WorldWideScience

Sample records for hierarchical temporal memory

  1. Using Hierarchical Temporal Memory for Detecting Anomalous Network Activity

    Science.gov (United States)

    2008-03-01

    warfare, computer network operations, psychological operations, military deception, and operations security, in concert with specified supporting and...you up short—you were subconsciously predicting something else and were surprised by the mismatch” [3]. Notable neurobiologist Horace Barlow of the...malicious network activity is flagged as abnormal . That is, test data should present the N-HTM network with spatial-temporal patterns that do not match 46

  2. Skill Learning for Intelligent Robot by Perception-Action Integration: A View from Hierarchical Temporal Memory

    Directory of Open Access Journals (Sweden)

    Xinzheng Zhang

    2017-01-01

    Full Text Available Skill learning autonomously through interactions with the environment is a crucial ability for intelligent robot. A perception-action integration or sensorimotor cycle, as an important issue in imitation learning, is a natural mechanism without the complex program process. Recently, neurocomputing model and developmental intelligence method are considered as a new trend for implementing the robot skill learning. In this paper, based on research of the human brain neocortex model, we present a skill learning method by perception-action integration strategy from the perspective of hierarchical temporal memory (HTM theory. The sequential sensor data representing a certain skill from a RGB-D camera are received and then encoded as a sequence of Sparse Distributed Representation (SDR vectors. The sequential SDR vectors are treated as the inputs of the perception-action HTM. The HTM learns sequences of SDRs and makes predictions of what the next input SDR will be. It stores the transitions of the current perceived sensor data and next predicted actions. We evaluated the performance of this proposed framework for learning the shaking hands skill on a humanoid NAO robot. The experimental results manifest that the skill learning method designed in this paper is promising.

  3. Online credit card fraud prediction based on hierarchical temporal ...

    African Journals Online (AJOL)

    This understanding gave birth to the Hierarchical Temporal Memory (HTM) which holds a lot of promises in the area of time-series prediction and anomaly detection problems. This paper demonstrates the behaviour of an HTM model with respect to its learning and prediction of online credit card fraud. The model was ...

  4. Hierarchical Traces for Reduced NSM Memory Requirements

    Science.gov (United States)

    Dahl, Torbjørn S.

    This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based reinforcement learning algorithm. A hierarchical memory representation reduces the memory requirements by allowing traces to share common sub-sequences. We present moderated mechanisms for estimating discounted future rewards and for dealing with hidden state using hierarchical memory. We also present an experimental analysis of how the sub-sequence length affects the memory compression achieved and show that the reduced memory requirements do not effect the speed of learning. Finally, we analyse and discuss the persistence of the sub-sequences independent of specific trace instances.

  5. Infants Hierarchically Organize Memory Representations

    Science.gov (United States)

    Rosenberg, Rebecca D.; Feigenson, Lisa

    2013-01-01

    Throughout development, working memory is subject to capacity limits that severely constrain short-term storage. However, adults can massively expand the total amount of remembered information by grouping items into "chunks". Although infants also have been shown to chunk objects in memory, little is known regarding the limits of this…

  6. A Temporal Ratio Model of Memory

    Science.gov (United States)

    Brown, Gordon D. A.; Neath, Ian; Chater, Nick

    2007-01-01

    A model of memory retrieval is described. The model embodies four main claims: (a) temporal memory--traces of items are represented in memory partly in terms of their temporal distance from the present; (b) scale-similarity--similar mechanisms govern retrieval from memory over many different timescales; (c) local distinctiveness--performance on a…

  7. Memory for temporally dynamic scenes.

    Science.gov (United States)

    Ferguson, Ryan; Homa, Donald; Ellis, Derek

    2017-07-01

    Recognition memory was investigated for individual frames extracted from temporally continuous, visually rich film segments of 5-15 min. Participants viewed a short clip from a film in either a coherent or a jumbled order, followed by a recognition test of studied frames. Foils came either from an earlier or a later part of the film (Experiment 1) or from deleted segments selected from random cuts of varying duration (0.5 to 30 s) within the film itself (Experiment 2). When the foils came from an earlier or later part of the film (Experiment 1), recognition was excellent, with the hit rate far exceeding the false-alarm rate (.78 vs. 18). In Experiment 2, recognition was far worse, with the hit rate (.76) exceeding the false-alarm rate only for foils drawn from the longest cuts (15 and 30 s) and matching the false-alarm rate for the 5 s segments. When the foils were drawn from the briefest cuts (0.5 and 1.0 s), the false-alarm rate exceeded the hit rate. Unexpectedly, jumbling had no effect on recognition in either experiment. These results are consistent with the view that memory for complex visually temporal events is excellent, with the integrity unperturbed by disruption of the global structure of the visual stream. Disruption of memory was observed only when foils were drawn from embedded segments of duration less than 5 s, an outcome consistent with the view that memory at these shortest durations are consolidated with expectations drawn from the previous stream.

  8. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

    Science.gov (United States)

    Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

    2013-03-01

    Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

  9. Sleep enforces the temporal order in memory.

    Directory of Open Access Journals (Sweden)

    Spyridon Drosopoulos

    Full Text Available BACKGROUND: Temporal sequence represents the main principle underlying episodic memory. The storage of temporal sequence information is thought to involve hippocampus-dependent memory systems, preserving temporal structure possibly via chaining of sequence elements in heteroassociative networks. Converging evidence indicates that sleep enhances the consolidation of recently acquired representations in the hippocampus-dependent declarative memory system. Yet, it is unknown if this consolidation process comprises strengthening of the temporal sequence structure of the representation as well, or is restricted to sequence elements independent of their temporal order. To address this issue we tested the influence of sleep on the strength of forward and backward associations in word-triplets. METHODOLOGY/PRINCIPAL FINDINGS: Subjects learned a list of 32 triplets of unrelated words, presented successively (A-B-C in the center of a screen, and either slept normally or stayed awake in the subsequent night. After two days, retrieval was assessed for the triplets sequentially either in a forward direction (cueing with A and B and asking for B and C, respectively or in a backward direction (cueing with C and B and asking for B and A, respectively. Memory was better for forward than backward associations (p<0.01. Sleep did not affect backward associations, but enhanced forward associations, specifically for the first (AB transitions (p<0.01, which were generally more difficult to retrieve than the second transitions. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that consolidation during sleep strengthens the original temporal sequence structure in memory, presumably as a result of a replay of new representations during sleep in forward direction. Our finding suggests that the temporally directed replay of memory during sleep, apart from strengthening those traces, could be the key mechanism that explains how temporal order is integrated and maintained in

  10. Positive autobiographical memory retrieval reduces temporal discounting

    Science.gov (United States)

    Lempert, Karolina M; Speer, Megan E; Delgado, Mauricio R

    2017-01-01

    Abstract People generally prefer rewards sooner rather than later. This phenomenon, temporal discounting, underlies many societal problems, including addiction and obesity. One way to reduce temporal discounting is to imagine positive future experiences. Since there is overlap in the neural circuitry associated with imagining future experiences and remembering past events, here we investigate whether recalling positive memories can also promote more patient choice. We found that participants were more patient after retrieving positive autobiographical memories, but not when they recalled negative memories. Moreover, individuals were more impulsive after imagining novel positive scenes that were not related to their memories, showing that positive imagery alone does not drive this effect. Activity in the striatum and temporo parietal junction during memory retrieval predicted more patient choice, suggesting that to the extent that memory recall is rewarding and involves perspective-taking, it influences decision-making. Furthermore, representational similarity in the ventromedial prefrontal cortex between memory recall and decision phases correlated with the behavioral effect across participants. Thus, we have identified a novel manipulation for reducing temporal discounting—remembering the positive past—and have begun to characterize the psychological and neural mechanisms behind it. PMID:28655195

  11. Positive autobiographical memory retrieval reduces temporal discounting.

    Science.gov (United States)

    Lempert, Karolina M; Speer, Megan E; Delgado, Mauricio R; Phelps, Elizabeth A

    2017-10-01

    People generally prefer rewards sooner rather than later. This phenomenon, temporal discounting, underlies many societal problems, including addiction and obesity. One way to reduce temporal discounting is to imagine positive future experiences. Since there is overlap in the neural circuitry associated with imagining future experiences and remembering past events, here we investigate whether recalling positive memories can also promote more patient choice. We found that participants were more patient after retrieving positive autobiographical memories, but not when they recalled negative memories. Moreover, individuals were more impulsive after imagining novel positive scenes that were not related to their memories, showing that positive imagery alone does not drive this effect. Activity in the striatum and temporo parietal junction during memory retrieval predicted more patient choice, suggesting that to the extent that memory recall is rewarding and involves perspective-taking, it influences decision-making. Furthermore, representational similarity in the ventromedial prefrontal cortex between memory recall and decision phases correlated with the behavioral effect across participants. Thus, we have identified a novel manipulation for reducing temporal discounting-remembering the positive past-and have begun to characterize the psychological and neural mechanisms behind it. © The Author (2017). Published by Oxford University Press.

  12. Auditory memory for temporal characteristics of sound.

    Science.gov (United States)

    Zokoll, Melanie A; Klump, Georg M; Langemann, Ulrike

    2008-05-01

    This study evaluates auditory memory for variations in the rate of sinusoidal amplitude modulation (SAM) of noise bursts in the European starling (Sturnus vulgaris). To estimate the extent of the starling's auditory short-term memory store, a delayed non-matching-to-sample paradigm was applied. The birds were trained to discriminate between a series of identical "sample stimuli" and a single "test stimulus". The birds classified SAM rates of sample and test stimuli as being either the same or different. Memory performance of the birds was measured as the percentage of correct classifications. Auditory memory persistence time was estimated as a function of the delay between sample and test stimuli. Memory performance was significantly affected by the delay between sample and test and by the number of sample stimuli presented before the test stimulus, but was not affected by the difference in SAM rate between sample and test stimuli. The individuals' auditory memory persistence times varied between 2 and 13 s. The starlings' auditory memory persistence in the present study for signals varying in the temporal domain was significantly shorter compared to that of a previous study (Zokoll et al. in J Acoust Soc Am 121:2842, 2007) applying tonal stimuli varying in the spectral domain.

  13. Brain activity related to working memory for temporal order and object information.

    Science.gov (United States)

    Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan

    2017-06-08

    Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal

  14. Visual question answering using hierarchical dynamic memory networks

    Science.gov (United States)

    Shang, Jiayu; Li, Shiren; Duan, Zhikui; Huang, Junwei

    2018-04-01

    Visual Question Answering (VQA) is one of the most popular research fields in machine learning which aims to let the computer learn to answer natural language questions with images. In this paper, we propose a new method called hierarchical dynamic memory networks (HDMN), which takes both question attention and visual attention into consideration impressed by Co-Attention method, which is the best (or among the best) algorithm for now. Additionally, we use bi-directional LSTMs, which have a better capability to remain more information from the question and image, to replace the old unit so that we can capture information from both past and future sentences to be used. Then we rebuild the hierarchical architecture for not only question attention but also visual attention. What's more, we accelerate the algorithm via a new technic called Batch Normalization which helps the network converge more quickly than other algorithms. The experimental result shows that our model improves the state of the art on the large COCO-QA dataset, compared with other methods.

  15. Hierarchical process memory: memory as an integral component of information processing

    Science.gov (United States)

    Hasson, Uri; Chen, Janice; Honey, Christopher J.

    2015-01-01

    Models of working memory commonly focus on how information is encoded into and retrieved from storage at specific moments. However, in the majority of real-life processes, past information is used continuously to process incoming information across multiple timescales. Considering single unit, electrocorticography, and functional imaging data, we argue that (i) virtually all cortical circuits can accumulate information over time, and (ii) the timescales of accumulation vary hierarchically, from early sensory areas with short processing timescales (tens to hundreds of milliseconds) to higher-order areas with long processing timescales (many seconds to minutes). In this hierarchical systems perspective, memory is not restricted to a few localized stores, but is intrinsic to information processing that unfolds throughout the brain on multiple timescales. “The present contains nothing more than the past, and what is found in the effect was already in the cause.”Henri L Bergson PMID:25980649

  16. Unpredictable visual changes cause temporal memory averaging.

    Science.gov (United States)

    Ohyama, Junji; Watanabe, Katsumi

    2007-09-01

    Various factors influence the perceived timing of visual events. Yet, little is known about the ways in which transient visual stimuli affect the estimation of the timing of other visual events. In the present study, we examined how a sudden color change of an object would influence the remembered timing of another transient event. In each trial, subjects saw a green or red disk travel in circular motion. A visual flash (white frame) occurred at random times during the motion sequence. The color of the disk changed either at random times (unpredictable condition), at a fixed time relative to the motion sequence (predictable condition), or it did not change (no-change condition). The subjects' temporal memory of the visual flash in the predictable condition was as veridical as that in the no-change condition. In the unpredictable condition, however, the flash was reported to occur closer to the timing of the color change than actual timing. Thus, an unpredictable visual change distorts the temporal memory of another visual event such that the remembered moment of the event is closer to the timing of the unpredictable visual change.

  17. Contextual effects in visual working memory reveal hierarchically structured memory representations.

    Science.gov (United States)

    Brady, Timothy F; Alvarez, George A

    2015-01-01

    Influential slot and resource models of visual working memory make the assumption that items are stored in memory as independent units, and that there are no interactions between them. Consequently, these models predict that the number of items to be remembered (the set size) is the primary determinant of working memory performance, and therefore these models quantify memory capacity in terms of the number and quality of individual items that can be stored. Here we demonstrate that there is substantial variance in display difficulty within a single set size, suggesting that limits based on the number of individual items alone cannot explain working memory storage. We asked hundreds of participants to remember the same sets of displays, and discovered that participants were highly consistent in terms of which items and displays were hardest or easiest to remember. Although a simple grouping or chunking strategy could not explain this individual-display variability, a model with multiple, interacting levels of representation could explain some of the display-by-display differences. Specifically, a model that includes a hierarchical representation of items plus the mean and variance of sets of the colors on the display successfully accounts for some of the variability across displays. We conclude that working memory representations are composed only in part of individual, independent object representations, and that a major factor in how many items are remembered on a particular display is interitem representations such as perceptual grouping, ensemble, and texture representations.

  18. Pushing Typists Back on the Learning Curve: Memory Chunking in the Hierarchical Control of Skilled Typewriting

    Science.gov (United States)

    Yamaguchi, Motonori; Logan, Gordon D.

    2016-01-01

    Hierarchical control of skilled performance depends on the ability of higher level control to process several lower level units as a single chunk. The present study investigated the development of hierarchical control of skilled typewriting, focusing on the process of memory chunking. In the first 3 experiments, skilled typists typed words or…

  19. A hierarchical Bayesian spatio-temporal model to forecast trapped particle fluxes over the SAA region

    Czech Academy of Sciences Publication Activity Database

    Suparta, W.; Gusrizal, G.; Kudela, Karel; Isa, Z.

    2017-01-01

    Roč. 28, č. 3 (2017), s. 357-370 ISSN 1017-0839 R&D Projects: GA MŠk EF15_003/0000481 Institutional support: RVO:61389005 Keywords : trapped particle * spatio-temporal * hierarchical Bayesian * forecasting Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 0.752, year: 2016

  20. Temporal Organization of Sound Information in Auditory Memory

    Directory of Open Access Journals (Sweden)

    Kun Song

    2017-06-01

    Full Text Available Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  1. Temporal Organization of Sound Information in Auditory Memory.

    Science.gov (United States)

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  2. Temporal compression in episodic memory for real-life events.

    Science.gov (United States)

    Jeunehomme, Olivier; Folville, Adrien; Stawarczyk, David; Van der Linden, Martial; D'Argembeau, Arnaud

    2018-07-01

    Remembering an event typically takes less time than experiencing it, suggesting that episodic memory represents past experience in a temporally compressed way. Little is known, however, about how the continuous flow of real-life events is summarised in memory. Here we investigated the nature and determinants of temporal compression by directly comparing memory contents with the objective timing of events as measured by a wearable camera. We found that episodic memories consist of a succession of moments of prior experience that represent events with varying compression rates, such that the density of retrieved information is modulated by goal processing and perceptual changes. Furthermore, the results showed that temporal compression rates remain relatively stable over one week and increase after a one-month delay, particularly for goal-related events. These data shed new light on temporal compression in episodic memory and suggest that compression rates are adaptively modulated to maintain current goal-relevant information.

  3. Working Memory, Long-Term Memory, and Medial Temporal Lobe Function

    Science.gov (United States)

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance…

  4. Memory in children with symptomatic temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Catarina A. Guimarães

    2014-03-01

    Full Text Available In children with temporal lobe epilepsy (TLE, memory deficit is not so well understood as it is in adults. The aim of this study was to identify and describe memory deficits in children with symptomatic TLE, and to verify the influence of epilepsy variables on memory. We evaluated 25 children with TLE diagnosed on clinical, EEG and MRI findings. Twenty-five normal children were compared with the patients. All children underwent a neuropsychological assessment to estimate intellectual level, attention, visual perception, handedness, and memory processes (verbal and visual: short-term memory, learning, and delayed recall. The results allowed us to conclude: besides memory deficits, other neuropsychological disturbances may be found in children with TLE such as attention, even in the absence of overall cognitive deficit; the earlier onset of epilepsy, the worse verbal stimuli storage; mesial lesions correlate with impairment in memory storage stage while neocortical temporal lesions correlate with retrieval deficits.

  5. Semantic representations in the temporal pole predict false memories

    Science.gov (United States)

    Chadwick, Martin J.; Anjum, Raeesa S.; Kumaran, Dharshan; Schacter, Daniel L.; Spiers, Hugo J.; Hassabis, Demis

    2016-01-01

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the “semantic hub” of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories. PMID:27551087

  6. Semantic representations in the temporal pole predict false memories.

    Science.gov (United States)

    Chadwick, Martin J; Anjum, Raeesa S; Kumaran, Dharshan; Schacter, Daniel L; Spiers, Hugo J; Hassabis, Demis

    2016-09-06

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the "semantic hub" of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories.

  7. Brain Behavior Evolution during Learning: Emergence of Hierarchical Temporal Memory

    Science.gov (United States)

    2013-08-30

    by genetic information and implemented in each organism (includ- ing humans) in an environment of proteins and enzymes. However, the equivalent of a...process of learning. Implementation of the genetic code specifies the types and number of neurons as well as the general patterns of connections, but...well. This has come to be described by the rubric “Neurons that fire together wire together” [19]. Synaptic strengths are also weakened as a result of

  8. How does the sparse memory "engram" neurons encode the memory of a spatial-temporal event?

    Directory of Open Access Journals (Sweden)

    Ji-Song Guan

    2016-08-01

    Full Text Available Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns.

  9. Temporal Organization of Sound Information in Auditory Memory

    OpenAIRE

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed ...

  10. Generic Database Cost Models for Hierarchical Memory Systems

    OpenAIRE

    Manegold, Stefan; Boncz, Peter; Kersten, Martin

    2002-01-01

    textabstractAccurate prediction of operator execution time is a prerequisite for database query optimization. Although extensively studied for conventional disk-based DBMSs, cost modeling in main-memory DBMSs is still an open issue. Recent database research has demonstrated that memory access is more and more becoming a significant---if not the major---cost component of database operations. If used properly, fast but small cache memories---usually organized in cascading hierarchy between CPU ...

  11. Memory Functions following Surgery for Temporal Lobe Epilepsy in Children

    Science.gov (United States)

    Jambaque, Isabelle; Dellatolas, Georges; Fohlen, Martine; Bulteau, Christine; Watier, Laurence; Dorfmuller, Georg; Chiron, Catherine; Delalande, Olivier

    2007-01-01

    Surgical treatment appears to improve the cognitive prognosis in children undergoing surgery for temporal lobe epilepsy (TLE). The beneficial effects of surgery on memory functions, particularly on material-specific memory, are more difficult to assess because of potentially interacting factors such as age range, intellectual level,…

  12. Memory, Metamemory and Their Dissociation in Temporal Lobe Epilepsy

    Science.gov (United States)

    Howard, Charlotte E.; Andres, Pilar; Broks, Paul; Noad, Rupert; Sadler, Martin; Coker, Debbie; Mazzoni, Giuliana

    2010-01-01

    Patients with temporal-lobe epilepsy (TLE) present with memory difficulties. The aim of the current study was to determine to what extent these difficulties could be related to a metamemory impairment. Fifteen patients with TLE and 15 matched healthy controls carried out a paired-associates learning task. Memory recall was measured at intervals of…

  13. Hierarchical organization in the temporal structure of infant-direct speech and song.

    Science.gov (United States)

    Falk, Simone; Kello, Christopher T

    2017-06-01

    Caregivers alter the temporal structure of their utterances when talking and singing to infants compared with adult communication. The present study tested whether temporal variability in infant-directed registers serves to emphasize the hierarchical temporal structure of speech. Fifteen German-speaking mothers sang a play song and told a story to their 6-months-old infants, or to an adult. Recordings were analyzed using a recently developed method that determines the degree of nested clustering of temporal events in speech. Events were defined as peaks in the amplitude envelope, and clusters of various sizes related to periods of acoustic speech energy at varying timescales. Infant-directed speech and song clearly showed greater event clustering compared with adult-directed registers, at multiple timescales of hundreds of milliseconds to tens of seconds. We discuss the relation of this newly discovered acoustic property to temporal variability in linguistic units and its potential implications for parent-infant communication and infants learning the hierarchical structures of speech and language. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Generic Database Cost Models for Hierarchical Memory Systems

    NARCIS (Netherlands)

    S. Manegold (Stefan); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2002-01-01

    textabstractAccurate prediction of operator execution time is a prerequisite for database query optimization. Although extensively studied for conventional disk-based DBMSs, cost modeling in main-memory DBMSs is still an open issue. Recent database research has demonstrated that memory access is

  15. Generic database cost models for hierarchical memory systems

    NARCIS (Netherlands)

    S. Manegold (Stefan); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2002-01-01

    textabstractAccurate prediction of operator execution time is a prerequisite fordatabase query optimization. Although extensively studied for conventionaldisk-based DBMSs, cost modeling in main-memory DBMSs is still an openissue. Recent database research has demonstrated that memory access ismore

  16. Temporal Clustering and Sequencing in Short-Term Memory and Episodic Memory

    Science.gov (United States)

    Farrell, Simon

    2012-01-01

    A model of short-term memory and episodic memory is presented, with the core assumptions that (a) people parse their continuous experience into episodic clusters and (b) items are clustered together in memory as episodes by binding information within an episode to a common temporal context. Along with the additional assumption that information…

  17. Temporal context memory in high-functioning autism.

    Science.gov (United States)

    Gras-Vincendon, Agnès; Mottron, Laurent; Salamé, Pierre; Bursztejn, Claude; Danion, Jean-Marie

    2007-11-01

    Episodic memory, i.e. memory for specific episodes situated in space and time, seems impaired in individuals with autism. According to weak central coherence theory, individuals with autism have general difficulty connecting contextual and item information which then impairs their capacity to memorize information in context. This study investigated temporal context memory for visual information in individuals with autism. Eighteen adolescents and adults with high-functioning autism (HFA) or Asperger syndrome (AS) and age- and IQ-matched typically developing participants were tested using a recency judgement task. The performance of the autistic group did not differ from that of the control group, nor did the performance between the AS and HFA groups. We conclude that autism in high-functioning individuals does not impair temporal context memory as assessed on this task. We suggest that individuals with autism are as efficient on this task as typically developing subjects because contextual memory performance here involves more automatic than organizational processing.

  18. Temporal lobe volume predicts Wada memory test performance in patients with mesial temporal sclerosis.

    Science.gov (United States)

    Ding, Kan; Gong, Yunhua; Modur, Pradeep N; Diaz-Arrastia, Ramon; Agostini, Mark; Gupta, Puneet; McColl, Roderick; Hays, Ryan; Van Ness, Paul

    2016-02-01

    The Wada test is widely used in the presurgical evaluation of potential temporal lobectomy patients to predict postoperative memory function. Expected asymmetry (EA), defined as Wada memory lateralized to the nonsurgical hemisphere, or a higher score after injection of the surgical hemisphere would be considered favorable in terms of postoperative memory outcome. However, in some cases, nonlateralized memory (NM) results, with no appreciable asymmetry, may occur because of impaired scores after both injections, often leading to denial of surgery. The reason for such nonlateralized Wada memory in patients with intractable temporal lobe epilepsy (TLE) remains unclear. Given that quantitative morphometric magnetic resonance imaging studies in TLE patients have shown bilateral regional atrophy in temporal and extratemporal structures, we hypothesized that the volume loss in contralateral temporal structures could contribute to nonlateralized Wada memory performance. To investigate this, we examined the relationship between the volume changes of temporal structures and Wada memory scores in patients with intractable TLE with mesial temporal sclerosis (MTS) using an age- and gender-matched control group. Memory was considered nonlateralized if the absolute difference in the total correct recall scores between ipsilateral and contralateral injections was memory was lateralized in 15 and nonlateralized in 6 patients, with all the nonlateralized scores being observed in left TLE. The recall scores after ipsilateral injection were significantly lower in patients with an NM profile than an EA profile (23 ± 14% vs. 59 ± 18% correct recall, p ≤ 0.001). However, the recall scores after contralateral injection were low but similar between the two groups (25 ± 17% vs. 25 ± 15% correct recall, p=0.97). Compared to controls, all the patients showed greater volume loss in the temporal regions. However, patients with a NM profile showed significantly more volume loss than those

  19. Temporal dynamics of visual working memory.

    Science.gov (United States)

    Sobczak-Edmans, M; Ng, T H B; Chan, Y C; Chew, E; Chuang, K H; Chen, S H A

    2016-01-01

    The involvement of the human cerebellum in working memory has been well established in the last decade. However, the cerebro-cerebellar network for visual working memory is not as well defined. Our previous fMRI study showed superior and inferior cerebellar activations during a block design visual working memory task, but specific cerebellar contributions to cognitive processes in encoding, maintenance and retrieval have not yet been established. The current study examined cerebellar contributions to each of the components of visual working memory and presence of cerebellar hemispheric laterality was investigated. 40 young adults performed a Sternberg visual working memory task during fMRI scanning using a parametric paradigm. The contrast between high and low memory load during each phase was examined. We found that the most prominent activation was observed in vermal lobule VIIIb and bilateral lobule VI during encoding. Using a quantitative laterality index, we found that left-lateralized activation of lobule VIIIa was present in the encoding phase. In the maintenance phase, there was bilateral lobule VI and right-lateralized lobule VIIb activity. Changes in activation in right lobule VIIIa were present during the retrieval phase. The current results provide evidence that superior and inferior cerebellum contributes to visual working memory, with a tendency for left-lateralized activations in the inferior cerebellum during encoding and right-lateralized lobule VIIb activations during maintenance. The results of the study are in agreement with Baddeley's multi-component working memory model, but also suggest that stored visual representations are additionally supported by maintenance mechanisms that may employ verbal coding. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Long-term memory of hierarchical relationships in free-living greylag geese

    NARCIS (Netherlands)

    Weiss, Brigitte M.; Scheiber, Isabella B. R.

    Animals may memorise spatial and social information for many months and even years. Here, we investigated long-term memory of hierarchically ordered relationships, where the position of a reward depended on the relationship of a stimulus relative to other stimuli in the hierarchy. Seventeen greylag

  1. Autobiographical memory in temporal lobe epilepsy: role of hippocampal and temporal lateral structures.

    Science.gov (United States)

    Herfurth, Kirsten; Kasper, Burkhard; Schwarz, Michael; Stefan, Hermann; Pauli, Elisabeth

    2010-11-01

    The present study was aimed at investigating the impact of hippocampal and temporal cortical lesions on remote autobiographical memories in temporal lobe epilepsy (TLE). Episodic specificity, episodic richness, and personal semantic memory from different life periods were assessed using a modified version of the Autobiographical Memory Interview (AMI) (M.D. Kopelman, A.E. Wilson, A. Baddeley, The autobiographical memory interview. Bury St. Edmunds: Thames Valley Test Co.; 1990) in 47 patients with unilateral mesial or lateral TLE and 38 healthy controls. Patients with TLE performed significantly more poorly than controls. Patients with left and right mTLE were equally moderately impaired, but patients with left lateral TLE had the most severe episodic memory deficits, particularly for childhood memories. With respect to personal semantic memory, patients with left TLE were significantly more impaired than those with right TLE, most pronounced for childhood memories. Both autobiographical memory aspects, episodic and personal semantic memory, were significantly intercorrelated, but both did not correlate with anterograde memory, indicating a structural dissociation between both functions. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Semantic Memory Redux: An Experimental Test of Hierarchical Category Representation

    Science.gov (United States)

    Murphy, Gregory L.; Hampton, James A.; Milovanovic, Goran S.

    2012-01-01

    Four experiments investigated the classic issue in semantic memory of whether people organize categorical information in hierarchies and use inference to retrieve information from them, as proposed by Collins and Quillian (1969). Past evidence has focused on RT to confirm sentences such as "All birds are animals" or "Canaries breathe." However,…

  3. Emotion's influence on memory for spatial and temporal context.

    Science.gov (United States)

    Schmidt, Katherine; Patnaik, Pooja; Kensinger, Elizabeth A

    2011-02-01

    Individuals report remembering emotional items vividly. It is debated whether this report reflects enhanced memory accuracy or a bias to believe emotional memories are vivid. We hypothesized emotion would enhance memory accuracy, improving memory for contextual details. The hallmark of episodic memory is that items are remembered in a spatial and temporal context, so we examined whether an item's valence (positive, negative) or arousal (high, low) would influence its ability to be remembered with those contextual details. Across two experiments, high-arousal items were remembered with spatial and temporal context more often than low-arousal items. Item valence did not influence memory for those details, although positive high-arousal items were recognized or recalled more often than negative items. These data suggest that emotion does not just bias participants to believe they have a vivid memory; rather, the arousal elicited by an event can benefit memory for some types of contextual details. © 2010 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business

  4. Working memory for conjunctions relies on the medial temporal lobe.

    Science.gov (United States)

    Olson, Ingrid R; Page, Katie; Moore, Katherine Sledge; Chatterjee, Anjan; Verfaellie, Mieke

    2006-04-26

    A prominent theory of hippocampal function proposes that the hippocampus is importantly involved in relating or binding together separate pieces of information to form an episodic representation. This hypothesis has only been applied to studies of long-term memory because the paradigmatic view of the hippocampus is that it is not critical for short-term forms of memory. However, relational processing is important in many working memory tasks, especially tasks using visual stimuli. Here, we test the hypothesis that the medial temporal lobes are important for relational memory even over short delays. The task required patients with medial temporal lobe amnesia and controls to remember three objects, locations, or object-location conjunctions over 1 or 8 s delays. The results show that working memory for objects and locations was at normal levels, but that memory for conjunctions was severely impaired at 8 s delays. Additional analyses suggest that the hippocampus per se is critical for accurate conjunction working memory. We propose that the hippocampus is critically involved in memory for conjunctions at both short and long delays.

  5. Episodic and semantic memory in children with mesial temporal sclerosis.

    Science.gov (United States)

    Rzezak, Patricia; Guimarães, Catarina; Fuentes, Daniel; Guerreiro, Marilisa M; Valente, Kette Dualibi Ramos

    2011-07-01

    The aim of this study was to analyze semantic and episodic memory deficits in children with mesial temporal sclerosis (MTS) and their correlation with clinical epilepsy variables. For this purpose, 19 consecutive children and adolescents with MTS (8 to 16 years old) were evaluated and their performance on five episodic memory tests (short- and long-term memory and learning) and four semantic memory tests was compared with that of 28 healthy volunteers. Patients performed worse on tests of immediate and delayed verbal episodic memory, visual episodic memory, verbal and visual learning, mental scanning for semantic clues, object naming, word definition, and repetition of sentences. Clinical variables such as early age at seizure onset, severity of epilepsy, and polytherapy impaired distinct types of memory. These data confirm that children with MTS have episodic memory deficits and add new information on semantic memory. The data also demonstrate that clinical variables contribute differently to episodic and semantic memory performance. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Science.gov (United States)

    Muñoz-López, M; Insausti, R; Mohedano-Moriano, A; Mishkin, M; Saunders, R C

    2015-01-01

    Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38 DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  7. Human temporal cortical single neuron activity during working memory maintenance.

    Science.gov (United States)

    Zamora, Leona; Corina, David; Ojemann, George

    2016-06-01

    The Working Memory model of human memory, first introduced by Baddeley and Hitch (1974), has been one of the most influential psychological constructs in cognitive psychology and human neuroscience. However the neuronal correlates of core components of this model have yet to be fully elucidated. Here we present data from two studies where human temporal cortical single neuron activity was recorded during tasks differentially affecting the maintenance component of verbal working memory. In Study One we vary the presence or absence of distracting items for the entire period of memory storage. In Study Two we vary the duration of storage so that distractors filled all, or only one-third of the time the memory was stored. Extracellular single neuron recordings were obtained from 36 subjects undergoing awake temporal lobe resections for epilepsy, 25 in Study one, 11 in Study two. Recordings were obtained from a total of 166 lateral temporal cortex neurons during performance of one of these two tasks, 86 study one, 80 study two. Significant changes in activity with distractor manipulation were present in 74 of these neurons (45%), 38 Study one, 36 Study two. In 48 (65%) of those there was increased activity during the period when distracting items were absent, 26 Study One, 22 Study Two. The magnitude of this increase was greater for Study One, 47.6%, than Study Two, 8.1%, paralleling the reduction in memory errors in the absence of distracters, for Study One of 70.3%, Study Two 26.3% These findings establish that human lateral temporal cortex is part of the neural system for working memory, with activity during maintenance of that memory that parallels performance, suggesting it represents active rehearsal. In 31 of these neurons (65%) this activity was an extension of that during working memory encoding that differed significantly from the neural processes recorded during overt and silent language tasks without a recent memory component, 17 Study one, 14 Study two

  8. Human Temporal Cortical Single Neuron Activity During Working Memory Maintenance

    Science.gov (United States)

    Zamora, Leona; Corina, David; Ojemann, George

    2016-01-01

    The Working Memory model of human memory, first introduced by Baddeley and Hitch (1974), has been one of the most influential psychological constructs in cognitive psychology and human neuroscience. However the neuronal correlates of core components of this model have yet to be fully elucidated. Here we present data from two studies where human temporal cortical single neuron activity was recorded during tasks differentially affecting the maintenance component of verbal working memory. In Study One we vary the presence or absence of distracting items for the entire period of memory storage. In Study Two we vary the duration of storage so that distractors filled all, or only one-third of the time the memory was stored. Extracellular single neuron recordings were obtained from 36 subjects undergoing awake temporal lobe resections for epilepsy, 25 in Study one, 11 in Study two. Recordings were obtained from a total of 166 lateral temporal cortex neurons during performance of one of these two tasks, 86 study one, 80 study two. Significant changes in activity with distractor manipulation were present in 74 of these neurons (45%), 38 Study one, 36 Study two. In 48 (65%) of those there was increased activity during the period when distracting items were absent, 26 Study One, 22 Study Two. The magnitude of this increase was greater for Study One, 47.6%, than Study Two, 8.1%, paralleling the reduction in memory errors in the absence of distracters, for Study One of 70.3%, Study Two 26.3% These findings establish that human lateral temporal cortex is part of the neural system for working memory, with activity during maintenance of that memory that parallels performance, suggesting it represents active rehearsal. In 31 of these neurons (65%) this activity was an extension of that during working memory encoding that differed significantly from the neural processes recorded during overt and silent language tasks without a recent memory component, 17 Study one, 14 Study two

  9. Recollection of episodic memory within the medial temporal lobe: behavioural dissociations from other types of memory.

    Science.gov (United States)

    Easton, Alexander; Eacott, Madeline J

    2010-12-31

    In recent years there has been significant debate about whether there is a single medial temporal lobe memory system or dissociable systems for episodic and other types of declarative memory. In addition there has been a similar debate over the dissociability of recollection and familiarity based processes in recognition memory. Here we present evidence from recent work using episodic memory tasks in animals that allows us to explore these issues in more depth. We review studies that demonstrate triple dissociations within the medial temporal lobe, with only the hippocampal system being necessary for episodic memory. Similarly we review behavioural evidence for a dissociation in a task of episodic memory in rats where animals with lesions of the fornix are only impaired at recollection of the episodic memory, not recognition within the same trial. This work, then, supports recent models of dissociable neural systems within the medial temporal lobe but also raises questions for future investigation about the interactions of these medial temporal lobe memory systems with other structures. Copyright © 2009 Elsevier B.V. All rights reserved.

  10. Anatomical pathways for auditory memory II: Information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Directory of Open Access Journals (Sweden)

    Monica eMunoz-Lopez

    2015-05-01

    Full Text Available Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 minutes. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 seconds. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys’ auditory memory performance. It is possible, therefore, that the anatomical pathways differ. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC. We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG, and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY and anterograde (10% BDA 10,000 MW tracer injections in rSTG and the dorsolateral area 38DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex, and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  11. Temporality and Memory in Architecture: Hagia Sophia

    Directory of Open Access Journals (Sweden)

    Yüksel Burçin Nur

    2017-12-01

    Full Text Available Istanbul, having hosted many civilizations and cultures, has a long and important past. Due to its geopolitical locations, the city has been the capital of two civilizations—Ottoman and Byzantine Empires—which left its traces in the history of the world. Architectural and symbolic monuments built by these civilizations made an impression in all communities making the city a center of attraction. After each and every damage caused by wars, civil strifes, and natural disasters, maximum effort has been made to restore these symbolic buildings. Attitude of a society to a piece of art or an architectural construction defined as historical artifact is shown in interventions, architectural supplementations and restorations to buildings to keep them alive. As a result of this attitude, it is accepted that buildings are perceived as a place of memory and symbolized with the city. The most important symbolic monument of the city, Ayasofya (Hagia Sophia, was found as the Church of the Byzantine Emperor in the year 360, then converted into the Mosque of the Ottoman Sultan, and now serves as one of the best-known museums of Turkey. With architectural additions requested by Byzantine emperors and Ottoman sultans, restorations and other functional changes; Hagia Sophia had become a monument witnessing its own changes as well as its surroundings while collecting memories. Accordingly, Hagia Sophia can be described as an immortal building.  Immortality is out of time notion, however it is a reflection of time effects as well. Immortality is about resisting to time. A construction from the past which appreciates as time passes will also exist in the future preserving its value. The building has been strengthened with the memory phenomenon formed during construction, incidents that the building witnessed in its location, restorations, architectural supplementations and the perception of the world heritage. The main purpose of this presentation is to show how

  12. Boosting Maintenance in Working Memory with Temporal Regularities

    Science.gov (United States)

    Plancher, Gaën; Lévêque, Yohana; Fanuel, Lison; Piquandet, Gaëlle; Tillmann, Barbara

    2018-01-01

    Music cognition research has provided evidence for the benefit of temporally regular structures guiding attention over time. The present study investigated whether maintenance in working memory can benefit from an isochronous rhythm. Participants were asked to remember series of 6 letters for serial recall. In the rhythm condition of Experiment…

  13. A distributed-memory hierarchical solver for general sparse linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chao [Stanford Univ., CA (United States). Inst. for Computational and Mathematical Engineering; Pouransari, Hadi [Stanford Univ., CA (United States). Dept. of Mechanical Engineering; Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Boman, Erik G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Darve, Eric [Stanford Univ., CA (United States). Inst. for Computational and Mathematical Engineering and Dept. of Mechanical Engineering

    2017-12-20

    We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by every processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.

  14. Relating Memory To Functional Performance In Normal Aging to Dementia Using Hierarchical Bayesian Cognitive Processing Models

    Science.gov (United States)

    Shankle, William R.; Pooley, James P.; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D.

