fan, Deliang; Sharad, Mrigank; Sengupta, Abhronil; Roy, Kaushik

    2016-09-01

    Hierarchical temporal memory (HTM) tries to mimic the computing in cerebral neocortex. It identifies spatial and temporal patterns in the input for making inferences. This may require a large number of computationally expensive tasks, such as dot product evaluations. Nanodevices that can provide direct mapping for such primitives are of great interest. In this paper, we propose that the computing blocks for HTM can be mapped using low-voltage, magnetometallic spin-neurons combined with an emerging resistive crossbar network, which involves a comprehensive design at algorithm, architecture, circuit, and device levels. Simulation results show the possibility of more than 200× lower energy as compared with a 45-nm CMOS ASIC design.

  10. Memory Stacking in Hierarchical Networks.

    Science.gov (United States)

    Westö, Johan; May, Patrick J C; Tiitinen, Hannu

    2016-02-01

    Robust representations of sounds with a complex spectrotemporal structure are thought to emerge in hierarchically organized auditory cortex, but the computational advantage of this hierarchy remains unknown. Here, we used computational models to study how such hierarchical structures affect temporal binding in neural networks. We equipped individual units in different types of feedforward networks with local memory mechanisms storing recent inputs and observed how this affected the ability of the networks to process stimuli context dependently. Our findings illustrate that these local memories stack up in hierarchical structures and hence allow network units to exhibit selectivity to spectral sequences longer than the time spans of the local memories. We also illustrate that short-term synaptic plasticity is a potential local memory mechanism within the auditory cortex, and we show that it can bring robustness to context dependence against variation in the temporal rate of stimuli, while introducing nonlinearities to response profiles that are not well captured by standard linear spectrotemporal receptive field models. The results therefore indicate that short-term synaptic plasticity might provide hierarchically structured auditory cortex with computational capabilities important for robust representations of spectrotemporal patterns.

  11. Dynamic Organization of Hierarchical Memories.

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2016-01-01

    In the brain, external objects are categorized in a hierarchical way. Although it is widely accepted that objects are represented as static attractors in neural state space, this view does not take account interaction between intrinsic neural dynamics and external input, which is essential to understand how neural system responds to inputs. Indeed, structured spontaneous neural activity without external inputs is known to exist, and its relationship with evoked activities is discussed. Then, how categorical representation is embedded into the spontaneous and evoked activities has to be uncovered. To address this question, we studied bifurcation process with increasing input after hierarchically clustered associative memories are learned. We found a "dynamic categorization"; neural activity without input wanders globally over the state space including all memories. Then with the increase of input strength, diffuse representation of higher category exhibits transitions to focused ones specific to each object. The hierarchy of memories is embedded in the transition probability from one memory to another during the spontaneous dynamics. With increased input strength, neural activity wanders over a narrower state space including a smaller set of memories, showing more specific category or memory corresponding to the applied input. Moreover, such coarse-to-fine transitions are also observed temporally during transient process under constant input, which agrees with experimental findings in the temporal cortex. These results suggest the hierarchy emerging through interaction with an external input underlies hierarchy during transient process, as well as in the spontaneous activity.

  12. On the Optimum Architecture of the Biologically Inspired Hierarchical Temporal Memory Model Applied to the Hand-Written Digit Recognition

    Science.gov (United States)

    Štolc, Svorad; Bajla, Ivan

    2010-01-01

    In the paper we describe basic functions of the Hierarchical Temporal Memory (HTM) network based on a novel biologically inspired model of the large-scale structure of the mammalian neocortex. The focus of this paper is in a systematic exploration of possibilities how to optimize important controlling parameters of the HTM model applied to the classification of hand-written digits from the USPS database. The statistical properties of this database are analyzed using the permutation test which employs a randomization distribution of the training and testing data. Based on a notion of the homogeneous usage of input image pixels, a methodology of the HTM parameter optimization is proposed. In order to study effects of two substantial parameters of the architecture: the patch size and the overlap in more details, we have restricted ourselves to the single-level HTM networks. A novel method for construction of the training sequences by ordering series of the static images is developed. A novel method for estimation of the parameter maxDist based on the box counting method is proposed. The parameter sigma of the inference Gaussian is optimized on the basis of the maximization of the belief distribution entropy. Both optimization algorithms can be equally applied to the multi-level HTM networks as well. The influences of the parameters transitionMemory and requestedGroupCount on the HTM network performance have been explored. Altogether, we have investigated 2736 different HTM network configurations. The obtained classification accuracy results have been benchmarked with the published results of several conventional classifiers.

  13. Superadditive Memory Strength for Item and Source Recognition: The Role of Hierarchical Relational Binding in the Medial Temporal Lobe

    Science.gov (United States)

    Shimamura, Arthur P.; Wickens, Thomas D.

    2009-01-01

    Source memory depends on our ability to recollect contextual information--such as the time, place, feelings, and thoughts associated with a past event. It is acknowledged that the medial temporal lobe (MTL) plays a critical role in binding such episodic features. Yet, controversy exists over the nature of MTL binding--whether it contributes…

  14. A hierarchical model of temporal perception.

    Science.gov (United States)

    Pöppel, E

    1997-05-01

    Temporal perception comprises subjective phenomena such as simultaneity, successiveness, temporal order, subjective present, temporal continuity and subjective duration. These elementary temporal experiences are hierarchically related to each other. Functional system states with a duration of 30 ms are implemented by neuronal oscillations and they provide a mechanism to define successiveness. These system states are also responsible for the identification of basic events. For a sequential representation of several events time tags are allocated, resulting in an ordinal representation of such events. A mechanism of temporal integration binds successive events into perceptual units of 3 s duration. Such temporal integration, which is automatic and presemantic, is also operative in movement control and other cognitive activities. Because of the omnipresence of this integration mechanism it is used for a pragmatic definition of the subjective present. Temporal continuity is the result of a semantic connection between successive integration intervals. Subjective duration is known to depend on mental load and attentional demand, high load resulting in long time estimates. In the hierarchical model proposed, system states of 30 ms and integration intervals of 3 s, together with a memory store, provide an explanatory neuro-cognitive machinery for differential subjective duration.

  15. Hierarchical organization of cognitive memory.

    Science.gov (United States)

    Mishkin, M; Suzuki, W A; Gadian, D G; Vargha-Khadem, F

    1997-10-29

    This paper addresses the question of the organization of memory processes within the medial temporal lobe. Evidence obtained in patients with late-onset amnesia resulting from medial temporal pathology has given rise to two opposing interpretations of the effects of such damage on long-term cognitive memory. One view is that cognitive memory, including memory for both facts and events, is served in a unitary manner by the hippocampus and its surrounding cortices; the other is that the basic function affected in amnesia is event memory, the memory for factual material often showing substantial preservation. Recent findings in patients with amnesia resulting from relatively selective hippocampal damage sustained early in life suggest a possible reconciliation of the two views. The new findings suggest that the hippocampus may be especially important for event as opposed to fact memory, with the surrounding cortical areas contributing to both. Evidence from neuroanatomical and neurobehavioural studies in monkeys is presented in support of this proposal.

  16. Map Building Method Based on Hierarchical Temporal Memory%基于层级实时记忆的地图创建方法∗

    Institute of Scientific and Technical Information of China (English)

    张新征; 麦晓春; 张建芬

    2015-01-01

    提出基于层级实现记忆( HTM)网络的地图创建方法。该方法利用层级实时记忆将制图问题等效为场景识别问题,环境地图由一系列HTM模型输出的场景构成。首先从获取图像中提取位置不变鲁棒特征( PIRF)。并利用PIRF构建视觉词汇表,根据词汇表将图像的PIRF描述符映射为视觉单词频率矢量。多个视觉单词频率矢量构成的序列输入HTM网络,用于实现环境地图的学习与创建及环路场景的推断识别。采用两组实验数据验证文中方法,结果表明基于HTM的制图策略能成功建立环境地图,并能高效处理环路检测问题。%A map building method based on hierarchical temporal memory ( HTM) is proposed. The mapping problem is treated as scene recognition. The map is composed of a series of scenes being the outputs of HTM network. Firstly, the position invariant robust feature ( PIRF) is extracted from the obtained images and then the PIRFs are applied to build the visual vocabulary. Secondly, according to the visual vocabulary PIRF descriptors of an image are projected to the vector of visual word occurrences. Multiple visual word occurrences vectors are formed as a sequence of visual word occurrences. This sequence is inputted to HTM to implement the environment map learning and building and closed loop scenes recognition. The performance of the proposed mapping method is evaluated by two experiments. The results show that the proposed strategy based on HTM is effective for map building and closed loop detection.

  17. The organisation of spatial and temporal relations in memory.

    Science.gov (United States)

    Rondina, Renante; Curtiss, Kaitlin; Meltzer, Jed A; Barense, Morgan D; Ryan, Jennifer D

    2017-04-01

    Episodic memories are comprised of details of "where" and "when"; spatial and temporal relations, respectively. However, evidence from behavioural, neuropsychological, and neuroimaging studies has provided mixed interpretations about how memories for spatial and temporal relations are organised-they may be hierarchical, fully interactive, or independent. In the current study, we examined the interaction of memory for spatial and temporal relations. Using explicit reports and eye-tracking, we assessed younger and older adults' memory for spatial and temporal relations of objects that were presented singly across time in unique spatial locations. Explicit change detection of spatial relations was affected by a change in temporal relations, but explicit change detection of temporal relations was not affected by a change in spatial relations. Younger and older adults showed eye movement evidence of incidental memory for temporal relations, but only younger adults showed eye movement evidence of incidental memory for spatial relations. Together, these findings point towards a hierarchical organisation of relational memory. The implications of these findings are discussed in the context of the neural mechanisms that may support such a hierarchical organisation of memory.

  18. Intermixing forms of memory processing within the functional organization of the medial temporal lobe memory system.

    Science.gov (United States)

    Eichenbaum, Howard

    2012-01-01

    Abstract Voss et al. discuss evidence indicating an intermixing of implicit and explicit memory processing, and of familiarity and recollection, in tests of memory. Here I support this view, and add that the anatomy of cortical-medial temporal lobe pathways indicates a hierarchical and bidirectional functional organization of memory in which implicit memory processing contributes to familiarity, and implicit memory and familiarity processing inherently contribute to recollection. Rather than look for new ways to separate these processes, it may be as important to understand how they are integrated.

  19. Organization of visuo-spatial serial memory: interaction of temporal order with spatial and temporal grouping.

    Science.gov (United States)

    Parmentier, Fabrice B R; Andrés, Pilar; Elford, Greg; Jones, Dylan M

    2006-05-01

    This study investigates whether memory for sequences of spatial locations can be represented hierarchically, that is, as successive groups containing the order of constituent locations. Two grouping manipulations are used: Temporal grouping, based on the verbal serial memory literature, and spatial grouping, based on recent empirical work on visuo-spatial serial memory. In Experiment 1, we examine the relationship between spatial grouping and temporal order and showed that recall performance increases when both temporal and spatial organization correlate, but decreases when they clash. Experiments 2 and 3 show that the latter result is confounded by differences in path length (length of spatial path defined by the locations) between conditions, and that no effect of the spatial organization is observed when path length is controlled for. In Experiment 4, an alternative method to spatial grouping, temporal grouping, is used to induce hierarchical organization. A recall advantage is found in the temporal grouping condition. The results suggest that hierarchical representations can be imposed on order information for visuo-spatial sequences, either when participants have pre-existing knowledge about the form of the path formed by the sequence or when temporal boundaries delimit chunks; that increased path length is the cause of the performance decrement observed when dots from separate spatial groups are presented successively; and that path length and more generally sequence characteristics should be taken into account in designing future research on visuo-spatial serial memory.

  20. Hierarchical temporal video segmentation and content characterization

    Science.gov (United States)

    Gunsel, Bilge; Fu, Yue; Tekalp, A. Murat

    1997-10-01

    This paper addresses the segmentation of a video sequence into shots, specification of edit effects and subsequent characterization of shots in terms of color and motion content. The proposed scheme uses DC images extracted from MPEG compressed video and performs an unsupervised clustering for the extraction of camera shots. The specification of edit effects, such as fade-in/out and dissolve is based on the analysis of distribution of mean value for the luminance components. This step is followed by the representation of visual content of temporal segments in terms of key frames selected by similarity analysis of mean color histograms. For characterization of the similar temporal segments, motion and color characteristics are classified into different categories using a set of different features derived from motion vectors of triangular meshes and mean histograms of video shots.

  1. Sleep enforces the temporal order in memory.

    Directory of Open Access Journals (Sweden)

    Spyridon Drosopoulos

    Full Text Available BACKGROUND: Temporal sequence represents the main principle underlying episodic memory. The storage of temporal sequence information is thought to involve hippocampus-dependent memory systems, preserving temporal structure possibly via chaining of sequence elements in heteroassociative networks. Converging evidence indicates that sleep enhances the consolidation of recently acquired representations in the hippocampus-dependent declarative memory system. Yet, it is unknown if this consolidation process comprises strengthening of the temporal sequence structure of the representation as well, or is restricted to sequence elements independent of their temporal order. To address this issue we tested the influence of sleep on the strength of forward and backward associations in word-triplets. METHODOLOGY/PRINCIPAL FINDINGS: Subjects learned a list of 32 triplets of unrelated words, presented successively (A-B-C in the center of a screen, and either slept normally or stayed awake in the subsequent night. After two days, retrieval was assessed for the triplets sequentially either in a forward direction (cueing with A and B and asking for B and C, respectively or in a backward direction (cueing with C and B and asking for B and A, respectively. Memory was better for forward than backward associations (p<0.01. Sleep did not affect backward associations, but enhanced forward associations, specifically for the first (AB transitions (p<0.01, which were generally more difficult to retrieve than the second transitions. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that consolidation during sleep strengthens the original temporal sequence structure in memory, presumably as a result of a replay of new representations during sleep in forward direction. Our finding suggests that the temporally directed replay of memory during sleep, apart from strengthening those traces, could be the key mechanism that explains how temporal order is integrated and maintained in

  2. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

    Science.gov (United States)

    Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

    2013-03-01

    Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

  3. Spatio-temporal memories for machine learning: a long-term memory organization.

    Science.gov (United States)

    Starzyk, Janusz A; He, Haibo

    2009-05-01

    Design of artificial neural structures capable of reliable and flexible long-term spatio-temporal memory is of paramount importance in machine intelligence. To this end, we propose a novel, biologically inspired, long-term memory (LTM) architecture. We intend to use it as a building block of a neuron-level architecture that is able to mimic natural intelligence through learning, anticipation, and goal-driven behavior. A mutual input enhancement and blocking structure is proposed, and its operation is discussed in detail. The paper focuses on a hierarchical memory organization, storage, recognition, and recall mechanisms. Simulation results of the proposed memory show its effectiveness, adaptability, and robustness. Accuracy of the proposed method is compared to other methods including Levenshtein distance method and a Markov chain.

  4. Optimum Binary Search Trees on the Hierarchical Memory Model

    CERN Document Server

    Thite, Shripad

    2008-01-01

    The Hierarchical Memory Model (HMM) of computation is similar to the standard Random Access Machine (RAM) model except that the HMM has a non-uniform memory organized in a hierarchy of levels numbered 1 through h. The cost of accessing a memory location increases with the level number, and accesses to memory locations belonging to the same level cost the same. Formally, the cost of a single access to the memory location at address a is given by m(a), where m: N -> N is the memory cost function, and the h distinct values of m model the different levels of the memory hierarchy. We study the problem of constructing and storing a binary search tree (BST) of minimum cost, over a set of keys, with probabilities for successful and unsuccessful searches, on the HMM with an arbitrary number of memory levels, and for the special case h=2. While the problem of constructing optimum binary search trees has been well studied for the standard RAM model, the additional parameter m for the HMM increases the combinatorial comp...

  5. A Hierarchical Statistic Methodology for Advanced Memory System Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.-J.; He, D.; Cameron, K.W.; Luo, Y.

    1999-04-12

    Advances in technology have resulted in a widening of the gap between computing speed and memory access time. Data access time has become increasingly important for computer system design. Various hierarchical memory architectures have been developed. The performance of these advanced memory systems, however, varies with applications and problem sizes. How to reach an optimal cost/performance design eludes researchers still. In this study, the authors introduce an evaluation methodology for advanced memory systems. This methodology is based on statistical factorial analysis and performance scalability analysis. It is two fold: it first determines the impact of memory systems and application programs toward overall performance; it also identifies the bottleneck in a memory hierarchy and provides cost/performance comparisons via scalability analysis. Different memory systems can be compared in terms of mean performance or scalability over a range of codes and problem sizes. Experimental testing has been performed extensively on the Department of Energy's Accelerated Strategic Computing Initiative (ASCI) machines and benchmarks available at the Los Alamos National Laboratory to validate this newly proposed methodology. Experimental and analytical results show this methodology is simple and effective. It is a practical tool for memory system evaluation and design. Its extension to general architectural evaluation and parallel computer systems are possible and should be further explored.

  6. Hierarchical relational binding in the medial temporal lobe: the strong get stronger.

    Science.gov (United States)

    Shimamura, Arthur P

    2010-11-01

    Controversy exists over the functional role of the medial temporal lobe (MTL) in episodic memory. Some have suggested that the hippocampus plays a unique and qualitatively different role than other MTL regions, whereas others suggest that the entire MTL has one functional role, which is to support the consolidation of declarative memories. Hierarchical relational binding theory (hRBT) purports that the functional role of the entire MTL is the binding of features associated with an episodic experience. As the hippocampus sits at the top of this hierarchy, binding at this level is particularly efficient in reinstating event features at the time of retrieval. Thus, this theory offers a unified account of MTL that yields outcomes similar to theories that suggest a special role of the hippocampus. In this way, hRBT captures features of both single- and dual-process models of MTL and reconciles controversies about the nature of episodic recollection.

  7. A hierarchical nest survival model integrating incomplete temporally varying covariates

    Science.gov (United States)

    Converse, Sarah J.; Royle, J. Andrew; Adler, Peter H.; Urbanek, Richard P.; Barzan, Jeb A.

    2013-01-01

    Nest success is a critical determinant of the dynamics of avian populations, and nest survival modeling has played a key role in advancing avian ecology and management. Beginning with the development of daily nest survival models, and proceeding through subsequent extensions, the capacity for modeling the effects of hypothesized factors on nest survival has expanded greatly. We extend nest survival models further by introducing an approach to deal with incompletely observed, temporally varying covariates using a hierarchical model. Hierarchical modeling offers a way to separate process and observational components of demographic models to obtain estimates of the parameters of primary interest, and to evaluate structural effects of ecological and management interest. We built a hierarchical model for daily nest survival to analyze nest data from reintroduced whooping cranes (Grus americana) in the Eastern Migratory Population. This reintroduction effort has been beset by poor reproduction, apparently due primarily to nest abandonment by breeding birds. We used the model to assess support for the hypothesis that nest abandonment is caused by harassment from biting insects. We obtained indices of blood-feeding insect populations based on the spatially interpolated counts of insects captured in carbon dioxide traps. However, insect trapping was not conducted daily, and so we had incomplete information on a temporally variable covariate of interest. We therefore supplemented our nest survival model with a parallel model for estimating the values of the missing insect covariates. We used Bayesian model selection to identify the best predictors of daily nest survival. Our results suggest that the black fly Simulium annulus may be negatively affecting nest survival of reintroduced whooping cranes, with decreasing nest survival as abundance of S. annulus increases. The modeling framework we have developed will be applied in the future to a larger data set to evaluate the

  8. Hierarchical network model for the analysis of human spatio-temporal information processing

    Science.gov (United States)

    Schill, Kerstin; Baier, Volker; Roehrbein, Florian; Brauer, Wilfried

    2001-06-01

    The perception of spatio-temporal pattern is a fundamental part of visual cognition. In order to understand more about the principles behind these biological processes, we are analyzing and modeling the presentation of spatio-temporal structures on different levels of abstraction. For the low- level processing of motion information we have argued for the existence of a spatio-temporal memory in early vision. The basic properties of this structure are reflected in a neural network model which is currently developed. Here we discuss major architectural features of this network which is base don Kohonens SOMs. In order to enable the representation, processing and prediction of spatio-temporal pattern on different levels of granularity and abstraction the SOMs are organized in a hierarchical manner. The model has the advantage of a 'self-teaching' learning algorithm and stored temporal information try local feedback in each computational layer. The constraints for the neural modeling and data set for training the neural network are obtained by psychophysical experiments where human subjects' abilities for dealing with spatio-temporal information is investigated.

  9. Genetic algorithm applied to hierarchically coupled associative memories.

    Science.gov (United States)

    Gomes, Rogério Martins; Braga, Antônio Pádua; Borges, Henrique E

    2010-01-01

    Inspired by the theory of neuronal group selection (TNGS), we have carried out an analysis of the capacity of convergence of a multi-level associative memory based on coupled generalized-brain-state-in-a-box (GBSB) networks through evolutionary computation. The TNGS establishes that a memory process can be described as being organized functionally in hierarchical levels where higher levels coordinate sets of functions of lower levels. According to this theory, the most basic units in the cortical area of the brain are called neuronal groups or first-level blocks of memories and the higher-level memories are formed through selective strengthening or weakening of the synapses amongst the neuronal groups. In order to analyse this effect, we propose that the higher levels should emerge through a learning mechanism as correlations of lower level memories. According to this proposal, this paper describes a method of acquiring the inter-group synapses based on a genetic algorithm. Thus the results show that genetic algorithms are feasible as they allow the emergence of complex behaviours which could be potentially excluded in other learning process.

  10. Hierarchical process memory: memory as an integral component of information processing

    Science.gov (United States)

    Hasson, Uri; Chen, Janice; Honey, Christopher J.

    2015-01-01

    Models of working memory commonly focus on how information is encoded into and retrieved from storage at specific moments. However, in the majority of real-life processes, past information is used continuously to process incoming information across multiple timescales. Considering single unit, electrocorticography, and functional imaging data, we argue that (i) virtually all cortical circuits can accumulate information over time, and (ii) the timescales of accumulation vary hierarchically, from early sensory areas with short processing timescales (tens to hundreds of milliseconds) to higher-order areas with long processing timescales (many seconds to minutes). In this hierarchical systems perspective, memory is not restricted to a few localized stores, but is intrinsic to information processing that unfolds throughout the brain on multiple timescales. “The present contains nothing more than the past, and what is found in the effect was already in the cause.”Henri L Bergson PMID:25980649

  11. Impact of hierarchical memory systems on linear algebra algorithm design

    Energy Technology Data Exchange (ETDEWEB)

    Gallivan, K.; Jalby, W.; Meier, U.; Sameh, A.H.

    1988-01-01

    Linear algebra algorithms based on the BLAS or extended BLAS do not achieve high performance on multivector processors with a hierarchical memory system because of a lack of data locality. For such machines, block linear algebra algorithms must be implemented in terms of matrix-matrix primitives (BLAS3). Designing efficient linear algebra algorithms for these architectures requires analysis of the behavior of the matrix-matrix primitives and the resulting block algorithms as a function of certain system parameters. The analysis must identify the limits of performance improvement possible via blocking and any contradictory trends that require trade-off consideration. The authors propose a methodology that facilitates such an analysis and use it to analyze the performance of the BLAS3 primitives used in block methods. A similar analysis of the block size-performance relationship is also performed at the algorithm level for block versions of the LU decomposition and the Gram-Schmidt orthogonalization procedures.

  12. Medial temporal lobe and topographical memory.

    Science.gov (United States)

    Urgolites, Zhisen J; Hopkins, Ramona O; Squire, Larry R

    2017-08-08

    There has been interest in the idea that medial temporal lobe (MTL) structures might be especially important for spatial processing and spatial memory. We tested the proposal that the MTL has a specific role in topographical memory as assessed in tasks of scene memory where the viewpoint shifts from study to test. Building on materials used previously for such studies, we administered three different tasks in a total of nine conditions. Participants studied a scene depicting four hills of different shapes and sizes and made a choice among four test images. In the Rotation task, the correct choice depicted the study scene from a shifted perspective. MTL patients succeeded when the study and test images were presented together but failed the moment the study scene was removed (even at a 0-s delay). In the No-Rotation task, the correct choice was a duplicate of the study scene. Patients were impaired to the same extent in the No-Rotation and Rotation tasks after matching for difficulty. Thus, an inability to accommodate changes in viewpoint does not account for patient impairment. In the Nonspatial-Perceptual task, the correct choice depicted the same overall coloring as the study scene. Patients were intact at a 2-s delay but failed at longer, distraction-filled delays. The different results for the spatial and nonspatial tasks are discussed in terms of differences in demand on working memory. We suggest that the difficulty of the spatial tasks rests on the neocortex and on the limitations of working memory, not on the MTL.

  13. Relative Priming of Temporal Local-Global Levels in Auditory Hierarchical Stimuli

    Science.gov (United States)

    List, Alexandra; Justus, Timothy

    2009-01-01

    Priming is a useful tool for ascertaining the circumstances under which previous experiences influence behavior. Previously, using hierarchical stimuli, we demonstrated that selectively attending to one temporal scale of an auditory stimulus improved subsequent attention to a repeated (vs. changed) temporal scale, i.e., we demonstrated inter-trial auditory temporal level-priming. Here, we have extended those results to address whether level-priming relied on absolute or relative temporal information. Both relative and absolute temporal information are important in auditory perception: speech and music can be recognized over various temporal scales, but become uninterpretable to a listener when presented too quickly or slowly. We first confirmed that temporal level-priming generalized over new temporal scales. Second, in the context of multiple temporal scales, we found that temporal level-priming operates predominantly on the basis of relative, rather than absolute, temporal information. These findings are discussed in the context of expectancies and relational invariance in audition. PMID:20045889

  14. A Hierarchical Bayesian M/EEG Imaging Method Correcting for Incomplete Spatio-Temporal Priors

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Attias, Hagai T.; Sekihara, Kensuke;

    2013-01-01

    In this paper we present a hierarchical Bayesian model, to tackle the highly ill-posed problem that follows with MEG and EEG source imaging. Our model promotes spatiotemporal patterns through the use of both spatial and temporal basis functions. While in contrast to most previous spatio-temporal ...

  15. Temporal Organization of Sound Information in Auditory Memory

    Directory of Open Access Journals (Sweden)

    Kun Song

    2017-06-01

    Full Text Available Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  16. Temporal Organization of Sound Information in Auditory Memory

    Science.gov (United States)

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation. PMID:28674512

  17. Working Memory, Long-Term Memory, and Medial Temporal Lobe Function

    Science.gov (United States)

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance…

  18. Working Memory, Long-Term Memory, and Medial Temporal Lobe Function

    Science.gov (United States)

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance…

  19. Memory in children with symptomatic temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Catarina A. Guimarães

    2014-03-01

    Full Text Available In children with temporal lobe epilepsy (TLE, memory deficit is not so well understood as it is in adults. The aim of this study was to identify and describe memory deficits in children with symptomatic TLE, and to verify the influence of epilepsy variables on memory. We evaluated 25 children with TLE diagnosed on clinical, EEG and MRI findings. Twenty-five normal children were compared with the patients. All children underwent a neuropsychological assessment to estimate intellectual level, attention, visual perception, handedness, and memory processes (verbal and visual: short-term memory, learning, and delayed recall. The results allowed us to conclude: besides memory deficits, other neuropsychological disturbances may be found in children with TLE such as attention, even in the absence of overall cognitive deficit; the earlier onset of epilepsy, the worse verbal stimuli storage; mesial lesions correlate with impairment in memory storage stage while neocortical temporal lesions correlate with retrieval deficits.

  20. Semantic representations in the temporal pole predict false memories.

    Science.gov (United States)

    Chadwick, Martin J; Anjum, Raeesa S; Kumaran, Dharshan; Schacter, Daniel L; Spiers, Hugo J; Hassabis, Demis

    2016-09-01

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the "semantic hub" of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories.

  1. How does the sparse memory "engram" neurons encode the memory of a spatial-temporal event?

    Directory of Open Access Journals (Sweden)

    Ji-Song Guan

    2016-08-01

    Full Text Available Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns.

  2. Learning invariant object recognition from temporal correlation in a hierarchical network.

    Science.gov (United States)

    Lessmann, Markus; Würtz, Rolf P

    2014-06-01

    Invariant object recognition, which means the recognition of object categories independent of conditions like viewing angle, scale and illumination, is a task of great interest that humans can fulfill much better than artificial systems. During the last years several basic principles were derived from neurophysiological observations and careful consideration: (1) Developing invariance to possible transformations of the object by learning temporal sequences of visual features that occur during the respective alterations. (2) Learning in a hierarchical structure, so basic level (visual) knowledge can be reused for different kinds of objects. (3) Using feedback to compare predicted input with the current one for choosing an interpretation in the case of ambiguous signals. In this paper we propose a network which implements all of these concepts in a computationally efficient manner which gives very good results on standard object datasets. By dynamically switching off weakly active neurons and pruning weights computation is sped up and thus handling of large databases with several thousands of images and a number of categories in a similar order becomes possible. The involved parameters allow flexible adaptation to the information content of training data and allow tuning to different databases relatively easily. Precondition for successful learning is that training images are presented in an order assuring that images of the same object under similar viewing conditions follow each other. Through an implementation with sparse data structures the system has moderate memory demands and still yields very good recognition rates.

  3. Individual differences in working memory capacity and temporal discrimination.

    Directory of Open Access Journals (Sweden)

    James M Broadway

    Full Text Available Temporal judgment in the milliseconds-to-seconds range depends on consistent attention to time and robust working memory representation. Individual differences in working memory capacity (WMC predict a wide range of higher-order and lower-order cognitive abilities. In the present work we examined whether WMC would predict temporal discrimination. High-WMC individuals were more sensitive than low-WMC at discriminating the longer of two temporal intervals across a range of temporal differences. WMC-related individual differences in temporal discrimination were not eliminated by including a measure of fluid intelligence as a covariate. Results are discussed in terms of attention, working memory and other psychological constructs.

  4. Memory, Metamemory and Their Dissociation in Temporal Lobe Epilepsy

    Science.gov (United States)

    Howard, Charlotte E.; Andres, Pilar; Broks, Paul; Noad, Rupert; Sadler, Martin; Coker, Debbie; Mazzoni, Giuliana

    2010-01-01

    Patients with temporal-lobe epilepsy (TLE) present with memory difficulties. The aim of the current study was to determine to what extent these difficulties could be related to a metamemory impairment. Fifteen patients with TLE and 15 matched healthy controls carried out a paired-associates learning task. Memory recall was measured at intervals of…

  5. Memory, Metamemory and Their Dissociation in Temporal Lobe Epilepsy

    Science.gov (United States)

    Howard, Charlotte E.; Andres, Pilar; Broks, Paul; Noad, Rupert; Sadler, Martin; Coker, Debbie; Mazzoni, Giuliana

    2010-01-01

    Patients with temporal-lobe epilepsy (TLE) present with memory difficulties. The aim of the current study was to determine to what extent these difficulties could be related to a metamemory impairment. Fifteen patients with TLE and 15 matched healthy controls carried out a paired-associates learning task. Memory recall was measured at intervals of…

  6. Spatio-temporal map generalizations with the hierarchical Voronoi data structure

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Gold, Christopher M.

    of map objects, together with their temporal and spatial adjacency relationships. In this paper, we present new solutions to the problems of spatio-temporal generalizations using the hierarchical Voronoi spatio-temporal data structure. The application of the hierarchical Voronoi data structure presented...... in this research is in spatio-temporal map generalization, which is needed for reasoning about dynamic aspects of the world, primarily about actions, events and processes. This provides an advance in the domain of map generalization as we are able to deal not only with the cartographic objects, but also...... implemented in commercial GIS systems. In this research, we used the Voronoi spatial data model for map generalizations. We were able to demonstrate that the map generalization does not affect only spatial objects (points, lines or polygons), but also the events corresponding to the creation and modification...

  7. Temporal Clustering and Sequencing in Short-Term Memory and Episodic Memory

    Science.gov (United States)

    Farrell, Simon

    2012-01-01

    A model of short-term memory and episodic memory is presented, with the core assumptions that (a) people parse their continuous experience into episodic clusters and (b) items are clustered together in memory as episodes by binding information within an episode to a common temporal context. Along with the additional assumption that information…

  8. Temporal Clustering and Sequencing in Short-Term Memory and Episodic Memory

    Science.gov (United States)

    Farrell, Simon

    2012-01-01

    A model of short-term memory and episodic memory is presented, with the core assumptions that (a) people parse their continuous experience into episodic clusters and (b) items are clustered together in memory as episodes by binding information within an episode to a common temporal context. Along with the additional assumption that information…

  9. Memory fMRI predicts verbal memory decline after anterior temporal lobe resection

    OpenAIRE

    Sidhu, Meneka K; Stretton, Jason; Winston, Gavin P.; Symms, Mark; Thompson, Pamela J; Koepp, Matthias J; Duncan, John S.

    2015-01-01

    Objective: To develop a clinically applicable memory functional MRI (fMRI) method of predicting postsurgical memory outcome in individual patients. Methods: In this prospective cohort study, 50 patients with temporal lobe epilepsy (23 left) and 26 controls underwent an fMRI memory encoding paradigm of words with a subsequent out-of-scanner recognition assessment. Neuropsychological assessment was performed preoperatively and 4 months after anterior temporal lobe resection, and at equal time i...

  10. Constructing low-dimensional stochastic wind models through hierarchical spatial temporal decomposition

    OpenAIRE

    Guo,Qiang; Rajewski, Daniel; Takle, Eugene; Ganapathysubramanian, Baskar

    2016-01-01

    Current wind turbine simulations successfully use turbulence generating tools for modeling behavior. However, they lack the ability to reproduce variabilities in wind dynamics and inherent stochastic structures (like temporal and spatial coherences, sporadic bursts, high shear regions). This necessitates a more realistic parameterization of the wind that encodes location-, topography-, diurnal-, seasonal and stochastic affects. In this work, we develop a hierarchical temporal and spatial deco...

  11. Brain Behavior Evolution during Learning: Emergence of Hierarchical Temporal Memory

    Science.gov (United States)

    2013-08-30

    ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park , NC 27709-2211 15. SUBJECT TERMS brain model, Hopfield... topological organization that is commonly found in several complex systems. As an organization tool, it detects and measures significant features...nodes that are already highly connected are more likely to receive one of the new connections [5]. These networks reflect a theme described as “the

  12. A top-down hierarchical spatio-temporal process description method and its data organization

    Science.gov (United States)

    Xie, Jiong; Xue, Cunjin

    2009-10-01

    Modeling and representing spatio-temporal process is the key foundation for analyzing geographic phenomenon and acquiring spatio-temporal high-level knowledge. Spatio-temporal representation methods with bottom-up approach based on object modeling view lack of explicit definition of geographic phenomenon and finer-grained representation of spatio-temporal causal relationships. Based on significant advances in data modeling of spatio-temporal object and event, aimed to represent discrete regional dynamic phenomenon composed with group of spatio-temporal objects, a regional spatio-temporal process description method using Top-Down Hierarchical approach (STP-TDH) is proposed and a data organization structure based on relational database is designed and implemented which builds up the data structure foundation for carrying out advanced data utilization and decision-making. The land use application case indicated that process modeling with top-down approach was proved to be good with the spatio-temporal cognition characteristic of our human, and its hierarchical representation framework can depict dynamic evolution characteristic of regional phenomenon with finer-grained level and can reduce complexity of process description.

  13. Temporal dynamics of visual working memory.

    Science.gov (United States)

    Sobczak-Edmans, M; Ng, T H B; Chan, Y C; Chew, E; Chuang, K H; Chen, S H A

    2016-01-01

    The involvement of the human cerebellum in working memory has been well established in the last decade. However, the cerebro-cerebellar network for visual working memory is not as well defined. Our previous fMRI study showed superior and inferior cerebellar activations during a block design visual working memory task, but specific cerebellar contributions to cognitive processes in encoding, maintenance and retrieval have not yet been established. The current study examined cerebellar contributions to each of the components of visual working memory and presence of cerebellar hemispheric laterality was investigated. 40 young adults performed a Sternberg visual working memory task during fMRI scanning using a parametric paradigm. The contrast between high and low memory load during each phase was examined. We found that the most prominent activation was observed in vermal lobule VIIIb and bilateral lobule VI during encoding. Using a quantitative laterality index, we found that left-lateralized activation of lobule VIIIa was present in the encoding phase. In the maintenance phase, there was bilateral lobule VI and right-lateralized lobule VIIb activity. Changes in activation in right lobule VIIIa were present during the retrieval phase. The current results provide evidence that superior and inferior cerebellum contributes to visual working memory, with a tendency for left-lateralized activations in the inferior cerebellum during encoding and right-lateralized lobule VIIb activations during maintenance. The results of the study are in agreement with Baddeley's multi-component working memory model, but also suggest that stored visual representations are additionally supported by maintenance mechanisms that may employ verbal coding.

  14. Long-term memory of hierarchical relationships in free-living greylag geese

    NARCIS (Netherlands)

    Weiss, Brigitte M.; Scheiber, Isabella B. R.

    2013-01-01

    Animals may memorise spatial and social information for many months and even years. Here, we investigated long-term memory of hierarchically ordered relationships, where the position of a reward depended on the relationship of a stimulus relative to other stimuli in the hierarchy. Seventeen greylag

  15. Hybrid inverse lithography techniques for advanced hierarchical memories

    Science.gov (United States)

    Xiao, Guangming; Hooker, Kevin; Irby, Dave; Zhang, Yunqiang; Ward, Brian; Cecil, Tom; Hall, Brett; Lee, Mindy; Kim, Dave; Lucas, Kevin

    2014-03-01

    Traditional segment-based model-based OPC methods have been the mainstream mask layout optimization techniques in volume production for memory and embedded memory devices for many device generations. These techniques have been continually optimized over time to meet the ever increasing difficulties of memory and memory periphery patterning. There are a range of difficult issues for patterning embedded memories successfully. These difficulties include the need for a very high level of symmetry and consistency (both within memory cells themselves and between cells) due to circuit effects such as noise margin requirements in SRAMs. Memory cells and access structures consume a large percentage of area in embedded devices so there is a very high return from shrinking the cell area as much as possible. This aggressive scaling leads to very difficult resolution, 2D CD control and process window requirements. Additionally, the range of interactions between mask synthesis corrections of neighboring areas can extend well beyond the size of the memory cell, making it difficult to fully take advantage of the inherent designed cell hierarchy in mask pattern optimization. This is especially true for non-traditional (i.e., less dependent on geometric rule) OPC/RET methods such as inverse lithography techniques (ILT) which inherently have more model-based decisions in their optimizations. New inverse methods such as model-based SRAF placement and ILT are, however, well known to have considerable benefits in finding flexible mask pattern solutions to improve process window, improve 2D CD control, and improve resolution in ultra-dense memory patterns. They also are known to reduce recipe complexity and provide native MRC compliant mask pattern solutions. Unfortunately, ILT is also known to be several times slower than traditional OPC methods due to the increased computational lithographic optimizations it performs. In this paper, we describe and present results for a methodology to

  16. A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy

    OpenAIRE

    Sidhu, Meneka K; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J; Koepp, Matthias J; Duncan, John S.

    2013-01-01

    Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sc...

  17. Optimizing FORTRAN Programs for Hierarchical Memory Parallel Processing Systems

    Institute of Scientific and Technical Information of China (English)

    金国华; 陈福接

    1993-01-01

    Parallel loops account for the greatest amount of parallelism in numerical programs.Executing nested loops in parallel with low run-time overhead is thus very important for achieving high performance in parallel processing systems.However,in parallel processing systems with caches or local memories in memory hierarchies,“thrashing problemmay”may arise whenever data move back and forth between the caches or local memories in different processors.Previous techniques can only deal with the rather simple cases with one linear function in the perfactly nested loop.In this paper,we present a parallel program optimizing technique called hybri loop interchange(HLI)for the cases with multiple linear functions and loop-carried data dependences in the nested loop.With HLI we can easily eliminate or reduce the thrashing phenomena without reucing the program parallelism.

  18. An accessible method for implementing hierarchical models with spatio-temporal abundance data

    Science.gov (United States)

    Ross, Beth E.; Hooten, Melvin B.; Koons, David N.

    2012-01-01

    A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, ‘INLA’). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time.

  19. Learning and memory for hierarchical relationships in the monkey: effects of aging.

    Science.gov (United States)

    Rapp, P R; Kansky, M T; Eichenbaum, H

    1996-10-01

    Young and aged rhesus monkeys were tested on 2 versions of a transitive inference task measuring learning and memory for hierarchical relationships. Animals initially acquired 4 object discrimination problems arranged such that the relationship between the stimuli followed the hierarchy A > B > C > D > E. The second version of the task was similar but involved a series of 7 objects. Learning and memory for the hierarchical relationships were evaluated during probe trials in which novel pairs of nonadjacent items (e.g., B and D) were presented for a response. Standard task accuracy measures failed to distinguish young and aged subjects at any point in training. In contrast, response latency effects that are indicative of relational information processing in young monkeys were entirely absent in aged subjects. The findings highlight the value of a relational memory framework for establishing a detailed neuropsychological account of cognitive aging in the monkey.

  20. Recollection of episodic memory within the medial temporal lobe: behavioural dissociations from other types of memory.

    Science.gov (United States)

    Easton, Alexander; Eacott, Madeline J

    2010-12-31

    In recent years there has been significant debate about whether there is a single medial temporal lobe memory system or dissociable systems for episodic and other types of declarative memory. In addition there has been a similar debate over the dissociability of recollection and familiarity based processes in recognition memory. Here we present evidence from recent work using episodic memory tasks in animals that allows us to explore these issues in more depth. We review studies that demonstrate triple dissociations within the medial temporal lobe, with only the hippocampal system being necessary for episodic memory. Similarly we review behavioural evidence for a dissociation in a task of episodic memory in rats where animals with lesions of the fornix are only impaired at recollection of the episodic memory, not recognition within the same trial. This work, then, supports recent models of dissociable neural systems within the medial temporal lobe but also raises questions for future investigation about the interactions of these medial temporal lobe memory systems with other structures. Copyright © 2009 Elsevier B.V. All rights reserved.

  1. Absolute and relative temporal order memory for performed activities following stroke

    NARCIS (Netherlands)

    Schoo, Linda A.; Van Zandvoort, Martine J E; Reijmer, Yael D.; Biessels, Geert Jan; Kappelle, L. Jaap; Postma, Albert

    2014-01-01

    Reconstructing the temporal order of events is a crucial part of episodic memory. The temporal dimension, however, is often discarded in clinical settings, and measurements of true temporal aspects of episodic memory are scarce. The present study assessed temporal memory in stroke patients and in

  2. Human temporal cortical single neuron activity during working memory maintenance.

    Science.gov (United States)

    Zamora, Leona; Corina, David; Ojemann, George

    2016-06-01

    The Working Memory model of human memory, first introduced by Baddeley and Hitch (1974), has been one of the most influential psychological constructs in cognitive psychology and human neuroscience. However the neuronal correlates of core components of this model have yet to be fully elucidated. Here we present data from two studies where human temporal cortical single neuron activity was recorded during tasks differentially affecting the maintenance component of verbal working memory. In Study One we vary the presence or absence of distracting items for the entire period of memory storage. In Study Two we vary the duration of storage so that distractors filled all, or only one-third of the time the memory was stored. Extracellular single neuron recordings were obtained from 36 subjects undergoing awake temporal lobe resections for epilepsy, 25 in Study one, 11 in Study two. Recordings were obtained from a total of 166 lateral temporal cortex neurons during performance of one of these two tasks, 86 study one, 80 study two. Significant changes in activity with distractor manipulation were present in 74 of these neurons (45%), 38 Study one, 36 Study two. In 48 (65%) of those there was increased activity during the period when distracting items were absent, 26 Study One, 22 Study Two. The magnitude of this increase was greater for Study One, 47.6%, than Study Two, 8.1%, paralleling the reduction in memory errors in the absence of distracters, for Study One of 70.3%, Study Two 26.3% These findings establish that human lateral temporal cortex is part of the neural system for working memory, with activity during maintenance of that memory that parallels performance, suggesting it represents active rehearsal. In 31 of these neurons (65%) this activity was an extension of that during working memory encoding that differed significantly from the neural processes recorded during overt and silent language tasks without a recent memory component, 17 Study one, 14 Study two

  3. Hierarchical organization in the temporal structure of infant-direct speech and song.

    Science.gov (United States)

    Falk, Simone; Kello, Christopher T

    2017-06-01

    Caregivers alter the temporal structure of their utterances when talking and singing to infants compared with adult communication. The present study tested whether temporal variability in infant-directed registers serves to emphasize the hierarchical temporal structure of speech. Fifteen German-speaking mothers sang a play song and told a story to their 6-months-old infants, or to an adult. Recordings were analyzed using a recently developed method that determines the degree of nested clustering of temporal events in speech. Events were defined as peaks in the amplitude envelope, and clusters of various sizes related to periods of acoustic speech energy at varying timescales. Infant-directed speech and song clearly showed greater event clustering compared with adult-directed registers, at multiple timescales of hundreds of milliseconds to tens of seconds. We discuss the relation of this newly discovered acoustic property to temporal variability in linguistic units and its potential implications for parent-infant communication and infants learning the hierarchical structures of speech and language. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Characterizing spatial and temporal features of autobiographical memory retrieval networks: a partial least squares approach.

    Science.gov (United States)

    Addis, Donna Rose; McIntosh, Anthony R; Moscovitch, Morris; Crawley, Adrian P; McAndrews, Mary Pat

    2004-12-01

    Conway (Conway, M.A., 1992. A structural model of autobiographical memory. In: Conway, M.A., Spinnler, H., Wagenaar, W.A. (Eds.), Theoretical Perspectives on Autobiological Memory. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 167-194) proposed that two types of autobiographical memories (AMs) exist within a hierarchical AM system: unique, specific events and repeated, general memories. There is little research on whether retrieval of these AMs relies on different neural substrates. To investigate this issue, we used a multivariate image analysis technique, spatiotemporal partial least squares (PLS), to identify distributed patterns of activity most related to AM tasks that we have found to be associated with a medial and left-lateralized network. Using PLS, specific and general memories were more strongly associated with different parts of this retrieval network. Specific AM retrieval was associated more with activation of regions involved in imagery in episodic memory, including the left precuneus, left superior parietal lobule and right cuneus, whereas general AM retrieval was associated with activation of the right inferior temporal gyrus, right medial frontal cortex, and left thalamus. These two patterns emerged at different lags after stimulus onset, with the general AM pattern peaking between 2 and 6 s, and the specific AM pattern between 6 and 8 s. These lag differences are consistent with Conway's theory which posits that general AMs are the preferred level of entry to the AM system. A seed PLS analysis revealed that the regions functionally connected to the hippocampus during retrieval did not differentiate specific from general AM retrieval, which confirms our earlier univariate analysis indicating that some aspects of the memory retrieval network are shared by these memories.

  5. How memory generates heterogeneous dynamics in temporal networks

    CERN Document Server

    Vestergaard, Christian L; Barrat, Alain

    2014-01-01

    Empirical temporal networks display strong heterogeneities in their dynamics, which profoundly affect processes taking place on these networks, such as rumor and epidemic spreading. Despite the recent wealth of data on temporal networks, little work has been devoted to the understanding of how such heterogeneities can emerge from microscopic mechanisms at the level of nodes and links. Here we show that long-term memory effects are present in the creation and disappearance of links in empirical networks. We thus consider a simple generative modeling framework for temporal networks able to incorporate these memory mechanisms. This allows us to study separately the role of each of these mechanisms in the emergence of heterogeneous network dynamics. In particular, we show analytically and numerically how heterogeneous distributions of contact durations, of inter-contact durations and of numbers of contacts per link emerge. We also study the individual effect of heterogeneities on dynamical processes, such as the ...

  6. Long-term memory deficits in temporal lobe epilepsy.

    Science.gov (United States)

    Tramoni-Negre, E; Lambert, I; Bartolomei, F; Felician, O

    Memory complaints and deficits are common in patients with epilepsy, especially temporal lobe epilepsy (TLE), where memory-related brain structures are directly involved in the epileptic process. In recent years, substantial progress has been made in delineating memory impairment in TLE, challenging the traditional neuropsychological approach of the disorder. In particular, several lines of evidence have suggested that, beyond the apparent deficit demonstrable by standardized neuropsychological evaluations, TLE may also negatively interact with long-term memory, producing considerable loss of information of the patient's autobiographical history and an inability to maintain newly acquired information over a period of time. These observations have led to the development of innovative assessment techniques, and prompted a new domain of investigation focused on the relationships between interictal epileptiform activities and the integrity of anatomo-functional systems. The present paper reviews the available evidence for long-term memory deficits in TLE with respect to remote and very long-term memory, and discusses their putative pathophysiological mechanisms and the developing potential strategies to improve memory functioning. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. The Fate of Old Memories after Medial Temporal Lobe Damage

    Science.gov (United States)

    Bayley, Peter J.; Hopkins, Ramona O.; Squire, Larry R.

    2008-01-01

    Damage to the hippocampal region and related medial temporal lobe structures (perirhinal, entorhinal, and parahippocampal cortices) impairs new learning (anterograde amnesia) as well as memory for information that was acquired before the damage occurred (retrograde amnesia). We assessed retrograde amnesia with the Autobiographical Memory Interview (AMI) and with a news events test in six patients with damage limited primarily to the hippocampal region (H group) and two patients with large medial temporal lobe lesions (MTL group). On the news event test, the H group exhibited temporally limited retrograde amnesia covering ∼5 years. On the same test, the MTL group exhibited an extensive retrograde amnesia covering decades. Nevertheless, performance was relatively spared for very remote time periods. On the AMI, all patients had intact remote autobiographical memory. Because our patients with hippocampal lesions, as well as our patients with large MTL lesions, performed normally on the AMI, patients who perform poorly on the same test presumably have damage beyond the hippocampus and related structures in the medial temporal lobe. The findings emphasize the difference in the extent of retrograde amnesia associated with hippocampal lesions and large MTL lesions. PMID:17182781

  8. Detecting temporal trends in species assemblages with bootstrapping procedures and hierarchical models

    Science.gov (United States)

    Gotelli, Nicholas J.; Dorazio, Robert M.; Ellison, Aaron M.; Grossman, Gary D.

    2010-01-01

    Quantifying patterns of temporal trends in species assemblages is an important analytical challenge in community ecology. We describe methods of analysis that can be applied to a matrix of counts of individuals that is organized by species (rows) and time-ordered sampling periods (columns). We first developed a bootstrapping procedure to test the null hypothesis of random sampling from a stationary species abundance distribution with temporally varying sampling probabilities. This procedure can be modified to account for undetected species. We next developed a hierarchical model to estimate species-specific trends in abundance while accounting for species-specific probabilities of detection. We analysed two long-term datasets on stream fishes and grassland insects to demonstrate these methods. For both assemblages, the bootstrap test indicated that temporal trends in abundance were more heterogeneous than expected under the null model. We used the hierarchical model to estimate trends in abundance and identified sets of species in each assemblage that were steadily increasing, decreasing or remaining constant in abundance over more than a decade of standardized annual surveys. Our methods of analysis are broadly applicable to other ecological datasets, and they represent an advance over most existing procedures, which do not incorporate effects of incomplete sampling and imperfect detection.

  9. Working memory contributions to relative clause attachment processing: a hierarchical linear modeling analysis.

    Science.gov (United States)

    Traxler, Matthew J

    2007-07-01

    An eye-movement-monitoring experiment tested readers' responses to sentences containing relative clauses that could be attached to one or both of two preceding nouns. Previous experiments with such sentences have indicated that globally ambiguous relative clauses are processed more quickly than are determinately attached relative clauses. Central to the present research, a recent study (Swets, Desmet, Hambrick, & Ferreira, 2007) showed that offline preferences for such sentences differ as a function of working memory capacity. Specifically, both English and Dutch participants' preference for the second of two nouns as the host for the relative clause increased as their working memory capacity increased. In the present study, readers' working memory capacity was measured, and eye movements were monitored. Hierarchical linear modeling was used to determine whether working memory capacity moderated readers' online processing performance. The modeling indicated that determinately attached sentences were harder to process than globally ambiguous sentences, that working memory did not affect processing of the relative clause itself, but that working memory did moderate how easy it was to integrate the relative clause with the preceding sentence context. Specifically, in contrast with the offline results from Swets and colleagues' study, readers with higher working memory capacity were more likely to prefer the first noun over the second noun as the host for the relative clause.

  10. Memory for emotional material in temporal lobe epilepsy.

    Science.gov (United States)

    Múnera, Claudia P; Lomlomdjian, Carolina; Terpiluk, Verónica; Medel, Nancy; Solís, Patricia; Kochen, Silvia

    2015-11-01

    Several studies suggest that highly emotional information could facilitate long-term memory encoding and consolidation processes via an amygdala-hippocampal network. Our aim was to assess emotional perception and episodic memory for emotionally arousing material in patients with temporal lobe epilepsy (TLE) who are candidates for surgical treatment. We did this by using an audiovisual paradigm. Forty-six patients with medically resistant TLE (26 with left TLE and 20 with right TLE) and 19 healthy controls were assessed with a standard narrative test of emotional memory. The experimental task consisted of sequential picture slides with an accompanying narrative depicting a story that has an emotional central section. Subjects were asked to rate their emotional arousal reaction to each stimulus after the story was shown, while emotional memory (EM) was assessed a week later with a multiple choice questionnaire and a visual recognition task. Our results showed that ratings for emotional stimuli for the patients with TLE were significantly higher than for neutral stimuli (p=0.000). It was also observed that patients with TLE recalled significantly less information from each slide compared with controls, with a trend to lower scores on the questionnaire task for the group with LTLE, as well as poorer performance on the visual recognition task for the group with RLTE. Emotional memory was preserved in patients with RTLE despite having generally poorer memory performance compared with controls, while it was found to be impaired in patients with LTLE.

  11. The Medial Temporal Lobe – Conduit of Parallel Connectivity: A model for Attention, Memory, and Perception.

    Directory of Open Access Journals (Sweden)

    Brian B. Mozaffari

    2014-11-01

    Full Text Available Based on the notion that the brain is equipped with a hierarchical organization, which embodies environmental contingencies across many time scales, this paper suggests that the medial temporal lobe (MTL – located deep in the hierarchy – serves as a bridge connecting supra to infra – MTL levels. Bridging the upper and lower regions of the hierarchy provides a parallel architecture that optimizes information flow between upper and lower regions to aid attention, encoding, and processing of quick complex visual phenomenon. Bypassing intermediate hierarchy levels, information conveyed through the MTL ‘bridge’ allows upper levels to make educated predictions about the prevailing context and accordingly select lower representations to increase the efficiency of predictive coding throughout the hierarchy. This selection or activation/deactivation is associated with endogenous attention. In the event that these ‘bridge’ predictions are inaccurate, this architecture enables the rapid encoding of novel contingencies. A review of hierarchical models in relation to memory is provided along with a new theory, Medial-temporal-lobe Conduit for Parallel Connectivity (MCPC. In this scheme, consolidation is considered as a secondary process, occurring after a MTL-bridged connection, which eventually allows upper and lower levels to access each other directly. With repeated reactivations, as contingencies become consolidated, less MTL activity is predicted. Finally, MTL bridging may aid processing transient but structured perceptual events, by allowing communication between upper and lower levels without calling on intermediate levels of representation.

  12. The medial temporal lobe-conduit of parallel connectivity: a model for attention, memory, and perception.

    Science.gov (United States)

    Mozaffari, Brian

    2014-01-01

    Based on the notion that the brain is equipped with a hierarchical organization, which embodies environmental contingencies across many time scales, this paper suggests that the medial temporal lobe (MTL)-located deep in the hierarchy-serves as a bridge connecting supra- to infra-MTL levels. Bridging the upper and lower regions of the hierarchy provides a parallel architecture that optimizes information flow between upper and lower regions to aid attention, encoding, and processing of quick complex visual phenomenon. Bypassing intermediate hierarchy levels, information conveyed through the MTL "bridge" allows upper levels to make educated predictions about the prevailing context and accordingly select lower representations to increase the efficiency of predictive coding throughout the hierarchy. This selection or activation/deactivation is associated with endogenous attention. In the event that these "bridge" predictions are inaccurate, this architecture enables the rapid encoding of novel contingencies. A review of hierarchical models in relation to memory is provided along with a new theory, Medial-temporal-lobe Conduit for Parallel Connectivity (MCPC). In this scheme, consolidation is considered as a secondary process, occurring after a MTL-bridged connection, which eventually allows upper and lower levels to access each other directly. With repeated reactivations, as contingencies become consolidated, less MTL activity is predicted. Finally, MTL bridging may aid processing transient but structured perceptual events, by allowing communication between upper and lower levels without calling on intermediate levels of representation.

  13. Memory Rehabilitation Strategies in Nonsurgical Temporal Lobe Epilepsy: A Review.

    Science.gov (United States)

    Del Felice, Alessandra; Alderighi, Marzia; Martinato, Matteo; Grisafi, Davide; Bosco, Anna; Thompson, Pamela J; Sander, Josemir W; Masiero, Stefano

    2017-07-01

    People with temporal lobe epilepsy (TLE) who have not undergone epilepsy surgery often complain of memory deficits. Cognitive rehabilitation is employed as a remedial intervention in clinical settings, but research is limited and findings concerning efficacy and the criteria for choosing different approaches have been inconsistent. We aimed to appraise existing evidence on memory rehabilitation in nonsurgical individuals with temporal lobe epilepsy and to ascertain the effectiveness of specific strategies. A scoping review was preferred given the heterogeneous nature of the interventions. A comprehensive literature search using MEDLINE, EMBASE, CINAHL, AMED, Scholars Portal/PSYCHinfo, Proceedings First, and ProQuest Dissertations and Theses identified articles published in English before February 2016. The search retrieved 372 abstracts. Of 25 eligible studies, six were included in the final review. None included pediatric populations. Strategies included cognitive training, external memory aids, brain training, and noninvasive brain stimulation. Selection criteria tended to be general. Overall, there was insufficient evidence to make definitive conclusions regarding the efficacy of traditional memory rehabilitation strategies, brain training, and noninvasive brain stimulation. The review suggests that cognitive rehabilitation in nonsurgical TLE is underresearched and that there is a need for a systematic evaluation in this population.

  14. Memory Rehabilitation Strategies in Nonsurgical Temporal Lobe Epilepsy: A Review.

    Science.gov (United States)

    Del Felice, Alessandra; Alderighi, Marzia; Martinato, Matteo; Grisafi, Davide; Bosco, Anna; Thompson, Pamela J; Sander, Josemir W; Masiero, Stefano

    2017-02-15

    People with temporal lobe epilepsy (TLE) who have not undergone epilepsy surgery often complain of memory deficits. Cognitive rehabilitation is employed as a remedial intervention in clinical settings, but research is limited and findings concerning efficacy and the criteria for choosing different approaches have been inconsistent. We aimed to appraise existing evidence on memory rehabilitation in nonsurgical individuals with temporal lobe epilepsy and to ascertain the effectiveness of specific strategies. A scoping review was preferred given the heterogeneous nature of the interventions. A comprehensive literature search using MEDLINE, EMBASE, CINAHL, AMED, Scholars Portal/PSYCHinfo, Proceedings First, and ProQuest Dissertations and Theses identified articles published in English before February 2016. The search retrieved 372 abstracts. Of 25 eligible studies, six were included in the final review. None included pediatric populations. Strategies included cognitive training, external memory aids, brain training, and noninvasive brain stimulation. Selection criteria tended to be general. Overall, there was insufficient evidence to make definitive conclusions regarding the efficacy of traditional memory rehabilitation strategies, brain training, and noninvasive brain stimulation. The review suggests that cognitive rehabilitation in nonsurgical TLE is underresearched and that there is a need for a systematic evaluation in this population.

  15. Memory outcomes in mesial temporal lobe epilepsy surgery.

    Science.gov (United States)

    Shah, Urvashi; Desai, Aishani; Ravat, Sangeeta; Muzumdar, Dattatraya; Godge, Yogesh; Sawant, Neena; Jain, Mayuri; Jain, Neeraj

    2016-12-01

    Decline in verbal memory after dominant mesial temporal lobe surgery is a concern. Outcomes primarily reported by group data analysis do not address issues of practice effects and measurement errors and also do not provide information about individual meaningful change after surgery. Reliable Change Indices (RCI's) are regarded to be robust statistical methods for reporting individual change and have not been hitherto derived in patient populations in India. Report memory outcomes for patients after surgery using group data as well as RCI score analyses using RCI scores derived in a control patient population. Retrospective data analysis of 106 selected patients who underwent Anterior Temporal Lobectomy (ATL) surgery. RCI scores derived from a control group of 44 non-operated patients. Outcomes based on score shifts on the various measures of two verbal and visual memory tests. Group mean score analysis revealed no significant shifts in verbal or visual memory scores after left ATL, but significant improvements in verbal memory after right ATL. RCI score analysis revealed decline and improvements in a small percentage of patients for both left and right ATL groups. Percentage of patients showing decline was much less than reported in western literature although percentage improved was comparable. Differences in decline percentage may be due to RCI scores and clinical characteristics of our sample (impaired pre-operative functioning, majority seizure free post surgery, moderate hippocampal sclerosis, early onset, long duration of seizures). Group analyses mask individual change. Therefore, to report memory outcomes and counsel patients about relative risk-benefits of surgery, RCI scores derived from our patient populations should be used. Copyright © 2015 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Alternating-time temporal logic with finite-memory strategies

    Directory of Open Access Journals (Sweden)

    Steen Vester

    2013-07-01

    Full Text Available Model-checking the alternating-time temporal logics ATL and ATL* with incomplete information is undecidable for perfect recall semantics. However, when restricting to memoryless strategies the model-checking problem becomes decidable. In this paper we consider two other types of semantics based on finite-memory strategies. One where the memory size allowed is bounded and one where the memory size is unbounded (but must be finite. This is motivated by the high complexity of model-checking with perfect recall semantics and the severe limitations of memoryless strategies. We show that both types of semantics introduced are different from perfect recall and memoryless semantics and next focus on the decidability and complexity of model-checking in both complete and incomplete information games for ATL/ATL*. In particular, we show that the complexity of model-checking with bounded-memory semantics is Delta_2p-complete for ATL and PSPACE-complete for ATL* in incomplete information games just as in the memoryless case. We also present a proof that ATL and ATL* model-checking is undecidable for n >= 3 players with finite-memory semantics in incomplete information games.

  17. Working memory network plasticity after anterior temporal lobe resection: a longitudinal functional magnetic resonance imaging study

    OpenAIRE

    Stretton, Jason; Sidhu, Meneka K; Winston, Gavin P.; Bartlett, Philippa; McEvoy, Andrew W; Symms, Mark R.; Koepp, Matthias J; Thompson, Pamela J; Duncan, John S.

    2014-01-01

    Working memory is a crucial cognitive function that is disrupted in temporal lobe epilepsy. It is unclear whether this impairment is a consequence of temporal lobe involvement in working memory processes or due to seizure spread to extratemporal eloquent cortex. Anterior temporal lobe resection controls seizures in 50–80% of patients with drug-resistant temporal lobe epilepsy and the effect of surgery on working memory are poorly understood both at a behavioural and neural level. We investiga...

  18. A model of shape memory materials with hierarchical twinning: Statics and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, A.; Bishop, A.R. [Los Alamos National Lab., NM (United States); Shenoy, S.R. [International Center for Theoretical Physics, Trieste (Italy); Wu, Y.; Lookman, T. [Western Ontario Univ., London, Ontario (Canada). Dept. of Applied Mathematics

    1995-07-01

    We consider a model of shape memory material in which hierarchical twinning near the habit plane (austenite-martensite interface) is a new and crucial ingredient. The model includes (1) a triple-well potential ({phi} model) in local shear strain, (2) strain gradient terms up to second order in strain and fourth order in gradient, and (3) all symmetry allowed compositional fluctuation induced strain gradient terms. The last term favors hierarchy which enables communication between macroscopic (cm) and microscopic ({Angstrom}) regions essential for shape memory. Hierarchy also stabilizes between formation (critical pattern of twins). External stress or pressure (pattern) modulates the spacing of domain walls. Therefore the ``pattern`` is encoded in the modulated hierarchical variation of the depth and width of the twins. This hierarchy of length scales provides a hierarchy of time scales and thus the possibility of non-exponential decay. The four processes of the complete shape memory cycle -- write, record, erase and recall -- are explained within this model. Preliminary results based on 2D Langevin dynamics are shown for tweed and hierarchy formation.

  19. Autonoetic Consciousness in Autobiographical Memories after Medial Temporal Lobe Resection

    Science.gov (United States)

    Noulhiane, M.; Piolino, P.; Hasboun, D.; Clemenceau, S.; Baulac, M.; Samson, S.

    2008-01-01

    This study aims to investigate autonoetic consciousness associated with episodic autobiographical memory in patients who had undergone unilateral medial temporal lobe resection for intractable epilepsy. Autonoetic consciousness, defined as the conscious feeling of mentally travelling back in time to relive a specific event, was assessed using the Remember/Know (R/K) paradigm across different time periods as proposed in the autobiographical memory task developed by Piolino et al. (TEMPau task). Results revealed that the two patient groups (left and right temporal resection) gave reduced sense of reliving (R) responses and more familiarity (K) responses than healthy controls. This poor autonoetic consciousness was highlighted when patients were asked to justify their Remember responses by recalling sensory-perceptive, affective or spatiotemporal specific details across all life periods. These results support the bilateral MTL contribution to episodic autobiographical memory covering the entire lifespan, which is consistent with the multiple trace theory of MTL function [7,9]. This study also demonstrates the bilateral involvement of MTL structures in recalling specific details of personal events characterized by autonoetic consciousness. PMID:18413911

  20. Episodic and Semantic Autobiographical Memory in Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Claudia P. Múnera

    2014-01-01

    Full Text Available Autobiographical memory (AM is understood as the retrieval of personal experiences that occurred in specific time and space. To date, there is no consensus on the role of medial temporal lobe structures in AM. Therefore, we investigated AM in medial temporal lobe epilepsy (TLE patients. Twenty TLE patients candidates for surgical treatment, 10 right (RTLE and 10 left (LTLE, and 20 healthy controls were examined with a version of the Autobiographical Interview adapted to Spanish language. Episodic and semantic AM were analyzed during five life periods through two conditions: recall and specific probe. AM scores were compared with clinical and cognitive data. TLE patients showed lower performance in episodic AM than healthy controls, being significantly worst in RTLE group and after specific probe. In relation to semantic AM, LTLE retrieved higher amount of total semantic details compared to controls during recall, but not after specific probe. No significant differences were found between RTLE and LTLE, but a trend towards poorer performance in RTLE group was found. TLE patients obtained lower scores for adolescence period memories after specific probe. Our findings support the idea that the right hippocampus would play a more important role in episodic retrieval than the left, regardless of a temporal gradient.

  1. Autobiographical memory, future imagining, and the medial temporal lobe.

    Science.gov (United States)

    Dede, Adam J O; Wixted, John T; Hopkins, Ramona O; Squire, Larry R

    2016-11-22

    In two experiments, patients with damage to the medial temporal lobe (MTL) and healthy controls produced detailed autobiographical narratives as they remembered past events (recent and remote) and imagined future events (near and distant). All recent events occurred after the onset of memory impairment. The first experiment aimed to replicate the methods of Race et al. [Race E, Keane MM, Verfaellie M (2011) J Neurosci 31(28):10262-10269]. Transcripts from that study were kindly made available for independent analysis, which largely reproduced the findings from that study. Our patients produced marginally fewer episodic details than controls. Patients from the earlier study were more impaired than our patients. Patients in both groups had difficulty in returning to their narratives after going on tangents, suggesting that anterograde memory impairment may have interfered with narrative construction. In experiment 2, the experimenter used supportive questioning to help keep participants on task and reduce the burden on anterograde memory. This procedure increased the number of details produced by all participants and rescued the performance of our patients for the distant past. Neither of the two patient groups had any special difficulty in producing spatial details. The findings suggest that constructing narratives about the remote past and the future does not depend on MTL structures, except to the extent that anterograde amnesia affects performance. The results further suggest that different findings about the status of autobiographical memory likely depend on differences in the location and extent of brain damage in different patient groups.

  2. Constructing a raster-based spatio-temporal hierarchical data model for marine fisheries application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model,the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery from spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.

  3. Comparing hierarchical models for spatio-temporally misaligned data using the deviance information criterion.

    Science.gov (United States)

    Zhu, L; Carlin, B P

    Bayes and empirical Bayes methods have proven effective in smoothing crude maps of disease risk, eliminating the instability of estimates in low-population areas while maintaining overall geographic trends and patterns. Recent work extends these methods to the analysis of areal data which are spatially misaligned, that is, involving variables (typically counts or rates) which are aggregated over differing sets of regional boundaries. The addition of a temporal aspect complicates matters further, since now the misalignment can arise either within a given time point, or across time points (as when the regional boundaries themselves evolve over time). Hierarchical Bayesian methods (implemented via modern Markov chain Monte Carlo computing methods) enable the fitting of such models, but a formal comparison of their fit is hampered by their large size and often improper prior specifications. In this paper, we accomplish this comparison using the deviance information criterion (DIC), a recently proposed generalization of the Akaike information criterion (AIC) designed for complex hierarchical model settings like ours. We investigate the use of the delta method for obtaining an approximate variance estimate for DIC, in order to attach significance to apparent differences between models. We illustrate our approach using a spatially misaligned data set relating a measure of traffic density to paediatric asthma hospitalizations in San Diego County, California.

  4. Long-term memory of hierarchical relationships in free-living greylag geese.

    Science.gov (United States)

    Weiss, Brigitte M; Scheiber, Isabella B R

    2013-01-01

    Animals may memorise spatial and social information for many months and even years. Here, we investigated long-term memory of hierarchically ordered relationships, where the position of a reward depended on the relationship of a stimulus relative to other stimuli in the hierarchy. Seventeen greylag geese (Anser anser) had been trained on discriminations between successive pairs of five or seven implicitly ordered colours, where the higher ranking colour in each pair was rewarded. Geese were re-tested on the task 2, 6 and 12 months after learning the dyadic colour relationships. They chose the correct colour above chance at all three points in time, whereby performance was better in colour pairs at the beginning or end of the colour series. Nonetheless, they also performed above chance on internal colour pairs, which is indicative of long-term memory for quantitative differences in associative strength and/or for relational information. There were no indications for a decline in performance over time, indicating that geese may remember dyadic relationships for at least 6 months and probably well over 1 year. Furthermore, performance in the memory task was unrelated to the individuals' sex and their performance while initially learning the dyadic colour relationships. We discuss possible functions of this long-term memory in the social domain.

  5. The Processing of Causal and Hierarchical Relations in Semantic Memory as Revealed by N400 and Frontal Negativity.

    Directory of Open Access Journals (Sweden)

    Xiuling Liang

    Full Text Available Most current studies investigating semantic memory have focused on associative (ring-emerald or taxonomic relations (bird-sparrow. Little is known about the question of how causal relations (virus-epidemic are stored and accessed in semantic memory. The goal of this study was to examine the processing of causally related, general associatively related and hierarchically related word pairs when participants were required to evaluate whether pairs of words were related in any way. The ERP data showed that the N400 amplitude (200-500 ms elicited by unrelated related words was more negative than all related words. Furthermore, the late frontal distributed negativity (500-700 ms elicited by causally related words was smaller than hierarchically related words, but not for general associated words. These results suggested the processing of causal relations and hierarchical relations in semantic memory recruited different degrees of cognitive resources, especially for role binding.

  6. The impact of hierarchical memory systems on linear algebra algorithm design

    Energy Technology Data Exchange (ETDEWEB)

    Gallivan, K.; Jalby, W.; Meier, U.; Sameh, A.

    1987-09-14

    Performing an extremely detailed performance optimization analysis is counterproductive when the concern is performance behavior on a class of architecture, since general trends are obscured by the overwhelming number of machine-specific considerations required. Instead, in this paper, a methodology is used which identifies the effects of a hierarchical memory system on the performance of linear algebra algorithms on multivector processors; provides a means of producing a set of algorithm parameters, i.e., blocksizes, as functions of system parameters which yield near-optimal performance; and provides guidelines for algorithm designers which reduce the influence of the hierarchical memory system on algorithm performance to negligible levels and thereby allow them to concentrate on machine-specific optimizations. The remainder of this paper comprises five major discussions. First, the methodology and the attendant architectural model are discussed. Next, an analysis of the basic BLAS3 matrix-matrix primitive is presented. This is followed by a discussion of three block algorithms: a block LU decomposition, a block LDL/sup T/ decomposition and a block Gram-Schmidt algorithm. 22 refs., 9 figs.

  7. Memory network plasticity after temporal lobe resection: a longitudinal functional imaging study

    OpenAIRE

    Sidhu, Meneka K; Stretton, Jason; Winston, Gavin P.; McEvoy, Andrew W; Symms, Mark; Thompson, Pamela J; Koepp, Matthias J; Duncan, John S.

    2016-01-01

    Anterior temporal lobe resection can control seizures in up to 80% of patients with temporal lobe epilepsy. Memory decrements are the main neurocognitive complication. Preoperative functional reorganization has been described in memory networks, but less is known of postoperative reorganization. We investigated reorganization of memory-encoding networks preoperatively and 3 and 12 months after surgery. We studied 36 patients with unilateral medial temporal lobe epilepsy (19 right) before and ...

  8. Cognitive impairments associated with medial temporal atrophy and white matter hyperintensities: an MRI study in memory clinic patients

    Directory of Open Access Journals (Sweden)

    Joukje eOosterman

    2014-05-01

    Full Text Available In this retrospective study, we investigated the independent effects of white matter hyperintensities and hippocampal atrophy on cognitive functions in a broad sample of patients seen in a memory clinic. To ensure generalizability, these associations were examined irrespective of diagnosis and with minimal exclusion criteria. Next to these independent effects, interactions between white matter hyperintensities and hippocampal atrophy were examined. Between January 2006 and September 2011 a total of 500 patients visited the memory clinic, 397 of whom were included. Magnetic resonance images of 397 patients were visually analyzed for white matter hyperintensities (WMH, medial temporal atrophy (MTA and global atrophy. We evaluated the association of WMH and MTA with the following cognitive domains: global cognition, episodic memory, working memory, executive function and psychomotor speed. Main effects and interaction effects were examined by means of correlation and regression analyses. In the regression analyses, we controlled for potential confounding effects of global atrophy. The correlational results revealed that WMH were associated with global cognition, executive function and psychomotor speed, whereas a trend was found for episodic memory. MTA was associated with all these four cognitive domains; an additional trend was observed for working memory. Hierarchical regression analyses revealed main independent effects of MTA for episodic memory, executive function, psychomotor speed and global cognition; WMH were only associated with global cognition. The interaction between MTA and WMH was significant for episodic memory only. This study demonstrates that predominantly MTA is an independent predictor not only for memory function, with which is it classically associated, but also for global cognition and executive function. Taken together, MTA may be an important correlate of cognitive deficits found in people attending the memory clinic.

  9. Cognitive impairments associated with medial temporal atrophy and white matter hyperintensities: an MRI study in memory clinic patients.

    Science.gov (United States)

    Overdorp, Eduard J; Kessels, Roy P C; Claassen, Jurgen A; Oosterman, Joukje M

    2014-01-01

    In this retrospective study, we investigated the independent effects of white matter hyperintensities (WMH) and hippocampal atrophy on cognitive functions in a broad sample of patients seen in a memory clinic. To ensure generalizability, these associations were examined irrespective of diagnosis and with minimal exclusion criteria. Next to these independent effects, interactions between WMH and hippocampal atrophy were examined. Between January 2006 and September 2011 a total of 500 patients visited the memory clinic, 397 of whom were included. Magnetic resonance images of 397 patients were visually analyzed for WMH, medial temporal atrophy (MTA), and global atrophy. We evaluated the association of WMH and MTA with the following cognitive domains: global cognition, episodic memory, working memory, executive function and psychomotor speed. Main effects and interaction effects were examined by means of correlation and regression analyses. In the regression analyses, we controlled for potential confounding effects of global atrophy. The correlational results revealed that WMH were associated with global cognition, executive function and psychomotor speed, whereas a trend was found for episodic memory. MTA was associated with all these four cognitive domains; an additional trend was observed for working memory. Hierarchical regression analyses revealed main independent effects of MTA for episodic memory, executive function, psychomotor speed and global cognition; WMH were only associated with global cognition. The interaction between MTA and WMH was significant for episodic memory only. This study demonstrates that predominantly MTA is an independent predictor not only for memory function, with which is it classically associated, but also for global cognition and executive function. Taken together, MTA may be an important correlate of cognitive deficits found in people attending the memory clinic.

  10. Temporal segmentation of video objects for hierarchical object-based motion description.

    Science.gov (United States)

    Fu, Yue; Ekin, Ahmet; Tekalp, A Murat; Mehrotra, Rajiv

    2002-01-01

    This paper describes a hierarchical approach for object-based motion description of video in terms of object motions and object-to-object interactions. We present a temporal hierarchy for object motion description, which consists of low-level elementary motion units (EMU) and high-level action units (AU). Likewise, object-to-object interactions are decomposed into a hierarchy of low-level elementary reaction units (ERU) and high-level interaction units (IU). We then propose an algorithm for temporal segmentation of video objects into EMUs, whose dominant motion can be described by a single representative parametric model. The algorithm also computes a representative (dominant) affine model for each EMU. We also provide algorithms for identification of ERUs and for classification of the type of ERUs. Experimental results demonstrate that segmenting the life-span of video objects into EMUS and ERUs facilitates the generation of high-level visual summaries for fast browsing and navigation. At present, the formation of high-level action and interaction units is done interactively. We also provide a set of query-by-example results for low-level EMU retrieval from a database based on similarity of the representative dominant affine models.

  11. Medial Temporal Lobe Activity Predicts Successful Relational Memory Binding

    Science.gov (United States)

    Hannula, Deborah E.; Ranganath, Charan

    2009-01-01

    Previous neuropsychological findings have implicated medial temporal lobe (MTL) structures in retaining object-location relations over the course of short delays, but MTL effects have not always been reported in neuroimaging investigations with similar short-term memory requirements. Here, we used event-related functional magnetic resonance imaging to test the hypothesis that the hippocampus and related MTL structures support accurate retention of relational memory representations, even across short delays. On every trial, four objects were presented, each in one of nine possible locations of a three-dimensional grid. Participants were to mentally rotate the grid and then maintain the rotated representation in anticipation of a test stimulus: a rendering of the grid, rotated 90° from the original viewpoint. The test stimulus was either a “match” display, in which object-location relations were intact, or a “mismatch” display, in which one object occupied a new, previously unfilled location (mismatch position), or two objects had swapped locations (mismatch swap). Encoding phase activation in anterior and posterior regions of the left hippocampus, and in bilateral perirhinal cortex, predicted subsequent accuracy on the short-term memory decision, as did bilateral posterior hippocampal activity after the test stimulus. Notably, activation in these posterior hippocampal regions was also sensitive to the degree to which object-location bindings were preserved in the test stimulus; activation was greatest for match displays, followed by mismatch-position displays, and finally mismatch-swap displays. These results indicate that the hippocampus and related MTL structures contribute to successful encoding and retrieval of relational information in visual short-term memory. PMID:18171929

  12. Dissociations between Spatial and Temporal Order Memory: A Neuropsychological Patient Study.

    Science.gov (United States)

    Kant, Neeltje; van Zandvoort, Martine J E; van den Berg, Esther; Frijns, Catharina J M; Kappelle, L Jaap; Postma, Albert

    2017-05-01

    In complex real life situations, memories for temporal and spatial information are naturally linked since sequential events coincide in time and space. Whether this connection is inseparable or instead whether these processes are functionally dissociable was investigated in this patient study. Spatial object-location and temporal order memory tasks were administered to 36 stroke patients and 44 healthy control participants. On group level, patients with a stroke in the left hemisphere performed worse on temporal order memory, compared to the control participants. On individual level, using a multiple case-study approach, a clear pattern of dissociations was found between memory for temporal and for spatial features. These findings indicate that location and temporal order memory contain functionally separable processes. This adds to our understanding of how context information is processed in human memory. (JINS, 2017, 23, 421-430).

  13. Robust Face Recognition by Hierarchical Kernel Associative Memory Models Based on Spatial Domain Gabor Transforms

    Directory of Open Access Journals (Sweden)

    Bai-ling Zhang

    2006-07-01

    Full Text Available Face recognition can be studied as an associative memory (AM problem and kernel-based AM models have been proven efficient. In this paper, a hierarchical Kernel Associative Memory (KAM face recognition scheme with a multiscale Gabor transform, is proposed. The pyramidal multiscale Gabor decomposition proposed by Nestares, Navarro, Portilla and Tabernero not only provides a very efficient implementation of the Gabor transform in the spatial domain, but also permits a fast reconstruction of images. In our method, face images of each person are first decomposed into their multiscale representations by a quasicomplete Gabor transform, which are then modelled by Kernel Associative Memories. In the recognition stage, a query face image is also represented by a Gabor multiresolution pyramid and the reconstructions from different KAM models corresponding to even Gabor channels are then simply summed to give the recall. The recognition scheme was thoroughly tested using several benchmarking face datasets, including the AR faces, UMIST faces, JAFFE faces and Yale A faces, which include different kind of face variations from occlusions, pose, expression and illumination. The experiment results show that the proposed method demonstrated strong robustness in recognizing faces under different conditions, particularly under occlusions, pose alterations and expression changes.

  14. Recognition memory is improved by a structured temporal framework during encoding

    Directory of Open Access Journals (Sweden)

    Sathesan eThavabalasingam

    2016-01-01

    Full Text Available In order to function optimally within our environment, we continuously extract temporal patterns from our experiences and formulate expectations that facilitate adaptive behavior. Given that our memories are embedded within spatiotemporal contexts, an intriguing possibility is that mnemonic processes are sensitive to the temporal structure of events. To test this hypothesis, in a series of behavioral experiments we manipulated the regularity of interval durations at encoding to create temporally structured and unstructured frameworks. Our findings revealed enhanced recognition memory (d’ for stimuli that were explicitly encoded within a temporally structured versus unstructured framework. Encoding information within a temporally structured framework was also associated with a reduction in the negative effects of proactive interference and was linked to greater recollective recognition memory. Furthermore, rhythmic temporal structure was found to enhance recognition memory for incidentally encoded information. Collectively, these results support the possibility that we possess a greater capacity to learn and subsequently remember temporally structured information.

  15. Direct observation of hierarchical nucleation of martensite and size-dependent superelasticity in shape memory alloys.

    Science.gov (United States)

    Liu, Lifeng; Ding, Xiangdong; Li, Ju; Lookman, Turab; Sun, Jun

    2014-02-21

    Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ transmission electron microscopy (TEM), we directly observe the nucleation of the level-2 superstructure in a Cu-Al-Ni single crystal under compression, with critical super-nuclei size L2c around 500 nm. When the sample size D decreases below L2c, the superelasticity behavior changes from a flat stress plateau to a continuously rising stress-strain curve. Such size dependence definitely would impact the application of shape memory alloys in miniaturized MEMS/NEMS devices.

  16. Material-Specific Lateralization of Working Memory in the Medial Temporal Lobe

    Science.gov (United States)

    Wagner, Dylan D.; Sziklas, Viviane; Garver, Krista E.; Jones-Gotman, Marilyn

    2009-01-01

    Mnemonic deficits in patients with medial temporal lobe (MTL) damage arising from temporal lobe epilepsy (TLE) are traditionally constrained to long-term episodic memory, sparing short-term and working memory (WM). This view of WM as being independent of MTL structures has recently been challenged by a small number of patient and neuroimaging…

  17. Dissociation between explicit memory and configural memory in the human medial temporal lobe.

    Science.gov (United States)

    Preston, Alison R; Gabrieli, John D E

    2008-09-01

    Using functional magnetic resonance imaging, the current study explored the differential mnemonic contributions of the hippocampus and surrounding medial temporal lobe (MTL) cortices to explicit recognition memory and configural learning. Using a task that required processing of repeated and novel visuospatial contexts across multiple trials, we examined MTL activation in relation to 3 forms of learning in a single paradigm: 1) context-independent procedural learning, 2) context-dependent configural learning, and 3) explicit recognition memory. Activations in hippocampus and parahippocampal cortex were associated with explicit memory, differentiating between subsequently remembered and forgotten repeated contexts, but were unrelated to context-dependent configural learning. Activations in regions of perirhinal and entorhinal cortex were associated with configural learning of repeated contexts independent from explicit memory for those contexts. Procedural learning was unrelated to activation in any MTL region. The time course of activation across learning further differed in MTL subregions with MTL cortex demonstrating repetition-related decreases and hippocampus repetition-related increases. These repetition effects were differentially sensitive to recognition with only activation in hippocampus and parahippocampal cortex tracking recognized items. These imaging findings converge with studies of amnesia and indicate dissociable roles for hippocampus in learning that supports explicit recognition and for anterior MTL cortex in configural learning.

  18. Memory and betweenness preference in temporal networks induced from time series

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Small, Michael; Zheng, Rui; Hui, Pan

    2017-02-01

    We construct temporal networks from time series via unfolding the temporal information into an additional topological dimension of the networks. Thus, we are able to introduce memory entropy analysis to unravel the memory effect within the considered signal. We find distinct patterns in the entropy growth rate of the aggregate network at different memory scales for time series with different dynamics ranging from white noise, 1/f noise, autoregressive process, periodic to chaotic dynamics. Interestingly, for a chaotic time series, an exponential scaling emerges in the memory entropy analysis. We demonstrate that the memory exponent can successfully characterize bifurcation phenomenon, and differentiate the human cardiac system in healthy and pathological states. Moreover, we show that the betweenness preference analysis of these temporal networks can further characterize dynamical systems and separate distinct electrocardiogram recordings. Our work explores the memory effect and betweenness preference in temporal networks constructed from time series data, providing a new perspective to understand the underlying dynamical systems.

  19. Medial Temporal Lobe Activity during Source Retrieval Reflects Information Type, Not Memory Strength

    Science.gov (United States)

    Diana, Rachel A.; Yonelinas, Andrew P.; Ranganath, Charan

    2010-01-01

    The medial temporal lobes (MTLs) are critical for episodic memory but the functions of MTL subregions are controversial. According to memory strength theory, MTL subregions collectively support declarative memory in a graded manner. In contrast, other theories assert that MTL subregions support functionally distinct processes. For instance, one…

  20. Different types of working memory binding in epilepsy patients with unilateral anterior temporal lobectomy

    NARCIS (Netherlands)

    Geldorp, B. van; Bouman, Z.; Hendriks, M.P.H.; Kessels, R.P.C.

    2014-01-01

    The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks

  1. Medial Temporal Lobe Activity during Source Retrieval Reflects Information Type, Not Memory Strength

    Science.gov (United States)

    Diana, Rachel A.; Yonelinas, Andrew P.; Ranganath, Charan

    2010-01-01

    The medial temporal lobes (MTLs) are critical for episodic memory but the functions of MTL subregions are controversial. According to memory strength theory, MTL subregions collectively support declarative memory in a graded manner. In contrast, other theories assert that MTL subregions support functionally distinct processes. For instance, one…

  2. Independent contribution of temporal beta-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer's disease.

    Science.gov (United States)

    Chételat, Gaël; Villemagne, Victor L; Pike, Kerryn E; Ellis, Kathryn A; Bourgeat, Pierrick; Jones, Gareth; O'Keefe, Graeme J; Salvado, Olivier; Szoeke, Cassandra; Martins, Ralph N; Ames, David; Masters, Colin L; Rowe, Christopher C

    2011-03-01

    The relationship between β-amyloid deposition and memory deficits in early Alzheimer's disease is unresolved, as past studies show conflicting findings. The present study aims to determine the relative contribution of regional β-amyloid deposition, hippocampal atrophy and white matter integrity to episodic memory deficits in non-demented older individuals harbouring one of the characteristic hallmarks of Alzheimer's disease, i.e. with β-amyloid pathology. Understanding these relationships is critical for effective therapeutic development. Brain magnetic resonance imaging and [(11)C]Pittsburgh Compound B-positron emission tomography scans were obtained in 136 non-demented individuals aged over 60 years, including 93 healthy elderly and 43 patients with mild cognitive impairment. Voxel-based correlations were computed between a memory composite score and grey matter volume, white matter volume and β-amyloid deposition imaging datasets. Hierarchical linear regression analyses were then performed using values extracted in regions of most significant correlations to determine the relative contribution of each modality to memory deficits. All analyses were conducted pooling all groups together as well as within separate subgroups of cognitively normal elderly, patients with mild cognitive impairment and individuals with high versus low neocortical β-amyloid. Brain areas of highest correlation with episodic memory deficits were the hippocampi for grey matter volume, the perforant path for white matter volume and the temporal neocortex for β-amyloid deposition. When considering these three variables together, only hippocampal volume and temporal β-amyloid deposition provided independent contributions to memory deficits. In contrast to global β-amyloid deposition, temporal β-amyloid deposition was still related to memory independently from hippocampal atrophy within subgroups of cognitively normal elderly, patients with mild cognitive impairment or cases with high

  3. The temporal locus of the interaction between working memory consolidation and the attentional blink.

    Science.gov (United States)

    Akyürek, Elkan G; Leszczyński, Marcin; Schubö, Anna

    2010-11-01

    An increase in concurrent working memory load has been shown to amplify the attentional blink. The present study investigated the temporal locus of this phenomenon, by using a dual rapid serial visual presentation paradigm that enabled the measurement of lateralized event-related potentials. The P3 component was shown to be affected by both working memory load and the lag between the target stimuli, consistent with current models of temporal attention and a functional explanation of the P3 in terms of memory consolidation. P3 amplitude was reduced for short target lags and high memory loads. The P2 component was affected by lag only, and not memory load. Importantly, the N2pc component was modulated also by both lag and memory load. The results showed that early attentional processing (as marked by the N2pc) was suppressed by increased involvement of working memory, a phenomenon not well predicted by many current theories of temporal attention.

  4. The timing of associative memory formation: frontal lobe and anterior medial temporal lobe activity at associative binding predicts memory.

    Science.gov (United States)

    Hales, J B; Brewer, J B

    2011-04-01

    The process of associating items encountered over time and across variable time delays is fundamental for creating memories in daily life, such as for stories and episodes. Forming associative memory for temporally discontiguous items involves medial temporal lobe structures and additional neocortical processing regions, including prefrontal cortex, parietal lobe, and lateral occipital regions. However, most prior memory studies, using concurrently presented stimuli, have failed to examine the temporal aspect of successful associative memory formation to identify when activity in these brain regions is predictive of associative memory formation. In the current study, functional MRI data were acquired while subjects were shown pairs of sequentially presented visual images with a fixed interitem delay within pairs. This design allowed the entire time course of the trial to be analyzed, starting from onset of the first item, across the 5.5-s delay period, and through offset of the second item. Subjects then completed a postscan recognition test for the items and associations they encoded during the scan and their confidence for each. After controlling for item-memory strength, we isolated brain regions selectively involved in associative encoding. Consistent with prior findings, increased regional activity predicting subsequent associative memory success was found in anterior medial temporal lobe regions of left perirhinal and entorhinal cortices and in left prefrontal cortex and lateral occipital regions. The temporal separation within each pair, however, allowed extension of these findings by isolating the timing of regional involvement, showing that increased response in these regions occurs during binding but not during maintenance.

  5. Working memory network plasticity after anterior temporal lobe resection: a longitudinal functional magnetic resonance imaging study

    Science.gov (United States)

    Stretton, Jason; Sidhu, Meneka K.; Winston, Gavin P.; Bartlett, Philippa; McEvoy, Andrew W.; Symms, Mark R.; Koepp, Matthias J.; Thompson, Pamela J.

    2014-01-01

    Working memory is a crucial cognitive function that is disrupted in temporal lobe epilepsy. It is unclear whether this impairment is a consequence of temporal lobe involvement in working memory processes or due to seizure spread to extratemporal eloquent cortex. Anterior temporal lobe resection controls seizures in 50–80% of patients with drug-resistant temporal lobe epilepsy and the effect of surgery on working memory are poorly understood both at a behavioural and neural level. We investigated the impact of temporal lobe resection on the efficiency and functional anatomy of working memory networks. We studied 33 patients with unilateral medial temporal lobe epilepsy (16 left) before, 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were also assessed in parallel. All subjects had neuropsychological testing and performed a visuospatial working memory functional magnetic resonance imaging paradigm on these three separate occasions. Changes in activation and deactivation patterns were modelled individually and compared between groups. Changes in task performance were included as regressors of interest to assess the efficiency of changes in the networks. Left and right temporal lobe epilepsy patients were impaired on preoperative measures of working memory compared to controls. Working memory performance did not decline following left or right temporal lobe resection, but improved at 3 and 12 months following left and, to a lesser extent, following right anterior temporal lobe resection. After left anterior temporal lobe resection, improved performance correlated with greater deactivation of the left hippocampal remnant and the contralateral right hippocampus. There was a failure of increased deactivation of the left hippocampal remnant at 3 months after left temporal lobe resection compared to control subjects, which had normalized 12 months after surgery. Following right anterior temporal lobe resection there was a

  6. The Eyes Know Time: A Novel Paradigm to Reveal the Development of Temporal Memory

    Science.gov (United States)

    Pathman, Thanujeni; Ghetti, Simona

    2014-01-01

    Temporal memory in 7-year-olds, 10-year-olds, and young adults (N = 78) was examined introducing a novel eye-movement paradigm. Participants learned object sequences and were tested under three conditions: temporal order, temporal context, and recognition. Age-related improvements in accuracy were found across conditions; accuracy in the temporal…

  7. The hierarchical organization of semantic memory: executive function in the processing of superordinate concepts.

    Science.gov (United States)

    Raposo, Ana; Mendes, Mafalda; Marques, J Frederico

    2012-01-16

    Research on the processing of objects at different hierarchical levels has suggested that understanding superordinate concepts (e.g. fruit), relative to basic level concepts (e.g. apple), requires greater semantic control demands. Yet, it is unclear which factors underlie this difference in executive processing. We built on previous research showing that superordinate concepts have less shared features among their members and therefore may involve higher semantic control requirements. To test this hypothesis, we developed an fMRI study in which we orthogonally manipulated feature sharedness (more shared vs. less shared) and concept level (superordinate vs. basic) in a sentence verification task. Sentences involving less shared features, relative to more shared features, significantly engaged the L lateral PFC. Importantly, sentences that included superordinate concepts, relative to those with basic level concepts, also revealed a stronger response in L lateral PFC, along with posterior temporal gyrus activation. There was also a significant interaction between feature sharedness and concept level in several PFC regions and L posterior temporal areas. The results suggest that relative to basic level concepts, processing superordinate concepts requires extra semantic control in L lateral PFC to coordinate information that is less shared by other members of the category level. These findings demonstrate that feature sharedness impacts the neural basis of semantic knowledge, and is a critical dimension in the processing of superordinate concepts.

  8. Medial Temporal Lobe Activity during Retrieval of Semantic Memory Is Related to the Age of the Memory

    Science.gov (United States)

    Smith, Christine N.; Squire, Larry R.

    2009-01-01

    We measured brain activity using event-related fMRI as participants recalled answers to 160 questions about news events that had occurred during the past 30 years. Guided by earlier findings from patients with damage limited to the hippocampus who were given the same test material, we looked for regions that exhibited gradually decreasing activity as participants recalled memories from 1–12 years ago and a constant level of activity during recall of more remote memories. Regions in the medial temporal lobe exhibited a decrease in brain activity in relation to the age of the memory (hippocampus, temporopolar cortex, and amygdala). Regions in the frontal lobe, temporal lobe, and parietal lobe exhibited the opposite pattern. The findings for all of these regions were unrelated to the richness of the memories, to how well test questions were remembered later (encoding for subsequent memory), nor to how frequently semantic memories were accompanied by personal, episodic recollections. Last, activity in a different group of regions (perirhinal cortex, para-hippocampal cortex, and inferior temporal gyrus) was associated with how well the test questions were subsequently remembered. The results support the idea that medial temporal lobe structures play a time-limited role in semantic memory. PMID:19176802

  9. Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.

    Science.gov (United States)

    Limongi, Roberto; Silva, Angélica M

    2016-11-01

    The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.

  10. The Effect of Interference on Temporal Order Memory for Random and Fixed Sequences in Nondemented Older Adults

    Science.gov (United States)

    Tolentino, Jerlyn C.; Pirogovsky, Eva; Luu, Trinh; Toner, Chelsea K.; Gilbert, Paul E.

    2012-01-01

    Two experiments tested the effect of temporal interference on order memory for fixed and random sequences in young adults and nondemented older adults. The results demonstrate that temporal order memory for fixed and random sequences is impaired in nondemented older adults, particularly when temporal interference is high. However, temporal order…

  11. Modeling spatial-temporal operations with context-dependent associative memories.

    Science.gov (United States)

    Mizraji, Eduardo; Lin, Juan

    2015-10-01

    We organize our behavior and store structured information with many procedures that require the coding of spatial and temporal order in specific neural modules. In the simplest cases, spatial and temporal relations are condensed in prepositions like "below" and "above", "behind" and "in front of", or "before" and "after", etc. Neural operators lie beneath these words, sharing some similarities with logical gates that compute spatial and temporal asymmetric relations. We show how these operators can be modeled by means of neural matrix memories acting on Kronecker tensor products of vectors. The complexity of these memories is further enhanced by their ability to store episodes unfolding in space and time. How does the brain scale up from the raw plasticity of contingent episodic memories to the apparent stable connectivity of large neural networks? We clarify this transition by analyzing a model that flexibly codes episodic spatial and temporal structures into contextual markers capable of linking different memory modules.

  12. Hierarchical functional connectivity between the core language system and the working memory system.

    Science.gov (United States)

    Makuuchi, Michiru; Friederici, Angela D

    2013-10-01

    Language processing inevitably involves working memory (WM) operations, especially for sentences with complex syntactic structures. Evidence has been provided for a neuroanatomical segregation between core syntactic processes and WM, but the dynamic relation between these systems still has to be explored. In the present functional magnetic resonance imaging (fMRI) study, we investigated the network dynamics of regions involved in WM operations which support sentence processing during reading, comparing a set of dynamic causal models (DCM) with different assumptions about the underlying connectional architecture. The DCMs incorporated the core language processing regions (pars opercularis and middle temporal gyrus), WM related regions (inferior frontal sulcus and intraparietal sulcus), and visual word form area (fusiform gyrus). The results indicate a processing hierarchy from the visual to WM to core language systems, and moreover, a clear increase of connectivity between WM regions and language regions as the processing load increases for syntactically complex sentences.

  13. A hierarchical approach for online temporal lobe seizure detection in long-term intracranial EEG recordings

    Science.gov (United States)

    Liang, Sheng-Fu; Chen, Yi-Chun; Wang, Yu-Lin; Chen, Pin-Tzu; Yang, Chia-Hsiang; Chiueh, Herming

    2013-08-01

    Objective. Around 1% of the world's population is affected by epilepsy, and nearly 25% of patients cannot be treated effectively by available therapies. The presence of closed-loop seizure-triggered stimulation provides a promising solution for these patients. Realization of fast, accurate, and energy-efficient seizure detection is the key to such implants. In this study, we propose a two-stage on-line seizure detection algorithm with low-energy consumption for temporal lobe epilepsy (TLE). Approach. Multi-channel signals are processed through independent component analysis and the most representative independent component (IC) is automatically selected to eliminate artifacts. Seizure-like intracranial electroencephalogram (iEEG) segments are fast detected in the first stage of the proposed method and these seizures are confirmed in the second stage. The conditional activation of the second-stage signal processing reduces the computational effort, and hence energy, since most of the non-seizure events are filtered out in the first stage. Main results. Long-term iEEG recordings of 11 patients who suffered from TLE were analyzed via leave-one-out cross validation. The proposed method has a detection accuracy of 95.24%, a false alarm rate of 0.09/h, and an average detection delay time of 9.2 s. For the six patients with mesial TLE, a detection accuracy of 100.0%, a false alarm rate of 0.06/h, and an average detection delay time of 4.8 s can be achieved. The hierarchical approach provides a 90% energy reduction, yielding effective and energy-efficient implementation for real-time epileptic seizure detection. Significance. An on-line seizure detection method that can be applied to monitor continuous iEEG signals of patients who suffered from TLE was developed. An IC selection strategy to automatically determine the most seizure-related IC for seizure detection was also proposed. The system has advantages of (1) high detection accuracy, (2) low false alarm, (3) short

  14. Different types of working memory binding in epilepsy patients with unilateral anterior temporal lobectomy.

    Science.gov (United States)

    van Geldorp, Bonnie; Bouman, Zita; Hendriks, Marc P H; Kessels, Roy P C

    2014-03-01

    The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks containing spatial features. The present study contrasted three binding conditions and one single-item condition in patients with unilateral anterior temporal lobectomy. A group of 43 patients with temporal lobectomy (23 left; 20 right) and 20 matched controls were examined with a working memory task assessing spatial relational binding (object-location), non-spatial relational binding (object-object), conjunctive binding (object-colour) and working memory for single items. We varied the delay period (3 or 6s), as there is evidence showing that delay length may modulate working memory performance. The results indicate that performance was worse for patients than for controls in both relational binding conditions, whereas patients were unimpaired in conjunctive binding. Single-item memory was found to be marginally impaired, due to a deficit on long-delay trials only. In conclusion, working memory binding deficits are found in patients with unilateral anterior temporal lobectomy. The role of the medial temporal lobe in working memory is not limited to tasks containing spatial features. Rather, it seems to be involved in relational binding, but not in conjunctive binding. The medial temporal lobe gets involved when working memory capacity does not suffice, for example when relations have to be maintained or when the delay period is long. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Functional and Structural Correlates of Memory in Patients with Mesial Temporal Lobe Epilepsy

    OpenAIRE

    Barnett, Alexander J.; Park, Min Tae M.; Pipitone, Jon; Chakravarty, M Mallar; McAndrews, Mary Pat

    2015-01-01

    Individuals with medial temporal lobe epilepsy (mTLE) often show material-specific memory impairment (verbal for left, visuospatial for right hemisphere), which can be exacerbated following surgery aimed at the epileptogenic regions of medial and anterolateral temporal cortex. There is a growing body of evidence suggesting that characterization of structural and functional integrity of these regions using MRI can aid in prediction of post-surgical risk of further memory decline. We investigat...

  16. Functional and structural correlates of memory in patients with mesial temporal lobe epilepsy

    OpenAIRE

    Alexander James Barnett; Park, Min Tae M.; Jon ePipitone; M. Mallar Chakravarty; Mary Pat eMcAndrews

    2015-01-01

    Individuals with medial temporal lobe epilepsy (mTLE) often show material-specific memory impairment (verbal for left, visuospatial for right hemisphere) which can be exacerbated following surgery aimed at the epileptogenic regions of medial and anterolateral temporal cortex. There is a growing body of evidence suggesting that characterization of structural and functional integrity of these regions using MRI can aid in prediction of post-surgical risk of further memory decline. We investigat...

  17. The rostral prefrontal cortex underlies individual differences in working memory capacity: An approach from the hierarchical model of the cognitive control.

    Science.gov (United States)

    Minamoto, Takehiro; Yaoi, Ken; Osaka, Mariko; Osaka, Naoyuki

    2015-10-01

    Neuroimaging and behavioral evidence has suggested that the lateral prefrontal cortex is involved in individual differences in working memory capacity (WMC). However, few studies have localized the neural structures that differentiate high and low WMC individuals, considering the functional architecture of the prefrontal cortex. The present study aimed to identify a frontal region that underlies individual differences from the perspective of the hierarchical architecture of the frontal cortex. By manipulating an episodic factor of cognitive control (control in selecting an appropriate task set according to a temporal context) and using a parametric modulation analysis, we found that both high- and low- WMC individuals have similar activation patterns in the premotor cortex (BA6, 8), caudal prefrontal cortex (BA44, 45), and frontopolar cortex (BA10, 11), but differed in the rostral part of the prefrontal cortex (BA46/47); high WMC individuals showed greater activation in the higher episodic control condition, whereas low WMC individuals showed reduced activation when episodic control was required. Similar patterns of activation were found in the right inferior parietal and middle/inferior temporal cortices. These results indicate that the rostral prefrontal cortex, which supports episodic cognitive control, possibly by sending a weighting signal toward the inferior parietal and middle/inferior temporal cortices that modulate saliency and sensory processing, underlies individual differences in WMC. Episodic control account, which considers the organization of the prefrontal cortex, fits well with previous findings of individual differences in WMC.

  18. Evaluation of metric, topological, and temporal ordering memory tasks after lateral fluid percussion injury.

    Science.gov (United States)

    Gurkoff, Gene G; Gahan, Jennifer D; Ghiasvand, Rahil T; Hunsaker, Michael R; Van, Ken; Feng, Jun-Feng; Shahlaie, Kiarash; Berman, Robert F; Lyeth, Bruce G; Folkerts, Michael M

    2013-02-15

    Impairments in learning and memory occur in as many as 50% of patients following traumatic brain injury (TBI). Similar impairments occur in rodent models of TBI, and the development of new memory testing procedures provides an opportunity to examine how TBI affects memory processing in specific neural memory systems. Specifically, metric, topological, and temporal ordering tasks are object-based tests for memory of spatial orientation and temporal sequencing working memory developed for use in rodents. Previous studies demonstrated that specific lesions of the dentate gyrus/CA3 of the hippocampus and the parietal cortex resulted in deficits in the metric and topological spatial orientation tasks, respectively. Lesions of the CA1 impaired a rat's ability to recall the temporal order of odors. The purpose of the following study was to determine whether moderate lateral fluid percussion TBI would generate deficits in these working memory tasks, and whether observed deficits were associated with cell loss in the CA2/3 and/or CA1 of the hippocampus. Two weeks following a moderate lateral fluid percussion TBI, adult rats demonstrated significant deficits in both the metric and temporal ordering tasks (panalysis identified a significant reduction in neurons in the CA2/3 (pdata demonstrate the utility of three object-based tasks to expand our understanding of how different neural memory systems are affected by TBI.

  19. Dissecting medial temporal lobe contributions to item and associative memory formation.

    NARCIS (Netherlands)

    Qin, S.; Rijpkema, M.J.P.; Tendolkar, I.; Piekema, C.; Hermans, E.J.; Binder, M.; Petersson, K.M.; Luo, J.; Fernandez, G.S.E.

    2009-01-01

    A fundamental and intensively discussed question is whether medial temporal lobe (MTL) processes that lead to non-associative item memories differ in their anatomical substrate from processes underlying associative memory formation. Using event-related functional magnetic resonance imaging, we imple

  20. GABA[subscript A] Receptors Determine the Temporal Dynamics of Memory Retention

    Science.gov (United States)

    McNally, Gavan P.; Augustyn, Katarzyna A.; Richardson, Rick

    2008-01-01

    Four experiments studied the role of GABA[subscript A] receptors in the temporal dynamics of memory retention. Memory for an active avoidance response was a nonmonotonic function of the retention interval. When rats were tested shortly (2 min) or some time (24 h) after training, retention was excellent, but when they were tested at intermediate…

  1. Long-term consolidation of declarative memory: insight from temporal lobe epilepsy.

    Science.gov (United States)

    Tramoni, Eve; Felician, Olivier; Barbeau, Emmanuel J; Guedj, Eric; Guye, Maxime; Bartolomei, Fabrice; Ceccaldi, Mathieu

    2011-03-01

    Several experiments carried out with a subset of patients with temporal lobe epilepsy have demonstrated normal memory performance at standard delays of recall (i.e. minutes to hours) but impaired performance over longer delays (i.e. days or weeks), suggesting altered long-term consolidation mechanisms. These mechanisms were specifically investigated in a group of five adult-onset pharmaco-sensitive patients with temporal lobe epilepsy, exhibiting severe episodic memory complaints despite normal performance at standardized memory assessment. In a first experiment, the magnitude of autobiographical memory loss was evaluated using retrograde personal memory tasks based on verbal and visual cues. In both conditions, results showed an unusual U-shaped pattern of personal memory impairment, encompassing most of the patients' life, sparing however, periods of the childhood, early adulthood and past several weeks. This profile was suggestive of a long-term consolidation impairment of personal episodes, adequately consolidated over 'short-term' delays but gradually forgotten thereafter. Therefore, in a subsequent experiment, patients were submitted to a protocol specifically devised to investigate short and long-term consolidation of contextually-bound experiences (episodic memory) and context-free information (semantic knowledge and single-items). In the short term (1 h), performance at both contextually-free and contextually-bound memory tasks was intact. After a 6-week delay, however, contextually-bound memory performance was impaired while contextually-free memory performance remained preserved. This effect was independent of task difficulty and the modality of retrieval (recall and recognition). Neuroimaging studies revealed the presence of mild metabolic changes within medial temporal lobe structures. Taken together, these results show the existence of different consolidation systems within declarative memory. They suggest that mild medial temporal lobe dysfunction

  2. Using multivariate data reduction to predict postsurgery memory decline in patients with mesial temporal lobe epilepsy.

    Science.gov (United States)

    St-Laurent, Marie; McCormick, Cornelia; Cohn, Mélanie; Mišić, Bratislav; Giannoylis, Irene; McAndrews, Mary Pat

    2014-02-01

    Predicting postsurgery memory decline is crucial to clinical decision-making for individuals with mesial temporal lobe epilepsy (mTLE) who are candidates for temporal lobe excisions. Extensive neuropsychological testing is critical to assess risk, but the numerous test scores it produces can make deriving a formal prediction of cognitive change quite complex. In order to benefit from the information contained in comprehensive memory assessment, we used principal component analysis (PCA) to simplify neuropsychological test scores (presurgical and pre- to postsurgical change) obtained from a cohort of 56 patients with mTLE into a few easily interpretable latent components. We next performed discriminant analyses using presurgery latent components to categorize seizure laterality and then regression analyses to assess how well presurgery latent components could predict postsurgery memory decline. Finally, we validated the predictive power of these regression models in an independent sample of 18 patients with mTLE. Principal component analysis identified three significant latent components that reflected IQ, verbal memory, and visuospatial memory, respectively. Together, the presurgery verbal and visuospatial memory components classified 80% of patients with mTLE correctly according to their seizure laterality. Furthermore, the presurgery verbal memory component predicted postsurgery verbal memory decline, while the presurgery visuospatial memory component predicted visuospatial memory decline. These regression models also predicted postsurgery memory decline successfully in the independent cohort of patients with mTLE. Our results demonstrate the value of data reduction techniques in identifying cognitive metrics that can characterize laterality of damage and risk of postoperative decline.

  3. Intact working memory for relational information after medial temporal lobe damage

    Science.gov (United States)

    Jeneson, Annette; Mauldin, Kristin N.; Squire, Larry R.

    2010-01-01

    Working memory has traditionally been viewed as independent of the hippocampus and related medial temporal lobe structures. Yet memory-impaired patients with medial temporal lobe damage are sometimes impaired at remembering relational information (e.g., an object and its location) across delays as short as a few seconds. This observation has raised the possibility that medial temporal lobe structures are sometimes critical for maintaining relational information, regardless whether the task depends on working memory or long-term memory. An alternative possibility is that these structures are critical for maintaining relational information only when the task exceeds working memory capacity and depends instead on long-term memory. To test these ideas, we drew on a method used previously in a classic study of digit span in patient HM that distinguished immediate memory from long-term memory. In two experiments we assessed the ability of four patients with medial temporal lobe lesions to maintain varying numbers of object-location associations across a 1-s retention interval. In both experiments, the patients exhibited a similar pattern of performance. They performed similarly to controls when only a small number of object-location associations needed to be maintained, and they exhibited an abrupt discontinuity in performance at larger set sizes. This pattern of results supports the idea that maintenance of relational information in working memory is intact after damage to the hippocampus and related medial temporal lobe structures and that damage to these structures impairs performance only when the task depends on long-term memory. PMID:20943903

  4. Memory Outcomes Following Selective versus Nonselective Temporal Lobe Removal: A Systematic Review

    Science.gov (United States)

    Girgis, Fady

    2012-01-01

    The surgical removal of brain tissue for the treatment of temporal lobe epilepsy can be either nonselective, as with an anterior temporal lobectomy (ATL), or selective, as with a selective amygdalohippocampectomy (SAH). Although seizure outcomes are similar with both procedures, cognitive and memory outcomes remain a matter of debate. This study…

  5. Traces of times past : Representations of temporal intervals in memory

    NARCIS (Netherlands)

    Taatgen, Niels; van Rijn, Hedderik

    2011-01-01

    Theories of time perception typically assume that some sort of memory represents time intervals. This memory component is typically underdeveloped in theories of time perception. Following earlier work that suggested that representations of different time intervals contaminate each other (Grondin, 2

  6. Frontal Neurons Modulate Memory Retrieval across Widely Varying Temporal Scales

    Science.gov (United States)

    Zhang, Wen-Hua; Williams, Ziv M.

    2015-01-01

    Once a memory has formed, it is thought to undergo a gradual transition within the brain from short- to long-term storage. This putative process, however, also poses a unique problem to the memory system in that the same learned items must also be retrieved across broadly varying time scales. Here, we find that neurons in the ventrolateral…

  7. Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated α Oscillations.