    2012-01-01

    Determining how cognition affects functional abilities is important in Alzheimer’s disease and related disorders (ADRD). 280 patients (normal or ADRD) received a total of 1,514 assessments using the Functional Assessment Staging Test (FAST) procedure and the MCI Screen (MCIS). A hierarchical Bayesian cognitive processing (HBCP) model was created by embedding a signal detection theory (SDT) model of the MCIS delayed recognition memory task into a hierarchical Bayesian framework. The SDT model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the six FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. HBCP models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition to a continuous measure of functional severity for both individuals and FAST groups. Such a translation links two levels of brain information processing, and may enable more accurate correlations with other levels, such as those characterized by biomarkers. PMID:22407225

  15. Working memory, long-term memory, and medial temporal lobe function

    Science.gov (United States)

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL. PMID:22180053

  16. Role of inferior temporal neurons in visual memory. II. Multiplying temporal waveforms related to vision and memory.

    Science.gov (United States)

    Eskandar, E N; Optican, L M; Richmond, B J

    1992-10-01

    1. In the companion paper we reported on the activity of neurons in the inferior temporal (IT) cortex during a sequential pattern matching task. In this task a sample stimulus was followed by a test stimulus that was either a match or a nonmatch. Many of the neurons encoded information about the patterns of both current and previous stimuli in the temporal modulation of their responses. 2. A simple information processing model of visual memory can be formed with just four steps: 1) encode the current stimulus; 2) recall the code of a remembered stimulus; 3) compare the two codes; 4) and decide whether they are similar or different. The analysis presented in the first paper suggested that some IT neurons were performing the comparison step of visual memory. 3. We propose that IT neurons participate in the comparison of temporal waveforms related to vision and memory by multiplying them together. This product could form the basis of a crosscorrelation-based comparison. 4. We tested our hypothesis by fitting a simple multiplicative model to data from IT neurons. The model generated waveforms in separate memory and visual channels. The waveforms arising from the two channels were then multiplied on a point by point basis to yield the output waveform. The model was fitted to the actual neuronal data by a gradient descent method to find the best fit waveforms that also had the lowest total energy. 5. The multiplicative model fit the neuronal responses quite well. The multiplicative model made consistently better predictions of the actual response waveforms than did an additive model. Furthermore, the fit was better when the actual relationship between the responses and the sample and test stimuli were preserved than when that relationship was randomized. 6. We infer from the superior fit of the multiplicative model that IT neurons are multiplying temporally modulated waveforms arising from separate visual and memory systems in the comparison step of visual memory.

  17. Visual working memory capacity and the medial temporal lobe.

    Science.gov (United States)

    Jeneson, Annette; Wixted, John T; Hopkins, Ramona O; Squire, Larry R

    2012-03-07

    Patients with medial temporal lobe (MTL) damage are sometimes impaired at remembering visual information across delays as short as a few seconds. Such impairments could reflect either impaired visual working memory capacity or impaired long-term memory (because attention has been diverted or because working memory capacity has been exceeded). Using a standard change-detection task, we asked whether visual working memory capacity is intact or impaired after MTL damage. Five patients with hippocampal lesions and one patient with large MTL lesions saw an array of 1, 2, 3, 4, or 6 colored squares, followed after 3, 4, or 8 s by a second array where one of the colored squares was cued. The task was to decide whether the cued square had the same color as the corresponding square in the first array or a different color. At the 1 s delay typically used to assess working memory capacity, patients performed as well as controls at all array sizes. At the longer delays, patients performed as well as controls at small array sizes, thought to be within the capacity limit, and worse than controls at large array sizes, thought to exceed the capacity limit. The findings suggest that visual working memory capacity in humans is intact after damage to the MTL structures and that damage to these structures impairs performance only when visual working memory is insufficient to support performance.

  18. Lateral head turning affects temporal memory.

    Science.gov (United States)

    Vicario, Carmelo Mario; Martino, Davide; Pavone, Enea Francesco; Fuggetta, Giorgio

    2011-08-01

    Spatial attention is a key factor in the exploration and processing of the surrounding environment, and plays a role in linking magnitudes such as space, time, and numbers. The present work evaluates whether shifting the coordinates of spatial attention through rotational head movements may affect the ability to estimate the duration of different time intervals. A computer-based implicit timing task was employed, in which participants were asked to concentrate and report verbally on colour changes of sequential stimuli displayed on a computer screen; subsequently, they were required to reproduce the temporal duration (ranging between 5 and 80 sec.) of the perceived stimuli using the computer keyboard. There was statistically significant overestimation of the 80-sec. intervals exclusively on the rightward rotation head posture, whereas head posture did not affect timing performances on shorter intervals. These findings support the hypothesis that the coordinates of spatial attention influence the ability to process time, consistent with the existence of common cortical metrics of space and time in healthy humans.

  19. Temporal grouping effects in musical short-term memory.

    Science.gov (United States)

    Gorin, Simon; Mengal, Pierre; Majerus, Steve

    2018-07-01

    Recent theoretical accounts of verbal and visuo-spatial short-term memory (STM) have proposed the existence of domain-general mechanisms for the maintenance of serial order information. These accounts are based on the observation of similar behavioural effects across several modalities, such as temporal grouping effects. Across two experiments, the present study aimed at extending these findings, by exploring a STM modality that has received little interest so far, STM for musical information. Given its inherent rhythmic, temporal and serial organisation, the musical domain is of interest for investigating serial order STM processes such as temporal grouping. In Experiment 1, the data did not allow to determine the presence or the absence of temporal grouping effects. In Experiment 2, we observed that temporal grouping of tone sequences during encoding improves short-term recognition for serially presented probe tones. Furthermore, the serial position curves included micro-primacy and micro-recency effects, which are the hallmark characteristic of temporal grouping. Our results suggest that the encoding of serial order information in musical STM may be supported by temporal positional coding mechanisms similar to those reported in the verbal domain.

  20. The Medial Temporal Lobe – Conduit of Parallel Connectivity: A model for Attention, Memory, and Perception.

    Directory of Open Access Journals (Sweden)

    Brian B. Mozaffari

    2014-11-01

    Full Text Available Based on the notion that the brain is equipped with a hierarchical organization, which embodies environmental contingencies across many time scales, this paper suggests that the medial temporal lobe (MTL – located deep in the hierarchy – serves as a bridge connecting supra to infra – MTL levels. Bridging the upper and lower regions of the hierarchy provides a parallel architecture that optimizes information flow between upper and lower regions to aid attention, encoding, and processing of quick complex visual phenomenon. Bypassing intermediate hierarchy levels, information conveyed through the MTL ‘bridge’ allows upper levels to make educated predictions about the prevailing context and accordingly select lower representations to increase the efficiency of predictive coding throughout the hierarchy. This selection or activation/deactivation is associated with endogenous attention. In the event that these ‘bridge’ predictions are inaccurate, this architecture enables the rapid encoding of novel contingencies. A review of hierarchical models in relation to memory is provided along with a new theory, Medial-temporal-lobe Conduit for Parallel Connectivity (MCPC. In this scheme, consolidation is considered as a secondary process, occurring after a MTL-bridged connection, which eventually allows upper and lower levels to access each other directly. With repeated reactivations, as contingencies become consolidated, less MTL activity is predicted. Finally, MTL bridging may aid processing transient but structured perceptual events, by allowing communication between upper and lower levels without calling on intermediate levels of representation.

  1. The Temporal Signature of Memories: Identification of a General Mechanism for Dynamic Memory Replay in Humans

    Science.gov (United States)

    Michelmann, Sebastian; Bowman, Howard; Hanslmayr, Simon

    2016-01-01

    Reinstatement of dynamic memories requires the replay of neural patterns that unfold over time in a similar manner as during perception. However, little is known about the mechanisms that guide such a temporally structured replay in humans, because previous studies used either unsuitable methods or paradigms to address this question. Here, we overcome these limitations by developing a new analysis method to detect the replay of temporal patterns in a paradigm that requires participants to mentally replay short sound or video clips. We show that memory reinstatement is accompanied by a decrease of low-frequency (8 Hz) power, which carries a temporal phase signature of the replayed stimulus. These replay effects were evident in the visual as well as in the auditory domain and were localized to sensory-specific regions. These results suggest low-frequency phase to be a domain-general mechanism that orchestrates dynamic memory replay in humans. PMID:27494601

  2. The Temporal Signature of Memories: Identification of a General Mechanism for Dynamic Memory Replay in Humans.

    Directory of Open Access Journals (Sweden)

    Sebastian Michelmann

    2016-08-01

    Full Text Available Reinstatement of dynamic memories requires the replay of neural patterns that unfold over time in a similar manner as during perception. However, little is known about the mechanisms that guide such a temporally structured replay in humans, because previous studies used either unsuitable methods or paradigms to address this question. Here, we overcome these limitations by developing a new analysis method to detect the replay of temporal patterns in a paradigm that requires participants to mentally replay short sound or video clips. We show that memory reinstatement is accompanied by a decrease of low-frequency (8 Hz power, which carries a temporal phase signature of the replayed stimulus. These replay effects were evident in the visual as well as in the auditory domain and were localized to sensory-specific regions. These results suggest low-frequency phase to be a domain-general mechanism that orchestrates dynamic memory replay in humans.

  3. Feature-Based Visual Short-Term Memory Is Widely Distributed and Hierarchically Organized.

    Science.gov (United States)

    Dotson, Nicholas M; Hoffman, Steven J; Goodell, Baldwin; Gray, Charles M

    2018-06-15

    Feature-based visual short-term memory is known to engage both sensory and association cortices. However, the extent of the participating circuit and the neural mechanisms underlying memory maintenance is still a matter of vigorous debate. To address these questions, we recorded neuronal activity from 42 cortical areas in monkeys performing a feature-based visual short-term memory task and an interleaved fixation task. We find that task-dependent differences in firing rates are widely distributed throughout the cortex, while stimulus-specific changes in firing rates are more restricted and hierarchically organized. We also show that microsaccades during the memory delay encode the stimuli held in memory and that units modulated by microsaccades are more likely to exhibit stimulus specificity, suggesting that eye movements contribute to visual short-term memory processes. These results support a framework in which most cortical areas, within a modality, contribute to mnemonic representations at timescales that increase along the cortical hierarchy. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Conscious and nonconscious memory effects are temporally dissociable.

    Science.gov (United States)

    Slotnick, Scott D; Schacter, Daniel L

    2010-03-01

    Intentional (explicit) retrieval can reactivate sensory cortex, which is widely assumed to reflect conscious processing. In the present study, we used an explicit visual memory event-related potential paradigm to investigate whether such retrieval related sensory activity could be separated into conscious and nonconscious components. During study, abstract shapes were presented in the left or right visual field. During test, old and new shapes were presented centrally and participants classified each shape as "old-left", "old-right", or "new". Conscious activity was isolated by comparing accurate memory for shape and location (old-hits) with forgotten shapes (old-misses), and nonconscious activity was isolated by comparing old-left-misses with old-right-misses and vice versa. Conscious visual sensory activity had a late temporal onset (after 800 ms) while nonconscious visual sensory activity had an early temporal onset (before 800 ms). These results suggest explicit memory related sensory activity reflects both conscious and nonconscious processes that are temporally dissociable.

  5. Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy.

    Science.gov (United States)

    Lambon Ralph, Matthew A; Ehsan, Sheeba; Baker, Gus A; Rogers, Timothy T

    2012-01-01

    Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients' accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency

  6. Episodic memory and the medial temporal lobe: not all it seems. Evidence from the temporal variants of frontotemporal dementia

    NARCIS (Netherlands)

    Pleizier, C.M.; van der Vlies, A.E.; Koedam, E.L.G.E.; Koene, T.; Barkhof, F.; van der Flier, W.M.; Scheltens, P.; Pijnenburg, Y.A.L.

    2012-01-01

    Background: Disproportionate medial temporal lobe atrophy (MTA) is an early finding in Alzheimer's disease (AD). Episodic memory impairment in AD is associated with the degree of MTA. Episodic memory impairment and MTA are also found in semantic dementia (SD) and in right temporal lobe atrophy

  7. A model of shape memory materials with hierarchical twinning: statics and dynamics

    International Nuclear Information System (INIS)

    Saxena, A.; Bishop, A.R.; Wu, Y.; Lookman, T.

    1995-01-01

    We consider a model of shape memory materials in which hierarchical twinning near the habit plane (austenite-martensite interface) is a new and crucial ingredient. The model includes (1) a triple-well potential (φ 6 model) in local shear strain, (2) strain gradient terms up to second order in strain and fourth order in gradient, and (3) all symmetry allowed compositional fluctuation-induced strain gradient terms. The last term favors hierarchy which enables communication between macroscopic (cm) and microscopic (A) regions essential for shape memory. Hierarchy also stabilizes tweed formation (criss-cross patterns of twins). External stress or pressure modulates (''patterns'') the spacing of domain walls. Therefore the ''pattern'' is encoded in the modulated hierarchical variation of the depth and width of the twins. This hierarchy of length scales provides a related hierarchy of time scales and thus the possibility of non-exponential decay. The four processes of the complete shape memory cycle-write, record, erase and recall-are explained within this model. Preliminary results based on 2D molecular dynamics are shown for tweed and hierarchy formation. (orig.)

  8. Autonoetic Consciousness in Autobiographical Memories after Medial Temporal Lobe Resection

    Directory of Open Access Journals (Sweden)

    M. Noulhiane

    2008-01-01

    Full Text Available This study aims to investigate autonoetic consciousness associated with episodic autobiographical memory in patients who had undergone unilateral medial temporal lobe resection for intractable epilepsy. Autonoetic consciousness, defined as the conscious feeling of mentally travelling back in time to relive a specific event, was assessed using the Remember/Know (R/K paradigm across different time periods as proposed in the autobiographical memory task developed by Piolino et al. (TEMPau task. Results revealed that the two patient groups (left and right temporal resection gave reduced sense of reliving (R responses and more familiarity (K responses than healthy controls. This poor autonoetic consciousness was highlighted when patients were asked to justify their Remember responses by recalling sensory-perceptive, affective or spatiotemporal specific details across all life periods. These results support the bilateral MTL contribution to episodic autobiographical memory covering the entire lifespan, which is consistent with the multiple trace theory of MTL function [7,9]. This study also demonstrates the bilateral involvement of MTL structures in recalling specific details of personal events characterized by autonoetic consciousness.

  9. Autonoetic Consciousness in Autobiographical Memories after Medial Temporal Lobe Resection

    Science.gov (United States)

    Noulhiane, M.; Piolino, P.; Hasboun, D.; Clemenceau, S.; Baulac, M.; Samson, S.

    2008-01-01

    This study aims to investigate autonoetic consciousness associated with episodic autobiographical memory in patients who had undergone unilateral medial temporal lobe resection for intractable epilepsy. Autonoetic consciousness, defined as the conscious feeling of mentally travelling back in time to relive a specific event, was assessed using the Remember/Know (R/K) paradigm across different time periods as proposed in the autobiographical memory task developed by Piolino et al. (TEMPau task). Results revealed that the two patient groups (left and right temporal resection) gave reduced sense of reliving (R) responses and more familiarity (K) responses than healthy controls. This poor autonoetic consciousness was highlighted when patients were asked to justify their Remember responses by recalling sensory-perceptive, affective or spatiotemporal specific details across all life periods. These results support the bilateral MTL contribution to episodic autobiographical memory covering the entire lifespan, which is consistent with the multiple trace theory of MTL function [7,9]. This study also demonstrates the bilateral involvement of MTL structures in recalling specific details of personal events characterized by autonoetic consciousness. PMID:18413911

  10. Iconic memory and parietofrontal network: fMRI study using temporal integration.

    Science.gov (United States)

    Saneyoshi, Ayako; Niimi, Ryosuke; Suetsugu, Tomoko; Kaminaga, Tatsuro; Yokosawa, Kazuhiko

    2011-08-03

    We investigated the neural basis of iconic memory using functional magnetic resonance imaging. The parietofrontal network of selective attention is reportedly relevant to readout from iconic memory. We adopted a temporal integration task that requires iconic memory but not selective attention. The results showed that the task activated the parietofrontal network, confirming that the network is involved in readout from iconic memory. We further tested a condition in which temporal integration was performed by visual short-term memory but not by iconic memory. However, no brain region revealed higher activation for temporal integration by iconic memory than for temporal integration by visual short-term memory. This result suggested that there is no localized brain region specialized for iconic memory per se.

  11. Hierarchical Bayesian Spatio Temporal Model Comparison on the Earth Trapped Particle Forecast

    International Nuclear Information System (INIS)

    Suparta, Wayan; Gusrizal

    2014-01-01

    We compared two hierarchical Bayesian spatio temporal (HBST) results, Gaussian process (GP) and autoregressive (AR) models, on the Earth trapped particle forecast. Two models were employed on the South Atlantic Anomaly (SAA) region. Electron of >30 keV (mep0e1) from National Oceanic and Atmospheric Administration (NOAA) 15-18 satellites data was chosen as the particle modeled. We used two weeks data to perform the model fitting on a 5°x5° grid of longitude and latitude, and 31 August 2007 was set as the date of forecast. Three statistical validations were performed on the data, i.e. the root mean square error (RMSE), mean absolute percentage error (MAPE) and bias (BIAS). The statistical analysis showed that GP model performed better than AR with the average of RMSE = 0.38 and 0.63, MAPE = 11.98 and 17.30, and BIAS = 0.32 and 0.24, for GP and AR, respectively. Visual validation on both models with the NOAA map's also confirmed the superior of the GP than the AR. The variance of log flux minimum = 0.09 and 1.09, log flux maximum = 1.15 and 1.35, and in successively represents GP and AR

  12. Long-term memory of hierarchical relationships in free-living greylag geese.

    Science.gov (United States)

    Weiss, Brigitte M; Scheiber, Isabella B R

    2013-01-01

    Animals may memorise spatial and social information for many months and even years. Here, we investigated long-term memory of hierarchically ordered relationships, where the position of a reward depended on the relationship of a stimulus relative to other stimuli in the hierarchy. Seventeen greylag geese (Anser anser) had been trained on discriminations between successive pairs of five or seven implicitly ordered colours, where the higher ranking colour in each pair was rewarded. Geese were re-tested on the task 2, 6 and 12 months after learning the dyadic colour relationships. They chose the correct colour above chance at all three points in time, whereby performance was better in colour pairs at the beginning or end of the colour series. Nonetheless, they also performed above chance on internal colour pairs, which is indicative of long-term memory for quantitative differences in associative strength and/or for relational information. There were no indications for a decline in performance over time, indicating that geese may remember dyadic relationships for at least 6 months and probably well over 1 year. Furthermore, performance in the memory task was unrelated to the individuals' sex and their performance while initially learning the dyadic colour relationships. We discuss possible functions of this long-term memory in the social domain.

  13. The Processing of Causal and Hierarchical Relations in Semantic Memory as Revealed by N400 and Frontal Negativity.

    Directory of Open Access Journals (Sweden)

    Xiuling Liang

    Full Text Available Most current studies investigating semantic memory have focused on associative (ring-emerald or taxonomic relations (bird-sparrow. Little is known about the question of how causal relations (virus-epidemic are stored and accessed in semantic memory. The goal of this study was to examine the processing of causally related, general associatively related and hierarchically related word pairs when participants were required to evaluate whether pairs of words were related in any way. The ERP data showed that the N400 amplitude (200-500 ms elicited by unrelated related words was more negative than all related words. Furthermore, the late frontal distributed negativity (500-700 ms elicited by causally related words was smaller than hierarchically related words, but not for general associated words. These results suggested the processing of causal relations and hierarchical relations in semantic memory recruited different degrees of cognitive resources, especially for role binding.

  14. [Neural Mechanisms Underlying the Processing of Temporal Information in Episodic Memory and Its Disturbance].

    Science.gov (United States)

    Iwata, Saeko; Tsukiura, Takashi

    2017-11-01

    Episodic memory is defined as memory for personally experienced events, and includes memory content and contextual information of time and space. Previous neuroimaging and neuropsychological studies have demonstrated three possible roles of the temporal context in episodic memory. First, temporal information contributes to the arrangement of temporal order for sequential events in episodic memory, and this process is involved in the lateral prefrontal cortex. The second possible role of temporal information in episodic memory is the segregation between memories of multiple events, which are segregated by cues of different time information. The role of segregation is associated with the orbitofrontal regions including the orbitofrontal cortex and basal forebrain region. Third, temporal information in episodic memory plays an important role in the integration of multiple components into a coherent episodic memory, in which episodic components in the different modalities are combined by temporal information as an index. The role of integration is mediated by the medial temporal lobe including the hippocampus and parahippocampal gyrus. Thus, temporal information in episodic memory could be represented in multiple stages, which are involved in a network of the lateral prefrontal, orbitofrontal, and medial temporal lobe regions.

  15. Verbal memory after temporal lobe epilepsy surgery in children: Do only mesial structures matter?

    Science.gov (United States)

    Law, Nicole; Benifla, Mony; Rutka, James; Smith, Mary Lou

    2017-02-01

    Previous findings have been mixed regarding verbal memory outcome after left temporal lobectomy in children, and there are few studies comparing verbal memory change after lateral versus mesial temporal lobe resections. We compared verbal memory outcome associated with sparing or including the mesial structures in children who underwent left or right temporal lobe resection. We also investigated predictors of postsurgical verbal memory change. We retrospectively assessed verbal memory change approximately 1 year after unilateral temporal lobe epilepsy surgery using a list learning task. Participants included 23 children who underwent temporal lobe surgery with sparing of the mesial structures (13 left), and 40 children who had a temporal lobectomy that included resection of mesial structures (22 left). Children who underwent resection from the left lateral and mesial temporal lobe were the only group to show decline in verbal memory. Furthermore, when we considered language representation in the left temporal resection group, patients with left language representation and spared mesial structures showed essentially no change in verbal memory from preoperative to follow-up, whereas those with left language representation and excised mesial structures showed a decline. Postoperative seizure status had no effect on verbal memory change in children after left temporal lobe surgery. Finally, we found that patients with intact preoperative verbal memory experienced a significant decline compared to those with below average preoperative verbal memory. Our findings provide evidence of significant risk factors for verbal memory decline in children, specific to left mesial temporal lobe epilepsy. Children who undergo left temporal lobe surgery that includes mesial structures may be most vulnerable for verbal memory decline, especially when language representation is localized to the left hemisphere and when preoperative verbal memory is intact. Wiley Periodicals, Inc.

  16. Semantic and episodic memory in children with temporal lobe epilepsy: do they relate to literacy skills?

    Science.gov (United States)

    Lah, Suncica; Smith, Mary Lou

    2014-01-01

    Children with temporal lobe epilepsy are at risk for deficits in new learning (episodic memory) and literacy skills. Semantic memory deficits and double dissociations between episodic and semantic memory have recently been found in this patient population. In the current study we investigate whether impairments of these 2 distinct memory systems relate to literacy skills. 57 children with unilateral temporal lobe epilepsy completed tests of verbal memory (episodic and semantic) and literacy skills (reading and spelling accuracy, and reading comprehension). For the entire group, semantic memory explained over 30% of variance in each of the literacy domains. Episodic memory explained a significant, but rather small proportion (memory impairments (intact semantic/impaired episodic, intact episodic/impaired semantic) were compared, significant reductions in literacy skills were evident only in children with semantic memory impairments, but not in children with episodic memory impairments relative to the norms and to children with temporal lobe epilepsy who had intact memory. Our study provides the first evidence for differential relations between episodic and semantic memory impairments and literacy skills in children with temporal lobe epilepsy. As such, it highlights the urgent need to consider semantic memory deficits in management of children with temporal lobe epilepsy and undertake further research into the nature of reading difficulties of children with semantic memory impairments.

  17. 3D hierarchical spatial representation and memory of multimodal sensory data

    Science.gov (United States)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine

  18. A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy

    Science.gov (United States)

    Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.

    2013-01-01

    Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with

  19. Direct observation of hierarchical nucleation of martensite and size-dependent superelasticity in shape memory alloys.

    Science.gov (United States)

    Liu, Lifeng; Ding, Xiangdong; Li, Ju; Lookman, Turab; Sun, Jun

    2014-02-21

    Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ transmission electron microscopy (TEM), we directly observe the nucleation of the level-2 superstructure in a Cu-Al-Ni single crystal under compression, with critical super-nuclei size L2c around 500 nm. When the sample size D decreases below L2c, the superelasticity behavior changes from a flat stress plateau to a continuously rising stress-strain curve. Such size dependence definitely would impact the application of shape memory alloys in miniaturized MEMS/NEMS devices.

  20. Temporal lobe surgery in childhood and neuroanatomical predictors of long-term declarative memory outcome

    Science.gov (United States)

    Skirrow, Caroline; Cross, J. Helen; Harrison, Sue; Cormack, Francesca; Harkness, William; Coleman, Rosie; Meierotto, Ellen; Gaiottino, Johanna; Vargha-Khadem, Faraneh

    2015-01-01

    The temporal lobes play a prominent role in declarative memory function, including episodic memory (memory for events) and semantic memory (memory for facts and concepts). Surgical resection for medication-resistant and well-localized temporal lobe epilepsy has good prognosis for seizure freedom, but is linked to memory difficulties in adults, especially when the removal is on the left side. Children may benefit most from surgery, because brain plasticity may facilitate post-surgical reorganization, and seizure cessation may promote cognitive development. However, the long-term impact of this intervention in children is not known. We examined memory function in 53 children (25 males, 28 females) who were evaluated for epilepsy surgery: 42 underwent unilateral temporal lobe resections (25 left, 17 right, mean age at surgery 13.8 years), 11 were treated only pharmacologically. Average follow-up was 9 years (range 5–15). Post-surgical change in visual and verbal episodic memory, and semantic memory at follow-up were examined. Pre- and post-surgical T1-weighted MRI brain scans were analysed to extract hippocampal and resection volumes, and evaluate post-surgical temporal lobe integrity. Language lateralization indices were derived from functional magnetic resonance imaging. There were no significant pre- to postoperative decrements in memory associated with surgery. In contrast, gains in verbal episodic memory were seen after right temporal lobe surgery, and visual episodic memory improved after left temporal lobe surgery, indicating a functional release in the unoperated temporal lobe after seizure reduction or cessation. Pre- to post-surgical change in memory function was not associated with any indices of brain structure derived from MRI. However, better verbal memory at follow-up was linked to greater post-surgical residual hippocampal volumes, most robustly in left surgical participants. Better semantic memory at follow-up was associated with smaller resection

  1. Infants use temporal regularities to chunk objects in memory.

    Science.gov (United States)

    Kibbe, Melissa M; Feigenson, Lisa

    2016-01-01

    whether infants also remembered the specific identities of the objects in each chunk. In Experiment 4, we confirmed that infants remembered objects' identities in smaller arrays that did not require chunking. Next, in Experiment 5, we asked whether infants also remembered objects' identities in larger arrays that had been chunked on the basis of temporal regularities. Following a familiarization phase identical to that in Experiment 2a, we hid all four objects and then revealed either these same four objects, or four objects of which two had unexpectedly changed shape and color. Surprisingly, infants failed to look longer at the identity change outcome. Taken together, our results suggest that infants can use temporal regularities between objects to increase memory for objects' existence, but not necessarily for objects' identities. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Recognition memory is improved by a structured temporal framework during encoding

    Directory of Open Access Journals (Sweden)

    Sathesan eThavabalasingam

    2016-01-01

    Full Text Available In order to function optimally within our environment, we continuously extract temporal patterns from our experiences and formulate expectations that facilitate adaptive behavior. Given that our memories are embedded within spatiotemporal contexts, an intriguing possibility is that mnemonic processes are sensitive to the temporal structure of events. To test this hypothesis, in a series of behavioral experiments we manipulated the regularity of interval durations at encoding to create temporally structured and unstructured frameworks. Our findings revealed enhanced recognition memory (d’ for stimuli that were explicitly encoded within a temporally structured versus unstructured framework. Encoding information within a temporally structured framework was also associated with a reduction in the negative effects of proactive interference and was linked to greater recollective recognition memory. Furthermore, rhythmic temporal structure was found to enhance recognition memory for incidentally encoded information. Collectively, these results support the possibility that we possess a greater capacity to learn and subsequently remember temporally structured information.

  3. Emotion’s Influence on Memory for Spatial and Temporal Context

    OpenAIRE

    Schmidt, Katherine; Patnaik, Pooja; Kensinger, Elizabeth A.

    2011-01-01

    Individuals report remembering emotional items vividly. It is debated whether this report reflects enhanced memory accuracy or a bias to believe emotional memories are vivid. We hypothesized emotion would enhance memory accuracy, improving memory for contextual details. The hallmark of episodic memory is that items are remembered in a spatial and temporal context, so we examined whether an item’s valence (positive, negative) or arousal (high, low) would influence its ability to be remembered ...

  4. Source Memory in Korsakoff Syndrome: Disentangling the Mechanisms of Temporal Confusion.

    Science.gov (United States)

    Brion, Mélanie; de Timary, Philippe; Pitel, Anne-Lise; Maurage, Pierre

    2017-03-01

    Korsakoff syndrome (KS), most frequently resulting from alcohol dependence (ALC), is characterized by severe anterograde amnesia. It has been suggested that these deficits may extend to other memory components, and notably source memory deficits involved in the disorientation and temporal confusion frequently observed in KS. However, the extent of this source memory impairment in KS and its usefulness for the differential diagnosis between ALC and KS remain unexplored. Nineteen patients with KS were compared with 19 alcohol-dependent individuals and 19 controls in a source memory test exploring temporal context confusions ("continuous recognition task"). Episodic memory and psychopathological comorbidities were controlled for. While no source memory deficit was observed in ALC, KS was associated with a significant presence of temporal context confusion, even when the influence of comorbidities was taken into account. This source memory impairment did not appear to be related to performances on episodic memory or executive functions. Patients with KS displayed source memory deficits, as indexed by temporal context confusions. The absence of a relationship with episodic memory performances seems to indicate that source memory impairment is not a mere by-product of amnesia. As ALC was associated with preserved source memory, the presence of temporal context confusion may serve as a complementary tool for the differential diagnosis between ALC and KS. Copyright © 2017 by the Research Society on Alcoholism.

  5. Autobiographical memory of the recent past following frontal cortex or temporal lobe excisions.

    Science.gov (United States)

    Thaiss, Laila; Petrides, Michael

    2008-08-01

    Previous research has raised questions regarding the necessity of the frontal cortex in autobiographical memory and the role that it plays in actively retrieving contextual information associated with personally relevant events. Autobiographical memory was studied in patients with unilateral excisions restricted to the frontal cortex or temporal lobe involving the amygdalo-hippocampal region and in normal controls using an event-sampling method. We examined accuracy of free recall, use of strategies during retrieval and memory for specific aspects of the autobiographical events, including temporal order. Patients with temporal lobe excisions were impaired in autobiographical recall. By contrast, patients with frontal cortical excisions exhibited normal autobiographical recall but were less likely to use temporal order spontaneously to organize event retrieval. Instruction to organize retrieval by temporal order failed to improve recall in temporal lobe patients and increased the incidence of plausible intrusion errors in left temporal patients. In contrast, patients with frontal cortical excisions now surpassed control subjects in recall of autobiographical events. Furthermore, the retrieval accuracy for the temporal order of diary events was not impaired in these patients. In a subsequent cued recall test, temporal lobe patients were impaired in their memory for the details of the diary events and their context. In conclusion, a basic impairment in autobiographical memory (including memory for temporal context) results from damage to the temporal lobe and not the frontal cortex. Patients with frontal excisions fail to use organizational strategies spontaneously to aid retrieval but can use these effectively if instructed to do so.

  6. Spatial and Temporal Episodic Memory Retrieval Recruit Dissociable Functional Networks in the Human Brain

    Science.gov (United States)

    Ekstrom, Arne D.; Bookheimer, Susan Y.

    2007-01-01

    Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects…

  7. Collective memory in primate conflict implied by temporal scaling collapse.

    Science.gov (United States)

    Lee, Edward D; Daniels, Bryan C; Krakauer, David C; Flack, Jessica C

    2017-09-01

    In biological systems, prolonged conflict is costly, whereas contained conflict permits strategic innovation and refinement. Causes of variation in conflict size and duration are not well understood. We use a well-studied primate society model system to study how conflicts grow. We find conflict duration is a 'first to fight' growth process that scales superlinearly, with the number of possible pairwise interactions. This is in contrast with a 'first to fail' process that characterizes peaceful durations. Rescaling conflict distributions reveals a universal curve, showing that the typical time scale of correlated interactions exceeds nearly all individual fights. This temporal correlation implies collective memory across pairwise interactions beyond those assumed in standard models of contagion growth or iterated evolutionary games. By accounting for memory, we make quantitative predictions for interventions that mitigate or enhance the spread of conflict. Managing conflict involves balancing the efficient use of limited resources with an intervention strategy that allows for conflict while keeping it contained and controlled. © 2017 The Author(s).

  8. Different Temporal Patterns of Specific and General Autobiographical Memories across the Lifespan in Alzheimer's Disease.

    Science.gov (United States)

    Philippi, Nathalie; Rousseau, François; Noblet, Vincent; Botzung, Anne; Després, Olivier; Cretin, Benjamin; Kremer, Stéphane; Blanc, Frédéric; Manning, Liliann

    2015-01-01

    We compared specific (i.e., associated with a unique time and space) and general (i.e., extended or repeated events) autobiographical memories (AbM) in Alzheimer's disease (AD). The comparison aims at investigating the relationship between these two components of AbM across the lifespan and the volume of cerebral regions of interest within the temporal lobe. We hypothesized that the ability to elicit specific memories would correlate with hippocampal volume, whereas evoking general memories would be related to lateral temporal lobe. AbM was assessed using the modified Crovitz test in 18 patients with early AD and 18 matched controls. The proportions of total memories-supposed to reflect the ability to produce general memories-and specific memories retrieved were compared between AD patients and controls. Correlations to MRI volumes of temporal cortex were tested. We found different temporal patterns for specific and general memories in AD patients, with (i) relatively spared general memories, according to a temporal gradient that preserved remote memories, predominantly associated with right lateral temporal cortex volume. (ii) Conversely, the retrieval of specific AbMs was impaired for all life periods and correlated with bilateral hippocampal volumes. Our results highlight a shift from an initially episodic to a semantic nature of AbMs during AD, where the abstracted form of memories remains.

  9. Study on memories of temporal lobes and the principles of lateralization using near infrared spectroscopy

    Science.gov (United States)

    Kamakura, Katsutoshi

    2007-01-01

    In this study we measured the variation of brain blood quantity (Oxy-Hb, Deoxy-Hb and Total-Hb) in the temporal lobes using near infrared spectroscopy (NIRS) when the tasks of the memories were presented to the subjects. The memories are classified into the short-term memory (STM) and the long-term memory (LTM) including the episodic and semantic memories. The subjects joined in this study are 11 persons who are university students including graduate students. We used the language task of letter-number sequencing, also reverse sequencing to measure STM and the task of the episodic memory to measure LTM. As a result of analysis, concerning the episodic memory, the variation of Oxy-Hb in the left temporal lobe was larger than that of Oxy-Hb in the right temporal lobe. The result might suggest that the episodic memory has a relationship with cerebral dominance concerning language area in the left temporal lobe. It seems that the episodic memory meditated with the function of language used in this study is much stored in the left temporal lobe than in the right temporal lobe. This result coincides with the principles of lateralization. The variation of Oxy-Hb in the language task of letter-number sequencing was smaller than that of Oxy-Hb in the language task of the episodic memory.

  10. Temporal cognition: Connecting subjective time to perception, attention, and memory.

    Science.gov (United States)

    Matthews, William J; Meck, Warren H

    2016-08-01

    Time is a universal psychological dimension, but time perception has often been studied and discussed in relative isolation. Increasingly, researchers are searching for unifying principles and integrated models that link time perception to other domains. In this review, we survey the links between temporal cognition and other psychological processes. Specifically, we describe how subjective duration is affected by nontemporal stimulus properties (perception), the allocation of processing resources (attention), and past experience with the stimulus (memory). We show that many of these connections instantiate a "processing principle," according to which perceived time is positively related to perceptual vividity and the ease of extracting information from the stimulus. This empirical generalization generates testable predictions and provides a starting-point for integrated theoretical frameworks. By outlining some of the links between temporal cognition and other domains, and by providing a unifying principle for understanding these effects, we hope to encourage time-perception researchers to situate their work within broader theoretical frameworks, and that researchers from other fields will be inspired to apply their insights, techniques, and theorizing to improve our understanding of the representation and judgment of time. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Medial Temporal Lobe Activity during Source Retrieval Reflects Information Type, Not Memory Strength

    Science.gov (United States)

    Diana, Rachel A.; Yonelinas, Andrew P.; Ranganath, Charan

    2010-01-01

    The medial temporal lobes (MTLs) are critical for episodic memory but the functions of MTL subregions are controversial. According to memory strength theory, MTL subregions collectively support declarative memory in a graded manner. In contrast, other theories assert that MTL subregions support functionally distinct processes. For instance, one…

  12. Different types of working memory binding in epilepsy patients with unilateral anterior temporal lobectomy

    NARCIS (Netherlands)

    Geldorp, B. van; Bouman, Z.; Hendriks, M.P.H.; Kessels, R.P.C.

    2014-01-01

    The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks

  13. Contributions of Medial Temporal Lobe and Striatal Memory Systems to Learning and Retrieving Overlapping Spatial Memories

    Science.gov (United States)

    Brown, Thackery I.; Stern, Chantal E.

    2014-01-01

    Many life experiences share information with other memories. In order to make decisions based on overlapping memories, we need to distinguish between experiences to determine the appropriate behavior for the current situation. Previous work suggests that the medial temporal lobe (MTL) and medial caudate interact to support the retrieval of overlapping navigational memories in different contexts. The present study used functional magnetic resonance imaging (fMRI) in humans to test the prediction that the MTL and medial caudate play complementary roles in learning novel mazes that cross paths with, and must be distinguished from, previously learned routes. During fMRI scanning, participants navigated virtual routes that were well learned from prior training while also learning new mazes. Critically, some routes learned during scanning shared hallways with those learned during pre-scan training. Overlap between mazes required participants to use contextual cues to select between alternative behaviors. Results demonstrated parahippocampal cortex activity specific for novel spatial cues that distinguish between overlapping routes. The hippocampus and medial caudate were active for learning overlapping spatial memories, and increased their activity for previously learned routes when they became context dependent. Our findings provide novel evidence that the MTL and medial caudate play complementary roles in the learning, updating, and execution of context-dependent navigational behaviors. PMID:23448868

  14. Functional imaging of semantic memory predicts postoperative episodic memory functions in chronic temporal lobe epilepsy.

    Science.gov (United States)

    Köylü, Bülent; Walser, Gerald; Ischebeck, Anja; Ortler, Martin; Benke, Thomas

    2008-08-05

    Medial temporal (MTL) structures have crucial functions in episodic (EM), but also in semantic memory (SM) processing. Preoperative functional magnetic resonance imaging (fMRI) activity within the MTL is increasingly used to predict post-surgical memory capacities. Based on the hypothesis that EM and SM memory functions are both hosted by the MTL the present study wanted to explore the relationship between SM related activations in the MTL as assessed before and the capacity of EM functions after surgery. Patients with chronic unilateral left (n=14) and right (n=12) temporal lobe epilepsy (TLE) performed a standard word list learning test pre- and postoperatively, and a fMRI procedure before the operation using a semantic decision task. SM processing caused significant bilateral MTL activations in both patient groups. While right TLE patients showed asymmetry of fMRI activation with more activation in the left MTL, left TLE patients had almost equal activation in both MTL regions. Contrasting left TLE versus right TLE patients revealed greater activity within the right MTL, whereas no significant difference was observed for the reverse contrast. Greater effect size in the MTL region ipsilateral to the seizure focus was significantly and positively correlated with preoperative EM abilities. Greater effect size in the contralateral MTL was correlated with better postoperative verbal EM, especially in left TLE patients. These results suggest that functional imaging of SM tasks may be useful to predict postoperative verbal memory in TLE. They also advocate a common neuroanatomical basis for SM and EM processes in the MTL.