    Science.gov (United States)

    van Ede, Freek; Niklaus, Marcel; Nobre, Anna C

    2017-01-11

    Although working memory is generally considered a highly dynamic mnemonic store, popular laboratory tasks used to understand its psychological and neural mechanisms (such as change detection and continuous reproduction) often remain relatively "static," involving the retention of a set number of items throughout a shared delay interval. In the current study, we investigated visual working memory in a more dynamic setting, and assessed the following: (1) whether internally guided temporal expectations can dynamically and reversibly prioritize individual mnemonic items at specific times at which they are deemed most relevant; and (2) the neural substrates that support such dynamic prioritization. Participants encoded two differently colored oriented bars into visual working memory to retrieve the orientation of one bar with a precision judgment when subsequently probed. To test for the flexible temporal control to access and retrieve remembered items, we manipulated the probability for each of the two bars to be probed over time, and recorded EEG in healthy human volunteers. Temporal expectations had a profound influence on working memory performance, leading to faster access times as well as more accurate orientation reproductions for items that were probed at expected times. Furthermore, this dynamic prioritization was associated with the temporally specific attenuation of contralateral α (8-14 Hz) oscillations that, moreover, predicted working memory access times on a trial-by-trial basis. We conclude that attentional prioritization in working memory can be dynamically steered by internally guided temporal expectations, and is supported by the attenuation of α oscillations in task-relevant sensory brain areas.

  8. Affectivity and Subjective Memory in Patients with Intractable Medial Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Marilyn Zaldivar Bermúdez

    2014-12-01

    Full Text Available Background: in the literature related to intractable medial temporal lobe epilepsy, some divergence is observed in terms of the factors that may be leading to memory complaints in patients with this condition. Objective: to identify the relationship between some manifestations of affectivity and subjective memory in patients with intractable medial temporal lobe epilepsy. Methods: a case series study was conducted in 32 patients aged 15 to 60 years treated at the International Center for Neurological Restoration from January 2008 through September 2011. The State-Trait Anxiety Inventory, State-Trait Depression Inventory and Questionnaire of Memory Efficiency were applied. The variables studied were anxiety, depression and subjective memory. Descriptive statistics and the Spearman correlation were used to process the data. Results: a prevalence of mean levels of state-trait anxiety and state depression was observed; however, trait depression reached high levels. Patients reported complaints about their memory functioning. A negative relationship between trait depression and subjective memory (r = -0.36, p <0.05 was obtained.Conclusion: some manifestations of affectivity (anxiety and depression, subjective memory impairment regardless of the lateralization of the ictal onset zone, and the relationship between trait depression and subjective memory were observed in patients with intractable medial temporal lobe epilepsy.

  9. Electrophysiological indices of memory for temporal order in early childhood: implications for the development of recollection.

    Science.gov (United States)

    Riggins, Tracy; Miller, Neely C; Bauer, Patricia J; Georgieff, Michael K; Nelson, Charles A

    2009-03-01

    The ability to recall contextual details associated with an event begins to develop in the first year of life, yet adult levels of recall are not reached until early adolescence. Dual-process models of memory suggest that the distinct retrieval process that supports the recall of such contextual information is recollection. In the present investigation, we used both behavioral and electrophysiological measures to assess the development of memory for contextual details, as indexed by memory for temporal order, in early childhood. Results revealed age-related improvements in memory for temporal order despite similar levels of memory for the individual items themselves. Furthermore, this pattern of recall was associated with specific components in the electrophysiological response. Consistent with electrophysiological research in adults, distributed, positive-going activity late in the waveform was associated with increases in recall of contextual details and the development of recollective processes.

  10. A Bayesian hierarchical model for the measurement of working memory capacity

    NARCIS (Netherlands)

    Morey, Richard D.

    Working memory is the memory system that allows for conscious storage and manipulation of information. The capacity of working memory is extremely limited. Measurements of this limit, and what affects it, are critical to understanding working memory. Cowan (2001) and Pashler (1988) suggested

  11. Clinical utility of the Wechsler Memory Scale--Fourth Edition (WMS-IV) in predicting laterality of temporal lobe epilepsy among surgical candidates.

    Science.gov (United States)

    Soble, Jason R; Eichstaedt, Katie E; Waseem, Hena; Mattingly, Michelle L; Benbadis, Selim R; Bozorg, Ali M; Vale, Fernando L; Schoenberg, Mike R

    2014-12-01

    This study evaluated the accuracy of the Wechsler Memory Scale--Fourth Edition (WMS-IV) in identifying functional cognitive deficits associated with seizure laterality in localization-related temporal lobe epilepsy (TLE) relative to a previously established measure, the Rey Auditory Verbal Learning Test (RAVLT). Emerging WMS-IV studies have highlighted psychometric improvements that may enhance its ability to identify lateralized memory deficits. Data from 57 patients with video-EEG-confirmed unilateral TLE who were administered the WMS-IV and RAVLT as part of a comprehensive presurgical neuropsychological evaluation for temporal resection were retrospectively reviewed. We examined the predictive accuracy of the WMS-IV not only in terms of verbal versus visual composite scores but also using individual subtests. A series of hierarchal logistic regression models were developed, including the RAVLT, WMS-IV delayed subtests (Logical Memory, Verbal Paired Associates, Designs, Visual Reproduction), and a WMS-IV verbal-visual memory difference score. Analyses showed that the RAVLT significantly predicted laterality with overall classification rates of 69.6% to 70.2%, whereas neither the individual WMS-IV subtests nor the verbal-visual memory difference score accounted for additional significant variance. Similar to previous versions of the WMS, findings cast doubt as to whether the WMS-IV offers significant incremental validity in discriminating seizure laterality in TLE beyond what can be obtained from the RAVLT.

  12. A Hierarchical Multi-Temporal InSAR Method for Increasing the Spatial Density of Deformation Measurements

    Directory of Open Access Journals (Sweden)

    Tao Li

    2014-04-01

    Full Text Available Point-like targets are useful in providing surface deformation with the time series of synthetic aperture radar (SAR images using the multi-temporal interferometric synthetic aperture radar (MTInSAR methodology. However, the spatial density of point-like targets is low, especially in non-urban areas. In this paper, a hierarchical MTInSAR method is proposed to increase the spatial density of deformation measurements by tracking both the point-like targets and the distributed targets with the temporal steadiness of radar backscattering. To efficiently reduce error propagation, the deformation rates on point-like targets with lower amplitude dispersion index values are first estimated using a least squared estimator and a region growing method. Afterwards, the distributed targets are identified using the amplitude dispersion index and a Pearson correlation coefficient through a multi-level processing strategy. Meanwhile, the deformation rates on distributed targets are estimated during the multi-level processing. The proposed MTInSAR method has been tested for subsidence detection over a suburban area located in Tianjin, China using 40 high-resolution TerraSAR-X images acquired between 2009 and 2010, and validated using the ground-based leveling measurements. The experiment results indicate that the spatial density of deformation measurements can be increased by about 250% and that subsidence accuracy can reach to the millimeter level by using the hierarchical MTInSAR method.

  13. Cognit activation: a mechanism enabling temporal integration in working memory

    OpenAIRE

    Fuster, Joaquín M.; Bressler, Steven L.

    2012-01-01

    Working memory is critical to the integration of information across time in goal-directed behavior, reasoning and language, yet its neural substrate is unknown. Based on recent research, we propose a mechanism by which the brain can retain working memory for prospective use, thereby bridging time in the perception/action cycle. The essence of the mechanism is the activation of cognits, which consist of distributed, overlapping and interactive cortical networks that in the aggregate encode the...

  14. Medial temporal lobe contributions to intra-item associative recognition memory in the ageing brain

    Directory of Open Access Journals (Sweden)

    Marshall Axel Dalton

    2014-01-01

    Full Text Available Ageing is associated with a decline in episodic memory function. This is accompanied by degradation of and functional changes in the medial temporal lobe (MTL which subserves mnemonic processing. To date no study has investigated age related functional change in MTL substructures during specific episodic memory processes such as intra-item associative memory. The aim of this study was to characterise age related change in the neural correlates of intra-item associative memory processing. 16 young and 10 older subjects participated in a compound word intra-item associative memory task comprising a measure of associative recognition memory and a measure of recognition memory. There was no difference in performance between groups on the associative memory measure but each group recruited different MTL regions while performing the task. The young group recruited the left anterior hippocampus and posterior parahippocampal gyrus whereas the older participants recruited the hippocampus bilaterally. In contrast, recognition memory was significantly worse in the older subjects. The left anterior hippocampus was recruited in the young group during successful recognition memory whereas the older group recruited a more posterior region of the left hippocampus and showed a more bilateral activation of frontal brain regions than was observed in the young group. Our results suggest a reorganisation of the neural correlates of intra-item associative memory in the ageing brain.

  15. Memory for relations in the short term and the long term after medial temporal lobe damage.

    Science.gov (United States)

    Squire, Larry R

    2017-05-01

    A central idea about the organization of declarative memory and the function of the hippocampus is that the hippocampus provides for the coding of relationships between items. A question arises whether this idea refers to the process of forming long-term memory or whether, as some studies have suggested, memory for relations might depend on the hippocampus even at short retention intervals and even when the task falls within the province of short-term (working) memory. The latter formulation appears to place the operation of relational memory into conflict with the idea that working memory is independent of medial temporal lobe (MTL) structures. In this report, the concepts of relational memory and working memory are discussed in the light of a simple demonstration experiment. Patients with MTL lesions successfully learned and recalled two word pairs when tested directly after learning but failed altogether when tested after a delay. The results do not contradict the idea that the hippocampus has a fundamental role in relational memory. However, there is a need for further elaboration and specification of the idea in order to explain why patients with MTL lesions can establish relational memory in the short term but not in long-term memory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Medial temporal lobe contributions to intra-item associative recognition memory in the aging brain.

    Science.gov (United States)

    Dalton, Marshall Axel; Tu, Sicong; Hornberger, Michael; Hodges, John Russel; Piguet, Olivier

    2013-01-01

    Aging is associated with a decline in episodic memory function. This is accompanied by degradation of and functional changes in the medial temporal lobe (MTL) which subserves mnemonic processing. To date no study has investigated age-related functional change in MTL substructures during specific episodic memory processes such as intra-item associative memory. The aim of this study was to characterize age-related change in the neural correlates of intra-item associative memory processing. Sixteen young and 10 older subjects participated in a compound word intra-item associative memory task comprising a measure of associative recognition memory and a measure of recognition memory. There was no difference in performance between groups on the associative memory measure but each group recruited different MTL regions while performing the task. The young group recruited the left anterior hippocampus and posterior parahippocampal gyrus whereas the older participants recruited the hippocampus bilaterally. In contrast, recognition memory was significantly worse in the older subjects. The left anterior hippocampus was recruited in the young group during successful recognition memory whereas the older group recruited a more posterior region of the left hippocampus and showed a more bilateral activation of frontal brain regions than was observed in the young group. Our results suggest a reorganization of the neural correlates of intra-item associative memory in the aging brain.

  17. Temporal information processing in short- and long-term memory of patients with schizophrenia.

    Science.gov (United States)

    Landgraf, Steffen; Steingen, Joerg; Eppert, Yvonne; Niedermeyer, Ulrich; van der Meer, Elke; Krueger, Frank

    2011-01-01

    Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension

  18. Temporal information processing in short- and long-term memory of patients with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Steffen Landgraf

    Full Text Available Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization, patients improved on an error measure (inappropriate semantic clustering when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired

  19. Temporal correlations and structural memory effects in break junction measurements

    DEFF Research Database (Denmark)

    Magyarkuti, A.; Lauritzen, Kasper Primdal; Balogh, Zoltan Imre

    2017-01-01

    that correlations between the opening and subsequent closing traces may indicate structural memory effects in atomic-sized metallic and molecular junctions. Applying these methods on measured and simulated gold metallic contacts as a test system, we show that the surface diffusion induced flattening of the broken......-molecule junctions, we demonstrate pronounced contact memory effects and recovery of the molecule for junctions breaking before atomic chains are formed. However, if chains are pulled the random relaxation of the chain and molecule after rupture prevents opening-closing correlations....

  20. Temporal effects of dehydroepiandrosterone sulfate on memory formation in day-old chicks.

    Science.gov (United States)

    Sujkovic, E; Mileusnic, R; Fry, J P; Rose, S P R

    2007-08-24

    Dehydroepiandrosterone sulfate (DHEAS) has been shown to enhance memory retention in different animal models and in various learning paradigms. In the present study, we investigated the effect of peripherally administered DHEAS on the acquisition, consolidation and retention of memory using a weak version of the one-trial passive avoidance task in day-old chicks. Intraperitoneally administered DHEAS (20 mg/kg) either 30 min before or 30 min and 4.5 h after training on the weakly aversive stimulus, enhanced recall at 24 h following training, suggesting a potentiation of not only the acquisition but also the early and late phases of memory consolidation. In contrast, when DHEAS was administered at 30 min prior to the 24 h retention test there was no memory enhancement, indicating a lack of effect on memory retrieval. Memory recall was unaltered when DHEAS was administered at 30 min before training in a control group trained on a strongly aversive stimulus, confirming memory-specific effects. Interestingly, the memory enhancement appeared to be sex-specific as male chicks showed higher recall than females. These findings provide further evidence that DHEAS enhances memory and may be involved in the temporal cascade of long-term memory formation.

  1. Timing matters: temporal dynamics of stress effects on memory retrieval.

    Science.gov (United States)

    Schwabe, Lars; Wolf, Oliver T

    2014-09-01

    Stress may impair memory retrieval. This retrieval impairment has been attributed to the action of the stress hormone cortisol, which is released with a delay of several minutes after a stressful encounter. Hence, most studies tested memory retrieval 20-30 min after stress, when the stress-induced cortisol increase peaks. In the present experiment, we investigated whether retrieval impairments can also be found at later intervals after stress. To this end, participants learned a list of words on day 1. Twenty-four hours later, they were first exposed to a stressor or a nonstressful control manipulation and completed a recognition test for the words either immediately thereafter, 25 min later, or 90 min later. Our findings showed that stress did not impair memory retrieval when memory was tested immediately after the stressor, before cortisol levels were elevated. However, retrieval performance was impaired 25 min after stress, when cortisol levels peaked, as well as 90 min after the stressor, when cortisol levels had already returned to baseline. The retrieval impairment 90 min after stress appeared to be even stronger than the one after 25 min. These findings suggest that the detrimental effects of stress on retrieval performance may last longer than is usually assumed.

  2. A hierarchical Bayesian spatio-temporal model for extreme precipitation events

    KAUST Repository

    Ghosh, Souparno

    2011-03-01

    We propose a new approach to model a sequence of spatially distributed time series of extreme values. Unlike common practice, we incorporate spatial dependence directly in the likelihood and allow the temporal component to be captured at the second level of hierarchy. Inferences about the parameters and spatio-temporal predictions are obtained via MCMC technique. The model is fitted to a gridded precipitation data set collected over 99 years across the continental U.S. © 2010 John Wiley & Sons, Ltd..

  3. The influence of seizure frequency on anterograde and remote memory in mesial temporal lobe epilepsy.

    Science.gov (United States)

    Voltzenlogel, Virginie; Vignal, Jean-Pierre; Hirsch, Edouard; Manning, Liliann

    2014-10-01

    Seizure frequency, although considered as an important factor in memory impairment in mesial temporal epilepsy (mTLE), is mostly confounded with other clinical variables, making it unclear to what extent recurrent seizures actually interfere with memory. The present study focuses on the influence of seizure frequency, studied as a main variable, on anterograde and remote memory. Seventy-one patients with unilateral mTLE were divided into two subgroups, as a function of their seizure frequency (monthly versus weekly seizures). Other seizure-related variables were controlled, namely, lateralisation and type of lesion, age at onset, years of ongoing seizures, etiologic factors, and number of AED. A comprehensive neuropsychological examination, including anterograde memory (verbal and non verbal recognition memory and free recall) tasks together with a large range of tests exploring different domains of remote memory, was carried out. Despite similar results on IQ, executive functions and attention, the low seizure-frequency group performed significantly better than the high seizure-frequency group on anterograde memory tests. Loss of autobiographical episodes and public-events memory, concomitant with spared personal semantic knowledge, was observed in both patient groups compared with healthy subjects. A worsening effect of high seizure frequency was recorded for autobiographical incidents and news-events memory, but unexpectedly, not for memory for famous people. The study of seizure frequency as the main variable leads us to suggest that high seizure frequency, itself, potentiates the effects of mesial temporal lobe damage on episodic memory deficits. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  4. Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories.

    Directory of Open Access Journals (Sweden)

    Paulo S Boggio

    Full Text Available A recent study found that false memories were reduced by 36% when low frequency repetitive transcranial magnetic stimulation (rTMS was applied to the left anterior temporal lobe after the encoding (study phase. Here we were interested in the consequences on a false memory task of brain stimulation throughout the encoding and retrieval task phases. We used transcranial direct current stimulation (tDCS because it has been shown to be a useful tool to enhance cognition. Specifically, we examined whether tDCS can induce changes in a task assessing false memories. Based on our preliminary results, three conditions of stimulation were chosen: anodal left/cathodal right anterior temporal lobe (ATL stimulation ("bilateral stimulation"; anodal left ATL stimulation (with a large contralateral cathodal electrode--referred as "unilateral stimulation" and sham stimulation. Our results showed that false memories were reduced significantly after the two active conditions (unilateral and bilateral stimulation as compared with sham stimulation. There were no significant changes in veridical memories. Our findings show that false memories are reduced by 73% when anodal tDCS is applied to the anterior temporal lobes throughout the encoding and retrieval stages, suggesting a possible strategy for improving certain aspects of learning.

  5. The effect of glial glutamine synthetase inhibition on recognition and temporal memories in the rat.

    Science.gov (United States)

    Kant, Deepika; Tripathi, Shweta; Qureshi, Munazah F; Tripathi, Shweta; Pandey, Swati; Singh, Gunjan; Kumar, Tankesh; Mir, Fayaz A; Jha, Sushil K

    2014-02-07

    The glutamate neurotransmitter is intrinsically involved in learning and memory. Glial glutamine synthetase enzyme synthesizes glutamine, which helps maintain the optimal neuronal glutamate level. However, the role of glutamine synthetase in learning and memory remains unclear. Using associative trace learning task, we investigated the effects of methionine sulfoximine (MSO) (glutamine synthetase inhibitor) on recognition and temporal memories. MSO and vehicle were injected (i.p.) three hours before training in separate groups of male Wistar rats (n=11). Animals were trained to obtain fruit juice after following a set of sequential events. Initially, house-light was presented for 15s followed by 5s trace interval. Thereafter, juice was given for 20s followed by 20s inter-presentation interval. A total of 75 presentations were made over five sessions during the training and testing periods. The average number of head entries to obtain juice per session and during individual phases at different time intervals was accounted as an outcome measure of recognition and temporal memories. The total head entries in MSO and vehicle treated animals were comparable on training and testing days. However, it was 174.90% (p=0.08), 270.61% (pGlutamine synthetase inhibition did not induce recognition memory deficit, while temporal memory was altered, suggesting that glutamine synthetase modulates some aspects of mnemonic processes.

  6. Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks

    Science.gov (United States)

    Sun, Bo; Cao, Siming; He, Jun; Yu, Lejun; Li, Liandong

    2017-03-01

    Constrained by the physiology, the temporal factors associated with human behavior, irrespective of facial movement or body gesture, are described by four phases: neutral, onset, apex, and offset. Although they may benefit related recognition tasks, it is not easy to accurately detect such temporal segments. An automatic temporal segment detection framework using bilateral long short-term memory recurrent neural networks (BLSTM-RNN) to learn high-level temporal-spatial features, which synthesizes the local and global temporal-spatial information more efficiently, is presented. The framework is evaluated in detail over the face and body database (FABO). The comparison shows that the proposed framework outperforms state-of-the-art methods for solving the problem of temporal segment detection.

  7. Temporal Memory Reinforcement Learning for the Autonomous Micro-mobile Robot Based-behavior

    Institute of Scientific and Technical Information of China (English)

    Yang Yujun(杨玉君); Cheng Junshi; Chen Jiapin; Li Xiaohai

    2004-01-01

    This paper presents temporal memory reinforcement learning for the autonomous micro-mobile robot based-behavior. Human being has a memory oblivion process, i.e. the earlier to memorize, the earlier to forget, only the repeated thing can be remembered firmly. Enlightening forms this, and the robot need not memorize all the past states, at the same time economizes the EMS memory space, which is not enough in the MPU of our AMRobot. The proposed algorithm is an extension of the Q-learning, which is an incremental reinforcement learning method. The results of simulation have shown that the algorithm is valid.

  8. Alternating-time temporal logic with finite-memory strategies

    DEFF Research Database (Denmark)

    Vester, Steen

    2013-01-01

    Model-checking the alternating-time temporal logics ATL and ATL* with incomplete information is undecidable for perfect recall semantics. However, when restricting to memoryless strategies the model-checking problem becomes decidable. In this paper we consider two other types of semantics based...

  9. Temporal structure in neuronal activity during working memory in Macaque parietal cortex

    CERN Document Server

    Pesaran, B; Sahami, M; Mitra, P; Andersen, R A

    2000-01-01

    A number of cortical structures are reported to have elevated single unit firing rates sustained throughout the memory period of a working memory task. How the nervous system forms and maintains these memories is unknown but reverberating neuronal network activity is thought to be important. We studied the temporal structure of single unit (SU) activity and simultaneously recorded local field potential (LFP) activity from area LIP in the inferior parietal lobe of two awake macaques during a memory-saccade task. Using multitaper techniques for spectral analysis, which play an important role in obtaining the present results, we find elevations in spectral power in a 50--90 Hz (gamma) frequency band during the memory period in both SU and LFP activity. The activity is tuned to the direction of the saccade providing evidence for temporal structure that codes for movement plans during working memory. We also find SU and LFP activity are coherent during the memory period in the 50--90 Hz gamma band and no consisten...

  10. Memory rehabilitation and brain training for surgical temporal lobe epilepsy patients: a preliminary report.

    Science.gov (United States)

    Koorenhof, Loes; Baxendale, Sallie; Smith, Natalie; Thompson, Pam

    2012-04-01

    The short term impact of a memory rehabilitation programme on verbal memory test performance and subjective ratings of memory in everyday life was assessed in healthy controls and left temporal lobe epilepsy (LTLE) surgical patients. The intervention involved training in the use of external and internal memory support strategies. Half of the sample in addition undertook computerised brain training exercises as homework. LTLE patients were seen either before surgery or 3-6 months after their operation. Improvements in verbal memory were observed in both groups. An effect of brain training was recorded but this did not occur in a consistent direction. Subjective ratings of memory indicated improvements that were significant for the LTLE group but not the controls. Positive changes in the memory outcome measures were associated with improvements in mood. Pre-operative memory rehabilitation was not associated with better outcomes than post-operative intervention. Further research is needed to explore the persistence of the changes observed and to explore if pre-operative rehabilitation offsets post-operative memory decline. Copyright © 2011 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  11. Functional anatomy of temporal organisation and domain-specificity of episodic memory retrieval.

    Science.gov (United States)

    Kwok, Sze Chai; Shallice, Tim; Macaluso, Emiliano

    2012-10-01

    Episodic memory provides information about the "when" of events as well as "what" and "where" they happened. Using functional imaging, we investigated the domain specificity of retrieval-related processes following encoding of complex, naturalistic events. Subjects watched a 42-min TV episode, and 24h later, made discriminative choices of scenes from the clip during fMRI. Subjects were presented with two scenes and required to either choose the scene that happened earlier in the film (Temporal), or the scene with a correct spatial arrangement (Spatial), or the scene that had been shown (Object). We identified a retrieval network comprising the precuneus, lateral and dorsal parietal cortex, middle frontal and medial temporal areas. The precuneus and angular gyrus are associated with temporal retrieval, with precuneal activity correlating negatively with temporal distance between two happenings at encoding. A dorsal fronto-parietal network engages during spatial retrieval, while antero-medial temporal regions activate during object-related retrieval. We propose that access to episodic memory traces involves different processes depending on task requirements. These include memory-searching within an organised knowledge structure in the precuneus (Temporal task), online maintenance of spatial information in dorsal fronto-parietal cortices (Spatial task) and combining scene-related spatial and non-spatial information in the hippocampus (Object task). Our findings support the proposal of process-specific dissociations of retrieval. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Memory network plasticity after temporal lobe resection: a longitudinal functional imaging study.

    Science.gov (United States)

    Sidhu, Meneka K; Stretton, Jason; Winston, Gavin P; McEvoy, Andrew W; Symms, Mark; Thompson, Pamela J; Koepp, Matthias J; Duncan, John S

    2016-02-01

    Anterior temporal lobe resection can control seizures in up to 80% of patients with temporal lobe epilepsy. Memory decrements are the main neurocognitive complication. Preoperative functional reorganization has been described in memory networks, but less is known of postoperative reorganization. We investigated reorganization of memory-encoding networks preoperatively and 3 and 12 months after surgery. We studied 36 patients with unilateral medial temporal lobe epilepsy (19 right) before and 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were studied at three equivalent time points. All subjects had neuropsychological testing at each of the three time points. A functional magnetic resonance imaging memory-encoding paradigm of words and faces was performed with subsequent out-of-scanner recognition assessments. Changes in activations across the time points in each patient group were compared to changes in the control group in a single flexible factorial analysis. Postoperative change in memory across the time points was correlated with postoperative activations to investigate the efficiency of reorganized networks. Left temporal lobe epilepsy patients showed increased right anterior hippocampal and frontal activation at both 3 and 12 months after surgery relative to preoperatively, for word and face encoding, with a concomitant reduction in left frontal activation 12 months postoperatively. Right anterior hippocampal activation 12 months postoperatively correlated significantly with improved verbal learning in patients with left temporal lobe epilepsy from preoperatively to 12 months postoperatively. Preoperatively, there was significant left posterior hippocampal activation that was sustained 3 months postoperatively at word encoding, and increased at face encoding. For both word and face encoding this was significantly reduced from 3 to 12 months postoperatively. Patients with right temporal lobe epilepsy showed increased

  13. Probabilistic daily ILI syndromic surveillance with a spatio-temporal Bayesian hierarchical model.

    Directory of Open Access Journals (Sweden)

    Ta-Chien Chan

    Full Text Available BACKGROUND: For daily syndromic surveillance to be effective, an efficient and sensible algorithm would be expected to detect aberrations in influenza illness, and alert public health workers prior to any impending epidemic. This detection or alert surely contains uncertainty, and thus should be evaluated with a proper probabilistic measure. However, traditional monitoring mechanisms simply provide a binary alert, failing to adequately address this uncertainty. METHODS AND FINDINGS: Based on the Bayesian posterior probability of influenza-like illness (ILI visits, the intensity of outbreak can be directly assessed. The numbers of daily emergency room ILI visits at five community hospitals in Taipei City during 2006-2007 were collected and fitted with a Bayesian hierarchical model containing meteorological factors such as temperature and vapor pressure, spatial interaction with conditional autoregressive structure, weekend and holiday effects, seasonality factors, and previous ILI visits. The proposed algorithm recommends an alert for action if the posterior probability is larger than 70%. External data from January to February of 2008 were retained for validation. The decision rule detects successfully the peak in the validation period. When comparing the posterior probability evaluation with the modified Cusum method, results show that the proposed method is able to detect the signals 1-2 days prior to the rise of ILI visits. CONCLUSIONS: This Bayesian hierarchical model not only constitutes a dynamic surveillance system but also constructs a stochastic evaluation of the need to call for alert. The monitoring mechanism provides earlier detection as well as a complementary tool for current surveillance programs.

  14. The effect of medial temporal lobe epilepsy on visual memory encoding.

    Science.gov (United States)

    Gregory, A M; Nenert, R; Allendorfer, J B; Martin, R; Kana, R K; Szaflarski, J P

    2015-05-01

    Effective visual memory encoding, a function important for everyday functioning, relies on episodic and semantic memory processes. In patients with medial temporal lobe epilepsy (MTLE), memory deficits are common as the structures typically involved in seizure generation are also involved in acquisition, maintenance, and retrieval of episodic memories. In this study, we used group independent component analysis (GICA) combined with Granger causality analysis to investigate the neuronal networks involved in visual memory encoding during a complex fMRI scene-encoding task in patients with left MTLE (LMTLE; N=28) and in patients with right MTLE (RMTLE; N=18). Additionally, we built models of memory encoding in LMTLE and RMTLE and compared them with a model of healthy memory encoding (Nenert et al., 2014). For those with LMTLE, we identified and retained for further analyses and model generation 7 ICA task-related components that were attributed to four different networks: the frontal and posterior components of the DMN, visual network, auditory-insular network, and an "other" network. For those with RMTLE, ICA produced 9 task-related components that were attributed to the somatosensory and cerebellar networks in addition to the same networks as in patients with LMTLE. Granger causality analysis revealed group differences in causality relations within the visual memory network and MTLE-related deviations from normal network function. Our results demonstrate differences in the networks for visual memory encoding between those with LMTLE and those with RMTLE. Consistent with previous studies, the organization of memory encoding is dependent on laterality of seizure focus and may be mediated by functional reorganization in chronic epilepsy. These differences may underlie the observed differences in memory abilities between patients with LMTLE and patients with RMTLE and highlight the modulating effects of epilepsy on the network for memory encoding.

  15. WoMMBAT : A user interface for hierarchical Bayesian estimation of working memory capacity

    NARCIS (Netherlands)

    Morey, Richard D.; Morey, Candice C.

    2011-01-01

    The change detection paradigm has become an important tool for researchers studying working memory. Change detection is especially useful for studying visual working memory, because recall paradigms are difficult to employ in the visual modality. Pashler (Perception & Psychophysics, 44, 369-378,

  16. WoMMBAT : A user interface for hierarchical Bayesian estimation of working memory capacity

    NARCIS (Netherlands)

    Morey, Richard D.; Morey, Candice C.

    2011-01-01

    The change detection paradigm has become an important tool for researchers studying working memory. Change detection is especially useful for studying visual working memory, because recall paradigms are difficult to employ in the visual modality. Pashler (Perception & Psychophysics, 44, 369-378, 198

  17. The temporal locus of the interaction between working memory consolidation and the attentional blink

    NARCIS (Netherlands)

    Akyürek, E.G.; Leszczyński, Marcin; Schubö, Anna

    2010-01-01

    An increase in concurrent working memory load has been shown to amplify the attentional blink. The present study investigated the temporal locus of this phenomenon, by using a dual rapid serial visual presentation paradigm that enabled the measurement of lateralized event-related potentials. The P3

  18. The Consolidation of Object and Context Recognition Memory Involve Different Regions of the Temporal Lobe

    Science.gov (United States)

    Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico

    2008-01-01

    These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…

  19. NK₃ receptor agonism reinstates temporal order memory in the hemiparkinsonian rat.

    Science.gov (United States)

    Chao, Owen Y; Wang, An-Li; Nikolaus, Susanne; de Souza Silva, Maria A

    2015-05-15

    Animals treated with unilateral 6-hydroxydopamine (6-ODHA) injections, an animal model of Parkinson's disease, exhibit deficits in memory for temporal order, but show intact novel object recognition. Since senktide, a potent neurokinin-3 receptor (NK3-R) agonist, has been shown to have promnestic effects in the aged rat and to alleviate scopolamine-induced impairment, the present study aimed to assess possible promnestic effects of senktide in the hemiparkinsonian rat model. Animals received unilateral 6-ODHA microinjections into the medial forebrain bundle. Two weeks later, they were randomly assigned to treatment with vehicle, 0.2, or 0.4 mg/kg senktide. Temporal order memory and place recognition tests were conducted, locomotor activity and turning behavior were assessed in the open field and anxiety-related behavior was measured in the light-dark box. Treatments were administered 30 min prior to behavioral testing with an interval of seven days between tests. The animals treated with 0.2 mg/kg senktide exhibited temporal order memory, unlike the vehicle-treated group. No significant treatment effects were found in the open field and light-dark box. Administration of 0.2 mg/kg senktide may influence the prefrontal cortex and hippocampus, leading to compensations for deficits in memory for temporal order.

  20. Associative learning beyond the medial temporal lobe: many actors on the memory stage

    Directory of Open Access Journals (Sweden)

    Giulio ePergola

    2013-11-01

    Full Text Available Decades of research have established a model that includes the medial temporal lobe, and particularly the hippocampus, as a critical node for episodic memory. Neuroimaging and clinical studies have shown the involvement of additional cortical and subcortical regions. Among these areas, the thalamus, the retrosplenial cortex and the prefrontal cortices have been consistently related to episodic memory performance.This article provides evidences that these areas are in different forms and degrees critical for human memory function rather than playing only an ancillary role. First we briefly summarize findings on the involvement of the hippocampus and the medial temporal lobe in recognition memory and recall. We then focus on the clinical and neuroimaging evidence available on thalamo-frontal and thalamo-retrosplenial networks. The role of these networks in episodic memory has been considered secondary, partly because disruption of these areas does not always lead to severe impairments; to account for this evidence, we discuss methodological issues related to the investigation of these regions. We propose that these networks contribute differently to recognition memory and recall, and also that the memory stage of their contribution shows specificity to encoding or retrieval in recall tasks. We note that the same mechanisms may be in force when humans perform non-episodic tasks, e.g., semantic retrieval and mental time travel. Functional disturbance of these networks is related to cognitive impairments not only in neurological disorders, but also in psychiatric medical conditions, such as schizophrenia. Finally we discuss possible mechanisms for the contribution of these areas to memory, including regulation of oscillatory rhythms and long-term potentiation. We conclude that integrity of the thalamo-frontal and the thalamo-retrosplenial networks is necessary for the manifold features of episodic memory.

  1. Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever.

    Directory of Open Access Journals (Sweden)

    Ram K Raghavan

    Full Text Available This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.

  2. Representations of temporal information in short-term memory: Are they modality-specific?

    Science.gov (United States)

    Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M

    2016-10-01

    Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding.

  3. Four ways to justify temporal memory operators in the lossy wave equation

    CERN Document Server

    Holm, Sverre

    2015-01-01

    Attenuation of ultrasound often follows near power laws which cannot be modeled with conventional viscous or relaxation wave equations. The same is often the case for shear wave propagation in tissue also. More general temporal memory operators in the wave equation can describe such behavior. They can be justified in four ways: 1) Power laws for attenuation with exponents other than two correspond to the use of convolution operators with a temporal memory kernel which is a power law in time. 2) The corresponding constitutive equation is also a convolution, often with a temporal power law function. 3) It is also equivalent to an infinite set of relaxation processes which can be formulated via the complex compressibility. 4) The constitutive equation can also be expressed as an infinite sum of higher order derivatives. An extension to longitudinal waves in a nonlinear medium is also provided.

  4. The dreamy state: hallucinations of autobiographic memory evoked by temporal lobe stimulations and seizures.

    Science.gov (United States)

    Vignal, Jean-Pierre; Maillard, Louis; McGonigal, Aileen; Chauvel, Patrick

    2007-01-01

    Using results from cortical stimulations, as well as the symptoms of spontaneous epileptic seizures recorded by stereoelectroencephalography we re-studied the phenomenon of the dreamy state, as described by Jackson (Jackson JH. Selected writings of John Hughlins Jackson. Vol 1. On epilepsy and epileptiform convulsions. Taylor J, editor. London: Hodder and Stoughton; 1931). A total of 15 sensations of déjà vécu, 35 visual hallucinations consisting of the image of a scene and 5 'feelings of strangeness' occurred. These were recorded during 40 stimulations in 16 subjects, and 15 seizures in 5 subjects. Forty-five per cent of dreamy states were evoked by stimulation of the amygdala, 37.5% by the hippocampus and 17.5% by the para-hippocampal gyrus. During both spontaneous and provoked dreamy state, the electrical discharge was localized within mesial temporal lobe structures, without involvement of the temporal neocortex. Early spread of the discharge to the temporal neocortex appeared to prevent the occurrence of the dreamy state. Semiological analysis showed a clinical continuity between déjà vécu and visual hallucinations, the latter often consisting of a personal memory that was 'relived' by the subject; such memories could be recent, distant or from childhood. With one exception, the particular memory evoked differed from one seizure to another, but were always drawn from the same period of the subject's life. Given the role of the amygdala and hippocampus in autobiographic memory, their pathological activation during seizures may trigger memory recall. This study of the dreamy state is in keeping with other evidence demonstrating the constant and central role of the amygdala and hippocampus (right as much as left) in the recall of recent and distant memories. It demonstrates the existence of large neural networks that produce recall of memories via activation of the hippocampus, amygdala and rhinal cortex.

  5. Associative reinstatement: a novel approach to assessing associative memory in patients with unilateral temporal lobe excisions.

    Science.gov (United States)

    Cohn, Melanie; McAndrews, Mary Pat; Moscovitch, Morris

    2009-11-01

    We investigated whether unilateral medial temporal lobe (MTL) damage disrupts associative reinstatement, which represents the gain in item memory when the studied associative information is reinstated at retrieval. We were interested to see whether associative reinstatement relies on the same relational binding operations that support other types of associative memory (associative identification and recollection) thought to be subserved by the MTL. In addition, we examined whether such damage affects the different types of associative memory to a greater extent than item memory and item familiarity, and whether a different pattern is seen in patients with language dominant relative to non-dominant temporal lobe resection when the studied material consists of verbal information. To do so, we used a word pair recognition paradigm composed of two tasks: (1) a pair recognition task that provides measures of associative reinstatement and item memory, and (2) an associative identification recognition task that provides a measure of associative identification memory. Estimates of item familiarity and recollection were derived from performance on both tasks using a variant of the process-dissociation procedure. Our results showed that associative reinstatement, like other types of associative memory measures, was impaired in patients with unilateral resection, irrespective of the side of damage. Item familiarity, however, was impaired solely following language dominant resection. The lack of a laterality effect in our relational measures was likely due to using an encoding task that promoted formation of both verbal and visual associations, whereas item-based familiarity could rely exclusively on verbal operations. We propose that associative reinstatement provides a sensitive measure of relational memory that is less dependent on strategic processing and therefore more appropriate for evaluating MTL function in patients.

  6. OpenCL-Accelerated Object Classification in Video Streams using Spatial Pooler of Hierarchical Temporal Memory

    National Research Council Canada - National Science Library

    Maciej Wielgosz; Marcin Pietron

    2017-01-01

    .... Therefore, authors decided to accelerate selected parts of the system using OpenCL. In particular, authors seek to determine to what extent porting selected and computationally demanding parts of a core may speed up calculations...

  7. Neuronal correlate of visual associative long-term memory in the primate temporal cortex

    Science.gov (United States)

    Miyashita, Yasushi

    1988-10-01

    In human long-term memory, ideas and concepts become associated in the learning process1. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall,2 and lesions produce deficits in visual recognition of objects3-9. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task10. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.

  8. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease.

    Science.gov (United States)

    Boggio, P S; Khoury, L P; Martins, D C S; Martins, O E M S; de Macedo, E C; Fregni, F

    2009-04-01

    Several studies have reported that transcranial direct current stimulation (tDCS), a non-invasive method of neuromodulation, enhances some aspects of working memory in healthy and Parkinson disease subjects. The aim of this study was to investigate the impact of anodal tDCS on recognition memory, working memory and selective attention in Alzheimer disease (AD). Ten patients with diagnosis of AD received three sessions of anodal tDCS (left dorsolateral prefrontal cortex, left temporal cortex and sham stimulation) with an intensity of 2 mA for 30 min. Sessions were performed in different days in a randomised order. The following tests were assessed during stimulation: Stroop, Digit Span and a Visual Recognition Memory task (VRM). The results showed a significant effect of stimulation condition on VRM (p = 0.0085), and post hoc analysis showed an improvement after temporal (p = 0.01) and prefrontal (p = 0.01) tDCS as compared with sham stimulation. There were no significant changes in attention as indexed by Stroop task performance. As far as is known, this is the first trial showing that tDCS can enhance a component of recognition memory. The potential mechanisms of action and the implications of these results are discussed.

  9. Prefrontal-temporal disconnection impairs recognition memory but not familiarity discrimination.

    Science.gov (United States)

    Browning, Philip G F; Baxter, Mark G; Gaffan, David

    2013-06-05

    Neural mechanisms in the temporal lobe are essential for recognition memory. Evidence from human functional imaging and neuropsychology, and monkey neurophysiology and neuropsychology also suggests a role for prefrontal cortex in recognition memory. To examine the interaction of these cortical regions in support of recognition memory we tested rhesus monkeys with prefrontal-inferotemporal (PFC-IT) cortical disconnection on two recognition memory tasks, a "constant negative" task, and delayed nonmatching-to-sample (DNMS). In the constant negative task monkeys were presented with sets of 100 discrimination problems. In each problem one unrewarded object was presented once every day, and became familiar over the course of several days testing. The other, rewarded object was always novel. In this task monkeys learned to avoid the familiar constant negatives and choose the novel objects, so performance on this task is guided by a sense of familiarity for the constant negatives. Following PFC-IT disconnection monkeys were severely impaired at reacquiring the rule (to avoid familiar items) but were subsequently unimpaired at acquiring new constant negative problems, thus displaying intact familiarity recognition. The same monkeys were impaired in the acquisition of the DNMS task, as well as memory for lists of objects. This dissociation between two tests of recognition memory is best explained in terms of our general hypothesis that PFC-IT interactions support the representation of temporally complex events, which is necessary in DNMS but not in constant negative. These findings, furthermore, indicate that stimulus familiarity can be represented in temporal cortex without input from prefrontal cortex.

  10. Visuo-spatial memory tests in right temporal lobe epilepsy foci: clinical validity.

    Science.gov (United States)

    Wisniewski, Ilona; Wendling, Anne-Sophie; Manning, Lilianne; Steinhoff, Bernhard J

    2012-03-01

    To examine the appropriateness of visual memory tests as an identification method for right mesial temporal lobe dysfunctions in an epilepsy patient group and to study the relationship and possible overlap with non-memory cognitive domains and demographic variables. Eighty preoperative candidates with mesial temporal lobe epilepsy (TLE) were examined using the "Corsi Block-Tapping Test", "Diagnosticum für Cerebralschädigung" (DCS), the path subtest of the "Verbaler und Visueller Merkfähigkeitstest" (VVM), and the Rey-Osterrieth Complex Figure Test (ROCF). Factorial analyses were performed on raw scores to determine the effect of epilepsy-related variables, interictal epileptiform discharges (IEDs) and presence of cortical dysgenesis, on visual and verbal memory parameters. Sensitivity, specificity and Receiver Operating Characteristic (ROC) curves were calculated based on normative data. Furthermore, Spearman correlations between memory and non-memory cognitive tasks were performed. The scores for test sensitivity and specificity and the ROC curves illustrate the tests' poor capacity to lateralize the functional deficit zone even when epilepsy-related factors, such as cortical dysgenesis or presence of contralateral IEDs were controlled. Significant correlations were found between the visual memory measures and nonverbal reasoning, processing speed, attentional flexibility, and visual planning. These neuropsychological tests are not sensitive enough to lateralize the epileptogenic focus in temporal lobe epilepsy patients since in addition to learning and consolidation processes, they measure additional cognitive domains. These results have implications for clinical neuropsychologists, in terms of test choice and the interpretation in the context of presurgical diagnostics. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory.

    Science.gov (United States)

    Frith, Emily; Sng, Eveleen; Loprinzi, Paul D

    2017-09-18

    The broader purpose of this study was to examine the temporal effects of high-intensity exercise on learning, short-term and long-term retrospective memory and prospective memory. Among a sample of 88 young adult participants, 22 were randomized into one of four different groups: exercise before learning, control group, exercise during learning, and exercise after learning. The retrospective assessments (learning, short-term and long-term memory) were assessed using the Rey Auditory Verbal Learning Test. Long-term memory including a 20-min and 24-hr follow-up assessment. Prospective memory was assessed using a time-based procedure by having participants contact (via phone) the researchers at a follow-up time period. The exercise stimulus included a 15-min bout of progressive maximal exertion treadmill exercise. High-intensity exercise prior to memory encoding (vs. exercise during memory encoding or consolidation) was effective in enhancing long-term memory (for both 20-min and 24-h follow-up assessments). We did not observe a differential temporal effect of high-intensity exercise on short-term memory (immediate post-memory encoding), learning or prospective memory. The timing of high-intensity exercise may play an important role in facilitating long-term memory. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Memory for Routines.

    Science.gov (United States)

    Galambos, James A.; Rips, Lance J.

    1982-01-01

    Presents experiments which compare two theories of memory for routine events, one emphasizing temporal sequence of events, the other focusing on events' hierarchical structure or centrality. Findings suggest that sequence and centrality information may be computed as needed, rather than precompiled. (Author/BK)

  13. MULTI-TEMPORAL LAND COVER CLASSIFICATION WITH LONG SHORT-TERM MEMORY NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    M. Rußwurm

    2017-05-01

    Full Text Available Land cover classification (LCC is a central and wide field of research in earth observation and has already put forth a variety of classification techniques. Many approaches are based on classification techniques considering observation at certain points in time. However, some land cover classes, such as crops, change their spectral characteristics due to environmental influences and can thus not be monitored effectively with classical mono-temporal approaches. Nevertheless, these temporal observations should be utilized to benefit the classification process. After extensive research has been conducted on modeling temporal dynamics by spectro-temporal profiles using vegetation indices, we propose a deep learning approach to utilize these temporal characteristics for classification tasks. In this work, we show how long short-term memory (LSTM neural networks can be employed for crop identification purposes with SENTINEL 2A observations from large study areas and label information provided by local authorities. We compare these temporal neural network models, i.e., LSTM and recurrent neural network (RNN, with a classical non-temporal convolutional neural network (CNN model and an additional support vector machine (SVM baseline. With our rather straightforward LSTM variant, we exceeded state-of-the-art classification performance, thus opening promising potential for further research.

  14. Multi-Temporal Land Cover Classification with Long Short-Term Memory Neural Networks

    Science.gov (United States)

    Rußwurm, M.; Körner, M.

    2017-05-01

    Land cover classification (LCC) is a central and wide field of research in earth observation and has already put forth a variety of classification techniques. Many approaches are based on classification techniques considering observation at certain points in time. However, some land cover classes, such as crops, change their spectral characteristics due to environmental influences and can thus not be monitored effectively with classical mono-temporal approaches. Nevertheless, these temporal observations should be utilized to benefit the classification process. After extensive research has been conducted on modeling temporal dynamics by spectro-temporal profiles using vegetation indices, we propose a deep learning approach to utilize these temporal characteristics for classification tasks. In this work, we show how long short-term memory (LSTM) neural networks can be employed for crop identification purposes with SENTINEL 2A observations from large study areas and label information provided by local authorities. We compare these temporal neural network models, i.e., LSTM and recurrent neural network (RNN), with a classical non-temporal convolutional neural network (CNN) model and an additional support vector machine (SVM) baseline. With our rather straightforward LSTM variant, we exceeded state-of-the-art classification performance, thus opening promising potential for further research.

  15. Hippocampal metaplasticity is required for the formation of temporal associative memories.

    Science.gov (United States)

    Xu, Jian; Antion, Marcia D; Nomura, Toshihiro; Kraniotis, Stephen; Zhu, Yongling; Contractor, Anis

    2014-12-10

    Metaplasticity regulates the threshold for modification of synaptic strength and is an important regulator of learning rules; however, it is not known whether these cellular mechanisms for homeostatic regulation of synapses contribute to particular forms of learning. Conditional ablation of mGluR5 in CA1 pyramidal neurons resulted in the inability of low-frequency trains of afferent activation to prime synapses for subsequent theta burst potentiation. Priming-induced metaplasticity requires mGluR5-mediated mobilization of endocannabinoids during the priming train to induce long-term depression of inhibition (I-LTD). Mice lacking priming-induced plasticity had no deficit in spatial reference memory tasks, but were impaired in an associative task with a temporal component. Conversely, enhancing endocannabinoid signaling facilitated temporal associative memory acquisition and, after training animals in these tasks, ex vivo I-LTD was partially occluded and theta burst LTP was enhanced. Together, these results suggest a link between metaplasticity mechanisms in the hippocampus and the formation of temporal associative memories.

  16. Medial temporal and neocortical contributions to remote memory for semantic narratives: evidence from amnesia.

    Science.gov (United States)

    Verfaellie, Mieke; Bousquet, Kathryn; Keane, Margaret M

    2014-08-01

    Studies of remote memory for semantic facts and concepts suggest that hippocampal lesions lead to a temporally graded impairment that extends no more than ten years prior to the onset of amnesia. Such findings have led to the notion that once consolidated, semantic memories are represented neocortically and are no longer dependent on the hippocampus. Here, we examined the fate of well-established semantic narratives following medial temporal lobe (MTL) lesions. Seven amnesic patients, five with lesions restricted to the MTL and two with lesions extending into lateral temporal cortex (MTL+), were asked to recount fairy tales and bible stories that they rated as familiar. Narratives were scored for number and type of details, number of main thematic elements, and order in which the main thematic elements were recounted. In comparison to controls, patients with MTL lesions produced fewer details, but the number and order of main thematic elements generated was intact. By contrast, patients with MTL+ lesions showed a pervasive impairment, affecting not only the generation of details, but also the generation and ordering of main steps. These findings challenge the notion that, once consolidated, semantic memories are no longer dependent on the hippocampus for retrieval. Possible hippocampal contributions to the retrieval of detailed semantic narratives are discussed.

  17. Working memory constraints on linear reasoning with spatial and temporal contents.

    Science.gov (United States)

    Vandierendonck, A; De Vooght, G

    1997-11-01

    The present article reports two experiments testing the use of working memory components during reasoning with temporal and spatial relations in four-term series problems. In the first experiment four groups of subjects performed reasoning tasks with temporal and with spatial contents either without (control) or with a secondary task (articulatory suppression, visuo-spatial suppression or central executive suppression). The second experiment tested the secondary task effects in a within-subjects design either on problems with a spatial content or on problems with a temporal content, and within each content domain either under conditions of self-paced or of fixed presentation of the premises. Both experiments found effects of all three secondary tasks on reasoning accuracy. This supports the hypothesis that the subjects construct spatial representations of the premise information with the support of visuo-spatial resources of working memory. The second experiment also showed that during premise intake, only visuo-spatial and central executive secondary tasks had an effect. The implications of the data for the working memory requirements of reasoning and for theories of linear reasoning are discussed.

  18. Effects of prestudy and poststudy rest on memory: Support for temporal interference accounts of forgetting.

    Science.gov (United States)

    Ecker, Ullrich K H; Tay, Jia-Xin; Brown, Gordon D A

    2015-06-01

    According to interference-based theories of memory, including temporal-distinctiveness theory, both prestudy and poststudy rest should have beneficial impacts on memory performance. Specifically, higher temporal isolation of a memorandum should reduce proactive and/or retroactive interference, and thus should result in better recall. In the present study, we investigated the effects of prestudy and poststudy rest in a free recall paradigm. Participants studied three lists of words, separated by either a short or a long period of low mental activity (a tone-detection task). Recall targeted the second list; this list was studied in one of four conditions, defined by the fully crossed factors of prestudy and poststudy rest duration. Two experiments revealed a beneficial effect of prestudy rest (and, to a lesser extent, of poststudy rest) on list recall. This result is in line with interference-based theories of memory. By contrast, a beneficial effect of prestudy rest is not predicted by consolidation accounts of memory and forgetting; our results thus require additional assumptions and/or a better specification of the consolidation process and its time course in order to be reconciled with consolidation theory.

  19. Temporal variability and memory in sediment transport in an experimental step-pool channel

    Science.gov (United States)

    Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael

    2015-11-01

    Temporal dynamics of sediment transport in steep channels using two experiments performed in a steep flume (8%) with natural sediment composed of 12 grain sizes are studied. High-resolution (1 s) time series of sediment transport were measured for individual grain-size classes at the outlet of the flume for different combinations of sediment input rates and flow discharges. Our aim in this paper is to quantify (a) the relation of discharge and sediment transport and (b) the nature and strength of memory in grain-size-dependent transport. None of the simple statistical descriptors of sediment transport (mean, extreme values, and quantiles) display a clear relation with water discharge, in fact a large variability between discharge and sediment transport is observed. Instantaneous transport rates have probability density functions with heavy tails. Bed load bursts have a coarser grain-size distribution than that of the entire experiment. We quantify the strength and nature of memory in sediment transport rates by estimating the Hurst exponent and the autocorrelation coefficient of the time series for different grain sizes. Our results show the presence of the Hurst phenomenon in transport rates, indicating long-term memory which is grain-size dependent. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling duration of bed load transport rates in natural streams, especially for large fractions.

  20. Memory signals are temporally dissociated in and across human hippocampus and perirhinal cortex.

    Science.gov (United States)

    Staresina, Bernhard P; Fell, Juergen; Do Lam, Anne T A; Axmacher, Nikolai; Henson, Richard N

    2012-07-01

    In the endeavor to understand how our brains enable our multifaceted memories, much controversy surrounds the contributions of the hippocampus and perirhinal cortex (PrC). We recorded functional magnetic resonance imaging (fMRI) in healthy controls and intracranial electroencephalography (EEG) in patients during a recognition memory task. Although conventional fMRI analysis showed indistinguishable roles of the hippocampus and PrC in familiarity-based item recognition and recollection-based source retrieval, event-related fMRI and EEG time courses revealed a clear temporal dissociation of memory signals in and across these regions. An early source retrieval effect was followed by a late, post-decision item novelty effect in hippocampus, whereas an early item novelty effect was followed by a sustained source retrieval effect in PrC. Although factors such as memory strength were not experimentally controlled, the temporal pattern across regions suggests that a rapid item recognition signal in PrC triggers a source retrieval process in the hippocampus, which in turn recruits PrC representations and/or mechanisms, evidenced here by increased hippocampal-PrC coupling during source recognition.

  1. Quiet connections: Reduced fronto-temporal connectivity in nondemented Parkinson's Disease during working memory encoding.

    Science.gov (United States)

    Wiesman, Alex I; Heinrichs-Graham, Elizabeth; McDermott, Timothy J; Santamaria, Pamela M; Gendelman, Howard E; Wilson, Tony W

    2016-09-01

    Parkinson's disease (PD) is a common neurodegenerative disorder characterized primarily by motor symptoms such as bradykinesia, muscle rigidity, and resting tremor. It is now broadly accepted that these motor symptoms frequently co-occur with cognitive impairments, with deficits in working memory and attention being among the most common cognitive sequelae associated with PD. While these cognitive impairments are now recognized, the underlying neural dynamics and precise regions involved remain largely unknown. To this end, we examined the oscillatory dynamics and interregional functional connectivity that serve working memory processing in a group of unmedicated adults with PD and a matched group without PD. Each participant completed a high-load, Sternberg-type working memory task during magnetoencephalography (MEG), and we focused on the encoding and maintenance phases. All data were transformed into the time-frequency domain and significant oscillatory activity was imaged using a beamforming approach. Phase-coherence (connectivity) was also computed among the brain subregions exhibiting the strongest responses. Our most important findings were that unmedicated patients with PD had significantly diminished working memory performance (i.e., accuracy), and reduced functional connectivity between left inferior frontal cortices and left supramarginal-superior temporal cortices compared to participants without PD during the encoding phase of working memory processing. We conclude that patients with PD have reduced neural interactions between left prefrontal executive circuits and temporary verbal storage centers in the left supramarginal/superior temporal cortices during the stimulus encoding phase, which may underlie their diminished working memory function. Hum Brain Mapp 37:3224-3235, 2016. © 2016 Wiley Periodicals, Inc.

  2. Effect of Unilateral Temporal Lobe Resection on Short‐Term Memory for Auditory Object and Sound Location

    National Research Council Canada - National Science Library

    LANCELOT, CÉLINE; SAMSON, SÉVERINE; AHAD, PIERRE; BAULAC, MICHEL

    2003-01-01

    A bstract : To investigate auditory spatial and nonspatial short‐term memory, a sound location discrimination task and an auditory object discrimination task were used in patients with medial temporal lobe resection...

  3. Carbamazepine reduces memory induced activation of mesial temporal lobe structures: a pharmacological fMRI-study

    Directory of Open Access Journals (Sweden)

    Okujava Michael

    2001-11-01

    Full Text Available Abstract Background and Purpose It is not known whether carbamazepine (CBZ; a drug widely used in neurology and psychiatry influences the blood oxygenation level dependent (BOLD contrast changes induced by neuronal activation and measured by functional MRI (fMRI. We aimed to investigate the influence of CBZ on memory induced activation of the mesial temporal lobes in patients with symptomatic temporal lobe epilepsy (TLE. Material and Methods Twenty-one individual patients with refractory symptomatic TLE with different CBZ serum levels and 20 healthy controls were studied using BOLD fMRI. Mesial temporal lobe (MTL activation was induced by a task that is based on the retrieval of individually familiar visuo-spatial knowledge. The extent of significant MTL fMRI activation was measured and correlated with the CBZ serum level. Results In TLE patients, the extent of significant fMRI activation over both MTL was negatively correlated to the CBZ serum level (Spearman r = -0.654, P Conclusions In TLE patients, carbamazepine reduces the fMRI-detectable changes within the mesial temporal lobes as induced by effortful memory retrieval. FMRI appears to be suitable to study the effects of chronic drug treatment in patients with epilepsy.

  4. Scene complexity: influence on perception, memory, and development in the medial temporal lobe

    Directory of Open Access Journals (Sweden)

    Xiaoqian J Chai

    2010-03-01

    Full Text Available Regions in the medial temporal lobe (MTL and prefrontal cortex (PFC are involved in memory formation for scenes in both children and adults. The development in children and adolescents of successful memory encoding for scenes has been associated with increased activation in PFC, but not MTL, regions. However, evidence suggests that a functional subregion of the MTL that supports scene perception, located in the parahippocampal gyrus (PHG, goes through a prolonged maturation process. Here we tested the hypothesis that maturation of scene perception supports the development of memory for complex scenes. Scenes were characterized by their levels of complexity defined by the number of unique object categories depicted in the scene. Recognition memory improved with age, in participants ages 8-24, for high, but not low, complexity scenes. High-complexity compared to low-complexity scenes activated a network of regions including the posterior PHG. The difference in activations for high- versus low- complexity scenes increased with age in the right posterior PHG. Finally, activations in right posterior PHG were associated with age-related increases in successful memory formation for high-, but not low-, complexity scenes. These results suggest that functional maturation of the right posterior PHG plays a critical role in the development of enduring long-term recollection for high-complexity scenes.

  5. Scene complexity: influence on perception, memory, and development in the medial temporal lobe.

    Science.gov (United States)

    Chai, Xiaoqian J; Ofen, Noa; Jacobs, Lucia F; Gabrieli, John D E

    2010-01-01

    Regions in the medial temporal lobe (MTL) and prefrontal cortex (PFC) are involved in memory formation for scenes in both children and adults. The development in children and adolescents of successful memory encoding for scenes has been associated with increased activation in PFC, but not MTL, regions. However, evidence suggests that a functional subregion of the MTL that supports scene perception, located in the parahippocampal gyrus (PHG), goes through a prolonged maturation process. Here we tested the hypothesis that maturation of scene perception supports the development of memory for complex scenes. Scenes were characterized by their levels of complexity defined by the number of unique object categories depicted in the scene. Recognition memory improved with age, in participants ages 8-24, for high-, but not low-, complexity scenes. High-complexity compared to low-complexity scenes activated a network of regions including the posterior PHG. The difference in activations for high- versus low-complexity scenes increased with age in the right posterior PHG. Finally, activations in right posterior PHG were associated with age-related increases in successful memory formation for high-, but not low-, complexity scenes. These results suggest that functional maturation of the right posterior PHG plays a critical role in the development of enduring long-term recollection for high-complexity scenes.

  6. Long term memory for noise: evidence of robust encoding of very short temporal acoustic patterns.

    Directory of Open Access Journals (Sweden)

    Jayalakshmi Viswanathan

    2016-11-01

    Full Text Available Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs (the two halves of the noise were identical or 1-s plain random noises (Ns. Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin and scrambled (chopping sounds into 10- and 20-ms bits before shuffling versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant’s discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities.

  7. Medial temporal lobe coding of item and spatial information during relational binding in working memory.

    Science.gov (United States)

    Libby, Laura A; Hannula, Deborah E; Ranganath, Charan

    2014-10-22

    Several models have proposed that different medial temporal lobe (MTL) regions represent different kinds of information in the service of long-term memory. For instance, it has been proposed that perirhinal cortex (PRC), parahippocampal cortex (PHC), and hippocampus differentially support long-term memory for item information, spatial context, and item-context relations present during an event, respectively. Recent evidence has indicated that, in addition to long-term memory, MTL subregions may similarly contribute to processes that support the retention of complex spatial arrangements of objects across short delays. Here, we used functional magnetic resonance imaging and multivoxel pattern similarity analysis to investigate the extent to which human MTL regions independently code for object and spatial information, as well as the conjunction of this information, during working memory encoding and active maintenance. Voxel activity patterns in PRC, temporopolar cortex, and amygdala carried information about individual objects, whereas activity patterns in the PHC and posterior hippocampus carried information about the configuration of spatial locations that was to be remembered. Additionally, the integrity of multivoxel patterns in the right anterior hippocampus across encoding and delay periods was predictive of accurate short-term memory for object-location relationships. These results are consistent with parallel processing of item and spatial context information by PRC and PHC, respectively, and the binding of item and context by the hippocampus.

  8. Gene expression variance in hippocampal tissue of temporal lobe epilepsy patients corresponds to differential memory performance.

    Science.gov (United States)

    Bungenberg, Julia; Surano, Natascha; Grote, Alexander; Surges, Rainer; Pernhorst, Katharina; Hofmann, Andrea; Schoch, Susanne; Helmstaedter, Christoph; Becker, Albert J

    2016-02-01

    Temporal lobe epilepsy (TLE) is a severe brain disorder affecting particularly young adults. TLE is frequently associated with memory deterioration and neuronal damage of the hippocampal formation. It thereby reveals striking parallels to neurodegenerative disorders including Alzheimer's disease (AD). TLE patients differ with respect to their cognitive performance, but currently little is known about relevant molecular-genetic factors. Here, we correlated differential memory performance of pharmacoresistant TLE patients undergoing neurosurgery for seizure control with in-vitro findings of their hippocampal tissues. We analyzed mRNA transcripts and subsequently promoter variants specifically altered in brain tissue of individuals with 'very severe' memory impairment. TLE patients (n=79) were stratified according to preoperative memory impairment using an established four-tiered grading system ranging from 'average' to 'very severely'. Multimodal cluster analyses revealed molecules specifically associated with synaptic function and abundantly expressed in TLE patients with very impaired memory performance. In a subsequent promoter analysis, we found the single nucleotide polymorphism rs744373 C-allele to be associated with high mRNA levels of bridging integrator 1 (BIN1)/Amphiphysin 2, i.e. a major component of the endocytotic machinery and located in a crucial genetic AD risk locus. Using in vitro luciferase transfection assays, we found that BIN1 promoter activation is genotype dependent and strongly increased by reduced binding of the transcriptional repressor TGIF. Our data indicate that poor memory performance in patients with TLE strongly corresponds to distinctly altered neuronal transcript signatures, which - as demonstrated for BIN1 - can correlate with a particular allelic promoter variant. Our data suggest aberrant transcriptional signaling to significantly impact synaptic dynamics in TLE resulting in impaired memory performance and may serve as basis for

  9. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    Science.gov (United States)

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may

  10. Different Phases of Long-Term Memory Require Distinct Temporal Patterns of PKA Activity after Single-Trial Classical Conditioning

    Science.gov (United States)

    Michel, Maximilian; Kemenes, Ildiko; Muller, Uli; Kemenes, Gyorgy

    2008-01-01

    The cAMP-dependent protein kinase (PKA) is known to play a critical role in both transcription-independent short-term or intermediate-term memory and transcription-dependent long-term memory (LTM). Although distinct phases of LTM already have been demonstrated in some systems, it is not known whether these phases require distinct temporal patterns…

  11. Learning and memory and its relationship with the lateralization of epileptic focus in subjects with temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Daniel Fuentes

    2014-04-01

    Full Text Available Background : In medial temporal lobe epilepsy (MTLE, previous studies addressing the hemispheric laterality of epileptogenic focus and its relationship with learning and memory processes have reported controversial findings. Objective : To compare the performance of MTLE patients according to the location of the epileptogenic focus on the left (MTLEL or right temporal lobe (MTLER on tasks of episodic learning and memory for verbal and visual content. Methods : One hundred patients with MTLEL and one hundred patients with MTLER were tested with the following tasks: the Rey Auditory Verbal Learning Test (RAVLT and the Logical Memory-WMS-R to evaluate verbal learning and memory; and the Rey Visual Design Learning Test (RVDLT and the Visual Reproduction-WMS-R to evaluate visual learning and memory. Results : The MTLEL sample showed significantly worse performance on the RAVLT (p < 0.005 and on the Logical Memory tests (p < 0.01 than MTLER subjects. However, there were no significant between-group differences in regard to the visual memory tests. Discussion : Our findings suggest that verbal learning and memory abilities are dependent on the structural and functional integrity of the left temporal lobe, while visual abilities are less dependent on the right temporal lobe.

  12. Negative polarity illusions and the format of hierarchical encodings in memory.

    Science.gov (United States)

    Parker, Dan; Phillips, Colin

    2016-12-01

    Linguistic illusions have provided valuable insights into how we mentally navigate complex representations in memory during language comprehension. Two notable cases involve illusory licensing of agreement and negative polarity items (NPIs), where comprehenders fleetingly accept sentences with unlicensed agreement or an unlicensed NPI, but judge those same sentences as unacceptable after more reflection. Existing accounts have argued that illusions are a consequence of faulty memory access processes, and make the additional assumption that the encoding of the sentence remains fixed over time. This paper challenges the predictions made by these accounts, which assume that illusions should generalize to a broader set of structural environments and a wider range of syntactic and semantic phenomena. We show across seven reading-time and acceptability judgment experiments that NPI illusions can be reliably switched "on" and "off", depending on the amount of time from when the potential licensor is processed until the NPI is encountered. But we also find that the same profile does not extend to agreement illusions. This contrast suggests that the mechanisms responsible for switching the NPI illusion on and off are not shared across all illusions. We argue that the contrast reflects changes over time in the encoding of the semantic/pragmatic representations that can license NPIs. Just as optical illusions have been informative about the visual system, selective linguistic illusions are informative not only about the nature of the access mechanisms, but also about the nature of the encoding mechanisms.

  13. Hierarchical Parallel Matrix Multiplication on Large-Scale Distributed Memory Platforms

    KAUST Repository

    Quintin, Jean-Noel

    2013-10-01

    Matrix multiplication is a very important computation kernel both in its own right as a building block of many scientific applications and as a popular representative for other scientific applications. Cannon\\'s algorithm which dates back to 1969 was the first efficient algorithm for parallel matrix multiplication providing theoretically optimal communication cost. However this algorithm requires a square number of processors. In the mid-1990s, the SUMMA algorithm was introduced. SUMMA overcomes the shortcomings of Cannon\\'s algorithm as it can be used on a nonsquare number of processors as well. Since then the number of processors in HPC platforms has increased by two orders of magnitude making the contribution of communication in the overall execution time more significant. Therefore, the state of the art parallel matrix multiplication algorithms should be revisited to reduce the communication cost further. This paper introduces a new parallel matrix multiplication algorithm, Hierarchical SUMMA (HSUMMA), which is a redesign of SUMMA. Our algorithm reduces the communication cost of SUMMA by introducing a two-level virtual hierarchy into the two-dimensional arrangement of processors. Experiments on an IBM BlueGene/P demonstrate the reduction of communication cost up to 2.08 times on 2048 cores and up to 5.89 times on 16384 cores. © 2013 IEEE.

  14. Verbal Dominant Memory Impairment and Low Risk for Post-operative Memory Worsening in Both Left and Right Temporal Lobe Epilepsy Associated with Hippocampal Sclerosis

    Science.gov (United States)

    KHALIL, Amr Farid; IWASAKI, Masaki; NISHIO, Yoshiyuki; JIN, Kazutaka; NAKASATO, Nobukazu; TOMINAGA, Teiji

    2016-01-01

    Post-operative memory changes after temporal lobe surgery have been established mainly by group analysis of cognitive outcome. This study investigated individual patient-based memory outcome in surgically-treated patients with mesial temporal lobe epilepsy (TLE). This study included 84 consecutive patients with intractable TLE caused by unilateral hippocampal sclerosis (HS) who underwent epilepsy surgery (47 females, 41 left [Lt] TLE). Memory functions were evaluated with the Wechsler Memory Scale-Revised before and at 1 year after surgery. Pre-operative memory function was classified into three patterns: verbal dominant memory impairment (Verb-D), visual dominant impairment (Vis-D), and no material-specific impairment. Post-operative changes in verbal and visual memory indices were classified into meaningful improvement, worsening, or no significant changes. Pre-operative patterns and post-operative changes in verbal and visual memory function were compared between the Lt and right (Rt) TLE groups. Pre-operatively, Verb-D was the most common type of impairment in both the Lt and Rt TLE groups (65.9 and 48.8%), and verbal memory indices were lower than visual memory indices, especially in the Lt compared with Rt TLE group. Vis-D was observed only in 11.6% of Rt and 7.3% of Lt TLE patients. Post-operatively, meaningful improvement of memory indices was observed in 23.3–36.6% of the patients, and the memory improvement was equivalent between Lt and Rt TLE groups and between verbal and visual materials. In conclusion, Verb-D is most commonly observed in patients with both the Lt and Rt TLE associated with HS. Hippocampectomy can improve memory indices in such patients regardless of the side of surgery and the function impaired. PMID:27250575

  15. Relative salience of spectral and temporal features in auditory long-term memory.

    Science.gov (United States)

    Yin, Pingbo; Shamma, Shihab A; Fritz, Jonathan B

    2016-12-01

    In order to explore the representation of sound features in auditory long-term memory, two groups of ferrets were trained on Go vs Nogo, 3-zone classification tasks. The sound stimuli differed primarily along the spectral and temporal dimensions. In Group 1, two ferrets were trained to (i) classify tones based on their frequency (Tone-task), and subsequently learned to (ii) classify white noise based on its amplitude modulation rate (AM-task). In Group 2, two ferrets were trained to classify tones based on correlated combinations of their frequency and AM rate (AM-Tone task). Both groups of ferrets learned their tasks and were able to generalize performance along the trained spectral (tone frequency) or temporal (AM rate) dimensions. Insights into stimulus representations in memory were gained when the animals were tested with a diverse set of untrained probes that mixed features from the two dimensions. Animals exhibited a complex pattern of responses to the probes reflecting primarily the probes' spectral similarity with the training stimuli, and secondarily the temporal features of the stimuli. These diverse behavioral decisions could be well accounted for by a nearest-neighbor classifier model that relied on a multiscale spectrotemporal cortical representation of the training and probe sounds.

  16. Visuo-spatial memory deficits following medial temporal lobe damage: A comparison of three patient groups.

    Science.gov (United States)

    Esfahani-Bayerl, Nazli; Finke, Carsten; Braun, Mischa; Düzel, Emrah; Heekeren, Hauke R; Holtkamp, Martin; Hasper, Dietrich; Storm, Christian; Ploner, Christoph J

    2016-01-29

    The contributions of the hippocampal formation and adjacent regions of the medial temporal lobe (MTL) to memory are still a matter of debate. It is currently unclear, to what extent discrepancies between previous human lesion studies may have been caused by the choice of distinct patient models of MTL dysfunction, as disorders affecting this region differ in selectivity, laterality and mechanisms of post-lesional compensation. Here, we investigated the performance of three distinct patient groups with lesions to the MTL with a battery of visuo-spatial short-term memory tasks. Thirty-one subjects with either unilateral damage to the MTL (postsurgical lesions following resection of a benign brain tumor, 6 right-sided lesions, 5 left) or bilateral damage (10 post-encephalitic lesions, 10 post-anoxic lesions) performed a series of tasks requiring short-term memory of colors, locations or color-location associations. We have shown previously that performance in the association task critically depends on hippocampal integrity. Patients with postsurgical damage of the MTL showed deficient performance in the association task, but performed normally in color and location tasks. Patients with left-sided lesions were almost as impaired as patients with right-sided lesions. Patients with bilateral post-encephalitic lesions showed comparable damage to MTL sub-regions and performed similarly to patients with postsurgical lesions in the association task. However, post-encephalitic patients showed additional impairments in the non-associative color and location tasks. A strikingly similar pattern of deficits was observed in post-anoxic patients. These results suggest a distinct cerebral organization of associative and non-associative short-term memory that was differentially affected in the three patient groups. Thus, while all patient groups may provide appropriate models of medial temporal lobe dysfunction in associative visuo-spatial short-term memory, additional deficits in

  17. Recognition memory and the medial temporal lobe: from monkey research to human pathology.

    Science.gov (United States)

    Meunier, M; Barbeau, E

    2013-01-01

    This review provides a historical overview of decades of research on recognition memory, the process that allows both humans and animals to tell familiar from novel items. The emphasis is put on how monkey research improved our understanding of the medial temporal lobe (MTL) role and how tasks designed for monkeys influenced research in humans. The story starts in the early 1950s. Back then, memory was not a fashionable scientific topic. It was viewed as a function of the whole brain and not of specialized brain areas. All that changed in 1957-1958 when Brenda Milner, a neuropsychologist from Montreal, described patient H.M. He forgot all events as he lived them despite a fully preserved intelligence. He had received a MTL resection to relieve epilepsy. H.M. (1926-2008) would become the most influential patient in brain science. Which structures among those included in H.M.'s large lesion were important for recognition memory could not be evaluated in humans. It was gradually understood only after the successful development of a monkey model of human amnesia by Mishkin in 1978. Selective lesions and two behavioral tasks, delayed nonmatching-to-sample and visual paired comparison, were used to distinguish the contribution of the hippocampus from that of adjacent cortical areas. Driven by findings in non-human primates, human research on recognition memory is now trying to solve the question of whether the different structures composing MTL contributes to familiarity and recollection, the two possible forms taken by recognition. We described in particular two French patients, FRG and JMG, whose deficits support the currently dominant model attributing to the perirhinal cortex a critical role in recognition memory. Research on recognition memory has implications for the clinician as it may help understanding the cognitive deficits observed in different diseases. An illustration of such approach, linking basic and applied research, is provided for Alzheimer's disease.

  18. The Family Pictures subtest of the WMS-III: relationship to verbal and visual memory following temporal lobectomy for intractable epilepsy.

    Science.gov (United States)

    Chapin, Jessica S; Busch, Robyn M; Naugle, Richard I; Najm, Imad M

    2009-05-01

    This study examined the extent to which the Family Pictures (FP) subtest of the Wechsler Memory Scale-Third Edition (WMS-III) is related to verbal memory measures and right mesial temporal integrity. Epilepsy patients who underwent temporal lobectomy did not differ in the extent to which FP scores changed from before to after surgery, although postoperative FP performance was worse in those who underwent right temporal lobectomy than in those who underwent left temporal lobectomy. FP was most strongly related to the Logical Memory subtest from the WMS-III. Results suggest that FP measures both verbal and visual memory and is minimally sensitive to lateralization of temporal lobectomy.

  19. WMS-III Logical Memory performance after a two-week delay in temporal lobe epilepsy and control groups.

    Science.gov (United States)

    Bell, Brian D

    2006-11-01

    Conventional memory assessment may fail to identify memory dysfunction that is characterized by intact recall for a relatively brief period but rapid forgetting thereafter. This study assessed immediate memory and retention after 30-minute and two-week delays in a control group (n = 25) and a group of individuals with temporal lobe epilepsy (TLE, n = 25). For raw free recall, thematic unit, and recognition memory scores from the Wechsler Memory Scale-3rd ed. (WMS-III) Logical Memory (LM) subtest, there were no group x trial interactions and the TLE group performed significantly worse than the controls on all trials. At the individual level, none of the patients (0%) demonstrated isolated free recall impairment at the two-week delay when raw scores were analyzed, and one patient (4%) but also five controls (20%) did so when percent retention scores were examined. In summary, TLE patients did not demonstrate disproportionate forgetting over two weeks on a widely used story memory test.

  20. Short-Term Memory Depends on Dissociable Medial Temporal Lobe Regions in Amnestic Mild Cognitive Impairment.

    Science.gov (United States)

    Das, Sandhitsu R; Mancuso, Lauren; Olson, Ingrid R; Arnold, Steven E; Wolk, David A

    2016-05-01

    Short-term memory (STM) has generally been thought to be independent of the medial temporal lobe (MTL) in contrast to long-term memory (LTM). Prodromal Alzheimer's disease (AD) is a condition in which the MTL is a major early focus of pathology and LTM is thought disproportionately affected relative to STM. However, recent studies have suggested a role for the MTL in STM, particularly hippocampus, when binding of different elements is required. Other work has suggested involvement of extrahippocampal MTL structures, particularly in STM tasks that involve item-level memory. We examined STM for individual objects, locations, and object-location conjunctions in amnestic mild cognitive impairment (MCI), often associated with prodromal AD. Relative to age-matched, cognitively normal controls, MCI patients not only displayed impairment on object-location conjunctions but were similarly impaired for non-bound objects and locations. Moreover, across all participants, these conditions displayed dissociable correlations of cortical thinning along the long axis of the MTL and associated cortical nodes of anterior and posterior MTL networks. These findings support the role of the MTL in visual STM tasks and the division of labor of MTL in support of different types of memory representations, overlapping with findings in LTM.

  1. Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe.

    Science.gov (United States)

    Murty, Vishnu P; Labar, Kevin S; Adcock, R Alison

    2012-06-27

    Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward.

  2. Functional anatomy of temporal organisation and domain-specificity of episodic memory retrieval

    OpenAIRE

    Kwok, Sze Chai; Shallice, Tim; Macaluso, Emiliano

    2012-01-01

    Episodic memory provides information about the “when” of events as well as “what” and “where” they happened. Using functional imaging, we investigated the domain specificity of retrieval-related processes following encoding of complex, naturalistic events. Subjects watched a 42-min TV episode, and 24 h later, made discriminative choices of scenes from the clip during fMRI. Subjects were presented with two scenes and required to either choose the scene that happened earlier in the film (Tempor...

  3. Genome-Wide Temporal Expression Profiling in Caenorhabditis elegans Identifies a Core Gene Set Related to Long-Term Memory.

    Science.gov (United States)

    Freytag, Virginie; Probst, Sabine; Hadziselimovic, Nils; Boglari, Csaba; Hauser, Yannick; Peter, Fabian; Gabor Fenyves, Bank; Milnik, Annette; Demougin, Philippe; Vukojevic, Vanja; de Quervain, Dominique J-F; Papassotiropoulos, Andreas; Stetak, Attila

    2017-07-12

    The identification of genes related to encoding, storage, and retrieval of memories is a major interest in neuroscience. In the current study, we analyzed the temporal gene expression changes in a neuronal mRNA pool during an olfactory long-term associative memory (LTAM) in Caenorhabditis elegans hermaphrodites. Here, we identified a core set of 712 (538 upregulated and 174 downregulated) genes that follows three distinct temporal peaks demonstrating multiple gene regulation waves in LTAM. Compared with the previously published positive LTAM gene set (Lakhina et al., 2015), 50% of the identified upregulated genes here overlap with the previous dataset, possibly representing stimulus-independent memory-related genes. On the other hand, the remaining genes were not previously identified in positive associative memory and may specifically regulate aversive LTAM. Our results suggest a multistep gene activation process during the formation and retrieval of long-term memory and define general memory-implicated genes as well as conditioning-type-dependent gene sets.SIGNIFICANCE STATEMENT The identification of genes regulating different steps of memory is of major interest in neuroscience. Identification of common memory genes across different learning paradigms and the temporal activation of the genes are poorly studied. Here, we investigated the temporal aspects of Caenorhabditis elegans gene expression changes using aversive olfactory associative long-term memory (LTAM) and identified three major gene activation waves. Like in previous studies, aversive LTAM is also CREB dependent, and CREB activity is necessary immediately after training. Finally, we define a list of memory paradigm-independent core gene sets as well as conditioning-dependent genes. Copyright © 2017 the authors 0270-6474/17/376661-12$15.00/0.

  4. Consolidation of visual associative long-term memory in the temporal cortex of primates.

    Science.gov (United States)

    Miyashita, Y; Kameyama, M; Hasegawa, I; Fukushima, T

    1998-01-01

    Neuropsychological theories have proposed a critical role for the interaction between the medial temporal lobe and the neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We have examined neural mechanisms underlying the memory "consolidation" process by single-unit recording and molecular biological methods in an animal model of a visual pair-association task in monkeys. In our previous studies, we found that long-term associative representations of visual objects are acquired through learning in the neural network of the anterior inferior temporal (IT) cortex. In this article, we propose the hypothesis that limbic neurons undergo rapid modification of synaptic connectivity and provide backward signals that guide the reorganization of neocortical neural circuits. Two experiments tested this hypothesis: (1) we examined the role of the backward connections from the medial temporal lobe to the IT cortex by injecting ibotenic acid into the entorhinal and perirhinal cortices, which provided massive backward projections ipsilaterally to the IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. (2) We then tested the first half of this hypothesis by detecting the expression of immediate-early genes in the monkey temporal cortex. We found specific expression of zif268 during the learning of a new set of paired associates in the pair-association task, most intensively in area 36 of the perirhinal cortex. All these results with the visual pair-association task support our hypothesis and demonstrate that the consolidation process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in primates using neurophysiolocical and molecular biological approaches.

  5. Goal-dependent modulation of declarative memory: neural correlates of temporal recency decisions and novelty detection.

    Science.gov (United States)

    Dudukovic, Nicole M; Wagner, Anthony D

    2007-06-18

    Declarative memory allows an organism to discriminate between previously encountered and novel items, and to place past encounters in time. Numerous imaging studies have investigated the neural processes supporting item recognition, whereas few have examined retrieval of temporal information. In the present study, functional magnetic resonance imaging (fMRI) was conducted while subjects engaged in temporal recency and item novelty decisions. Subjects encountered three-alternative forced-choice retrieval trials, each consisting of two words from a preceding study phase and one novel word, and were instructed to either identify the novel item (Novelty trials) or the more recently presented study item (Recency trials). Relative to correct Novelty decisions, correct Recency decisions elicited greater activation in a network of left-lateralized regions, including frontopolar and dorsolateral prefrontal cortex and intraparietal sulcus. A conjunction analysis revealed that these left-lateralized regions overlapped with those previously observed to be engaged during source recollection versus novelty detection, suggesting that during Recency trials subjects attempted to recollect event details. Consistent with this interpretation, correct Recency decisions activated posterior hippocampus and parahippocampal cortex, whereas incorrect Recency decisions elicited greater anterior cingulate activation. The magnitude of this latter effect positively correlated with activation in right dorsolateral prefrontal cortex. Finally, correct Novelty decisions activated the anterior medial temporal lobe to a greater extent than did correct Recency decisions, suggesting that medial temporal novelty responses are not obligatory but rather can be modulated by the goal-directed allocation of attention. Collectively, these findings advance understanding of how subjects strategically engage frontal and parietal mechanisms in the service of attempting to remember the temporal order of events

  6. Temporal Lobe and Frontal-Subcortical Dissociations in Non-Demented Parkinson's Disease with Verbal Memory Impairment.

    Directory of Open Access Journals (Sweden)

    Jared J Tanner

    Full Text Available The current investigation examined verbal memory in idiopathic non-dementia Parkinson's disease and the significance of the left entorhinal cortex and left entorhinal-retrosplenial region connections (via temporal cingulum on memory impairment in Parkinson's disease.Forty non-demented Parkinson's disease patients and forty non-Parkinson's disease controls completed two verbal memory tests--a wordlist measure (Philadelphia repeatable Verbal Memory Test and a story measure (Logical Memory. All participants received T1-weighted and diffusion magnetic resonance imaging (3T; Siemens sequences. Left entorhinal volume and left entorhinal-retrosplenial connectivity (temporal cingulum edge weight were the primary imaging variables of interest with frontal lobe thickness and subcortical structure volumes as dissociating variables.Individuals with Parkinson's disease showed worse verbal memory, smaller entorhinal volumes, but did not differ in entorhinal-retrosplenial connectivity. For Parkinson's disease entorhinal-retrosplenial edge weight had the strongest associations with verbal memory. A subset of Parkinson's disease patients (23% had deficits (z-scores < -1.5 across both memory measures. Relative to non-impaired Parkinson's peers, this memory-impaired group had smaller entorhinal volumes.Although entorhinal cortex volume was significantly reduced in Parkinson's disease patients relative to non-Parkinson's peers, only white matter connections associated with the entorhinal cortex were significantly associated with verbal memory performance in our sample. There was also no suggestion of contribution from frontal-subcortical gray or frontal white matter regions. These findings argue for additional investigation into medial temporal lobe gray and white matter connectivity for understanding memory in Parkinson's disease.

  7. The Research on the Memory Impairment in Temporal Lobe Epilepsy P atients%颞叶癫痫患者记忆损害的研究

    Institute of Scientific and Technical Information of China (English)

    俞志鹏; 王文敏; 王荪

    2002-01-01

    Objective: This paper reviewed recent resear ch on memory impairments in temporal lobe epilepsy patients, including clinical features of spatial, ver bal, visual and semantic memory disorders, as well as their mechanisms and clini cal significance.

  8. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Directory of Open Access Journals (Sweden)

    Makoto Nishihara

    Full Text Available Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG. The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m. The latency of Off-P50m depended on the inter-stimulus interval (ISI of the click train, which was the longest at 40 ms (25 Hz and became shorter with shorter ISIs (2.5∼20 ms. The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  9. Semantic congruency but not temporal synchrony enhances long-term memory performance for audio-visual scenes.

    Science.gov (United States)

    Meyerhoff, Hauke S; Huff, Markus

    2016-04-01

    Human long-term memory for visual objects and scenes is tremendous. Here, we test how auditory information contributes to long-term memory performance for realistic scenes. In a total of six experiments, we manipulated the presentation modality (auditory, visual, audio-visual) as well as semantic congruency and temporal synchrony between auditory and visual information of brief filmic clips. Our results show that audio-visual clips generally elicit more accurate memory performance than unimodal clips. This advantage even increases with congruent visual and auditory information. However, violations of audio-visual synchrony hardly have any influence on memory performance. Memory performance remained intact even with a sequential presentation of auditory and visual information, but finally declined when the matching tracks of one scene were presented separately with intervening tracks during learning. With respect to memory performance, our results therefore show that audio-visual integration is sensitive to semantic congruency but remarkably robust against asymmetries between different modalities.

  10. The Dynamics of Access to Groups in Working Memory

    Science.gov (United States)

    Farrell, Simon; Lelievre, Anna

    2012-01-01

    The finding that participants leave a pause between groups when attempting serial recall of temporally grouped lists has been taken to indicate access to a hierarchical representation of the list in working memory. An alternative explanation is that the dynamics of serial recall solely reflect output (rather than memorial) processes, with the…

  11. Temporal Memory and Its Enhancement by Estradiol Requires Surface Dynamics of Hippocampal CA1 N-Methyl-D-Aspartate Receptors.

    Science.gov (United States)

    Potier, Mylène; Georges, François; Brayda-Bruno, Laurent; Ladépêche, Laurent; Lamothe, Valérie; Al Abed, Alice Shaam; Groc, Laurent; Marighetto, Aline

    2016-05-01

    Identifying the underlying cellular mechanisms of episodic memory is an important challenge, since this memory, based on temporal and contextual associations among events, undergoes preferential degradation in aging and various neuropsychiatric disorders. Memory storage of temporal and contextual associations is known to rely on hippocampal N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity, which depends ex vivo on dynamic organization of surface NMDARs. Whether NMDAR surface trafficking sustains the formation of associative memory, however, remains unknown. We tested this hypothesis, using single nanoparticle imaging, electrophysiology, and behavioral approaches, in hippocampal networks challenged with a potent modulator of NMDAR-dependent synaptic plasticity and memory, 17β-estradiol (E2). We demonstrate that E2 modulates NMDAR surface trafficking, a necessary condition for E2-induced potentiation at hippocampal cornu ammonis 1 synapses. Strikingly, cornu ammonis 1 NMDAR surface trafficking controls basal and E2-enhanced mnemonic retention of temporal, but not contextual, associations. NMDAR surface trafficking and its modulation by the sex hormone E2 is a cellular mechanism critical for a major component of episodic memory, opening a new and noncanonical research avenue in the physiopathology of cognition. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Effect of Batroxobin on Expression of Neural Cell Adhesion Molecule in Temporal Infarction Rats and Spatial Learning and Memory Disorder

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of Batroxobin expression of neural cell adhesion molecule (NCAM) in left temporal ischemic rats with spatial memory disorder was investigated by means of Morri's water maze and immunohistochemical methods. The results showed that the mean reaction time and distance of temporal ischemic rats for searching a goal were significantly longer than those of sham-operated rats and at the same time NCAM expression of left temporal ischemic region was significantly increased. However, the mean reaction time and distance of Batroxobin-treated rats were shorter and they used normal strategies more often and earlier than those of ischemic rats. The number of NCAM immune reactive cells of Batroxobin-treated rats was more than that of ischemic group. In conclusion, Batroxobin can improve spatial memory disorder of temporal ischemic rats and the regulation of the expression of NCAM is probably related to the neuroprotective mechanism.

  13. Temporal dynamics of Arc gene induction in hippocampus: relationship to context memory formation.

    Science.gov (United States)

    Pevzner, Aleksandr; Miyashita, Teiko; Schiffman, Aaron J; Guzowski, John F

    2012-03-01

    Past studies have proposed a role for the hippocampus in the rapid encoding of context memories. Despite this, there is little data regarding the molecular processes underlying the stable formation of a context representation that occurs in the time window established through such behavioral studies. One task that is useful for investigating the rapid encoding of context is contextual fear conditioning (CFC). Behavioral studies demonstrate that animals require approximately 30 s of exploration prior to a footshock to form a contextual representation supporting CFC. Thus, any potential molecular process required for the stabilization of the cellular representation for context must be activated within this narrow and behaviorally defined time window. Detection of the immediate-early gene Arc presents an ideal method to assess the activation of specific neuronal ensembles, given past studies showing the context specific expression of Arc in CA3 and CA1 subfields and the role of Arc in hippocampal long-term synaptic plasticity. Therefore, we examined the temporal dynamics of Arc induction within the hippocampus after brief context exposure to determine whether experience-dependent Arc expression could be involved in the rapid encoding of incidental context memories. We found that the duration of context exposure differentially activated Arc expression in hippocampal subfields, with CA3 showing rapid engagement within as little as 3 s of exposure. By contrast, Arc induction in CA1 required 30 s of context exposure to reach maximal levels. A parallel behavioral experiment revealed that 30 s, but not 3 s, exposure to a context resulted in strong conditioned freezing 24 h later, consistent with past studies from other laboratories. The current study is the first to examine the rapid temporal dynamics of Arc induction in hippocampus in a well-defined context memory paradigm. These studies demonstrate within 30 s of context exposure Arc is fully activated in CA3 and CA1

  14. A Bayesian Hierarchical Model for Spatio-Temporal Prediction and Uncertainty Assessment Using Repeat LiDAR Acquisitions for the Kenai Peninsula, AK, USA

    Science.gov (United States)

    Babcock, C. R.; Andersen, H. E.; Finley, A. O.; Cook, B.; Morton, D. C.

    2015-12-01

    Models using repeat LiDAR and field campaigns may be one mechanism to monitor carbon storage and flux in forested regions. Considering the ability of multi-temporal LiDAR to estimate growth, it is not surprising that there is great interest in developing forest carbon monitoring strategies that rely on repeated LiDAR acquisitions. Allowing for sparser field campaigns, LiDAR stands to make monitoring forest carbon cheaper and more efficient than field-only sampling procedures. Here, we look to the spatio-temporally data-rich Kenai Peninsula in Alaska to examine the potential for Bayesian spatio-temporal mapping of forest carbon storage and uncertainty. The framework explored here can predict forest carbon through space and time, while formally propagating uncertainty through to prediction. Bayesian spatio-temporal models are flexible frameworks allowing for forest growth processes to be formally integrated into the model. By incorporating a mechanism for growth---using temporally repeated field and LiDAR data---we can more fully exploit the information-rich inventory network to improve prediction accuracy. LiDAR data for the Kenai Peninsula has been collected on four different occasions---spatially coincident LiDAR strip samples in 2004, 09 and 14, along with a wall-to-wall collection in 2008. There were 436 plots measured twice between 2002 and 2014. LiDAR was acquired at least once over most inventory plots with many having LiDAR collected during 2, 3 or 4 different campaigns. Results from this research will impact how forests are inventoried. It is too expensive to monitor terrestrial carbon using field-only sampling strategies and currently proposed LiDAR model-based techniques lack the ability to properly utilize temporally repeated and misaligned data. Bayesian hierarchical spatio-temporal models offer a solution to these shortcomings and allow for formal predictive error assessment, which is useful for policy development and decision making.

  15. Tau and β-Amyloid Are Associated with Medial Temporal Lobe Structure, Function, and Memory Encoding in Normal Aging

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Shawn M. [Univ. of California, Berkeley, CA (United States). Helen Wills Neuroscience Inst.; Lockhart, Samuel N. [Univ. of California, Berkeley, CA (United States). Helen Wills Neuroscience Inst.; Baker, Suzanne L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging; Jagust, William J. [Univ. of California, Berkeley, CA (United States). Helen Wills Neuroscience Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging

    2017-03-22

    Normal aging is associated with a decline in episodic memory and also with aggregation of the β-amyloid (Aβ) and tau proteins and atrophy of medial temporal lobe (MTL) structures crucial to memory formation. Although some evidence suggests that Aβ is associated with aberrant neural activity, the relationships among these two aggregated proteins, neural function, and brain structure are poorly understood. Using in vivo human Aβ and tau imaging, we demonstrate that increased Aβ and tau are both associated with aberrant fMRI activity in the MTL during memory encoding in cognitively normal older adults. This pathological neural activity was in turn associated with worse memory performance and atrophy within the MTL. A mediation analysis revealed that the relationship with regional atrophy was explained by MTL tau. These findings broaden the concept of cognitive aging to include evidence of Alzheimer’s disease-related protein aggregation as an underlying mechanism of age-related memory impairment.

  16. Activation of a Temporal Memory in Purkinje Cells by the mGluR7 Receptor

    Directory of Open Access Journals (Sweden)

    Fredrik Johansson

    2015-12-01

    Full Text Available Cerebellar Purkinje cells can learn to respond to a conditioned stimulus with an adaptively timed pause in firing. This response was usually ascribed to long-term depression of parallel fiber to Purkinje cell synapses but has recently been shown to be due to a previously unknown form of learning involving an intrinsic cellular timing mechanism. Here, we investigate how these responses are elicited. They are resistant to blockade of GABAergic inhibition, suggesting that they are caused by glutamate release rather than by a changed balance between GABA and glutamate. We show that the responses are abolished by antagonists of the mGlu7 receptor but not significantly affected by other glutamate antagonists. These results support the existence of a distinct learning mechanism, different from changes in synaptic strength. They also demonstrate in vivo post-synaptic inhibition mediated by glutamate and show that the mGlu7 receptor is involved in activating intrinsic temporal memory.

  17. Recognition of music in long-term memory: are melodic and temporal patterns equal partners?

    Science.gov (United States)

    Hébert, S; Peretz, I

    1997-07-01

    The notion that the melody (i.e., pitch structure) of familiar music is more recognizable than its accompanying rhythm (i.e., temporal structure) was examined with the same set of nameable musical excerpts in three experiments. In Experiment 1, the excerpts were modified so as to keep either their original pitch variations, whereas durations were set to isochrony (melodic condition) or their original temporal pattern while played on a single constant pitch (rhythmic condition). The subjects, who were selected without regard to musical training, were found to name more tunes and to rate their feeling of knowing the musical excerpts far higher in the melodic condition than in the rhythmic condition. These results were replicated in Experiment 2, wherein the melodic and rhythmic patterns of the musical excerpts were interchanged to create chimeric mismatched tunes. The difference in saliency of the melodic pattern and the rhythmic pattern also emerged with a music-title-verification task in Experiment 3, hence discarding response selection as the main source of the discrepancy. The lesser effectiveness of rhythmic structure appears to be related to its lesser encoding distinctiveness relative to melodic structure. In general, rhythm was found to be a poor cue for the musical representations that are stored in long-term memory. Nevertheless, in all three experiments, the most effective cue for music identification involved the proper combination of pitches and durations. Therefore, the optimal code of access to long-term memory for music resides in a combination of rhythm and melody, of which the latter would be the most informative.

  18. Ventromedial prefrontal cortex pyramidal cells have a temporal dynamic role in recall and extinction of cocaine-associated memory.

    Science.gov (United States)

    Van den Oever, Michel C; Rotaru, Diana C; Heinsbroek, Jasper A; Gouwenberg, Yvonne; Deisseroth, Karl; Stuber, Garret D; Mansvelder, Huibert D; Smit, August B

    2013-11-13

    In addicts, associative memories related to the rewarding effects of drugs of abuse can evoke powerful craving and drug seeking urges, but effective treatment to suppress these memories is not available. Detailed insight into the neural circuitry that mediates expression of drug-associated memory is therefore of crucial importance. Substantial evidence from rodent models of addictive behavior points to the involvement of the ventromedial prefrontal cortex (vmPFC) in conditioned drug seeking, but specific knowledge of the temporal role of vmPFC pyramidal cells is lacking. To this end, we used an optogenetics approach to probe the involvement of vmPFC pyramidal cells in expression of a recent and remote conditioned cocaine memory. In mice, we expressed Channelrhodopsin-2 (ChR2) or Halorhodopsin (eNpHR3.0) in pyramidal cells of the vmPFC and studied the effect of activation or inhibition of these cells during expression of a cocaine-contextual memory on days 1-2 (recent) and ∼3 weeks (remote) after conditioning. Whereas optical activation of pyramidal cells facilitated extinction of remote memory, without affecting recent memory, inhibition of pyramidal cells acutely impaired recall of recent cocaine memory, without affecting recall of remote memory. In addition, we found that silencing pyramidal cells blocked extinction learning at the remote memory time-point. We provide causal evidence of a critical time-dependent switch in the contribution of vmPFC pyramidal cells to recall and extinction of cocaine-associated memory, indicating that the circuitry that controls expression of cocaine memories reorganizes over time.

  19. Estimating temporal trend in the presence of spatial complexity: A Bayesian hierarchical model for a wetland plant population undergoing restoration

    Science.gov (United States)

    Rodhouse, T.J.; Irvine, K.M.; Vierling, K.T.; Vierling, L.A.

    2011-01-01

    Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones") with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity-a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.

  20. Locating Temporal Functional Dynamics of Visual Short-Term Memory Binding using Graph Modular Dirichlet Energy

    Science.gov (United States)

    Smith, Keith; Ricaud, Benjamin; Shahid, Nauman; Rhodes, Stephen; Starr, John M.; Ibáñez, Augustin; Parra, Mario A.; Escudero, Javier; Vandergheynst, Pierre

    2017-02-01

    Visual short-term memory binding tasks are a promising early marker for Alzheimer’s disease (AD). To uncover functional deficits of AD in these tasks it is meaningful to first study unimpaired brain function. Electroencephalogram recordings were obtained from encoding and maintenance periods of tasks performed by healthy young volunteers. We probe the task’s transient physiological underpinnings by contrasting shape only (Shape) and shape-colour binding (Bind) conditions, displayed in the left and right sides of the screen, separately. Particularly, we introduce and implement a novel technique named Modular Dirichlet Energy (MDE) which allows robust and flexible analysis of the functional network with unprecedented temporal precision. We find that connectivity in the Bind condition is less integrated with the global network than in the Shape condition in occipital and frontal modules during the encoding period of the right screen condition. Using MDE we are able to discern driving effects in the occipital module between 100–140 ms, coinciding with the P100 visually evoked potential, followed by a driving effect in the frontal module between 140–180 ms, suggesting that the differences found constitute an information processing difference between these modules. This provides temporally precise information over a heterogeneous population in promising tasks for the detection of AD.

  1. Binding temporal context in memory : Impact of emotional arousal as a function of state anxiety and state dissociation

    NARCIS (Netherlands)

    Huntjens, Rafaële J C; Wessel, Ineke; Postma, Albert; Van Wees-Cieraad, Rineke; De Jong, Peter J.

    2015-01-01

    Encoding of stressful experiences plays an important role in the development of posttraumatic stress disorder. A crucial aspect of memory encoding is binding: the "gluing" of the temporal and spatial elements of an episode into a cohesive unit. This study investigated the effect of emotional arousal

  2. Binding Temporal Context in Memory : Impact of Emotional Arousal as a Function of State Anxiety and State Dissociation

    NARCIS (Netherlands)

    Huntjens, Rafaële J C; Wessel, Ineke; Postma, Albert; van Wees-Cieraad, Rineke; de Jong, Pieter

    2015-01-01

    Encoding of stressful experiences plays an important role in the development of posttraumatic stress disorder. A crucial aspect of memory encoding is binding: the "gluing" of the temporal and spatial elements of an episode into a cohesive unit. This study investigated the effect of emotional arousal

  3. Effects of Temporal Sequencing and Auditory Discrimination on Children's Memory Patterns for Tones, Numbers, and Nonsense Words

    Science.gov (United States)

    Gromko, Joyce Eastlund; Hansen, Dee; Tortora, Anne Halloran; Higgins, Daniel; Boccia, Eric

    2009-01-01

    The purpose of this study was to determine whether children's recall of tones, numbers, and words was supported by a common temporal sequencing mechanism; whether children's patterns of memory for tones, numbers, and nonsense words were the same despite differences in symbol systems; and whether children's recall of tones, numbers, and nonsense…

  4. Effects of Temporal Sequencing and Auditory Discrimination on Children's Memory Patterns for Tones, Numbers, and Nonsense Words

    Science.gov (United States)

    Gromko, Joyce Eastlund; Hansen, Dee; Tortora, Anne Halloran; Higgins, Daniel; Boccia, Eric

    2009-01-01

    The purpose of this study was to determine whether children's recall of tones, numbers, and words was supported by a common temporal sequencing mechanism; whether children's patterns of memory for tones, numbers, and nonsense words were the same despite differences in symbol systems; and whether children's recall of tones, numbers, and nonsense…

  5. Validation of the WMS-III Facial Memory subtest with the Graduate Hospital Facial Memory Test in a sample of right and left anterior temporal lobectomy patients.

    Science.gov (United States)

    Chiaravalloti, Nancy D; Tulsky, David S; Glosser, Guila

    2004-06-01

    A number of studies have shown visuospatial memory deficits following anterior temporal lobectomy (ATL) in the right, nondominant temporal lobe (RATL). The current study examines 26 patients with intractable temporal lobe epilepsy who underwent ATL in either the right (RATL, n = 16) or left temporal lobe (LATL, n = 10) on two tests of facial memory abilities, the Wechsler Memory Scale-III (WMS-III) Faces subtest and the Graduate Hospital Facial Memory Test (FMT). Repeated measures ANOVA on the FMT indicated a significant main effect of side of surgery. The RATL group performed significantly below the LATL group overall. Both groups showed a slight, but non-significant, improvement in performance from pre- to postsurgery on the FMT immediate memory, likely due to practice effects. Repeated measures ANOVA on the WMS-III Faces subtest revealed a significant interaction of group (RATL vs. LATL) by delay (immediate vs. delayed). Overall, the LATL group showed an improvement in recognition scores from immediate to delayed memory, whereas the RATL group performed similarly at both immediate and delayed testing. No effects of surgery were noted on the WMS-III. Following initial data analysis the WMS-III Faces I and II data were re-scored using the scoring suggested by Holdnack and Delis (2003), earlier in this issue. Repeated measures ANOVA revealed a trend toward significance in the three-way interaction of group (RATL vs. LATL) x time of testing (pre- versus postop) x delay (immediate vs. delayed memory). On the Faces I subtest, both the RATL and LATL groups showed a decline from preoperative to postoperative testing. However, on Faces II the LATL group showed an increase in performance from preoperative to postoperative testing, while the RALT group showed a decline in performance from preoperative to postoperative testing. While the FMT appears to be superior to the WMS-III Faces subtest in identifying deficits in facial memory prior to and following RATL, the

  6. Hierarchical stochastic modeling of large river ecosystems and fish growth across spatio-temporal scales and climate models: the Missouri River endangered pallid sturgeon example

    Science.gov (United States)

    Wildhaber, Mark L.; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.; Dey, Rima

    2017-01-01

    We present a hierarchical series of spatially decreasing and temporally increasing models to evaluate the uncertainty in the atmosphere – ocean global climate model (AOGCM) and the regional climate model (RCM) relative to the uncertainty in the somatic growth of the endangered pallid sturgeon (Scaphirhynchus albus). For effects on fish populations of riverine ecosystems, cli- mate output simulated by coarse-resolution AOGCMs and RCMs must be downscaled to basins to river hydrology to population response. One needs to transfer the information from these climate simulations down to the individual scale in a way that minimizes extrapolation and can account for spatio-temporal variability in the intervening stages. The goal is a framework to determine whether, given uncertainties in the climate models and the biological response, meaningful inference can still be made. The non-linear downscaling of climate information to the river scale requires that one realistically account for spatial and temporal variability across scale. Our down- scaling procedure includes the use of fixed/calibrated hydrological flow and temperature models coupled with a stochastically parameterized sturgeon bioenergetics model. We show that, although there is a large amount of uncertainty associated with both the climate model output and the fish growth process, one can establish significant differences in fish growth distributions between models, and between future and current climates for a given model.

  7. Changes in memory function in children and young adults with temporal lobe epilepsy: a follow-up study.

    Science.gov (United States)

    Gonzalez, Linda M; Mahdavi, Niloufar; Anderson, Vicki A; Harvey, A Simon

    2012-03-01

    This longitudinal study explored change in memory function from childhood to young adulthood in temporal lobe epilepsy (TLE). The 24 participants (11 left TLE; 13 right TLE) had a mean age of 16.10 years (SD=4.13 years), and 14 had undergone surgery since initial assessment. Contrary to baseline, verbal memory deficits were lateralized (leftcomplex non-verbal memory task (p=.05), with the right but not the left group improving. A three-way time-by-laterality-by-surgery interaction was significant for delayed facial recognition (p=.05), with surgical groups improving irrespective of laterality. Non-surgical groups remained stable, although there was a trend for the right to improve and the left to decline. Results were independent of seizure variables, mood and IQ and suggest that memory in left TLE tends to remain stable over time and improve in right TLE.

  8. Relationship between remnant hippocampus and amygdala and memory outcomes after stereotactic surgery for mesial temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Malikova H

    2015-11-01

    Full Text Available Hana Malikova,1,2,* Lenka Kramska,3,* Zdenek Vojtech,4,5 Jan Sroubek,6 Jiri Lukavsky,7 Roman Liscak8 1Department of Radiology, Na Homolce Hospital, 2Institute of Anatomy, Second Medical Faculty, Charles University in Prague, 3Department of Clinical Psychology, Na Homolce Hospital, 4Department of Neurology, Na Homolce Hospital, 5Department of Neurology, 3rd Medical Faculty, Charles University in Prague, 6Department of Neurosurgery, Na Homolce Hospital, 7Institute of Psychology, Academy of Sciences of the Czech Republic, 8Department of Radiation and Stereotactic Neurosurgery, Na Homolce Hospital, Prague, Czech Republic *These authors contributed equally to this work Background and purpose: Mesial temporal structures play an important role in human memory. In mesial temporal lobe epilepsy (MTLE, seizure activity is generated from the same structures. Surgery is the definitive treatment for medically intractable MTLE. In addition to standard temporal lobe microsurgical resection, stereotactic radiofrequency amygdalohippocampectomy (SAHE is used as an alternative MTLE treatment. While memory impairments after standard epilepsy surgery are well known, it has been shown that memory decline is not a feature of SAHE. The aim of the present study was to correlate the volume of the remnant hippocampus and amygdala in patients treated by SAHE with changes in memory parameters.Materials and methods: Thirty-seven MTLE patients treated by SAHE (ten right, 27 left were included. Patients underwent magnetic resonance imaging examinations including hippocampal and amygdalar volumetry and neuropsychological evaluation preoperatively and 1 year after surgery.Results: Using Spearman correlation analyses, larger left-sided hippocampal reductions were associated with lower verbal memory performance (ρ=-0.46; P=0.02. On the contrary, improvement of global memory quotient (MQ was positively correlated with larger right-sided hippocampal reduction (ρ=0.66; P=0

  9. Pre-learning stress that is temporally removed from acquisition exerts sex-specific effects on long-term memory.

    Science.gov (United States)

    Zoladz, Phillip R; Warnecke, Ashlee J; Woelke, Sarah A; Burke, Hanna M; Frigo, Rachael M; Pisansky, Julia M; Lyle, Sarah M; Talbot, Jeffery N

    2013-02-01

    We have examined the influence of sex and the perceived emotional nature of learned information on pre-learning stress-induced alterations of long-term memory. Participants submerged their dominant hand in ice cold (stress) or warm (no stress) water for 3 min. Thirty minutes later, they studied 30 words, rated the words for their levels of emotional valence and arousal and were then given an immediate free recall test. Twenty-four hours later, participants' memory for the word list was assessed via delayed free recall and recognition assessments. The resulting memory data were analyzed after categorizing the studied words (i.e., distributing them to "positive-arousing", "positive-non-arousing", "negative-arousing", etc. categories) according to participants' valence and arousal ratings of the words. The results revealed that participants exhibiting a robust cortisol response to stress exhibited significantly impaired recognition memory for neutral words. More interestingly, however, males displaying a robust cortisol response to stress demonstrated significantly impaired recall, overall, and a marginally significant impairment of overall recognition memory, while females exhibiting a blunted cortisol response to stress demonstrated a marginally significant impairment of overall recognition memory. These findings support the notion that a brief stressor that is temporally separated from learning can exert deleterious effects on long-term memory. However, they also suggest that such effects depend on the sex of the organism, the emotional salience of the learned information and the degree to which stress increases corticosteroid levels.

  10. Memory Based Machine Intelligence Techniques in VLSI hardware

    OpenAIRE

    James, Alex Pappachen

    2012-01-01

    We briefly introduce the memory based approaches to emulate machine intelligence in VLSI hardware, describing the challenges and advantages. Implementation of artificial intelligence techniques in VLSI hardware is a practical and difficult problem. Deep architectures, hierarchical temporal memories and memory networks are some of the contemporary approaches in this area of research. The techniques attempt to emulate low level intelligence tasks and aim at providing scalable solutions to high ...

  11. Memory Based Machine Intelligence Techniques in VLSI hardware

    CERN Document Server

    James, Alex Pappachen

    2012-01-01

    We briefly introduce the memory based approaches to emulate machine intelligence in VLSI hardware, describing the challenges and advantages. Implementation of artificial intelligence techniques in VLSI hardware is a practical and difficult problem. Deep architectures, hierarchical temporal memories and memory networks are some of the contemporary approaches in this area of research. The techniques attempt to emulate low level intelligence tasks and aim at providing scalable solutions to high level intelligence problems such as sparse coding and contextual processing.

  12. Utility of Green's Word Memory Test Free Recall Subtest as a Measure of Verbal Memory: Initial Evidence from a Temporal Lobe Epilepsy Clinical Sample.

    Science.gov (United States)

    Soble, Jason R; Osborn, Katie E; Mattingly, Michelle L; Vale, Fernando L; Benbadis, Selim R; Rodgers-Neame, Nancy T; Schoenberg, Mike R

    2016-02-01

    This study investigated the Word Memory Test (WMT) Free Recall (FR) subtest as a conventional memory measure. Nineteen participants with pharmacoresistant left temporal lobe epilepsy (LTLE) and 16 with right temporal lobe epilepsy (RTLE) completed the WMT, Rey Auditory Verbal Learning Test (RAVLT), and Wechsler Memory Scale-Fourth Edition Logical Memory (LM) subtest during presurgical evaluation. LTLE participants performed significantly worse on FR subtest (p < .05, [Formula: see text]) and RAVLT Trial 7 (p < .01, [Formula: see text]), but not on LM subtest. Age was a significant covariate for FR (p < .01, [Formula: see text]). Logistic regression revealed FR plus age and RAVLT age-adjusted T-scores both yielded 77.1% classification accuracy and respective diagnostic odds ratios of 11.36 and 11.84. Receiver operating characteristic curves to classify seizure laterality found that RAVLT and FR were significant (area under the curve [AUC] = 0.82 and 0.74), whereas LM was nonsignificant (AUC = 0.67). Cut scores and positive/negative predictive values were established for improved clinical classification. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Distinct neural correlates of associative working memory and long-term memory encoding in the medial temporal lobe

    NARCIS (Netherlands)

    Bergmann, H.C.; Rijpkema, M.J.P.; Fernandez, G.S.E.; Kessels, R.P.C.

    2012-01-01

    Increasing evidence suggests a role for the hippocampus not only in long-term memory (LTM) but also in relational working memory (WM) processes, challenging the view of the hippocampus as being solely involved in episodic LTM. However, hippocampal involvement reported in some neuroimaging studies

  14. Distinct neural correlates of associative working memory and long-term memory encoding in the medial temporal lobe

    NARCIS (Netherlands)

    Bergmann, H.C.; Rijpkema, M.J.P.; Fernandez, G.S.E.; Kessels, R.P.C.

    2012-01-01

    Increasing evidence suggests a role for the hippocampus not only in long-term memory (LTM) but also in relational working memory (WM) processes, challenging the view of the hippocampus as being solely involved in episodic LTM. However, hippocampal involvement reported in some neuroimaging studies us

  15. Thalamic pathology and memory loss in early Alzheimer's disease: moving the focus from the medial temporal lobe to Papez circuit.