  15. Hierarchical temporal structure in music, speech and animal vocalizations: jazz is like a conversation, humpbacks sing like hermit thrushes.

    Science.gov (United States)

    Kello, Christopher T; Bella, Simone Dalla; Médé, Butovens; Balasubramaniam, Ramesh

    2017-10-01

    Humans talk, sing and play music. Some species of birds and whales sing long and complex songs. All these behaviours and sounds exhibit hierarchical structure-syllables and notes are positioned within words and musical phrases, words and motives in sentences and musical phrases, and so on. We developed a new method to measure and compare hierarchical temporal structures in speech, song and music. The method identifies temporal events as peaks in the sound amplitude envelope, and quantifies event clustering across a range of timescales using Allan factor (AF) variance. AF variances were analysed and compared for over 200 different recordings from more than 16 different categories of signals, including recordings of speech in different contexts and languages, musical compositions and performances from different genres. Non-human vocalizations from two bird species and two types of marine mammals were also analysed for comparison. The resulting patterns of AF variance across timescales were distinct to each of four natural categories of complex sound: speech, popular music, classical music and complex animal vocalizations. Comparisons within and across categories indicated that nested clustering in longer timescales was more prominent when prosodic variation was greater, and when sounds came from interactions among individuals, including interactions between speakers, musicians, and even killer whales. Nested clustering also was more prominent for music compared with speech, and reflected beat structure for popular music and self-similarity across timescales for classical music. In summary, hierarchical temporal structures reflect the behavioural and social processes underlying complex vocalizations and musical performances. © 2017 The Author(s).

  16. One declarative memory system or two? The relationship between episodic and semantic memory in children with temporal lobe epilepsy.

    Science.gov (United States)

    Smith, Mary Lou; Lah, Suncica

    2011-09-01

    This study explored verbal semantic and episodic memory in children with unilateral temporal lobe epilepsy to determine whether they had impairments in both or only 1 aspect of memory, and to examine relations between performance in the 2 domains. Sixty-six children and adolescents (37 with seizures of left temporal lobe onset, 29 with right-sided onset) were given 4 tasks assessing different aspects of semantic memory (picture naming, fluency, knowledge of facts, knowledge of word meanings) and 2 episodic memory tasks (story recall, word list recall). High rates of impairments were observed across tasks, and no differences were found related to the laterality of the seizures. Individual patient analyses showed that there was a double dissociation between the 2 aspects of memory in that some children were impaired on episodic but not semantic memory, whereas others showed intact episodic but impaired semantic memory. This double dissociation suggests that these 2 memory systems may develop independently in the context of temporal lobe pathology, perhaps related to differential effects of dysfunction in the lateral and mesial temporal lobe structures. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  17. Emotion’s Influence on Memory for Spatial and Temporal Context

    Science.gov (United States)

    Schmidt, Katherine; Patnaik, Pooja; Kensinger, Elizabeth A.

    2010-01-01

    Individuals report remembering emotional items vividly. It is debated whether this report reflects enhanced memory accuracy or a bias to believe emotional memories are vivid. We hypothesized emotion would enhance memory accuracy, improving memory for contextual details. The hallmark of episodic memory is that items are remembered in a spatial and temporal context, so we examined whether an item’s valence (positive, negative) or arousal (high, low) would influence its ability to be remembered with those contextual details. Across two experiments, high-arousal items were remembered with spatial and temporal context more often than low-arousal items. Item valence did not influence memory for those details, although positive high-arousal items were recognized or recalled more often than negative items. These data suggest that emotion does not just bias participants to believe they have a vivid memory; rather, the arousal elicited by an event can benefit memory for some types of contextual details. PMID:21379376

  18. Hierarchical Bayesian modeling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000-2007

    Science.gov (United States)

    Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.

    2014-10-01

    Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.

  19. Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.

    Science.gov (United States)

    Limongi, Roberto; Silva, Angélica M

    2016-11-01

    The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.

  20. Memory assessment in patients with temporal lobe epilepsy to predict memory impairment after surgery: A systematic review.

    Science.gov (United States)

    Parra-Díaz, P; García-Casares, N

    2017-04-19

    Given that surgical treatment of refractory mesial temporal lobe epilepsy may cause memory impairment, determining which patients are eligible for surgery is essential. However, there is little agreement on which presurgical memory assessment methods are best able to predict memory outcome after surgery and identify those patients with a greater risk of surgery-induced memory decline. We conducted a systematic literature review to determine which presurgical memory assessment methods best predict memory outcome. The literature search of PubMed gathered articles published between January 2005 and December 2015 addressing pre- and postsurgical memory assessment in mesial temporal lobe epilepsy patients by means of neuropsychological testing, functional MRI, and other neuroimaging techniques. We obtained 178 articles, 31 of which were included in our review. Most of the studies used neuropsychological tests and fMRI; these methods are considered to have the greatest predictive ability for memory impairment. Other less frequently used techniques included the Wada test and FDG-PET. Current evidence supports performing a presurgical assessment of memory function using both neuropsychological tests and functional MRI to predict memory outcome after surgery. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera.

    Science.gov (United States)

    Locatelli, Fernando; Bundrock, Gesine; Müller, Uli

    2005-12-14

    In contrast to vertebrates, the role of the neurotransmitter glutamate in learning and memory in insects has hardly been investigated. The reason is that a pharmacological characterization of insect glutamate receptors is still missing; furthermore, it is difficult to locally restrict pharmacological interventions. In this study, we overcome these problems by using locally and temporally defined photo-uncaging of glutamate to study its role in olfactory learning and memory formation in the honeybee, Apis mellifera. Uncaging glutamate in the mushroom bodies immediately after a weak training protocol induced a higher memory rate 2 d after training, mimicking the effect of a strong training protocol. Glutamate release before training does not facilitate memory formation, suggesting that glutamate mediates processes triggered by training and required for memory formation. Uncaging glutamate in the antennal lobes shows no effect on memory formation. These results provide the first direct evidence for a temporally and locally restricted function of glutamate in memory formation in honeybees and insects.

  2. Temporal binding function of dorsal CA1 is critical for declarative memory formation.

    Science.gov (United States)

    Sellami, Azza; Al Abed, Alice Shaam; Brayda-Bruno, Laurent; Etchamendy, Nicole; Valério, Stéphane; Oulé, Marie; Pantaléon, Laura; Lamothe, Valérie; Potier, Mylène; Bernard, Katy; Jabourian, Maritza; Herry, Cyril; Mons, Nicole; Piazza, Pier-Vincenzo; Eichenbaum, Howard; Marighetto, Aline

    2017-09-19

    Temporal binding, the process that enables association between discontiguous stimuli in memory, and relational organization, a process that enables the flexibility of declarative memories, are both hippocampus-dependent and decline in aging. However, how these two processes are related in supporting declarative memory formation and how they are compromised in age-related memory loss remain hypothetical. We here identify a causal link between these two features of declarative memory: Temporal binding is a necessary condition for the relational organization of discontiguous events. We demonstrate that the formation of a relational memory is limited by the capability of temporal binding, which depends on dorsal (d)CA1 activity over time intervals and diminishes in aging. Conversely, relational representation is successful even in aged individuals when the demand on temporal binding is minimized, showing that relational/declarative memory per se is not impaired in aging. Thus, bridging temporal intervals by dCA1 activity is a critical foundation of relational representation, and a deterioration of this mechanism is responsible for the age-associated memory impairment.

  3. Traces of times past : Representations of temporal intervals in memory

    NARCIS (Netherlands)

    Taatgen, Niels; van Rijn, Hedderik

    2011-01-01

    Theories of time perception typically assume that some sort of memory represents time intervals. This memory component is typically underdeveloped in theories of time perception. Following earlier work that suggested that representations of different time intervals contaminate each other (Grondin,

  4. The relationship between frontal and temporal lobe lesions in traumatic brain injury and procedural memory

    International Nuclear Information System (INIS)

    Kato, Noriaki; Okazaki, Tetsuya; Hachisuka, Kenji

    2008-01-01

    We examined the correlation between the location of chronic phase brain damage identified by a head MRI and the procedural memory test results in patients who have sustained a traumatic brain injury (TBI). Subjects were 27 patients with TBI, who completed all of three procedural memory tasks (mirror-reading, mirror-drawing, and Tower of Toronto). Using a head MRI, the presence or absence of lesions in the frontal lobe and the temporal lobe were determined. To evaluate declarative memory, we implemented the Wechsler Memory Scale-Rivesed (WMS-R), Rivermead Behavioral Memory Test (RBMT), and Rey-Osterrieth Complex Figure Test (3-minute delayed recall). All three of procedural memory tasks were repeated 3 times a day for 3 consecutive days. The rate of improvement (%) of the procedural memory task was determined as {average of the results on the first day- average of the results on the third day)/average of the results on the first day} x 100. We obtained the rate of improvement for each of the three tasks. The patients were divided according to the existence of frontal and temporal lobe lesions in brain MRI, and then rates of improvement were compared by the existence of frontal or temporal lesion using the Mann-Whitney test. In result, the average value of the declarative memory test results was within the range of disorders for all items. On the procedural memory tasks, the rate of improvement did not significantly decrease by the presence of frontal or temporal lobe lesion. It is believed that the basal ganglia and the cerebellum are significantly involved in procedural memory. Also in TBI patients, the procedural memory tends to be retained. Our results suggest that frontal and temporal lobe lesions, which are frequently found in traumatic brain injury, are not likely to be related to procedural memory. (author)

  5. Modeling spatial-temporal operations with context-dependent associative memories.

    Science.gov (United States)

    Mizraji, Eduardo; Lin, Juan

    2015-10-01

    We organize our behavior and store structured information with many procedures that require the coding of spatial and temporal order in specific neural modules. In the simplest cases, spatial and temporal relations are condensed in prepositions like "below" and "above", "behind" and "in front of", or "before" and "after", etc. Neural operators lie beneath these words, sharing some similarities with logical gates that compute spatial and temporal asymmetric relations. We show how these operators can be modeled by means of neural matrix memories acting on Kronecker tensor products of vectors. The complexity of these memories is further enhanced by their ability to store episodes unfolding in space and time. How does the brain scale up from the raw plasticity of contingent episodic memories to the apparent stable connectivity of large neural networks? We clarify this transition by analyzing a model that flexibly codes episodic spatial and temporal structures into contextual markers capable of linking different memory modules.

  6. A hierarchical Bayesian spatio-temporal model for extreme precipitation events

    KAUST Repository

    Ghosh, Souparno; Mallick, Bani K.

    2011-01-01

    We propose a new approach to model a sequence of spatially distributed time series of extreme values. Unlike common practice, we incorporate spatial dependence directly in the likelihood and allow the temporal component to be captured at the second level of hierarchy. Inferences about the parameters and spatio-temporal predictions are obtained via MCMC technique. The model is fitted to a gridded precipitation data set collected over 99 years across the continental U.S. © 2010 John Wiley & Sons, Ltd..

  7. A hierarchical Bayesian spatio-temporal model for extreme precipitation events

    KAUST Repository

    Ghosh, Souparno

    2011-03-01

    We propose a new approach to model a sequence of spatially distributed time series of extreme values. Unlike common practice, we incorporate spatial dependence directly in the likelihood and allow the temporal component to be captured at the second level of hierarchy. Inferences about the parameters and spatio-temporal predictions are obtained via MCMC technique. The model is fitted to a gridded precipitation data set collected over 99 years across the continental U.S. © 2010 John Wiley & Sons, Ltd..

  8. Influence of memory, attention, IQ and age on auditory temporal processing tests: preliminary study

    OpenAIRE

    Murphy, Cristina Ferraz Borges; Zachi, Elaine Cristina; Roque, Daniela Tsubota; Ventura, Dora Selma Fix; Schochat, Eliane

    2014-01-01

    PURPOSE: To investigate the existence of correlations between the performance of children in auditory temporal tests (Frequency Pattern and Gaps in Noise - GIN) and IQ, attention, memory and age measurements. METHOD: Fifteen typically developing individuals between the ages of 7 to 12 years and normal hearing participated in the study. Auditory temporal processing tests (GIN and Frequency Pattern), as well as a Memory test (Digit Span), Attention tests (auditory and visual modality) and ...

  9. Different types of working memory binding in epilepsy patients with unilateral anterior temporal lobectomy.

    Science.gov (United States)

    van Geldorp, Bonnie; Bouman, Zita; Hendriks, Marc P H; Kessels, Roy P C

    2014-03-01

    The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks containing spatial features. The present study contrasted three binding conditions and one single-item condition in patients with unilateral anterior temporal lobectomy. A group of 43 patients with temporal lobectomy (23 left; 20 right) and 20 matched controls were examined with a working memory task assessing spatial relational binding (object-location), non-spatial relational binding (object-object), conjunctive binding (object-colour) and working memory for single items. We varied the delay period (3 or 6s), as there is evidence showing that delay length may modulate working memory performance. The results indicate that performance was worse for patients than for controls in both relational binding conditions, whereas patients were unimpaired in conjunctive binding. Single-item memory was found to be marginally impaired, due to a deficit on long-delay trials only. In conclusion, working memory binding deficits are found in patients with unilateral anterior temporal lobectomy. The role of the medial temporal lobe in working memory is not limited to tasks containing spatial features. Rather, it seems to be involved in relational binding, but not in conjunctive binding. The medial temporal lobe gets involved when working memory capacity does not suffice, for example when relations have to be maintained or when the delay period is long. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. AN INVESTIGATION OF IMPLICIT MEMORY THROUGH LEFT TEMPORAL LOBECTOMY FOR EPILEPSY

    Science.gov (United States)

    Tracy, Joseph I.; Osipowicz, Karol; Godofsky, Samuel; Shah, Atif; Khan, Waseem; Sharan, Ashwini; Sperling, Michael R.

    2012-01-01

    Temporal lobe epilepsy patients have demonstrated a relative preservation in the integrity of implicit memory procedures. We examined performance in a verbal implicit and explicit memory task in left anterior temporal lobectomy patients (LATL) and healthy normal controls (NC) while undergoing fMRI. We hypothesized that despite the relative integrity of implicit memory in both the LATL patients and normal controls, the two groups would show distinct functional neuroanatomic profiles during implicit memory. LATLs and NCs performed Jacoby’s Process Dissociation Process (PDP) procedure during fMRI, requiring completion of word stems based on the previously studied words or new/unseen words. Measures of automaticity and recollection provided uncontaminated indices of implicit and explicit memory, respectively. The behavioral data showed that in the face of temporal lobe pathology implicit memory can be carried out, suggesting implicit verbal memory retrieval is non-mesial temporal in nature. Compared to NCs, the LATL patients showed reliable activation, not deactivation, during implicit (automatic) responding. The regions mediating this response were cortical (left medial frontal and precuneus) and striatal. The active regions in LATL patients have the capacity to implement associative, conditioned responses that might otherwise be carried out by a healthy temporal lobe, suggesting this represented a compensatory activity. Because the precuneus has also been implicated in explicit memory, the data suggests this structure may have a highly flexible functionality, capable of supporting implementation of either explicit memory, or automatic processes such as implicit memory retrieval. Our data suggest that a healthy mesial/anterior temporal lobe may be needed for generating the posterior deactivation perceptual priming response seen in normals. PMID:22981890

  11. Correlation between memory, proton magnetic resonance spectroscopy, and interictal epileptiform discharges in temporal lobe epilepsy related to mesial temporal sclerosis.

    Science.gov (United States)

    Mantoan, Marcele Araújo Silva; Caboclo, Luís Otávio Sales Ferreira; de Figueiredo Ferreira Guilhoto, Laura Maria; Lin, Katia; da Silva Noffs, Maria Helena; de Souza Silva Tudesco, Ivanda; Belzunces, Erich; Carrete, Henrique; Bussoletti, Renato Tavares; Centeno, Ricardo Silva; Sakamoto, Américo Ceiki; Yacubian, Elza Márcia Targas

    2009-11-01

    The aim of the study described here was to examine the relationship between memory function, proton magnetic resonance spectroscopy ((1)H-MRS) abnormalities, and interictal epileptiform discharge (IED) lateralization in patients with temporal lobe epilepsy (TLE) related to unilateral mesial temporal sclerosis. We assessed performance on tests of memory function and intelligence quotient (IQ) in 29 right-handed outpatients and 24 controls. IEDs were assessed on 30-minute-awake and 30-minute-sleep EEG samples. Patients had (1)H-MRS at 1.5 T. There was a negative correlation between IQ (P=0.031) and Rey Auditory Verbal Learning Test results (P=0.022) and epilepsy duration; between(1)H-MRS findings and epilepsy duration (P=0.027); and between N-acetylaspartate (NAA) levels and IEDs (P=0.006) in contralateral mesial temporal structures in the left MTS group. (1)H-MRS findings, IEDs, and verbal function were correlated. These findings suggest that IEDs and NAA/(Cho+Cr) ratios reflecting neural metabolism are closely related to verbal memory function in mesial temporal sclerosis. Higher interictal activity on the EEG was associated with a decline in total NAA in contralateral mesial temporal structures.

  12. What you see is what you remember : Visual chunking by temporal integration enhances working memory

    NARCIS (Netherlands)

    Akyürek, Elkan G.; Kappelmann, Nils; Volkert, Marc; van Rijn, Hedderik

    2017-01-01

    Human memory benefits from information clustering, which can be accomplished by chunking. Chunking typically relies on expertise and strategy and it is unknown whether perceptual clustering over time, through temporal integration, can also enhance working memory. The current study examined the

  13. Long-term consolidation of declarative memory: insight from temporal lobe epilepsy.

    Science.gov (United States)

    Tramoni, Eve; Felician, Olivier; Barbeau, Emmanuel J; Guedj, Eric; Guye, Maxime; Bartolomei, Fabrice; Ceccaldi, Mathieu

    2011-03-01

    Several experiments carried out with a subset of patients with temporal lobe epilepsy have demonstrated normal memory performance at standard delays of recall (i.e. minutes to hours) but impaired performance over longer delays (i.e. days or weeks), suggesting altered long-term consolidation mechanisms. These mechanisms were specifically investigated in a group of five adult-onset pharmaco-sensitive patients with temporal lobe epilepsy, exhibiting severe episodic memory complaints despite normal performance at standardized memory assessment. In a first experiment, the magnitude of autobiographical memory loss was evaluated using retrograde personal memory tasks based on verbal and visual cues. In both conditions, results showed an unusual U-shaped pattern of personal memory impairment, encompassing most of the patients' life, sparing however, periods of the childhood, early adulthood and past several weeks. This profile was suggestive of a long-term consolidation impairment of personal episodes, adequately consolidated over 'short-term' delays but gradually forgotten thereafter. Therefore, in a subsequent experiment, patients were submitted to a protocol specifically devised to investigate short and long-term consolidation of contextually-bound experiences (episodic memory) and context-free information (semantic knowledge and single-items). In the short term (1 h), performance at both contextually-free and contextually-bound memory tasks was intact. After a 6-week delay, however, contextually-bound memory performance was impaired while contextually-free memory performance remained preserved. This effect was independent of task difficulty and the modality of retrieval (recall and recognition). Neuroimaging studies revealed the presence of mild metabolic changes within medial temporal lobe structures. Taken together, these results show the existence of different consolidation systems within declarative memory. They suggest that mild medial temporal lobe dysfunction

  14. Temporal lobe epilepsy in patients with nonlesional MRI and normal memory: an SEEG study.

    Science.gov (United States)

    Suresh, Suraj; Sweet, Jennifer; Fastenau, Philip S; Lüders, Hans; Landazuri, Patrick; Miller, Jonathan

    2015-12-01

    Temporal lobe epilepsy (TLE) in the absence of MRI abnormalities and memory deficits is often presumed to have an extramesial or even extratemporal source. In this paper the authors report the results of a comprehensive stereoelectroencephalography (SEEG) analysis in patients with TLE with normal MRI images and memory scores. Eighteen patients with medically refractory epilepsy who also had unremarkable MR images and normal verbal and visual memory scores on neuropsychological testing were included in the study. All patients had seizure semiology and video electroencephalography (EEG) findings suggestive of TLE. A standardized SEEG investigation was performed for each patient with electrodes implanted into the mesial and lateral temporal lobe, temporal tip, posterior temporal neocortex, orbitomesiobasal frontal lobe, posterior cingulate gyrus, and insula. This information was used to plan subsequent surgical management. Interictal SEEG abnormalities were observed in the mesial temporal structures in 17 patients (94%) and in the temporal tip in 6 (33%). Seizure onset was exclusively from mesial structures in 13 (72%), exclusively from lateral temporal cortex and/or temporal tip structures in 2 (11%), and independently from mesial and neocortical foci in 3 (17%). No seizure activity was observed arising from any extratemporal location. All patients underwent surgical intervention targeting the temporal lobe and tailored to the SEEG findings, and all experienced significant improvement in seizure frequency with a postoperative follow-up observation period of at least 1 year. This study demonstrates 3 important findings: 1) normal memory does not preclude mesial temporal seizure onset; 2) onset of seizures exclusively from mesial temporal structures without early neocortical involvement is common, even in the absence of memory deficits; and 3) extratemporal seizure onset is rare when video EEG and semiology are consistent with focal TLE.

  15. The timing of associative memory formation: frontal lobe and anterior medial temporal lobe activity at associative binding predicts memory

    Science.gov (United States)

    Hales, J. B.

    2011-01-01

    The process of associating items encountered over time and across variable time delays is fundamental for creating memories in daily life, such as for stories and episodes. Forming associative memory for temporally discontiguous items involves medial temporal lobe structures and additional neocortical processing regions, including prefrontal cortex, parietal lobe, and lateral occipital regions. However, most prior memory studies, using concurrently presented stimuli, have failed to examine the temporal aspect of successful associative memory formation to identify when activity in these brain regions is predictive of associative memory formation. In the current study, functional MRI data were acquired while subjects were shown pairs of sequentially presented visual images with a fixed interitem delay within pairs. This design allowed the entire time course of the trial to be analyzed, starting from onset of the first item, across the 5.5-s delay period, and through offset of the second item. Subjects then completed a postscan recognition test for the items and associations they encoded during the scan and their confidence for each. After controlling for item-memory strength, we isolated brain regions selectively involved in associative encoding. Consistent with prior findings, increased regional activity predicting subsequent associative memory success was found in anterior medial temporal lobe regions of left perirhinal and entorhinal cortices and in left prefrontal cortex and lateral occipital regions. The temporal separation within each pair, however, allowed extension of these findings by isolating the timing of regional involvement, showing that increased response in these regions occurs during binding but not during maintenance. PMID:21248058

  16. Memory Outcomes Following Selective versus Nonselective Temporal Lobe Removal: A Systematic Review

    Science.gov (United States)

    Girgis, Fady

    2012-01-01

    The surgical removal of brain tissue for the treatment of temporal lobe epilepsy can be either nonselective, as with an anterior temporal lobectomy (ATL), or selective, as with a selective amygdalohippocampectomy (SAH). Although seizure outcomes are similar with both procedures, cognitive and memory outcomes remain a matter of debate. This study…

  17. Determinants of Autobiographical Memory in Patients with Unilateral Temporal Lobe Epilepsy or Excisions

    Science.gov (United States)

    St-Laurent, Marie; Moscovitch, Morris; Levine, Brian; McAndrews, Mary Pat

    2009-01-01

    Patients with unilateral temporal lobe epilepsy from hippocampal origin and patients with unilateral surgical excision of an epileptic focus located in the medial temporal lobe were compared to healthy controls on a version of the Autobiographical Interview (AI) adapted to assess memory for event-specific and generic personal episodes. For both…

  18. Spatio-temporal map generalizations with the hierarchical Voronoi data structure

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Gold, Christopher M.

    implemented in commercial GIS systems. In this research, we used the Voronoi spatial data model for map generalizations. We were able to demonstrate that the map generalization does not affect only spatial objects (points, lines or polygons), but also the events corresponding to the creation and modification...... their spatio-temporal characteristics and their dynamic behaviour....

  19. A Bayesian hierarchical model for the measurement of working memory capacity

    NARCIS (Netherlands)

    Morey, Richard D.

    Working memory is the memory system that allows for conscious storage and manipulation of information. The capacity of working memory is extremely limited. Measurements of this limit, and what affects it, are critical to understanding working memory. Cowan (2001) and Pashler (1988) suggested

  20. Probabilistic daily ILI syndromic surveillance with a spatio-temporal Bayesian hierarchical model.

    Directory of Open Access Journals (Sweden)

    Ta-Chien Chan

    Full Text Available BACKGROUND: For daily syndromic surveillance to be effective, an efficient and sensible algorithm would be expected to detect aberrations in influenza illness, and alert public health workers prior to any impending epidemic. This detection or alert surely contains uncertainty, and thus should be evaluated with a proper probabilistic measure. However, traditional monitoring mechanisms simply provide a binary alert, failing to adequately address this uncertainty. METHODS AND FINDINGS: Based on the Bayesian posterior probability of influenza-like illness (ILI visits, the intensity of outbreak can be directly assessed. The numbers of daily emergency room ILI visits at five community hospitals in Taipei City during 2006-2007 were collected and fitted with a Bayesian hierarchical model containing meteorological factors such as temperature and vapor pressure, spatial interaction with conditional autoregressive structure, weekend and holiday effects, seasonality factors, and previous ILI visits. The proposed algorithm recommends an alert for action if the posterior probability is larger than 70%. External data from January to February of 2008 were retained for validation. The decision rule detects successfully the peak in the validation period. When comparing the posterior probability evaluation with the modified Cusum method, results show that the proposed method is able to detect the signals 1-2 days prior to the rise of ILI visits. CONCLUSIONS: This Bayesian hierarchical model not only constitutes a dynamic surveillance system but also constructs a stochastic evaluation of the need to call for alert. The monitoring mechanism provides earlier detection as well as a complementary tool for current surveillance programs.

  1. Factors affecting reorganisation of memory encoding networks in temporal lobe epilepsy

    Science.gov (United States)

    Sidhu, M.K.; Stretton, J.; Winston, G.P.; Symms, M.; Thompson, P.J.; Koepp, M.J.; Duncan, J.S.

    2015-01-01

    Summary Aims In temporal lobe epilepsy (TLE) due to hippocampal sclerosis reorganisation in the memory encoding network has been consistently described. Distinct areas of reorganisation have been shown to be efficient when associated with successful subsequent memory formation or inefficient when not associated with successful subsequent memory. We investigated the effect of clinical parameters that modulate memory functions: age at onset of epilepsy, epilepsy duration and seizure frequency in a large cohort of patients. Methods We studied 53 patients with unilateral TLE and hippocampal sclerosis (29 left). All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words. A continuous regression analysis was used to investigate the effects of age at onset of epilepsy, epilepsy duration and seizure frequency on the activation patterns in the memory encoding network. Results Earlier age at onset of epilepsy was associated with left posterior hippocampus activations that were involved in successful subsequent memory formation in left hippocampal sclerosis patients. No association of age at onset of epilepsy was seen with face encoding in right hippocampal sclerosis patients. In both left hippocampal sclerosis patients during word encoding and right hippocampal sclerosis patients during face encoding, shorter duration of epilepsy and lower seizure frequency were associated with medial temporal lobe activations that were involved in successful memory formation. Longer epilepsy duration and higher seizure frequency were associated with contralateral extra-temporal activations that were not associated with successful memory formation. Conclusion Age at onset of epilepsy influenced verbal memory encoding in patients with TLE due to hippocampal sclerosis in the speech-dominant hemisphere. Shorter duration of epilepsy and lower seizure frequency were associated with less disruption of the efficient memory encoding network whilst

  2. Frontal Neurons Modulate Memory Retrieval across Widely Varying Temporal Scales

    Science.gov (United States)

    Zhang, Wen-Hua; Williams, Ziv M.

    2015-01-01

    Once a memory has formed, it is thought to undergo a gradual transition within the brain from short- to long-term storage. This putative process, however, also poses a unique problem to the memory system in that the same learned items must also be retrieved across broadly varying time scales. Here, we find that neurons in the ventrolateral…

  3. Alternating-time temporal logic with finite-memory strategies

    DEFF Research Database (Denmark)

    Vester, Steen

    2013-01-01

    on finite-memory strategies. One where the memory size allowed is bounded and one where the memory size is unbounded (but must be finite). This is motivated by the high complexity of model-checking with perfect recall semantics and the severe limitations of memoryless strategies. We show that both types...... of semantics introduced are different from perfect recall and memoryless semantics and next focus on the decidability and complexity of model-checking in both complete and incomplete information games for ATL/ATL*. In particular, we show that the complexity of model-checking with bounded-memory semantics...... is Delta_2p-complete for ATL and PSPACE-complete for ATL* in incomplete information games just as in the memoryless case. We also present a proof that ATL and ATL* model-checking is undecidable for n >= 3 players with finite-memory semantics in incomplete information games....

  4. Clinical utility of the Wechsler Memory Scale--Fourth Edition (WMS-IV) in predicting laterality of temporal lobe epilepsy among surgical candidates.

    Science.gov (United States)

    Soble, Jason R; Eichstaedt, Katie E; Waseem, Hena; Mattingly, Michelle L; Benbadis, Selim R; Bozorg, Ali M; Vale, Fernando L; Schoenberg, Mike R

    2014-12-01

    This study evaluated the accuracy of the Wechsler Memory Scale--Fourth Edition (WMS-IV) in identifying functional cognitive deficits associated with seizure laterality in localization-related temporal lobe epilepsy (TLE) relative to a previously established measure, the Rey Auditory Verbal Learning Test (RAVLT). Emerging WMS-IV studies have highlighted psychometric improvements that may enhance its ability to identify lateralized memory deficits. Data from 57 patients with video-EEG-confirmed unilateral TLE who were administered the WMS-IV and RAVLT as part of a comprehensive presurgical neuropsychological evaluation for temporal resection were retrospectively reviewed. We examined the predictive accuracy of the WMS-IV not only in terms of verbal versus visual composite scores but also using individual subtests. A series of hierarchal logistic regression models were developed, including the RAVLT, WMS-IV delayed subtests (Logical Memory, Verbal Paired Associates, Designs, Visual Reproduction), and a WMS-IV verbal-visual memory difference score. Analyses showed that the RAVLT significantly predicted laterality with overall classification rates of 69.6% to 70.2%, whereas neither the individual WMS-IV subtests nor the verbal-visual memory difference score accounted for additional significant variance. Similar to previous versions of the WMS, findings cast doubt as to whether the WMS-IV offers significant incremental validity in discriminating seizure laterality in TLE beyond what can be obtained from the RAVLT. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Hierarchical Bayesian Spatio–Temporal Analysis of Climatic and Socio–Economic Determinants of Rocky Mountain Spotted Fever

    Science.gov (United States)

    Raghavan, Ram K.; Goodin, Douglas G.; Neises, Daniel; Anderson, Gary A.; Ganta, Roman R.

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio–economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio–temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio–economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main–effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate–change impacts on tick–borne diseases are discussed. PMID:26942604

  6. Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever.

    Directory of Open Access Journals (Sweden)

    Ram K Raghavan

    Full Text Available This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.

  7. Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.

  8. Exploring Neural Network Models with Hierarchical Memories and Their Use in Modeling Biological Systems

    Science.gov (United States)

    Pusuluri, Sai Teja

    Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features

  9. Influence of memory, attention, IQ and age on auditory temporal processing tests: preliminary study.

    Science.gov (United States)

    Murphy, Cristina Ferraz Borges; Zachi, Elaine Cristina; Roque, Daniela Tsubota; Ventura, Dora Selma Fix; Schochat, Eliane

    2014-01-01

    To investigate the existence of correlations between the performance of children in auditory temporal tests (Frequency Pattern and Gaps in Noise--GIN) and IQ, attention, memory and age measurements. Fifteen typically developing individuals between the ages of 7 to 12 years and normal hearing participated in the study. Auditory temporal processing tests (GIN and Frequency Pattern), as well as a Memory test (Digit Span), Attention tests (auditory and visual modality) and intelligence tests (RAVEN test of Progressive Matrices) were applied. Significant and positive correlation between the Frequency Pattern test and age variable were found, which was considered good (p<0.01, 75.6%). There were no significant correlations between the GIN test and the variables tested. Auditory temporal skills seem to be influenced by different factors: while the performance in temporal ordering skill seems to be influenced by maturational processes, the performance in temporal resolution was not influenced by any of the aspects investigated.

  10. Preservation of episodic memory in semantic dementia: The importance of regions beyond the medial temporal lobes.

    Science.gov (United States)

    Irish, Muireann; Bunk, Steffie; Tu, Sicong; Kamminga, Jody; Hodges, John R; Hornberger, Michael; Piguet, Olivier

    2016-01-29

    Episodic memory impairment represents one of the hallmark clinical features of patients with Alzheimer's disease (AD) attributable to the degeneration of medial temporal and parietal regions of the brain. In contrast, a somewhat paradoxical profile of relatively intact episodic memory, particularly for non-verbal material, is observed in semantic dementia (SD), despite marked atrophy of the hippocampus. This retrospective study investigated the neural substrates of episodic memory retrieval in 20 patients with a diagnosis of SD and 21 disease-matched cases of AD and compared their performance to that of 35 age- and education-matched healthy older Controls. Participants completed the Rey Complex Figure and the memory subscale of the Addenbrooke's Cognitive Examination-Revised as indices of visual and verbal episodic recall, respectively. Relative to Controls, AD patients showed compromised memory performance on both visual and verbal memory tasks. In contrast, memory deficits in SD were modality-specific occurring exclusively on the verbal task. Controlling for semantic processing ameliorated these deficits in SD, while memory impairments persisted in AD. Voxel-based morphometry analyses revealed significant overlap in the neural correlates of verbal episodic memory in AD and SD with predominantly anteromedial regions, including the bilateral hippocampus, strongly implicated. Controlling for semantic processing negated this effect in SD, however, a distributed network of frontal, medial temporal, and parietal regions was implicated in AD. Our study corroborates the view that episodic memory deficits in SD arise very largely as a consequence of the conceptual loading of traditional tasks. We propose that the functional integrity of frontal and parietal regions enables new learning to occur in SD in the face of significant hippocampal and anteromedial temporal lobe pathology, underscoring the inherent complexity of the episodic memory circuitry. Copyright © 2015

  11. Histopathologic subtype of hippocampal sclerosis and episodic memory performance before and after temporal lobectomy for epilepsy.

    Science.gov (United States)

    Saghafi, Shahram; Ferguson, Lisa; Hogue, Olivia; Gales, Jordan M; Prayson, Richard; Busch, Robyn M

    2018-04-01

    The International League Against Epilepsy (ILAE) proposed a classification system for hippocampal sclerosis (HS) based on location and extent of hippocampal neuron loss. The literature debates the usefulness of this classification system when studying memory in people with temporal lobe epilepsy (TLE) and determining memory outcome after temporal lobe resection (TLR). This study further explores the relationship between HS ILAE subtypes and episodic memory performance in patients with TLE and examines memory outcomes after TLR. This retrospective study identified 213 patients with TLE who underwent TLR and had histopathological evidence of HS (HS ILAE type 1a = 92; type 1b = 103; type 2 = 18). Patients completed the Wechsler Memory Scale-3rd Edition prior to surgery, and 78% of patients had postoperative scores available. Linear regressions examined differences in preoperative memory scores as a function of pathology classification, controlling for potential confounders. Fisher's exact tests were used to compare pathology subtypes on the magnitude of preoperative memory impairment and the proportion of patients who experienced clinically meaningful postoperative memory decline. Individuals with HS ILAE type 2 demonstrated better preoperative verbal memory performance than patients with HS ILAE type 1; however, individual data revealed verbal and visual episodic memory impairments in many patients with HS ILAE type 2. The base rate of postoperative memory decline was similar among all 3 pathology groups. This is the largest reported overall sample and the largest subset of patients with HS ILAE type 2. Group data suggest that patients with HS ILAE type 2 perform better on preoperative memory measures, but individually there were no differences in the magnitude of memory impairment. Following surgery, there were no statistically significant differences between groups in the proportion of patients who declined. Future research should focus on quantitative measurements

  12. Temporal information processing in short- and long-term memory of patients with schizophrenia.

    Science.gov (United States)

    Landgraf, Steffen; Steingen, Joerg; Eppert, Yvonne; Niedermeyer, Ulrich; van der Meer, Elke; Krueger, Frank

    2011-01-01

    Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension

  13. The temporal locus of the interaction between working memory consolidation and the attentional blink.

    Science.gov (United States)

    Akyürek, Elkan G; Leszczyński, Marcin; Schubö, Anna

    2010-11-01

    An increase in concurrent working memory load has been shown to amplify the attentional blink. The present study investigated the temporal locus of this phenomenon, by using a dual rapid serial visual presentation paradigm that enabled the measurement of lateralized event-related potentials. The P3 component was shown to be affected by both working memory load and the lag between the target stimuli, consistent with current models of temporal attention and a functional explanation of the P3 in terms of memory consolidation. P3 amplitude was reduced for short target lags and high memory loads. The P2 component was affected by lag only, and not memory load. Importantly, the N2pc component was modulated also by both lag and memory load. The results showed that early attentional processing (as marked by the N2pc) was suppressed by increased involvement of working memory, a phenomenon not well predicted by many current theories of temporal attention. Copyright © 2010 Society for Psychophysiological Research.

  14. Functional neuroimaging studies of episodic memory. Functional dissociation in the medial temporal lobe structures

    International Nuclear Information System (INIS)

    Tsukiura, Takashi

    2008-01-01

    Previous functional neuroimaging studies have demonstrated the critical role of the medial temporal lobe (MTL) regions in the encoding and retrieval of episodic memory. It has also been shown that an emotional factor in human memory enhances episodic encoding and retrieval. However, there is little evidence regarding the specific contribution of each MTL region to the relational, contextual, and emotional processes of episodic memory. The goal of this review article is to identify differential activation patterns of the processes between MTL regions. Results from functional neuroimaging studies of episodic memory show that the hippocampus is involved in encoding the relation between memory items, whereas the entorhinal and perirhinal cortices (anterior parahippocampal gyrus) contribute to the encoding of a single item. Additionally, the parahippocampal cortex (posterior parahippocampal gyrus) is selectively activated during the processing of contextual information of episodic memory. A similar pattern of functional dissociation is found in episodic memory retrieval. Functional neuroimaging has also shown that emotional information of episodic memory enhances amygdala-MTL correlations and that this enhancement is observed during both the encoding and retrieval of emotional memories. These findings from pervious neuroimaging studies suggest that different MTL regions could organize memory for personally experienced episodes via the 'relation' and 'context' factors of episodic memory, and that the emotional factor of episodes could modulate the functional organization in the MTL regions. (author)

  15. Memory for relations in the short term and the long term after medial temporal lobe damage.

    Science.gov (United States)

    Squire, Larry R

    2017-05-01

    A central idea about the organization of declarative memory and the function of the hippocampus is that the hippocampus provides for the coding of relationships between items. A question arises whether this idea refers to the process of forming long-term memory or whether, as some studies have suggested, memory for relations might depend on the hippocampus even at short retention intervals and even when the task falls within the province of short-term (working) memory. The latter formulation appears to place the operation of relational memory into conflict with the idea that working memory is independent of medial temporal lobe (MTL) structures. In this report, the concepts of relational memory and working memory are discussed in the light of a simple demonstration experiment. Patients with MTL lesions successfully learned and recalled two word pairs when tested directly after learning but failed altogether when tested after a delay. The results do not contradict the idea that the hippocampus has a fundamental role in relational memory. However, there is a need for further elaboration and specification of the idea in order to explain why patients with MTL lesions can establish relational memory in the short term but not in long-term memory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Incipient preoperative reorganization processes of verbal memory functions in patients with left temporal lobe epilepsy.