    Science.gov (United States)

    Aggleton, John P; Pralus, Agathe; Nelson, Andrew J D; Hornberger, Michael

    2016-07-01

    It is widely assumed that incipient protein pathology in the medial temporal lobe instigates the loss of episodic memory in Alzheimer's disease, one of the earliest cognitive deficits in this type of dementia. Within this region, the hippocampus is seen as the most vital for episodic memory. Consequently, research into the causes of memory loss in Alzheimer's disease continues to centre on hippocampal dysfunction and how disease-modifying therapies in this region can potentially alleviate memory symptomology. The present review questions this entrenched notion by bringing together findings from post-mortem studies, non-invasive imaging (including studies of presymptomatic, at-risk cases) and genetically modified animal models. The combined evidence indicates that the loss of episodic memory in early Alzheimer's disease reflects much wider neurodegeneration in an extended mnemonic system (Papez circuit), which critically involves the limbic thalamus. Within this system, the anterior thalamic nuclei are prominent, both for their vital contributions to episodic memory and for how these same nuclei appear vulnerable in prodromal Alzheimer's disease. As thalamic abnormalities occur in some of the earliest stages of the disease, the idea that such changes are merely secondary to medial temporal lobe dysfunctions is challenged. This alternate view is further strengthened by the interdependent relationship between the anterior thalamic nuclei and retrosplenial cortex, given how dysfunctions in the latter cortical area provide some of the earliest in vivo imaging evidence of prodromal Alzheimer's disease. Appreciating the importance of the anterior thalamic nuclei for memory and attention provides a more balanced understanding of Alzheimer's disease. Furthermore, this refocus on the limbic thalamus, as well as the rest of Papez circuit, would have significant implications for the diagnostics, modelling, and experimental treatment of cognitive symptoms in Alzheimer's disease.

  16. Impact of hippocampal subfield histopathology in episodic memory impairment in mesial temporal lobe epilepsy and hippocampal sclerosis.

    Science.gov (United States)

    Comper, Sandra Mara; Jardim, Anaclara Prada; Corso, Jeana Torres; Gaça, Larissa Botelho; Noffs, Maria Helena Silva; Lancellotti, Carmen Lúcia Penteado; Cavalheiro, Esper Abrão; Centeno, Ricardo Silva; Yacubian, Elza Márcia Targas

    2017-10-01

    The objective of the study was to analyze preoperative visual and verbal episodic memories in a homogeneous series of patients with mesial temporal lobe epilepsy (MTLE) and unilateral hippocampal sclerosis (HS) submitted to corticoamygdalohippocampectomy and its association with neuronal cell density of each hippocampal subfield. The hippocampi of 72 right-handed patients were collected and prepared for histopathological examination. Hippocampal sclerosis patterns were determined, and neuronal cell density was calculated. Preoperatively, two verbal and two visual memory tests (immediate and delayed recalls) were applied, and patients were divided into two groups, left and right MTLE (36/36). There were no statistical differences between groups regarding demographic and clinical data. Cornu Ammonis 4 (CA4) neuronal density was significantly lower in the right hippocampus compared with the left (p=0.048). The groups with HS presented different memory performance - the right HS were worse in visual memory test [Complex Rey Figure, immediate (p=0.001) and delayed (p=0.009)], but better in one verbal task [RAVLT delayed (p=0.005)]. Multiple regression analysis suggested that the verbal memory performance of the group with left HS was explained by CA1 neuronal density since both tasks were significantly influenced by CA1 [Logical Memory immediate recall (p=0.050) and Logical Memory and RAVLT delayed recalls (p=0.004 and p=0.001, respectively)]. For patients with right HS, both CA1 subfield integrity (p=0.006) and epilepsy duration (p=0.012) explained Complex Rey Figure immediate recall performance. Ultimately, epilepsy duration also explained the performance in the Complex Rey Figure delayed recall (p<0.001). Cornu Ammonis 1 (CA1) hippocampal subfield was related to immediate and delayed recalls of verbal memory tests in left HS, while CA1 and epilepsy duration were associated with visual memory performance in patients with right HS. Copyright © 2017 Elsevier Inc. All

  17. Assessing a Metacognitive Account of Associative Memory Impairments in Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Nathan A. Illman

    2016-01-01

    Full Text Available Previous research has pointed to a deficit in associative recognition in temporal lobe epilepsy (TLE. Associative recognition tasks require discrimination between various combinations of words which have and have not been seen previously (such as old-old or old-new pairs. People with TLE tend to respond to rearranged old-old pairs as if they are “intact” old-old pairs, which has been interpreted as a failure to use a recollection strategy to overcome the familiarity of two recombined words into a new pairing. We examined this specific deficit in the context of metacognition, using postdecision confidence judgements at test. We expected that TLE patients would show inappropriate levels of confidence for associative recognition. Although TLE patients reported lower confidence levels in their responses overall, they were sensitive to the difficulty of varying pair types in their judgements and gave significantly higher confidence ratings for their correct answers. We conclude that a strategic deficit is not at play in the associative recognition of people with TLE, insofar as they are able to monitor the status of their memory system. This adds to a growing body of research suggesting that recollection is impaired in TLE, but not metacognition.

  18. Assessing a Metacognitive Account of Associative Memory Impairments in Temporal Lobe Epilepsy

    Science.gov (United States)

    Kemp, Steven; Souchay, Céline; Moulin, Chris J. A.

    2016-01-01

    Previous research has pointed to a deficit in associative recognition in temporal lobe epilepsy (TLE). Associative recognition tasks require discrimination between various combinations of words which have and have not been seen previously (such as old-old or old-new pairs). People with TLE tend to respond to rearranged old-old pairs as if they are “intact” old-old pairs, which has been interpreted as a failure to use a recollection strategy to overcome the familiarity of two recombined words into a new pairing. We examined this specific deficit in the context of metacognition, using postdecision confidence judgements at test. We expected that TLE patients would show inappropriate levels of confidence for associative recognition. Although TLE patients reported lower confidence levels in their responses overall, they were sensitive to the difficulty of varying pair types in their judgements and gave significantly higher confidence ratings for their correct answers. We conclude that a strategic deficit is not at play in the associative recognition of people with TLE, insofar as they are able to monitor the status of their memory system. This adds to a growing body of research suggesting that recollection is impaired in TLE, but not metacognition. PMID:27721992

  19. A Temporal Switch in the Germinal Center Determines Differential Output of Memory B and Plasma Cells.

    Science.gov (United States)

    Weisel, Florian J; Zuccarino-Catania, Griselda V; Chikina, Maria; Shlomchik, Mark J

    2016-01-19

    There is little insight into or agreement about the signals that control differentiation of memory B cells (MBCs) and long-lived plasma cells (LLPCs). By performing BrdU pulse-labeling studies, we found that MBC formation preceded the formation of LLPCs in an adoptive transfer immunization system, which allowed for a synchronized Ag-specific response with homogeneous Ag-receptor, yet at natural precursor frequencies. We confirmed these observations in wild-type (WT) mice and extended them with germinal center (GC) disruption experiments and variable region gene sequencing. We thus show that the GC response undergoes a temporal switch in its output as it matures, revealing that the reaction engenders both MBC subsets with different immune effector function and, ultimately, LLPCs at largely separate points in time. These data demonstrate the kinetics of the formation of the cells that provide stable humoral immunity and therefore have implications for autoimmunity, for vaccine development, and for understanding long-term pathogen resistance.

  20. Qualitative analysis of WMS-III Logical Memory and Visual Reproduction in temporal lobe epilepsy.

    Science.gov (United States)

    Lacritz, L H; Barnard, H D; Van Ness, P; Agostini, M; Diaz-Arrastia, R; Cullum, C M

    2004-06-01

    Clinical observation of performance on the Logical Memory (LM) and Visual Reproduction (VR) subtests from the WMS-III has revealed some variability in retention rates across stories and figures. This paper examined the degree to which this variability occurs in lateralized temporal lobe epilepsy (TLE) in comparison to a matched group from the WMS-III standardization sample, and explored whether analysis of qualitative aspects of LM and VR performance yield additional lateralizing information in TLE. Analysis of LM and VR scaled scores revealed differences between the TLE groups for LM, but not VR scores. All subjects benefited from repetition of LM Story B, with greater improvement in story retention in the Left versus Right TLE group. Variability in VR recall across figures was seen in all groups, with a bimodal distribution of retention rates for each figure and a sizable percentage of each group completely forgetting two or more figures. These results suggest that more careful analysis of individual LM story performance may be useful in some patients with TLE, whereas variability in VR retention across figures is common and should not be over interpreted.

  1. Combining qualitative and quantitative spatial and temporal information in a hierarchical structure: Approximate reasoning for plan execution monitoring

    Science.gov (United States)

    Hoebel, Louis J.

    1993-01-01

    The problem of plan generation (PG) and the problem of plan execution monitoring (PEM), including updating, queries, and resource-bounded replanning, have different reasoning and representation requirements. PEM requires the integration of qualitative and quantitative information. PEM is the receiving of data about the world in which a plan or agent is executing. The problem is to quickly determine the relevance of the data, the consistency of the data with respect to the expected effects, and if execution should continue. Only spatial and temporal aspects of the plan are addressed for relevance in this work. Current temporal reasoning systems are deficient in computational aspects or expressiveness. This work presents a hybrid qualitative and quantitative system that is fully expressive in its assertion language while offering certain computational efficiencies. In order to proceed, methods incorporating approximate reasoning using hierarchies, notions of locality, constraint expansion, and absolute parameters need be used and are shown to be useful for the anytime nature of PEM.

  2. Emotional declarative memory assessment of patients with mesial temporal lobe epilepsy and patients submitted to mesial temporal lobectomy Avaliação da memória declarativa emocional em pacientes com epilepsia temporal mesial e pacientes submetidos à lobectomia temporal mesial

    OpenAIRE

    2010-01-01

    ABSTRACT Epileptic seizures generate cognitive and behavioral impacts in individuals who suffer from epilepsy. Declarative memory is one of the cognitive functions that can be affected by epileptic seizures. The main objective of this work was to investigate neurocognitive function, especially the emotional working memory of patients with unilateral mesial temporal lobe epilepsy, and that of patients submitted to unilateral mesial temporal lobectomy. A face recognition test that can simult...

  3. Early versus late-phase consolidation of opiate reward memories requires distinct molecular and temporal mechanisms in the amygdala-prefrontal cortical pathway.

    Directory of Open Access Journals (Sweden)

    Shervin Gholizadeh

    Full Text Available The consolidation of newly acquired memories involves the temporal transition from a recent, less stable trace to a more permanent consolidated form. Opiates possess potent rewarding effects and produce powerful associative memories. The activation of these memories is associated with opiate abuse relapse phenomena and the persistence of compulsive opiate dependence. However, the neuronal, molecular and temporal mechanisms by which associative opiate reward memories are consolidated are not currently understood. We report that the consolidation of associative opiate reward memories involves a temporal and molecular switch between the basolateral nucleus of the amygdala (BLA (early consolidation phase to the medial prefrontal cortex (mPFC (late consolidation phase. We demonstrate at the molecular, behavioral and neuronal levels that the consolidation of a recently acquired opiate reward memory involves an extracellular signal-related kinase (ERK-dependent phosphorylation process within the BLA. In contrast, later-stage consolidation of a newly acquired memory is dependent upon a calcium-calmodulin-dependent (CaMKII, ERK-independent, mechanism in the mPFC, over a 12 hr temporal gradient. In addition, using in vivo multi-unit neuronal recordings in the mPFC, we report that protein synthesis within the BLA modulates the consolidation of opiate-reward memory in neuronal mPFC sub-populations, via the same temporal dynamic.

  4. Early versus late-phase consolidation of opiate reward memories requires distinct molecular and temporal mechanisms in the amygdala-prefrontal cortical pathway.

    Science.gov (United States)

    Gholizadeh, Shervin; Sun, Ninglei; De Jaeger, Xavier; Bechard, Melanie; Coolen, Lique; Laviolette, Steven R

    2013-01-01

    The consolidation of newly acquired memories involves the temporal transition from a recent, less stable trace to a more permanent consolidated form. Opiates possess potent rewarding effects and produce powerful associative memories. The activation of these memories is associated with opiate abuse relapse phenomena and the persistence of compulsive opiate dependence. However, the neuronal, molecular and temporal mechanisms by which associative opiate reward memories are consolidated are not currently understood. We report that the consolidation of associative opiate reward memories involves a temporal and molecular switch between the basolateral nucleus of the amygdala (BLA) (early consolidation phase) to the medial prefrontal cortex (mPFC) (late consolidation phase). We demonstrate at the molecular, behavioral and neuronal levels that the consolidation of a recently acquired opiate reward memory involves an extracellular signal-related kinase (ERK)-dependent phosphorylation process within the BLA. In contrast, later-stage consolidation of a newly acquired memory is dependent upon a calcium-calmodulin-dependent (CaMKII), ERK-independent, mechanism in the mPFC, over a 12 hr temporal gradient. In addition, using in vivo multi-unit neuronal recordings in the mPFC, we report that protein synthesis within the BLA modulates the consolidation of opiate-reward memory in neuronal mPFC sub-populations, via the same temporal dynamic.

  5. Subclinical white matter lesions and medial temporal lobe atrophy are associated with EEG slowing in a memory clinic cohort.

    Science.gov (United States)

    Kramberger, Milica G; Giske, Katarina; Cavallin, Lena; Kåreholt, Ingemar; Andersson, Thomas; Winblad, Bengt; Jelic, Vesna

    2017-09-01

    The aim of the study was to describe the relationship between electroencephalographic (EEG) findings obtained by standardized visual analysis, subclinical white matter lesions (WML) and brain atrophy in a large memory clinic population. Patients with Alzheimer's disease (AD, n=58), mild cognitive impairment (MCI, n=141), subjective cognitive impairment (SCI, n=194) had clinical, MRI based WML severity and regional atrophy assessments, and routine resting EEG recording. Background activity (BA) and episodic and continuous abnormalities were assessed visually in EEG. WML (p=0.006) and atrophy in medial temporal regions (MTA) (p=atrophy in a memory clinic population. Even the standard visually assessed EEG can complement a memory clinic diagnostic workup. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  6. Oscillator-based memory for serial order.

    Science.gov (United States)

    Brown, G D; Preece, T; Hulme, C

    2000-01-01

    A computational model of human memory for serial order is described (OSCillator-based Associative Recall [OSCAR]). In the model, successive list items become associated to successive states of a dynamic learning-context signal. Retrieval involves reinstatement of the learning context, successive states of which cue successive recalls. The model provides an integrated account of both item memory and order memory and allows the hierarchical representation of temporal order information. The model accounts for a wide range of serial order memory data, including differential item and order memory, transposition gradients, item similarity effects, the effects of item lag and separation in judgments of relative and absolute recency, probed serial recall data, distinctiveness effects, grouping effects at various temporal resolutions, longer term memory for serial order, list length effects, and the effects of vocabulary size on serial recall.

  7. Opposite Effects of Cortisol on Consolidation of Temporal Sequence Memory during Waking and Sleep

    Science.gov (United States)

    Wilhelm, Ines; Wagner, Ullrich; Born, Jan

    2011-01-01

    Memory functions involve three stages: encoding, consolidation, and retrieval. Modulating effects of glucocorticoids (GCs) have been consistently observed for declarative memory with GCs enhancing encoding and impairing retrieval, but surprisingly, little is known on how GCs affect memory consolidation. Studies in rats suggest a beneficial effect…

  8. Opposite Effects of Cortisol on Consolidation of Temporal Sequence Memory during Waking and Sleep

    Science.gov (United States)

    Wilhelm, Ines; Wagner, Ullrich; Born, Jan

    2011-01-01

    Memory functions involve three stages: encoding, consolidation, and retrieval. Modulating effects of glucocorticoids (GCs) have been consistently observed for declarative memory with GCs enhancing encoding and impairing retrieval, but surprisingly, little is known on how GCs affect memory consolidation. Studies in rats suggest a beneficial effect…

  9. Temporal and regional regulation of gene expression by calcium-stimulated adenylyl cyclase activity during fear memory.

    Directory of Open Access Journals (Sweden)

    Lindsay Wieczorek

    Full Text Available BACKGROUND: The Ca2+-stimulated adenylyl cyclases (ACs, AC1 and AC8, are key components of long-term memory processing. AC1 and AC8 double knockout mice (Adcy1(-/-Adcy8(-/-; DKO display impaired fear memory processing; the mechanism of this impairment is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesize that the Ca2+-stimulated ACs modulate long-lasting transcriptional changes essential for fear memory consolidation and maintenance. Here, we report a genome-wide study of gene expression changes associated with conditioned fear (CF memory in wild-type and DKO mice to identify AC-dependent gene regulatory changes that occur in the amygdala and hippocampus at baseline and different time points after CF learning. We observed an overall decrease in transcriptional changes in DKO mice across all time points, but most strikingly, at periods when memory consolidation and retention should be occurring. Further, we identified a shared set of transcription factor binding sites in genes upregulated in wild-type mice that were associated with downregulated genes in DKO mice. To prove the temporal and regional importance of AC activity on different stages of memory processing, the tetracycline-off system was used to produce mice with forebrain-specific inducible expression of AC8 on a DKO background. CF behavioral results reveal that adult restoration of AC8 activity in the forebrain is sufficient for intact learning, while cessation of this expression at any time point across learning causes memory deficits. CONCLUSIONS/SIGNIFICANCE: Overall, these studies demonstrate that the Ca2+-stimulated ACs contribute to the formation and maintenance of fear memory by a network of long-term transcriptional changes.

  10. Memory, executive function and language function are similarly impaired in both temporal and extra temporal refractory epilepsy-A prospective study.

    Science.gov (United States)

    Rai, Vinod K; Shukla, Garima; Afsar, Mohammad; Poornima, Shivani; Pandey, R M; Rai, Neha; Goyal, Vinay; Srivastava, Achal; Vibha, Deepti; Behari, Madhuri

    2015-01-01

    Cognitive impairment has long been recognized as a co-morbidity or sequel to refractory epilepsy. This study was conducted to evaluate the degree and selectivity of involvement of memory, language and executive functions performance among patients with temporal (TLE) versus extratemporal epilepsy (ETLE). We prospectively enrolled adolescent and adult patients with medically refractory focal epilepsy, who had undergone pre-surgical evaluation. Language, memory and executive function assessment was done using Western Aphasia Battery, PGI memory scale and battery of four executive function tests (trail making test A & B, digit symbol test, Stroop Task and verbal fluency test), respectively. Among102 patients enrolled (TLE-59, ETLE-43), mean age of patients 23.0 4± 8.3 years, 83 (82%) had impairment of more than one cognitive domain and 21 (21%) had all three domains involved. Severely impaired memory scores were found in 8.6% patients with MTLE-HS, 8% of the rest of the patients with TLE and 7% patients with ETLE. The differences in the mean scores were also not found statistically significant (p=0.669). Naming impairment was the most common language abnormality, although all aphasia subscores were similar for the ETLE and TLE groups. Executive function impairment was the most common cognitive domain affected. Overall performance on executive function tests was found impaired in almost all patients of both groups without any significant inter-group difference, except on Trail-A test, which revealed better results in patients with mTLE-HS as compared to all other sub-groups. Our study shows that impairment of memory, language and executive function is common among patients with drug refractory epilepsy. The most prevalent impairment is in executive function. There is no significant difference in the degree, prevalence or selectivity of impairment in either of the three domains, between the TLE versus ETLE groups. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Alterations of lateral temporal cortical gray matter and facial memory as vulnerability indicators for schizophrenia: an MRI study in youth at familial high-risk for schizophrenia

    Science.gov (United States)

    Brent, Benjamin K.; Rosso, Isabelle M.; Thermenos, Heidi W.; Holt, Daphne J.; Faraone, Stephen V.; Makris, Nikos; Tsuang, Ming T.; Seidman, Larry J.

    2015-01-01

    Background Structural alterations of the lateral temporal cortex (LTC) in association with memory impairments have been reported in schizophrenia. This study investigated whether alterations of LTC structure were linked with impaired facial and/or verbal memory in young first-degree relatives of people with schizophrenia and, thus, may be indicators of vulnerability to the illness. Methods Subjects included 27 non-psychotic, first-degree relatives of schizophrenia patients, and 48 healthy controls, between the ages of 13 and 28. Participants underwent high-resolution magnetic resonance imaging (MRI) at 1.5 Tesla. The LTC was parcellated into superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, and temporal pole. Total cerebral and LTC volumes were measured using semi-automated morphometry. The Wechsler Memory Scale – Third Edition and the Children’s Memory Scale – Third Edition assessed facial and verbal memory. General linear models tested for associations among LTC subregion volumes, familial risk and memory. Results Compared with controls, relatives had significantly smaller bilateral middle temporal gyri. Moreover, right middle temporal gyral volume showed a significant positive association with delayed facial memory in relatives. Conclusion These results support the hypothesis that smaller middle temporal gyri are related to the genetic liability to schizophrenia and may be linked with reduced facial memory in persons at genetic risk for the illness. The findings add to the growing evidence that children at risk for schizophrenia on the basis of positive family history have cortical and subcortical structural brain abnormalities well before psychotic illness occurs. PMID:26621001

  12. Mesial Temporal Lobe and Memory Function in Autism Spectrum Disorder: An Exploration of Volumetric Findings

    Science.gov (United States)

    Trontel, Haley G.; Duffield, Tyler C.; Bigler, Erin D.; Abildskov, Tracy J.; Froehlich, Alyson; Prigge, Molly B.D.; Travers, Brittany G.; Anderson, Jeffrey S.; Zielinski, Brandon A.; Alexander, Andrew; Lange, Nicholas; Lainhart, Janet E.

    2015-01-01

    Studies have shown that individuals with autism spectrum disorder (ASD) tend to perform significantly below typical developing individuals on standardized measures of memory, even when not significantly different on measures of IQ. The current study sought to examine within ASD whether anatomical correlates of memory performance differed between those with average-to-above-average IQ (AIQ Group) compared to those with low average to borderline ability (LIQ group) as well as in relations to typically-developing comparisons (TDC). Using automated volumetric analyses, we examined regional volume of classic memory areas including the hippocampus, parahippocampal gyrus, entorhinal cortex, and amygdala in an all-male sample AIQ (n = 38) and LIQ (n = 18) individuals with ASD along with 30 typically-developing comparisons (TDC). Memory performance was assessed using the Test of Memory and Learning (TOMAL) compared among the groups and then correlated with regional brain volumes. Analyses revealed group differences on almost all facets of memory and learning as assessed by the various subtests of the TOMAL. The three groups did not differ on any ROI memory-related brain volumes. However, significant size-memory function interactions were observed. Negative correlations were found between the volume of the amygdala and composite, verbal, and delayed memory indices for the LIQ ASD group indicating larger volume related to poorer performance. Implications for general memory functioning and dysfunctional neural connectivity in ASD are discussed. PMID:25749302

  13. Temporal entrainment of cognitive functions: musical mnemonics induce brain plasticity and oscillatory synchrony in neural networks underlying memory.

    Science.gov (United States)

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C

    2005-12-01

    In a series of experiments, we have begun to investigate the effect of music as a mnemonic device on learning and memory and the underlying plasticity of oscillatory neural networks. We used verbal learning and memory tests (standardized word lists, AVLT) in conjunction with electroencephalographic analysis to determine differences between verbal learning in either a spoken or musical (verbal materials as song lyrics) modality. In healthy adults, learning in both the spoken and music condition was associated with significant increases in oscillatory synchrony across all frequency bands. A significant difference between the spoken and music condition emerged in the cortical topography of the learning-related synchronization. When using EEG measures as predictors during learning for subsequent successful memory recall, significantly increased coherence (phase-locked synchronization) within and between oscillatory brain networks emerged for music in alpha and gamma bands. In a similar study with multiple sclerosis patients, superior learning and memory was shown in the music condition when controlled for word order recall, and subjects were instructed to sing back the word lists. Also, the music condition was associated with a significant power increase in the low-alpha band in bilateral frontal networks, indicating increased neuronal synchronization. Musical learning may access compensatory pathways for memory functions during compromised PFC functions associated with learning and recall. Music learning may also confer a neurophysiological advantage through the stronger synchronization of the neuronal cell assemblies underlying verbal learning and memory. Collectively our data provide evidence that melodic-rhythmic templates as temporal structures in music may drive internal rhythm formation in recurrent cortical networks involved in learning and memory.

  14. Memory

    Science.gov (United States)

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  15. A Hierarchical Linear Modeling Analysis of Working Memory and Implicit Prosody in the Resolution of Adjunct Attachment Ambiguity

    Science.gov (United States)

    Traxler, Matthew J.

    2009-01-01

    An eye-movement monitoring experiment investigated readers' response to temporarily ambiguous sentences. The sentences were ambiguous because a relative clause could attach to one of two preceding nouns. Semantic information disambiguated the sentences. Working memory considerations predict an overall preference for the second of the two nouns, as…

  16. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus.

    Science.gov (United States)

    Rocchetti, Jill; Isingrini, Elsa; Dal Bo, Gregory; Sagheby, Sara; Menegaux, Aurore; Tronche, François; Levesque, Daniel; Moquin, Luc; Gratton, Alain; Wong, Tak Pan; Rubinstein, Marcelo; Giros, Bruno

    2015-03-15

    Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Effects of Swimming Exercise on Learning and Memory in the Kainate-Lesion Model of Temporal Lobe Epilepsy

    Science.gov (United States)

    Gorantla, Vasavi Rakesh; Pemminati, Sudhakar; Bond, Vernon; Meyers, Dewey G

    2016-01-01

    Introduction An aerobic exercise (Ex) augments neurogenesis and may ameliorate learning and memory deficits in the rat Kainic Acid (KA) model of temporal lobe epilepsy in the short-term but whether it reverses learning and memory deficits after a substantial period of delay remains unclear. Aim This study tests the hypothesis that aerobic Ex attenuates the learning and memory deficits associated with kainate seizures in the long-term. Materials and Methods A total of 60 rats were subjected to chemical lesioning using KA and to an Ex intervention consisting of a 30 days period of daily swimming for 15 min, immediately after KA lesioning (immediate exposure) or after a 60 days period of normal activity (delayed exposure). We evaluated spatial learning on a T-maze test, expressed as percentage of correct responses. We evaluated memory on a passive-avoidance test, expressed as time spent in a compartment in which the rats were previously exposed to an aversive stimulus. Results Ex increases the percentage of correct responses, percentage bias, and number of alternations, associated with the T-maze testing for the normal control, sham-operated control and kainate-lesioned animals after both immediate and delayed exposures to Ex. Ex decreased the time exposed to the aversive stimulus in the smaller compartment of the two-compartment passive-avoidance test, also for the normal control, sham-operated control and kainate-lesioned animals after both immediate and delayed exposures to Ex. Conclusion These findings suggest that, after temporal lobe epileptic seizures in rats, swimming exercise may attenuate the learning and memory deficits, even if the exercise treatment is delayed. PMID:28050361

  18. A hierarchical linear modeling analysis of working memory and implicit prosody in the resolution of adjunct attachment ambiguity.

    Science.gov (United States)

    Traxler, Matthew J

    2009-10-01

    An eye-movement monitoring experiment investigated readers' response to temporarily ambiguous sentences. The sentences were ambiguous because a relative clause could attach to one of two preceding nouns. Semantic information disambiguated the sentences. Working memory considerations predict an overall preference for the second of the two nouns, as does the late closure principle (Frazier, On comprehending sentences: Syntactic parsing strategies. Ph.D. dissertation, University of Connecticut. West Bend, IN: Indiana University Linguistics Club, 1979). Previous studies assessing preferences for such items have obtained mixed results. On-line assessments show that working memory affects the degree of preference for the first noun, with lower capacity readers having a greater preference for the second noun (Felser et al., Language Acquisition: A Journal of Developmental Linguistics, 11, 127-163, 2003; Traxler, Memory & Cognition, 35, 1107-1121, 2007). Off-line assessments indicate the opposite pattern of preferences when the test sentences are displayed on a single line (Swets et al., Journal of Experimental Psychology: General, 136, 64-81, 2007). However, when implicit prosody is manipulated by displaying the sentences with a break between the second noun and the relative clause, the off-line assessments indicate that readers prefer to attach the relative clause to the first noun. In this experiment, readers' undertook a working memory assessment and then read test sentences that were displayed across two lines, with a break appearing after the second noun and before the relative clause. The eye-tracking data indicated an overall preference to attach the relative clause to the first noun, and there was little indication that working memory moderated the degree of preference for this configuration. Hence, it appears that readers' implicit prosodic contours rapidly affect resolution of adjunct attachment ambiguities.

  19. Medial temporal lobe BOLD activity at rest predicts individual differences in memory ability in healthy young adults

    Science.gov (United States)

    Wig, Gagan S.; Grafton, Scott T.; Demos, Kathryn E.; Wolford, George L.; Petersen, Steven E.; Kelley, William M.

    2008-01-01

    Human beings differ in their ability to form and retrieve lasting long-term memories. To explore the source of these individual differences, we used functional magnetic resonance imaging to measure blood-oxygen-level-dependent (BOLD) activity in healthy young adults (n = 50) during periods of resting fixation that were interleaved with periods of simple cognitive tasks. We report that medial temporal lobe BOLD activity during periods of rest predicts individual differences in memory ability. Specifically, individuals who exhibited greater magnitudes of task-induced deactivations in medial temporal lobe BOLD signal (as compared to periods of rest) demonstrated superior memory during offline testing. This relationship was independent of differences in general cognitive function and persisted across different control tasks (i.e., number judgment versus checkerboard detection) and experimental designs (i.e., blocked versus event-related). These results offer a neurophysiological basis for the variability in mnemonic ability that is present amongst healthy young adults and may help to guide strategies aimed at early detection and intervention of neurological and mnemonic impairment. PMID:19001272

  20. How Fast Do Objects Fall in Visual Memory? Uncovering the Temporal and Spatial Features of Representational Gravity.

    Science.gov (United States)

    De Sá Teixeira, Nuno

    2016-01-01

    Visual memory for the spatial location where a moving target vanishes has been found to be systematically displaced downward in the direction of gravity. Moreover, it was recently reported that the magnitude of the downward error increases steadily with increasing retention intervals imposed after object's offset and before observers are allowed to perform the spatial localization task, in a pattern where the remembered vanishing location drifts downward as if following a falling trajectory. This outcome was taken to reflect the dynamics of a representational model of earth's gravity. The present study aims to establish the spatial and temporal features of this downward drift by taking into account the dynamics of the motor response. The obtained results show that the memory for the last location of the target drifts downward with time, thus replicating previous results. Moreover, the time taken for completion of the behavioural localization movements seems to add to the imposed retention intervals in determining the temporal frame during which the visual memory is updated. Overall, it is reported that the representation of spatial location drifts downward by about 3 pixels for each two-fold increase of time until response. The outcomes are discussed in relation to a predictive internal model of gravity which outputs an on-line spatial update of remembered objects' location.

  1. Alpha7 Nicotinic Acetylcholine Receptors and Temporal Memory: Synergistic Effects of Combining Prenatal Choline and Nicotine on Reinforcement-Induced Resetting of an Interval Clock

    Science.gov (United States)

    Cheng, Ruey-Kuang; Meck, Warren H.; Williams, Christina L.

    2006-01-01

    We previously showed that prenatal choline supplementation could increase the precision of timing and temporal memory and facilitate simultaneous temporal processing in mature and aged rats. In the present study, we investigated the ability of adult rats to selectively control the reinforcement-induced resetting of an internal clock as a function…

  2. A Buffer Model of Memory Encoding and Temporal Correlations in Retrieval

    Science.gov (United States)

    Lehman, Melissa; Malmberg, Kenneth J.

    2013-01-01

    Atkinson and Shiffrin's (1968) dual-store model of memory includes structural aspects of memory along with control processes. The rehearsal buffer is a process by which items are kept in mind and long-term episodic traces are formed. The model has been both influential and controversial. Here, we describe a novel variant of Atkinson and Shiffrin's…

  3. Contributions of Volumetrics of the Hippocampus and Thalamus to Verbal Memory in Temporal Lobe Epilepsy Patients

    Science.gov (United States)

    Stewart, Christopher C.; Griffith, H. Randall; Okonkwo, Ozioma C.; Martin, Roy C.; Knowlton, Robert K.; Richardson, Elizabeth J.; Hermann, Bruce P.; Seidenberg, Michael

    2009-01-01

    Recent theories have posited that the hippocampus and thalamus serve distinct, yet related, roles in episodic memory. Whereas the hippocampus has been implicated in long-term memory encoding and storage, the thalamus, as a whole, has been implicated in the selection of items for subsequent encoding and the use of retrieval strategies. However,…

  4. Decoding Overlapping Memories in the Medial Temporal Lobes Using High-Resolution fMRI

    Science.gov (United States)

    Chadwick, Martin J.; Hassabis, Demis; Maguire, Eleanor A.

    2011-01-01

    The hippocampus is proposed to process overlapping episodes as discrete memory traces, although direct evidence for this in human episodic memory is scarce. Using green-screen technology we created four highly overlapping movies of everyday events. Participants were scanned using high-resolution fMRI while recalling the movies. Multivariate…

  5. A Buffer Model of Memory Encoding and Temporal Correlations in Retrieval

    Science.gov (United States)

    Lehman, Melissa; Malmberg, Kenneth J.

    2013-01-01

    Atkinson and Shiffrin's (1968) dual-store model of memory includes structural aspects of memory along with control processes. The rehearsal buffer is a process by which items are kept in mind and long-term episodic traces are formed. The model has been both influential and controversial. Here, we describe a novel variant of Atkinson and Shiffrin's…

  6. Thalamo-Cortical Disruption Contributes to Short-Term Memory Deficits in Patients with Medial Temporal Lobe Damage.

    Science.gov (United States)

    Voets, Natalie L; Menke, Ricarda A L; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E

    2015-11-01

    Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage.

  7. Temporal and Spatial Variations of Drought in China: Reconstructed from Historical Memorials Archives during 1689-1911.

    Science.gov (United States)

    Wan, Jinhong; Yan, Denghua; Fu, Guobin; Hao, Lu; Yue, Yaojie; Li, Ruoxi; Li, Yunpeng; Liu, Jiangang; Deng, Jun

    2016-01-01

    In China, Zou Zhe (Memorials to the Throne, or Palace Memorials), an official communication to the emperors of China by local officials, offers an opportunity to reconstruct the spatial-temporal distributions of droughts at a high-resolution. A 223-year, 1689-1911, time series of drought events was reconstructed in this study based on 2494 pieces of Zou Zhe. The results show that: 1) on the temporal scale, the drought affected areas, i.e., number of affected counties, showed three peak periods during the last 223 years and nine extreme drought years with more than 300 counties affected have been identified; 2) on the spatial scale, there existed three drought-prone areas in China, i.e., Gansu province and Ningxia Hui Autonomous Region in Northwest China, Shandong, Hebei, and Henan provinces and Tianjin in the North China, and Anhui and Jiangsu provinces in Jianghuai area, respectively; 3) the drought-prone areas have been expanding from North China to South China since the second half of 19th century; 4) on the seasonal scale, summer witnessed the largest number of drought events. Meanwhile, the uncertainties of the results were also discussed, i.e. what caused the spatial-temporal distribution of drought. The results of this study can be used to mitigate the adverse effects of extreme weather events on food increasing and stable production.

  8. Verbal memory decline is less frequent at 10 years than at 2 years after temporal lobe surgery for epilepsy.

    Science.gov (United States)

    Andersson-Roswall, Lena; Malmgren, Kristina; Engman, Elisabeth; Samuelsson, Hans

    2012-08-01

    We investigated individual short- and long-term verbal memory changes after temporal lobe resection for epilepsy. Fifty-one patients (23 operated on the speech-dominant temporal lobe, DTL and 28 on the non-dominant temporal lobe, NDTL) were tested on learning/immediate recall and delayed recall of word-list and word-pairs preoperatively, 2 years postoperatively and 10years postoperatively. Changes were defined using reliable change indices of 23 healthy controls assessed at corresponding intervals. Fewer patients had reliable declines at 10 years than at 2 years (DTL: 13-35% vs 35-44%; NDTL: 0-4% vs 7-21%). Four DTL patients (17%) had reliable declines in ≥2 tests at 10-year follow-up. More NDTL patients had improvement at 10 years than at 2 years (18-30% vs 4-22%). The only risk factor for decline both short and long term was DTL resection. In conclusion, most patients had stable verbal memory postoperatively. A few DTL patients had a lasting decline at long-term follow-up, but more patients showed partial recovery, especially in the NDTL group.

  9. Thalamo-Cortical Disruption Contributes to Short-Term Memory Deficits in Patients with Medial Temporal Lobe Damage

    Science.gov (United States)

    Voets, Natalie L.; Menke, Ricarda A. L.; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E.

    2015-01-01

    Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage. PMID:26009613

  10. Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage.

    Science.gov (United States)

    Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P

    2017-02-01

    The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Cross-frequency power correlations reveal the right superior temporal gyrus as a hub region during working memory maintenance.

    Science.gov (United States)

    Park, Hyojin; Kang, Eunjoo; Kang, Hyejin; Kim, June Sic; Jensen, Ole; Chung, Chun Kee; Lee, Dong Soo

    2011-01-01

    In the present study, we characterized within- and cross-frequency power correlations from magnetoencephalography (MEG) data in order to understand how different brain regions cooperate as a network to maintain working memory representations with several features. The working memory items were composed of spatially arranged dots supposedly requiring both the dorsal and the ventral stream to be engaged during maintenance. Using a beamforming technique, we localized memory-dependent sources in the alpha, beta, and gamma bands. After the single-trial power values were extracted from these frequency bands with respect to each source, we calculated the correlations within- and cross-frequency bands. The following general picture emerged: gamma power in right superior temporal gyrus (STG) during working memory maintenance was correlated with numerous other sources in the alpha band in prefrontal, parietal, and posterior regions. In addition, the power correlations within the alpha band showed correlations across posterior-parietal-frontal regions. From these findings, we suggest that the STG dominated by gamma activity serves as a hub region for the network nodes responsible for the retention of the stimulus used in this study, which is likely to depend on both the "where-" and the "what-" visual system simultaneously. The present study demonstrates how oscillatory dynamics reflecting the interaction between cortical areas can be investigated by means of cross-frequency power correlations in source space. This methodological framework could be of general utility when studying functional network properties of the working brain.

  12. Emotional declarative memory assessment of patients with mesial temporal lobe epilepsy and patients submitted to mesial temporal lobectomy Avaliação da memória declarativa emocional em pacientes com epilepsia temporal mesial e pacientes submetidos à lobectomia temporal mesial

    Directory of Open Access Journals (Sweden)

    Lara De Vecchi Machado

    2010-10-01

    Full Text Available Epileptic seizures generate cognitive and behavioral impacts in individuals who suffer from epilepsy. Declarative memory is one of the cognitive functions that can be affected by epileptic seizures. The main objective of this work was to investigate neurocognitive function, especially the emotional working memory of patients with unilateral mesial temporal lobe epilepsy, and that of patients submitted to unilateral mesial temporal lobectomy. A face recognition test that can simultaneously recruit the frontal lobe (working memory and mesial temporal lobe (emotional memory was used to investigate emotional working memory. Our findings showed that the epilepsy factor significantly compromised the performance in the emotional memory test. On the other hand, surgical removal of the epileptic focus promoted an improvement in the emotional working memory of these patients, in addition to the significantly decrease in the number of seizures.Crises epilépticas geram impactos comportamentais e cognitivos em indivíduos que sofrem de epilepsia. Uma das funções cognitivas que pode ser afetada pelas crises epilépticas é a memória declarativa. O objetivo do nosso estudo foi investigar funções cognitivas, especialmente a memória operacional emocional de pacientes com epilepsia temporal mesial unilateral e pacientes submetidos a lobectomia temporal mesial unilateral. Para investigar a memória operacional emocional foi utilizado um teste de reconhecimento de faces que pode recrutar simultaneamente o lobo frontal (memória operacional e o lobo temporal mesial (memória emocional. Nossos resultados demonstram que o fator epilepsia compromete de forma significativa o desempenho no teste de memória emocional. Por outro lado, a remoção cirúrgica do foco epiléptico promoveu uma melhora na memória emocional desses pacientes, além de diminuir o número de crises.

  13. Does Controlling for Temporal Parameters Change the Levels-of-Processing Effect in Working Memory?

    OpenAIRE

    Loaiza, Vanessa M.; Camos, Val?rie

    2016-01-01

    The distinguishability between working memory (WM) and long-term memory has been a frequent and long-lasting source of debate in the literature. One recent method of identifying the relationship between the two systems has been to consider the influence of long-term memory effects, such as the levels-of-processing (LoP) effect, in WM. However, the few studies that have examined the LoP effect in WM have shown divergent results. This study examined the LoP effect in WM by considering a theoret...

  14. Human retrosplenial cortex displays transient theta phase locking with medial temporal cortex prior to activation during autobiographical memory retrieval.

    Science.gov (United States)

    Foster, Brett L; Kaveh, Anthony; Dastjerdi, Mohammad; Miller, Kai J; Parvizi, Josef

    2013-06-19

    The involvement of retrosplenial cortex (RSC) in human autobiographical memory retrieval has been confirmed by functional brain imaging studies, and is supported by anatomical evidence of strong connectivity between the RSC and memory structures within the medial temporal lobe (MTL). However, electrophysiological investigations of the RSC and its interaction with the MTL have mostly remained limited to the rodent brain. Recently, we reported a selective increase of high-frequency broadband (HFB; 70-180 Hz) power within the human RSC during autobiographical retrieval, and a predominance of 3-5 Hz theta band oscillations within the RSC during the resting state. In the current study, we aimed to explore the temporal dynamics of theta band interaction between human RSC and MTL during autobiographical retrieval. Toward this aim, we obtained simultaneous recordings from the RSC and MTL in human subjects undergoing invasive electrophysiological monitoring, and quantified the strength of RSC-MTL theta band phase locking. We observed significant phase locking in the 3-4 Hz theta range between the RSC and the MTL during autobiographical retrieval. This theta band phase coupling was transient and peaked at a consistent latency before the peak of RSC HFB power across subjects. Control analyses confirmed that theta phase coupling between the RSC and MTL was not seen for other conditions studied, other sites of recording, or other frequency ranges of interest (1-20 Hz). Our findings provide the first evidence of theta band interaction between the human RSC and MTL during conditions of autobiographical retrieval.

  15. Working memory for sequences of temporal durations reveals a volatile single-item store

    Directory of Open Access Journals (Sweden)

    Sanjay G Manohar

    2016-10-01

    Full Text Available When a sequence is held in working memory, different items are retained with differing fidelity. Here we ask whether a sequence of brief time intervals that must be remembered show recency effects, similar to those observed in verbal and visuospatial working memory. It has been suggested that prioritising some items over others can be accounted for by a focus of attention, maintaining some items in a privileged state. We therefore also investigated whether such benefits are vulnerable to disruption by attention or expectation. Participants listened to sequences of one to five tones, of varying durations (200ms to 2s. Subsequently, the length of one of the tones in the sequence had to be reproduced by holding a key. The discrepancy between the reproduced and actual durations quantified the fidelity of memory for auditory durations. Recall precision decreased with the number of items that had to be remembered, and was better for the first and last items of sequences, in line with set-size and serial position effects seen in other modalities. To test whether attentional filtering demands might impair performance, an irrelevant variation in pitch was introduced in some blocks of trials. In those blocks, memory precision was worse for sequences that consisted of only one item, i.e. the smallest memory set size. Thus, when irrelevant information was present, the benefit of having only one item in memory is attenuated. Finally we examined whether expectation could interfere with memory. On half the trials, the number of items in the upcoming sequence was cued. When the number of items was known in advance, performance was paradoxically worse when the sequence consisted of only one item. Thus the benefit of having only one item to remember is stronger when it is unexpectedly the only item. Our results suggest that similar mechanisms are used to hold auditory time durations in working memory, as for visual or verbal stimuli. Further, solitary items were

  16. Arousal modulates activity in the medial temporal lobe during a short-term relational memory task.

    Directory of Open Access Journals (Sweden)

    Christian eThoresen

    2012-01-01

    Full Text Available This study investigated the effect of arousal on short-term relational memory and its underlying cortical network. Seventeen healthy participants performed a picture by location, short-term relational memory task using emotional pictures. Functional Magnetic Resonance Imaging was used to measure the BOLD signal relative to task. Subjects’ own ratings of the pictures were used to obtain subjective arousal ratings. Subjective arousal was found to have a dose-dependent effect on activations in the prefrontal cortex, amygdala, hippocampus and in higher order visual areas. Serial position analyses showed that high arousal trials produced a stronger primacy and recency effect than low arousal trials. The results indicate that short-term relational memory may be facilitated by arousal and that this may be modulated by a dose-response function in arousal-driven neuronal regions.

  17. Bistability of mixed states in a neural network storing hierarchical patterns

    Science.gov (United States)

    Toya, Kaname; Fukushima, Kunihiko; Kabashima, Yoshiyuki; Okada, Masato

    2000-04-01

    We discuss the properties of equilibrium states in an autoassociative memory model storing hierarchically correlated patterns (hereafter, hierarchical patterns). We will show that symmetric mixed states (hereafter, mixed states) are bistable on the associative memory model storing the hierarchical patterns in a region of the ferromagnetic phase. This means that the first-order transition occurs in this ferromagnetic phase. We treat these contents with a statistical mechanical method (SCSNA) and by computer simulation. Finally, we discuss a physiological implication of this model. Sugase et al (1999 Nature 400 869) analysed the time-course of the information carried by the firing of face-responsive neurons in the inferior temporal cortex. We also discuss the relation between the theoretical results and the physiological experiments of Sugase et al .

  18. Spatial memory deficits in juvenile rats with pilocarpine induced temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Orbán-Kis K

    2014-10-01

    Full Text Available One of the most frequent forms of epilepsy in humans is temporal lobe epilepsy. Characteristic to this form of the disease is the frequent pharmacoresistance and the association with behavioural disorders and cognitive impairment. The objective of our study was to establish the degree of cognitive impairment in a rat model of temporal lobe epilepsy after an initial epileptogenic exposure but before of the onset of the effect of long-duration epilepsy.

  19. P3 response during short-term memory retrieval revisited by a spatio-temporal analysis.

    Science.gov (United States)

    Ergen, Mehmet; Yildirim, Erol; Uslu, Atilla; Gürvit, Hakan; Demiralp, Tamer

    2012-05-01

    The most reported event related potential (ERP) parameter during short-term memory retrieval has been P3 wave and the association has been built on the relation between P3 latency and reaction times. The aim of this study is to identify an ERP component that reflects the memory scanning process preceding the decision making stage which has been associated with the P3 peak. A spatiotemporal analysis was applied on the P3 and pre-P3 period of ERP responses obtained during the retrieval phase of the Sternberg paradigm with two memory load conditions (3 and 5 letters in the memory set). In the easy task condition with the fastest reaction times (positive probes of 3 letters condition), a single P3 was observed, whereas P3 was split into two peaks in responses to probe items of more demanding task conditions. The single P3 peak and the later components of the split P3 peaks displayed the typical P3 topography. On the other hand, the topographic mapping of the earlier peak of the split P3 wave and ascending part of the single P3 peak revealed a right parietal topography. The onset time of this earlier right lateralized topography was stable among all conditions but it persisted longer in the high memory load condition. We conclude that the right-lateralized positivity in the pre-P3 period reflects the memory scanning process followed by the P3 peak with midline parietal topography reflecting the decision making process.

  20. Attention and working memory: two basic mechanisms for constructing temporal experiences

    Science.gov (United States)

    Marchetti, Giorgio

    2014-01-01

    Various kinds of observations show that the ability of human beings to both consciously relive past events – episodic memory – and conceive future events, entails an active process of construction. This construction process also underpins many other important aspects of conscious human life, such as perceptions, language, and conscious thinking. This article provides an explanation of what makes the constructive process possible and how it works. The process mainly relies on attentional activity, which has a discrete and periodic nature, and working memory, which allows for the combination of discrete attentional operations. An explanation is also provided of how past and future events are constructed. PMID:25177305

  1. Attention and working memory: two basic mechanisms for constructing temporal experiences

    Directory of Open Access Journals (Sweden)

    Giorgio eMarchetti

    2014-08-01

    Full Text Available Various kinds of observations show that the ability of human beings to both consciously relive past events – episodic memory – and conceive future events, entails an active process of construction. This construction process also underpins many other important aspects of conscious human life, such as perceptions, language and conscious thinking. This article provides an explanation of what makes the constructive process possible and how it works. The process mainly relies on attentional activity, which has a discrete and periodic nature, and working memory, which allows for the combination of discrete attentional operations. An explanation is also provided of how past and future events are constructed.

  2. Life story chapters, specific memories and the reminiscence bump

    DEFF Research Database (Denmark)

    Thomsen, Dorthe Kirkegaard; Pillemer, David B.; Ivcevic, Zorana

    2011-01-01

    Theories of autobiographical memory posit that extended time periods (here termed chapters) and memories are organised hierarchically. If chapters organise memories and guide their recall, then chapters and memories should show similar temporal distributions over the life course. Previous research...... demonstrates that positive but not negative memories show a reminiscence bump and that memories cluster at the beginning of extended time periods. The current study tested the hypotheses that (1) ages marking the beginning of positive but not negative chapters produce a bump, and that (2) specific memories...... are over-represented at the beginning of chapters. Potential connections between chapters and the cultural life script are also examined. Adult participants first divided their life story into chapters and identified their most positive and most negative chapter. They then recalled a specific memory from...

  3. Working Memory and Long-Term Memory for Faces: Evidence From fMRI and Global Amnesia for Involvement of the Medial Temporal Lobes

    Science.gov (United States)

    Nichols, Elizabeth A.; Kao, Yun-Ching; Verfaellie, Mieke; Gabrieli, John D.E.

    2006-01-01

    Behavioral studies with amnesic patients and imaging studies with healthy adults have suggested that medial temporal lobe (MTL) structures known to be essential for long-term declarative memory (LTM) may also be involved in the maintenance of information in working memory (WM). To examine whether MTL structures are involved in WM maintenance for faces, and the nature of that involvement, WM and LTM for faces were examined in normal participants via functional magnetic resonance imaging (fMRI) and in amnesic patients behaviorally. In Experiment 1, participants were scanned while performing a WM task in which they determined if two novel faces, presented 7 s apart, were the same or different. Later, participants’ LTM for the faces they saw during the WM task was measured in an unexpected recognition test. During WM maintenance, the hippocampus was activated bilaterally, and there was greater activation during maintenance for faces that were later remembered than faces later forgotten. A conjunction analysis revealed overlap in hippocampal activations across WM maintenance and LTM contrasts, which suggested that the same regions were recruited for WM maintenance and LTM encoding. In Experiment 2, amnesic and control participants were tested on similar WM and LTM tasks. Amnesic patients, as a group, had intact performance with a 1-s maintenance period, but were impaired after a 7-s WM maintenance period and on the LTM task. Thus, parallel neuroimaging and lesion designs suggest that the same hippocampal processes support WM maintenance, for intervals as short as 7 s, and LTM for faces. PMID:16770797

  4. Slow-oscillatory Transcranial Direct Current Stimulation Modulates Memory in Temporal Lobe Epilepsy by Altering Sleep Spindle Generators: A Possible Rehabilitation Tool.

    Science.gov (United States)

    Del Felice, Alessandra; Magalini, Alessandra; Masiero, Stefano

    2015-01-01

    Temporal lobe epilepsy (TLE) is often associated with memory deficits. Given the putative role for sleep spindles memory consolidation, spindle generators skewed toward the affected lobe in TLE subjects may be a neurophysiological marker of defective memory. Slow-oscillatory transcranial direct current stimulation (sotDCS) during slow waves sleep (SWS) has previously been shown to enhance sleep-dependent memory consolidation by increasing slow-wave sleep and modulating sleep spindles. To test if anodal sotDCS over the affected TL prior to a nap affects sleep spindles and whether this improves memory consolidation. Randomized controlled cross-over study. 12 people with TLE underwent sotDCS (0.75 Hz; 0-250 μV, 30 min) or sham before daytime nap. Declarative verbal and visuospatial learning were tested. Fast and slow spindle signals were recorded by 256-channel EEG during sleep. In both study arms, electrical source imaging (ESI) localized cortical generators. Neuropsychological data were analyzed with general linear model statistics or the Kruskal-Wallis test (P or Z memory performance (P = 0.048) emerged after sotDCS. SotDCS increased slow spindle generators current density (Z = 0.001), with a shift to the anterior cortical areas. Anodal sotDCS over the affected temporal lobe improves declarative and visuospatial memory performance by modulating slow sleep spindles cortical source generators. SotDCS appears a promising tool for memory rehabilitation in people with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The primate hippocampus: ontogeny, early insult and memory.

    Science.gov (United States)

    Bachevalier, Jocelyne; Vargha-Khadem, Faraneh

    2005-04-01

    Recent evidence suggests that in primates, as in rodents, the hippocampus shows a developmental continuum that affects memory abilities from infancy to adulthood. In primates relatively few hippocampal-dependent abilities (e.g. some aspects of recognition memory) are present in early infancy, whereas others (e.g. relational memory) begin to show adult-like characteristics around 2 years of age in monkeys and 5-7 years in humans. Profound and persistent memory loss resulting from insult to the hippocampus in infancy becomes evident in everyday behavior only later in childhood. This pattern of results suggests a maturational gradient within the medial temporal lobe memory system, with most abilities crucially dependent upon the hippocampus emerging in later stages of development, supporting a model of hierarchical organization of memory within the medial temporal lobe.

  6. The temporal dynamics of visual working memory guidance of selective attention

    Directory of Open Access Journals (Sweden)

    Jinfeng eTan

    2014-09-01

    Full Text Available The biased competition model proposes that there is top-down directing of attention to a stimulus matching the contents of working memory (WM, even when the maintenance of a WM representation is detrimental to target relevant performance. Despite many studies elucidating that spatial WM guidance can be present early in the visual processing system, whether visual WM guidance also influences perceptual selection remains poorly understood. Here, we investigated the electrophysiological correlates of early guidance of attention by WM in humans. Participants were required to perform a visual search task while concurrently maintaining object representations in their visual working memory. Behavioral results showed that response times (RTs were longer when the distractor in the visual search task was held in WM. The earliest WM guidance effect was observed in the P1 component (90-130 ms, with match trials eliciting larger P1 amplitude than mismatch trials. A similar result was also found in the N1 component (160-200 ms. These P1 and N1 effects could not be attributed to bottom-up perceptual priming from the presentation of a memory cue, because there was no significant difference in early ERP component when the cue was merely perceptually identified but not actively held in working memory. Standardized Low Resolution Electrical Tomography Analysis (sLORETA showed that the early WM guidance occurred in the occipital lobe and the N1-related activation occurred in the parietal gyrus. Time-frequency data suggested that alpha-band event-related spectral perturbation (ERSP magnitudes increased under the match condition compared with the mismatch condition. In conclusion, the present study suggests that the reappearance of a stimulus held in WM enhanced activity in the occipital area. Subsequently, this initial capture of attention by WM could be inhibited by competing visual inputs through attention re-orientation, reflecting by the alpha-band rhythm.

  7. Threat of Punishment Motivates Memory Encoding via Amygdala, Not Midbrain, Interactions with the Medial Temporal Lobe

    OpenAIRE

    Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison

    2012-01-01

    Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they wo...

  8. The Influence of Temporal Resolution Power and Working Memory Capacity on Psychometric Intelligence

    Science.gov (United States)

    Troche, Stefan J.; Rammsayer, Thomas H.

    2009-01-01

    According to the temporal resolution power (TRP) hypothesis, higher TRP as reflected by better performance on psychophysical timing tasks accounts for faster speed of information processing and increased efficiency of information processing leading to better performance on tests of psychometric intelligence. An alternative explanation of…

  9. Auditory Temporal Processing and Working Memory: Two Independent Deficits for Dyslexia

    Science.gov (United States)

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    Dyslexia is a neuro-cognitive disorder with a strong genetic basis, characterized by a difficulty in acquiring reading skills. Several hypotheses have been suggested in an attempt to explain the origin of dyslexia, among which some have suggested that dyslexic readers might have a deficit in auditory temporal processing, while others hypothesized…

  10. Temporal and cerebellar brain regions that support both declarative memory formation and retrieval.

    NARCIS (Netherlands)

    Weis, S.; Klaver, P.; Reul, J.; Elger, C.E.; Fernandez, G.S.E.

    2004-01-01

    Using event-related fMRI, we scanned young healthy subjects while they memorized real-world photographs and subsequently tried to recognize them within a series of new photographs. We confirmed that activity in the medial temporal lobe (MTL) and inferior prefrontal cortex correlates with declarative

  11. Spontaneously reactivated patterns in frontal and temporal lobe predict semantic clustering during memory search.

    Science.gov (United States)

    Manning, Jeremy R; Sperling, Michael R; Sharan, Ashwini; Rosenberg, Emily A; Kahana, Michael J

    2012-06-27

    Although it is well established that remembering an item will bring to mind memories of other semantically related items (Bousfield, 1953), the neural basis of this phenomenon is poorly understood. We studied how the similarity relations among items influence their retrieval by analyzing electrocorticographic recordings taken as 46 human neurosurgical patients studied and freely recalled lists of words. We first identified semantic components of neural activity that varied systematically with the meanings of each studied word, as defined by latent semantic analysis (Landauer and Dumais, 1997). We then examined the dynamics of these semantic components as participants attempted to recall the previously studied words. Our analyses revealed that the semantic components of neural activity were spontaneously reactivated during memory search, just before recall of the studied words. Further, the degree to which neural activity correlated with semantic similarity during recall predicted participants' tendencies to organize the sequences of their responses on the basis of semantic similarity. Thus, our work shows that differences in the neural correlates of semantic information, and how they are reactivated before recall, reveal how individuals organize and retrieve memories of words.