    Science.gov (United States)

    Milian, Monika; Zeltner, Lena; Erb, Michael; Klose, Uwe; Wagner, Kathrin; Frings, Lars; Veil, Cornelia; Rona, Sabine; Lerche, Holger; Klamer, Silke

    2015-01-01

    We previously reported nonlinear correlations between verbal episodic memory performance and BOLD signal in memory fMRI in healthy subjects. The purpose of the present study was to examine this observation in patients with left mesial temporal lobe epilepsy (mTLE) who often experience memory decline and need reliable prediction tools before epilepsy surgery with hippocampectomy. Fifteen patients with left mTLE (18-57years, nine females) underwent a verbal memory fMRI paradigm. Correlations between BOLD activity and neuropsychological data were calculated for the i) hippocampus (HC) as well as ii) extrahippocampal mTL structures. Memory performance was systematically associated with activations within the right HC as well as with activations within the left extrahippocampal mTL regions (amygdala and parahippocampal gyrus). As hypothesized, the analyses revealed cubic relationships, with one peak in patients with marginal memory performance and another peak in patients with very good performance. The nonlinear correlations between memory performance and activations might reflect the compensatory recruitment of neural resources to maintain memory performance in patients with ongoing memory deterioration. The present data suggest an already incipient preoperative reorganization process of verbal memory in non-amnesic patients with left mTLE by simultaneously tapping the resources of the right HC and left extrahippocampal mTL regions. Thus, in the preoperative assessment, both neuropsychological performance and memory fMRI should be considered together. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Item memory, source memory, and the medial temporal lobe: Concordant findings from fMRI and memory-impaired patients

    OpenAIRE

    Gold, Jeffrey J.; Smith, Christine N.; Bayley, Peter J.; Shrager, Yael; Brewer, James B.; Stark, Craig E. L.; Hopkins, Ramona O.; Squire, Larry R.

    2006-01-01

    We studied item and source memory with fMRI in healthy volunteers and carried out a parallel study in memory-impaired patients. In experiment 1, volunteers studied a list of words in the scanner and later took an item memory test and a source memory test. Brain activity in the hippocampal region, perirhinal cortex, and parahippocampal cortex was associated with words that would later be remembered (item memory). The activity in these regions that predicted subsequent success at item memory pr...

  18. Temporal correlations and structural memory effects in break junction measurements

    DEFF Research Database (Denmark)

    Magyarkuti, A.; Lauritzen, Kasper Primdal; Balogh, Zoltan Imre

    2017-01-01

    that correlations between the opening and subsequent closing traces may indicate structural memory effects in atomic-sized metallic and molecular junctions. Applying these methods on measured and simulated gold metallic contacts as a test system, we show that the surface diffusion induced flattening of the broken......-molecule junctions, we demonstrate pronounced contact memory effects and recovery of the molecule for junctions breaking before atomic chains are formed. However, if chains are pulled the random relaxation of the chain and molecule after rupture prevents opening-closing correlations....

  19. Design and measurement of fully digital ternary content addressable memory using ratioless static random access memory cells and hierarchical-AND matching comparator

    Science.gov (United States)

    Nishikata, Daisuke; Ali, Mohammad Alimudin Bin Mohd; Hosoda, Kento; Matsumoto, Hiroshi; Nakamura, Kazuyuki

    2018-04-01

    A 36-bit × 32-entry fully digital ternary content addressable memory (TCAM) using the ratioless static random access memory (RL-SRAM) technology and fully complementary hierarchical-AND matching comparators (HAMCs) was developed. Since its fully complementary and digital operation enables the effect of device variabilities to be avoided, it can operate with a quite low supply voltage. A test chip incorporating a conventional TCAM and a proposed 24-transistor ratioless TCAM (RL-TCAM) cells and HAMCs was developed using a 0.18 µm CMOS process. The minimum operating voltage of 0.25 V of the developed RL-TCAM, which is less than half of that of the conventional TCAM, was measured via the conventional CMOS push–pull output buffers with the level-shifting and flipping technique using optimized pull-up voltage and resistors.

  20. Preliminary Validation of a New Measure of Negative Response Bias: The Temporal Memory Sequence Test.

    Science.gov (United States)

    Hegedish, Omer; Kivilis, Naama; Hoofien, Dan

    2015-01-01

    The Temporal Memory Sequence Test (TMST) is a new measure of negative response bias (NRB) that was developed to enrich the forced-choice paradigm. The TMST does not resemble the common structure of forced-choice tests and is presented as a temporal recall memory test. The validation sample consisted of 81 participants: 21 healthy control participants, 20 coached simulators, and 40 patients with acquired brain injury (ABI). The TMST had high reliability and significantly high positive correlations with the Test of Memory Malingering and Word Memory Test effort scales. Moreover, the TMST effort scales exhibited high negative correlations with the Glasgow Coma Scale, thus validating the previously reported association between probable malingering and mild traumatic brain injury. A suggested cutoff score yielded acceptable classification rates in the ABI group as well as in the simulator and control groups. The TMST appears to be a promising measure of NRB detection, with respectable rates of reliability and construct and criterion validity.

  1. Visual perception and memory systems: from cortex to medial temporal lobe.

    Science.gov (United States)

    Khan, Zafar U; Martín-Montañez, Elisa; Baxter, Mark G

    2011-05-01

    Visual perception and memory are the most important components of vision processing in the brain. It was thought that the perceptual aspect of a visual stimulus occurs in visual cortical areas and that this serves as the substrate for the formation of visual memory in a distinct part of the brain called the medial temporal lobe. However, current evidence indicates that there is no functional separation of areas. Entire visual cortical pathways and connecting medial temporal lobe are important for both perception and visual memory. Though some aspects of this view are debated, evidence from both sides will be explored here. In this review, we will discuss the anatomical and functional architecture of the entire system and the implications of these structures in visual perception and memory.

  2. Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory

    International Nuclear Information System (INIS)

    Gündoğan, M; Mazzera, M; Ledingham, P M; Cristiani, M; De Riedmatten, H

    2013-01-01

    We report on the coherent and multi-temporal mode storage of light using the full atomic frequency comb memory scheme. The scheme involves the transfer of optical atomic excitations in Pr 3+ :Y 2 SiO 5 to spin waves in hyperfine levels using strong single-frequency transfer pulses. Using this scheme, a total of five temporal modes are stored and recalled on-demand from the memory. The coherence of the storage and retrieval is characterized using a time-bin interference measurement resulting in visibilities higher than 80%, independent of the storage time. This coherent and multimode spin-wave memory is promising as a quantum memory for light. (paper)

  3. A class Hierarchical, object-oriented approach to virtual memory management

    Science.gov (United States)

    Russo, Vincent F.; Campbell, Roy H.; Johnston, Gary M.

    1989-01-01

    The Choices family of operating systems exploits class hierarchies and object-oriented programming to facilitate the construction of customized operating systems for shared memory and networked multiprocessors. The software is being used in the Tapestry laboratory to study the performance of algorithms, mechanisms, and policies for parallel systems. Described here are the architectural design and class hierarchy of the Choices virtual memory management system. The software and hardware mechanisms and policies of a virtual memory system implement a memory hierarchy that exploits the trade-off between response times and storage capacities. In Choices, the notion of a memory hierarchy is captured by abstract classes. Concrete subclasses of those abstractions implement a virtual address space, segmentation, paging, physical memory management, secondary storage, and remote (that is, networked) storage. Captured in the notion of a memory hierarchy are classes that represent memory objects. These classes provide a storage mechanism that contains encapsulated data and have methods to read or write the memory object. Each of these classes provides specializations to represent the memory hierarchy.

  4. No Evidence for Temporal Decay in Working Memory

    Science.gov (United States)

    Lewandowsky, Stephan; Oberauer, Klaus

    2009-01-01

    What drives forgetting in working memory? Recent evidence suggests that in a complex-span task in which an irrelevant processing task alternates with presentation of the memoranda, recall declines when the time taken to complete the processing task is extended while holding the time for rehearsal in between processing steps constant (Portrat,…

  5. Modality Differences in Timing and Temporal Memory throughout the Lifespan

    Science.gov (United States)

    Lustig, Cindy; Meck, Warren H.

    2011-01-01

    The perception of time is heavily influenced by attention and memory, both of which change over the lifespan. In the current study, children (8 yrs), young adults (18-25 yrs), and older adults (60-75 yrs) were tested on a duration bisection procedure using 3 and 6-s auditory and visual signals as anchor durations. During test, participants were…

  6. Role of the medial temporal lobes in relational memory: Neuropsychological evidence from a cued recognition paradigm

    OpenAIRE

    Kan, Irene P.; Giovanello, Kelly S.; Schnyer, David M.; Makris, Nikos; Verfaellie, Mieke

    2007-01-01

    In this study, we examined the role of the hippocampus in relational memory by comparing item recognition performance in amnesic patients with medial temporal lobe (MTL) damage and their matched controls. Specifically, we investigated the contribution of associative memory to item recognition using a cued recognition paradigm. Control subjects studied cue-target pairs once, whereas amnesic patients studied cue-target pairs six times. Following study, subjects made recognition judgments about ...

  7. Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks

    Science.gov (United States)

    Sun, Bo; Cao, Siming; He, Jun; Yu, Lejun; Li, Liandong

    2017-03-01

    Constrained by the physiology, the temporal factors associated with human behavior, irrespective of facial movement or body gesture, are described by four phases: neutral, onset, apex, and offset. Although they may benefit related recognition tasks, it is not easy to accurately detect such temporal segments. An automatic temporal segment detection framework using bilateral long short-term memory recurrent neural networks (BLSTM-RNN) to learn high-level temporal-spatial features, which synthesizes the local and global temporal-spatial information more efficiently, is presented. The framework is evaluated in detail over the face and body database (FABO). The comparison shows that the proposed framework outperforms state-of-the-art methods for solving the problem of temporal segment detection.

  8. Spatial memory for asymmetrical dot locations predicts lateralization among patients with presurgical mesial temporal lobe epilepsy.

    Science.gov (United States)

    Brown, Franklin C; Hirsch, Lawrence J; Spencer, Dennis D

    2015-11-01

    This study examined the ability of an asymmetrical dot location memory test (Brown Location Test, BLT) and two verbal memory tests (Verbal Selective Reminding Test (VSRT) and California Verbal Learning Test, Second Edition (CVLT-II)) to correctly lateralize left (LTLE) or right (RTLE) mesial temporal lobe epilepsy that was confirmed with video-EEG. Subjects consisted of 16 patients with medically refractory RTLE and 13 patients with medically refractory LTLE who were left hemisphere language dominant. Positive predictive values for lateralizing TLE correctly were 87.5% for the BLT, 72.7% for the VSRT, and 80% for the CVLT-II. Binary logistic regression indicated that the BLT alone correctly classified 76.9% of patients with left temporal lobe epilepsy and 87.5% of patients with right temporal lobe epilepsy. Inclusion of the verbal memory tests improved this to 92.3% of patients with left temporal lobe epilepsy and 100% correct classification of patients with right temporal lobe epilepsy. Though of a limited sample size, this study suggests that the BLT alone provides strong laterality information which improves with the addition of verbal memory tests. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories.

    Directory of Open Access Journals (Sweden)

    Paulo S Boggio

    Full Text Available A recent study found that false memories were reduced by 36% when low frequency repetitive transcranial magnetic stimulation (rTMS was applied to the left anterior temporal lobe after the encoding (study phase. Here we were interested in the consequences on a false memory task of brain stimulation throughout the encoding and retrieval task phases. We used transcranial direct current stimulation (tDCS because it has been shown to be a useful tool to enhance cognition. Specifically, we examined whether tDCS can induce changes in a task assessing false memories. Based on our preliminary results, three conditions of stimulation were chosen: anodal left/cathodal right anterior temporal lobe (ATL stimulation ("bilateral stimulation"; anodal left ATL stimulation (with a large contralateral cathodal electrode--referred as "unilateral stimulation" and sham stimulation. Our results showed that false memories were reduced significantly after the two active conditions (unilateral and bilateral stimulation as compared with sham stimulation. There were no significant changes in veridical memories. Our findings show that false memories are reduced by 73% when anodal tDCS is applied to the anterior temporal lobes throughout the encoding and retrieval stages, suggesting a possible strategy for improving certain aspects of learning.

  10. Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models.

    Science.gov (United States)

    Paz-Linares, Deirel; Vega-Hernández, Mayrim; Rojas-López, Pedro A; Valdés-Hernández, Pedro A; Martínez-Montes, Eduardo; Valdés-Sosa, Pedro A

    2017-01-01

    The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem due to the non-uniqueness of the solution and regularization or prior information is needed to undertake Electrophysiology Source Imaging. Structured Sparsity priors can be attained through combinations of (L1 norm-based) and (L2 norm-based) constraints such as the Elastic Net (ENET) and Elitist Lasso (ELASSO) models. The former model is used to find solutions with a small number of smooth nonzero patches, while the latter imposes different degrees of sparsity simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal and computationally expensive solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using the computationally intensive Monte Carlo/Expectation Maximization methods, which makes impractical its application to the EEG IP. While the ELASSO have not been considered before into the Bayesian context. In this work, we attempt to solve the EEG IP using a Bayesian framework for ENET and ELASSO models. We propose a Structured Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using realistic simulations and avoiding the inverse crime we illustrate that our methods are able to recover complicated source setups more accurately and with a more robust estimation of the hyperparameters and behavior under different sparsity scenarios than classical LORETA, ENET and LASSO Fusion solutions. We also solve the EEG IP using data from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods. The Matlab codes used in this work, including Simulations, Methods

  11. Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated α Oscillations.

    Science.gov (United States)

    van Ede, Freek; Niklaus, Marcel; Nobre, Anna C

    2017-01-11

    Although working memory is generally considered a highly dynamic mnemonic store, popular laboratory tasks used to understand its psychological and neural mechanisms (such as change detection and continuous reproduction) often remain relatively "static," involving the retention of a set number of items throughout a shared delay interval. In the current study, we investigated visual working memory in a more dynamic setting, and assessed the following: (1) whether internally guided temporal expectations can dynamically and reversibly prioritize individual mnemonic items at specific times at which they are deemed most relevant; and (2) the neural substrates that support such dynamic prioritization. Participants encoded two differently colored oriented bars into visual working memory to retrieve the orientation of one bar with a precision judgment when subsequently probed. To test for the flexible temporal control to access and retrieve remembered items, we manipulated the probability for each of the two bars to be probed over time, and recorded EEG in healthy human volunteers. Temporal expectations had a profound influence on working memory performance, leading to faster access times as well as more accurate orientation reproductions for items that were probed at expected times. Furthermore, this dynamic prioritization was associated with the temporally specific attenuation of contralateral α (8-14 Hz) oscillations that, moreover, predicted working memory access times on a trial-by-trial basis. We conclude that attentional prioritization in working memory can be dynamically steered by internally guided temporal expectations, and is supported by the attenuation of α oscillations in task-relevant sensory brain areas. In dynamic, everyday-like, environments, flexible goal-directed behavior requires that mental representations that are kept in an active (working memory) store are dynamic, too. We investigated working memory in a more dynamic setting than is conventional

  12. Temporal Memory Reinforcement Learning for the Autonomous Micro-mobile Robot Based-behavior

    Institute of Scientific and Technical Information of China (English)

    Yang Yujun(杨玉君); Cheng Junshi; Chen Jiapin; Li Xiaohai

    2004-01-01

    This paper presents temporal memory reinforcement learning for the autonomous micro-mobile robot based-behavior. Human being has a memory oblivion process, i.e. the earlier to memorize, the earlier to forget, only the repeated thing can be remembered firmly. Enlightening forms this, and the robot need not memorize all the past states, at the same time economizes the EMS memory space, which is not enough in the MPU of our AMRobot. The proposed algorithm is an extension of the Q-learning, which is an incremental reinforcement learning method. The results of simulation have shown that the algorithm is valid.

  13. Temporal span of human echoic memory and mismatch negativity: revisited.

    Science.gov (United States)

    Jääskeläinen, I P; Hautamäki, M; Näätänen, R; Ilmoniemi, R J

    1999-04-26

    The stimulus onset asynchrony (SOA)-related decrease in mismatch negativity (MMN) amplitude has been used to infer a putative auditory sensory memory duration of 4-10 s. However, both increased standard-to-standard (SSA) and standard-to-deviant (SDA) gaps could contribute to the effect. Fourteen subjects were presented with standard and deviant tones with short (0.35 s) and long (3.5 s) SOAs. In addition, the SSA and SDA were separately manipulated to test the relative contributions of slower rate of standard tone presentation and longer SDA gap to the SOA-related decrease in MMN amplitude. The MMN amplitude decreased with long SOA by 61%. Increases in SSA and SDA resulted in intermediate 47% and 31% decreases, these manipulations explaining 67% of the long SOA effect (pechoic memory length cannot be directly inferred from an MMN-SOA dependency function.

  14. Everyday memory impairment in patients with temporal lobe epilepsy caused by hippocampal sclerosis.

    Science.gov (United States)

    Rzezak, Patrícia; Lima, Ellen Marise; Gargaro, Ana Carolina; Coimbra, Erica; de Vincentiis, Silvia; Velasco, Tonicarlo Rodrigues; Leite, João Pereira; Busatto, Geraldo F; Valente, Kette D

    2017-04-01

    Patients with temporal lobe epilepsy caused by hippocampal sclerosis (TLE-HS) have episodic memory impairment. Memory has rarely been evaluated using an ecologic measure, even though performance on these tests is more related to patients' memory complaints. We aimed to measure everyday memory of patients with TLE-HS to age- and gender-matched controls. We evaluated 31 patients with TLE-HS and 34 healthy controls, without epilepsy and psychiatric disorders, using the Rivermead Behavioral Memory Test (RBMT), Visual Reproduction (WMS-III) and Logical Memory (WMS-III). We evaluated the impact of clinical variables such as the age of onset, epilepsy duration, AED use, history of status epilepticus, and seizure frequency on everyday memory. Statistical analyses were performed using MANCOVA with years of education as a confounding factor. Patients showed worse performance than controls on traditional memory tests and in the overall score of RBMT. Patients had more difficulties to recall names, a hidden belonging, to deliver a message, object recognition, to remember a story full of details, a previously presented short route, and in time and space orientation. Clinical epilepsy variables were not associated with RBMT performance. Memory span and working memory were correlated with worse performance on RBMT. Patients with TLE-HS demonstrated deficits in everyday memory functions. A standard neuropsychological battery, designed to assess episodic memory, would not evaluate these impairments. Impairment in recalling names, routes, stories, messages, and space/time disorientation can adversely impact social adaptation, and we must consider these ecologic measures with greater attention in the neuropsychological evaluation of patients with memory complaints. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. WoMMBAT : A user interface for hierarchical Bayesian estimation of working memory capacity

    NARCIS (Netherlands)

    Morey, Richard D.; Morey, Candice C.

    2011-01-01

    The change detection paradigm has become an important tool for researchers studying working memory. Change detection is especially useful for studying visual working memory, because recall paradigms are difficult to employ in the visual modality. Pashler (Perception & Psychophysics, 44, 369-378,

  16. Temporal structure in neuronal activity during working memory in Macaque parietal cortex

    CERN Document Server

    Pesaran, B; Sahami, M; Mitra, P; Andersen, R A

    2000-01-01

    A number of cortical structures are reported to have elevated single unit firing rates sustained throughout the memory period of a working memory task. How the nervous system forms and maintains these memories is unknown but reverberating neuronal network activity is thought to be important. We studied the temporal structure of single unit (SU) activity and simultaneously recorded local field potential (LFP) activity from area LIP in the inferior parietal lobe of two awake macaques during a memory-saccade task. Using multitaper techniques for spectral analysis, which play an important role in obtaining the present results, we find elevations in spectral power in a 50--90 Hz (gamma) frequency band during the memory period in both SU and LFP activity. The activity is tuned to the direction of the saccade providing evidence for temporal structure that codes for movement plans during working memory. We also find SU and LFP activity are coherent during the memory period in the 50--90 Hz gamma band and no consisten...

  17. Assessment of working memory in patients with mesial temporal lobe epilepsy associated with unilateral hippocampal sclerosis.

    Science.gov (United States)

    Tudesco, Ivanda de Souza Silva; Vaz, Leonardo José; Mantoan, Marcele Araújo Silva; Belzunces, Erich; Noffs, Maria Helena; Caboclo, Luís Otávio Sales Ferreira; Yacubian, Elza Márcia Targas; Sakamoto, Américo Ceiki; Bueno, Orlando Francisco Amodeo

    2010-07-01

    The aim of the present study was to investigate whether working memory is impaired in mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), a controversial and largely unexplored matter. Twenty subjects with left MTLE-HS, 19 with right MTLE-HS, and 21 control right-handed subjects underwent neuropsychological assessment of episodic and semantic memory, executive functions, and specific working memory components. Left and right epileptogenic foci resulted in impairment of verbal and nonverbal episodic memory (verbal memory deficit greater in left MTLE-HS than in right MTLE-HS). In addition, patients with left MTLE-HS were impaired in learning paired associates, verbal fluency, and Trail Making. No differences were seen in the tests carried out to evaluate the working memory components (except visuospatial short-term memory in right MTLE-HS). In this study we did not detect reliable working memory impairment in patients with MTLE-HS with either a left or right focus in most tasks considered as tests of working memory components. Copyright 2010 Elsevier Inc. All rights reserved.

  18. The temporal locus of the interaction between working memory consolidation and the attentional blink

    NARCIS (Netherlands)

    Akyürek, E.G.; Leszczyński, Marcin; Schubö, Anna

    2010-01-01

    An increase in concurrent working memory load has been shown to amplify the attentional blink. The present study investigated the temporal locus of this phenomenon, by using a dual rapid serial visual presentation paradigm that enabled the measurement of lateralized event-related potentials. The P3

  19. Temporal context and the organisational impairment of memory search in schizophrenia.

    Science.gov (United States)

    Polyn, Sean M; McCluey, Joshua D; Morton, Neal W; Woolard, Austin A; Luksik, Andrew S; Heckers, Stephan

    2015-01-01

    An influential theory of schizophrenic deficits in executive function suggests that patients have difficulty maintaining and utilising an internal contextual representation, whose function is to ensure that stimuli are processed in a task-appropriate manner. In basic research on episodic memory, retrieved-context theories propose that an internal contextual representation is critically involved in memory search, facilitating the retrieval of task-appropriate memories. This contextual machinery is thought to give rise to temporal organisation during free recall: the tendency for successive recall responses to correspond to items from nearby positions on the study list. If patients with schizophrenia have a generalised contextual deficit, then this leads to the prediction that these patients will exhibit reduced temporal organisation in free recall. Using a combination of classic and recently developed organisational measures, we characterised recall organisation in 75 patients with schizophrenia and 72 nondisordered control participants performing a multi-trial free-recall task. Patients with schizophrenia showed diminished temporal organisation, as well as diminished subjective organisation of their recall sequences relative to control participants. The two groups showed similar amounts of semantic organisation during recall. The observation of reduced temporal organisation in the patient group is consistent with the proposal that the memory deficit in schizophrenia can be characterised as a deficit in contextual processing.

  20. The Consolidation of Object and Context Recognition Memory Involve Different Regions of the Temporal Lobe

    Science.gov (United States)

    Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico

    2008-01-01

    These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…

  1. When Spatial and Temporal Contiguities Help the Integration in Working Memory: "A Multimedia Learning" Approach

    Science.gov (United States)

    Mammarella, Nicola; Fairfield, Beth; Di Domenico, Alberto

    2013-01-01

    Two experiments examined the effects of spatial and temporal contiguities in a working memory binding task that required participants to remember coloured objects. In Experiment 1, a black and white drawing and a corresponding phrase that indicated its colour perceptually were either near or far (spatial study condition), while in Experiment 2,…

  2. Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita

    Science.gov (United States)

    Miyashita, Yasushi; Chang, Han Soo

    1988-01-01

    It has been proposed that visual-memory traces are located in the temporal lobes of the cerebral cortex, as electric stimulation of this area in humans results in recall of imagery1. Lesions in this area also affect recognition of an object after a delay in both humans2,3 and monkeys4-7 indicating a role in short-term memory of images8. Single-unit recordings from the temporal cortex have shown that some neurons continue to fire when one of two or four colours are to be remembered temporarily9. But neuronal responses selective to specific complex objects10-18 , including hands10,13 and faces13,16,17, cease soon after the offset of stimulus presentation10-18. These results led to the question of whether any of these neurons could serve the memory of complex objects. We report here a group of shape-selective neurons in an anterior ventral part of the temporal cortex of monkeys that exhibited sustained activity during the delay period of a visual short-term memory task. The activity was highly selective for the pictorial information to be memorized and was independent of the physical attributes such as size, orientation, colour or position of the object. These observations show that the delay activity represents the short-term memory of the categorized percept of a picture.

  3. What You See Is What You Remember: Visual Chunking by Temporal Integration Enhances Working Memory.

    Science.gov (United States)

    Akyürek, Elkan G; Kappelmann, Nils; Volkert, Marc; van Rijn, Hedderik

    2017-12-01

    Human memory benefits from information clustering, which can be accomplished by chunking. Chunking typically relies on expertise and strategy, and it is unknown whether perceptual clustering over time, through temporal integration, can also enhance working memory. The current study examined the attentional and working memory costs of temporal integration of successive target stimulus pairs embedded in rapid serial visual presentation. ERPs were measured as a function of behavioral reports: One target, two separate targets, or two targets reported as a single integrated target. N2pc amplitude, reflecting attentional processing, depended on the actual number of successive targets. The memory-related CDA and P3 components instead depended on the perceived number of targets irrespective of their actual succession. The report of two separate targets was associated with elevated amplitude, whereas integrated as well as actual single targets exhibited lower amplitude. Temporal integration thus provided an efficient means of processing sensory input, offloading working memory so that the features of two targets were consolidated and maintained at a cost similar to that of a single target.

  4. Associative learning beyond the medial temporal lobe: many actors on the memory stage

    Directory of Open Access Journals (Sweden)

    Giulio ePergola

    2013-11-01

    Full Text Available Decades of research have established a model that includes the medial temporal lobe, and particularly the hippocampus, as a critical node for episodic memory. Neuroimaging and clinical studies have shown the involvement of additional cortical and subcortical regions. Among these areas, the thalamus, the retrosplenial cortex and the prefrontal cortices have been consistently related to episodic memory performance.This article provides evidences that these areas are in different forms and degrees critical for human memory function rather than playing only an ancillary role. First we briefly summarize findings on the involvement of the hippocampus and the medial temporal lobe in recognition memory and recall. We then focus on the clinical and neuroimaging evidence available on thalamo-frontal and thalamo-retrosplenial networks. The role of these networks in episodic memory has been considered secondary, partly because disruption of these areas does not always lead to severe impairments; to account for this evidence, we discuss methodological issues related to the investigation of these regions. We propose that these networks contribute differently to recognition memory and recall, and also that the memory stage of their contribution shows specificity to encoding or retrieval in recall tasks. We note that the same mechanisms may be in force when humans perform non-episodic tasks, e.g., semantic retrieval and mental time travel. Functional disturbance of these networks is related to cognitive impairments not only in neurological disorders, but also in psychiatric medical conditions, such as schizophrenia. Finally we discuss possible mechanisms for the contribution of these areas to memory, including regulation of oscillatory rhythms and long-term potentiation. We conclude that integrity of the thalamo-frontal and the thalamo-retrosplenial networks is necessary for the manifold features of episodic memory.

  5. Memory outcome following left anterior temporal lobectomy in patients with a failed Wada test.

    Science.gov (United States)

    Rathore, Chaturbhuj; Alexander, Aley; Sarma, P Sankara; Radhakrishnan, Kurupath

    2015-03-01

    This study aimed to compare the memory outcome following left anterior temporal lobectomy (ATL) between patients with a failed Wada test and patients who passed the Wada test. From 1996 to 2002, we performed the Wada test on all patients with unilateral left mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) and concordant electroclinical data before ATL. We used a 12-item recognition paradigm for memory testing and awarded a score of +1 for each correct response and -0.5 for each incorrect response. No patient was denied surgery on the basis of Wada scores. We assessed cognitive and memory functions using the Wechsler Adult Intelligence Scale and the Wechsler Memory Scale preoperatively and at one year after ATL. We compared the number of patients who showed decline in memory scores, as per the published reliable change indices, between the patients with a failed Wada test and the patients who passed the Wada test. Out of the 116 eligible patients with left MTLE-HS, 88 underwent bilateral Wada test, while 28 underwent ipsilateral Wada test. None of them developed postoperative amnesia. Approximately, one-third of patients with a failed Wada memory test when the failure was defined as a contralateral score of 8, and as an asymmetry score of failed Wada memory test and the group who passed the Wada memory test. The results remained the same when analyses were repeated at various other cutoff points. The patients with left MTLE-HS with concordant electroclinical, MRI, and neuropsychological data should not be denied ATL solely on the basis of Wada memory test results. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Representations of temporal information in short-term memory: Are they modality-specific?

    Science.gov (United States)

    Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M

    2016-10-01

    Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Levels of word processing and incidental memory: dissociable mechanisms in the temporal lobe.

    Science.gov (United States)

    Castillo, E M; Simos, P G; Davis, R N; Breier, J; Fitzgerald, M E; Papanicolaou, A C

    2001-11-16

    Word recall is facilitated when deep (e.g. semantic) processing is applied during encoding. This fact raises the question of the existence of specific brain mechanisms supporting different levels of information processing that can modulate incidental memory performance. In this study we obtained spatiotemporal brain activation profiles, using magnetic source imaging, from 10 adult volunteers as they performed a shallow (phonological) processing task and a deep (semantic) processing task. When phonological analysis of the word stimuli into their constituent phonemes was required, activation was largely restricted to the posterior portion of the left superior temporal gyrus (area 22). Conversely, when access to lexical/semantic representations was required, activation was found predominantly in the left middle temporal gyrus and medial temporal cortex. The differential engagement of each mechanism during word encoding was associated with dramatic changes in subsequent incidental memory performance.

  8. Variation in Working Memory Capacity and Temporal-Contextual Retrieval from Episodic Memory

    Science.gov (United States)

    Spillers, Gregory J.; Unsworth, Nash

    2011-01-01

    Unsworth and Engle (2007) recently proposed a model of working memory capacity characterized by, among other things, the ability to conduct a strategic, cue-dependent search of long-term memory. Although this ability has been found to mediate individual variation in a number of higher order cognitive tasks, the component processes involved remain…

  9. Memory for fearful faces across development: specialization of amygdala nuclei and medial temporal lobe structures.

    Science.gov (United States)

    Pinabiaux, Charlotte; Hertz-Pannier, Lucie; Chiron, Catherine; Rodrigo, Sébastian; Jambaqué, Isabelle; Noulhiane, Marion

    2013-01-01

    Enhanced memory for emotional faces is a significant component of adaptive social interactions, but little is known on its neural developmental correlates. We explored the role of amygdaloid complex (AC) and medial temporal lobe (MTL) in emotional memory recognition across development, by comparing fMRI activations of successful memory encoding of fearful and neutral faces in children (n = 12; 8-12 years) and adolescents (n = 12; 13-17 years). Memory for fearful faces was enhanced compared with neutral ones in adolescents, as opposed to children. In adolescents, activations associated with successful encoding of fearful faces were centered on baso-lateral AC nuclei, hippocampus, enthorhinal and parahippocampal cortices. In children, successful encoding of fearful faces relied on activations of centro-mesial AC nuclei, which was not accompanied by functional activation of MTL memory structures. Successful encoding of neutral faces depended on activations in anterior MTL region (hippocampal head and body) in adolescents, but more posterior ones (hippocampal tail and parahippocampal cortex) in children. In conclusion, two distinct functional specializations emerge from childhood to adolescence and result in the enhancement of memory for these particular stimuli: the specialization of baso-lateral AC nuclei, which is associated with the expertise in processing emotional facial expression, and which is intimately related to the specialization of MTL memory network. How the interplay between specialization of AC nuclei and of MTL memory structures is fundamental for the edification of social interactions remains to be elucidated.

  10. Memory for fearful faces across development: specialization of amygdala nuclei and medial temporal lobe structures

    Directory of Open Access Journals (Sweden)

    Charlotte ePinabiaux

    2013-12-01

    Full Text Available Enhanced memory for emotional faces is a significant component of adaptive social interactions, but little is known on its neural developmental correlates. We explored the role of amygdaloid complex (AC and medial temporal lobe (MTL in emotional memory recognition across development, by comparing fMRI activations of successful memory encoding of fearful and neutral faces in children (n=12; 8-12 years and adolescents (n=12; 13-17 years. Memory for fearful faces was enhanced compared with neutral ones in adolescents, as opposed to children. In adolescents, activations associated with successful encoding of fearful faces were centered on baso-lateral AC nuclei, hippocampus, enthorhinal and parahippocampal cortices. In children, successful encoding of fearful faces relied on activations of centro-mesial AC nuclei, which was not accompanied by functional activation of MTL memory structures. Successful encoding of neutral faces depended on activations in anterior MTL region (hippocampal head and body in adolescents, but more posterior ones (hippocampal tail and parahippocampal cortex in children. In conclusion, two distinct functional specializations emerge from childhood to adolescence and result in the enhancement of memory for these particular stimuli: the specialization of baso-lateral AC nuclei, which is associated with the expertise in processing emotional facial expression, and which is intimately related to the specialization of MTL memory network. How the interplay between specialization of AC nuclei and of MTL memory structures is fundamental for the edification of social interactions remains to be elucidated.

  11. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference.

    Science.gov (United States)

    Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng

    2017-06-01

    Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Declarative long-term memory and the mesial temporal lobe: Insights from a 5-year postsurgery follow-up study on refractory temporal lobe epilepsy.

    Science.gov (United States)

    Salvato, Gerardo; Scarpa, Pina; Francione, Stefano; Mai, Roberto; Tassi, Laura; Scarano, Elisa; Lo Russo, Giorgio; Bottini, Gabriella

    2016-11-01

    It is largely recognized that the mesial temporal lobe and its substructure support declarative long-term memory (LTM). So far, different theories have been suggested, and the organization of declarative verbal LTM in the brain is still a matter of debate. In the current study, we retrospectively selected 151 right-handed patients with temporal lobe epilepsy with and without hippocampal sclerosis, with a homogeneous (seizure-free) clinical outcome. We analyzed verbal memory performance within a normalized scores context, by means of prose recall and word paired-associate learning tasks. Patients were tested at presurgical baseline, 6months, 2 and 5years after anteromesial temporal lobe surgery, using parallel versions of the neuropsychological tests. Our main finding revealed a key involvement of the left temporal lobe and, in particular, of the left hippocampus in prose recall rather than word paired-associate task. We also confirmed that shorter duration of epilepsy, younger age, and withdrawal of antiepileptic drugs would predict a better memory outcome. When individual memory performance was taken into account, data showed that females affected by left temporal lobe epilepsy for longer duration were more at risk of presenting a clinically pathologic LTM at 5years after surgery. Taken together, these findings shed new light on verbal declarative memory in the mesial temporal lobe and on the behavioral signature of the functional reorganization after the surgical treatment of temporal lobe epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Cognitive Risk Factors for Specific Learning Disorder: Processing Speed, Temporal Processing, and Working Memory.

    Science.gov (United States)

    Moll, Kristina; Göbel, Silke M; Gooch, Debbie; Landerl, Karin; Snowling, Margaret J

    2016-01-01

    High comorbidity rates between reading disorder (RD) and mathematics disorder (MD) indicate that, although the cognitive core deficits underlying these disorders are distinct, additional domain-general risk factors might be shared between the disorders. Three domain-general cognitive abilities were investigated in children with RD and MD: processing speed, temporal processing, and working memory. Since attention problems frequently co-occur with learning disorders, the study examined whether these three factors, which are known to be associated with attention problems, account for the comorbidity between these disorders. The sample comprised 99 primary school children in four groups: children with RD, children with MD, children with both disorders (RD+MD), and typically developing children (TD controls). Measures of processing speed, temporal processing, and memory were analyzed in a series of ANCOVAs including attention ratings as covariate. All three risk factors were associated with poor attention. After controlling for attention, associations with RD and MD differed: Although deficits in verbal memory were associated with both RD and MD, reduced processing speed was related to RD, but not MD; and the association with RD was restricted to processing speed for familiar nameable symbols. In contrast, impairments in temporal processing and visuospatial memory were associated with MD, but not RD. © Hammill Institute on Disabilities 2014.

  14. Topographical, autobiographical and semantic memory in a patient with bilateral mesial temporal and retrosplenial infarction.

    Science.gov (United States)

    Hepner, Ilana J; Mohamed, Armin; Fulham, Michael J; Miller, Laurie A

    2007-04-01

    According to Consolidation Theory (Squire, 1992, Psychological Review, 99, 195; Squire & Alvarez, 1995, Current Opinion in Neurobiology, 5, 169), the mesial temporal lobes have a time-limited role in the maintenance, storage and retrieval of retrograde declarative memories, such that they are not necessary for recalling remote memories. In contrast, proponents of the Multiple Trace Theory (Fuji, Moscovitch, & Nadel, 2000, Handbook of neuropsychology, 2nd ed., p 223, Amsterdam, New York: Elsevier; Nadel & Moscovitch, 1999, Current Opinion in Neurobiology, 7, 217) posit that the mesial temporal lobe (MTL) is necessary for remembering detailed autobiographical and topographical material from all time periods. A third theory of hippocampal function, the Cognitive Map Theory (O'Keefe & Nadel, 1978, The hippocampus as a cognitive map. Oxford: Clarendon), states that the hippocampus is involved in the processing of allocentric spatial representations. The precise role of the MTL in remote memory has been difficult to elucidate, as the majority of studies present cases with widespread brain damage that often occurred many years prior to testing. We investigated retrograde autobiographical, semantic and topographical memories in a subject (SG) who had recently sustained infarctions confined to the MTL and retrosplenial region bilaterally. Inconsistent with the predictions of Cognitive Map Theory, memory for spatial maps that were learned in the past was preserved. Additional testing indicated that SG suffered from a landmark agnosia, which affected remotely and recently acquired information equally. SG was also poor at imagining which direction he would have to turn his body to move from one landmark to another. In accordance with Consolidation Theory, SG performed similarly to control subjects for remote time periods on various measures of retrograde autobiographical memory and demonstrated intact knowledge regarding famous faces and vocabulary terms that were acquired in

  15. Granule cell dispersion is associated with memory impairment in right mesial temporal lobe epilepsy.

    Science.gov (United States)

    Neves, Rafael Scarpa da Costa; de Souza Silva Tudesco, Ivanda; Jardim, Anaclara Prada; Caboclo, Luís Otávio Sales Ferreira; Lancellotti, Carmen; Ferrari-Marinho, Taíssa; Hamad, Ana Paula; Marinho, Murilo; Centeno, Ricardo Silva; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Yacubian, Elza Márcia Targas

    2012-11-01

    We analyzed the association of granule cell dispersion (GCD) with memory performance, clinical data and surgical outcome in a series of patients with mesial temporal lobe epilepsy (MTLE) and mesial temporal sclerosis (MTS). Hippocampal specimens from 54 patients with MTLE (27 patients with right MTLE and 27 with left MTLE) and unilateral MTS, who were separated into GCD and no-GCD groups and thirteen controls were studied. Quantitative neuropathological evaluation was performed using hippocampal sections stained with NeuN. Patients' neuropsychological measures, clinical data, type of MTS and surgical outcome were reviewed. GCD occurred in 28 (51.9%) patients. No correlation between GCD and MTS pattern, clinical data or surgical outcome was found. The presence of GCD was correlated with worse visuospatial memory performance in right MTLE, but not with memory performance in left MTLE. GCD may be related to memory impairment in right MTLE-MTS patients. However, the role of GCD in memory function is not precisely defined. Copyright © 2012 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  16. Neuronal correlate of visual associative long-term memory in the primate temporal cortex

    Science.gov (United States)

    Miyashita, Yasushi

    1988-10-01

    In human long-term memory, ideas and concepts become associated in the learning process1. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall,2 and lesions produce deficits in visual recognition of objects3-9. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task10. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.

  17. Synchronous retinotopic frontal-temporal activity during long-term memory for spatial location.

    Science.gov (United States)

    Slotnick, Scott D

    2010-05-12

    Early visual areas in occipital cortex are known to be retinotopic. Recently, retinotopic maps have been reported in frontal and parietal cortex during spatial attention and working memory. The present event-related potential (ERP) and functional magnetic resonance imaging (fMRI) study determined whether spatial long-term memory was associated with retinotopic activity in frontal and parietal regions, and assessed whether retinotopic activity in these higher level control regions was synchronous with retinotopic activity in lower level visual sensory regions. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old and new shapes were presented at fixation and participants classified each shape as old and previously on the "left", old and previously on the "right", or "new". Retinotopic effects were manifested by accurate memory for items previously presented on the left producing activity in the right hemisphere and accurate memory for items previously presented on the right producing activity in the left hemisphere. Retinotopic ERP activity was observed in frontal regions and visual sensory (occipital and temporal) regions. In frontal cortex, retinotopic fMRI activity was localized to the frontal eye fields. There were no significant ERP or fMRI retinotopic memory effects in parietal regions. The present long-term memory retinotopic effects complement previous spatial attention and working memory findings (and suggest retinotopic activity in parietal cortex may require an external peripheral stimulus). Furthermore, ERP cross-correlogram analysis revealed that retinotopic activations in frontal and temporal regions were synchronous, indicating that these regions interact during retrieval of spatial information. (c) 2010 Elsevier B.V. All rights reserved.

  18. Multi-Temporal Land Cover Classification with Long Short-Term Memory Neural Networks

    Science.gov (United States)

    Rußwurm, M.; Körner, M.

    2017-05-01

    Land cover classification (LCC) is a central and wide field of research in earth observation and has already put forth a variety of classification techniques. Many approaches are based on classification techniques considering observation at certain points in time. However, some land cover classes, such as crops, change their spectral characteristics due to environmental influences and can thus not be monitored effectively with classical mono-temporal approaches. Nevertheless, these temporal observations should be utilized to benefit the classification process. After extensive research has been conducted on modeling temporal dynamics by spectro-temporal profiles using vegetation indices, we propose a deep learning approach to utilize these temporal characteristics for classification tasks. In this work, we show how long short-term memory (LSTM) neural networks can be employed for crop identification purposes with SENTINEL 2A observations from large study areas and label information provided by local authorities. We compare these temporal neural network models, i.e., LSTM and recurrent neural network (RNN), with a classical non-temporal convolutional neural network (CNN) model and an additional support vector machine (SVM) baseline. With our rather straightforward LSTM variant, we exceeded state-of-the-art classification performance, thus opening promising potential for further research.

  19. MULTI-TEMPORAL LAND COVER CLASSIFICATION WITH LONG SHORT-TERM MEMORY NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    M. Rußwurm

    2017-05-01

    Full Text Available Land cover classification (LCC is a central and wide field of research in earth observation and has already put forth a variety of classification techniques. Many approaches are based on classification techniques considering observation at certain points in time. However, some land cover classes, such as crops, change their spectral characteristics due to environmental influences and can thus not be monitored effectively with classical mono-temporal approaches. Nevertheless, these temporal observations should be utilized to benefit the classification process. After extensive research has been conducted on modeling temporal dynamics by spectro-temporal profiles using vegetation indices, we propose a deep learning approach to utilize these temporal characteristics for classification tasks. In this work, we show how long short-term memory (LSTM neural networks can be employed for crop identification purposes with SENTINEL 2A observations from large study areas and label information provided by local authorities. We compare these temporal neural network models, i.e., LSTM and recurrent neural network (RNN, with a classical non-temporal convolutional neural network (CNN model and an additional support vector machine (SVM baseline. With our rather straightforward LSTM variant, we exceeded state-of-the-art classification performance, thus opening promising potential for further research.

  20. Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory.

    Science.gov (United States)

    Frith, Emily; Sng, Eveleen; Loprinzi, Paul D

    2017-11-01

    The broader purpose of this study was to examine the temporal effects of high-intensity exercise on learning, short-term and long-term retrospective memory and prospective memory. Among a sample of 88 young adult participants, 22 were randomized into one of four different groups: exercise before learning, control group, exercise during learning, and exercise after learning. The retrospective assessments (learning, short-term and long-term memory) were assessed using the Rey Auditory Verbal Learning Test. Long-term memory including a 20-min and 24-hr follow-up assessment. Prospective memory was assessed using a time-based procedure by having participants contact (via phone) the researchers at a follow-up time period. The exercise stimulus included a 15-min bout of progressive maximal exertion treadmill exercise. High-intensity exercise prior to memory encoding (vs. exercise during memory encoding or consolidation) was effective in enhancing long-term memory (for both 20-min and 24-h follow-up assessments). We did not observe a differential temporal effect of high-intensity exercise on short-term memory (immediate post-memory encoding), learning or prospective memory. The timing of high-intensity exercise may play an important role in facilitating long-term memory. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Out of sight but not out of mind: the neurophysiology of iconic memory in the superior temporal sulcus.

    Science.gov (United States)

    Keysers, C; Xiao, D-K; Foldiak, P; Perrett, D I

    2005-05-01

    Iconic memory, the short-lasting visual memory of a briefly flashed stimulus, is an important component of most models of visual perception. Here we investigate what physiological mechanisms underlie this capacity by showing rapid serial visual presentation (RSVP) sequences with and without interstimulus gaps to human observers and macaque monkeys. For gaps of up to 93 ms between consecutive images, human observers and neurones in the temporal cortex of macaque monkeys were found to continue processing a stimulus as if it was still present on the screen. The continued firing of neurones in temporal cortex may therefore underlie iconic memory. Based on these findings, a neurophysiological vision of iconic memory is presented.

  2. Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex.

    Science.gov (United States)

    Takeuchi, Daigo; Hirabayashi, Toshiyuki; Tamura, Keita; Miyashita, Yasushi

    2011-03-18

    The primate temporal cortex implements visual long-term memory. However, how its interlaminar circuitry executes cognitive computations is poorly understood. Using linear-array multicontact electrodes, we simultaneously recorded unit activities across cortical layers in the perirhinal cortex of macaques performing a pair-association memory task. Cortical layers were estimated on the basis of current source density profiles with histological verifications, and the interlaminar signal flow was determined with cross-correlation analysis between spike trains. During the cue period, canonical "feed-forward" signals flowed from granular to supragranular layers and from supragranular to infragranular layers. During the delay period, however, the signal flow reversed to the "feed-back" direction: from infragranular to supragranular layers. This reversal of signal flow highlights how the temporal cortex differentially recruits its laminar circuits for sensory and mnemonic processing.

  3. Peripheral inflammation acutely impairs human spatial memory via actions on medial temporal lobe glucose metabolism.

    Science.gov (United States)

    Harrison, Neil A; Doeller, Christian F; Voon, Valerie; Burgess, Neil; Critchley, Hugo D

    2014-10-01

    Inflammation impairs cognitive performance and is implicated in the progression of neurodegenerative disorders. Rodent studies demonstrated key roles for inflammatory mediators in many processes critical to memory, including long-term potentiation, synaptic plasticity, and neurogenesis. They also demonstrated functional impairment of medial temporal lobe (MTL) structures by systemic inflammation. However, human data to support this position are limited. Sequential fluorodeoxyglucose positron emission tomography together with experimentally induced inflammation was used to investigate effects of a systemic inflammatory challenge on human MTL function. Fluorodeoxyglucose positron emission tomography scanning was performed in 20 healthy participants before and after typhoid vaccination and saline control injection. After each scanning session, participants performed a virtual reality spatial memory task analogous to the Morris water maze and a mirror-tracing procedural memory control task. Fluorodeoxyglucose positron emission tomography data demonstrated an acute reduction in human MTL glucose metabolism after inflammation. The inflammatory challenge also selectively compromised human spatial, but not procedural, memory; this effect that was independent of actions on motivation or psychomotor response. Effects of inflammation on parahippocampal and rhinal glucose metabolism directly mediated actions of inflammation on spatial memory. These data demonstrate acute sensitivity of human MTL to mild peripheral inflammation, giving rise to associated functional impairment in the form of reduced spatial memory performance. Our findings suggest a mechanism for the observed epidemiologic link between inflammation and risk of age-related cognitive decline and progression of neurodegenerative disorders including Alzheimer's disease. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Domain-specific impairment of source memory following a right posterior medial temporal lobe lesion.

    Science.gov (United States)

    Peters, Jan; Koch, Benno; Schwarz, Michael; Daum, Irene

    2007-01-01

    This single case analysis of memory performance in a patient with an ischemic lesion affecting posterior but not anterior right medial temporal lobe (MTL) indicates that source memory can be disrupted in a domain-specific manner. The patient showed normal recognition memory for gray-scale photos of objects (visual condition) and spoken words (auditory condition). While memory for visual source (texture/color of the background against which pictures appeared) was within the normal range, auditory source memory (male/female speaker voice) was at chance level, a performance pattern significantly different from the control group. This dissociation is consistent with recent fMRI evidence of anterior/posterior MTL dissociations depending upon the nature of source information (visual texture/color vs. auditory speaker voice). The findings are in good agreement with the view of dissociable memory processing by the perirhinal cortex (anterior MTL) and parahippocampal cortex (posterior MTL), depending upon the neocortical input that these regions receive. (c) 2007 Wiley-Liss, Inc.

  5. Anomaly Detection for Temporal Data using Long Short-Term Memory (LSTM)

    OpenAIRE

    Singh, Akash

    2017-01-01

    We explore the use of Long short-term memory (LSTM) for anomaly detection in temporal data. Due to the challenges in obtaining labeled anomaly datasets, an unsupervised approach is employed. We train recurrent neural networks (RNNs) with LSTM units to learn the normal time series patterns and predict future values. The resulting prediction errors are modeled to give anomaly scores. We investigate different ways of maintaining LSTM state, and the effect of using a fixed number of time steps on...

  6. Time-based forgetting in visual working memory reflects temporal distinctiveness, not decay

    OpenAIRE

    Souza Alessandra S.; Oberauer Klaus

    2015-01-01

    Is forgetting from working memory (WM) better explained by decay or interference? The answer to this question is the topic of an ongoing debate. Recently a number of studies showed that performance in tests of visual WM declines with an increasing unfilled retention interval. This finding was interpreted as revealing decay. Alternatively it can be explained by interference theories as an effect of temporal distinctiveness. According to decay theories forgetting depends on the absolute time el...

  7. Insights from event-related potentials into the temporal and hierarchical organization of the ventral and dorsal streams of the visual system in selective attention.

    Science.gov (United States)

    Martín-Loeches, M; Hinojosa, J A; Rubia, F J

    1999-11-01

    The temporal and hierarchical relationships between the dorsal and the ventral streams in selective attention are known only in relation to the use of spatial location as the attentional cue mediated by the dorsal stream. To improve this state of affairs, event-related brain potentials were recorded while subjects attended simultaneously to motion direction (mediated by the dorsal stream) and to a property mediated by the ventral stream (color or shape). At about the same time, a selection positivity (SP) started for attention mediated by both streams. However, the SP for color and shape peaked about 60 ms later than motion SP. Subsequently, a selection negativity (SN) followed by a late positive component (LPC) were found simultaneously for attention mediated by both streams. A hierarchical relationship between the two streams was not observed, but neither SN nor LPC for one property was completely insensitive to the values of the other property.

  8. Medial temporal and neocortical contributions to remote memory for semantic narratives: evidence from amnesia.

    Science.gov (United States)

    Verfaellie, Mieke; Bousquet, Kathryn; Keane, Margaret M

    2014-08-01

    Studies of remote memory for semantic facts and concepts suggest that hippocampal lesions lead to a temporally graded impairment that extends no more than ten years prior to the onset of amnesia. Such findings have led to the notion that once consolidated, semantic memories are represented neocortically and are no longer dependent on the hippocampus. Here, we examined the fate of well-established semantic narratives following medial temporal lobe (MTL) lesions. Seven amnesic patients, five with lesions restricted to the MTL and two with lesions extending into lateral temporal cortex (MTL+), were asked to recount fairy tales and bible stories that they rated as familiar. Narratives were scored for number and type of details, number of main thematic elements, and order in which the main thematic elements were recounted. In comparison to controls, patients with MTL lesions produced fewer details, but the number and order of main thematic elements generated was intact. By contrast, patients with MTL+ lesions showed a pervasive impairment, affecting not only the generation of details, but also the generation and ordering of main steps. These findings challenge the notion that, once consolidated, semantic memories are no longer dependent on the hippocampus for retrieval. Possible hippocampal contributions to the retrieval of detailed semantic narratives are discussed. Published by Elsevier Ltd.

  9. The role of the temporal pole in modulating primitive auditory memory.

    Science.gov (United States)

    Liu, Zhiliang; Wang, Qian; You, Yu; Yin, Peng; Ding, Hu; Bao, Xiaohan; Yang, Pengcheng; Lu, Hao; Gao, Yayue; Li, Liang

    2016-04-21

    Primitive auditory memory (PAM), which is recognized as the early point in the chain of the transient auditory memory system, faithfully maintains raw acoustic fine-structure signals for up to 20-30 milliseconds. The neural mechanisms underlying PAM have not been reported in the literature. Previous anatomical, brain-imaging, and neurophysiological studies have suggested that the temporal pole (TP), part of the parahippocampal region in the transitional area between perirhinal cortex and superior/inferior temporal gyri, is involved in auditory memories. This study investigated whether the TP plays a role in mediating/modulating PAM. The longest interaural interval (the interaural-delay threshold) for detecting a break in interaural correlation (BIC) embedded in interaurally correlated wideband noises was used to indicate the temporal preservation of PAM and examined in both healthy listeners and patients receiving unilateral anterior temporal lobectomy (ATL, centered on the TP) for treating their temporal lobe epilepsy (TLE). The results showed that patients with ATL were still able to detect the BIC even when an interaural interval was introduced, regardless of which ear was the leading one. However, in patient participants, the group-mean interaural-delay threshold for detecting the BIC under the contralateral-ear-leading (relative to the side of ATL) condition was significantly shorter than that under the ipsilateral-ear-leading condition. The results suggest that although the TP is not essential for integrating binaural signals and mediating the PAM, it plays a role in top-down modulating the PAM of raw acoustic fine-structure signals from the contralateral ear. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Verbal memory decline from hippocampal depth electrodes in temporal lobe surgery for epilepsy.

    Science.gov (United States)

    Ljung, Hanna; Nordlund, Arto; Strandberg, Maria; Bengzon, Johan; Källén, Kristina

    2017-12-01

    To explore whether patients with refractory mesial temporal lobe epilepsy risk aggravated verbal memory loss from intracranial electroencephalography (EEG) recording with longitudinal hippocampal electrodes in the language-dominant hemisphere. A long-term neuropsychological follow-up (mean 61.5 months, range 22-111 months) was performed in 40 patients after ictal registration with left hippocampal depth electrodes (study group, n = 16) or no invasive EEG, only extracranial registration (reference group, n = 24). The groups were equal with respect to education, age at seizure onset, epilepsy duration, and prevalence of pharmacoresistant temporal lobe epilepsy (TLE; 75%) versus seizure freedom (25%). Retrospective neuropsychological data from preoperative surgical workup (T1) and prospective follow-up neuropsychological data (T2) were compared. A ≥1 SD intrapatient decline was considered as clinically relevant deterioration of verbal memory. Significant decline in verbal memory was seen in 56% of the patients in the study group compared to 21% in the reference group. At T1, there were no statistical between-group differences in memory performance. At T2, between-group comparison showed significantly greater verbal memory decline for the study group (Claeson Dahl Learning and Retention Test, Verbal Learning: p = 0.05; Rey Auditory Verbal Learning Test, Total Learning: p = 0.04; Claeson Dahl Learning and Retention Test, Verbal Retention: p = 0.04). An odds ratio (OR) of 7.1 (90% confidence interval [CI] 1.3-37.7) for verbal memory decline was seen if right temporal lobe resection (R TLR) had been performed between T1 and T2. The difference between groups remained unchanged when patients who had undergone R TLR were excluded from the analysis, with a remaining aggravated significant decline in verbal memory performance for the study group compared to the reference group. Our results suggest a risk of verbal memory deterioration after the use of depth electrodes along

  11. Can FDG PET predict verbal specific memory decline after surgery for left temporal lobe epilepsy when MRI is normal?

    International Nuclear Information System (INIS)

    Sagona, J.A.; Rowe, C.C.; Thomas, D.; Dickinson-Rowe, K.L.

    2002-01-01

    Full text: Temporal lobectomy gives excellent control of seizures in over 80% of patients with temporal lobe epilepsy. The left temporal lobe, particularly the left hippocampus, is primarily responsible for verbal memory. In most patients, the hippocampus which lies in the medial temporal lobe is abnormal and can be removed without loss of memory function. However, removal of the left hippocampus when it appears normal on MRI, often causes a significant decline in verbal specific memory (VSM) function. This paper explores the significance of pre-operative FDG-PET asymmetry in temporal lobe metabolism in predicting the VSM outcome after left temporal lobectomy when MRI demonstrates a normal hippocampus. Fifteen patients between 1993 and 2000, underwent left temporal lobectomy including left hippocampal resection, Pre-operatively all patients underwent 1.5T MRI, FDG PET and neuropsychological assessment. Neuropsychological assessment was repeated post-operatively. The left hippocampus was normal on MRI in nine and demonstrated mild T2 signal change without atrophy in six. FDG PET demonstrated temporal lobe hypometabolism in 12 patients. Post-operatively, neuropsychological evaluation documented a decline in verbal specific memory function in six patients, three with normal MRI and three with mild T2 change. We found that all patients with normal FDG PET studies (n=3) demonstrated significant verbal memory deterioration post-operatively. Nine of twelve patients (75%) with left temporal lobe hypometabolism did not show new verbal memory deficits. FDG PET improves the risk stratification for verbal specific memory decline with left temporal lobectomy in patients with normal hippocampi on MRI. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  12. Effects of prestudy and poststudy rest on memory: Support for temporal interference accounts of forgetting.

    Science.gov (United States)

    Ecker, Ullrich K H; Tay, Jia-Xin; Brown, Gordon D A

    2015-06-01

    According to interference-based theories of memory, including temporal-distinctiveness theory, both prestudy and poststudy rest should have beneficial impacts on memory performance. Specifically, higher temporal isolation of a memorandum should reduce proactive and/or retroactive interference, and thus should result in better recall. In the present study, we investigated the effects of prestudy and poststudy rest in a free recall paradigm. Participants studied three lists of words, separated by either a short or a long period of low mental activity (a tone-detection task). Recall targeted the second list; this list was studied in one of four conditions, defined by the fully crossed factors of prestudy and poststudy rest duration. Two experiments revealed a beneficial effect of prestudy rest (and, to a lesser extent, of poststudy rest) on list recall. This result is in line with interference-based theories of memory. By contrast, a beneficial effect of prestudy rest is not predicted by consolidation accounts of memory and forgetting; our results thus require additional assumptions and/or a better specification of the consolidation process and its time course in order to be reconciled with consolidation theory.

  13. Seizure Control and Memory Impairment Are Related to Disrupted Brain Functional Integration in Temporal Lobe Epilepsy.

    Science.gov (United States)

    Park, Chang-Hyun; Choi, Yun Seo; Jung, A-Reum; Chung, Hwa-Kyoung; Kim, Hyeon Jin; Yoo, Jeong Hyun; Lee, Hyang Woon

    2017-01-01

    Brain functional integration can be disrupted in patients with temporal lobe epilepsy (TLE), but the clinical relevance of this disruption is not completely understood. The authors hypothesized that disrupted functional integration over brain regions remote from, as well as adjacent to, the seizure focus could be related to clinical severity in terms of seizure control and memory impairment. Using resting-state functional MRI data acquired from 48 TLE patients and 45 healthy controls, the authors mapped functional brain networks and assessed changes in a network parameter of brain functional integration, efficiency, to examine the distribution of disrupted functional integration within and between brain regions. The authors assessed whether the extent of altered efficiency was influenced by seizure control status and whether the degree of altered efficiency was associated with the severity of memory impairment. Alterations in the efficiency were observed primarily near the subcortical region ipsilateral to the seizure focus in TLE patients. The extent of regional involvement was greater in patients with poor seizure control: it reached the frontal, temporal, occipital, and insular cortices in TLE patients with poor seizure control, whereas it was limited to the limbic and parietal cortices in TLE patients with good seizure control. Furthermore, TLE patients with poor seizure control experienced more severe memory impairment, and this was associated with lower efficiency in the brain regions with altered efficiency. These findings indicate that the distribution of disrupted brain functional integration is clinically relevant, as it is associated with seizure control status and comorbid memory impairment.

  14. Temporal and spatial predictability of an irrelevant event differently affect detection and memory of items in a visual sequence

    Directory of Open Access Journals (Sweden)

    Junji eOhyama

    2016-02-01

    Full Text Available We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition, it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection reaction times were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images.

  15. Nucleation and growth of hierarchical martensite in epitaxial shape memory films

    Czech Academy of Sciences Publication Activity Database

    Niemann, R.; Backen, A.; Kauffmann-Weiss, S.; Behler, K.; Rößler, U.K.; Seiner, Hanuš; Heczko, Oleg; Nielsch, K.; Schultz, L.; Fähler, S.

    2017-01-01

    Roč. 132, June (2017), s. 327-334 ISSN 1359-6454 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 ; RVO:68378271 Keywords : shape memory * martensite * nucleation * Ni-Mn-Ga Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 5.301, year: 2016 http://www.sciencedirect.com/science/article/pii/S1359645417303257

  16. Differential contributions of the anterior temporal and medial temporal lobe to the retrieval of memory for person identity information.

    Science.gov (United States)

    Tsukiura, Takashi; Suzuki, Chisato; Shigemune, Yayoi; Mochizuki-Kawai, Hiroko

    2008-12-01

    Although previous studies have suggested the importance of the bilateral anterior temporal (ATL) and medial temporal lobes (MTL) in the retrieval of person identity information, there is little evidence concerning how these regions differentially contribute to the process. Here we investigated this question using functional magnetic resonance imaging (fMRI). Before scanning, subjects learned associations among faces (F), names (N), and job titles (as a form of person-related semantics, S). During retrieval with fMRI, subjects were presented with previously learned and new S stimuli, and judged whether the stimuli were old or new. Successful retrieval (H) trials were divided into three conditions: retrieval of S and associated F and N (HSFN); retrieval of S and associated F (HSF); and retrieval of S only (HS). The left ATL was significantly activated in HSFN, compared to HSF or HS, whereas the right ATL and MTL were significantly activated in HSFN and HSF relative to HS. In addition, activity in bilateral ATL was significantly correlated with reaction time for HSFN, whereas we found no significant correlation between activity in the right MTL and reaction time in any condition. The present findings suggest that the left ATL may mediate associations between names and person-related semantic information, whereas the right ATL mediates the association between faces and person-related semantic information in memory for person identity information. In addition, activation of the right MTL region implies that this area may contribute to a more general relational processing of associative components, including memory for person identity information. Copyright 2007 Wiley-Liss, Inc.

  17. Working memory retrieval differences between medial temporal lobe epilepsy patients and controls: a three memory layer approach.

    Science.gov (United States)

    López-Frutos, José María; Poch, Claudia; García-Morales, Irene; Ruiz-Vargas, José María; Campo, Pablo

    2014-02-01

    Multi-store models of working memory (WM) have given way to more dynamic approaches that conceive WM as an activated subset of long-term memory (LTM). The resulting framework considers that memory representations are governed by a hierarchy of accessibility. The activated part of LTM holds representations in a heightened state of activation, some of which can reach a state of immediate accessibility according to task demands. Recent neuroimaging studies have studied the neural basis of retrieval information with different states of accessibility. It was found that the medial temporal lobe (MTL) was involved in retrieving information within immediate access store and outside this privileged zone. In the current study we further explored the contribution of MTL to WM retrieval by analyzing the consequences of MTL damage to this process considering the state of accessibility of memory representations. The performance of a group of epilepsy patients with left hippocampal sclerosis in a 12-item recognition task was compared with that of a healthy control group. We adopted an embedded model of WM that distinguishes three components: the activated LTM, the region of direct access, and a single-item focus of attention. Groups did not differ when retrieving information from single-item focus, but patients were less accurate retrieving information outside focal attention, either items from LTM or items expected to be in the WM range. Analyses focused on items held in the direct access buffer showed that consequences of MTL damage were modulated by the level of accessibility of memory representations, producing a reduced capacity. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Hierarchical Parallel Matrix Multiplication on Large-Scale Distributed Memory Platforms

    KAUST Repository

    Quintin, Jean-Noel

    2013-10-01

    Matrix multiplication is a very important computation kernel both in its own right as a building block of many scientific applications and as a popular representative for other scientific applications. Cannon\\'s algorithm which dates back to 1969 was the first efficient algorithm for parallel matrix multiplication providing theoretically optimal communication cost. However this algorithm requires a square number of processors. In the mid-1990s, the SUMMA algorithm was introduced. SUMMA overcomes the shortcomings of Cannon\\'s algorithm as it can be used on a nonsquare number of processors as well. Since then the number of processors in HPC platforms has increased by two orders of magnitude making the contribution of communication in the overall execution time more significant. Therefore, the state of the art parallel matrix multiplication algorithms should be revisited to reduce the communication cost further. This paper introduces a new parallel matrix multiplication algorithm, Hierarchical SUMMA (HSUMMA), which is a redesign of SUMMA. Our algorithm reduces the communication cost of SUMMA by introducing a two-level virtual hierarchy into the two-dimensional arrangement of processors. Experiments on an IBM BlueGene/P demonstrate the reduction of communication cost up to 2.08 times on 2048 cores and up to 5.89 times on 16384 cores. © 2013 IEEE.

  19. Hierarchical Parallel Matrix Multiplication on Large-Scale Distributed Memory Platforms

    KAUST Repository

    Quintin, Jean-Noel; Hasanov, Khalid; Lastovetsky, Alexey

    2013-01-01

    Matrix multiplication is a very important computation kernel both in its own right as a building block of many scientific applications and as a popular representative for other scientific applications. Cannon's algorithm which dates back to 1969 was the first efficient algorithm for parallel matrix multiplication providing theoretically optimal communication cost. However this algorithm requires a square number of processors. In the mid-1990s, the SUMMA algorithm was introduced. SUMMA overcomes the shortcomings of Cannon's algorithm as it can be used on a nonsquare number of processors as well. Since then the number of processors in HPC platforms has increased by two orders of magnitude making the contribution of communication in the overall execution time more significant. Therefore, the state of the art parallel matrix multiplication algorithms should be revisited to reduce the communication cost further. This paper introduces a new parallel matrix multiplication algorithm, Hierarchical SUMMA (HSUMMA), which is a redesign of SUMMA. Our algorithm reduces the communication cost of SUMMA by introducing a two-level virtual hierarchy into the two-dimensional arrangement of processors. Experiments on an IBM BlueGene/P demonstrate the reduction of communication cost up to 2.08 times on 2048 cores and up to 5.89 times on 16384 cores. © 2013 IEEE.

  20. Temporal precision and the capacity of auditory-verbal short-term memory.

    Science.gov (United States)

    Gilbert, Rebecca A; Hitch, Graham J; Hartley, Tom

    2017-12-01

    The capacity of serially ordered auditory-verbal short-term memory (AVSTM) is sensitive to the timing of the material to be stored, and both temporal processing and AVSTM capacity are implicated in the development of language. We developed a novel "rehearsal-probe" task to investigate the relationship between temporal precision and the capacity to remember serial order. Participants listened to a sub-span sequence of spoken digits and silently rehearsed the items and their timing during an unfilled retention interval. After an unpredictable delay, a tone prompted report of the item being rehearsed at that moment. An initial experiment showed cyclic distributions of item responses over time, with peaks preserving serial order and broad, overlapping tails. The spread of the response distributions increased with additional memory load and correlated negatively with participants' auditory digit spans. A second study replicated the negative correlation and demonstrated its specificity to AVSTM by controlling for differences in visuo-spatial STM and nonverbal IQ. The results are consistent with the idea that a common resource underpins both the temporal precision and capacity of AVSTM. The rehearsal-probe task may provide a valuable tool for investigating links between temporal processing and AVSTM capacity in the context of speech and language abilities.

  1. Carbamazepine reduces memory induced activation of mesial temporal lobe structures: a pharmacological fMRI-study

    Directory of Open Access Journals (Sweden)

    Okujava Michael

    2001-11-01

    Full Text Available Abstract Background and Purpose It is not known whether carbamazepine (CBZ; a drug widely used in neurology and psychiatry influences the blood oxygenation level dependent (BOLD contrast changes induced by neuronal activation and measured by functional MRI (fMRI. We aimed to investigate the influence of CBZ on memory induced activation of the mesial temporal lobes in patients with symptomatic temporal lobe epilepsy (TLE. Material and Methods Twenty-one individual patients with refractory symptomatic TLE with different CBZ serum levels and 20 healthy controls were studied using BOLD fMRI. Mesial temporal lobe (MTL activation was induced by a task that is based on the retrieval of individually familiar visuo-spatial knowledge. The extent of significant MTL fMRI activation was measured and correlated with the CBZ serum level. Results In TLE patients, the extent of significant fMRI activation over both MTL was negatively correlated to the CBZ serum level (Spearman r = -0.654, P Conclusions In TLE patients, carbamazepine reduces the fMRI-detectable changes within the mesial temporal lobes as induced by effortful memory retrieval. FMRI appears to be suitable to study the effects of chronic drug treatment in patients with epilepsy.

  2. Combined organizational and activational effects of short and long photoperiods on spatial and temporal memory in rats.

    Science.gov (United States)

    MacDonald, Christopher J; Cheng, Ruey-Kuang; Williams, Christina L; Meck, Warren H

    2007-02-22

    The present study examined the effects of photoperiod on spatial and temporal memory in adult Sprague-Dawley rats that were conceived and reared in different day lengths, i.e., short day (SD-8:16 light/dark) and long day (LD-16:8 light/dark). Both male and female LD rats demonstrated increased spatial memory capacity as evidenced by a lower number of choices to criterion in a 12-arm radial maze task relative to the performance of SD rats. SD rats also demonstrated a distortion in the content of temporal memory as evidenced by a proportional rightward shift in the 20 and 60 s temporal criteria trained using the peak-interval procedure that is consistent with reduced cholinergic function. The conclusion is that both spatial and temporal memory are sensitive to photoperiod variation in laboratory rats in a manner similar to that previously observed for reproductive behaviour.

  3. Short-term and long-term memory in early temporal lobe dysfunction.

    Science.gov (United States)

    Hershey, T; Craft, S; Glauser, T A; Hale, S

    1998-01-01

    Following medial temporal damage, mature humans are impaired in retaining new information over long delays but not short delays. The question of whether a similar dissociation occurs in children was addressed by testing children (ages 7-16) with unilateral temporal lobe epilepsy (TLE) and controls on short- and long-term memory tasks, including a spatial delayed response task (SDR). Early-onset TLE did not affect performance on short delays on SDR, but it did impair performance at the longest delay (60 s), similar to adults with unilateral medial temporal damage. In addition, early-onset TLE affected performance on pattern recall, spatial span, and verbal span with rehearsal interference. No differences were found on story recall or on a response inhibition task.

  4. Negative polarity illusions and the format of hierarchical encodings in memory.

    Science.gov (United States)

    Parker, Dan; Phillips, Colin

    2016-12-01

    Linguistic illusions have provided valuable insights into how we mentally navigate complex representations in memory during language comprehension. Two notable cases involve illusory licensing of agreement and negative polarity items (NPIs), where comprehenders fleetingly accept sentences with unlicensed agreement or an unlicensed NPI, but judge those same sentences as unacceptable after more reflection. Existing accounts have argued that illusions are a consequence of faulty memory access processes, and make the additional assumption that the encoding of the sentence remains fixed over time. This paper challenges the predictions made by these accounts, which assume that illusions should generalize to a broader set of structural environments and a wider range of syntactic and semantic phenomena. We show across seven reading-time and acceptability judgment experiments that NPI illusions can be reliably switched "on" and "off", depending on the amount of time from when the potential licensor is processed until the NPI is encountered. But we also find that the same profile does not extend to agreement illusions. This contrast suggests that the mechanisms responsible for switching the NPI illusion on and off are not shared across all illusions. We argue that the contrast reflects changes over time in the encoding of the semantic/pragmatic representations that can license NPIs. Just as optical illusions have been informative about the visual system, selective linguistic illusions are informative not only about the nature of the access mechanisms, but also about the nature of the encoding mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Differences in visual vs. verbal memory impairments as a result of focal temporal lobe damage in patients with traumatic brain injury.

    Science.gov (United States)

    Ariza, Mar; Pueyo, Roser; Junqué, Carme; Mataró, María; Poca, María Antonia; Mena, Maria Pau; Sahuquillo, Juan

    2006-09-01

    The aim of the present study was to determine whether the type of lesion in a sample of moderate and severe traumatic brain injury (TBI) was related to material-specific memory impairment. Fifty-nine patients with TBI were classified into three groups according to whether the site of the lesion was right temporal, left temporal or diffuse. Six-months post-injury, visual (Warrington's Facial Recognition Memory Test and Rey's Complex Figure Test) and verbal (Rey's Auditory Verbal Learning Test) memories were assessed. Visual memory deficits assessed by facial memory were associated with right temporal lobe lesion, whereas verbal memory performance assessed with a list of words was related to left temporal lobe lesion. The group with diffuse injury showed both verbal and visual memory impairment. These results suggest a material-specific memory impairment in moderate and severe TBI after focal temporal lesions and a non-specific memory impairment after diffuse damage.

  6. Abnormalities of Early “Memory-Scanning” Event-Related Potentials in Patients with Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    A. Grippo

    1994-01-01

    Full Text Available We have recorded auditory event-related potentials (ERPs evoked by the “memory-scanning” (digit-probe identification/matching paradigm that was originally described by Sternberg (1966, in 17 patients with complex partial seizures (temporal lobe epilepsy and in 17 matched healthy control subjects. The patients, who had all complained spontaneously of memory difficulties, had significantly reduced scores on psychological tests of memory with relatively intact digit span and cognition. Their performance of the memory-scanning task was characterized by a higher error rate, longer reaction times and an increased slope of the reaction time/set size relationship. The associated ERPs in both patients and controls showed there were significant effects of memory load on several major components, but only a reduced amplitude of the N170 and a prolonged latency of the N290 waves distinguished the patients. In addition, the N170 wave in the patients decreased further as memory load increased. The prolonged N290 latency in the patients appeared to reflect the slowed processing time. This study has shown that ERPs generated by a short-term memory task are abnormal in patients with temporal lobe epilepsy who have neuropsychologically documented cognitive and memory deficits. Some of the significant waveform alterations occur earlier than those reported in previous ERP studies and provide electrophysiological support for the hypothesis that abnormalities of the early stages of short-term memory processing may contribute to the memory difficulties experienced by patients with temporal lobe epilepsy.

  7. When Learning Disturbs MemoryTemporal Profile of Retroactive Interference of Learning on Memory Formation

    Science.gov (United States)

    Sosic-Vasic, Zrinka; Hille, Katrin; Kröner, Julia; Spitzer, Manfred; Kornmeier, Jürgen

    2018-01-01

    Introduction: Consolidation is defined as the time necessary for memory stabilization after learning. In the present study we focused on effects of interference during the first 12 consolidation minutes after learning. Participants had to learn a set of German – Japanese word pairs in an initial learning task and a different set of German – Japanese word pairs in a subsequent interference task. The interference task started in different experimental conditions at different time points (0, 3, 6, and 9 min) after the learning task and was followed by subsequent cued recall tests. In a control experiment the interference periods were replaced by rest periods without any interference. Results: The interference task decreased memory performance by up to 20%, with negative effects at all interference time points and large variability between participants concerning both the time point and the size of maximal interference. Further, fast learners seem to be more affected by interference than slow learners. Discussion: Our results indicate that the first 12 min after learning are highly important for memory consolidation, without a general pattern concerning the precise time point of maximal interference across individuals. This finding raises doubts about the generalized learning recipes and calls for individuality of learning schedules. PMID:29503621

  8. When Learning Disturbs MemoryTemporal Profile of Retroactive Interference of Learning on Memory Formation

    Directory of Open Access Journals (Sweden)

    Zrinka Sosic-Vasic

    2018-02-01

    Full Text Available Introduction: Consolidation is defined as the time necessary for memory stabilization after learning. In the present study we focused on effects of interference during the first 12 consolidation minutes after learning. Participants had to learn a set of German – Japanese word pairs in an initial learning task and a different set of German – Japanese word pairs in a subsequent interference task. The interference task started in different experimental conditions at different time points (0, 3, 6, and 9 min after the learning task and was followed by subsequent cued recall tests. In a control experiment the interference periods were replaced by rest periods without any interference.Results: The interference task decreased memory performance by up to 20%, with negative effects at all interference time points and large variability between participants concerning both the time point and the size of maximal interference. Further, fast learners seem to be more affected by interference than slow learners.Discussion: Our results indicate that the first 12 min after learning are highly important for memory consolidation, without a general pattern concerning the precise time point of maximal interference across individuals. This finding raises doubts about the generalized learning recipes and calls for individuality of learning schedules.

  9. Scene complexity: influence on perception, memory, and development in the medial temporal lobe

    Directory of Open Access Journals (Sweden)

    Xiaoqian J Chai

    2010-03-01

    Full Text Available Regions in the medial temporal lobe (MTL and prefrontal cortex (PFC are involved in memory formation for scenes in both children and adults. The development in children and adolescents of successful memory encoding for scenes has been associated with increased activation in PFC, but not MTL, regions. However, evidence suggests that a functional subregion of the MTL that supports scene perception, located in the parahippocampal gyrus (PHG, goes through a prolonged maturation process. Here we tested the hypothesis that maturation of scene perception supports the development of memory for complex scenes. Scenes were characterized by their levels of complexity defined by the number of unique object categories depicted in the scene. Recognition memory improved with age, in participants ages 8-24, for high, but not low, complexity scenes. High-complexity compared to low-complexity scenes activated a network of regions including the posterior PHG. The difference in activations for high- versus low- complexity scenes increased with age in the right posterior PHG. Finally, activations in right posterior PHG were associated with age-related increases in successful memory formation for high-, but not low-, complexity scenes. These results suggest that functional maturation of the right posterior PHG plays a critical role in the development of enduring long-term recollection for high-complexity scenes.