  12. Temporal dynamics of immediate early gene expression during cellular consolidation of spatial memory.

    Science.gov (United States)

    Barry, Daniel N; Commins, Sean

    2017-06-01

    The consolidation of newly acquired memories on a cellular level is thought to take place in the first few hours following learning. This process is dependent on de novo protein synthesis during this time, which ultimately leads to long-term structural and functional neuronal changes and the stabilisation of a memory trace. Immediate early genes (IEGs) are rapidly expressed in neurons following learning, and previous research has suggested more than one wave of IEG expression facilitates consolidation in the hours following learning. We analysed the expression of Zif268, c-Fos and Arc protein in a number of brain regions involved in spatial learning either 90min, 4h or 8h following training in the Morris water maze task. Consistent with the role of IEGs in the earliest stages of consolidation, a single wave of expression was observed in most brain regions at 90min, however a subsequent wave of expression was not observed at 8h. In fact, Zif268 expression was observed to fall below the levels of naïve controls at this time-point in the medial prefrontal and perirhinal cortices. This may be indicative of synaptic downscaling in these regions in the hours following learning, and an important marker of the consolidation of spatial memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. RBANS Memory Indices Are Related to Medial Temporal Lobe Volumetrics in Healthy Older Adults and Those with Mild Cognitive Impairment

    Science.gov (United States)

    England, Heather B.; Gillis, M. Meredith; Hampstead, Benjamin M.

    2014-01-01

    The current study (i) determined whether NeuroQuant® volumetrics are reflective of differences in medial temporal lobe (MTL) volumes between healthy older adults and those with mild cognitive impairment (MCI) and (ii) examined the relationship between RBANS indices and MTL volumes. Forty-three healthy older adults and 57 MCI patients completed the RBANS and underwent structural MRI. Hippocampal and inferior lateral ventricle (ILV) volumes were obtained using NeuroQuant®. Results revealed significantly smaller hippocampal and larger ILV volumes in MCI patients. MTL volumes were significantly related to the RBANS Immediate and Delayed Memory and Language indices but not the Attention or Visuoconstruction indices; findings that demonstrate anatomical specificity. Following discriminant function analysis, we calculated a cutpoint that may prove clinically useful for integrating MTL volumes into the diagnosis of MCI. These findings demonstrate the potential clinical utility of NeuroQuant® and are the first to document the relationship between RBANS indices and MTL volumes. PMID:24709384

  14. A high calorie diet causes memory loss, metabolic syndrome and oxidative stress into hippocampus and temporal cortex of rats.

    Science.gov (United States)

    Treviño, Samuel; Aguilar-Alonso, Patrícia; Flores Hernandez, Jose Angel; Brambila, Eduardo; Guevara, Jorge; Flores, Gonzalo; Lopez-Lopez, Gustavo; Muñoz-Arenas, Guadalupe; Morales-Medina, Julio Cesar; Toxqui, Veronica; Venegas, Berenice; Diaz, Alfonso

    2015-09-01

    A high calorie intake can induce the appearance of the metabolic syndrome (MS), which is a serious public health problem because it affects glucose levels and triglycerides in the blood. Recently, it has been suggested that MS can cause complications in the brain, since chronic hyperglycemia and insulin resistance are risk factors for triggering neuronal death by inducing a state of oxidative stress and inflammatory response that affect cognitive processes. This process, however, is not clear. In this study, we evaluated the effect of the consumption of a high-calorie diet (HCD) on both neurodegeneration and spatial memory impairment in rats. Our results demonstrated that HCD (90 day consumption) induces an alteration of the main energy metabolism markers, indicating the development of MS in rats. Moreover, an impairment of spatial memory was observed. Subsequently, the brains of these animals showed activation of an inflammatory response (increase in reactive astrocytes and interleukin1-β as well as tumor necrosis factor-α) and oxidative stress (reactive oxygen species and lipid peroxidation), causing a reduction in the number of neurons in the temporal cortex and hippocampus. Altogether, these results suggest that a HCD promotes the development of MS and contributes to the development of a neurodegenerative process and cognitive failure. In this regard, it is important to understand the relationship between MS and neuronal damage in order to prevent the onset of neurodegenerative disorders.

  15. Spacial perception and spatial memory in children with benign childhood epilepsy with centro-temporal spikes (BCECTS).

    Science.gov (United States)

    Völkl-Kernstock, S; Willinger, U; Feucht, M

    2006-11-01

    Despite the benign prognosis regarding the response of seizures to treatment, some evidence now exists that patients with benign childhood epilepsy with centro-temporal spikes (BCECTS) may have neuropsychological deficits sometimes leading to academic underachievement. There is, however, no general agreement on the exact profile of functions disturbed. This study was designed to identify significant deficits in spatial perception and memory in children with BCECTS (ages 6-10 years) compared with healthy controls matched for age, sex and socioeconomic status. The neuropsychological test battery administered consisted of the HAWIK-III, the "Tübinger Luria Christensen Neuropsychological Test Set for Children", the "Kaufman Assessment Battery for Children" and the "Differential Neuropsychological Test". Twenty-two patients and 22 control subjects completed all tests. Children with BCECTS exhibited significant deficits in higher functions of spatial perception, including spatial orientation, as well as in basal and complex spatial memory. Deficits were independent of the lateralization of the epileptogenic foci and independent of anti-convulsive drug treatment.

  16. The Effect of Alpha-Lipoic Acid on Learning and Memory Deficit in a Rat Model of Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Narges Karimi

    2012-07-01

    Full Text Available Introduction : Epilepsy is a chronic neurological disorder in which patients experience spontaneous recurrent seizures and deficiency in learning and memory. Although the most commonly recommended therapy is drug treatment, some patients do not achieve adequate control of their seizures on existing drugs. New medications with novel mechanisms of action are needed to help those patients whose seizures are resistant to currently-available drugs. While alpha-lipoic acid as a antioxidant has some neuroprotective properties, but this action has not been investigated in models of epilepsy. Therefore, the protective effect of pretreatment with alpha-lipoic acid was evaluated in experimental model of temporal lobe epilepsy in male rats. Methods: In the present study, Wistar male rats were injected intrahippocampally with 0.9% saline(Sham-operated group, kainic acid(4 μg alone, or α-lipoic acid (25mg and 50mg/kg in association with kainic acid(4μg. We performed behavior monitoring(spontaneous seizure, learning and memory by Y-maze and passive avoidance test, intracranial electroencepholography (iEEG recording, histological analysis, to evaluate the anti- epilepsy effect of α-lipoic acid in kainate-induced epileptic rats.   Results: Behavior data showed that the kainate rats exhibit spontaneous seizures, lower spontaneous alternation score inY-maze tasks (p<0.01, impaired retention and recall capability in the passive avoidance test (p<0.05. Administration of alpha-lipoic acid, in both doses, significantly decrease the number of spontaneous seizures, improved alternation score in Y-maze task (p<0.005 and impaired retention and recall capability in the passive avoidance test (p<0.01 in kainite rats. Moreover, lipoic acid could improve the lipid peroxidation and nitrite level and superoxid dismutase activity.Conclusion: This study indicates that lipoic acid pretreatment attenuates kainic acid-induced impairment of short-term spatial memory in rats

  17. Hierarchical N-body methods on shared address space multiprocessors.

    Science.gov (United States)

    Holt, C.; Singh, J. P.

    The authors examine the parallelization issues in and architectural implications of the two dominant adaptive hierarchical N-body methods: the Barnes-Hut method and the Fast Multipole Method. They show that excellent parallel performance can be obtained on cache-coherent shared address space multiprocessors, by demonstrating performance on three cache-coherent machines: the Stanford DASH, the Kendall Square Research KSR-1, and the Silicon Graphics Challenge. Even on machines that have their main memory physically distributed among processing nodes and highly nonuniform memory access costs, the speedups are obtained without any attention to where memory is allocated on the machine. The authors show that the reason for good performance is the high degree of temporal locality afforded by the applications, and the fact that working sets are small (and scale slowly) so that caching shared data automatically in hardware exploits this locality very effectively. Even if data distribution in main memory is assumed to be free, it does not help very much. Finally, they address a potential bottleneck in scaling the parallelism to large machines, namely the fraction of time spent in building the tree used by hierarchical N-body methods.

  18. Medial temporal lobe function and recognition memory: a novel approach to separating the contribution of recollection and familiarity.

    Science.gov (United States)

    Song, Zhuang; Jeneson, Annette; Squire, Larry R

    2011-11-02

    Human neuroimaging studies of recognition memory have often been interpreted to mean that the hippocampus supports recollection but not familiarity. This interpretation is complicated by the fact that recollection-based decisions are typically associated with stronger memories than familiarity-based decisions. Some studies of source memory controlled for this difference in memory strength and found that hippocampal activity during learning predicted subsequent item memory strength while recollection-based memory (performance on source memory questions) was held at chance. This result suggests that the hippocampus is important for familiarity. However, a difficulty with this approach is that when source memory is assessed by asking specific, task-relevant source memory questions, participants who fail to answer the prescribed questions might nevertheless have available other (task-irrelevant) source information. Accordingly, successful item memory could still be associated with recollection. The present study used a novel method to assess item memory and source memory. Instead of responding to specific source questions, participants rated their source memory strength based on any information about the learning episode that was available to them. When subsequent source memory strength was held constant at the lowest possible level, we identified regions bilaterally in hippocampus, as well as in perirhinal cortex, where activity during learning increased as subsequent item memory increased in strength. In addition, activity in cortical regions (including prefrontal cortex) was related to source memory success independently of item memory strength. These findings suggest that activity in the hippocampus is related to the encoding of familiarity-based item memory, independent of subsequent recollection-based success.

  19. Hierarchical photocatalysts.

    Science.gov (United States)

    Li, Xin; Yu, Jiaguo; Jaroniec, Mietek

    2016-05-01

    As a green and sustainable technology, semiconductor-based heterogeneous photocatalysis has received much attention in the last few decades because it has potential to solve both energy and environmental problems. To achieve efficient photocatalysts, various hierarchical semiconductors have been designed and fabricated at the micro/nanometer scale in recent years. This review presents a critical appraisal of fabrication methods, growth mechanisms and applications of advanced hierarchical photocatalysts. Especially, the different synthesis strategies such as two-step templating, in situ template-sacrificial dissolution, self-templating method, in situ template-free assembly, chemically induced self-transformation and post-synthesis treatment are highlighted. Finally, some important applications including photocatalytic degradation of pollutants, photocatalytic H2 production and photocatalytic CO2 reduction are reviewed. A thorough assessment of the progress made in photocatalysis may open new opportunities in designing highly effective hierarchical photocatalysts for advanced applications ranging from thermal catalysis, separation and purification processes to solar cells.

  20. Hierarchical CodeBook for background subtraction in MRF

    Science.gov (United States)

    Shao, Quan; Tang, Zhixing; Han, Songchen

    2013-11-01

    Foreground detection is the key low-level fundamental work in intelligent video surveillance. This paper proposed a hierarchical background subtraction algorithm consisted of block-based stage and pixel-based stage for it. In block-based stage, obvious backgrounds got detected via block-based CodeBook, leaving spatial relations among suspicious foreground pixels undestroyed. Pixel-based stage further eliminated the left background pixels with the introduction of spatial and temporal relations in a MRF-MAP framework. Then comparative experiments were conducted to evaluate the performance of the scheme in three dimensions - detection accuracy, update speed and memory consumption. Proposed approach possesses the highest detection precision and consumes the second least memories. And the update speed is of real-time level.

  1. Clinical utility of the Wechsler Memory Scale - Fourth Edition (WMS-IV) in patients with intractable temporal lobe epilepsy

    NARCIS (Netherlands)

    Bouman, Z.; Elhorst, D.; Hendriks, M.P.H.; Kessels, R.P.C.; Aldenkamp, A.P.

    2016-01-01

    Introduction: The Wechsler Memory Scale (WMS) is one of the most widely used test batteries to assess memory functions in patients with brain dysfunctions of different etiologies. This study examined the clinical validation of the Dutch Wechsler Memory Scale-Fourth Edition (WMS-IV-NL) in patients wi

  2. A working memory "theory of relativity": elasticity in temporal, spatial, and modality dimensions conserves item capacity in radial maze, verbal tasks, and other cognition.

    Science.gov (United States)

    Glassman, R B

    1999-03-15

    It is remarkable that working memory (WM) capacity for numbers of items remains modest, at approximately 7+/-2 (the so-called "magical number"), across a wide variety of kinds of material. Indeed, consideration of radial maze studies together with more traditional memory research shows that WM capacity remains fairly constant whether the items are verbal or visuospatial, and that this same capacity is true of other species as of humans. In contrast to their limited numerousness, WM items are extremely flexible in ways that are here brought under the heading of "dimensionality." Therefore, the physical items represented in WM, can vary widely in any quantitative characteristic and in the temporal pace at which they are encountered. Combinatorial considerations suggest that WM numerousness results from evolution of a middle ground between a sterile parsimony and an overwhelming excess, for organizing neurocognitive associations. Such natural selection seems likely to have worked opportunistically to yield diverse characteristics of neuronal tissue, from subcellular components to properties of ensembles, which converge on the required cognitive properties of WM. Priming and implicit memory may play supporting roles with WM. These intermediate-term memory phenomena allow certain kinds of background information to be accumulated at higher volume than seems possible from the textbook, "modal model" of memory. By expediting attentional focus on subsets of information already in long-term memory, priming may help WM chunks to emerge in limited number as appropriately scaled "figures" from the primed "ground." The larger neuronal dynamic patterns that embody these cognitive phenomena must regulate their microscopic component systems, automatically selecting those having parameters of temporal persistence, rhythm, and connectivity patterns that are pertinent to the current task. Relevant neural phenomena may include "Hebbian" associativity and persistence of firing patterns

  3. Alterations of 5-HT1A receptor-induced G-protein functional activation and relationship to memory deficits in patients with pharmacoresistant temporal lobe epilepsy.

    Science.gov (United States)

    Cuellar-Herrera, Manola; Velasco, Ana Luisa; Velasco, Francisco; Trejo, David; Alonso-Vanegas, Mario; Nuche-Bricaire, Avril; Vázquez-Barrón, Daruni; Guevara-Guzmán, Rosalinda; Rocha, Luisa

    2014-12-01

    The 5-hydroxytryptamine-1A (5-HT1A) receptors are known to be involved in the inhibition of seizures in epilepsy. Moreover, studies propose a role for the 5-HT1A receptor in memory function; it is believed that the higher density of this receptor in the hippocampus plays an important role in its regulation. Positron emission tomography (PET) studies in patients with mesial temporal lobe epilepsy (mTLE) have demonstrated that a decrease in 5-HT1A receptor binding in temporal regions may play a role in memory impairment. The evidences lead us to speculate whether this decrease in receptor binding is associated with a reduced receptor number or if the functionality of the 5-HT1A receptor-induced G-protein activation and/or the second messenger cascade is modified. The purpose of the present study is to determine 5-HT1A receptor-induced G-protein functional activation by 8-OH-DPAT-stimulated [(35)S]GTPγS binding assay in hippocampal tissue of surgical patients with mTLE. We correlate functional activity with epilepsy history and neuropsychological assessment of memory. We found that maximum functional activation stimulation values (Emax) of [(35)S]GTPγS binding were significantly increased in mTLE group when compared to autopsy samples. Furthermore, significant correlations were found: (1) positive coefficients between the Emax with the age of patient and frequency of seizures; (2) negative coefficients between the Emax and working memory, immediate recall and delayed recall memory tasks. Our data suggest that the epileptic hippocampus of patients with mTLE presents an increase in 5-HT1A receptor-induced G-protein functional activation, and that this altered activity is related to age and seizure frequency, as well as to memory consolidation deficit.

  4. Temporal dynamics of the primary human T cell response to yellow fever virus 17D as it matures from an effector- to a memory-type response.

    Science.gov (United States)

    Blom, Kim; Braun, Monika; Ivarsson, Martin A; Gonzalez, Veronica D; Falconer, Karolin; Moll, Markus; Ljunggren, Hans-Gustaf; Michaëlsson, Jakob; Sandberg, Johan K

    2013-03-01

    The live attenuated yellow fever virus (YFV) 17D vaccine provides a good model to study immune responses to an acute viral infection in humans. We studied the temporal dynamics, composition, and character of the primary human T cell response to YFV. The acute YFV-specific effector CD8 T cell response was broad and complex; it was composed of dominant responses that persisted into the memory population, as well as of transient subdominant responses that were not detected at the memory stage. Furthermore, HLA-A2- and HLA-B7-restricted YFV epitope-specific effector cells predominantly displayed a CD45RA(-)CCR7(-)PD-1(+)CD27(high) phenotype, which transitioned into a CD45RA(+)CCR7(-)PD-1(-)CD27(low) memory population phenotype. The functional profile of the YFV-specific CD8 T cell response changed in composition as it matured from an effector- to a memory-type response, and it tended to become less polyfunctional during the course of this transition. Interestingly, activation of CD4 T cells, as well as FOXP3(+) T regulatory cells, in response to YFV vaccination preceded the kinetics of the CD8 T cell response. The present results contribute to our understanding of how immunodominance patterns develop, as well as the phenotypic and functional characteristics of the primary human T cell response to a viral infection as it evolves and matures into memory.

  5. Temporal vulnerability in hazardscapes: flood memory-networks and referentiality along the North Carolina Neuse River (USA)

    NARCIS (Netherlands)

    de Vries, D.H.

    2011-01-01

    Social models of population vulnerability to disasters increasingly include the notion that vulnerability has a strong temporal component. While this temporality is typically conceptualized as objective (making vulnerability "dynamic," "multiscalar," and/or "historical"), it consistently fails to ac

  6. Temporal and Regional Regulation of Gene Expression by Calcium-Stimulated Adenylyl Cyclase Activity during Fear Memory

    OpenAIRE

    Lindsay Wieczorek; James W Maas; Muglia, Lisa M.; Vogt, Sherri K.; Muglia, Louis J.

    2010-01-01

    BACKGROUND: The Ca2+-stimulated adenylyl cyclases (ACs), AC1 and AC8, are key components of long-term memory processing. AC1 and AC8 double knockout mice (Adcy1(-/-)Adcy8(-/-); DKO) display impaired fear memory processing; the mechanism of this impairment is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesize that the Ca2+-stimulated ACs modulate long-lasting transcriptional changes essential for fear memory consolidation and maintenance. Here, we report a genome-wide study of gen...

  7. Cognitive memory: cellular and network machineries and their top-down control.

    Science.gov (United States)

    Miyashita, Yasushi

    2004-10-15

    A brain-wide distributed network orchestrates cognitive memorizing and remembering of explicit memory (i.e., memory of facts and events). The network was initially identified in humans and is being systematically investigated in molecular/genetic, single-unit, lesion, and imaging studies in animals. The types of memory identified in humans are extended into animals as episodic-like (event) memory or semantic-like (fact) memory. The unique configurational association between environmental stimuli and behavioral context, which is likely the basis of episodic-like memory, depends on neural circuits in the medial temporal lobe, whereas memory traces representing repeated associations, which is likely the basis of semantic-like memory, are consolidated in the domain-specific regions in the temporal cortex. These regions are reactivated during remembering and contribute to the contents of a memory. Two types of retrieval signal reach the cortical representations. One runs from the frontal cortex for active (or effortful) retrieval (top-down signal), and the other spreads backward from the medial temporal lobe for automatic retrieval. By sending the top-down signal to the temporal cortex, frontal regions manipulate and organize to-be-remembered information, devise strategies for retrieval, and also monitor the outcome, with dissociated frontal regions making functionally separate contributions. The challenge is to understand the hierarchical interactions between these multiple cortical areas, not only with a correlational analysis but also with an interventional study demonstrating the causal necessity and the direction of the causality.

  8. A real-time in-memory discovery service leveraging hierarchical packaging information in a unique identifier network to retrieve track and trace information

    CERN Document Server

    Müller, Jürgen

    2014-01-01

    This book examines how to efficiently retrieve track and trace information for an item that took a certain path through a complex network of manufacturers, wholesalers, retailers and consumers. It includes valuable tips on in-memory data management.

  9. Aging, episodic memory feeling-of-knowing, and frontal functioning.

    Science.gov (United States)

    Souchay, C; Isingrini, M; Espagnet, L

    2000-04-01

    Groups of normal old and young adults made episodic memory feeling-of-knowing (FOK) judgments and took 2 types of episodic memory tests (cued recall and recognition). Neuropsychological tests of executive and memory functions thought to respectively involve the frontal and medial temporal structures were also administered. Age differences were observed on the episodic memory measures and on all neuropsychological tests. Compared with young adults, older adults performed at chance level on FOK accuracy judgments. Partial correlations indicated that a composite measure of frontal functioning and FOK accuracy were closely related. Hierarchical regression analyses showed that the composite frontal functioning score accounted for a large proportion of the age-related variance in FOK accuracy. This finding supports the idea that the age-related decline in episodic memory FOK accuracy is mainly the result of executive or frontal limitations associated with aging.

  10. Hierarchical architecture of active knits

    Science.gov (United States)

    Abel, Julianna; Luntz, Jonathan; Brei, Diann

    2013-12-01

    Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm.

  11. 颞叶癫痫患者颞叶切除术前后的记忆评估%Effects of temporal lobectomy on memorial function in patient with intractable temporal lobe epilepsy

    Institute of Scientific and Technical Information of China (English)

    刘琴; 杜浩; 黄玲玥; 徐国政

    2014-01-01

    Objective To investigate the effects of temporal lobectomy on memorial function in the patients with intractable temporal lobe epilepsy (ITLE). Methods The clinical data of 17 patients with ITLE undergoing temporal lobectomy from July, 2012 to December, 2013 were analyzed retrospectively. The memory quotient (MQ) was determined by Wechsler Memory Scale (WMS) before the surgery and 6 months after the surgery in all the patients. Results The overall MQ value [(104.76±4.96) points] was significantly higher than that [(89.94±4.45) points] before the surgery in the patients with ITLE (P0.05). Conclusion The memorial function may be significantly improved by the temporal lobectomy in the patients with ITLE.%目的:探讨颞叶切除术对颞叶癫痫患者术后记忆功能的影响。方法回顾性分析2012年7月至2013年12月收治的17例颞叶癫痫患者的临床资料,采用成人韦氏量表测量患者颞叶切除术前及术后6个月记忆商(MQ)值。结果术前MQ平均值为(89.94±4.45),术后6个月为(104.76±4.96),差异显著(P0.05)。术前短时记忆MQ值为(46.29±2.43),术后为(54.94±3.18);术前瞬时MQ均值为(6.12±1.37),术后为(9.29±1.00);术后短时及瞬时MQ均较术前有显著差异(P<0.05)。EngleⅠ~Ⅱ级15例病人中,术后MQ较术前改善11例,无明显变化4例;EngleⅢ~Ⅳ级2例病人中,MQ值较术前下降1例,无改变1例。结论颞叶切除术可明显改善颞叶癫痫患者术后MQ。

  12. Out of sight but not out of mind : The neurophysiology of iconic memory in the superior temporal sulcus

    NARCIS (Netherlands)

    Keysers, C; Xiao, DK; Foldiak, P; Perrett, DI

    2005-01-01

    Iconic memory, the short-lasting visual memory of a briefly flashed stimulus, is an important component of most models of visual perception. Here we investigate what physiological mechanisms underlie this capacity by showing rapid serial visual presentation (RSVP) sequences with and without intersti

  13. A Temporally Distinct Role for Group I and Group II Metabotropic Glutamate Receptors in Object Recognition Memory

    Science.gov (United States)

    Brown, Malcolm Watson; Warburton, Elizabeth Clea; Barker, Gareth Robert Isaac; Bashir, Zafar Iqbal

    2006-01-01

    Recognition memory, involving the ability to discriminate between a novel and familiar object, depends on the integrity of the perirhinal cortex (PRH). Glutamate, the main excitatory neurotransmitter in the cortex, is essential for many types of memory processes. Of the subtypes of glutamate receptor, metabotropic receptors (mGluRs) have received…

  14. Temporal stability of the Dutch version of the Wechsler Memory Scale - Fourth Edition (WMS-IV-NL)

    NARCIS (Netherlands)

    Bouman, Z.; Hendriks, M.P.H.; Aldenkamp, A.P.; Kessels, R.P.C.

    2015-01-01

    Objective: The Wechsler Memory Scale - Fourth Edition (WMS-IV) is one of the most widely used memory batteries. We examined the test–retest reliability, practice effects, and standardized regression-based (SRB) change norms for the Dutch version of the WMS-IV (WMS-IV-NL) after both short and long re

  15. Hierarchical Spatio-Temporal Probabilistic Graphical Model with Multiple Feature Fusion for Binary Facial Attribute Classification in Real-World Face Videos.

    Science.gov (United States)

    Demirkus, Meltem; Precup, Doina; Clark, James J; Arbel, Tal

    2016-06-01

    Recent literature shows that facial attributes, i.e., contextual facial information, can be beneficial for improving the performance of real-world applications, such as face verification, face recognition, and image search. Examples of face attributes include gender, skin color, facial hair, etc. How to robustly obtain these facial attributes (traits) is still an open problem, especially in the presence of the challenges of real-world environments: non-uniform illumination conditions, arbitrary occlusions, motion blur and background clutter. What makes this problem even more difficult is the enormous variability presented by the same subject, due to arbitrary face scales, head poses, and facial expressions. In this paper, we focus on the problem of facial trait classification in real-world face videos. We have developed a fully automatic hierarchical and probabilistic framework that models the collective set of frame class distributions and feature spatial information over a video sequence. The experiments are conducted on a large real-world face video database that we have collected, labelled and made publicly available. The proposed method is flexible enough to be applied to any facial classification problem. Experiments on a large, real-world video database McGillFaces [1] of 18,000 video frames reveal that the proposed framework outperforms alternative approaches, by up to 16.96 and 10.13%, for the facial attributes of gender and facial hair, respectively.

  16. Hippocampal-dependent spatial memory in the water maze is preserved in an experimental model of temporal lobe epilepsy in rats.

    Directory of Open Access Journals (Sweden)

    Marion Inostroza

    Full Text Available Cognitive impairment is a major concern in temporal lobe epilepsy (TLE. While different experimental models have been used to characterize TLE-related cognitive deficits, little is known on whether a particular deficit is more associated with the underlying brain injuries than with the epileptic condition per se. Here, we look at the relationship between the pattern of brain damage and spatial memory deficits in two chronic models of TLE (lithium-pilocarpine, LIP and kainic acid, KA from two different rat strains (Wistar and Sprague-Dawley using the Morris water maze and the elevated plus maze in combination with MRI imaging and post-morten neuronal immunostaining. We found fundamental differences between LIP- and KA-treated epileptic rats regarding spatial memory deficits and anxiety. LIP-treated animals from both strains showed significant impairment in the acquisition and retention of spatial memory, and were unable to learn a cued version of the task. In contrast, KA-treated rats were differently affected. Sprague-Dawley KA-treated rats learned less efficiently than Wistar KA-treated animals, which performed similar to control rats in the acquisition and in a probe trial testing for spatial memory. Different anxiety levels and the extension of brain lesions affecting the hippocampus and the amydgala concur with spatial memory deficits observed in epileptic rats. Hence, our results suggest that hippocampal-dependent spatial memory is not necessarily affected in TLE and that comorbidity between spatial deficits and anxiety is more related with the underlying brain lesions than with the epileptic condition per se.

  17. Hierarchical video summarization

    Science.gov (United States)

    Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.

    1998-12-01

    We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.

  18. The Temporal Dynamics Model of Emotional Memory Processing: A Synthesis on the Neurobiological Basis of Stress-Induced Amnesia, Flashbulb and Traumatic Memories, and the Yerkes-Dodson Law

    Directory of Open Access Journals (Sweden)

    David M. Diamond

    2007-01-01

    Full Text Available We have reviewed research on the effects of stress on LTP in the hippocampus, amygdala and prefrontal cortex (PFC and present new findings which provide insight into how the attention and memory-related functions of these structures are influenced by strong emotionality. We have incorporated the stress-LTP findings into our “temporal dynamics” model, which provides a framework for understanding the neurobiological basis of flashbulb and traumatic memories, as well as stress-induced amnesia. An important feature of the model is the idea that endogenous mechanisms of plasticity in the hippocampus and amygdala are rapidly activated for a relatively short period of time by a strong emotional learning experience. Following this activational period, both structures undergo a state in which the induction of new plasticity is suppressed, which facilitates the memory consolidation process. We further propose that with the onset of strong emotionality, the hippocampus rapidly shifts from a “configural/cognitive map” mode to a “flashbulb memory” mode, which underlies the long-lasting, but fragmented, nature of traumatic memories. Finally, we have speculated on the significance of stress-LTP interactions in the context of the Yerkes-Dodson Law, a well-cited, but misunderstood, century-old principle which states that the relationship between arousal and behavioral performance can be linear or curvilinear, depending on the difficulty of the task.

  19. The temporal evolution of electromagnetic markers sensitive to the capacity limits of visual short-term memory.

    Science.gov (United States)

    Mitchell, Daniel J; Cusack, Rhodri

    2011-01-01

    An electroencephalographic (EEG) marker of the limited contents of human visual short-term memory (VSTM) has previously been described. Termed contralateral delay activity, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoencephalography (MEG) to characterize its magnetic counterparts and their neural generators as they evolve throughout the memory delay. A parametric manipulation of memory load, within and beyond capacity limits, allows separation of signals that asymptote with behavioral VSTM performance from additional responses that contribute to a linear increase with set-size. Both EEG and MEG yielded bilateral signals that track the number of objects held in memory, and contralateral signals that are independent of memory load. In MEG, unlike EEG, the contralateral interaction between hemisphere and item load is much weaker, suggesting that bilateral and contralateral markers of memory load reflect distinct sources to which EEG and MEG are differentially sensitive. Nonetheless, source estimation allowed both the bilateral and the weaker contralateral capacity-limited responses to be localized, along with a load-independent contralateral signal. Sources of global and hemisphere-specific signals all localized to the posterior intraparietal sulcus during the early delay. However the bilateral load response peaked earlier and its generators shifted later in the delay. Therefore the hemifield-specific response may be more closely tied to memory maintenance while the global load response may be involved in initial processing of a limited number of attended objects, such as their individuation or consolidation into memory.

  20. The temporal evolution of electromagnetic markers sensitive to the capacity limits of visual short-term memory

    Directory of Open Access Journals (Sweden)

    Daniel James Mitchell

    2011-02-01

    Full Text Available An electroencephalographic (EEG marker of the limited contents of human visual short-term memory (VSTM has previously been described. Termed contralateral delay activity (CDA, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoencephalography (MEG to characterise its magnetic counterparts and their neural generators as they evolve throughout the memory delay. A parametric manipulation of memory load, within and beyond capacity limits, allows separation of signals that asymptote with behavioural VSTM performance from additional responses that contribute to a linear increase with set-size. Both EEG and MEG yielded bilateral signals that track the number of objects held in memory, and contralateral signals that are independent of memory load. In MEG, unlike EEG, the contralateral interaction between hemisphere and item load is much weaker, suggesting that bilateral and contralateral markers of memory load reflect distinct sources to which EEG and MEG are differentially sensitive. Nonetheless, source estimation allowed both the bilateral and the weaker contralateral capacity-limited responses to be localised, along with a load-independent contralateral signal. Sources of global and hemisphere-specific signals all localised to the posterior intraparietal sulcus during the early delay. However the bilateral load response peaked earlier and its generators shifted later in the delay. Therefore the hemifield-specific response may be more closely tied to memory maintenance while the global load response may be involved in initial processing of a limited number of attended objects, such as their individuation or consolidation into memory.

  1. A Spatial Hierarchical Analysis of the Temporal Influences of the El Niño-Southern Oscillation and Weather on Dengue in Kalutara District, Sri Lanka

    Directory of Open Access Journals (Sweden)

    Prasad Liyanage

    2016-11-01

    Full Text Available Dengue is the major public health burden in Sri Lanka. Kalutara is one of the highly affected districts. Understanding the drivers of dengue is vital in controlling and preventing the disease spread. This study focuses on quantifying the influence of weather variability on dengue incidence over 10 Medical Officer of Health (MOH divisions of Kalutara district. Weekly weather variables and data on dengue notifications, measured at 10 MOH divisions in Kalutara from 2009 to 2013, were retrieved and analysed. Distributed lag non-linear model and hierarchical-analysis was used to estimate division specific and overall relationships between weather and dengue. We incorporated lag times up to 12 weeks and evaluated models based on the Akaike Information Criterion. Consistent exposure-response patterns between different geographical locations were observed for rainfall, showing increasing relative risk of dengue with increasing rainfall from 50 mm per week. The strongest association with dengue risk centred around 6 to 10 weeks following rainfalls of more than 300 mm per week. With increasing temperature, the overall relative risk of dengue increased steadily starting from a lag of 4 weeks. We found similarly a strong link between the Oceanic Niño Index to weather patterns in the district in Sri Lanka and to dengue at a longer latency time confirming these relationships. Part of the influences of rainfall and temperature can be seen as mediator in the causal pathway of the Ocean Niño Index, which may allow a longer lead time for early warning signals. Our findings describe a strong association between weather, El Niño-Southern Oscillation and dengue in Sri Lanka.

  2. Hierarchical Heteroclinics in Dynamical Model of Cognitive Processes: Chunking

    Science.gov (United States)

    Afraimovich, Valentin S.; Young, Todd R.; Rabinovich, Mikhail I.

    Combining the results of brain imaging and nonlinear dynamics provides a new hierarchical vision of brain network functionality that is helpful in understanding the relationship of the network to different mental tasks. Using these ideas it is possible to build adequate models for the description and prediction of different cognitive activities in which the number of variables is usually small enough for analysis. The dynamical images of different mental processes depend on their temporal organization and, as a rule, cannot be just simple attractors since cognition is characterized by transient dynamics. The mathematical image for a robust transient is a stable heteroclinic channel consisting of a chain of saddles connected by unstable separatrices. We focus here on hierarchical chunking dynamics that can represent several cognitive activities. Chunking is the dynamical phenomenon that means dividing a long information chain into shorter items. Chunking is known to be important in many processes of perception, learning, memory and cognition. We prove that in the phase space of the model that describes chunking there exists a new mathematical object — heteroclinic sequence of heteroclinic cycles — using the technique of slow-fast approximations. This new object serves as a skeleton of motions reflecting sequential features of hierarchical chunking dynamics and is an adequate image of the chunking processing.

  3. Consolidation of Associative and Item Memory Is Related to Post-Encoding Functional Connectivity between the Ventral Tegmental Area and Different Medial Temporal Lobe Subregions during an Unrelated Task.

    Science.gov (United States)

    Tompary, Alexa; Duncan, Katherine; Davachi, Lila

    2015-05-13

    It is well established that the hippocampus and perirhinal cortex (PrC) encode associative and item representations, respectively. However, less is known about how item and associative memories are consolidated. We used high-resolution fMRI in humans to measure how functional connectivity between these distinct medial temporal lobe regions with the ventral tegmental area (VTA) after a paired associate encoding task is related to both immediate and 24 h item and associative memory performance. We found that the strength of post-encoding functional connectivity between the VTA and CA1 selectively correlated with long-term associative memory, despite subjects actively engaging in an unrelated task during this period. Conversely, VTA-PrC functional connectivity during the same period correlated with long-term item memory. Critically, connectivity between VTA and these MTL regions were only related to memory tested at a 24 h delay, implicating midbrain connectivity in the consolidation of distinct forms of memory.

  4. Déjà vu in unilateral temporal-lobe epilepsy is associated with selective familiarity impairments on experimental tasks of recognition memory.

    Science.gov (United States)

    Martin, Chris B; Mirsattari, Seyed M; Pruessner, Jens C; Pietrantonio, Sandra; Burneo, Jorge G; Hayman-Abello, Brent; Köhler, Stefan

    2012-11-01

    In déjà vu, a phenomenological impression of familiarity for the current visual environment is experienced with a sense that it should in fact not feel familiar. The fleeting nature of this phenomenon in daily life, and the difficulty in developing experimental paradigms to elicit it, has hindered progress in understanding déjà vu. Some neurological patients with temporal-lobe epilepsy (TLE) consistently experience déjà vu at the onset of their seizures. An investigation of such patients offers a unique opportunity to shed light on its possible underlying mechanisms. In the present study, we sought to determine whether unilateral TLE patients with déjà vu (TLE+) show a unique pattern of interictal memory deficits that selectively affect familiarity assessment. In Experiment 1, we employed a Remember-Know paradigm for categorized visual scenes and found evidence for impairments that were limited to familiarity-based responses. In Experiment 2, we administered an exclusion task for highly similar categorized visual scenes that placed both recognition processes in opposition. TLE+ patients again displayed recognition impairments, and these impairments spared their ability to engage recollective processes so as to counteract familiarity. The selective deficits we observed in TLE+ patients contrasted with the broader pattern of recognition-memory impairments that was present in a control group of unilateral patients without déjà vu (TLE-). MRI volumetry revealed that ipsilateral medial temporal structures were less broadly affected in TLE+ than in TLE- patients, with a trend for more focal volume reductions in the rhinal cortices of the TLE+ group. The current findings establish a first empirical link between déjà vu in TLE and processes of familiarity assessment, as defined and measured in current cognitive models. They also reveal a pattern of selectivity in recognition impairments that is rarely observed and, thus, of significant theoretical interest to

  5. Effect of propofol on the medial temporal lobe emotional memory system: a functional magnetic resonance imaging study in human subjects

    Science.gov (United States)

    Pryor, K. O.; Root, J. C.; Mehta, M.; Stern, E.; Pan, H.; Veselis, R. A.; Silbersweig, D. A.

    2015-01-01

    Background Subclinical doses of propofol produce anterograde amnesia, characterized by an early failure of memory consolidation. It is unknown how propofol affects the amygdala-dependent emotional memory system, which modulates consolidation in the hippocampus in response to emotional arousal and neurohumoral stress. We present an event-related functional magnetic resonance imaging study of the effects of propofol on the emotional memory system in human subjects. Methods Thirty-five healthy subjects were randomized to receive propofol, at an estimated brain concentration of 0.90 μg ml−1, or placebo. During drug infusion, emotionally arousing and neutral images were presented in a continuous recognition task, while blood-oxygen-level-dependent activation responses were acquired. After a drug-free interval of 2 h, subsequent memory for successfully encoded items was assessed. Imaging analysis was performed using statistical parametric mapping and behavioural analysis using signal detection models. Results Propofol had no effect on the stereotypical amygdalar response to emotional arousal, but caused marked suppression of the hippocampal response. Propofol caused memory performance to become uncoupled from amygdalar activation, but it remained correlated with activation in the posterior hippocampus, which decreased in proportion to amnesia. Conclusions Propofol is relatively ineffective at suppressing amygdalar activation at sedative doses, but abolishes emotional modulation and causes amnesia via mechanisms that commonly involve hyporesponsiveness of the hippocampus. These findings raise the possibility that amygdala-dependent fear systems may remain intact even when a patient has diminished memory of events. This may be of clinical importance in the perioperative development of fear-based psychopathologies, such as post-traumatic stress disorder. Clinical trial registration NCT00504894. PMID:26174294

  6. Destruction of central noradrenergic neurones with DSP4 impairs the acquisition of temporal discrimination but does not affect memory for duration in a delayed conditional discrimination task.

    Science.gov (United States)

    al-Zahrani, S S; al-Ruwaitea, A S; Ho, M Y; Bradshaw, C M; Szabadi, E

    1997-03-01

    This experiment examined the effect of destroying central noradrenergic neurones using the selective neurotoxin N-(2-chloroethyl)-n-ethyl-2-bromobenzylamine (DSP4) on the acquisition of a temporal discrimination and on memory for duration, using a delayed conditional discrimination task. In phase I, rats that had received systemic treatment with DSP4 and vehicle-treated control rats were trained in a series of discrete trials to press lever A following a 2-s presentation of a light stimulus, and lever B following an 8-s presentation of the same stimulus. Following stimulus offset, a response on a panel placed midway between the two levers was required to initiate lever presentation; a single response on either lever resulted in withdrawal of both levers and, in the case of a "correct" response, reinforcer delivery. Both groups acquired accurate discrimination, achieving 90% correct choices within 50 sessions; the DSP4-treated group acquired accurate performance more slowly than the control group. In phase II, delays were interposed between stimulus offset and lever presentation in 50% of the trials. In the absence of a delay, discriminative accuracy was lower in the DSP4-treated group than in the control group. Accuracy declined as a function of post-stimulus delay in both groups; both groups showed a delay-dependent bias towards responding on lever A ("choose-short" bias). Neither of these effects differed significantly between the two groups. The concentrations of noradrenaline in the parietal cortex and hippocampus were reduced by 90% and 89% in the DSP4-treated group, compared to the levels in the control group, but the levels of dopamine, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid did not differ significantly between the groups. The results confirm the deleterious effect of DSP4 on the acquisition of temporal discrimination, but do not provide evidence for a role of the noradrenergic innervation of the hippocampus and neocortex in temporal working

  7. 幼儿心理理论与时序记忆的关系——来自时序记忆分离的证据%The Relationship between Theory of mind and Temporal order memory in Preschoolers- Evidence of separation from Temporal order memory

    Institute of Scientific and Technical Information of China (English)

    童薇; 阳泽; 张霞

    2012-01-01

    研究检验了时序记忆与心理理论的关系。实验一对39个3.5~5.5岁儿童的时序记忆能力以及心理理论表现进行测查,考察了因果关系、相关关系、无因果无相关关系三类不同性质的材料测得的时序记忆与心理理论的关系;90个儿童参与了实验二,通过正叙、倒叙、预叙三种叙述方式将时序记忆分离为理解性时序记忆和机械性时序记忆,再分别考察与心理理论的关系。结果发现,在不同性质的实验材料中,时序记忆与心理理论相关均不显著;5.5岁儿童的理解性时序记忆显著高于3.5岁儿童,4.5岁、5.5岁儿童的机械性时序记忆显著高于3.5岁儿童;只有理解性时序记忆能够预测儿童的心理理论成绩。%The research examined the relationship between temporal order memory and theory of mind. In study 1, we examined the performance about temporal order memory and theory of mind of 39 children from 3.5 - 5.5 years old and the relationship between temporal order memory and theory of mind was measured by three different types of materials including causality correlation,and neither-nor texts; In study 2,90 children were involved in to examine the relationship between the two memory components which are comprehension memory and mechanical memory dissociated by depiction, flashback, and flashforward and theory of mind respectively. The result showed that in different materials, the relationship between temporal order memory and theory of mind wasn' t significant ;5.5-year- old children' s comprehension memory was significantly higher than the 3.5-year-old children' s ; 4.5-year-old and 5.5-year-old children' s mechanical memory was significantly higher than those of 3.5-year-old children' s ; Only comprehension memory can predict the performance of theory of mind.

  8. Pre-learning stress differentially affects long-term memory for emotional words, depending on temporal proximity to the learning experience.

    Science.gov (United States)

    Zoladz, Phillip R; Clark, Brianne; Warnecke, Ashlee; Smith, Lindsay; Tabar, Jennifer; Talbot, Jeffery N

    2011-07-06

    Stress exerts a profound, yet complex, influence on learning and memory and can enhance, impair or have no effect on these processes. Here, we have examined how the administration of stress at different times before learning affects long-term (24-hr) memory for neutral and emotional information. Participants submerged their dominant hand into a bath of ice cold water (Stress) or into a bath of warm water (No stress) for 3 min. Either immediately (Exp. 1) or 30 min (Exp. 2) after the water bath manipulation, participants were presented with a list of 30 words varying in emotional valence. The next day, participants' memory for the word list was assessed via free recall and recognition tests. In both experiments, stressed participants exhibited greater blood pressure, salivary cortisol levels, and subjective pain and stress ratings than non-stressed participants in response to the water bath manipulation. Stress applied immediately prior to learning (Exp. 1) enhanced the recognition of positive words, while stress applied 30 min prior to learning (Exp. 2) impaired free recall of negative words. Participants' recognition of positive words in Experiment 1 was positively associated with their heart rate responses to the water bath manipulation, while participants' free recall of negative words in Experiment 2 was negatively associated with their blood pressure and cortisol responses to the water bath manipulation. These findings indicate that the differential effects of pre-learning stress on long-term memory may depend on the temporal proximity of the stressor to the learning experience and the emotional nature of the to-be-learned information.

  9. Time-Based Loss in Visual Short-Term Memory Is from Trace Decay, Not Temporal Distinctiveness

    Science.gov (United States)

    Ricker, Timothy J.; Spiegel, Lauren R.; Cowan, Nelson

    2014-01-01

    There is no consensus as to why forgetting occurs in short-term memory tasks. In past work, we have shown that forgetting occurs with the passage of time, but there are 2 classes of theories that can explain this effect. In the present work, we investigate the reason for time-based forgetting by contrasting the predictions of temporal…

  10. Increased anterior cingulate and temporal lobe activity during visuospatial working memory in children and adolescents with schizophrenia

    NARCIS (Netherlands)

    T.J.H. White (Tonya); D. Hongwanishkul (Donaya); M. Schmidt (Manfred)

    2011-01-01

    textabstractObjective: Similar to adults, children and adolescents with schizophrenia present with significant working memory (WkM) deficits. However, unlike adults, findings of abnormal activity in the prefrontal cortex in early-onset schizophrenia (EOS) are not consistently reported. Since WkM con

  11. Increased anterior cingulate and temporal lobe activity during visuospatial working memory in children and adolescents with schizophrenia

    NARCIS (Netherlands)

    T.J.H. White (Tonya); D. Hongwanishkul (Donaya); M. Schmidt (Manfred)

    2011-01-01

    textabstractObjective: Similar to adults, children and adolescents with schizophrenia present with significant working memory (WkM) deficits. However, unlike adults, findings of abnormal activity in the prefrontal cortex in early-onset schizophrenia (EOS) are not consistently reported. Since WkM

  12. Cognitive impairments associated with medial temporal atrophy and white matter hyperintensities: an MRI study in memory clinic patients

    NARCIS (Netherlands)

    Overdorp, E.J.; Kessels, R.P.C.; Claassen, J.A.H.R.; Oosterman, J.M.

    2014-01-01

    In this retrospective study, we investigated the independent effects of white matter hyperintensities (VVMH) and hippocampal atrophy on cognitive functions in a broad sample of patients seen in a memory clinic. To ensure generalizability, these associations were examined irrespective of diagnosis an

  13. Cognitive impairments associated with medial temporal atrophy and white matter hyperintensities: an MRI study in memory clinic patients

    NARCIS (Netherlands)

    Overdorp, E.J.; Kessels, R.P.C.; Claassen, J.A.H.R.; Oosterman, J.M.

    2014-01-01

    In this retrospective study, we investigated the independent effects of white matter hyperintensities (WMH) and hippocampal atrophy on cognitive functions in a broad sample of patients seen in a memory clinic. To ensure generalizability, these associations were examined irrespective of diagnosis and

  14. Olfactory functions are mediated by parallel and hierarchical processing.

    Science.gov (United States)

    Savic, I; Gulyas, B; Larsson, M; Roland, P

    2000-06-01

    How the human brain processes the perception, discrimination, and recognition of odors has not been systematically explored. Cerebral activations were therefore studied with PET during five different olfactory tasks: monorhinal smelling of odorless air (AS), single odors (OS), discrimination of odor intensity (OD-i), discrimination of odor quality (OD-q), and odor recognition memory (OM). OS activated amygdala-piriform, orbitofrontal, insular, and cingulate cortices and right thalamus. OD-i and OD-q both engaged left insula and right cerebellum. OD-q also involved other areas, including right caudate and subiculum. OM did not activate the insula, but instead, the piriform cortex. With the exception of caudate and subiculum, it shared the remaining activations with the OD-q, and engaged, in addition, the temporal and parietal cortices. These findings indicate that olfactory functions are organized in a parallel and hierarchical manner.

  15. Variação temporal no desempenho em testes de memória em pacientes com doença vascular cerebral Temporal variation in memory tests performance in cerebral vascular disease patients

    Directory of Open Access Journals (Sweden)

    Tania Fernandes Campos

    2007-01-01

    Full Text Available Buscando adequar a avaliação neuropsicológica à organização temporal do organismo humano, avaliou-se o desempenho em testes de memória em 12 pacientes pós Doença Vascular Cerebral e 12 indivíduos controle, de ambos os sexos, com idade de 45 a 65 anos. Foram aplicados dois testes de memória com estímulos visuais (figuras e dois com estímulos verbais (palavras, em 3 dias consecutivos por semana, às 08:00, 10:00 e 12:00 h na primeira semana e às 14:00 e 16:00 h na seguinte. Os pacientes apresentaram menor número de acertos do que os indivíduos controle em todos os testes aplicados (pThis study intended to investigate the performance in memory tests in order to adequate the neuropsychological evaluation to the temporal order of the human organism. Twelve cerebral vascular accident patients and 12 controls, of both sexes and 45-65 years old were studied. Two memory tests with visual stimuli (pictures and two with verbal stimuli (words were applied three times a day (08:00, 10:00 and 12:00 h during the first week and twice a day (14:00 and 16:00 h in the second week, during three consecutive days in two consecutive weeks. The patients showed lower scores than control subjects in all applied tests (p<0,05. The greater test sensitivity was at 14:00 h for the free recall test and at 16:00 h for recognition tests. According to these results, it is concluded that neuropsychological evaluations should be conducted preferably in the afternoon, as well for the first evaluation as for the re-evaluations.

  16. Formation of microcraters and hierarchically-organized surface structures in TiNi shape memory alloy irradiated with a low-energy, high-current electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, L. L., E-mail: llm@ispms.tsc.ru; Meisner, S. N., E-mail: myp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Markov, A. B., E-mail: a.markov@hq.tsc.ru; Ozur, G. E., E-mail: vrotshtein@yahoo.com; Yakovlev, E. V., E-mail: msn@ispms.tsc.ru [Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); Rotshtein, V. P., E-mail: yakovev@lve.hcei.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Tomsk State Pedagogical University, Tomsk, 634050 (Russian Federation); Gudimova, E. Yu., E-mail: ozur@lve.hcei.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    The regularities of surface cratering in TiNi alloy irradiated with a low-energy, high-current electron beam (LEHCEB) in dependence on energy density and number of pulses are studied. LEHCEB processing of TiNi samples was carried out using RITM-SP facility. Energy density E{sub s} was varied from 1 to 5 J/cm{sup 2}, pulse duration was 2.5–3.0 μs, the number of pulses n = 1–128. The dominant role of non-metallic inclusions [mainly, TiC(O)] in the nucleation of microcraters was found. It was revealed that at small number of pulses (n = 2), an increase in energy density leads both to increasing average diameter and density of microcraters. An increase in the number of pulses leads to a monotonic decrease in density of microcraters, and, therefore, that of the proportion of the area occupied by microcraters, as well as a decrease in the surface roughness. The multiple LEHCEB melting of TiNi alloy in crater-free modes enables to form quasi-periodical, hierarchically-organized microsized surface structures.

  17. Michael Jackson, Bin Laden and I: functions of positive and negative, public and private flashbulb memories.

    Science.gov (United States)

    Demiray, Burcu; Freund, Alexandra M

    2015-01-01

    This study examined the perceived psychosocial functions of flashbulb memories: It compared positive and negative public flashbulb memories (positive: Bin Laden's death, negative: Michael Jackson's death) with private ones (positive: pregnancy, negative: death of a loved one). A sample of n = 389 young and n = 176 middle-aged adults answered canonical category questions used to identify flashbulb memories and rated the personal significance, the psychological temporal distance, and the functions of each memory (i.e., self-continuity, social-boding, directive functions). Hierarchical regressions showed that, in general, private memories were rated more functional than public memories. Positive and negative private memories were comparable in self-continuity and directionality, but the positive private memory more strongly served social functions. In line with the positivity bias in autobiographical memory, positive flashbulb memories felt psychologically closer than negative ones. Finally, middle-aged adults rated their memories as less functional regarding self-continuity and social-bonding than young adults. Results are discussed regarding the tripartite model of autobiographical memory functions.

  18. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria.

    Science.gov (United States)

    Li, Wang; Dowd, Scot E; Scurlock, Bobbie; Acosta-Martinez, Veronica; Lyte, Mark

    2009-03-23

    The ability of dietary manipulation to influence learning and behavior is well recognized and almost exclusively interpreted as direct effects of dietary constituents on the central nervous system. The role of dietary modification on gut bacterial populations and the possibility of such microbial population shifts related to learning and behavior is poorly understood. The purpose of this study was to examine whether shifts in bacterial diversity due to dietary manipulation could be correlated with changes in memory and learning. Five week old male CF1 mice were randomly assigned to receive standard rodent chow (PP diet) or chow containing 50% lean ground beef (BD diet) for 3 months. As a measure of memory and learning, both groups were trained and tested on a hole-board open field apparatus. Following behavioral testing, all mice were sacrificed and colonic stool samples collected and analyzed by automated rRNA intergenic spacer analysis (ARISA) and bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) approach for microbial diversity. Results demonstrated significantly higher bacterial diversity in the beef supplemented diet group according to ARISA and bTEFAP. Compared to the PP diet, the BD diet fed mice displayed improved working (P=0.0008) and reference memory (P<0.0001). The BD diet fed animals also displayed slower speed (P<0.0001) in seeking food as well as reduced anxiety level in the first day of testing (P=0.0004). In conclusion, we observed a correlation between dietary induced shifts in bacteria diversity and animal behavior that may indicate a role for gut bacterial diversity in memory and learning.

  19. Hierarchical modeling and analysis for spatial data

    CERN Document Server

    Banerjee, Sudipto; Gelfand, Alan E

    2003-01-01

    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  20. White matter microstructure complements morphometry for predicting verbal memory in epilepsy.

    Science.gov (United States)

    McDonald, Carrie R; Leyden, Kelly M; Hagler, Donald J; Kucukboyaci, Nuri E; Kemmotsu, Nobuko; Tecoma, Evelyn S; Iragui, Vicente J

    2014-09-01

    Verbal memory is the most commonly impaired cognitive domain in patients with temporal lobe epilepsy (TLE). Although damage to the hippocampus and adjacent temporal lobe structures is known to contribute to memory impairment, little is known of the relative contributions of white versus gray matter structures, or whether microstructural versus morphometric measures of temporal lobe pathology are stronger predictors of impairment. We evaluate whether measures of temporal lobe pathology derived from diffusion tensor imaging (DTI; microstructural) versus structural MRI (sMRI; morphometric) contribute the most to memory performances in TLE, after controlling for hippocampal volume (HCV). DTI and sMRI were performed on 26 patients with TLE and 35 controls. Verbal memory was measured with the Logical Memory (LM) subtest of the Wechsler Memory Scale-III. Hierarchical regression analyses were performed to examine unique contributions of DTI and sMRI measures to verbal memory with HCV entered in block 1. In patients, impaired recall was associated with increased mean diffusivity (MD) of multiple fiber tracts that project through the temporal lobes. In addition, increased MD of the left cortical and bilateral pericortical white matter was associated with impaired recall. After controlling for left HCV, only microstructural measures of white matter pathology contributed to verbal recall. The best predictive model included left HCV and MD of the left inferior longitudinal fasciculus (ILF) and pericortical white matter beneath the left entorhinal cortex. This model explained 60% of the variance in delayed recall and revealed that MD of the left ILF was the strongest predictor. These data reveal that white matter microstructure within the temporal lobe can be used in conjunction with left HCV to enhance the prediction of verbal memory impairment, and speak to the complementary nature of DTI and sMRI for understanding cognitive dysfunction in epilepsy and possibly other memory

  1. Hippocampal place cells, context, and episodic memory.

    Science.gov (United States)

    Smith, David M; Mizumori, Sheri J Y

    2006-01-01

    Although most observers agree that the hippocampus has a critical role in learning and memory, there remains considerable debate about the precise functional contribution of the hippocampus to these processes. Two of the most influential accounts hold that the primary function of the hippocampus is to generate cognitive maps and to mediate episodic memory processes. The well-documented spatial firing patterns (place fields) of hippocampal neurons in rodents, along with the spatial learning impairments observed with hippocampal damage support the cognitive mapping hypothesis. The amnesia for personally experienced events seen in humans with hippocampal damage and the data of animal models, which show severe memory deficits associated with hippocampal lesions, support the episodic memory account. Although an extensive literature supports each of these hypotheses, a specific contribution of place cells to episodic memory has not been clearly demonstrated. Recent data from our laboratory, together with previous findings, indicate that hippocampal place fields and neuronal responses to task-relevant stimuli are highly sensitive to the context, even when the contexts are defined by abstract task demands rather than the spatial geometry of the environment. On the basis of these findings, it is proposed that place fields reflect a more general context processing function of the hippocampus. Hippocampal context representations could serve to differentiate contexts and prime the relevant memories and behaviors. Since episodic memories, by definition, include information about the time and place where the episode occurred, contextual information is a necessary prerequisite for any episodic memory. Thus, place fields contribute importantly to episodic memory as part of the needed context representations. Additionally, recent findings indicate that hippocampal neurons differentiate contexts at progressively finer levels of detail, suggesting a hierarchical coding scheme which

  2. The Nature of Short-Term Consolidation in Visual Working Memory.

    Science.gov (United States)

    Ricker, Timothy J; Hardman, Kyle O

    2017-07-13

    Short-term consolidation is the process by which stable working memory representations are created. This process is fundamental to cognition yet poorly understood. The present work examines short-term consolidation using a Bayesian hierarchical model of visual working memory recall to determine the underlying processes at work. Our results show that consolidation functions largely through changing the proportion of memory items successfully maintained until test. Although there was some evidence that consolidation affects representational precision, this change was modest and could not account for the bulk of the consolidation effect on memory performance. The time course of the consolidation function and selective influence of consolidation on specific serial positions strongly indicates that short-term consolidation induces an attentional blink. The blink leads to deficits in memory for the immediately following item when time pressure is introduced. Temporal distinctiveness accounts of the consolidation process are tested and ruled out. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. An Automatic Hierarchical Delay Analysis Tool

    Institute of Scientific and Technical Information of China (English)

    FaridMheir-El-Saadi; BozenaKaminska

    1994-01-01

    The performance analysis of VLSI integrated circuits(ICs) with flat tools is slow and even sometimes impossible to complete.Some hierarchical tools have been developed to speed up the analysis of these large ICs.However,these hierarchical tools suffer from a poor interaction with the CAD database and poorly automatized operations.We introduce a general hierarchical framework for performance analysis to solve these problems.The circuit analysis is automatic under the proposed framework.Information that has been automatically abstracted in the hierarchy is kept in database properties along with the topological information.A limited software implementation of the framework,PREDICT,has also been developed to analyze the delay performance.Experimental results show that hierarchical analysis CPU time and memory requirements are low if heuristics are used during the abstraction process.