  10. Temporal and visual source memory deficits among ecstasy/polydrug users.

    Science.gov (United States)

    Fisk, John E; Gallagher, Denis T; Hadjiefthyvoulou, Florentia; Montgomery, Catharine

    2014-03-01

    We wished to investigate whether source memory judgements are adversely affected by recreational illicit drug use. Sixty-two ecstasy/polydrug users and 75 non ecstasy users completed a source memory task, in which they tried to determine whether or not a word had been previously presented and if so, attempted to recall the format, location and temporal position in which the word had occurred. While not differing in terms of the number of hits and false positive responses, ecstasy/polydrug users adopted a more liberal decision criterion when judging if a word had been presented previously. With regard to source memory, users were less able to determine the format in which words had been presented (upper versus lower case). Female users did worse than female nonusers in determining which list (first or second) a word was from. Unexpectedly, the current frequency of cocaine use was negative associated with list and case source memory performance. Given the role that source memory plays in everyday cognition, those who use cocaine more frequently might have more difficulty in everyday tasks such as recalling the sources of crucial information or making use of contextual information as an aid to learning.

  11. Temporal determinants of long-term retention of olfactory memory in the cricket Gryllus bimaculatus.

    Science.gov (United States)

    Matsumoto, Yukihisa; Mizunami, Makoto

    2002-05-01

    Temporal determinants of olfactory long-term memory retention in the cricket Gryllus bimaculatus were studied. Elementary appetitive and aversive conditioning procedures, as well as a differential conditioning procedure, were applied. In appetitive conditioning, peppermint odour was paired with a water reward. In aversive conditioning, vanilla odour was paired with saline solution. In differential conditioning, an appetitive conditioning trial was followed by an aversive conditioning trial. The odour preference of crickets was tested before and 2 h, 1 day and 4 days after training by allowing the crickets to choose between peppermint or vanilla sources. Differential conditioning or appetitive conditioning alone led to long-lasting memory retention with no significant decay from 2 h to 4 days after training, but retention after aversive conditioning was absent 1 day after training. Studies using differential conditioning have shown (i) that four trials are sufficient to cause a saturated level of acquisition, (ii) that conditioning is successful when the conditioned stimulus is presented immediately or 5 s before the onset of presentation of the unconditioned stimulus, (iii) that the optimal interval between trials is 2-5 min, and (iv) that anaesthetic treatment with CO2 given immediately after training results in memory disruption but that anaesthetic-resistant memory develops fully 20 min after training. This study demonstrates that a differential conditioning procedure is particularly effective for the formation of long-term memory.

  12. Long term memory for noise: evidence of robust encoding of very short temporal acoustic patterns.

    Directory of Open Access Journals (Sweden)

    Jayalakshmi Viswanathan

    2016-11-01

    Full Text Available Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs (the two halves of the noise were identical or 1-s plain random noises (Ns. Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin and scrambled (chopping sounds into 10- and 20-ms bits before shuffling versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant’s discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities.

  13. Dissociation of Short- and Long-Term Face Memory: Evidence from Long-Term Recency Effects in Temporal Lobe Epilepsy

    Science.gov (United States)

    Bengner, T.; Malina, T.

    2007-01-01

    We tested whether memory deficits in temporal lobe epilepsy (TLE) are better described by a single- or dual-store memory model. To this aim, we analyzed the influence of TLE and proactive interference (PI) on immediate and 24-h long-term recency effects during face recognition in 16 healthy participants and 18 right and 21 left non-surgical TLE…

  14. Learning and memory and its relationship with the lateralization of epileptic focus in subjects with temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Daniel Fuentes

    2014-04-01

    Full Text Available Background : In medial temporal lobe epilepsy (MTLE, previous studies addressing the hemispheric laterality of epileptogenic focus and its relationship with learning and memory processes have reported controversial findings. Objective : To compare the performance of MTLE patients according to the location of the epileptogenic focus on the left (MTLEL or right temporal lobe (MTLER on tasks of episodic learning and memory for verbal and visual content. Methods : One hundred patients with MTLEL and one hundred patients with MTLER were tested with the following tasks: the Rey Auditory Verbal Learning Test (RAVLT and the Logical Memory-WMS-R to evaluate verbal learning and memory; and the Rey Visual Design Learning Test (RVDLT and the Visual Reproduction-WMS-R to evaluate visual learning and memory. Results : The MTLEL sample showed significantly worse performance on the RAVLT (p < 0.005 and on the Logical Memory tests (p < 0.01 than MTLER subjects. However, there were no significant between-group differences in regard to the visual memory tests. Discussion : Our findings suggest that verbal learning and memory abilities are dependent on the structural and functional integrity of the left temporal lobe, while visual abilities are less dependent on the right temporal lobe.

  15. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    Science.gov (United States)

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may

  16. Hippocampal subfield and medial temporal cortical persistent activity during working memory reflects ongoing encoding

    Directory of Open Access Journals (Sweden)

    Rachel K Nauer

    2015-03-01

    Full Text Available Previous neuroimaging studies support a role for the medial temporal lobes (MTL in maintaining novel stimuli over brief working memory (WM delays, and suggest delay period activity predicts subsequent memory. Additionally, slice recording studies have demonstrated neuronal persistent spiking in entorhinal cortex (EC, perirhinal cortex (PrC, and hippocampus (CA1, CA3, subiculum. These data have led to computational models that suggest persistent spiking in parahippocampal regions could sustain neuronal representations of sensory information over many seconds. This mechanism may support both WM maintenance and encoding of information into long term episodic memory. The goal of the current study was to use high-resolution fMRI to elucidate the contributions of the MTL cortices and hippocampal subfields to WM maintenance as it relates to later episodic recognition memory. We scanned participants while they performed a delayed match to sample task with novel scene stimuli, and assessed their memory for these scenes post-scan. We hypothesized stimulus-driven activation that persists into the delay period—a putative correlate of persistent spiking—would predict later recognition memory. Our results suggest sample and delay period activation in the parahippocampal cortex (PHC, PrC, and subiculum (extending into DG/CA3 and CA1 was linearly related to increases in subsequent memory strength. These data extend previous neuroimaging studies that have constrained their analysis to either the sample or delay period by modeling these together as one continuous ongoing encoding process, and support computational frameworks that predict persistent activity underlies both WM and episodic encoding.

  17. [Theoretical reflection on the place of memory and temporal cognitive mechanisms in addictive disorders].

    Science.gov (United States)

    Lalanne, L; Laprevote, V; Danion, J-M; Bacon, E

    2016-06-01

    Addictions can be regarded as cognitive disorders related to neurobiological impairments. On the one hand, some cognitive impairments occur as a result of substance intake and withdrawal upon stopping intake, while, on the other hand, cognitive mechanisms are responsible for initiating and maintaining addiction. In this review, we detail the memory and temporal mechanisms involved in this pathology. We reviewed the literature dedicated to the mechanisms of conditioning association between a substance and a context, and the memory and temporal mechanisms involved in the maintenance of addiction. Cognitive impairments in this context are accompanied by both short-term and long-term neurobiological disorders. Drug-context conditioning is dependent on learning abilities in rats and humans, and it is the first step towards the development of an addiction. In fact, with the beginning of an addiction, it is the context associated with the substance intake, which determines the reinforcing factors (such as pleasure in the case of drug consumption) for the development of an addiction. Maintenance of addiction is related to the persistence of this association between context and substance. Furthermore, the impulsiveness of patients renders them unable to delay their gratification. Consequently, even if delayed gratifications are more valuable, patients prefer immediate gratification such as substance use. The memory and temporal mechanisms of addiction are central to the initiation and maintenance of drug addiction. They also affect patients' ability to develop projects for the future. The salience of the memory association between drug and context is accompanied by a decline in autobiographical memories, which become poor and lacking in detail. It is probably these impairments which are responsible for the difficulty that the patients have while investigating their story during psychotherapy. On the other hand, given that even though delayed gratification is greater

  18. Short-Term and Procedural Memory for Colours and Inferior Temporal Cortex Activity

    Directory of Open Access Journals (Sweden)

    E. Castro-Sierra

    1997-01-01

    Full Text Available Two children (male, 10 years, and female, 13 years one month with tumours of the inferior temporal (IT cortex of the brain were studied post-surgically for their abilities to carry out a short-term memory test. This involved: differences in colour, number and shape of small plastic objects; differences in receptacles where these objects should be placed and in ways in which this placement should be done; a procedural task involving differences either in colour or in size of wooden rings employed in the task. Their performances in these tests, and those of patients with tumours of other encephalic areas, were compared with the performances of normal controls. The subjects with IT tumours spent a significantly greater amount of time than normal subjects of their age in carrying out the procedural task involving differences in colour. One of the IT subjects also spent a significantly greater amount of time in the procedural task involving size differences. Other differences in the performances of patients with encephalic tumours and the performances of normal controls were not significant. Results are discussed in relation to findings of colour and size perception and memory localized to the inferior temporal and middle temporal cortices.

  19. Task activation and functional connectivity show concordant memory laterality in temporal lobe epilepsy.

    Science.gov (United States)

    Sideman, Noah; Chaitanya, Ganne; He, Xiaosong; Doucet, Gaelle; Kim, Na Young; Sperling, Michael R; Sharan, Ashwini D; Tracy, Joseph I

    2018-04-01

    In epilepsy, asymmetries in the organization of mesial temporal lobe (MTL) functions help determine the cognitive risk associated with procedures such as anterior temporal lobectomy. Past studies have investigated the change/shift in a visual episodic memory laterality index (LI) in mesial temporal lobe structures through functional magnetic resonance imaging (fMRI) task activations. Here, we examine whether underlying task-related functional connectivity (FC) is concordant with such standard fMRI laterality measures. A total of 56 patients with temporal lobe epilepsy (TLE) (Left TLE [LTLE]: 31; Right TLE [RTLE]: 25) and 34 matched healthy controls (HC) underwent fMRI scanning during performance of a scene encoding task (SET). We assessed an activation-based LI of the hippocampal gyrus (HG) and parahippocampal gyrus (PHG) during the SET and its correspondence with task-related FC measures. Analyses involving the HG and PHG showed that the patients with LTLE had a consistently higher LI (right-lateralized) than that of the HC and group with RTLE, indicating functional reorganization. The patients with RTLE did not display a reliable contralateral shift away from the pathology, with the mesial structures showing quite distinct laterality patterns (HG, no laterality bias; PHG, no evidence of LI shift). The FC data for the group with LTLE provided confirmation of reorganization effects, revealing that a rightward task LI may be based on underlying connections between several left-sided regions (middle/superior occipital and left medial frontal gyri) and the right PHG. The FCs between the right HG and left anterior cingulate/medial frontal gyri were also observed in LTLE. Importantly, the data demonstrate that the areas involved in the LTLE task activation shift to the right hemisphere showed a corresponding increase in task-related FCs between the hemispheres. Altered laterality patterns based on mesial temporal lobe epilepsy (MTLE) pathology manifest as several

  20. The cognitive profile of occipital lobe epilepsy and the selective association of left temporal lobe hypometabolism with verbal memory impairment.

    Science.gov (United States)

    Knopman, Alex A; Wong, Chong H; Stevenson, Richard J; Homewood, Judi; Mohamed, Armin; Somerville, Ernest; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Bleasel, Andrew F

    2014-08-01

    We investigated the cognitive profile of structural occipital lobe epilepsy (OLE) and whether verbal memory impairment is selectively associated with left temporal lobe hypometabolism on [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET). Nine patients with OLE, ages 8-29 years, completed presurgical neuropsychological assessment. Composite measures were calculated for intelligence quotient (IQ), speed, attention, verbal memory, nonverbal memory, and executive functioning. In addition, the Wisconsin Card Sorting Test (WCST) was used as a specific measure of frontal lobe functioning. Presurgical FDG-PET was analyzed with statistical parametric mapping in 8 patients relative to 16 healthy volunteers. Mild impairments were evident for IQ, speed, attention, and executive functioning. Four patients demonstrated moderate or severe verbal memory impairment. Temporal lobe hypometabolism was found in seven of eight patients. Poorer verbal memory was associated with left temporal lobe hypometabolism (p = 0.002), which was stronger (p = 0.03 and p = 0.005, respectively) than the association of left temporal lobe hypometabolism with executive functioning or with performance on the WCST. OLE is associated with widespread cognitive comorbidity, suggesting cortical dysfunction beyond the occipital lobe. Verbal memory impairment is selectively associated with left temporal lobe hypometabolism in OLE, supporting a link between neuropsychological dysfunction and remote hypometabolism in focal epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  1. Competitive Semantic Memory Retrieval: Temporal Dynamics Revealed by Event-Related Potentials.

    Directory of Open Access Journals (Sweden)

    Robin Hellerstedt

    Full Text Available Memories compete for retrieval when they are related to a common retrieval cue. Previous research has shown that retrieval of a target memory may lead to subsequent retrieval-induced forgetting (RIF of currently irrelevant competing memories. In the present study, we investigated the time course of competitive semantic retrieval and examined the neurocognitive mechanisms underlying RIF. We contrasted two theoretical accounts of RIF by examining a critical aspect of this memory phenomenon, namely the extent to which it depends on successful retrieval of the target memory. Participants first studied category-exemplar word-pairs (e.g. Fruit-Apple. Next, we recorded electrophysiological measures of brain activity while the participants performed a competitive semantic cued-recall task. In this task, the participants were provided with the studied categories but they were instructed to retrieve other unstudied exemplars (e.g. Fruit-Ma__?. We investigated the event-related potential (ERP correlates of retrieval success by comparing ERPs from successful and failed retrieval trials. To isolate the ERP correlates of continuous retrieval attempts from the ERP correlates of retrieval success, we included an impossible retrieval condition, with incompletable word-stem cues (Drinks-Wy__ and compared it with a non-retrieval presentation baseline condition (Occupation-Dentist. The participants' memory for all the studied exemplars was tested in the final phase of the experiment. Taken together, the behavioural results suggest that RIF is independent of target retrieval. Beyond investigating the mechanisms underlying RIF, the present study also elucidates the temporal dynamics of semantic cued-recall by isolating the ERP correlates of retrieval attempt and retrieval success. The ERP results revealed that retrieval attempt is reflected in a late posterior negativity, possibly indicating construction of candidates for completing the word-stem cue and retrieval

  2. Competitive Semantic Memory Retrieval: Temporal Dynamics Revealed by Event-Related Potentials

    Science.gov (United States)

    Hellerstedt, Robin; Johansson, Mikael

    2016-01-01

    Memories compete for retrieval when they are related to a common retrieval cue. Previous research has shown that retrieval of a target memory may lead to subsequent retrieval-induced forgetting (RIF) of currently irrelevant competing memories. In the present study, we investigated the time course of competitive semantic retrieval and examined the neurocognitive mechanisms underlying RIF. We contrasted two theoretical accounts of RIF by examining a critical aspect of this memory phenomenon, namely the extent to which it depends on successful retrieval of the target memory. Participants first studied category-exemplar word-pairs (e.g. Fruit—Apple). Next, we recorded electrophysiological measures of brain activity while the participants performed a competitive semantic cued-recall task. In this task, the participants were provided with the studied categories but they were instructed to retrieve other unstudied exemplars (e.g. Fruit—Ma__?). We investigated the event-related potential (ERP) correlates of retrieval success by comparing ERPs from successful and failed retrieval trials. To isolate the ERP correlates of continuous retrieval attempts from the ERP correlates of retrieval success, we included an impossible retrieval condition, with incompletable word-stem cues (Drinks—Wy__) and compared it with a non-retrieval presentation baseline condition (Occupation—Dentist). The participants’ memory for all the studied exemplars was tested in the final phase of the experiment. Taken together, the behavioural results suggest that RIF is independent of target retrieval. Beyond investigating the mechanisms underlying RIF, the present study also elucidates the temporal dynamics of semantic cued-recall by isolating the ERP correlates of retrieval attempt and retrieval success. The ERP results revealed that retrieval attempt is reflected in a late posterior negativity, possibly indicating construction of candidates for completing the word-stem cue and retrieval

  3. Competitive Semantic Memory Retrieval: Temporal Dynamics Revealed by Event-Related Potentials.

    Science.gov (United States)

    Hellerstedt, Robin; Johansson, Mikael

    2016-01-01

    Memories compete for retrieval when they are related to a common retrieval cue. Previous research has shown that retrieval of a target memory may lead to subsequent retrieval-induced forgetting (RIF) of currently irrelevant competing memories. In the present study, we investigated the time course of competitive semantic retrieval and examined the neurocognitive mechanisms underlying RIF. We contrasted two theoretical accounts of RIF by examining a critical aspect of this memory phenomenon, namely the extent to which it depends on successful retrieval of the target memory. Participants first studied category-exemplar word-pairs (e.g. Fruit-Apple). Next, we recorded electrophysiological measures of brain activity while the participants performed a competitive semantic cued-recall task. In this task, the participants were provided with the studied categories but they were instructed to retrieve other unstudied exemplars (e.g. Fruit-Ma__?). We investigated the event-related potential (ERP) correlates of retrieval success by comparing ERPs from successful and failed retrieval trials. To isolate the ERP correlates of continuous retrieval attempts from the ERP correlates of retrieval success, we included an impossible retrieval condition, with incompletable word-stem cues (Drinks-Wy__) and compared it with a non-retrieval presentation baseline condition (Occupation-Dentist). The participants' memory for all the studied exemplars was tested in the final phase of the experiment. Taken together, the behavioural results suggest that RIF is independent of target retrieval. Beyond investigating the mechanisms underlying RIF, the present study also elucidates the temporal dynamics of semantic cued-recall by isolating the ERP correlates of retrieval attempt and retrieval success. The ERP results revealed that retrieval attempt is reflected in a late posterior negativity, possibly indicating construction of candidates for completing the word-stem cue and retrieval monitoring

  4. Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe.

    Science.gov (United States)

    Murty, Vishnu P; Labar, Kevin S; Adcock, R Alison

    2012-06-27

    Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward.

  5. Short-term memory for tactile and temporal stimuli in a shared-attention recall task.

    Science.gov (United States)

    Bowers, R L; Mollenhauer, M S; Luxford, J

    1990-06-01

    The present study examined short-term memory for tactile and temporal stimuli. Subjects were required to touch three-dimensional sample objects of different shapes and textures, presented for three durations: short, medium, or long. After the sample duration elapsed, a retention interval (5 sec.-20 sec.) occurred followed by a recall test for one of the sample dimensions of shape, texture, or time, across trials. Analysis showed that accuracy for shape and texture was high throughout testing (95-99%), but memory for perceived duration was relatively poor (60%). Further analysis indicated that poor recall on the time dimension was isolated to the medium and long samples; accuracy for short durations was consistently high (90%). In addition, a reliable response bias emerged; subjects recalled durations shorter than the actual duration presented. The results were discussed in terms of two lines of research, one indicating that haptic short-term memory is strong relative to other memory systems, and the other suggesting that the choose-short bias occurs across species.

  6. Towards a functional organization of episodic memory in the medial temporal lobe.

    Science.gov (United States)

    Eichenbaum, Howard; Sauvage, Magdalena; Fortin, Norbert; Komorowski, Robert; Lipton, Paul

    2012-08-01

    Here we describe a model of medial temporal lobe organization in which parallel "what" and "where" processing streams converge within the hippocampus to represent events in the spatio-temporal context in which they occurred; this circuitry also mediates the retrieval of context from event cues and vice versa, which are prototypes of episodic recall. Evidence from studies in animals are reviewed in support of this model, including experiments that distinguish characteristics of episodic recollection from familiarity, neuropsychological and recording studies that have identified a key role for the hippocampus in recollection and in associating events with the context in which they occurred, and distinct roles for parahippocampal region areas in separate "what" and "where" information processing that contributes to recollective and episodic memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. "What" and "where" was when? Memory for the temporal order of episodic events in children.

    Science.gov (United States)

    Scarf, Damian; Boden, Hannah; Labuschagne, Lisa G; Gross, Julien; Hayne, Harlene

    2017-12-01

    In the past, researchers have shown that the individual components of episodic memory (i.e "what," "where," and "when") may emerge at different points in development. Specifically, while children as young as three can accurately report the "what" and "where" of an event, they struggle to accurately report when the event occurred. One explanation for children's difficulty in reporting when an event took place is a rudimentary understanding, and ability to use, temporal terms. In the current experiment, we employed a physical timeline to aid children's reporting of the order in which a series of episodic events occurred. Overall, while 4-, 5-, and 6-year olds performed above chance, 3-year olds did not. Our findings suggest that 3-year olds' limited ability to produce temporal terms may not be the rate-limiting step preventing them from identifying when events occurred in their recent past. © 2017 Wiley Periodicals, Inc.

  8. Consolidation of visual associative long-term memory in the temporal cortex of primates.

    Science.gov (United States)

    Miyashita, Y; Kameyama, M; Hasegawa, I; Fukushima, T

    1998-01-01

    Neuropsychological theories have proposed a critical role for the interaction between the medial temporal lobe and the neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We have examined neural mechanisms underlying the memory "consolidation" process by single-unit recording and molecular biological methods in an animal model of a visual pair-association task in monkeys. In our previous studies, we found that long-term associative representations of visual objects are acquired through learning in the neural network of the anterior inferior temporal (IT) cortex. In this article, we propose the hypothesis that limbic neurons undergo rapid modification of synaptic connectivity and provide backward signals that guide the reorganization of neocortical neural circuits. Two experiments tested this hypothesis: (1) we examined the role of the backward connections from the medial temporal lobe to the IT cortex by injecting ibotenic acid into the entorhinal and perirhinal cortices, which provided massive backward projections ipsilaterally to the IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. (2) We then tested the first half of this hypothesis by detecting the expression of immediate-early genes in the monkey temporal cortex. We found specific expression of zif268 during the learning of a new set of paired associates in the pair-association task, most intensively in area 36 of the perirhinal cortex. All these results with the visual pair-association task support our hypothesis and demonstrate that the consolidation process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in primates using neurophysiolocical and molecular biological approaches. Copyright 1998 Academic Press.

  9. Genome-Wide Temporal Expression Profiling in Caenorhabditis elegans Identifies a Core Gene Set Related to Long-Term Memory.

    Science.gov (United States)

    Freytag, Virginie; Probst, Sabine; Hadziselimovic, Nils; Boglari, Csaba; Hauser, Yannick; Peter, Fabian; Gabor Fenyves, Bank; Milnik, Annette; Demougin, Philippe; Vukojevic, Vanja; de Quervain, Dominique J-F; Papassotiropoulos, Andreas; Stetak, Attila

    2017-07-12

    The identification of genes related to encoding, storage, and retrieval of memories is a major interest in neuroscience. In the current study, we analyzed the temporal gene expression changes in a neuronal mRNA pool during an olfactory long-term associative memory (LTAM) in Caenorhabditis elegans hermaphrodites. Here, we identified a core set of 712 (538 upregulated and 174 downregulated) genes that follows three distinct temporal peaks demonstrating multiple gene regulation waves in LTAM. Compared with the previously published positive LTAM gene set (Lakhina et al., 2015), 50% of the identified upregulated genes here overlap with the previous dataset, possibly representing stimulus-independent memory-related genes. On the other hand, the remaining genes were not previously identified in positive associative memory and may specifically regulate aversive LTAM. Our results suggest a multistep gene activation process during the formation and retrieval of long-term memory and define general memory-implicated genes as well as conditioning-type-dependent gene sets. SIGNIFICANCE STATEMENT The identification of genes regulating different steps of memory is of major interest in neuroscience. Identification of common memory genes across different learning paradigms and the temporal activation of the genes are poorly studied. Here, we investigated the temporal aspects of Caenorhabditis elegans gene expression changes using aversive olfactory associative long-term memory (LTAM) and identified three major gene activation waves. Like in previous studies, aversive LTAM is also CREB dependent, and CREB activity is necessary immediately after training. Finally, we define a list of memory paradigm-independent core gene sets as well as conditioning-dependent genes. Copyright © 2017 the authors 0270-6474/17/376661-12$15.00/0.

  10. Medial temporal lobe reinstatement of content-specific details predicts source memory

    Science.gov (United States)

    Liang, Jackson C.; Preston, Alison R.

    2016-01-01

    Leading theories propose that when remembering past events, medial temporal lobe (MTL) structures reinstate the neural patterns that were active when those events were initially encoded. Accurate reinstatement is hypothesized to support detailed recollection of memories, including their source. While several studies have linked cortical reinstatement to successful retrieval, indexing reinstatement within the MTL network and its relationship to memory performance has proved challenging. Here, we addressed this gap in knowledge by having participants perform an incidental encoding task, during which they visualized people, places, and objects in response to adjective cues. During a surprise memory test, participants saw studied and novel adjectives and indicated the imagery task they performed for each adjective. A multivariate pattern classifier was trained to discriminate the imagery tasks based on functional magnetic resonance imaging (fMRI) responses from hippocampus and MTL cortex at encoding. The classifier was then tested on MTL patterns during the source memory task. We found that MTL encoding patterns were reinstated during successful source retrieval. Moreover, when participants made source misattributions, errors were predicted by reinstatement of incorrect source content in MTL cortex. We further observed a gradient of content-specific reinstatement along the anterior-posterior axis of hippocampus and MTL cortex. Within anterior hippocampus, we found that reinstatement of person content was related to source memory accuracy, whereas reinstatement of place information across the entire hippocampal axis predicted correct source judgments. Content-specific reinstatement was also graded across MTL cortex, with PRc patterns evincing reactivation of people and more posterior regions, including PHc, showing evidence for reinstatement of places and objects. Collectively, these findings provide key evidence that source recollection relies on reinstatement of past

  11. Clinical utility of the Wechsler Memory Scale - Fourth Edition (WMS-IV) in patients with intractable temporal lobe epilepsy.

    Science.gov (United States)

    Bouman, Zita; Elhorst, Didi; Hendriks, Marc P H; Kessels, Roy P C; Aldenkamp, Albert P

    2016-02-01

    The Wechsler Memory Scale (WMS) is one of the most widely used test batteries to assess memory functions in patients with brain dysfunctions of different etiologies. This study examined the clinical validation of the Dutch Wechsler Memory Scale - Fourth Edition (WMS-IV-NL) in patients with temporal lobe epilepsy (TLE). The sample consisted of 75 patients with intractable TLE, who were eligible for epilepsy surgery, and 77 demographically matched healthy controls. All participants were examined with the WMS-IV-NL. Patients with TLE performed significantly worse than healthy controls on all WMS-IV-NL indices and subtests (p<.01), with the exception of the Visual Working Memory Index including its contributing subtests, as well as the subtests Logical Memory I, Verbal Paired Associates I, and Designs II. In addition, patients with mesiotemporal abnormalities performed significantly worse than patients with lateral temporal abnormalities on the subtests Logical Memory I and Designs II and all the indices (p<.05), with the exception of the Auditory Memory Index and Visual Working Memory Index. Patients with either a left or a right temporal focus performed equally on all WMS-IV-NL indices and subtests (F(15, 50)=.70, p=.78), as well as the Auditory-Visual discrepancy score (t(64)=-1.40, p=.17). The WMS-IV-NL is capable of detecting memory problems in patients with TLE, indicating that it is a sufficiently valid memory battery. Furthermore, the findings support previous research showing that the WMS-IV has limited value in identifying material-specific memory deficits in presurgical patients with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Different effects of anterior temporal lobectomy and selective amygdalohippocampectomy on verbal memory performance of patients with epilepsy.

    Science.gov (United States)

    Boucher, Olivier; Dagenais, Emmanuelle; Bouthillier, Alain; Nguyen, Dang Khoa; Rouleau, Isabelle

    2015-11-01

    The advantage of selective amygdalohippocampectomy (SAH) over anterior temporal lobectomy (ATL) for the treatment of temporal lobe epilepsy (TLE) remains controversial. Because ATL is more extensive and involves the lateral and medial parts of the temporal lobe, it may be predicted that its impact on memory is more important than SAH, which involves resection of medial temporal structures only. However, several studies do not support this assumption. Possible explanations include task-specific factors such as the extent of semantic and syntactic information to be memorized and failure to control for main confounders. We compared preoperative vs. postoperative memory performance in 13 patients with SAH with 26 patients who underwent ATL matched on side of surgery, IQ, age at seizure onset, and age at surgery. Memory function was assessed using the Logical Memory subtest from the Wechsler Memory Scales - 3rd edition (LM-WMS), the Rey Auditory Verbal Learning Test (RAVLT), the Digit Span subtest from the Wechsler Adult Intelligence Scale, and the Rey-Osterrieth Complex Figure Test. Repeated measures analyses of variance revealed opposite effects of SAH and ATL on the two verbal learning memory tests. On the immediate recall trial of the LM-WMS, performance deteriorated after ATL in comparison with that after SAH. By contrast, on the delayed recognition trial of the RAVLT, performance deteriorated after SAH compared with that after ATL. However, additional analyses revealed that the latter finding was only observed when surgery was conducted in the right hemisphere. No interaction effects were found on other memory outcomes. The results are congruent with the view that tasks involving rich semantic content and syntactical structure are more sensitive to the effects of lateral temporal cortex resection as compared with mesiotemporal resection. The findings highlight the importance of task selection in the assessment of memory in patients undergoing TLE surgery

  13. Estimating temporal trend in the presence of spatial complexity: a Bayesian hierarchical model for a wetland plant population undergoing restoration.

    Directory of Open Access Journals (Sweden)

    Thomas J Rodhouse

    Full Text Available Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas] population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones" with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity--a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.

  14. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Science.gov (United States)

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  15. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Directory of Open Access Journals (Sweden)

    Makoto Nishihara

    Full Text Available Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG. The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m. The latency of Off-P50m depended on the inter-stimulus interval (ISI of the click train, which was the longest at 40 ms (25 Hz and became shorter with shorter ISIs (2.5∼20 ms. The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  16. Medial temporal lobe involvement in an implicit memory task: evidence of collaborating implicit and explicit memory systems from FMRI and Alzheimer's disease.

    Science.gov (United States)

    Koenig, Phyllis; Smith, Edward E; Troiani, Vanessa; Anderson, Chivon; Moore, Peachie; Grossman, Murray

    2008-12-01

    We used a prototype extraction task to assess implicit learning of a meaningful novel visual category. Cortical activation was monitored in young adults with functional magnetic resonance imaging. We observed occipital deactivation at test consistent with perceptually based implicit learning, and lateral temporal cortex deactivation reflecting implicit acquisition of the category's semantic nature. Medial temporal lobe (MTL) activation during exposure and test suggested involvement of explicit memory as well. Behavioral performance of Alzheimer's disease (AD) patients and healthy seniors was also assessed, and AD performance was correlated with gray matter volume using voxel-based morphometry. AD patients showed learning, consistent with preserved implicit memory, and confirming that AD patients' implicit memory is not limited to abstract patterns. However, patients were somewhat impaired relative to healthy seniors. Occipital and lateral temporal cortical volume correlated with successful AD patient performance, and thus overlapped with young adults' areas of deactivation. Patients' severe MTL atrophy precluded involvement of this region. AD patients thus appear to engage a cortically based implicit memory mechanism, whereas their relative deficit on this task may reflect their MTL disease. These findings suggest that implicit and explicit memory systems collaborate in neurologically intact individuals performing an ostensibly implicit memory task.

  17. Local field potential correlates of auditory working memory in primate dorsal temporal pole.

    Science.gov (United States)

    Bigelow, James; Ng, Chi-Wing; Poremba, Amy

    2016-06-01

    Dorsal temporal pole (dTP) is a cortical region at the rostral end of the superior temporal gyrus that forms part of the ventral auditory object processing pathway. Anatomical connections with frontal and medial temporal areas, as well as a recent single-unit recording study, suggest this area may be an important part of the network underlying auditory working memory (WM). To further elucidate the role of dTP in auditory WM, local field potentials (LFPs) were recorded from the left dTP region of two rhesus macaques during an auditory delayed matching-to-sample (DMS) task. Sample and test sounds were separated by a 5-s retention interval, and a behavioral response was required only if the sounds were identical (match trials). Sensitivity of auditory evoked responses in dTP to behavioral significance and context was further tested by passively presenting the sounds used as auditory WM memoranda both before and after the DMS task. Average evoked potentials (AEPs) for all cue types and phases of the experiment comprised two small-amplitude early onset components (N20, P40), followed by two broad, large-amplitude components occupying the remainder of the stimulus period (N120, P300), after which a final set of components were observed following stimulus offset (N80OFF, P170OFF). During the DMS task, the peak amplitude and/or latency of several of these components depended on whether the sound was presented as the sample or test, and whether the test matched the sample. Significant differences were also observed among the DMS task and passive exposure conditions. Comparing memory-related effects in the LFP signal with those obtained in the spiking data raises the possibility some memory-related activity in dTP may be locally produced and actively generated. The results highlight the involvement of dTP in auditory stimulus identification and recognition and its sensitivity to the behavioral significance of sounds in different contexts. This article is part of a Special

  18. Relationship between remnant hippocampus and amygdala and memory outcomes after stereotactic surgery for mesial temporal lobe epilepsy.

    Science.gov (United States)

    Malikova, Hana; Kramska, Lenka; Vojtech, Zdenek; Sroubek, Jan; Lukavsky, Jiri; Liscak, Roman

    2015-01-01

    Mesial temporal structures play an important role in human memory. In mesial temporal lobe epilepsy (MTLE), seizure activity is generated from the same structures. Surgery is the definitive treatment for medically intractable MTLE. In addition to standard temporal lobe microsurgical resection, stereotactic radiofrequency amygdalohippocampectomy (SAHE) is used as an alternative MTLE treatment. While memory impairments after standard epilepsy surgery are well known, it has been shown that memory decline is not a feature of SAHE. The aim of the present study was to correlate the volume of the remnant hippocampus and amygdala in patients treated by SAHE with changes in memory parameters. Thirty-seven MTLE patients treated by SAHE (ten right, 27 left) were included. Patients underwent magnetic resonance imaging examinations including hippocampal and amygdalar volumetry and neuropsychological evaluation preoperatively and 1 year after surgery. Using Spearman correlation analyses, larger left-sided hippocampal reductions were associated with lower verbal memory performance (ρ=-0.46; P=0.02). On the contrary, improvement of global memory quotient (MQ) was positively correlated with larger right-sided hippocampal reduction (ρ=0.66; P=0.04). Similarly, positive correlations between the extent of right amygdalar reduction and verbal MQ (ρ=0.74; P=0.02) and global MQ change (ρ=0.69; P=0.03) were found. Thus, larger right hippocampal and amygdalar reduction was associated with higher global and verbal MQ change after SAHE. Larger left-sided hippocampal reductions were associated with lower verbal memory performance. This finding is in accordance with the material-specific model of human memory, which states that the dominant hemisphere is specialized for the learning and recall of verbal information. We hypothesize that larger right-sided ablations enable the left temporal lobe to support memory more effectively, perhaps as a consequence of epileptiform discharges spreading

  19. The neurokinin-3 receptor agonist senktide facilitates the integration of memories for object, place and temporal order into episodic memory.

    Science.gov (United States)

    Chao, Owen Y; Nikolaus, Susanne; Huston, Joseph P; de Souza Silva, Maria A

    2014-10-01

    Senktide, a potent neurokinin-3 receptor (NK3-R) agonist, has been shown to have promnestic effects in adult and aged rodents and to facilitate episodic-like memory (ELM) in mice when administrated before the learning trial. In the present study we assessed the effects of senktide on memory consolidation by administering it post-trial (after the learning trial) in adult rats. We applied an ELM test, based on the integrated memory for object, place and temporal order, which we developed (Kart-Teke, de Souza Silva, Huston, & Dere, 2006). This test involves two learning trials and one test trial. We examined intervals of 1h and 23 h between the learning and test trials (experiment 1) in untreated animals and found that they exhibited intact ELM after a delay of 1 h, but not 23 h. In another test for ELM performed 7 days later, vehicle or senktide (0.2 mg/kg, s.c.) was applied immediately after the second learning trial and the test was conducted 23 h later (experiment 2). Senktide treatment recovered components of ELM (memory for place and object) compared with vehicle-treated animals. After one more week, vehicle or senktide (0.2 mg/kg, s.c.) was applied post-trial and the test conducted 6h later (experiment 3). The senktide-treated group exhibited intact ELM, unlike the vehicle-treated group. Finally, animals received post-trial treatment with either vehicle or SR142801, a selective NK3-R antagonist (6 mg/kg, i.p.), 1 min before senktide injection (0.2 mg/kg, s.c.) in the ELM paradigm and were tested 6h later (experiment 4). The vehicle+senktide group showed intact ELM, while the SR142801+senktide group did not. The results indicate that senktide facilitated the consolidation or the expression of ELM and that the senktide effect was NK3-R dependent. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Semantic congruency but not temporal synchrony enhances long-term memory performance for audio-visual scenes.

    Science.gov (United States)

    Meyerhoff, Hauke S; Huff, Markus

    2016-04-01

    Human long-term memory for visual objects and scenes is tremendous. Here, we test how auditory information contributes to long-term memory performance for realistic scenes. In a total of six experiments, we manipulated the presentation modality (auditory, visual, audio-visual) as well as semantic congruency and temporal synchrony between auditory and visual information of brief filmic clips. Our results show that audio-visual clips generally elicit more accurate memory performance than unimodal clips. This advantage even increases with congruent visual and auditory information. However, violations of audio-visual synchrony hardly have any influence on memory performance. Memory performance remained intact even with a sequential presentation of auditory and visual information, but finally declined when the matching tracks of one scene were presented separately with intervening tracks during learning. With respect to memory performance, our results therefore show that audio-visual integration is sensitive to semantic congruency but remarkably robust against asymmetries between different modalities.

  1. Medial temporal lobe contributions to short-term memory for faces

    Science.gov (United States)

    Race, Elizabeth; LaRocque, Karen F.; Keane, Margaret M.; Verfaellie, Mieke

    2015-01-01

    The role of the medial temporal lobes (MTL) in short-term memory (STM) remains a matter of debate. While imaging studies commonly show hippocampal activation during short-delay memory tasks, evidence from amnesic patients with MTL lesions is mixed. It has been argued that apparent STM impairments in amnesia may reflect long-term memory (LTM) contributions to performance. We challenge this conclusion by demonstrating that MTL amnesic patients show impaired delayed matching-to-sample (DMS) for faces in a task that meets both a traditional delay-based and a recently proposed distractor-based criterion for classification as a STM task. In Experiment 1, we demonstrate that our face DMS task meets the proposed distractor-based criterion for STM classification, in that extensive processing of delay-period distractor stimuli disrupts performance of healthy individuals. In Experiment 2, MTL amnesic patients with lesions extending into anterior subhippocampal cortex, but not patients with lesions limited to the hippocampus, show impaired performance on this task without distraction at delays as short as 8s, within temporal range of delay-based STM classification, in the context of intact perceptual matching performance. Experiment 3 provides support for the hypothesis that STM for faces relies on configural processing by showing that the extent to which healthy participants’ performance is disrupted by interference depends on the configural demands of the distractor task. Together, these findings are consistent with the notion that the amnesic impairment in STM for faces reflects a deficit in configural processing associated with subhippocampal cortices and provide novel evidence that the MTL supports cognition beyond the LTM domain. PMID:23937185

  2. Medial temporal lobe contributions to short-term memory for faces.

    Science.gov (United States)

    Race, Elizabeth; LaRocque, Karen F; Keane, Margaret M; Verfaellie, Mieke

    2013-11-01

    The role of the medial temporal lobes (MTL) in short-term memory (STM) remains a matter of debate. Whereas imaging studies commonly show hippocampal activation during short-delay memory tasks, evidence from amnesic patients with MTL lesions is mixed. It has been argued that apparent STM impairments in amnesia may reflect long-term memory (LTM) contributions to performance. We challenge this conclusion by demonstrating that MTL amnesic patients show impaired delayed matching-to-sample (DMS) for faces in a task that meets both a traditional delay-based and a recently proposed distractor-based criterion for classification as an STM task. In Experiment 1, we demonstrate that our face DMS task meets the proposed distractor-based criterion for STM classification, in that extensive processing of delay-period distractor stimuli disrupts performance of healthy individuals. In Experiment 2, MTL amnesic patients with lesions extending into anterior subhippocampal cortex, but not patients with lesions limited to the hippocampus, show impaired performance on this task without distraction at delays as short as 8 s, within temporal range of delay-based STM classification, in the context of intact perceptual matching performance. Experiment 3 provides support for the hypothesis that STM for faces relies on configural processing by showing that the extent to which healthy participants' performance is disrupted by interference depends on the configural demands of the distractor task. Together, these findings are consistent with the notion that the amnesic impairment in STM for faces reflects a deficit in configural processing associated with subhippocampal cortices and provide novel evidence that the MTL supports cognition beyond the LTM domain. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. Roles for the subiculum in spatial information processing, memory, motivation and the temporal control of behaviour.