  4. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    of different types of hierarchical networks. This is supplemented by a review of ring network design problems and a presentation of a model allowing for modeling most hierarchical networks. We use methods based on linear programming to design the hierarchical networks. Thus, a brief introduction to the various....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...... linear programming based methods is included. The thesis is thus suitable as a foundation for study of design of hierarchical networks. The major contribution of the thesis consists of seven papers which are included in the appendix. The papers address hierarchical network design and/or ring network...

  5. Hierarchical Multiagent Reinforcement Learning

    Science.gov (United States)

    2004-01-25

    In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to speed up the acquisition of cooperative multiagent tasks. We...introduce a hierarchical multiagent reinforcement learning (RL) framework and propose a hierarchical multiagent RL algorithm called Cooperative HRL. In

  6. Sparsey™: event recognition via deep hierarchical sparse distributed codes.

    Science.gov (United States)

    Rinkus, Gerard J

    2014-01-01

    The visual cortex's hierarchical, multi-level organization is captured in many biologically inspired computational vision models, the general idea being that progressively larger scale (spatially/temporally) and more complex visual features are represented in progressively higher areas. However, most earlier models use localist representations (codes) in each representational field (which we equate with the cortical macrocolumn, "mac"), at each level. In localism, each represented feature/concept/event (hereinafter "item") is coded by a single unit. The model we describe, Sparsey, is hierarchical as well but crucially, it uses sparse distributed coding (SDC) in every mac in all levels. In SDC, each represented item is coded by a small subset of the mac's units. The SDCs of different items can overlap and the size of overlap between items can be used to represent their similarity. The difference between localism and SDC is crucial because SDC allows the two essential operations of associative memory, storing a new item and retrieving the best-matching stored item, to be done in fixed time for the life of the model. Since the model's core algorithm, which does both storage and retrieval (inference), makes a single pass over all macs on each time step, the overall model's storage/retrieval operation is also fixed-time, a criterion we consider essential for scalability to the huge ("Big Data") problems. A 2010 paper described a nonhierarchical version of this model in the context of purely spatial pattern processing. Here, we elaborate a fully hierarchical model (arbitrary numbers of levels and macs per level), describing novel model principles like progressive critical periods, dynamic modulation of principal cells' activation functions based on a mac-level familiarity measure, representation of multiple simultaneously active hypotheses, a novel method of time warp invariant recognition, and we report results showing learning/recognition of spatiotemporal patterns.

  7. Working memory load-dependent spatio-temporal activity of single-trial P3 response detected with an adaptive wavelet denoiser.

    Science.gov (United States)

    Zhang, Qiushi; Yang, Xueqian; Yao, Li; Zhao, Xiaojie

    2017-03-27

    Working memory (WM) refers to the holding and manipulation of information during cognitive tasks. Its underlying neural mechanisms have been explored through both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Trial-by-trial coupling of simultaneously collected EEG and fMRI signals has become an important and promising approach to study the spatio-temporal dynamics of such cognitive processes. Previous studies have demonstrated a modulation effect of the WM load on both the BOLD response in certain brain areas and the amplitude of P3. However, much remains to be explored regarding the WM load-dependent relationship between the amplitude of ERP components and cortical activities, and the low signal-to-noise ratio (SNR) of the EEG signal still poses a challenge to performing single-trial analyses. In this paper, we investigated the spatio-temporal activities of P3 during an n-back verbal WM task by introducing an adaptive wavelet denoiser into the extraction of single-trial P3 features and using general linear model (GLM) to integrate simultaneously collected EEG and fMRI data. Our results replicated the modulation effect of the WM load on the P3 amplitude. Additionally, the activation of single-trial P3 amplitudes was detected in multiple brain regions, including the insula, the cuneus, the lingual gyrus (LG), and the middle occipital gyrus (MOG). Moreover, we found significant correlations between P3 features and behavioral performance. These findings suggest that the single-trial integration of simultaneous EEG and fMRI signals may provide new insights into classical cognitive functions.

  8. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...

  9. Sequential memory: a developmental perspective on its relation to frontal lobe functioning.

    Science.gov (United States)

    Romine, Cassandra Burns; Reynolds, Cecil R

    2004-03-01

    The multidimensional nature of the frontal lobes serves to organize and coordinate brain functionings playing a central and pervasive role in human cognition. The executive processes implicated in complex cognition such as novel problem solving, modifying behavior as appropriate in response to changes in the environment, inhibiting prepotent or previous responses, and the implementation of schemas that organize behavior over time are believed to be mediated by the frontal regions of the brain. Overall, the functioning of the frontal lobes assists individuals in goal directed and self-regulatory behavior. Additional theories of frontal lobe functioning have focused on its involvement in temporal, or time-related domains. The organizational and strategic nature of frontal lobe functioning affects memory processes by enhancing the organization of to-be-remembered information. Among the specific memory systems presumed to be based on anterior cerebral structures is the temporal organization of memory. An essential component of memory that involves temporal organization is sequential ordering entailing the ability to judge which stimuli were seen most recently and the temporal ordering of events in memory. Focal lesion studies have demonstrated the importance of the frontal lobes on retrieval tasks in which monitoring, verification, and placement of information in temporal and spatial contexts of critical importance. Similarly, frontal lobe damage has been associated with deficits in memory for the temporal ordering, or sequencing, of events. The acquisition of abilities thought to be mediated by the frontal lobes, including sequential memory, unfolds throughout childhood, serving to condition patterns of behavior for the rest of the brain. Development of the frontal regions of the brain is known to continue through late adolescence and into early adulthood, in contrast to the earlier maturation of other cortical regions. The developmental patterns of the frontal lobes

  10. Examining Brain-Cognition Effects of Ginkgo Biloba Extract: Brain Activation in the Left Temporal and Left Prefrontal Cortex in an Object Working Memory Task

    Directory of Open Access Journals (Sweden)

    R. B. Silberstein

    2011-01-01

    Full Text Available Ginkgo Biloba extract (GBE is increasingly used to alleviate symptoms of age related cognitive impairment, with preclinical evidence pointing to a pro-cholinergic effect. While a number of behavioral studies have reported improvements to working memory (WM associated with GBE, electrophysiological studies of GBE have typically been limited to recordings during a resting state. The current study investigated the chronic effects of GBE on steady state visually evoked potential (SSVEP topography in nineteen healthy middle-aged (50-61 year old male participants whilst completing an object WM task. A randomized double-blind crossover design was employed in which participants were allocated to receive 14 days GBE and 14 days placebo in random order. For both groups, SSVEP was recorded from 64 scalp electrode sites during the completion of an object WM task both pre- and 14 days post-treatment. GBE was found to improve behavioural performance on the WM task. GBE was also found to increase the SSVEP amplitude at occipital and frontal sites and increase SSVEP latency at left temporal and left frontal sites during the hold component of the WM task. These SSVEP changes associated with GBE may represent more efficient processing during WM task completion.

  11. A cellular mechanism for system memory consolidation

    Directory of Open Access Journals (Sweden)

    Michiel W. H. Remme

    2014-03-01

    Full Text Available Declarative memories initially depend on the hippocampus. Over a period of weeks to years, however, these memories become hippocampus-independent through a process called system memory consolidation. The underlying cellular mechanisms are unclear. Here, we suggest a consolidation mechanism, which is based on STDP and a ubiquitous anatomical network motif. As a first step in the memory consolidation process, we consider pyramidal neurons in the hippocampal CA1 area. These cells receive Schaffer collateral (SC input from the CA3 area at the proximal dendrites, and perforant path (PP input from entorhinal cortex at the distal dendrites. Both pathways carry sensory information that has been processed by cortical networks and that enters the hippocampus through the entorhinal cortex. Hence, information from entorhinal cortex reaches CA1 cells through an indirect pathway (via CA3 and SC and a direct pathway (PP. Memories are assumed to be initially stored in the recurrent CA3 network and the SC synapses during the awake, exploratory state. During a subsequent consolidation phase (during slow-wave sleep SC-dependent memories are partly transferred to the PP synapses. Through mathematical analysis and numerical simulations we show that this consolidation process occurs as a natural result from the combination of (1 STDP at PP synapses and (2 the temporal correlations between SC and PP activities, since the (indirect SC input is delayed compared to the (direct PP input by about 5-10 ms. With a detailed compartmental model we then show that the spatial tuning of a CA1 cell is copied from the proximal SC-synaptic inputs to the distal PP-inputs. Next, we repeated the network motif across many levels in a hierarchical network model: each direct connection at one level is part of the indirect pathway of the next level. Analysis and simulations of this hierarchical system demonstrate that memories gradually move from hippocampus into neocortex. Moreover, the

  12. Temporal Adverbials in Text Structuring: On Temporal Text Strategy.

    Science.gov (United States)

    Virtanen, Tuija

    This paper discusses clause-initial adverbials of time functioning as signals of the temporal text strategy. A chain of such markers creates cohesion and coherence by forming continuity in the text and also signals textual boundaries that occur on different hierarchic levels. The temporal text strategy is closely associated with narrative text.…

  13. Dynamic Updating Process of Readers' Temporal Situation Model: From Short-term Working Memory to Long-term Working Memory%时间情景模型的动态更新:从短时工作记忆到长时工作记忆

    Institute of Scientific and Technical Information of China (English)

    何先友; 杨惠兰; 张维; 赵雪汝; 谢毅

    2015-01-01

    The situation model is a hot topic in current narrative comprehension research. The Event-indexing model proposed by Zwaan, Langson, and Graesser (1995) suggests that readers establish a mental representation of events by tracking them through five dimensions: time, space, characters, causality, and protagonist/object. A large number of previous studies have shown that the temporal dimension plays an important role in constructing the situation model. The Scenario Account (Anderson, 1983) argues that scene provides clues for temporal shifts, but the Strong Iconicity Assumption (Zwaan, 1996) argues that readers update the situation model as soon as temporal shifts appear. In this study, we designed two experiments to resolve the disagreement between the Scenario Account and the Strong Iconicity Assumption. We assume that the Scenario Model and the Strong Iconicity Assumption do not contradict each other due to how the updating of a situation model has a variable processing mode in different stages of memory processing. We designed two experiments to test this hypothesis: Experiment 1 examined the effects of temporal shifts on the updating of the situation model in short-term working memory, and Experiment 2 examined this effect in long-term working memory.In this study, a moving-window technique was used to explore the extent to which temporal shifts (long/short) affect updating of readers' situation model. Experiment 1a and 1b examined whether long temporal shifts or short temporal shifts affected updating of readers' situation model in short-term working memory. A single factor within-subjects design (time shift of a moment after or a day later) was used. We predicted the long temporal shifts (Experiment 1a) would not result in the updating of readers' situation model due to the time limitation and difficulties of processing in short-term memory, but that short temporal shifts (Experiment 1b) would. Experiment 2 further examined the extent to which long temporal

  14. Aging Memories: Differential Decay of Episodic Memory Components

    Science.gov (United States)

    Talamini, Lucia M.; Gorree, Eva

    2012-01-01

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a…

  15. Associative working memory and subsequent episodic memory in Alzheimer's disease.

    NARCIS (Netherlands)

    Geldorp, B. van; Konings, E.P.; Tilborg, I.A. Van; Kessels, R.P.C.

    2012-01-01

    Recent studies indicate deficits in associative working memory in patients with medial-temporal lobe amnesia. However, it is unclear whether these deficits reflect working memory processing or are due to hippocampally mediated long-term memory impairment. We investigated associative working memory

  16. Associative working memory and subsequent episodic memory in Alzheimer's disease

    NARCIS (Netherlands)

    Geldorp, B. van; Konings, E.P.C.; Tilborg, I.A.D.A. van; Kessels, R.P.C.

    2012-01-01

    Recent studies indicate deficits in associative working memory in patients with medial-temporal lobe amnesia. However, it is unclear whether these deficits reflect working memory processing or are due to hippocampally mediated long-term memory impairment. We investigated associative working memory

  17. Evaluating Hierarchical Structure in Music Annotations.

    Science.gov (United States)

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  18. Evaluating Hierarchical Structure in Music Annotations

    Directory of Open Access Journals (Sweden)

    Brian McFee

    2017-08-01

    Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  19. Emotional and neutral declarative memory impairments and associated white matter microstructural abnormalities in adults with type 2 diabetes.

    Science.gov (United States)

    Yau, Po Lai; Javier, David; Tsui, Wai; Sweat, Victoria; Bruehl, Hannah; Borod, Joan C; Convit, Antonio

    2009-12-30

    Declarative memory impairment is frequently reported among adults with type 2 diabetes mellitus (T2DM), who also demonstrate hippocampal volume reduction. Our goals were to ascertain whether emotional memory, which is mediated by neural circuits overlapping those of declarative memory, is also affected. In addition we wanted to characterize cerebral white matter (WM) involvement in T2DM. We studied 24 middle-aged and elderly patients with T2DM who were free of obvious vascular pathology or a psychiatric disorder, and 17 age- and education-matched healthy individuals with no evidence of insulin resistance. We examined emotional and neutral memory and performed a whole-brain voxelwise WM assessment utilizing diffusion tensor imaging (DTI). We found clear evidence of impairment in declarative memory among diabetic subjects and in addition found some preliminary support to suggest a possible blunting of the memory facilitation by emotional material among female but not male diabetics. This report is also the first DTI assessment among individuals with T2DM, which after accounting for overt WM damage, revealed diffuse but predominantly frontal and temporal WM microstructural abnormalities, with extensive involvement of the temporal stem. Hierarchical regression analyses demonstrated that immediate, but not delayed, emotional memory performance was explained by temporal stem FA, independent of age, poor metabolic regulation, and systolic blood pressure. Given that the temporal lobe memory networks appear to be particularly vulnerable to the deleterious effects of T2DM, this may help explain the observed memory impairments among diabetics. Future efforts should better clarify, with a larger sample, whether emotional memory is affected in adults with T2DM and whether there are clear gender effects.

  20. Hierarchical Parallel Evaluation of a Hamming Code

    Directory of Open Access Journals (Sweden)

    Shmuel T. Klein

    2017-04-01

    Full Text Available The Hamming code is a well-known error correction code and can correct a single error in an input vector of size n bits by adding logn parity checks. A new parallel implementation of the code is presented, using a hierarchical structure of n processors in logn layers. All the processors perform similar simple tasks, and need only a few bytes of internal memory.

  1. Cognitive Memory Network

    CERN Document Server

    James, Alex Pappachen; 10.1049/el.2010.0279

    2012-01-01

    A resistive memory network that has no crossover wiring is proposed to overcome the hardware limitations to size and functional complexity that is associated with conventional analogue neural networks. The proposed memory network is based on simple network cells that are arranged in a hierarchical modular architecture. Cognitive functionality of this network is demonstrated by an example of character recognition. The network is trained by an evolutionary process to completely recognise characters deformed by random noise, rotation, scaling and shifting

  2. Hierarchical Neural Network Structures for Phoneme Recognition

    CERN Document Server

    Vasquez, Daniel; Minker, Wolfgang

    2013-01-01

    In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a  Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.

  3. False positives to confusable objects predict medial temporal lobe atrophy.

    Science.gov (United States)

    Kivisaari, Sasa L; Monsch, Andreas U; Taylor, Kirsten I

    2013-09-01

    Animal models agree that the perirhinal cortex plays a critical role in object recognition memory, but qualitative aspects of this mnemonic function are still debated. A recent model claims that the perirhinal cortex is required to recognize the novelty of confusable distractor stimuli, and that damage here results in an increased propensity to judge confusable novel objects as familiar (i.e., false positives). We tested this model in healthy participants and patients with varying degrees of perirhinal cortex damage, i.e., amnestic mild cognitive impairment and very early Alzheimer's disease (AD), with a recognition memory task with confusable and less confusable realistic object pictures, and from whom we acquired high-resolution anatomic MRI scans. Logistic mixed-model behavioral analyses revealed that both patient groups committed more false positives with confusable than less confusable distractors, whereas healthy participants performed comparably in both conditions. A voxel-based morphometry analysis demonstrated that this effect was associated with atrophy of the anteromedial temporal lobe, including the perirhinal cortex. These findings suggest that also the human perirhinal cortex recognizes the novelty of confusable objects, consistent with its border position between the hierarchical visual object processing and medial temporal lobe memory systems, and explains why AD patients exhibit a heightened propensity to commit false positive responses with inherently confusable stimuli.

  4. Hierarchy of Processing Memories in the Human Visual System

    Science.gov (United States)

    Williamson, S. J.; Uusitalo, M. A.

    1997-03-01

    Magnetic source imaging, obtained with an array of 122 superconducting sensors, reveals a dynamical organization of visual cortical areas suggesting that the participation of local memories is an essential component of visual information processing. Response recovery studies provide evidence that each responding cortical area supports a memory function with a well-defined lifetime. The areas fell into two groups: the earliest in occipital lobes with lifetimes ranging from 0.1 to 0.6 s, and the later ones in temporal, parietal, and frontal areas with lifetimes ranging from 7 to 30 s. Also, within each group the areas responding later tended to have longer lifetimes. These hierarchical features introduce a dynamic element that is lacking in many contemporary models of visual processing.

  5. Fractal image perception provides novel insights into hierarchical cognition.

    Science.gov (United States)

    Martins, M J; Fischmeister, F P; Puig-Waldmüller, E; Oh, J; Geissler, A; Robinson, S; Fitch, W T; Beisteiner, R

    2014-08-01

    Hierarchical structures play a central role in many aspects of human cognition, prominently including both language and music. In this study we addressed hierarchy in the visual domain, using a novel paradigm based on fractal images. Fractals are self-similar patterns generated by repeating the same simple rule at multiple hierarchical levels. Our hypothesis was that the brain uses different resources for processing hierarchies depending on whether it applies a "fractal" or a "non-fractal" cognitive strategy. We analyzed the neural circuits activated by these complex hierarchical patterns in an event-related fMRI study of 40 healthy subjects. Brain activation was compared across three different tasks: a similarity task, and two hierarchical tasks in which subjects were asked to recognize the repetition of a rule operating transformations either within an existing hierarchical level, or generating new hierarchical levels. Similar hierarchical images were generated by both rules and target images were identical. We found that when processing visual hierarchies, engagement in both hierarchical tasks activated the visual dorsal stream (occipito-parietal cortex, intraparietal sulcus and dorsolateral prefrontal cortex). In addition, the level-generating task specifically activated circuits related to the integration of spatial and categorical information, and with the integration of items in contexts (posterior cingulate cortex, retrosplenial cortex, and medial, ventral and anterior regions of temporal cortex). These findings provide interesting new clues about the cognitive mechanisms involved in the generation of new hierarchical levels as required for fractals.

  6. Sparsey^TM: Spatiotemporal Event Recognition via Deep Hierarchical Sparse Distributed Codes

    Directory of Open Access Journals (Sweden)

    Gerard J Rinkus

    2014-12-01

    Full Text Available The visual cortex’s hierarchical, multi-level organization is captured in many biologically inspired computational vision models, the general idea being that progressively larger scale (spatially/temporally and more complex visual features are represented in progressively higher areas. However, most earlier models use localist representations (codes in each representational field (which we equate with the cortical macrocolumn, mac, at each level. In localism, each represented feature/concept/event (hereinafter item is coded by a single unit. The model we describe, Sparsey, is hierarchical as well but crucially, it uses sparse distributed coding (SDC in every mac in all levels. In SDC, each represented item is coded by a small subset of the mac’s units. The SDCs of different items can overlap and the size of overlap between items can be used to represent their similarity. The difference between localism and SDC is crucial because SDC allows the two essential operations of associative memory, storing a new item and retrieving the best-matching stored item, to be done in fixed time for the life of the model. Since the model’s core algorithm, which does both storage and retrieval (inference, makes a single pass over all macs on each time step, the overall model’s storage/retrieval operation is also fixed-time, a criterion we consider essential for scalability to the huge (Big Data problems. A 2010 paper described a non-hierarchical version of this model in the context of purely spatial pattern processing. Here, we elaborate a fully hierarchical model (arbitrary numbers of levels and macs per level, describing novel model principles like progressive critical periods, dynamic modulation of principal cells’ activation functions based on a mac-level familiarity measure, representation of multiple simultaneously active hypotheses, a novel method of time warp invariant recognition, and we report results showing learning/recognition of

  7. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  8. Hierarchical auxetic mechanical metamaterials.

    Science.gov (United States)

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I; Azzopardi, Keith M; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N

    2015-02-11

    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.

  9. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  10. Hierarchical Auxetic Mechanical Metamaterials

    Science.gov (United States)

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.; Azzopardi, Keith M.; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N.

    2015-02-01

    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.

  11. Applied Bayesian Hierarchical Methods

    CERN Document Server

    Congdon, Peter D

    2010-01-01

    Bayesian methods facilitate the analysis of complex models and data structures. Emphasizing data applications, alternative modeling specifications, and computer implementation, this book provides a practical overview of methods for Bayesian analysis of hierarchical models.

  12. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  13. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...

  14. APPLICATION OF HIERARCHICAL REINFORCEMENT LEARNING IN ENGINEERING DOMAIN

    Institute of Scientific and Technical Information of China (English)

    WEI LI; Qingtai YE; Changming ZHU

    2005-01-01

    The slow convergence rate of reinforcement learning algorithms limits their wider application.In engineering domains, hierarchical reinforcement learning is developed to perform actions temporally according to prior knowledge. This system can converge fast due to reduced state space.There is a test of elevator group control to show the power of the new system. Two conventional group control algorithms are adopted as prior knowledge. Performance indicates that hierarchical reinforcement learning can reduce the learning time dramatically.

  15. Dissociations in cognitive memory: the syndrome of developmental amnesia.

    Science.gov (United States)

    Vargha-Khadem, F; Gadian, D G; Mishkin, M

    2001-09-29

    The dearth of studies on amnesia in children has led to the assumption that when damage to the medial temporal lobe system occurs early in life, the compensatory capacity of the immature brain rescues memory functions. An alternative view is that such damage so interferes with the development of learning and memory that it results not in selective cognitive impairments but in general mental retardation. Data will be presented to counter both of these arguments. Results obtained from a series of 11 amnesic patients with a history of hypoxic ischaemic damage sustained perinatally or during childhood indicate that regardless of age at onset of hippocampal pathology, there is a pronounced dissociation between episodic memory, which is severely impaired, and semantic memory, which is relatively preserved. A second dissociation is characterized by markedly impaired recall and relatively spared recognition leading to a distinction between recollection-based versus familiarity-based judgements. These findings are discussed in terms of the locus and extent of neuropathology associated with hypoxic ischaemic damage, the neural basis of 'remembering' versus 'knowing', and a hierarchical model of cognitive memory.

  16. Imaging a memory trace over half a life-time in the medial temporal lobe reveals a time-limited role of CA3 neurons in retrieval.

    Science.gov (United States)

    Lux, Vanessa; Atucha, Erika; Kitsukawa, Takashi; Sauvage, Magdalena M

    2016-02-12

    Whether retrieval still depends on the hippocampus as memories age or relies then on cortical areas remains a major controversy. Despite evidence for a functional segregation between CA1, CA3 and parahippocampal areas, their specific role within this frame is unclear. Especially, the contribution of CA3 is questionable as very remote memories might be too degraded to be used for pattern completion. To identify the specific role of these areas, we imaged brain activity in mice during retrieval of recent, early remote and very remote fear memories by detecting the immediate-early gene Arc. Investigating correlates of the memory trace over an extended period allowed us to report that, in contrast to CA1, CA3 is no longer recruited in very remote retrieval. Conversely, we showed that parahippocampal areas are then maximally engaged. These results suggest a shift from a greater contribution of the trisynaptic loop to the temporoammonic pathway for retrieval.

  17. Priming and competition of associated memory representations: A comparison between response times and event-related potentials following lesions to left temporal cortex

    Directory of Open Access Journals (Sweden)

    Vitória Piai

    2015-05-01

    These results suggest that associated concepts and words in memory prime each other (as indexed by the N400 effect, but also incur a stronger competition between them (as indicated by the RT effect, delaying response selection.

  18. Aging memories: differential decay of episodic memory components

    NARCIS (Netherlands)

    Talamini, L.M.; Gorree, E.

    2012-01-01

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent

  19. Why does brain damage impair memory? A connectionist model of object recognition memory in perirhinal cortex.

    Science.gov (United States)

    Cowell, Rosemary A; Bussey, Timothy J; Saksida, Lisa M

    2006-11-22

    Object recognition is the canonical test of declarative memory, the type of memory putatively impaired after damage to the temporal lobes. Studies of object recognition memory have helped elucidate the anatomical structures involved in declarative memory, indicating a critical role for perirhinal cortex. We offer a mechanistic account of the effects of perirhinal cortex damage on object recognition memory, based on the assumption that perirhinal cortex stores representations of the conjunctions of visual features possessed by complex objects. Such representations are proposed to play an important role in memory when it is difficult to solve a task using representations of only individual visual features of stimuli, thought to be stored in regions of the ventral visual stream caudal to perirhinal cortex. The account is instantiated in a connectionist model, in which development of object representations with visual experience provides a mechanism for judgment of previous occurrence. We present simulations addressing the following empirical findings: (1) that impairments after damage to perirhinal cortex (modeled by removing the "perirhinal cortex" layer of the network) are exacerbated by lengthening the delay between presentation of to-be-remembered items and test, (2) that such impairments are also exacerbated by lengthening the list of to-be-remembered items, and (3) that impairments are revealed only when stimuli are trial unique rather than repeatedly presented. This study shows that it may be possible to account for object recognition impairments after damage to perirhinal cortex within a hierarchical, representational framework, in which complex conjunctive representations in perirhinal cortex play a critical role.

  20. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  1. Application of hierarchical matrices for partial inverse

    KAUST Repository

    Litvinenko, Alexander

    2013-11-26

    In this work we combine hierarchical matrix techniques (Hackbusch, 1999) and domain decomposition methods to obtain fast and efficient algorithms for the solution of multiscale problems. This combination results in the hierarchical domain decomposition (HDD) method, which can be applied for solution multi-scale problems. Multiscale problems are problems that require the use of different length scales. Using only the finest scale is very expensive, if not impossible, in computational time and memory. Domain decomposition methods decompose the complete problem into smaller systems of equations corresponding to boundary value problems in subdomains. Then fast solvers can be applied to each subdomain. Subproblems in subdomains are independent, much smaller and require less computational resources as the initial problem.

  2. True and False Memories, Parietal Cortex, and Confidence Judgments

    Science.gov (United States)

    Urgolites, Zhisen J.; Smith, Christine N.; Squire, Larry R.

    2015-01-01

    Recent studies have asked whether activity in the medial temporal lobe (MTL) and the neocortex can distinguish true memory from false memory. A frequent complication has been that the confidence associated with correct memory judgments (true memory) is typically higher than the confidence associated with incorrect memory judgments (false memory).…

  3. True and False Memories, Parietal Cortex, and Confidence Judgments

    Science.gov (United States)

    Urgolites, Zhisen J.; Smith, Christine N.; Squire, Larry R.

    2015-01-01

    Recent studies have asked whether activity in the medial temporal lobe (MTL) and the neocortex can distinguish true memory from false memory. A frequent complication has been that the confidence associated with correct memory judgments (true memory) is typically higher than the confidence associated with incorrect memory judgments (false memory).…

  4. Neutrosophic Hierarchical Clustering Algoritms

    Directory of Open Access Journals (Sweden)

    Rıdvan Şahin

    2014-03-01

    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  5. Working and strategic memory deficits in schizophrenia

    Science.gov (United States)

    Stone, M.; Gabrieli, J. D.; Stebbins, G. T.; Sullivan, E. V.

    1998-01-01

    Working memory and its contribution to performance on strategic memory tests in schizophrenia were studied. Patients (n = 18) and control participants (n = 15), all men, received tests of immediate memory (forward digit span), working memory (listening, computation, and backward digit span), and long-term strategic (free recall, temporal order, and self-ordered pointing) and nonstrategic (recognition) memory. Schizophrenia patients performed worse on all tests. Education, verbal intelligence, and immediate memory capacity did not account for deficits in working memory in schizophrenia patients. Reduced working memory capacity accounted for group differences in strategic memory but not in recognition memory. Working memory impairment may be central to the profile of impaired cognitive performance in schizophrenia and is consistent with hypothesized frontal lobe dysfunction associated with this disease. Additional medial-temporal dysfunction may account for the recognition memory deficit.

  6. Classifying anatomical subtypes of subjective memory impairment.

    Science.gov (United States)

    Jung, Na-Yeon; Seo, Sang Won; Yoo, Heejin; Yang, Jin-Ju; Park, Seongbeom; Kim, Yeo Jin; Lee, Juyoun; Lee, Jin San; Jang, Young Kyoung; Lee, Jong Min; Kim, Sung Tae; Kim, Seonwoo; Kim, Eun-Joo; Na, Duk L; Kim, Hee Jin

    2016-12-01

    We aimed to categorize subjective memory impairment (SMI) individuals based on their patterns of cortical thickness and to propose simple models that can classify each subtype. We recruited 613 SMI individuals and 613 age- and gender-matched normal controls. Using hierarchical agglomerative cluster analysis, SMI individuals were divided into 3 subtypes: temporal atrophy (12.9%), minimal atrophy (52.4%), and diffuse atrophy (34.6%). Individuals in the temporal atrophy (Alzheimer's disease-like atrophy) subtype were older, had more vascular risk factors, and scored the lowest on neuropsychological tests. Combination of these factors classified the temporal atrophy subtype with 73.2% accuracy. On the other hand, individuals with the minimal atrophy (non-neurodegenerative) subtype were younger, were more likely to be female, and had depression. Combination of these factors discriminated the minimal atrophy subtype with 76.0% accuracy. We suggest that SMI can be largely categorized into 3 anatomical subtypes that have distinct clinical features. Our models may help physicians decide next steps when encountering SMI patients and may also be used in clinical trials.

  7. Generic hierarchical engine for mask data preparation

    Science.gov (United States)

    Kalus, Christian K.; Roessl, Wolfgang; Schnitker, Uwe; Simecek, Michal

    2002-07-01

    Electronic layouts are usually flattened on their path from the hierarchical source downstream to the wafer. Mask data preparation has certainly been identified as a severe bottleneck since long. Data volumes are not only doubling every year along the ITRS roadmap. With the advent of optical proximity correction and phase-shifting masks data volumes are escalating up to non-manageable heights. Hierarchical treatment is one of the most powerful means to keep memory and CPU consumption in reasonable ranges. Only recently, however, has this technique acquired more public attention. Mask data preparation is the most critical area calling for a sound infrastructure to reduce the handling problem. Gaining more and more attention though, are other applications such as large area simulation and manufacturing rule checking (MRC). They all would profit from a generic engine capable to efficiently treat hierarchical data. In this paper we will present a generic engine for hierarchical treatment which solves the major problem, steady transitions along cell borders. Several alternatives exist how to walk through the hierarchy tree. They have, to date, not been thoroughly investigated. One is a bottom-up attempt to treat cells starting with the most elementary cells. The other one is a top-down approach which lends itself to creating a new hierarchy tree. In addition, since the variety, degree of hierarchy and quality of layouts extends over a wide range a generic engine has to take intelligent decisions when exploding the hierarchy tree. Several applications will be shown, in particular how far the limits can be pushed with the current hierarchical engine.

  8. Temporal discounting of rewards in patients with bipolar disorder and schizophrenia.

    Science.gov (United States)

    Ahn, Woo-Young; Rass, Olga; Fridberg, Daniel J; Bishara, Anthony J; Forsyth, Jennifer K; Breier, Alan; Busemeyer, Jerome R; Hetrick, William P; Bolbecker, Amanda R; O'Donnell, Brian F

    2011-11-01

    Patients with bipolar disorder (BD) and schizophrenia (SZ) often show decision-making deficits in everyday circumstances. A failure to appropriately weigh immediate versus future consequences of choices may contribute to these deficits. We used the delay discounting task in individuals with BD or SZ to investigate their temporal decision making. Twenty-two individuals with BD, 21 individuals with SZ, and 30 healthy individuals completed the delay discounting task along with neuropsychological measures of working memory and cognitive function. Both BD and SZ groups discounted delayed rewards more steeply than did the healthy group even after controlling for current substance use, age, gender, and employment. Hierarchical multiple regression analyses showed that discounting rate was associated with both diagnostic group and working memory or intelligence scores. In each group, working memory or intelligence scores negatively correlated with discounting rate. The results suggest that (a) both BD and SZ groups value smaller, immediate rewards more than larger, delayed rewards compared with the healthy group and (b) working memory or intelligence is related to temporal decision making in individuals with BD or SZ as well as in healthy individuals.

  9. Analysis of a distributed neural system involved in spatial information, novelty, and memory processing.

    Science.gov (United States)

    Menon, V; White, C D; Eliez, S; Glover, G H; Reiss, A L

    2000-10-01

    Perceiving a complex visual scene and encoding it into memory involves a hierarchical distributed network of brain regions, most notably the hippocampus (HIPP), parahippocampal gyrus (PHG), lingual gyrus (LNG), and inferior frontal gyrus (IFG). Lesion and imaging studies in humans have suggested that these regions are involved in spatial information processing as well as novelty and memory encoding; however, the relative contributions of these regions of interest (ROIs) are poorly understood. This study investigated regional dissociations in spatial information and novelty processing in the context of memory encoding using a 2 x 2 factorial design with factors Novelty (novel vs. repeated) and Stimulus (viewing scenes with rich vs. poor spatial information). Greater activation was observed in the right than left hemisphere; however, hemispheric effects did not differ across regions, novelty, or stimulus type. Significant novelty effects were observed in all four regions. A significant ROI x Stimulus interaction was observed - spatial information processing effects were largest effects in the LNG, significant in the PHG and HIPP and nonsignificant in the IFG. Novelty processing was stimulus dependent in the LNG and stimulus independent in the PHG, HIPP, and IFG. Analysis of the profile of Novelty x Stimulus interaction across ROIs provided evidence for a hierarchical independence in novelty processing characterized by increased dissociation from spatial information processing. Despite these differences in spatial information processing, memory performance for novel scenes with rich and poor spatial information was not significantly different. Memory performance was inversely correlated with right IFG activation, suggesting the involvement of this region in strategically flawed encoding effort. Stepwise regression analysis revealed that memory encoding accounted for only a small fraction of the variance (temporal lobe activation. The implications of these results for

  10. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  11. Autobiographical memory in children with Idiopathic Generalised Epilepsy.

    Science.gov (United States)

    Gascoigne, Michael B; Barton, Belinda; Webster, Richard; Gill, Deepak; Lah, Suncica

    2015-01-01

    Autobiographical memory involves the recall of both personal facts (semantic memory) and the re-experiencing of past personal events (episodic memory). The recall of autobiographical episodic details has been associated with a specific network, which involves the prefrontal and medial temporal lobes, in addition to posterior regions of the brain. Seizure activity has been previously shown to disrupt the consolidation of newly-learned information into long-term memory, but it is not yet known whether primary generalised seizures alone are also associated with deficits in the recall of autobiographical memories. Here we examined this recall in children who experience generalised rather than localisation-related seizures: children with Idiopathic Generalised Epilepsy (IGE). In this study, 18 children with IGE and 42 healthy controls of comparable age (6-16 years), sex and socio-economic status were administered the Children's Autobiographical Interview (CAI). Compared with controls, children with IGE recalled significantly fewer episodic details, even when retrieval prompts were provided. In contrast, no group difference was found for the recall of semantic autobiographic details. Within the IGE group, hierarchical regression analyses showed that patient age and earlier age of diagnosis were significantly related to the recall of episodic autobiographical details over different conditions of the CAI, explaining up to 37% of variance. To our knowledge, this study provides the first evidence of autobiographical episodic memory deficits in patients with primary generalised seizures. As no evidence of localisation-related epilepsy is apparent in patients with IGE, our findings suggest that generalised seizures alone, especially when developed at an early age, could compromise memories for personally-experienced events.

  12. Distúrbio de Percepção Temporal e sua Influência na Memória: Estudo de Caso de Paciente com Lesão Frontal Temporal Perception Disorder and its Influence on Memory: A Case Study of a Patient with Frontal Lobe Lesion

    Directory of Open Access Journals (Sweden)

    Maria Alice de Mattos Pimenta Parente

    2001-01-01

    Full Text Available Os mecanismos da memória episódica possibilitam uma pessoa "viajar" pelo tempo, e quando relacionados ao tempo futuro, compõem a memória prospectiva. O objetivo desse trabalho é verificar, através de um estudo de caso de uma paciente com lesão cerebral no lobo frontal, apresentando distúrbio de percepção temporal e falhas de memória, se é possível diferenciar os mecanismos neurocognitivos de memória operacional dos da memória prospectiva. Tomando por base o modelo de Ellis, a paciente foi submetida a uma bateria de lobo frontal e à prova experimental proposta por Einstein e Daniel. Os resultados mostraram que suas falhas não afetam recursos atencionais necessários na execução de ações complexas, mas o controle de mecanismos internos (self-driven, como a noção do tempo, ativação de intenções e tomada de decisões. De acordo com o modelo adotado, a paciente apresenta falha específica na ativação de intenções e no processo de supervisão. Esses achados indicam que memória operacional e memória prospectiva podem ter correlatos neuropsicológicos diversos.The cognitive mechanisms of the episodic memory allow a person to travel through time. These mechanisms that are related to the future compose the so-called prospective memory. The main objective of this work was to verify whether it is possible to dissociate neurocognitive mechanisms of the working memory from those of the prospective memory by using a case study with frontal lesion, presenting failures in time perception and memory disorders. Based on the Ellis model, the patient was tested using both a frontal lobe battery and an Einstein and Daniel's task. The results showed that the failures did not affect attentional resources required for the execution of complex actions, but decreased the self-driven mechanisms such as the notion of time, intentionality and decision making. Following the model, the patient had specific failures in the activation of

  13. Cognitive function predicts neural activity associated with pre-attentive temporal processing.

    Science.gov (United States)

    Foster, Shannon M; Kisley, Michael A; Davis, Hasker P; Diede, Nathaniel T; Campbell, Alana M; Davalos, Deana B

    2013-01-01

    Temporal processing, or processing time-related information, appears to play a significant role in a variety of vital psychological functions. One of the main confounds to assessing the neural underpinnings and cognitive correlates of temporal processing is that behavioral measures of timing are generally confounded by other supporting cognitive processes, such as attention. Further, much theorizing in this field has relied on findings from clinical populations (e.g., individuals with schizophrenia) known to have temporal processing deficits. In this study, we attempted to avoid these difficulties by comparing temporal processing assessed by a pre-attentive event-related brain potential (ERP) waveform, the mismatch negativity (MMN) elicited by time-based stimulus features, to a number of cognitive functions within a non-clinical sample. We studied healthy older adults (without dementia), as this population inherently ensures more prominent variability in cognitive function than a younger adult sample, allowing for the detection of significant relationships between variables. Using hierarchical regression analyses, we found that verbal memory and executive functions (i.e., planning and conditional inhibition, but not set-shifting) uniquely predicted variance in temporal processing beyond that predicted by the demographic variables of age, gender, and hearing loss. These findings are consistent with a frontotemporal model of MMN waveform generation in response to changes in the temporal features of auditory stimuli.

  14. Cache related pre-emption delays in hierarchical scheduling

    NARCIS (Netherlands)

    Lunniss, W.; Altmeyer, S.; Lipari, G.; Davis, R.I.

    2016-01-01

    Hierarchical scheduling provides a means of composing multiple real-time applications onto a single processor such that the temporal requirements of each application are met. This has become a popular technique in industry as it allows applications from multiple vendors as well as legacy application

  15. Perceptual Cognition in the Distributed Cognition (DCOG) Framework: A Study of Dual Coding and Temporal Factors in a Knowledge-Based Memory System

    Science.gov (United States)

    2006-08-01

    demonstrated successful cognitive performance in a complex air traffic management and leaning task (Eggleston, McCreight, and Young, 2005). For this study, we...engaged in an air traffic control task that required real-time learning. A more detailed description of the basic DCOG memory model is provided in...interpretation. Such interpretive tensions may be addressed by mechanisms involved in managing stereopsis . For this project we do not address these more detailed

  16. Memory dynamics under stress.

    Science.gov (United States)

    Quaedflieg, Conny W E M; Schwabe, Lars

    2017-06-19

    Stressful events have a major impact on memory. They modulate memory formation in a time-dependent manner, closely linked to the temporal profile of action of major stress mediators, in particular catecholamines and glucocorticoids. Shortly after stressor onset, rapidly acting catecholamines and fast, non-genomic glucocorticoid actions direct cognitive resources to the processing and consolidation of the ongoing threat. In parallel, control of memory is biased towards rather rigid systems, promoting habitual forms of memory allowing efficient processing under stress, at the expense of "cognitive" systems supporting memory flexibility and specificity. In this review, we discuss the implications of this shift in the balance of multiple memory systems for the dynamics of the memory trace. Specifically, stress appears to hinder the incorporation of contextual details into the memory trace, to impede the integration of new information into existing knowledge structures, to impair the flexible generalisation across past experiences, and to hamper the modification of memories in light of new information. Delayed, genomic glucocorticoid actions might reverse the control of memory, thus restoring homeostasis and "cognitive" control of memory again.

  17. Collaborative Hierarchical Sparse Modeling

    CERN Document Server

    Sprechmann, Pablo; Sapiro, Guillermo; Eldar, Yonina C

    2010-01-01

    Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in this framework is done by solving an l_1-regularized linear regression problem, usually called Lasso. In this work we first combine the sparsity-inducing property of the Lasso model, at the individual feature level, with the block-sparsity property of the group Lasso model, where sparse groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in the hierarchical Lasso, which shows important practical modeling advantages. We then extend this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity pattern at the higher (group) level but not necessarily at the lower one. Signals then share the same active groups, or classes, but not necessarily the same active set. This is very well suited for applications such as source separation. An efficient optimization procedure, which guarantees convergence to the global opt...

  18. Hierarchical manifold learning.

    Science.gov (United States)

    Bhatia, Kanwal K; Rao, Anil; Price, Anthony N; Wolz, Robin; Hajnal, Jo; Rueckert, Daniel

    2012-01-01

    We present a novel method of hierarchical manifold learning which aims to automatically discover regional variations within images. This involves constructing manifolds in a hierarchy of image patches of increasing granularity, while ensuring consistency between hierarchy levels. We demonstrate its utility in two very different settings: (1) to learn the regional correlations in motion within a sequence of time-resolved images of the thoracic cavity; (2) to find discriminative regions of 3D brain images in the classification of neurodegenerative disease,

  19. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  20. HDS: Hierarchical Data System

    Science.gov (United States)

    Pearce, Dave; Walter, Anton; Lupton, W. F.; Warren-Smith, Rodney F.; Lawden, Mike; McIlwrath, Brian; Peden, J. C. M.; Jenness, Tim; Draper, Peter W.

    2015-02-01

    The Hierarchical Data System (HDS) is a file-based hierarchical data system designed for the storage of a wide variety of information. It is particularly suited to the storage of large multi-dimensional arrays (with their ancillary data) where efficient access is needed. It is a key component of the Starlink software collection (ascl:1110.012) and is used by the Starlink N-Dimensional Data Format (NDF) library (ascl:1411.023). HDS organizes data into hierarchies, broadly similar to the directory structure of a hierarchical filing system, but contained within a single HDS container file. The structures stored in these files are self-describing and flexible; HDS supports modification and extension of structures previously created, as well as functions such as deletion, copying, and renaming. All information stored in HDS files is portable between the machines on which HDS is implemented. Thus, there are no format conversion problems when moving between machines. HDS can write files in a private binary format (version 4), or be layered on top of HDF5 (version 5).

  1. Time for memory

    DEFF Research Database (Denmark)

    Murakami, Kyoko

    2012-01-01

    This article is a continuous dialogue on memory triggered by Brockmeier’s (2010) article. I drift away from the conventionalization of the archive as a spatial metaphor for memory in order to consider the greater possibility of “time” for conceptualizing memory. The concept of time is central...... in terms of autobiographical memory. The second category of time is discussed, drawing on Augustine and Bergson amongst others. Bergson’s notion of duration has been considered as a promising concept for a better understanding of autobiographical memory. Psychological phenomena such as autobiographical...... memory should embrace not only spatial dimension, but also a temporal dimension, in which a constant flow of irreversible time, where multiplicity, momentarily, dynamic stability and becoming and emergence of novelty can be observed....

  2. Memory reconsolidation: time to change your mind.

    Science.gov (United States)

    Bailey, Matthew R; Balsam, Peter D

    2013-03-18

    A new study shows that temporal expectations about threats are a key part of fear memories and that changing this temporal expectation is enough to trigger the updating and reconsolidation of a previously learned fear.

  3. Not All Order Memory Is Equal: Test Demands Reveal Dissociations in Memory for Sequence Information

    Science.gov (United States)

    Jonker, Tanya R.; MacLeod, Colin M.

    2017-01-01

    Remembering the order of a sequence of events is a fundamental feature of episodic memory. Indeed, a number of formal models represent temporal context as part of the memory system, and memory for order has been researched extensively. Yet, the nature of the code(s) underlying sequence memory is still relatively unknown. Across 4 experiments that…

  4. Not All Order Memory Is Equal: Test Demands Reveal Dissociations in Memory for Sequence Information

    Science.gov (United States)

    Jonker, Tanya R.; MacLeod, Colin M.

    2017-01-01

    Remembering the order of a sequence of events is a fundamental feature of episodic memory. Indeed, a number of formal models represent temporal context as part of the memory system, and memory for order has been researched extensively. Yet, the nature of the code(s) underlying sequence memory is still relatively unknown. Across 4 experiments that…

  5. Functional anatomy of language and music perception: temporal and structural factors investigated using functional magnetic resonance imaging.

    Science.gov (United States)

    Rogalsky, Corianne; Rong, Feng; Saberi, Kourosh; Hickok, Gregory

    2011-03-09

    Language and music exhibit similar acoustic and structural properties, and both appear to be uniquely human. Several recent studies suggest that speech and music perception recruit shared computational systems, and a common substrate in Broca's area for hierarchical processing has recently been proposed. However, this claim has not been tested by directly comparing the spatial distribution of activations to speech and music processing within subjects. In the present study, participants listened to sentences, scrambled sentences, and novel melodies. As expected, large swaths of activation for both sentences and melodies were found bilaterally in the superior temporal lobe, overlapping in portions of auditory cortex. However, substantial nonoverlap was also found: sentences elicited more ventrolateral activation, whereas the melodies elicited a more dorsomedial pattern, extending into the parietal lobe. Multivariate pattern classification analyses indicate that even within the regions of blood oxygenation level-dependent response overlap, speech and music elicit distinguishable patterns of activation. Regions involved in processing hierarchical aspects of sentence perception were identified by contrasting sentences with scrambled sentences, revealing a bilateral temporal lobe network. Music perception showed no overlap whatsoever with this network. Broca's area was not robustly activated by any stimulus type. Overall, these findings suggest that basic hierarchical processing for music and speech recruits distinct cortical networks, neither of which involves Broca's area. We suggest that previous claims are based on data from tasks that tap higher-order cognitive processes, such as working memory and/or cognitive control, which can operate in both speech and music domains.

  6. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;

    2012-01-01

    a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure......Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  7. Context updates are hierarchical

    Directory of Open Access Journals (Sweden)

    Anton Karl Ingason

    2016-10-01

    Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.

  8. Hierarchical organization of segmentation in non-functional action sequences

    DEFF Research Database (Denmark)

    Nielbo, Kristoffer Laigaard; Schjødt, Uffe; Sørensen, Jesper

    2013-01-01

    Both folk and scientific taxonomies of behavior distinguish between instrumental and ritual behavior. Recent studies indicate that behaviors dominated by ritual features tend to increase cognitive load by focusing attentional and working memory resources on low-level perceptual details and psycho......-physics. In contrast to the general consensus in anthropology and the study of religion, one study did not find any modulation effect of expectations (e.g., cultural information or priors) on cognitive load. It has, therefore, been suggested that the increase reflects a perceptual mechanism that drives categorization...... of ritual behavior. The present study investigated how an increase in cognitive load elicited by ritual behavior can influence hierarchically-related representations of actions and if expectation can modulate such hierarchical action representations. The study found that hierarchical alignment during...

  9. [Memory and epilepsy].

    Science.gov (United States)

    Dupont, Sophie

    2010-01-01

    Medial temporal lobe epilepsy is a chronic neurological disease that begins in the early age and that is associated with frequent and disturbing memory deficits. Repeated seizures will lead to the formation of an epileptogenic network that may interfere with physiological neuronal networks and thus with normal brain function: by direct activation or indirectly by deactivation during a seizure, see for example the dreamy state or the ''déja vécu'' phenomenon during temporal seizures; by ictal or post-ictal inhibition, see for example ictal or post-ictal amnesia; by a repetitive and chronic modulation leading to a reorganization of the physiological neuronal networks. The study of these interactions between epileptic and physiological neural networks must lead to better explore the patient's memory and predict memory worsening before temporal lobe surgery and to better understand the reorganization of memory networks in chronic epilepsy. The goal is double: (1) improve the prediction of post-operative memory worsening and guide rehabilitation in epileptic clinical practice; (2) improve the pathophysiological knowledge about memory processes. © Société de Biologie, 2010.

  10. Sensory Dissonance Using Memory Model

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2015-01-01

    Music may occur concurrently or in temporal sequences. Current machine-based methods for the estimation of qualities of the music are unable to take into account the influence of temporal context. A method for calculating dissonance from audio, called sensory dissonance is improved by the use...... of a memory model. This approach is validated here by the comparison of the sensory dissonance using memory model to data obtained using human subjects....

  11. Temporal properties of stereopsis

    Science.gov (United States)

    Gheorghiu, E.

    2005-03-01

    transient presentation of DRS. For both sustained and transient presentations of the stimuli, the results show that: (i) stereopsis has similar temporal properties at coarse and fine spatial scales; (ii) interaction between spatial scales depends on their relative sizes. The results indicate a strong inhibitory influence of rivalry at a coarse scale on stereopsis at a fine scale, and just a weak inhibitory influence of rivalry at a fine scale on stereopsis at a coarse scale. This study provides experimental evidence for a hierarchical organisation of spatial scales in stereoscopic vision based on neural interaction instead of vergence eye movements. In chapter 4 we examined how binocular visual system interprets the depth of monocular random-dots superimposed on stereoscopic surfaces, when disparity and monocular depth result from elements of different size. We also examine the perceptual effects of dot density. We found that depth of monocular surfaces was affected by the disparity-defined surfaces and it changed gradually with dot density. Strength of the effect depended on dot density and relative angular size of the dots. In chapter 5 we examined how visual perception changes over time in the presence or absence of perceived stereoscopic depth in rivalrous images. We found that the presence of disparity-defined depth did not influence significantly the perceptual dominance durations of binocular rivalry. This indicates that stereopsis and binocular rivalry at the level of textured surfaces follow from separate processes.

  12. Generating adaptive behaviour within a memory-prediction framework.

    Directory of Open Access Journals (Sweden)

    David Rawlinson

    Full Text Available The Memory-Prediction Framework (MPF and its Hierarchical-Temporal Memory implementation (HTM have been widely applied to unsupervised learning problems, for both classification and prediction. To date, there has been no attempt to incorporate MPF/HTM in reinforcement learning or other adaptive systems; that is, to use knowledge embodied within the hierarchy to control a system, or to generate behaviour for an agent. This problem is interesting because the human neocortex is believed to play a vital role in the generation of behaviour, and the MPF is a model of the human neocortex.We propose some simple and biologically-plausible enhancements to the Memory-Prediction Framework. These cause it to explore and interact with an external world, while trying to maximize a continuous, time-varying reward function. All behaviour is generated and controlled within the MPF hierarchy. The hierarchy develops from a random initial configuration by interaction with the world and reinforcement learning only. Among other demonstrations, we show that a 2-node hierarchy can learn to successfully play "rocks, paper, scissors" against a predictable opponent.

  13. Generating adaptive behaviour within a memory-prediction framework.

    Science.gov (United States)

    Rawlinson, David; Kowadlo, Gideon

    2012-01-01

    The Memory-Prediction Framework (MPF) and its Hierarchical-Temporal Memory implementation (HTM) have been widely applied to unsupervised learning problems, for both classification and prediction. To date, there has been no attempt to incorporate MPF/HTM in reinforcement learning or other adaptive systems; that is, to use knowledge embodied within the hierarchy to control a system, or to generate behaviour for an agent. This problem is interesting because the human neocortex is believed to play a vital role in the generation of behaviour, and the MPF is a model of the human neocortex.We propose some simple and biologically-plausible enhancements to the Memory-Prediction Framework. These cause it to explore and interact with an external world, while trying to maximize a continuous, time-varying reward function. All behaviour is generated and controlled within the MPF hierarchy. The hierarchy develops from a random initial configuration by interaction with the world and reinforcement learning only. Among other demonstrations, we show that a 2-node hierarchy can learn to successfully play "rocks, paper, scissors" against a predictable opponent.

  14. Dissociations in infant memory: rethinking the development of implicit and explicit memory.

    Science.gov (United States)

    Rovee-Collier, C

    1997-07-01

    Extending the Jacksonian principle of the hierarchical development and dissolution of function to the development and dissolution of memory, researchers have concluded that implicit (procedural) memory is a primitive system, functional shortly after birth, that processes information automatically, whereas explicit (declarative) memory matures late in the 1st year and mediates the conscious recollection of a prior event. Support for a developmental hierarchy has only been inferred from the memory performance of adults with amnesia on priming and recognition-recall tests in response to manipulations of different independent variables. This article reviews evidence that very young infants exhibit memory dissociations like those exhibited by adults with normal memory on analogous memory tests in response to manipulations of the same independent variables. These data demonstrate that implicit and explicit memory follow the same developmental timetable and challenge the utility of conscious recollection as the defining characteristic of explicit memory.

  15. Hierarchical Bass model

    Science.gov (United States)

    Tashiro, Tohru

    2014-03-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model.

  16. Hierarchical Bass model

    CERN Document Server

    Tashiro, Tohru

    2013-01-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model.

  17. Hierarchical partial order ranking.

    Science.gov (United States)

    Carlsen, Lars

    2008-09-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritization of polluted sites is given.

  18. Trees and Hierarchical Structures

    CERN Document Server

    Haeseler, Arndt

    1990-01-01

    The "raison d'etre" of hierarchical dustering theory stems from one basic phe­ nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das­ sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.