    Science.gov (United States)

    O'Mara, Shane M; Sanchez-Vives, Maria V; Brotons-Mas, Jorge R; O'Hare, Eugene

    2009-08-01

    The subiculum is in a pivotal position governing the output of the hippocampal formation. Despite this, it is a rather under-explored and sometimes ignored structure. Here, we discuss recent data indicating that the subiculum participates in a wide range of neurocognitive functions and processes. Some of the functions of subiculum are relatively well-known-these include providing a relatively coarse representation of space and participating in, and supporting certain aspects of, memory (particularly in the dynamic bridging of temporal intervals). The subiculum also participates in a wide variety of other neurocognitive functions too, however. Much less well-known are roles for the subiculum, and particularly the ventral subiculum, in the response to fear, stress and anxiety, and in the generation of motivated behaviour (particularly the behaviour that underlies drug addiction and the response to reward). There is an emerging suggestion that the subiculum participates in the temporal control of behaviour. It is notable that these latter findings have emerged from a consideration of instrumental behaviour using operant techniques; it may well be the case that the use of the watermaze or similar spatial tasks to assess subicular function (on the presumption that its functions are very similar to the hippocampus proper) has obscured rather than revealed neurocognitive functions of subiculum. The anatomy of subiculum suggests it participates in a rather subtle fashion in a very broad range of functions, rather than in a relatively more isolated fashion in a narrower range of functions, as might be the case for "earlier" components of hippocampal circuitry, such as the CA1 and CA3 subfields. Overall, there appears to a strong dorso-ventral segregation of function within subiculum, with the dorsal subiculum relatively more concerned with space and memory, and the ventral hippocampus concerned with stress, anxiety and reward. Finally, it may be the case that the whole

  4. Auditory temporal preparation induced by rhythmic cues during concurrent auditory working memory tasks.

    Science.gov (United States)

    Cutanda, Diana; Correa, Ángel; Sanabria, Daniel

    2015-06-01

    The present study investigated whether participants can develop temporal preparation driven by auditory isochronous rhythms when concurrently performing an auditory working memory (WM) task. In Experiment 1, participants had to respond to an auditory target presented after a regular or an irregular sequence of auditory stimuli while concurrently performing a Sternberg-type WM task. Results showed that participants responded faster after regular compared with irregular rhythms and that this effect was not affected by WM load; however, the lack of a significant main effect of WM load made it difficult to draw any conclusion regarding the influence of the dual-task manipulation in Experiment 1. In order to enhance dual-task interference, Experiment 2 combined the auditory rhythm procedure with an auditory N-Back task, which required WM updating (monitoring and coding of the information) and was presumably more demanding than the mere rehearsal of the WM task used in Experiment 1. Results now clearly showed dual-task interference effects (slower reaction times [RTs] in the high- vs. the low-load condition). However, such interference did not affect temporal preparation induced by rhythms, with faster RTs after regular than after irregular sequences in the high-load and low-load conditions. These results revealed that secondary tasks demanding memory updating, relative to tasks just demanding rehearsal, produced larger interference effects on overall RTs in the auditory rhythm task. Nevertheless, rhythm regularity exerted a strong temporal preparation effect that survived the interference of the WM task even when both tasks competed for processing resources within the auditory modality. (c) 2015 APA, all rights reserved).

  5. Weighing the value of memory loss in the surgical evaluation of left temporal lobe epilepsy: a decision analysis.

    Science.gov (United States)

    Akama-Garren, Elliot H; Bianchi, Matt T; Leveroni, Catherine; Cole, Andrew J; Cash, Sydney S; Westover, M Brandon

    2014-11-01

    Anterior temporal lobectomy is curative for many patients with disabling medically refractory temporal lobe epilepsy, but carries an inherent risk of disabling verbal memory loss. Although accurate prediction of iatrogenic memory loss is becoming increasingly possible, it remains unclear how much weight such predictions should have in surgical decision making. Here we aim to create a framework that facilitates a systematic and integrated assessment of the relative risks and benefits of surgery versus medical management for patients with left temporal lobe epilepsy. We constructed a Markov decision model to evaluate the probabilistic outcomes and associated health utilities associated with choosing to undergo a left anterior temporal lobectomy versus continuing with medical management for patients with medically refractory left temporal lobe epilepsy. Three base-cases were considered, representing a spectrum of surgical candidates encountered in practice, with varying degrees of epilepsy-related disability and potential for decreased quality of life in response to post-surgical verbal memory deficits. For patients with moderately severe seizures and moderate risk of verbal memory loss, medical management was the preferred decision, with increased quality-adjusted life expectancy. However, the preferred choice was sensitive to clinically meaningful changes in several parameters, including quality of life impact of verbal memory decline, quality of life with seizures, mortality rate with medical management, probability of remission following surgery, and probability of remission with medical management. Our decision model suggests that for patients with left temporal lobe epilepsy, quantitative assessment of risk and benefit should guide recommendation of therapy. In particular, risk for and potential impact of verbal memory decline should be carefully weighed against the degree of disability conferred by continued seizures on a patient-by-patient basis. Wiley

  6. Does Controlling for Temporal Parameters Change the Levels-of-Processing Effect in Working Memory?

    Science.gov (United States)

    Loaiza, Vanessa M; Camos, Valérie

    2016-01-01

    The distinguishability between working memory (WM) and long-term memory has been a frequent and long-lasting source of debate in the literature. One recent method of identifying the relationship between the two systems has been to consider the influence of long-term memory effects, such as the levels-of-processing (LoP) effect, in WM. However, the few studies that have examined the LoP effect in WM have shown divergent results. This study examined the LoP effect in WM by considering a theoretically meaningful methodological aspect of the LoP span task. Specifically, we fixed the presentation duration of the processing component a priori because such fixed complex span tasks have shown differences when compared to unfixed tasks in terms of recall from WM as well as the latent structure of WM. After establishing a fixed presentation rate from a pilot study, the LoP span task presented memoranda in red or blue font that were immediately followed by two processing words that matched the memoranda in terms of font color or semantic relatedness. On presentation of the processing words, participants made deep or shallow processing decisions for each of the memoranda before a cue to recall them from WM. Participants also completed delayed recall of the memoranda. Results indicated that LoP affected delayed recall, but not immediate recall from WM. These results suggest that fixing temporal parameters of the LoP span task does not moderate the null LoP effect in WM, and further indicate that WM and long-term episodic memory are dissociable on the basis of LoP effects.

  7. Neural correlates of auditory recognition memory in the primate dorsal temporal pole

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany

    2013-01-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324

  8. Neural correlates of auditory recognition memory in the primate dorsal temporal pole.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2014-02-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects.

  9. Accelerated long-term forgetting and autobiographical memory disorders in temporal lobe epilepsy: One entity or two?

    Science.gov (United States)

    Lemesle, B; Planton, M; Pagès, B; Pariente, J

    Temporal lobe epilepsy (TLE) is a type of epilepsy that often has a negative impact on patients' memory. Despite the importance of patients' complaints in this regard, the difficulties described by these patients are often not easy to demonstrate through a standard neuropsychological assessment. Accelerated long-term forgetting and autobiographical memory disorders are the two main memory impairments reported in the literature in patients with TLE. However, the methods used by different authors to evaluate long-term memory and autobiographical memory are heterogeneous. This heterogeneity can lead to differences in the observed results as well as how they are interpreted. Yet, despite the methodological differences, objectification of such memory deficits appears to be both specific and robust within this patient population. Analysis of the literature shows that accelerated long-term forgetting and autobiographical memory disorders share the same clinical characteristics. This leads to the assumption that they are, in fact, only one entity and that their evaluation may be done through a single procedure. Our proposal is to place this evaluation within the context of memory consolidation disorders. With such a perspective, evaluation of accelerated forgetting in autobiographical memory should consist of identifying a disorder in the formation and/or recovery of new memory traces. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Beyond the temporal pole: limbic memory circuit in the semantic variant of primary progressive aphasia.

    Science.gov (United States)

    Tan, Rachel H; Wong, Stephanie; Kril, Jillian J; Piguet, Olivier; Hornberger, Michael; Hodges, John R; Halliday, Glenda M

    2014-07-01

    Despite accruing evidence for relative preservation of episodic memory in the semantic variant of primary progressive aphasia (previously semantic dementia), the neural basis for this remains unclear, particularly in light of their well-established hippocampal involvement. We recently investigated the Papez network of memory structures across pathological subtypes of behavioural variant frontotemporal dementia and demonstrated severe degeneration of all relay nodes, with the anterior thalamus in particular emerging as crucial for intact episodic memory. The present study investigated the status of key components of Papez circuit (hippocampus, mammillary bodies, anterior thalamus, cingulate cortex) and anterior temporal cortex using volumetric and quantitative cell counting methods in pathologically-confirmed cases with semantic variant of primary progressive aphasia (n = 8; 61-83 years; three males), behavioural variant frontotemporal dementia with TDP pathology (n = 9; 53-82 years; six males) and healthy controls (n = 8, 50-86 years; four males). Behavioural variant frontotemporal dementia cases with TDP pathology were selected because of the association between the semantic variant of primary progressive aphasia and TDP pathology. Our findings revealed that the semantic variant of primary progressive aphasia and behavioural variant frontotemporal dementia show similar degrees of anterior thalamic atrophy. The mammillary bodies and hippocampal body and tail were preserved in the semantic variant of primary progressive aphasia but were significantly atrophic in behavioural variant frontotemporal dementia. Importantly, atrophy in the anterior thalamus and mild progressive atrophy in the body of the hippocampus emerged as the main memory circuit regions correlated with increasing dementia severity in the semantic variant of primary progressive aphasia. Quantitation of neuronal populations in the cingulate cortices confirmed the selective loss of anterior cingulate

  11. Effect of Batroxobin on Expression of Neural Cell Adhesion Molecule in Temporal Infarction Rats and Spatial Learning and Memory Disorder

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of Batroxobin expression of neural cell adhesion molecule (NCAM) in left temporal ischemic rats with spatial memory disorder was investigated by means of Morri's water maze and immunohistochemical methods. The results showed that the mean reaction time and distance of temporal ischemic rats for searching a goal were significantly longer than those of sham-operated rats and at the same time NCAM expression of left temporal ischemic region was significantly increased. However, the mean reaction time and distance of Batroxobin-treated rats were shorter and they used normal strategies more often and earlier than those of ischemic rats. The number of NCAM immune reactive cells of Batroxobin-treated rats was more than that of ischemic group. In conclusion, Batroxobin can improve spatial memory disorder of temporal ischemic rats and the regulation of the expression of NCAM is probably related to the neuroprotective mechanism.

  12. Frontal and temporal lobe contributions to emotional enhancement of memory in behavioural-variant frontotemporal dementia and Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Fiona eKumfor

    2014-06-01

    Full Text Available Emotional events gain special priority in how they are remembered, with emotionally arousing events typically recalled more vividly and with greater confidence than non-emotional events. In dementia, memory and emotion processing are affected to varying degrees, however, whether emotional enhancement of memory for complex ecologically valid events is differentially affected across dementia syndromes remains unclear, with previous studies examining effects of emotion on simple visual recognition only. Here, we examined memory for an emotionally arousing short story and a closely matched, emotionally neutral story in behavioural-variant frontotemporal dementia (bvFTD (n = 13 and Alzheimer’s disease (AD (n = 14, and contrasted their performance with healthy controls (n = 12. Multiple-choice recognition memory for specific details of the story was assessed after a 1-hour delay. While AD and control groups showed enhanced memory for the emotional story, the bvFTD group recalled a similar number of details from the emotional and neutral stories. Voxel-based morphometry analyses revealed emotional enhancement of memory correlated with distinct brain regions in each patient group. In AD, emotional enhancement was associated with integrity of the bilateral hippocampus, parahippocampal gyri, temporal fusiform gyrus and frontal pole, regions implicated in memory processes. In contrast in bvFTD, integrity of emotion processing regions, including the orbitofrontal cortex, right amygdala and right insula, correlated with the extent emotion enhanced memory. Our results reveal that integrity of frontal and temporal regions determine the quality and nature of emotional memories. While emotional enhancement of memory is present in mild AD, in bvFTD emotion does not facilitate memory retrieval for complex realistic events. This attenuation of emotional enhancement is due to degradation of emotion processing regions, which may be important for modulating levels

  13. The radish gene reveals a memory component with variable temporal properties.

    Directory of Open Access Journals (Sweden)

    Holly LaFerriere

    Full Text Available Memory phases, dependent on different neural and molecular mechanisms, strongly influence memory performance. Our understanding, however, of how memory phases interact is far from complete. In Drosophila, aversive olfactory learning is thought to progress from short-term through long-term memory phases. Another memory phase termed anesthesia resistant memory, dependent on the radish gene, influences memory hours after aversive olfactory learning. How does the radish-dependent phase influence memory performance in different tasks? It is found that the radish memory component does not scale with the stability of several memory traces, indicating a specific recruitment of this component to influence different memories, even within minutes of learning.

  14. Neural correlates of auditory short-term memory in rostral superior temporal cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2014-12-01

    Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Tau and β-Amyloid Are Associated with Medial Temporal Lobe Structure, Function, and Memory Encoding in Normal Aging

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Shawn M. [Univ. of California, Berkeley, CA (United States). Helen Wills Neuroscience Inst.; Lockhart, Samuel N. [Univ. of California, Berkeley, CA (United States). Helen Wills Neuroscience Inst.; Baker, Suzanne L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging; Jagust, William J. [Univ. of California, Berkeley, CA (United States). Helen Wills Neuroscience Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging

    2017-03-22

    Normal aging is associated with a decline in episodic memory and also with aggregation of the β-amyloid (Aβ) and tau proteins and atrophy of medial temporal lobe (MTL) structures crucial to memory formation. Although some evidence suggests that Aβ is associated with aberrant neural activity, the relationships among these two aggregated proteins, neural function, and brain structure are poorly understood. Using in vivo human Aβ and tau imaging, we demonstrate that increased Aβ and tau are both associated with aberrant fMRI activity in the MTL during memory encoding in cognitively normal older adults. This pathological neural activity was in turn associated with worse memory performance and atrophy within the MTL. A mediation analysis revealed that the relationship with regional atrophy was explained by MTL tau. These findings broaden the concept of cognitive aging to include evidence of Alzheimer’s disease-related protein aggregation as an underlying mechanism of age-related memory impairment.

  16. The inferior, anterior temporal lobes and semantic memory clarified: novel evidence from distortion-corrected fMRI.

    Science.gov (United States)

    Visser, M; Embleton, K V; Jefferies, E; Parker, G J; Ralph, M A Lambon

    2010-05-01

    The neural basis of semantic memory generates considerable debate. Semantic dementia results from bilateral anterior temporal lobe (ATL) atrophy and gives rise to a highly specific impairment of semantic memory, suggesting that this region is a critical neural substrate for semantic processing. Recent rTMS experiments with neurologically-intact participants also indicate that the ATL are a necessary substrate for semantic memory. Exactly which regions within the ATL are important for semantic memory are difficult to detect from these methods (because the damage in SD covers a large part of the ATL). Functional neuroimaging might provide important clues about which specific areas exhibit activation that correlates with normal semantic performance. Neuroimaging studies, however, have not consistently found anterior temporal lobe activation in semantic tasks. A recent meta-analysis indicates that this inconsistency may be due to a collection of technical limitations associated with previous studies, including a reduced field-of-view and magnetic susceptibility artefacts associated with standard gradient echo fMRI. We conducted an fMRI study of semantic memory using a combination of techniques which improve sensitivity to ATL activations whilst preserving whole-brain coverage. As expected from SD patients and ATL rTMS experiments, this method revealed bilateral temporal activation extending from the inferior temporal lobe along the fusiform gyrus to the anterior temporal regions, bilaterally. We suggest that the inferior, anterior temporal lobe region makes a crucial contribution to semantic cognition and utilising this version of fMRI will enable further research on the semantic role of the ATL. 2010 Elsevier Ltd. All rights reserved.

  17. Recognition of music in long-term memory: are melodic and temporal patterns equal partners?

    Science.gov (United States)

    Hébert, S; Peretz, I

    1997-07-01

    The notion that the melody (i.e., pitch structure) of familiar music is more recognizable than its accompanying rhythm (i.e., temporal structure) was examined with the same set of nameable musical excerpts in three experiments. In Experiment 1, the excerpts were modified so as to keep either their original pitch variations, whereas durations were set to isochrony (melodic condition) or their original temporal pattern while played on a single constant pitch (rhythmic condition). The subjects, who were selected without regard to musical training, were found to name more tunes and to rate their feeling of knowing the musical excerpts far higher in the melodic condition than in the rhythmic condition. These results were replicated in Experiment 2, wherein the melodic and rhythmic patterns of the musical excerpts were interchanged to create chimeric mismatched tunes. The difference in saliency of the melodic pattern and the rhythmic pattern also emerged with a music-title-verification task in Experiment 3, hence discarding response selection as the main source of the discrepancy. The lesser effectiveness of rhythmic structure appears to be related to its lesser encoding distinctiveness relative to melodic structure. In general, rhythm was found to be a poor cue for the musical representations that are stored in long-term memory. Nevertheless, in all three experiments, the most effective cue for music identification involved the proper combination of pitches and durations. Therefore, the optimal code of access to long-term memory for music resides in a combination of rhythm and melody, of which the latter would be the most informative.

  18. Differential Medial Temporal Lobe and Parietal Cortical Contributions to Real-world Autobiographical Episodic and Autobiographical Semantic Memory.

    Science.gov (United States)

    Brown, Thackery I; Rissman, Jesse; Chow, Tiffany E; Uncapher, Melina R; Wagner, Anthony D

    2018-04-18

    Autobiographical remembering can depend on two forms of memory: episodic (event) memory and autobiographical semantic memory (remembering personally relevant semantic knowledge, independent of recalling a specific experience). There is debate about the degree to which the neural signals that support episodic recollection relate to or build upon autobiographical semantic remembering. Pooling data from two fMRI studies of memory for real-world personal events, we investigated whether medial temporal lobe (MTL) and parietal subregions contribute to autobiographical episodic and semantic remembering. During scanning, participants made memory judgments about photograph sequences depicting past events from their life or from others' lives, and indicated whether memory was based on episodic or semantic knowledge. Results revealed several distinct functional patterns: activity in most MTL subregions was selectively associated with autobiographical episodic memory; the hippocampal tail, superior parietal lobule, and intraparietal sulcus were similarly engaged when memory was based on retrieval of an autobiographical episode or autobiographical semantic knowledge; and angular gyrus demonstrated a graded pattern, with activity declining from autobiographical recollection to autobiographical semantic remembering to correct rejections of novel events. Collectively, our data offer insights into MTL and parietal cortex functional organization, and elucidate circuitry that supports different forms of real-world autobiographical memory.

  19. Theta oscillations orchestrate medial temporal lobe and neocortex in remembering autobiographical memories.

    Science.gov (United States)

    Fuentemilla, L; Barnes, G R; Düzel, E; Levine, B

    2014-01-15

    Remembering autobiographical events can be associated with detailed visual imagery. The medial temporal lobe (MTL), precuneus and prefrontal cortex are held to jointly enable such vivid retrieval, but how these regions are orchestrated remains unclear. An influential prediction from animal physiology is that neural oscillations in theta frequency may be important. In this experiment, participants prospectively collected audio recordings describing personal autobiographical episodes or semantic knowledge over 2 to 7 months. These were replayed as memory retrieval cues while recording brain activity with magnetoencephalography (MEG). We identified a peak of theta power within a left MTL region of interest during both autobiographical and General Semantic retrieval. This MTL region was selectively phase-synchronized with theta oscillations in precuneus and medial prefrontal cortex, and this synchrony was higher during autobiographical as compared to General Semantic knowledge retrieval. Higher synchrony also predicted more detailed visual imagery during retrieval. Thus, theta phase-synchrony orchestrates in humans the MTL with a distributed neocortical memory network when vividly remembering autobiographical experiences. © 2013.

  20. Patterns of verbal learning and memory in children with intractable temporal lobe or frontal lobe epilepsy.

    Science.gov (United States)

    Fuentes, Amanda; Smith, Mary Lou

    2015-12-01

    The objective of this study was to provide a better understanding of the verbal learning and memory (VLM) patterns that might differentiate children with frontal lobe epilepsy (FLE) from children with temporal lobe epilepsy (TLE) and to examine the impact of variables thought to influence outcomes (seizure laterality, age at seizure onset, age at assessment, epilepsy duration, number of antiepileptic drugs). Retrospective analyses were carried out for children with intractable unilateral TLE (n=100) and FLE (n=27) who completed standardized measures of VLM entailing lists of single words or lists of word pairs. Mean intelligent quotients and VLM scores on single words fell within the average range for both groups, whereas scores fell within the low average to borderline range on word pairs. No significant overall differences in VLM were found between the group with TLE and the group with FLE. Older age at assessment and older age at seizure onset were generally associated with better VLM in both groups but were related to better performance in a number of indices in the group with TLE and only fewer intrusions in the group with FLE. The VLM profiles of children with TLE and FLE are generally similar. Older age at assessment and older age at seizure onset have a favorable impact on both groups but are related to better encoding, retrieval, and monitoring processes for the group with TLE and improved memory monitoring (i.e., as indicated by fewer intrusions) in the group with FLE. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Locating Temporal Functional Dynamics of Visual Short-Term Memory Binding using Graph Modular Dirichlet Energy

    Science.gov (United States)

    Smith, Keith; Ricaud, Benjamin; Shahid, Nauman; Rhodes, Stephen; Starr, John M.; Ibáñez, Augustin; Parra, Mario A.; Escudero, Javier; Vandergheynst, Pierre

    2017-02-01

    Visual short-term memory binding tasks are a promising early marker for Alzheimer’s disease (AD). To uncover functional deficits of AD in these tasks it is meaningful to first study unimpaired brain function. Electroencephalogram recordings were obtained from encoding and maintenance periods of tasks performed by healthy young volunteers. We probe the task’s transient physiological underpinnings by contrasting shape only (Shape) and shape-colour binding (Bind) conditions, displayed in the left and right sides of the screen, separately. Particularly, we introduce and implement a novel technique named Modular Dirichlet Energy (MDE) which allows robust and flexible analysis of the functional network with unprecedented temporal precision. We find that connectivity in the Bind condition is less integrated with the global network than in the Shape condition in occipital and frontal modules during the encoding period of the right screen condition. Using MDE we are able to discern driving effects in the occipital module between 100-140 ms, coinciding with the P100 visually evoked potential, followed by a driving effect in the frontal module between 140-180 ms, suggesting that the differences found constitute an information processing difference between these modules. This provides temporally precise information over a heterogeneous population in promising tasks for the detection of AD.

  2. Age-differences in the temporal properties of proactive interference in working memory.

    Science.gov (United States)

    Samrani, George; Bäckman, Lars; Persson, Jonas

    2017-12-01

    The inability to suppress irrelevant information has been suggested as a primary cause of proactive interference (PI), and this deficit may be enhanced in aging. The current study examines age differences and temporal boundaries of PI, by manipulating lure distances in a verbal 2-back working memory task. Both younger and older adults showed effects of interference for proximal 3- and 4-back lures, and this effect was greater for older adults. Whereas younger adults showed less interference during 4-back compared to 3-back lures, in both reaction times and accuracy, older adults improved only in accuracy. For distant lures, when the time between the 1st presentation of an item to its reappearance as a lure item was longer (e.g., 5- to 10-back lures), younger adults were no longer affected by PI. However, older adults were affected by PI throughout all distant lures, up to the most distant lure (9-/10-back). The results suggest that older adults were less successful in resolving interference from both proximal and distant familiar lures. Further, younger adults were able to overcome the effects of PI completely after a specific lure distance. The age differences in temporal properties of PI may therefore highlight a unique component linked to impaired interference control and aging. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Risk factors for spatial memory impairment in patients with temporal lobe epilepsy.

    Science.gov (United States)

    Amlerova, Jana; Laczo, Jan; Vlcek, Kamil; Javurkova, Alena; Andel, Ross; Marusic, Petr

    2013-01-01

    At present, the risk factors for world-centered (allocentric) navigation impairment in patients with temporal lobe epilepsy (TLE) are not known. There is some evidence on the importance of the right hippocampus but other clinical features have not been investigated yet. In this study, we used an experimental human equivalent to the Morris water maze to examine spatial navigation performance in patients with drug-refractory unilateral TLE. We included 47 left-hemisphere speech dominant patients (25 right sided; 22 left sided). The aim of our study was to identify clinical and demographic characteristics of TLE patients who performed poorly in allocentric spatial memory tests. Our results demonstrate that poor spatial navigation is significantly associated with younger age at epilepsy onset, longer disease duration, and lower intelligence level. Allocentric navigation in TLE patients was impaired irrespective of epilepsy lateralization. Good and poor navigators did not differ in their age, gender, or preoperative/postoperative status. This study provides evidence on risk factors that increase the likelihood of allocentric navigation impairment in TLE patients. The results indicate that not only temporal lobe dysfunction itself but also low general cognitive abilities may contribute to the navigation impairment. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Effects of Temporal Sequencing and Auditory Discrimination on Children's Memory Patterns for Tones, Numbers, and Nonsense Words

    Science.gov (United States)

    Gromko, Joyce Eastlund; Hansen, Dee; Tortora, Anne Halloran; Higgins, Daniel; Boccia, Eric

    2009-01-01

    The purpose of this study was to determine whether children's recall of tones, numbers, and words was supported by a common temporal sequencing mechanism; whether children's patterns of memory for tones, numbers, and nonsense words were the same despite differences in symbol systems; and whether children's recall of tones, numbers, and nonsense…

  5. The Medial Temporal Lobe and the Left Inferior Prefrontal Cortex Jointly Support Interference Resolution in Verbal Working Memory

    Science.gov (United States)

    Oztekin, Ilke; Curtis, Clayton E.; McElree, Brian

    2009-01-01

    During working memory retrieval, proactive interference (PI) can be induced by semantic similarity and episodic familiarity. Here, we used fMRI to test hypotheses about the role of the left inferior frontal gyrus (LIFG) and the medial temporal lobe (MTL) regions in successful resolution of PI. Participants studied six-word lists and responded to a…

  6. The Impact of Sex and Language Dominance on Material-Specific Memory Before and After Left Temporal Lobe Surgery

    Science.gov (United States)

    Helmstaedter, C.; Brosch, T.; Kurthen, M.; Elger, C. E.

    2004-01-01

    Recent findings raised evidence that in early-onset left temporal lobe epilepsy, women show greater functional plasticity for verbal memory than men. In particular, women with lesion- or epilepsy-driven atypical language dominance show an advantage over men. The question asked in this study was whether there is evidence of sex- and language…

  7. Ventromedial prefrontal cortex pyramidal cells have a temporal dynamic role in recall and extinction of cocaine-associated memory.

    Science.gov (United States)

    Van den Oever, Michel C; Rotaru, Diana C; Heinsbroek, Jasper A; Gouwenberg, Yvonne; Deisseroth, Karl; Stuber, Garret D; Mansvelder, Huibert D; Smit, August B

    2013-11-13

    In addicts, associative memories related to the rewarding effects of drugs of abuse can evoke powerful craving and drug seeking urges, but effective treatment to suppress these memories is not available. Detailed insight into the neural circuitry that mediates expression of drug-associated memory is therefore of crucial importance. Substantial evidence from rodent models of addictive behavior points to the involvement of the ventromedial prefrontal cortex (vmPFC) in conditioned drug seeking, but specific knowledge of the temporal role of vmPFC pyramidal cells is lacking. To this end, we used an optogenetics approach to probe the involvement of vmPFC pyramidal cells in expression of a recent and remote conditioned cocaine memory. In mice, we expressed Channelrhodopsin-2 (ChR2) or Halorhodopsin (eNpHR3.0) in pyramidal cells of the vmPFC and studied the effect of activation or inhibition of these cells during expression of a cocaine-contextual memory on days 1-2 (recent) and ∼3 weeks (remote) after conditioning. Whereas optical activation of pyramidal cells facilitated extinction of remote memory, without affecting recent memory, inhibition of pyramidal cells acutely impaired recall of recent cocaine memory, without affecting recall of remote memory. In addition, we found that silencing pyramidal cells blocked extinction learning at the remote memory time-point. We provide causal evidence of a critical time-dependent switch in the contribution of vmPFC pyramidal cells to recall and extinction of cocaine-associated memory, indicating that the circuitry that controls expression of cocaine memories reorganizes over time.

  8. Linking DMN connectivity to episodic memory capacity: What can we learn from patients with medial temporal lobe damage?

    Directory of Open Access Journals (Sweden)

    Cornelia McCormick

    2014-01-01

    Full Text Available Computational models predict that focal damage to the Default Mode Network (DMN causes widespread decreases and increases of functional DMN connectivity. How such alterations impact functioning in a specific cognitive domain such as episodic memory remains relatively unexplored. Here, we show in patients with unilateral medial temporal lobe epilepsy (mTLE that focal structural damage leads indeed to specific patterns of DMN functional connectivity alterations, specifically decreased connectivity between both medial temporal lobes (MTLs and the posterior part of the DMN and increased intrahemispheric anterior–posterior connectivity. Importantly, these patterns were associated with better and worse episodic memory capacity, respectively. These distinct patterns, shown here for the first time, suggest that a close dialogue between both MTLs and the posterior components of the DMN is required to fully express the extensive repertoire of episodic memory abilities.

  9. Relationship between remnant hippocampus and amygdala and memory outcomes after stereotactic surgery for mesial temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Malikova H

    2015-11-01

    Full Text Available Hana Malikova,1,2,* Lenka Kramska,3,* Zdenek Vojtech,4,5 Jan Sroubek,6 Jiri Lukavsky,7 Roman Liscak8 1Department of Radiology, Na Homolce Hospital, 2Institute of Anatomy, Second Medical Faculty, Charles University in Prague, 3Department of Clinical Psychology, Na Homolce Hospital, 4Department of Neurology, Na Homolce Hospital, 5Department of Neurology, 3rd Medical Faculty, Charles University in Prague, 6Department of Neurosurgery, Na Homolce Hospital, 7Institute of Psychology, Academy of Sciences of the Czech Republic, 8Department of Radiation and Stereotactic Neurosurgery, Na Homolce Hospital, Prague, Czech Republic *These authors contributed equally to this work Background and purpose: Mesial temporal structures play an important role in human memory. In mesial temporal lobe epilepsy (MTLE, seizure activity is generated from the same structures. Surgery is the definitive treatment for medically intractable MTLE. In addition to standard temporal lobe microsurgical resection, stereotactic radiofrequency amygdalohippocampectomy (SAHE is used as an alternative MTLE treatment. While memory impairments after standard epilepsy surgery are well known, it has been shown that memory decline is not a feature of SAHE. The aim of the present study was to correlate the volume of the remnant hippocampus and amygdala in patients treated by SAHE with changes in memory parameters.Materials and methods: Thirty-seven MTLE patients treated by SAHE (ten right, 27 left were included. Patients underwent magnetic resonance imaging examinations including hippocampal and amygdalar volumetry and neuropsychological evaluation preoperatively and 1 year after surgery.Results: Using Spearman correlation analyses, larger left-sided hippocampal reductions were associated with lower verbal memory performance (ρ=-0.46; P=0.02. On the contrary, improvement of global memory quotient (MQ was positively correlated with larger right-sided hippocampal reduction (ρ=0.66; P=0

  10. P2-18: Temporal and Featural Separation of Memory Items Play Little Role for VSTM-Based Change Detection

    Directory of Open Access Journals (Sweden)

    Dae-Gyu Kim

    2012-10-01

    Full Text Available Classic studies of visual short-term memory (VSTM found that presenting memory items either sequentially or simultaneously does not affect recognition accuracy of the remembered items. Other studies also suggest that capacity of VSTM benefits from formation of bound object-based representations leading to no cost of remembering multi-feature items. According to these ideas, we aimed to examine the role of temporal and featural separation of memory items in VSTM change detection, (1 if sample items are separated across different temporal moments and (2 if across different feature dimensions. In a series of change detection experiments, we asked participants to report a change between a sample and a test display with a brief delay in between. In experiment 1, the sample items were split into two sets with a different onset time. In experiment 2, the sample items were split across two different feature dimensions (e.g., half color and half orientation. The change detection accuracy in Experiment 1 showed no substantial drop when the memory items were separated into two onset groups compared to simultaneous onset. The accuracy did not drop either when the features of sample items were split across two different feature groups compared to when were not split. The results indicate that temporal and featural separation of VWM items does not play a significant role for VSTM-based change detection.

  11. The medial temporal lobe supports sensing-based visual working memory.

    Science.gov (United States)

    Goodrich, Robin I; Yonelinas, Andrew P

    2016-08-01

    It is well established that the medial temporal lobe (MTL), including the hippocampus, is essential for long-term memory. In addition, recent studies suggest that the MTL may also support visual working memory (VWM), but the conditions under which the MTL plays a critical role are not yet clear. To address this issue, we used a color change detection paradigm to examine the effects of MTL damage on VWM by analyzing the receiver operating characteristics of patients with MTL damage and healthy age- and education-matched controls. Compared to controls, patients with MTL damage demonstrated significant reductions in VWM accuracy. Importantly, the patients were not impaired at making accurate high-confidence judgments that a change had occurred; however, they were impaired when making low-confidence responses indicating that they sensed whether or not there had been a visual change. Moreover, these impairments were observed under conditions that emphasized the retrieval of complex bindings or the retrieval of high-resolution bindings. That is, patients with MTL damage exhibited VWM impairments when they were required to remember either a larger number of low-resolution bindings (i.e., set size of 5 and obvious color changes) or a smaller number of high-resolution bindings (i.e., set size of 3 and subtle color changes). The results indicate that only some VWM processes are dependent on the MTL, and are consistent with the proposal that the MTL plays a critical role in forming complex, high-resolution bindings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment.

    Science.gov (United States)

    Pulvermüller, Friedemann; Garagnani, Max

    2014-08-01

    Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure

  13. Pre-learning stress that is temporally removed from acquisition exerts sex-specific effects on long-term memory.

    Science.gov (United States)

    Zoladz, Phillip R; Warnecke, Ashlee J; Woelke, Sarah A; Burke, Hanna M; Frigo, Rachael M; Pisansky, Julia M; Lyle, Sarah M; Talbot, Jeffery N

    2013-02-01

    We have examined the influence of sex and the perceived emotional nature of learned information on pre-learning stress-induced alterations of long-term memory. Participants submerged their dominant hand in ice cold (stress) or warm (no stress) water for 3 min. Thirty minutes later, they studied 30 words, rated the words for their levels of emotional valence and arousal and were then given an immediate free recall test. Twenty-four hours later, participants' memory for the word list was assessed via delayed free recall and recognition assessments. The resulting memory data were analyzed after categorizing the studied words (i.e., distributing them to "positive-arousing", "positive-non-arousing", "negative-arousing", etc. categories) according to participants' valence and arousal ratings of the words. The results revealed that participants exhibiting a robust cortisol response to stress exhibited significantly impaired recognition memory for neutral words. More interestingly, however, males displaying a robust cortisol response to stress demonstrated significantly impaired recall, overall, and a marginally significant impairment of overall recognition memory, while females exhibiting a blunted cortisol response to stress demonstrated a marginally significant impairment of overall recognition memory. These findings support the notion that a brief stressor that is temporally separated from learning can exert deleterious effects on long-term memory. However, they also suggest that such effects depend on the sex of the organism, the emotional salience of the learned information and the degree to which stress increases corticosteroid levels. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. β-Adrenergic Receptors Regulate the Acquisition and Consolidation Phases of Aversive Memory Formation Through Distinct, Temporally Regulated Signaling Pathways.

    Science.gov (United States)

    Schiff, Hillary C; Johansen, Joshua P; Hou, Mian; Bush, David E A; Smith, Emily K; Klein, JoAnna E; LeDoux, Joseph E; Sears, Robert M

    2017-03-01

    Memory formation requires the temporal coordination of molecular events and cellular processes following a learned event. During Pavlovian threat (fear) conditioning (PTC), sensory and neuromodulatory inputs converge on post-synaptic neurons within the lateral nucleus of the amygdala (LA). By activating an intracellular cascade of signaling molecules, these G-protein-coupled neuromodulatory receptors are capable of recruiting a diverse profile of plasticity-related proteins. Here we report that norepinephrine, through its actions on β-adrenergic receptors (βARs), modulates aversive memory formation following PTC through two molecularly and temporally distinct signaling mechanisms. Specifically, using behavioral pharmacology and biochemistry in adult rats, we determined that βAR activity during, but not after PTC training initiates the activation of two plasticity-related targets: AMPA receptors (AMPARs) for memory acquisition and short-term memory and extracellular regulated kinase (ERK) for consolidating the learned association into a long-term memory. These findings reveal that βAR activity during, but not following PTC sets in motion cascading molecular events for the acquisition (AMPARs) and subsequent consolidation (ERK) of learned associations.

  15. The role of the left anterior temporal lobe in semantic composition vs. semantic memory.

    Science.gov (United States)

    Westerlund, Masha; Pylkkänen, Liina

    2014-05-01

    The left anterior temporal lobe (LATL) is robustly implicated in semantic processing by a growing body of literature. However, these results have emerged from two distinct bodies of work, addressing two different processing levels. On the one hand, the LATL has been characterized as a 'semantic hub׳ that binds features of concepts across a distributed network, based on results from semantic dementia and hemodynamic findings on the categorization of specific compared to basic exemplars. On the other, the LATL has been implicated in combinatorial operations in language, as shown by increased activity in this region associated with the processing of sentences and of basic phrases. The present work aimed to reconcile these two literatures by independently manipulating combination and concept specificity within a minimal MEG paradigm. Participants viewed simple nouns that denoted either low specificity (fish) or high specificity categories (trout) presented in either combinatorial (spotted fish/trout) or non-combinatorial contexts (xhsl fish/trout). By combining these paradigms from the two literatures, we directly compared the engagement of the LATL in semantic memory vs. semantic composition. Our results indicate that although noun specificity subtly modulates the LATL activity elicited by single nouns, it most robustly affects the size of the composition effect when these nouns are adjectivally modified, with low specificity nouns eliciting a much larger effect. We conclude that these findings are compatible with an account in which the specificity and composition effects arise from a shared mechanism of meaning specification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Temporal course of gene expression during motor memory formation in primary motor cortex of rats.