  19. Hierarchical Affinity Propagation

    CERN Document Server

    Givoni, Inmar; Frey, Brendan J

    2012-01-01

    Affinity propagation is an exemplar-based clustering algorithm that finds a set of data-points that best exemplify the data, and associates each datapoint with one exemplar. We extend affinity propagation in a principled way to solve the hierarchical clustering problem, which arises in a variety of domains including biology, sensor networks and decision making in operational research. We derive an inference algorithm that operates by propagating information up and down the hierarchy, and is efficient despite the high-order potentials required for the graphical model formulation. We demonstrate that our method outperforms greedy techniques that cluster one layer at a time. We show that on an artificial dataset designed to mimic the HIV-strain mutation dynamics, our method outperforms related methods. For real HIV sequences, where the ground truth is not available, we show our method achieves better results, in terms of the underlying objective function, and show the results correspond meaningfully to geographi...

  20. Optimisation by hierarchical search

    Science.gov (United States)

    Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias

    2015-03-01

    Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.

  1. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.

    2012-01-01

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157

  2. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L; Bod, Rens; Christiansen, Morten H

    2012-11-22

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science.

  3. Parallel hierarchical global illumination

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Quinn O. [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  4. Associative Hierarchical Random Fields.

    Science.gov (United States)

    Ladický, L'ubor; Russell, Chris; Kohli, Pushmeet; Torr, Philip H S

    2014-06-01

    This paper makes two contributions: the first is the proposal of a new model-The associative hierarchical random field (AHRF), and a novel algorithm for its optimization; the second is the application of this model to the problem of semantic segmentation. Most methods for semantic segmentation are formulated as a labeling problem for variables that might correspond to either pixels or segments such as super-pixels. It is well known that the generation of super pixel segmentations is not unique. This has motivated many researchers to use multiple super pixel segmentations for problems such as semantic segmentation or single view reconstruction. These super-pixels have not yet been combined in a principled manner, this is a difficult problem, as they may overlap, or be nested in such a way that the segmentations form a segmentation tree. Our new hierarchical random field model allows information from all of the multiple segmentations to contribute to a global energy. MAP inference in this model can be performed efficiently using powerful graph cut based move making algorithms. Our framework generalizes much of the previous work based on pixels or segments, and the resulting labelings can be viewed both as a detailed segmentation at the pixel level, or at the other extreme, as a segment selector that pieces together a solution like a jigsaw, selecting the best segments from different segmentations as pieces. We evaluate its performance on some of the most challenging data sets for object class segmentation, and show that this ability to perform inference using multiple overlapping segmentations leads to state-of-the-art results.

  5. A Computational Model of Perceptual and Mnemonic Deficits in Medial Temporal Lobe Amnesia.

    Science.gov (United States)

    Sadil, Patrick S; Cowell, Rosemary A

    2017-02-14

    Damage to the medial temporal lobe (MTL) has long been known to impair declarative memory, and recent evidence suggests that it also impairs visual perception. A theory termed the representational-hierarchical account explains such impairments by assuming that MTL stores conjunctive representations of items and events, and that individuals with MTL damage must rely upon representations of simple visual features in posterior visual cortex, which are inadequate to support memory and perception under certain circumstances. One recent study of visual discrimination behavior revealed a surprising antiperceptual learning effect in MTL-damaged individuals: With exposure to a set of visual stimuli, discrimination performance worsened rather than improved [Barense, M. D., Groen, I. I. A., Lee, A. C. H., Yeung, L. K., Brady, S. M., Gregori, M., et al. Intact memory for irrelevant information impairs perception in amnesia. Neuron, 75, 157-167, 2012]. We extend the representational-hierarchical account to explain this paradox by assuming that difficult visual discriminations are performed by comparing the relative "representational tunedness"-or familiarity-of the to-be-discriminated items. Exposure to a set of highly similar stimuli entails repeated presentation of simple visual features, eventually rendering all feature representations maximally and, thus, equally familiar; hence, they are inutile for solving the task. Discrimination performance in patients with MTL lesions is therefore impaired by stimulus exposure. Because the unique conjunctions represented in MTL do not occur repeatedly, healthy individuals are shielded from this perceptual interference. We simulate this mechanism with a neural network previously used to explain recognition memory, thereby providing a model that accounts for both mnemonic and perceptual deficits caused by MTL damage with a unified architecture and mechanism.

  6. Hierarchical Parallelization of Gene Differential Association Analysis

    Directory of Open Access Journals (Sweden)

    Dwarkadas Sandhya

    2011-09-01

    Full Text Available Abstract Background Microarray gene differential expression analysis is a widely used technique that deals with high dimensional data and is computationally intensive for permutation-based procedures. Microarray gene differential association analysis is even more computationally demanding and must take advantage of multicore computing technology, which is the driving force behind increasing compute power in recent years. In this paper, we present a two-layer hierarchical parallel implementation of gene differential association analysis. It takes advantage of both fine- and coarse-grain (with granularity defined by the frequency of communication parallelism in order to effectively leverage the non-uniform nature of parallel processing available in the cutting-edge systems of today. Results Our results show that this hierarchical strategy matches data sharing behavior to the properties of the underlying hardware, thereby reducing the memory and bandwidth needs of the application. The resulting improved efficiency reduces computation time and allows the gene differential association analysis code to scale its execution with the number of processors. The code and biological data used in this study are downloadable from http://www.urmc.rochester.edu/biostat/people/faculty/hu.cfm. Conclusions The performance sweet spot occurs when using a number of threads per MPI process that allows the working sets of the corresponding MPI processes running on the multicore to fit within the machine cache. Hence, we suggest that practitioners follow this principle in selecting the appropriate number of MPI processes and threads within each MPI process for their cluster configurations. We believe that the principles of this hierarchical approach to parallelization can be utilized in the parallelization of other computationally demanding kernels.

  7. Acute exercise and motor memory consolidation

    DEFF Research Database (Denmark)

    Thomas, Richard; Beck, Mikkel Malling; Lind, Rune Rasmussen

    2016-01-01

    of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly...... greater for EX90 than CON (p improvements in procedural memory......High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity...

  8. Efficient scalable algorithms for hierarchically semiseparable matrices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen; Xia, Jianlin; Situ, Yingchong; Hoop, Maarten V. de

    2011-09-14

    Hierarchically semiseparable (HSS) matrix algorithms are emerging techniques in constructing the superfast direct solvers for both dense and sparse linear systems. Here, we develope a set of novel parallel algorithms for the key HSS operations that are used for solving large linear systems. These include the parallel rank-revealing QR factorization, the HSS constructions with hierarchical compression, the ULV HSS factorization, and the HSS solutions. The HSS tree based parallelism is fully exploited at the coarse level. The BLACS and ScaLAPACK libraries are used to facilitate the parallel dense kernel operations at the ne-grained level. We have appplied our new parallel HSS-embedded multifrontal solver to the anisotropic Helmholtz equations for seismic imaging, and were able to solve a linear system with 6.4 billion unknowns using 4096 processors, in about 20 minutes. The classical multifrontal solver simply failed due to high demand of memory. To our knowledge, this is the first successful demonstration of employing the HSS algorithms in solving the truly large-scale real-world problems. Our parallel strategies can be easily adapted to the parallelization of the other rank structured methods.

  9. Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus

    CERN Document Server

    Jelonek, M

    2006-01-01

    The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of modeling hierarchical linear equations and estimation based on MPlus software. I present my own model to illustrate the impact of different factors on school acceptation level.

  10. Islamic Myths and Memories

    DEFF Research Database (Denmark)

    and globalization and to the study of the place of the mass media in the contemporary Islamic resurgence. It explores the annulment of spatial and temporal distance by globalization and by the communications revolution underlying it, and how this has affected the cherished myths and memories of the Muslim community...

  11. Hierarchical linear modeling (HLM) of longitudinal brain structural and cognitive changes in alcohol-dependent individuals during sobriety.

    Science.gov (United States)

    Yeh, Ping-Hong; Gazdzinski, Stefan; Durazzo, Timothy C; Sjöstrand, Karl; Meyerhoff, Dieter J

    2007-12-01

    Hierarchical linear modeling (HLM) can reveal complex relationships between longitudinal outcome measures and their covariates under proper consideration of potentially unequal error variances. We demonstrate the application of HLM to the study of magnetic resonance imaging (MRI)-derived brain volume changes and cognitive changes in abstinent alcohol-dependent individuals as a function of smoking status, smoking severity, and drinking quantities. Twenty non-smoking recovering alcoholics (nsALC) and 30 age-matched smoking recovering alcoholics (sALC) underwent quantitative MRI and cognitive assessments at 1 week, 1 month, and 7 months of sobriety. Eight non-smoking light drinking controls were studied at baseline and 7 months later. Brain and ventricle volumes at each time point were quantified using MRI masks, while the boundary shift integral method measured volume changes between time points. Using HLM, we modeled volumetric and cognitive outcome measures as a function of cigarette and alcohol use variables. Different hierarchical linear models with unique model structures are presented and discussed. The results show that smaller brain volumes at baseline predict faster brain volume gains, which were also related to greater smoking and drinking severities. Over 7 months of abstinence from alcohol, sALC compared to nsALC showed less improvements in visuospatial learning and memory despite larger brain volume gains and ventricular shrinkage. Different and unique hierarchical linear models allow assessments of the complex relationships among outcome measures of longitudinal data sets. These HLM applications suggest that chronic cigarette smoking modulates the temporal dynamics of brain structural and cognitive changes in alcoholics during prolonged sobriety.

  12. Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus

    OpenAIRE

    Jelonek, Magdalena

    2006-01-01

    The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of m...

  13. Online credit card fraud prediction based on hierarchical temporal ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... This paper demonstrates the behaviour of an HTM model with respect to its ... Java programming language was used for implementation and Matlab was used to carry out simulations.

  14. Quantifying Ecological Memory of Plant and Ecosystem Processes in Variable Environments

    Science.gov (United States)

    Ogle, K.; Barron-Gafford, G. A.; Bentley, L.; Cable, J.; Lucas, R.; Huxman, T. E.; Loik, M. E.; Smith, S. D.; Tissue, D.

    2010-12-01

    Precipitation, soil water, and other factors affect plant and ecosystem processes at multiple time scales. A common assumption is that water availability at a given time directly affects processes at that time. Recent work, especially in pulse-driven, semiarid systems, shows that antecedent water availability, averaged over several days to a couple weeks, can be just as or more important than current water status. Precipitation patterns of previous seasons or past years can also impact plant and ecosystem functioning in many systems. However, we lack an analytical framework for quantifying the importance of and time-scale over which past conditions affect current processes. This study explores the ecological memory of a variety of plant and ecosystem processes. We use memory as a metaphor to describe the time-scale over which antecedent conditions affect the current process. Existing approaches for incorporating antecedent effects arbitrarily select the antecedent integration period (e.g., the past 2 weeks) and the relative importance of past conditions (e.g., assign equal or linearly decreasing weights to past events). In contrast, we utilize a hierarchical Bayesian approach to integrate field data with process-based models, yielding posterior distributions for model parameters, including the duration of the ecological memory (integration period) and the relative importance of past events (weights) to this memory. We apply our approach to data spanning diverse temporal scales and four semiarid sites in the western US: leaf-level stomatal conductance (gs, sub-hourly scale), soil respiration (Rs, hourly to daily scale), and net primary productivity (NPP) and tree-ring widths (annual scale). For gs, antecedent factors (daily rainfall and temperature, hourly vapor pressure deficit) and current soil water explained up to 72% of the variation in gs in the Chihuahuan Desert, with a memory of 10 hours for a grass and 4 days for a shrub. Antecedent factors (past soil water

  15. Hierarchical fringe tracking

    CERN Document Server

    Petrov, Romain G; Boskri, Abdelkarim; Folcher, Jean-Pierre; Lagarde, Stephane; Bresson, Yves; Benkhaldoum, Zouhair; Lazrek, Mohamed; Rakshit, Suvendu

    2014-01-01

    The limiting magnitude is a key issue for optical interferometry. Pairwise fringe trackers based on the integrated optics concepts used for example in GRAVITY seem limited to about K=10.5 with the 8m Unit Telescopes of the VLTI, and there is a general "common sense" statement that the efficiency of fringe tracking, and hence the sensitivity of optical interferometry, must decrease as the number of apertures increases, at least in the near infrared where we are still limited by detector readout noise. Here we present a Hierarchical Fringe Tracking (HFT) concept with sensitivity at least equal to this of a two apertures fringe trackers. HFT is based of the combination of the apertures in pairs, then in pairs of pairs then in pairs of groups. The key HFT module is a device that behaves like a spatial filter for two telescopes (2TSF) and transmits all or most of the flux of a cophased pair in a single mode beam. We give an example of such an achromatic 2TSF, based on very broadband dispersed fringes analyzed by g...

  16. Onboard hierarchical network

    Science.gov (United States)

    Tunesi, Luca; Armbruster, Philippe

    2004-02-01

    The objective of this paper is to demonstrate a suitable hierarchical networking solution to improve capabilities and performances of space systems, with significant recurrent costs saving and more efficient design & manufacturing flows. Classically, a satellite can be split in two functional sub-systems: the platform and the payload complement. The platform is in charge of providing power, attitude & orbit control and up/down-link services, whereas the payload represents the scientific and/or operational instruments/transponders and embodies the objectives of the mission. One major possibility to improve the performance of payloads, by limiting the data return to pertinent information, is to process data on board thanks to a proper implementation of the payload data system. In this way, it is possible to share non-recurring development costs by exploiting a system that can be adopted by the majority of space missions. It is believed that the Modular and Scalable Payload Data System, under development by ESA, provides a suitable solution to fulfil a large range of future mission requirements. The backbone of the system is the standardised high data rate SpaceWire network http://www.ecss.nl/. As complement, a lower speed command and control bus connecting peripherals is required. For instance, at instrument level, there is a need for a "local" low complexity bus, which gives the possibility to command and control sensors and actuators. Moreover, most of the connections at sub-system level are related to discrete signals management or simple telemetry acquisitions, which can easily and efficiently be handled by a local bus. An on-board hierarchical network can therefore be defined by interconnecting high-speed links and local buses. Additionally, it is worth stressing another important aspect of the design process: Agencies and ESA in particular are frequently confronted with a big consortium of geographically spread companies located in different countries, each one

  17. Hierarchical Reverberation Mapping

    CERN Document Server

    Brewer, Brendon J

    2013-01-01

    Reverberation mapping (RM) is an important technique in studies of active galactic nuclei (AGN). The key idea of RM is to measure the time lag $\\tau$ between variations in the continuum emission from the accretion disc and subsequent response of the broad line region (BLR). The measurement of $\\tau$ is typically used to estimate the physical size of the BLR and is combined with other measurements to estimate the black hole mass $M_{\\rm BH}$. A major difficulty with RM campaigns is the large amount of data needed to measure $\\tau$. Recently, Fine et al (2012) introduced a new approach to RM where the BLR light curve is sparsely sampled, but this is counteracted by observing a large sample of AGN, rather than a single system. The results are combined to infer properties of the sample of AGN. In this letter we implement this method using a hierarchical Bayesian model and contrast this with the results from the previous stacked cross-correlation technique. We find that our inferences are more precise and allow fo...

  18. Memory and aging: What is the real impact of age?

    Directory of Open Access Journals (Sweden)

    Helena Espirito-Santo

    2016-09-01

    Results. Overall, age, education, profession, marital, residential, and clinical condition have differently influenced memory, depending on the type of memory. The hierarchical regression analysis showed that age is a predictive factor in all types of memory. However, other predictors have emerged with higher regression coefficients compared to age, according to the type of memory (except in working memory. Conclusions. Age, education and profession influence memory, as well as factors that potentially stimulate cognitively and socially (like having a partner and living in the community. The results indicate the importance of intervening, especially among institutionalized elderly, older, unmarried, with low education, and manual profession.

  19. Hierarchical video summarization for medical data

    Science.gov (United States)

    Zhu, Xingquan; Fan, Jianping; Elmagarmid, Ahmed K.; Aref, Walid G.

    2001-12-01

    To provide users with an overview of medical video content at various levels of abstraction which can be used for more efficient database browsing and access, a hierarchical video summarization strategy has been developed and is presented in this paper. To generate an overview, the key frames of a video are preprocessed to extract special frames (black frames, slides, clip art, sketch drawings) and special regions (faces, skin or blood-red areas). A shot grouping method is then applied to merge the spatially or temporally related shots into groups. The visual features and knowledge from the video shots are integrated to assign the groups into predefined semantic categories. Based on the video groups and their semantic categories, video summaries for different levels are constructed by group merging, hierarchical group clustering and semantic category selection. Based on this strategy, a user can select the layer of the summary to access. The higher the layer, the more concise the video summary; the lower the layer, the greater the detail contained in the summary.

  20. Dysfunctional overnight memory consolidation in ecstasy users.

    Science.gov (United States)

    Smithies, Vanessa; Broadbear, Jillian; Verdejo-Garcia, Antonio; Conduit, Russell

    2014-08-01

    Sleep plays an important role in the consolidation and integration of memory in a process called overnight memory consolidation. Previous studies indicate that ecstasy users have marked and persistent neurocognitive and sleep-related impairments. We extend past research by examining overnight memory consolidation among regular ecstasy users (n=12) and drug naïve healthy controls (n=26). Memory recall of word pairs was evaluated before and after a period of sleep, with and without interference prior to testing. In addition, we assessed neurocognitive performances across tasks of learning, memory and executive functioning. Ecstasy users demonstrated impaired overnight memory consolidation, a finding that was more pronounced following associative interference. Additionally, ecstasy users demonstrated impairments on tasks recruiting frontostriatal and hippocampal neural circuitry, in the domains of proactive interference memory, long-term memory, encoding, working memory and complex planning. We suggest that ecstasy-associated dysfunction in fronto-temporal circuitry may underlie overnight consolidation memory impairments in regular ecstasy users.

  1. Hierarchical materials: Background and perspectives

    DEFF Research Database (Denmark)

    2016-01-01

    Hierarchical design draws inspiration from analysis of biological materials and has opened new possibilities for enhancing performance and enabling new functionalities and extraordinary properties. With the development of nanotechnology, the necessary technological requirements for the manufactur...

  2. Hierarchical clustering for graph visualization

    CERN Document Server

    Clémençon, Stéphan; Rossi, Fabrice; Tran, Viet Chi

    2012-01-01

    This paper describes a graph visualization methodology based on hierarchical maximal modularity clustering, with interactive and significant coarsening and refining possibilities. An application of this method to HIV epidemic analysis in Cuba is outlined.

  3. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  4. Memory Matters

    Science.gov (United States)

    ... Emergency Room? What Happens in the Operating Room? Memory Matters KidsHealth > For Kids > Memory Matters A A ... of your complex and multitalented brain. What Is Memory? When an event happens, when you learn something, ...

  5. MEMORY MODULATION

    Science.gov (United States)

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evidence from both animal and human research indicates that emotionally significant experiences activate hormonal and brain systems that regulate the consolidation of newly acquired memories. These effects are integrated through noradrenergic activation of the basolateral amygdala which regulates memory consolidation via interactions with many other brain regions involved in consolidating memories of recent experiences. Modulatory systems not only influence neurobiological processes underlying the consolidation of new information, but also affect other mnemonic processes, including memory extinction, memory recall and working memory. In contrast to their enhancing effects on consolidation, adrenal stress hormones impair memory retrieval and working memory. Such effects, as with memory consolidation, require noradrenergic activation of the basolateral amygdala and interactions with other brain regions. PMID:22122145

  6. Functional annotation of hierarchical modularity.

    Directory of Open Access Journals (Sweden)

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  7. Islamic Myths and Memories

    DEFF Research Database (Denmark)

    and globalization and to the study of the place of the mass media in the contemporary Islamic resurgence. It explores the annulment of spatial and temporal distance by globalization and by the communications revolution underlying it, and how this has affected the cherished myths and memories of the Muslim community......Islamic myths and collective memory are very much alive in today’s localized struggles for identity, and are deployed in the ongoing construction of worldwide cultural networks. This book brings the theoretical perspectives of myth-making and collective memory to the study of Islam....... It shows how contemporary Islamic thinkers and movements respond to the challenges of globalization by preserving, reviving, reshaping, or transforming myths and memories....

  8. Aging modulates the oscillatory dynamics underlying successful working memory encoding and maintenance.

    Science.gov (United States)

    Proskovec, Amy L; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2016-06-01

    Working memory is central to the execution of many daily functions and is typically divided into three phases: encoding, maintenance, and retrieval. While working memory performance has been repeatedly shown to decline with age, less is known regarding the underlying neural processes. We examined age-related differences in the neural dynamics that serve working memory by recording high-density magnetoencephalography (MEG) in younger and older adults while they performed a modified, high-load Sternberg working memory task with letters as stimuli. MEG data were evaluated in the time-frequency domain and significant oscillatory responses were imaged using a beamformer. A hierarchical regression was performed to investigate whether age moderated the relationship between oscillatory activity and accuracy on the working memory task. Our results indicated that the spatiotemporal dynamics of oscillatory activity in language-related areas of the left fronto-temporal cortices were similar across groups. Age-related differences emerged during early encoding in the right-hemispheric homologue of Wernicke's area. Slightly later, group differences emerged in the homologue of Broca's area and these persisted throughout memory maintenance. Additionally, occipital alpha activity during maintenance was stronger, occurred earlier, and involved more cortical tissue in older adults. Finally, age significantly moderated the relationship between accuracy and neural activity in the prefrontal cortices. In younger adults, as prefrontal activity decreased, accuracy tended to increase. Our results are consistent with predictions of the compensation-related utilization of neural circuits hypothesis (CRUNCH). Such differences in the oscillatory dynamics could reflect compensatory mechanisms, which would aid working memory performance in older age. Hum Brain Mapp 37:2348-2361, 2016. © 2016 Wiley Periodicals, Inc.

  9. Advanced hierarchical distance sampling

    Science.gov (United States)

    Royle, Andy

    2016-01-01

    In this chapter, we cover a number of important extensions of the basic hierarchical distance-sampling (HDS) framework from Chapter 8. First, we discuss the inclusion of “individual covariates,” such as group size, in the HDS model. This is important in many surveys where animals form natural groups that are the primary observation unit, with the size of the group expected to have some influence on detectability. We also discuss HDS integrated with time-removal and double-observer or capture-recapture sampling. These “combined protocols” can be formulated as HDS models with individual covariates, and thus they have a commonality with HDS models involving group structure (group size being just another individual covariate). We cover several varieties of open-population HDS models that accommodate population dynamics. On one end of the spectrum, we cover models that allow replicate distance sampling surveys within a year, which estimate abundance relative to availability and temporary emigration through time. We consider a robust design version of that model. We then consider models with explicit dynamics based on the Dail and Madsen (2011) model and the work of Sollmann et al. (2015). The final major theme of this chapter is relatively newly developed spatial distance sampling models that accommodate explicit models describing the spatial distribution of individuals known as Point Process models. We provide novel formulations of spatial DS and HDS models in this chapter, including implementations of those models in the unmarked package using a hack of the pcount function for N-mixture models.

  10. Recovering and Preventing Loss of Detailed Memory: Differential Rates of Forgetting for Detail Types in Episodic Memory

    Science.gov (United States)

    Sekeres, Melanie J.; Bonasia, Kyra; St-Laurent, Marie; Pishdadian, Sara; Winocur, Gordon; Grady, Cheryl; Moscovitch, Morris

    2016-01-01

    Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired,…

  11. Recovering and Preventing Loss of Detailed Memory: Differential Rates of Forgetting for Detail Types in Episodic Memory

    Science.gov (United States)

    Sekeres, Melanie J.; Bonasia, Kyra; St-Laurent, Marie; Pishdadian, Sara; Winocur, Gordon; Grady, Cheryl; Moscovitch, Morris

    2016-01-01

    Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired,…

  12. Functional connectivity based parcellation of the human medial temporal lobe.

    Science.gov (United States)

    Wang, Shao-Fang; Ritchey, Maureen; Libby, Laura A; Ranganath, Charan

    2016-10-01

    Regional differences in large-scale connectivity have been proposed to underlie functional specialization along the anterior-posterior axis of the medial temporal lobe (MTL), including the hippocampus (HC) and the parahippocampal gyrus (PHG). However, it is unknown whether functional connectivity (FC) can be used reliably to parcellate the human MTL. The current study aimed to differentiate subregions of the HC and the PHG based on patterns of whole-brain intrinsic FC. FC maps were calculated for each slice along the longitudinal axis of the PHG and the HC. A hierarchical clustering algorithm was then applied to these data in order to group slices according to the similarity of their connectivity patterns. Surprisingly, three discrete clusters were identified in the PHG. Two clusters corresponded to the parahippocampal cortex (PHC) and the perirhinal cortex (PRC), and these regions showed preferential connectivity with previously described posterior-medial and anterior-temporal networks, respectively. The third cluster corresponded to an anterior PRC region previously described as area 36d, and this region exhibited preferential connectivity with auditory cortical areas and with a network involved in visceral processing. The three PHG clusters showed different profiles of activation during a memory-encoding task, demonstrating that the FC-based parcellation identified functionally dissociable sub-regions of the PHG. In the hippocampus, no sub-regions were identified via the parcellation procedure. These results indicate that connectivity-based methods can be used to parcellate functional regions within the MTL, and they suggest that studies of memory and high-level cognition need to differentiate between PHC, posterior PRC, and anterior PRC.

  13. Structural (operational) synchrony of EEG alpha activity during an auditory memory task.

    Science.gov (United States)

    Fingelkurts, Andrew; Fingelkurts, Alexander; Krause, Christina; Kaplan, Alexander; Borisov, Sergei; Sams, Mikko

    2003-09-01

    Memory paradigms are often used in psycho-physiological experiments in order to understand the neural basis underlying cognitive processes. One of the fundamental problems encountered in memory research is how specific and complementary cortical structures interact with each other during episodic encoding and retrieval. A key aspect of the research described below was estimating the coupling of rapid transition processes (in terms of EEG description) which occur in separate cortical areas rather than estimating the routine phase-frequency synchrony in terms of correlation and coherency. It is assumed that these rapid transition processes in the EEG amplitude correspond to the "switching on/off" of brain elemental operations. By making a quantitative estimate of the EEG structural synchrony of alpha-band power between different EEG channels, it was shown that short-term memory has the emergent property of a multiregional neuronal network, and is not the product of strictly hierarchical processing based on convergence through association regions. Moreover, it was demonstrated that the dynamic temporal structure of alpha activity is strongly correlated to the dynamic structure of working memory.

  14. Impaired familiarity with preserved recollection after anterior temporal-lobe resection that spares the hippocampus.

    Science.gov (United States)

    Bowles, Ben; Crupi, Carina; Mirsattari, Seyed M; Pigott, Susan E; Parrent, Andrew G; Pruessner, Jens C; Yonelinas, Andrew P; Köhler, Stefan

    2007-10-09

    It is well established that the medial-temporal lobe (MTL) is critical for recognition memory. The MTL is known to be composed of distinct structures that are organized in a hierarchical manner. At present, it remains controversial whether lower structures in this hierarchy, such as perirhinal cortex, support memory functions that are distinct from those of higher structures, in particular the hippocampus. Perirhinal cortex has been proposed to play a specific role in the assessment of familiarity during recognition, which can be distinguished from the selective contributions of the hippocampus to the recollection of episodic detail. Some researchers have argued, however, that the distinction between familiarity and recollection cannot capture functional specialization within the MTL and have proposed single-process accounts. Evidence supporting the dual-process view comes from demonstrations that selective hippocampal damage can produce isolated recollection impairments. It is unclear, however, whether temporal-lobe lesions that spare the hippocampus can produce selective familiarity impairments. Without this demonstration, single-process accounts cannot be ruled out. We examined recognition memory in NB, an individual who underwent surgical resection of left anterior temporal-lobe structures for treatment of intractable epilepsy. Her resection included a large portion of perirhinal cortex but spared the hippocampus. The results of four experiments based on three different experimental procedures (remember-know paradigm, receiver operating characteristics, and response-deadline procedure) indicate that NB exhibits impaired familiarity with preserved recollection. The present findings thus provide a crucial missing piece of support for functional specialization in the MTL.

  15. Relations between timing, position, and grouping in short-term memory.

    Science.gov (United States)

    Farrell, Simon; Wise, Victoria; Lelièvre, Anna

    2011-05-01

    This article is concerned with how information about time and position in a sequence is represented in short-term memory and expressed in the dynamics of serial recall. Temporal-distinctiveness theories of memory predict that isolating a list item in time will improve recall accuracy for that item. Although the majority of research in short-term memory has failed to demonstrate a temporal isolation effect (TIE), there are occasions on which a TIE is observed. The disparity in results has been explained by assuming that participants can adaptively weight temporal and nontemporal information at retrieval, with differences between experiments promoting or discouraging reliance on time as a source of episodic information. A particular focus of the present study is the finding that the TIE is substantially observed in standard serial recall only when participants are instructed to group the list into minisequences. The findings of two experiments using instructed grouping replicated this effect but showed that it is attributable to a longer gap at the group boundary enhancing the positive effect of grouping on recall accuracy. These results show that the hierarchical representations usually associated with temporal grouping are also elicited by instructed grouping but that an additional and nonspecific benefit to recall obtains from lengthening the pause between groups. An additional role for time is identified in the timing of responses: The dynamics of input sequences tend to be mirrored in output sequences for ungrouped lists, whereas the primacy pattern in grouped lists is for a longer duration to speed access to the following group when that duration occurs at an instructed group boundary.

  16. Preserved hippocampal novelty responses following anterior temporal-lobe resection that impairs familiarity but spares recollection.

    Science.gov (United States)

    Bowles, Ben; O'Neil, Edward B; Mirsattari, Seyed M; Poppenk, Jordan; Köhler, Stefan

    2011-08-01

    Although it is well established that the integrity of the medial temporal lobe (MTL) is critical for declarative memory, the functional organization of the MTL remains a matter of intense debate. One issue that has received little consideration so far is whether the hippocampus can function normally in the presence of a lesion to perirhinal cortex that produces noticeable memory impairments. This question is intriguing as the MTL forms a hierarchical system, in which perirhinal cortex represents one of the critical nodes in the reciprocal projections between neocortical association areas and the hippocampus. Here, we used functional magnetic resonance imaging to examine whether NB, an individual who underwent surgical resection of the left anterior temporal lobe that included large aspects of perirhinal and entorhinal cortex but spared the hippocampus, exhibits intact hippocampal novelty responses to auditory sentences. Our results revealed such evidence in NB's left and right hippocampus. They complement previous behavioral work in NB, indicating that recollective processes considered to rely on hippocampal integrity are also preserved. Further analyses revealed intact novelty responses in structures that provide neuroanatomical input to the hippocampus, including remaining perirhinal cortex and surgically spared parahippocampal cortex. These findings point to viable neuroanatomical mechanisms as to how functional integrity in the hippocampus may be maintained in the face of widespread, but incomplete removal of its input structures.

  17. Analysis of Memory Codes and Cumulative Rehearsal in Observational Learning

    Science.gov (United States)

    Bandura, Albert; And Others

    1974-01-01

    The present study examined the influence of memory codes varying in meaningfulness and retrievability and cumulative rehearsal on retention of observationally learned responses over increasing temporal intervals. (Editor)

  18. Hierarchical topic modeling with nested hierarchical Dirichlet process

    Institute of Scientific and Technical Information of China (English)

    Yi-qun DING; Shan-ping LI; Zhen ZHANG; Bin SHEN

    2009-01-01

    This paper deals with the statistical modeling of latent topic hierarchies in text corpora. The height of the topic tree is assumed as fixed, while the number of topics on each level as unknown a priori and to be inferred from data. Taking a nonparametric Bayesian approach to this problem, we propose a new probabilistic generative model based on the nested hierarchical Dirichlet process (nHDP) and present a Markov chain Monte Carlo sampling algorithm for the inference of the topic tree structure as welt as the word distribution of each topic and topic distribution of each document. Our theoretical analysis and experiment results show that this model can produce a more compact hierarchical topic structure and captures more free-grained topic relationships compared to the hierarchical latent Dirichlet allocation model.

  19. [Brain Mechanism for Successful Memory Retrieval].

    Science.gov (United States)

    Takeda, Masaki

    2016-04-01

    Previous neuropsychological studies that investigated patients with brain injury have revealed the presense of multiple memory systems and the related brain regions. Recent functional imaging studies have identified a neuronal network including the temporal cortex and hippocampus that is responsible for the retrieval of semantic memory. This memory network was further investigated by electrophysiology using a simultaneous recording technique. This new technique revealed that a coupling of inter-area top-down signal within the temporal cortex with translaminar signal processing is required for successful memory retrieval of visual objects.

  20. Autobiographical Memory in Normal Ageing and Dementia

    Directory of Open Access Journals (Sweden)

    Harvey J. Sagar

    1991-01-01

    Full Text Available Autobiographical memories in young and elderly normal subjects are drawn mostly from the recent past but elderly subjects relate a second peak of memories from early adulthood. Memory for remote past public events is relatively preserved in dementia, possibly reflecting integrity of semantic relative to episodic memory. We examined recall of specific, consistent autobiographical episodes in Alzheimer's disease (AD in response to cue words. Patients and control subjects drew most memories from the recent 20 years: episode age related to anterograde memory function but not subject age or dementia. Subjects also related a secondary peak of memories from early adulthood; episode age related to subject age and severity of dementia. The results suggest that preferential recall of memories from early adulthood is based on the salience of retrieval cues, altered by age and dementia, superimposed on a temporal gradient of semantic memory. Further, AD shows behavioural similarity to normal ageing.

  1. Deliberate change without hierarchical influence?

    DEFF Research Database (Denmark)

    Nørskov, Sladjana; Kesting, Peter; Ulhøi, John Parm

    2017-01-01

    Purpose This paper aims to present that deliberate change is strongly associated with formal structures and top-down influence. Hierarchical configurations have been used to structure processes, overcome resistance and get things done. But is deliberate change also possible without formal...... reveals that deliberate change is indeed achievable in a non-hierarchical collaborative OSS community context. However, it presupposes the presence and active involvement of informal change agents. The paper identifies and specifies four key drivers for change agents’ influence. Originality....../value The findings contribute to organisational analysis by providing a deeper understanding of the importance of leadership in making deliberate change possible in non-hierarchical settings. It points to the importance of “change-by-conviction”, essentially based on voluntary behaviour. This can open the door...

  2. Static Correctness of Hierarchical Procedures

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff

    1990-01-01

    A system of hierarchical, fully recursive types in a truly imperative language allows program fragments written for small types to be reused for all larger types. To exploit this property to enable type-safe hierarchical procedures, it is necessary to impose a static requirement on procedure calls....... We introduce an example language and prove the existence of a sound requirement which preserves static correctness while allowing hierarchical procedures. This requirement is further shown to be optimal, in the sense that it imposes as few restrictions as possible. This establishes the theoretical...... basis for a general type hierarchy with static type checking, which enables first-order polymorphism combined with multiple inheritance and specialization in a language with assignments. We extend the results to include opaque types. An opaque version of a type is different from the original but has...

  3. Auditory temporal processes in the elderly

    Directory of Open Access Journals (Sweden)

    E. Ben-Artzi

    2011-03-01

    Full Text Available Several studies have reported age-related decline in auditory temporal resolution and in working memory. However, earlier studies did not provide evidence as to whether these declines reflect overall changes in the same mechanisms, or reflect age-related changes in two independent mechanisms. In the current study we examined whether the age-related decline in auditory temporal resolution and in working memory would remain significant even after controlling for their shared variance. Eighty-two participants, aged 21-82 performed the dichotic temporal order judgment task and the backward digit span task. The findings indicate that age-related decline in auditory temporal resolution and in working memory are two independent processes.

  4. Temporal yoking in continuous multitasking.

    Science.gov (United States)

    Jiang, Yuhong V; Swallow, Khena M

    2014-12-01

    Continuous tasks such as baggage screening often involve selective gating of sensory information when "targets" are detected. Previous research has shown that temporal selection of behaviorally relevant information triggers changes in perception, learning, and memory. However, it is unclear whether temporal selection has broad effects on concurrent tasks. To address this question, we asked participants to view a stream of faces and encoded faces of a particular gender for a later memory test. At the same time, they listened to a sequence of tones, pressing a button for specific pitched tones. We manipulated the timing of temporal selection such that target faces and target tones could be unrelated, perfectly correlated, or anticorrelated. Temporal selection was successful when the temporally coinciding stimuli were congruent (e.g., both were targets), but not when they were incongruent (i.e., only 1 was a target). This pattern suggests that attentional selection for separate tasks is yoked in time-when the attentional gate opens for 1 task it also opens for the other. Temporal yoking is a unique form of dual-task interaction.

  5. Structural integrity of hierarchical composites

    Directory of Open Access Journals (Sweden)

    Marco Paggi

    2012-01-01

    Full Text Available Interface mechanical problems are of paramount importance in engineering and materials science. Traditionally, due to the complexity of modelling their mechanical behaviour, interfaces are often treated as defects and their features are not explored. In this study, a different approach is illustrated, where the interfaces play an active role in the design of innovative hierarchical composites and are fundamental for their structural integrity. Numerical examples regarding cutting tools made of hierarchical cellular polycrystalline materials are proposed, showing that tailoring of interface properties at the different scales is the way to achieve superior mechanical responses that cannot be obtained using standard materials

  6. Temporal Codes for Memories: Issues and Problems.

    Science.gov (United States)

    1977-04-01

    for specific dates they were quite unable to reconstruct the dates. It has been reported (Gibson & Levin, 197S) that children afflicted with dyslexia ... language , we know that the meaning to be inferred from certain words depends upon the momentary context established by the meaning of other words. It...serve more than one function in the language . For example, the word second occurs as a noun, adjective, adverb, and verb. However, the most

  7. Project Temporalities

    DEFF Research Database (Denmark)

    Tryggestad, Kjell; Justesen, Lise; Mouritsen, Jan

    2013-01-01

    into account. This may require investments in new project management technologies. Originality/value – This paper adds to the literatures on project temporalities and stakeholder theory by connecting them to the question of non-human stakeholders and to project management technologies.......Purpose – The purpose of this paper is to explore how animals can become stakeholders in interaction with project management technologies and what happens with project temporalities when new and surprising stakeholders become part of a project and a recognized matter of concern to be taken...... into account. Design/methodology/approach – The paper is based on a qualitative case study of a project in the building industry. The authors use actor-network theory (ANT) to analyze the emergence of animal stakeholders, stakes and temporalities. Findings – The study shows how project temporalities can...

  8. Dynamic real-time hierarchical heuristic search for pathfinding.

    OpenAIRE

    Naveed, Munir; Kitchin, Diane E.; Crampton, Andrew

    2009-01-01

    Movement of Units in Real-Time Strategy (RTS) Games is a non-trivial and challenging task mainly due to three factors which are constraints on CPU and memory usage, dynamicity of the game world, and concurrency. In this paper, we are focusing on finding a novel solution for solving the pathfinding problem in RTS Games for the units which are controlled by the computer. The novel solution combines two AI Planning approaches: Hierarchical Task Network (HTN) and Real-Time Heuristic Search (RHS)....

  9. Structural correlates of impaired working memory in hippocampal sclerosis

    OpenAIRE

    Winston, Gavin P.; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R.; Thompson, Pamela J; Duncan, John S.

    2013-01-01

    Purpose: Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS...

  10. Properties of a memory network in psychology

    Science.gov (United States)

    Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.

    2007-12-01

    We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.

  11. Sensory Hierarchical Organization and Reading.

    Science.gov (United States)

    Skapof, Jerome

    The purpose of this study was to judge the viability of an operational approach aimed at assessing response styles in reading using the hypothesis of sensory hierarchical organization. A sample of 103 middle-class children from a New York City public school, between the ages of five and seven, took part in a three phase experiment. Phase one…

  12. Temporal Preparation and Inhibitory Deficit in Fibromyalgia Syndrome

    Science.gov (United States)

    Correa, Angel; Miro, Elena; Martinez, M. Pilar; Sanchez, Ana I.; Lupianez, Juan

    2011-01-01

    Cognitive deficits in fibromyalgia may be specifically related to controlled processes, such as those measured by working memory or executive function tasks. This hypothesis was tested here by measuring controlled temporal preparation (temporal orienting) during a response inhibition (go no-go) task. Temporal orienting effects (faster reaction…

  13. Brain Connectivity Related to Working Memory Performance

    National Research Council Canada - National Science Library

    Hampson, Michelle; Driesen, Naomi R; Skudlarski, Pawel; Gore, John C; Constable, R. Todd

    2006-01-01

    .... This study investigated the functional connectivity between the PCC and MFG/vACC during a working memory task and at rest by examining temporal correlations in magnetic resonance signal levels between the regions...

  14. Clinical time series prediction: Toward a hierarchical dynamical system framework.

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2015-09-01

    Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Clinical time series prediction: towards a hierarchical dynamical system framework

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2014-01-01

    Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive

  16. Hierarchical Stochastic Simulation Algorithm for SBML Models of Genetic Circuits

    Directory of Open Access Journals (Sweden)

    Leandro eWatanabe

    2014-11-01

    Full Text Available This paper describes a hierarchical stochastic simulation algorithm which has been implemented within iBioSim, a tool used to model, analyze, and visualize genetic circuits. Many biological analysis tools flatten out hierarchy before simulation, but there are many disadvantages associated with this approach. First, the memory required to represent the model can quickly expand in the process. Second, the flattening process is computationally expensive. Finally, when modeling a dynamic cellular population within iBioSim, inlining the hierarchy of the model is inefficient since models must grow dynamically over time. This paper discusses a new approach to handle hierarchy on the fly to make the tool faster and more memory-efficient. This approach yields significant performance improvements as compared to the former flat analysis method.

  17. The neural basis of involuntary episodic memories.

    Science.gov (United States)

    Hall, Shana A; Rubin, David C; Miles, Amanda; Davis, Simon W; Wing, Erik A; Cabeza, Roberto; Berntsen, Dorthe

    2014-10-01

    Voluntary episodic memories require an intentional memory search, whereas involuntary episodic memories come to mind spontaneously without conscious effort. Cognitive neuroscience has largely focused on voluntary memory, leaving the neural mechanisms of involuntary memory largely unknown. We hypothesized that, because the main difference between voluntary and involuntary memory is the controlled retrieval processes required by the former, there would be greater frontal activity for voluntary than involuntary memories. Conversely, we predicted that other components of the episodic retrieval network would be similarly engaged in the two types of memory. During encoding, all participants heard sounds, half paired with pictures of complex scenes and half presented alone. During retrieval, paired and unpaired sounds were presented, panned to the left or to the right. Participants in the involuntary group were instructed to indicate the spatial location of the sound, whereas participants in the voluntary group were asked to additionally recall the pictures that had been paired with the sounds. All participants reported the incidence of their memories in a postscan session. Consistent with our predictions, voluntary memories elicited greater activity in dorsal frontal regions than involuntary memories, whereas other components of the retrieval network, including medial-temporal, ventral occipitotemporal, and ventral parietal regions were similarly engaged by both types of memories. These results clarify the distinct role of dorsal frontal and ventral occipitotemporal regions in predicting strategic retrieval and recalled information, respectively, and suggest that, although there are neural differences in retrieval, involuntary memories share neural components with established voluntary memory systems.

  18. Memory Modulation

    NARCIS (Netherlands)

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evi

  19. Memory Matters

    Science.gov (United States)

    ... the brain that actually make memories harder to recall. previous continue Signs of a Memory Problem A person might — or might not — be ... A doctor will test the person's ability to recall events, names, or places by ... . If the person has memory loss from a head injury, the doctor will ...

  20. Hierarchical Prisoner's Dilemma in Hierarchical Public-Goods Game

    CERN Document Server

    Fujimoto, Yuma; Kaneko, Kunihiko

    2016-01-01

    The dilemma in cooperation is one of the major concerns in game theory. In a public-goods game, each individual pays a cost for cooperation, or to prevent defection, and receives a reward from the collected cost in a group. Thus, defection is beneficial for each individual, while cooperation is beneficial for the group. Now, groups (say, countries) consisting of individual players also play games. To study such a multi-level game, we introduce a hierarchical public-goods (HPG) game in which two groups compete for finite resources by utilizing costs collected from individuals in each group. Analyzing this HPG game, we found a hierarchical prisoner's dilemma, in which groups choose the defection policy (say, armaments) as a Nash strategy to optimize each group's benefit, while cooperation optimizes the total benefit. On the other hand, for each individual within a group, refusing to pay the cost (say, tax) is a Nash strategy, which turns to be a cooperation policy for the group, thus leading to a hierarchical d...

  1. A simplified computational memory model from information processing

    Science.gov (United States)

    Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang

    2016-11-01

    This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view.

  2. Accounting for Cache Related Pre-emption Delays in Hierarchical Scheduling

    NARCIS (Netherlands)

    Lunniss, W.; Altmeyer, S.; Lipari, G.; Davis, R.I.

    2014-01-01

    Hierarchical scheduling provides a means of composing multiple real-time applications onto a single processor such that the temporal requirements of each application are met. This has become a popular technique in industry as it allows applications from multiple vendors as well as legacy application

  3. Accounting for Cache Related Pre-emption Delays in Hierarchical Scheduling with Local EDF Scheduler

    NARCIS (Netherlands)

    Lunniss, W.; Altmeyer, S.; Davis, R.I.

    2014-01-01

    Hierarchical scheduling provides a means of composing multiple real-time applications onto a single processor such that the temporal requirements of each application are met. This has become a popular technique in industry as it allows applications from multiple vendors as well as legacy application

  4. Task Switching in a Hierarchical Task Structure: Evidence for the Fragility of the Task Repetition Benefit

    Science.gov (United States)

    Lien, Mei-Ching; Ruthruff, Eric

    2004-01-01

    This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms.…

  5. The Hierarchical Trend Model for property valuation and local price indices

    NARCIS (Netherlands)

    M.K. Francke; G.A. Vos

    2002-01-01

    This paper presents a hierarchical trend model (HTM) for selling prices of houses, addressing three main problems: the spatial and temporal dependence of selling prices and the dependency of price index changes on housing quality. In this model the general price trend, cluster-level price trends, an

  6. Hierarchical structure of biological systems

    Science.gov (United States)

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M

    2014-01-01

    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems. PMID:24145961

  7. Automatic Hierarchical Color Image Classification

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2003-02-01

    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  8. Intuitionistic fuzzy hierarchical clustering algorithms

    Institute of Scientific and Technical Information of China (English)

    Xu Zeshui

    2009-01-01

    Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a mem-bership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clus-tering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.

  9. Hierarchical Formation of Galactic Clusters

    CERN Document Server

    Elmegreen, B G

    2006-01-01

    Young stellar groupings and clusters have hierarchical patterns ranging from flocculent spiral arms and star complexes on the largest scale to OB associations, OB subgroups, small loose groups, clusters and cluster subclumps on the smallest scales. There is no obvious transition in morphology at the cluster boundary, suggesting that clusters are only the inner parts of the hierarchy where stars have had enough time to mix. The power-law cluster mass function follows from this hierarchical structure: n(M_cl) M_cl^-b for b~2. This value of b is independently required by the observation that the summed IMFs from many clusters in a galaxy equals approximately the IMF of each cluster.

  10. Hierarchical matrices algorithms and analysis

    CERN Document Server

    Hackbusch, Wolfgang

    2015-01-01

    This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...

  11. Hierarchical Cont-Bouchaud model

    CERN Document Server

    Paluch, Robert; Holyst, Janusz A

    2015-01-01

    We extend the well-known Cont-Bouchaud model to include a hierarchical topology of agent's interactions. The influence of hierarchy on system dynamics is investigated by two models. The first one is based on a multi-level, nested Erdos-Renyi random graph and individual decisions by agents according to Potts dynamics. This approach does not lead to a broad return distribution outside a parameter regime close to the original Cont-Bouchaud model. In the second model we introduce a limited hierarchical Erdos-Renyi graph, where merging of clusters at a level h+1 involves only clusters that have merged at the previous level h and we use the original Cont-Bouchaud agent dynamics on resulting clusters. The second model leads to a heavy-tail distribution of cluster sizes and relative price changes in a wide range of connection densities, not only close to the percolation threshold.

  12. Memory protection

    Science.gov (United States)

    Denning, Peter J.

    1988-01-01

    Accidental overwriting of files or of memory regions belonging to other programs, browsing of personal files by superusers, Trojan horses, and viruses are examples of breakdowns in workstations and personal computers that would be significantly reduced by memory protection. Memory protection is the capability of an operating system and supporting hardware to delimit segments of memory, to control whether segments can be read from or written into, and to confine accesses of a program to its segments alone. The absence of memory protection in many operating systems today is the result of a bias toward a narrow definition of performance as maximum instruction-execution rate. A broader definition, including the time to get the job done, makes clear that cost of recovery from memory interference errors reduces expected performance. The mechanisms of memory protection are well understood, powerful, efficient, and elegant. They add to performance in the broad sense without reducing instruction execution rate.

  13. Hierarchical Clustering and Active Galaxies

    CERN Document Server

    Hatziminaoglou, E; Manrique, A

    2000-01-01

    The growth of Super Massive Black Holes and the parallel development of activity in galactic nuclei are implemented in an analytic code of hierarchical clustering. The evolution of the luminosity function of quasars and AGN will be computed with special attention paid to the connection between quasars and Seyfert galaxies. One of the major interests of the model is the parallel study of quasar formation and evolution and the History of Star Formation.

  14. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  15. Batched QR and SVD Algorithms on GPUs with Applications in Hierarchical Matrix Compression

    KAUST Repository

    Halim Boukaram, Wajih

    2017-09-14

    We present high performance implementations of the QR and the singular value decomposition of a batch of small matrices hosted on the GPU with applications in the compression of hierarchical matrices. The one-sided Jacobi algorithm is used for its simplicity and inherent parallelism as a building block for the SVD of low rank blocks using randomized methods. We implement multiple kernels based on the level of the GPU memory hierarchy in which the matrices can reside and show substantial speedups against streamed cuSOLVER SVDs. The resulting batched routine is a key component of hierarchical matrix compression, opening up opportunities to perform H-matrix arithmetic efficiently on GPUs.

  16. Treatment Protocols as Hierarchical Structures

    Science.gov (United States)

    Ben-Bassat, Moshe; Carlson, Richard W.; Puri, Vinod K.; Weil, Max Harry

    1978-01-01

    We view a treatment protocol as a hierarchical structure of therapeutic modules. The lowest level of this structure consists of individual therapeutic actions. Combinations of individual actions define higher level modules, which we call routines. Routines are designed to manage limited clinical problems, such as the routine for fluid loading to correct hypovolemia. Combinations of routines and additional actions, together with comments, questions, or precautions organized in a branching logic, in turn, define the treatment protocol for a given disorder. Adoption of this modular approach may facilitate the formulation of treatment protocols, since the physician is not required to prepare complex flowcharts. This hierarchical approach also allows protocols to be updated and modified in a flexible manner. By use of such a standard format, individual components may be fitted together to create protocols for multiple disorders. The technique is suited for computer implementation. We believe that this hierarchical approach may facilitate standarization of patient care as well as aid in clinical teaching. A protocol for acute pancreatitis is used to illustrate this technique.

  17. The role of awareness and working memory in human transitive inference.

    Science.gov (United States)

    Libben, M; Titone, D

    2008-01-01

    The human ability to perform transitive inference (TI) is an area of debate from a neurocognitive standpoint. Some studies emphasize a stimulus driven medial-temporal lobe process [Preston, A.R., Shrager, Y., Dudukovic, N.M., Gabrieli, J.D., 2004. Hippocampal contribution to the novel use of relational information in declarative memory. Hippocampus 14, 148-152; Titone, D., Ditman, T., Holzman, P., Eichenbaum, H., Levy, D., 2004. A transitive inference test of relational memory in schizophrenia. Schizophr. Res. 68, 235-247; Van Elzakker, M., O'Reilley, R., Rudy, J., 2003. Transivity, flexibility, conjenctive representation and the hippocampus: an empirical analysis. Hippocampus 13, 334-340] while others emphasize a higher-level frontal lobe strategy that requires the flexible maintenance of information in working memory [Waltz, J., Knowlton, B., Holyoak, K., Boone, K., Mishkin, F., de Menedezes Santos, M., Thomas, C., Miller, B., 1999. A system for relational reasoning in human prefrontal cortex. Psychol. Sci. 10, 119-125]. In two experiments we investigated when and how adults employ different cognitive strategies during TI by evaluating the interaction between task instructions and individual differences in working memory capacity. Participants engaged in a paired discrimination task involving a 6-unit TI hierarchy and were either prior aware, prior unaware or serendipitously aware of the hierarchical relationship among stimulus items. Both prior aware participants and serendipitously aware participants were more likely to engage in a logic-based strategy compared to unaware participants who relied upon stimulus-driven strategies. Individual differences in working memory were associated with the acquisition of awareness in the serendipitously aware group and with the maintenance of awareness in the prior aware group. These findings suggest that the capacity for TI may be supported by multiple neurocognitive strategies, and that the specific strategy employed is

  18. Expectation and attention in hierarchical auditory prediction.

    Science.gov (United States)

    Chennu, Srivas; Noreika, Valdas; Gueorguiev, David; Blenkmann, Alejandro; Kochen, Silvia; Ibáñez, Agustín; Owen, Adrian M; Bekinschtein, Tristan A

    2013-07-03

    Hierarchical predictive coding suggests that attention in humans emerges from increased precision in probabilistic inference, whereas expectation biases attention in favor of contextually anticipated stimuli. We test these notions within auditory perception by independently manipulating top-down expectation and attentional precision alongside bottom-up stimulus predictability. Our findings support an integrative interpretation of commonly observed electrophysiological signatures of neurodynamics, namely mismatch negativity (MMN), P300, and contingent negative variation (CNV), as manifestations along successive levels of predictive complexity. Early first-level processing indexed by the MMN was sensitive to stimulus predictability: here, attentional precision enhanced early responses, but explicit top-down expectation diminished it. This pattern was in contrast to later, second-level processing indexed by the P300: although sensitive to the degree of predictability, responses at this level were contingent on attentional engagement and in fact sharpened by top-down expectation. At the highest level, the drift of the CNV was a fine-grained marker of top-down expectation itself. Source reconstruction of high-density EEG, supported by intracranial recordings, implicated temporal and frontal regions differentially active at early and late levels. The cortical generators of the CNV suggested that it might be involved in facilitating the consolidation of context-salient stimuli into conscious perception. These results provide convergent empirical support to promising recent accounts of attention and expectation in predictive coding.

  19. The hierarchical brain network for face recognition.

    Science.gov (United States)

    Zhen, Zonglei; Fang, Huizhen; Liu, Jia

    2013-01-01

    Numerous functional magnetic resonance imaging (fMRI) studies have identified multiple cortical regions that are involved in face processing in the human brain. However, few studies have characterized the face-processing network as a functioning whole. In this study, we used fMRI to identify face-selective regions in the entire brain and then explore the hierarchical structure of the face-processing network by analyzing functional connectivity among these regions. We identified twenty-five regions mainly in the occipital, temporal and frontal cortex that showed a reliable response selective to faces (versus objects) across participants and across scan sessions. Furthermore, these regions were clustered into three relatively independent sub-networks in a face-recognition task on the basis of the strength of functional connectivity among them. The functionality of the sub-networks likely corresponds to the recognition of individual identity, retrieval of semantic knowledge and representation of emotional information. Interestingly, when the task was switched to object recognition from face recognition, the functional connectivity between the inferior occipital gyrus and the rest of the face-selective regions were significantly reduced, suggesting that this region may serve as an entry node in the face-processing network. In sum, our study provides empirical evidence for cognitive and neural models of face recognition and helps elucidate the neural mechanisms underlying face recognition at the network level.

  20. Learning Contextual Dependence With Convolutional Hierarchical Recurrent Neural Networks

    Science.gov (United States)

    Zuo, Zhen; Shuai, Bing; Wang, Gang; Liu, Xiao; Wang, Xingxing; Wang, Bing; Chen, Yushi

    2016-07-01

    Existing deep convolutional neural networks (CNNs) have shown their great success on image classification. CNNs mainly consist of convolutional and pooling layers, both of which are performed on local image areas without considering the dependencies among different image regions. However, such dependencies are very important for generating explicit image representation. In contrast, recurrent neural networks (RNNs) are well known for their ability of encoding contextual information among sequential data, and they only require a limited number of network parameters. General RNNs can hardly be directly applied on non-sequential data. Thus, we proposed the hierarchical RNNs (HRNNs). In HRNNs, each RNN layer focuses on modeling spatial dependencies among image regions from the same scale but different locations. While the cross RNN scale connections target on modeling scale dependencies among regions from the same location but different scales. Specifically, we propose two recurrent neural network models: 1) hierarchical simple recurrent network (HSRN), which is fast and has low computational cost; and 2) hierarchical long-short term memory recurrent network (HLSTM), which performs better than HSRN with the price of more computational cost. In this manuscript, we integrate CNNs with HRNNs, and develop end-to-end convolutional hierarchical recurrent neural networks (C-HRNNs). C-HRNNs not only make use of the representation power of CNNs, but also efficiently encodes spatial and scale dependencies among different image regions. On four of the most challenging object/scene image classification benchmarks, our C-HRNNs achieve state-of-the-art results on Places 205, SUN 397, MIT indoor, and competitive results on ILSVRC 2012.