    Science.gov (United States)

    Hertler, B; Buitrago, M M; Luft, A R; Hosp, J A

    2016-12-01

    Motor learning is associated with plastic reorganization of neural networks in primary motor cortex (M1) that depends on changes in gene expression. Here, we investigate the temporal profile of these changes during motor memory formation in response to a skilled reaching task in rats. mRNA-levels were measured 1h, 7h and 24h after the end of a training session using microarray technique. To assure learning specificity, trained animals were compared to a control group. In response to motor learning, genes are sequentially regulated with high time-point specificity and a shift from initial suppression to later activation. The majority of regulated genes can be linked to learning-related plasticity. In the gene-expression cascade following motor learning, three different steps can be defined: (1) an initial suppression of genes influencing gene transcription. (2) Expression of genes that support translation of mRNA in defined compartments. (3) Expression of genes that immediately mediates plastic changes. Gene expression peaks after 24h - this is a much slower time-course when compared to hippocampus-dependent learning, where peaks of gene-expression can be observed 6-12h after training ended. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Distinct neural correlates of associative working memory and long-term memory encoding in the medial temporal lobe

    NARCIS (Netherlands)

    Bergmann, H.C.; Rijpkema, M.J.P.; Fernandez, G.S.E.; Kessels, R.P.C.

    2012-01-01

    Increasing evidence suggests a role for the hippocampus not only in long-term memory (LTM) but also in relational working memory (WM) processes, challenging the view of the hippocampus as being solely involved in episodic LTM. However, hippocampal involvement reported in some neuroimaging studies

  18. Memory Based Machine Intelligence Techniques in VLSI hardware

    OpenAIRE

    James, Alex Pappachen

    2012-01-01

    We briefly introduce the memory based approaches to emulate machine intelligence in VLSI hardware, describing the challenges and advantages. Implementation of artificial intelligence techniques in VLSI hardware is a practical and difficult problem. Deep architectures, hierarchical temporal memories and memory networks are some of the contemporary approaches in this area of research. The techniques attempt to emulate low level intelligence tasks and aim at providing scalable solutions to high ...

  19. The effect of Vitamin E on learning and memory deficits in intrahippocampal kainate-induced temporal lobe epilepsy in rats.

    Science.gov (United States)

    Kiasalari, Zahra; Khalili, Mohsen; Shafiee, Samaneh; Roghani, Mehrdad

    2016-01-01

    Since temporal lobe epilepsy (TLE) is associated with learning and memory impairment, we investigated the beneficial effect of Vitamin E on the impaired learning and memory in the intrahippocampal kainate model of TLE in rats. Rats were divided into sham, Vitamin E-treated sham, kainate, and Vitamin E-treated kainate. Intrahippocampal kainate was used for induction of epilepsy. Vitamin E was injected intraperitoneal (i.p.) at a dose of 200 mg/kg/day started 1 week before surgery until 1 h presurgery. Initial and step-through latencies in the passive avoidance test and alternation behavior percentage in Y-maze were finally determined in addition to measurement of some oxidative stress markers. Kainate injection caused a higher severity and rate of seizures and deteriorated learning and memory performance in passive avoidance paradigm and spontaneous alternation as an index of spatial recognition memory in Y-maze task. Intrahippocampal kainate also led to the elevation of malondialdehyde (MDA) and nitrite and reduced activity of superoxide dismutase (SOD). Vitamin E pretreatment significantly attenuated severity and incidence rate of seizures, significantly improved retrieval and recall in passive avoidance, did not ameliorate spatial memory deficit in Y-maze, and lowered MDA and enhanced SOD activity. Vitamin E improves passive avoidance learning and memory and part of its beneficial effect is due to its potential to mitigate hippocampal oxidative stress.

  20. Temporal-pattern similarity analysis reveals the beneficial and detrimental effects of context reinstatement on human memory.

    Science.gov (United States)

    Staudigl, Tobias; Vollmar, Christian; Noachtar, Soheyl; Hanslmayr, Simon

    2015-04-01

    A powerful force in human memory is the context in which memories are encoded (Tulving and Thomson, 1973). Several studies suggest that the reinstatement of neural encoding patterns is beneficial for memory retrieval (Manning et al., 2011; Staresina et al., 2012; Jafarpour et al., 2014). However, reinstatement of the original encoding context is not always helpful, for instance, when retrieving a memory in a different contextual situation (Smith and Vela, 2001). It is an open question whether such context-dependent memory effects can be captured by the reinstatement of neural patterns. We investigated this question by applying temporal and spatial pattern similarity analysis in MEG and intracranial EEG in a context-match paradigm. Items (words) were tagged by individual dynamic context stimuli (movies). The results show that beta oscillatory phase in visual regions and the parahippocampal cortex tracks the incidental reinstatement of individual context trajectories on a single-trial level. Crucially, memory benefitted from reinstatement when the encoding and retrieval contexts matched but suffered from reinstatement when the contexts did not match. Copyright © 2015 the authors 0270-6474/15/355373-12$15.00/0.

  1. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory

    OpenAIRE

    Masahiro eKawasaki; Masahiro eKawasaki; Masahiro eKawasaki; Keiichi eKitajo; Keiichi eKitajo; Yoko eYamaguchi

    2014-01-01

    In humans, theta phase (4–8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from...

  2. Verbal learning and memory outcome in selective amygdalohippocampectomy versus temporal lobe resection in patients with hippocampal sclerosis

    DEFF Research Database (Denmark)

    Foged, Mette Thrane; Vinter, Kirsten; Stauning, Louise

    2018-01-01

    1995 and 2009 in Denmark. Exclusion criteria are the following: Intelligence below normal range, right hemisphere dominance, other native languages than Danish, dual pathology, and missing follow-up data. Thus, 56 patients were analyzed. The patients were allocated to SAH (n = 22) or TLR (n = 34) based...... resonance imaging (MRI) signs of dual pathology, selective amygdalohippocampectomy results in sustained seizure freedom and better memory function compared with patients operated with nonselective temporal lobe resection....

  3. The medial temporal lobes distinguish between within-item and item-context relations during autobiographical memory retrieval.

    Science.gov (United States)

    Sheldon, Signy; Levine, Brian

    2015-12-01

    During autobiographical memory retrieval, the medial temporal lobes (MTL) relate together multiple event elements, including object (within-item relations) and context (item-context relations) information, to create a cohesive memory. There is consistent support for a functional specialization within the MTL according to these relational processes, much of which comes from recognition memory experiments. In this study, we compared brain activation patterns associated with retrieving within-item relations (i.e., associating conceptual and sensory-perceptual object features) and item-context relations (i.e., spatial relations among objects) with respect to naturalistic autobiographical retrieval. We developed a novel paradigm that cued participants to retrieve information about past autobiographical events, non-episodic within-item relations, and non-episodic item-context relations with the perceptuomotor aspects of retrieval equated across these conditions. We used multivariate analysis techniques to extract common and distinct patterns of activity among these conditions within the MTL and across the whole brain, both in terms of spatial and temporal patterns of activity. The anterior MTL (perirhinal cortex and anterior hippocampus) was preferentially recruited for generating within-item relations later in retrieval whereas the posterior MTL (posterior parahippocampal cortex and posterior hippocampus) was preferentially recruited for generating item-context relations across the retrieval phase. These findings provide novel evidence for functional specialization within the MTL with respect to naturalistic memory retrieval. © 2015 Wiley Periodicals, Inc.

  4. Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex.

    Science.gov (United States)

    Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao

    2016-06-10

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation.

  5. Impact of hippocampal subfield histopathology in episodic memory impairment in mesial temporal lobe epilepsy and hippocampal sclerosis.

    Science.gov (United States)

    Comper, Sandra Mara; Jardim, Anaclara Prada; Corso, Jeana Torres; Gaça, Larissa Botelho; Noffs, Maria Helena Silva; Lancellotti, Carmen Lúcia Penteado; Cavalheiro, Esper Abrão; Centeno, Ricardo Silva; Yacubian, Elza Márcia Targas

    2017-10-01

    The objective of the study was to analyze preoperative visual and verbal episodic memories in a homogeneous series of patients with mesial temporal lobe epilepsy (MTLE) and unilateral hippocampal sclerosis (HS) submitted to corticoamygdalohippocampectomy and its association with neuronal cell density of each hippocampal subfield. The hippocampi of 72 right-handed patients were collected and prepared for histopathological examination. Hippocampal sclerosis patterns were determined, and neuronal cell density was calculated. Preoperatively, two verbal and two visual memory tests (immediate and delayed recalls) were applied, and patients were divided into two groups, left and right MTLE (36/36). There were no statistical differences between groups regarding demographic and clinical data. Cornu Ammonis 4 (CA4) neuronal density was significantly lower in the right hippocampus compared with the left (p=0.048). The groups with HS presented different memory performance - the right HS were worse in visual memory test [Complex Rey Figure, immediate (p=0.001) and delayed (p=0.009)], but better in one verbal task [RAVLT delayed (p=0.005)]. Multiple regression analysis suggested that the verbal memory performance of the group with left HS was explained by CA1 neuronal density since both tasks were significantly influenced by CA1 [Logical Memory immediate recall (p=0.050) and Logical Memory and RAVLT delayed recalls (p=0.004 and p=0.001, respectively)]. For patients with right HS, both CA1 subfield integrity (p=0.006) and epilepsy duration (p=0.012) explained Complex Rey Figure immediate recall performance. Ultimately, epilepsy duration also explained the performance in the Complex Rey Figure delayed recall (pepilepsy duration were associated with visual memory performance in patients with right HS. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Facilitation of memory by contextual cues in patients with diencephalic or medial temporal lobe dysfunction.

    NARCIS (Netherlands)

    Tielemans, N.S.; Hendriks, M.P.; Talamini, L.; Wester, A.J.; Meeter, M.; Kessels, R.P.C.

    2012-01-01

    Item-context binding is crucial for successful episodic memory formation, and binding deficits have been suggested to underlie episodic-memory deficits. Here, our research investigated the facilitation of cued recall and recognition memory by contextual cues in 20 patients with Korsakoff's amnesia,

  7. Facilitation of memory by contextual cues in patients with diencephalic or medial temporal lobe dysfunction

    NARCIS (Netherlands)

    Tielemans, N.S.; Hendriks, M.P.H.; Talamini, L.; Wester, A.J.; Meeter, M.; Kessels, R.P.C.

    2012-01-01

    Item-context binding is crucial for successful episodic memory formation, and binding deficits have been suggested to underlie episodic-memory deficits. Here, our research investigated the facilitation of cued recall and recognition memory by contextual cues in 20 patients with Korsakoff's amnesia,

  8. Opposite Effects of Cortisol on Consolidation of Temporal Sequence Memory during Waking and Sleep

    Science.gov (United States)

    Wilhelm, Ines; Wagner, Ullrich; Born, Jan

    2011-01-01

    Memory functions involve three stages: encoding, consolidation, and retrieval. Modulating effects of glucocorticoids (GCs) have been consistently observed for declarative memory with GCs enhancing encoding and impairing retrieval, but surprisingly, little is known on how GCs affect memory consolidation. Studies in rats suggest a beneficial effect…

  9. Medial temporal lobe damage causes deficits in episodic memory and episodic future thinking not attributable to deficits in narrative construction.

    Science.gov (United States)

    Race, Elizabeth; Keane, Margaret M; Verfaellie, Mieke

    2011-07-13

    The medial temporal lobe (MTL) makes critical contributions to episodic memory, but its contributions to episodic future thinking remain a matter of debate. By one view, imagining future events relies on MTL mechanisms that also support memory for past events. Alternatively, it has recently been suggested that future thinking is independent of MTL-mediated processes and can be supported by regions outside the MTL. The current study investigated the nature and necessity of MTL involvement in imagining the future and tested the novel hypothesis that the MTL contributes to future thinking by supporting online binding processes related to narrative construction. Human amnesic patients with well characterized MTL damage and healthy controls constructed narratives about (1) future events, (2) past events, and (3) visually presented pictures. While all three tasks place similar demands on narrative construction, only the past and future conditions require memory/future thinking to mentally generate relevant narrative information. Patients produced impoverished descriptions of both past and future events but were unimpaired at producing detailed picture narratives. In addition, future-thinking performance positively correlated with episodic memory performance but did not correlate with picture narrative performance. Finally, future-thinking impairments were present when MTL lesions were restricted to the hippocampus and did not depend on the presence of neural damage outside the MTL. These results indicate that the ability to generate and maintain a detailed narrative is preserved in amnesia and suggest that a common MTL mechanism supports both episodic memory and episodic future thinking.

  10. Medial Temporal Lobe Damage Causes Deficits in Episodic Memory and Episodic Future Thinking Not Attributable to Deficits in Narrative Construction

    Science.gov (United States)

    Race, Elizabeth; Keane, Margaret M.; Verfaellie, Mieke

    2015-01-01

    The medial temporal lobe (MTL) makes critical contributions to episodic memory, but its contributions to episodic future thinking remain a matter of debate. By one view, imagining future events relies on MTL mechanisms that also support memory for past events. Alternatively, it has recently been suggested that future thinking is independent of MTL-mediated processes and can be supported by regions outside the MTL. The current study investigated the nature and necessity of MTL involvement in imagining the future and tested the novel hypothesis that the MTL contributes to future thinking by supporting online binding processes related to narrative construction. Human amnesic patients with well-characterized MTL damage and healthy controls constructed narratives about (a) future events, (b) past events, and (c) visually-presented pictures. While all three tasks place similar demands on narrative construction, only the past and future conditions require memory/future thinking to mentally generate relevant narrative information. Patients produced impoverished descriptions of both past and future events but were unimpaired at producing detailed picture narratives. In addition, future-thinking performance positively correlated with episodic memory performance but did not correlate with picture narrative performance. Finally, future-thinking impairments were present when MTL lesions were restricted to the hippocampus and did not depend on the presence of neural damage outside the MTL. These results indicate that the ability to generate and maintain a detailed narrative is preserved in amnesia and suggest that a common MTL mechanism supports both episodic memory and episodic future thinking. PMID:21753003

  11. Temporal entrainment of cognitive functions: musical mnemonics induce brain plasticity and oscillatory synchrony in neural networks underlying memory.

    Science.gov (United States)

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C

    2005-12-01

    In a series of experiments, we have begun to investigate the effect of music as a mnemonic device on learning and memory and the underlying plasticity of oscillatory neural networks. We used verbal learning and memory tests (standardized word lists, AVLT) in conjunction with electroencephalographic analysis to determine differences between verbal learning in either a spoken or musical (verbal materials as song lyrics) modality. In healthy adults, learning in both the spoken and music condition was associated with significant increases in oscillatory synchrony across all frequency bands. A significant difference between the spoken and music condition emerged in the cortical topography of the learning-related synchronization. When using EEG measures as predictors during learning for subsequent successful memory recall, significantly increased coherence (phase-locked synchronization) within and between oscillatory brain networks emerged for music in alpha and gamma bands. In a similar study with multiple sclerosis patients, superior learning and memory was shown in the music condition when controlled for word order recall, and subjects were instructed to sing back the word lists. Also, the music condition was associated with a significant power increase in the low-alpha band in bilateral frontal networks, indicating increased neuronal synchronization. Musical learning may access compensatory pathways for memory functions during compromised PFC functions associated with learning and recall. Music learning may also confer a neurophysiological advantage through the stronger synchronization of the neuronal cell assemblies underlying verbal learning and memory. Collectively our data provide evidence that melodic-rhythmic templates as temporal structures in music may drive internal rhythm formation in recurrent cortical networks involved in learning and memory.

  12. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus.

    Science.gov (United States)

    Rocchetti, Jill; Isingrini, Elsa; Dal Bo, Gregory; Sagheby, Sara; Menegaux, Aurore; Tronche, François; Levesque, Daniel; Moquin, Luc; Gratton, Alain; Wong, Tak Pan; Rubinstein, Marcelo; Giros, Bruno

    2015-03-15

    Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Relationship Between the Wada Test and Preoperative/Postoperative Memory in Mesial Temporal Lobe Epilepsy Patients

    Directory of Open Access Journals (Sweden)

    Burcu POLAT

    2013-01-01

    Full Text Available Objectives: To study the correlation between Wada memory test and neuropsychometric tests which were applied preoperatively to mesialtemporal lobe epilepsy patients associated with hippocampal sclerosis (MTLE-HS who had undergone selective amygdalohippocampectomyand find out the effects of early onset epileptic seizures on atypical memory dominance.Methods: Drug-resistant 27 patients (16 left, 11 right MTLE-HS had video EEG, cranial MRI and Wada test preoperatively. Weschler visualsubtest and verbal memory processing tests were applied to all patients before surgery and the first year after the operation.Results: The number of left hemisphere memory dominant patients was 6 (22.2% and the number of atypical memory dominant patientswas 21 (77.8% according to the Wada test. There was a significant difference between the two groups when compared for epileptic seizureonset age; (p=0.042, and also a significant diffference when compared for HS (right/left side (p=0.002. When we analyzed the correlationbetween preoperative and postoperative verbal and nonverbal tests and left memory Wada dominance; in verbal memory processing tests‘delayed recall’ scores between groups were significant (p=0.042, on the other hand in patients with atypical memory dominance ‘total learning’ scores between groups were significant (p<0.001.Conclusion: As a result, we found that the earlier the onset of seizures, the more atypical the memory dominance (right or bilateral. The Wada test was effective for assessing verbal memory; on the other hand, it was inadequate for assessing visual memory dominance. If the scores of ‘delayed recall’ in verbal memory were high in the patients with typical verbal dominance and ‘total learning’ scores in the patients with atypical verbal dominance, the scores also tended to rise after the operation.

  14. Involuntary and voluntary recall of musical memories: a comparison of temporal accuracy and emotional responses.

    OpenAIRE

    Jakubowski, Kelly; Bashir, Zaariyah; Farrugia, Nicolas; Stewart, Lauren

    2018-01-01

    Comparisons between involuntarily and voluntarily retrieved autobiographical memories have revealed similarities in encoding and maintenance, with differences in terms of specificity and emotional responses. Our study extended this research area into the domain of musical memory, which afforded a unique opportunity to compare the same memory as accessed both involuntarily and voluntarily. Specifically, we compared instances of involuntary musical imagery (INMI, or “earworms”)—the spontaneous ...

  15. How Fast Do Objects Fall in Visual Memory? Uncovering the Temporal and Spatial Features of Representational Gravity.

    Science.gov (United States)

    De Sá Teixeira, Nuno

    2016-01-01

    Visual memory for the spatial location where a moving target vanishes has been found to be systematically displaced downward in the direction of gravity. Moreover, it was recently reported that the magnitude of the downward error increases steadily with increasing retention intervals imposed after object's offset and before observers are allowed to perform the spatial localization task, in a pattern where the remembered vanishing location drifts downward as if following a falling trajectory. This outcome was taken to reflect the dynamics of a representational model of earth's gravity. The present study aims to establish the spatial and temporal features of this downward drift by taking into account the dynamics of the motor response. The obtained results show that the memory for the last location of the target drifts downward with time, thus replicating previous results. Moreover, the time taken for completion of the behavioural localization movements seems to add to the imposed retention intervals in determining the temporal frame during which the visual memory is updated. Overall, it is reported that the representation of spatial location drifts downward by about 3 pixels for each two-fold increase of time until response. The outcomes are discussed in relation to a predictive internal model of gravity which outputs an on-line spatial update of remembered objects' location.

  16. Binding ‘when’ and ‘where’ impairs temporal, but not spatial recall in auditory and visual working memory

    Directory of Open Access Journals (Sweden)

    Franco eDelogu

    2012-03-01

    Full Text Available Information about where and when events happened seem naturally linked to each other, but only few studies have investigated whether and how they are associated in working memory. We tested whether the location of items and their temporal order are jointly or independently encoded. We also verified if spatio-temporal binding is influenced by the sensory modality of items. Participants were requested to memorize the location and/or the serial order of five items (environmental sounds or pictures sequentially presented from five different locations. Next, they were asked to recall either the item location or their order of presentation within the sequence. Attention during encoding was manipulated by contrasting blocks of trials in which participants were requested to encode only one feature, to blocks of trials where they had to encode both features. Results show an interesting interaction between task and attention. Accuracy in the serial order recall was affected by the simultaneous encoding of item location, whereas the recall of item location was unaffected by the concurrent encoding of the serial order of items. This asymmetric influence of attention on the two tasks was similar for the auditory and visual modality. Together, these data indicate that item location is processed in a relatively automatic fashion, whereas maintaining serial order is more demanding in terms of attention. The remarkably analogous results for auditory and visual memory performance, suggest that the binding of serial order and location in working memory is not modality-dependent, and may involve common intersensory mechanisms.

  17. Thalamo-Cortical Disruption Contributes to Short-Term Memory Deficits in Patients with Medial Temporal Lobe Damage.

    Science.gov (United States)

    Voets, Natalie L; Menke, Ricarda A L; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E

    2015-11-01

    Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage. © The Author 2015. Published by Oxford University Press.

  18. Contributions of Volumetrics of the Hippocampus and Thalamus to Verbal Memory in Temporal Lobe Epilepsy Patients

    Science.gov (United States)

    Stewart, Christopher C.; Griffith, H. Randall; Okonkwo, Ozioma C.; Martin, Roy C.; Knowlton, Robert K.; Richardson, Elizabeth J.; Hermann, Bruce P.; Seidenberg, Michael

    2009-01-01

    Recent theories have posited that the hippocampus and thalamus serve distinct, yet related, roles in episodic memory. Whereas the hippocampus has been implicated in long-term memory encoding and storage, the thalamus, as a whole, has been implicated in the selection of items for subsequent encoding and the use of retrieval strategies. However,…

  19. A Buffer Model of Memory Encoding and Temporal Correlations in Retrieval

    Science.gov (United States)

    Lehman, Melissa; Malmberg, Kenneth J.

    2013-01-01

    Atkinson and Shiffrin's (1968) dual-store model of memory includes structural aspects of memory along with control processes. The rehearsal buffer is a process by which items are kept in mind and long-term episodic traces are formed. The model has been both influential and controversial. Here, we describe a novel variant of Atkinson and Shiffrin's…

  20. Non Temporal Determinants of Bilingual Memory Capacity: The Role of Long-Term Representations and Fluency.

    Science.gov (United States)

    Chincotta, Dino; Underwood, Geoffrey

    1998-01-01

    Examined the view that the variation in bilingual short-term memory capacity is determined by differential rates of subvocal rehearsal between the languages. Auditory memory span and articulation time were measured for three bilingual groups who spoke Finnish at home and Swedish at school, and either Finnish of Swedish in both the home and the…

  1. Decoding Overlapping Memories in the Medial Temporal Lobes Using High-Resolution fMRI

    Science.gov (United States)

    Chadwick, Martin J.; Hassabis, Demis; Maguire, Eleanor A.

    2011-01-01

    The hippocampus is proposed to process overlapping episodes as discrete memory traces, although direct evidence for this in human episodic memory is scarce. Using green-screen technology we created four highly overlapping movies of everyday events. Participants were scanned using high-resolution fMRI while recalling the movies. Multivariate…

  2. Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage.

    Science.gov (United States)

    Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P

    2017-02-01

    The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. The role of medial temporal lobe in retrieving spatial and nonspatial relations from episodic and semantic memory.

    Science.gov (United States)

    Ryan, Lee; Lin, Chun-Yu; Ketcham, Katie; Nadel, Lynn

    2010-01-01

    This study examined the involvement of medial temporal lobe, especially the hippocampus, in processing spatial and nonspatial relations using episodic and semantic versions of a relational judgment task. Participants studied object arrays and were tested on different types of relations between pairs of objects. Three prevalent views of hippocampal function were considered. Cognitive map theory (O'Keefe and Nadel (1978) The Hippocampus as a Cognitive Map. USA: Oxford University Press) emphasizes hippocampal involvement in spatial relational tasks. Multiple trace theory (Nadel and Moscovitch (1997) Memory consolidation, retrograde amnesia and the hippocampal complex Curr Opin Neurobiol 7:217-227) emphasizes hippocampal involvement in episodic tasks. Eichenbaum and Cohen's ((2001) From Conditioning to Conscious Recollection: Memory Systems of the Brain. USA: Oxford University Press) relational theory predicts equivalent hippocampal involvement in all relational tasks within both semantic and episodic memory. The fMRI results provided partial support for all three theories, though none of them fit the data perfectly. We observed hippocampal activation during all relational tasks, with increased activation for spatial compared to nonspatial relations, and for episodic compared to semantic relations. The placement of activation along the anterior-posterior axis of the hippocampus also differentiated the conditions. We suggest a view of hippocampal function in memory that incorporates aspects of all three theories. Copyright 2009 Wiley-Liss, Inc.

  4. The neocortical network representing associative memory reorganizes with time in a process engaging the anterior temporal lobe.

    Science.gov (United States)

    Nieuwenhuis, Ingrid L C; Takashima, Atsuko; Oostenveld, Robert; McNaughton, Bruce L; Fernández, Guillén; Jensen, Ole

    2012-11-01

    During encoding, the distributed neocortical representations of memory components are presumed to be associatively linked by the hippocampus. With time, a reorganization of brain areas supporting memory takes place, which can ultimately result in memories becoming independent of the hippocampus. While it is theorized that with time, the neocortical representations become linked by higher order neocortical association areas, this remains to be experimentally supported. In this study, 24 human participants encoded sets of face-location associations, which they retrieved 1 or 25 h later ("recent" and "remote" conditions, respectively), while their brain activity was recorded using whole-head magnetoencephalography. We investigated changes in the functional interactions between the neocortical representational areas emerging over time. To assess functional interactions, trial-by-trial high gamma (60-140 Hz) power correlations were calculated between the neocortical representational areas relevant to the encoded information, namely the fusiform face area (FFA) and posterior parietal cortex (PPC). With time, both the FFA and the PPC increased their functional interactions with the anterior temporal lobe (ATL). Given that the ATL is involved in semantic representation of paired associates, our results suggest that, already within 25 h after acquiring new memory associations, neocortical functional links are established via higher order semantic association areas.

  5. Parahippocampal Involvement in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis: A Proof of Concept from Memory-Guided Saccades

    Directory of Open Access Journals (Sweden)

    Silvia Colnaghi

    2017-11-01

    Full Text Available ObjectiveMesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS may involve extrahippocampal areas of structural damage and dysfunction. The accuracy of medium-term spatial memory can be tested by memory-guided saccades (MGS to evaluate a functional impairment of the parahippocampal cortex (PHC, while voxel-based morphometry (VBM analysis can be used to detect a structural damage of the latter region.MethodsMGS with 3- and 30-s memorization delays were compared between 7 patients affected by right MTLE-HS (r-MTLE-HS, 6 patients affected by left MTLE-HS, and 13 healthy controls. The same subjects underwent brain MRI for a VBM analysis. Correlation analysis was performed between the results of VBM and MGS and with patients’ clinical data.ResultsRight MTLE-HS patients showed impaired accuracy of leftward MGS with a 30-s memorization delay; their gray-matter volume was reduced in the right hippocampus and inferior temporal gyrus, and bilaterally in the cerebellum. Left MTLE-HS patients had normal MGS accuracy; their gray-matter volume was reduced in the left hippocampus, in the right-inferior temporal gyrus and corpus callosus, and bilaterally in the insular cortex and in the cerebellum. The difference between right and left parahippocampal volumes correlated with MGS accuracy, while right and left hippocampal volumes did not. Hippocampal and parahippocampal volume did not correlate with clinical variables such as febrile seizures, age at disease onset, disease duration, and seizure frequency.ConclusionMGS abnormalities suggested the functional involvement of the right PHC in patients with r-MTLE-HS, supporting a right lateralization of spatial memory control and showing a relation between functional impairment and degree of atrophy.

  6. Verbal learning and memory outcome in selective amygdalohippocampectomy versus temporal lobe resection in patients with hippocampal sclerosis.

    Science.gov (United States)

    Foged, Mette Thrane; Vinter, Kirsten; Stauning, Louise; Kjær, Troels W; Ozenne, Brice; Beniczky, Sándor; Paulson, Olaf B; Madsen, Flemming Find; Pinborg, Lars H

    2018-02-01

    With the advent of new very selective techniques like thermal laser ablation to treat drug-resistant focal epilepsy, the controversy of resection size in relation to seizure outcome versus cognitive deficits has gained new relevance. The purpose of this study was to test the influence of the selective amygdalohippocampectomy (SAH) versus nonselective temporal lobe resection (TLR) on seizure outcome and cognition in patients with mesial temporal lobe epilepsy (MTLE) and histopathological verified hippocampal sclerosis (HS). We identified 108 adults (>16years) with HS, operated between 1995 and 2009 in Denmark. Exclusion criteria are the following: Intelligence below normal range, right hemisphere dominance, other native languages than Danish, dual pathology, and missing follow-up data. Thus, 56 patients were analyzed. The patients were allocated to SAH (n=22) or TLR (n=34) based on intraoperative electrocorticography. Verbal learning and verbal memory were tested pre- and postsurgery. Seizure outcome did not differ between patients operated using the SAH versus the TLR at 1year (p=0.951) nor at 7years (p=0.177). Verbal learning was more affected in patients resected in the left hemisphere than in the right (p=0.002). In patients with left-sided TLR, a worsening in verbal memory performance was found (p=0.011). Altogether, 73% were seizure-free for 1year and 64% for 7years after surgery. In patients with drug-resistant focal MTLE, HS and no magnetic resonance imaging (MRI) signs of dual pathology, selective amygdalohippocampectomy results in sustained seizure freedom and better memory function compared with patients operated with nonselective temporal lobe resection. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The relationship of medial temporal lobe epilepsy with the declarative memory system

    Directory of Open Access Journals (Sweden)

    Halász Péter

    2016-12-01

    Full Text Available Introduction. Medial temporal lobe of epilepsy (MTLE is considered as local/regional epilepsy. However, as was discussed in Part I of this review (Halász, 2016a there is more evidence regarding the involvement of both temporal lobes so as to consider MTLE as one of the typical bilateral system epilepsies.

  8. Does Controlling for Temporal Parameters Change the Levels-of-Processing Effect in Working Memory?

    OpenAIRE

    Loaiza, Vanessa M.; Camos, Val?rie

    2016-01-01

    The distinguishability between working memory (WM) and long-term memory has been a frequent and long-lasting source of debate in the literature. One recent method of identifying the relationship between the two systems has been to consider the influence of long-term memory effects, such as the levels-of-processing (LoP) effect, in WM. However, the few studies that have examined the LoP effect in WM have shown divergent results. This study examined the LoP effect in WM by considering a theoret...

  9. Distinct neural correlates of associative working memory and long-term memory encoding in the medial temporal lobe.

    Science.gov (United States)

    Bergmann, Heiko C; Rijpkema, Mark; Fernández, Guillén; Kessels, Roy P C

    2012-11-01

    Increasing evidence suggests a role for the hippocampus not only in long-term memory (LTM) but also in relational working memory (WM) processes, challenging the view of the hippocampus as being solely involved in episodic LTM. However, hippocampal involvement reported in some neuroimaging studies using "classical" WM tasks may at least partly reflect incidental LTM encoding. To disentangle WM processing and LTM formation we administered a delayed-match-to-sample associative WM task in an event-related fMRI study design. Each trial of the WM task consisted of four pairs of faces and houses, which had to be maintained during a delay of 10 s. This was followed by a probe phase consisting of three consecutively presented pairs; for each pair participants were to indicate whether it matched one of the pairs of the encoding phase. After scanning, an unexpected recognition-memory (LTM) task was administered. Brain activity during encoding was analyzed based on WM and LTM performance. Hence, encoding-related activity predicting WM success in the absence of successful LTM formation could be isolated. Furthermore, regions critical for successful LTM formation for pairs previously correctly processed in WM were analyzed. Results showed that the left parahippocampal gyrus including the fusiform gyrus predicted subsequent accuracy on WM decisions. The right anterior hippocampus and left inferior frontal gyrus, in contrast, predicted successful LTM for pairs that were previously correctly classified in the WM task. Our results suggest that brain regions associated with higher-level visuo-perceptual processing are involved in successful associative WM encoding, whereas the anterior hippocampus and left inferior frontal gyrus are involved in successful LTM formation during incidental encoding. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. An analytical study of physical models with inherited temporal and spatial memory

    Science.gov (United States)

    Jaradat, Imad; Alquran, Marwan; Al-Khaled, Kamel

    2018-04-01

    Du et al. (Sci. Reb. 3, 3431 (2013)) demonstrated that the fractional derivative order can be physically interpreted as a memory index by fitting the test data of memory phenomena. The aim of this work is to study analytically the joint effect of the memory index on time and space coordinates simultaneously. For this purpose, we introduce a novel bivariate fractional power series expansion that is accompanied by twofold fractional derivatives ordering α, β\\in(0,1]. Further, some convergence criteria concerning our expansion are presented and an analog of the well-known bivariate Taylor's formula in the sense of mixed fractional derivatives is obtained. Finally, in order to show the functionality and efficiency of this expansion, we employ the corresponding Taylor's series method to obtain closed-form solutions of various physical models with inherited time and space memory.

  11. Expected reward value and reward uncertainty have temporally dissociable effects on memory formation

    OpenAIRE

    Adcock, R; Clement, Nathaniel; Chiew, Kimberly; Dickerson, Kathryn; Stanek, Jessica

    2018-01-01

    Anticipating rewards has been shown to enhance memory formation. While substantial evidence implicates dopamine in this behavioral effect, the precise mechanisms remain ambiguous. Because dopamine nuclei show two distinct physiological signatures of reward prediction, we hypothesized two dissociable effects on memory formation. These two signatures are a phasic dopamine response immediately following a reward cue that encodes its expected value, and a sustained, ramping dopamine response that...

  12. Echoic Memory: Investigation of Its Temporal Resolution by Auditory Offset Cortical Responses

    OpenAIRE

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temp...

  13. Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions.

    Science.gov (United States)

    Cohen, Michael S; Rissman, Jesse; Suthana, Nanthia A; Castel, Alan D; Knowlton, Barbara J

    2014-06-01

    A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system coactivates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to assess how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants' selectivity index, which measures how close participants were to their optimal point total, given the number of items recalled. Greater selectivity scores were associated with greater differences in the activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during the encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items.

  14. Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions

    Science.gov (United States)

    Cohen, Michael S.; Rissman, Jesse; Suthana, Nanthia A.; Castel, Alan D.; Knowlton, Barbara J.

    2014-01-01

    A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system co-activates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to examine how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants’ selectivity index, a measure of how close participants were to their optimal point total given the number of items recalled. Greater selectivity scores were associated with greater differences in activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items. PMID:24683066

  15. La localización temporal de recuerdos autobiográficos The temporary location of autobiographical memories

    Directory of Open Access Journals (Sweden)

    Susana Azzollini

    2007-12-01

    Full Text Available Se realizó un estudio con los objetivos de: analizar la recuperación de recuerdos episódicos y conocer qué proporción de los eventos recordados incluye la recuperación de su localización temporal. Además, se buscó identificar la asociación entre la recuperación de la localización temporal de los recuerdos y su saliencia, su emocionalidad y su importancia relativa en la construcción de la imagen personal. Para llevarlo a cabo, dos investigadores consignaron diariamente eventos de su vida diaria durante 1 año en una planilla donde se debía localizar temporal y espacialmente el hecho, las personas involucradas, lo que había sucedido y el sentimiento o emoción asociada. Al cabo de un mes del último registro, se eligieron al azar registros sobre los que fueron utilizadas las pistas qué, quién, cuándo, dónde y sentimiento involucrado. Los resultados evidencian que resultó mayor la recuperación de hechos infrecuentes y de mayor emocionalidad, sin embargo, no parece depender del placer/displacer asociado a ellos. La información cronológica fue a menudo olvidada del recuerdo del evento y tampoco resultó útil como criterio de búsqueda, es decir que los eventos, en general, no son almacenados por fechas. La pista privilegiada para la recuperación de recuerdos fue "qué", lo cual sugiere que los recuerdos autobiográficos están organizados predominantemente en categorías no temporales.The aim of this study was to analyse the recovery of episodic memories in order to know which was the proportion of the recovery of temporal location included in remembered events and to identify the relationship between temporal location memories recovery with its saliency. Secondly, the relationship between the outgoing with the emotion and its relative importance in the self image construction. Two researchers daily checked events of their life for one year. They had to take notes about where the event had taken place, the people involved

  16. Functional substrate for memory function differences between patients with left and right mesial temporal lobe epilepsy associated with hippocampal sclerosis.

    Science.gov (United States)

    Jin, Seung-Hyun; Chung, Chun Kee

    2015-10-01

    Little is known about the functional substrate for memory function differences in patients with left or right mesial temporal lobe epilepsy (mTLE) associated with hippocampal sclerosis (HS) from an electrophysiological perspective. To characterize these differences, we hypothesized that hippocampal theta connectivity in the resting-state might be different between patients with left and right mTLE with HS and be correlated with memory performance. Resting-state hippocampal theta connectivity, identified via whole-brain magnetoencephalography, was evaluated. Connectivity and memory function in 41 patients with mTLE with HS (left mTLE=22; right mTLE=19) were compared with those in 46 age-matched healthy controls and 28 patients with focal cortical dysplasia (FCD) but without HS. Connectivity between the right hippocampus and the left middle frontal gyrus was significantly stronger in patients with right mTLE than in patients with left mTLE. Moreover, this connectivity was positively correlated with delayed verbal recall and recognition scores in patients with mTLE. Patients with left mTLE had greater delayed recall impairment than patients with right mTLE and FCD. Similarly, delayed recognition performance was worse in patients with left mTLE than in patients with right mTLE and FCD. No significant differences in memory function between patients with right mTLE and FCD were detected. Patients with right mTLE showed significantly stronger hippocampal theta connectivity between the right hippocampus and left middle frontal gyrus than patients with FCD and left mTLE. Our results suggest that right hippocampal-left middle frontal theta connectivity could be a functional substrate that can account for differences in memory function between patients with left and right mTLE. This functional substrate might be related to different compensatory mechanisms against the structural hippocampal lesions in left and right mTLE groups. Given the positive correlation between

  17. Working memory for sequences of temporal durations reveals a volatile single-item store

    Directory of Open Access Journals (Sweden)

    Sanjay G Manohar

    2016-10-01

    Full Text Available When a sequence is held in working memory, different items are retained with differing fidelity. Here we ask whether a sequence of brief time intervals that must be remembered show recency effects, similar to those observed in verbal and visuospatial working memory. It has been suggested that prioritising some items over others can be accounted for by a focus of attention, maintaining some items in a privileged state. We therefore also investigated whether such benefits are vulnerable to disruption by attention or expectation. Participants listened to sequences of one to five tones, of varying durations (200ms to 2s. Subsequently, the length of one of the tones in the sequence had to be reproduced by holding a key. The discrepancy between the reproduced and actual durations quantified the fidelity of memory for auditory durations. Recall precision decreased with the number of items that had to be remembered, and was better for the first and last items of sequences, in line with set-size and serial position effects seen in other modalities. To test whether attentional filtering demands might impair performance, an irrelevant variation in pitch was introduced in some blocks of trials. In those blocks, memory precision was worse for sequences that consisted of only one item, i.e. the smallest memory set size. Thus, when irrelevant information was present, the benefit of having only one item in memory is attenuated. Finally we examined whether expectation could interfere with memory. On half the trials, the number of items in the upcoming sequence was cued. When the number of items was known in advance, performance was paradoxically worse when the sequence consisted of only one item. Thus the benefit of having only one item to remember is stronger when it is unexpectedly the only item. Our results suggest that similar mechanisms are used to hold auditory time durations in working memory, as for visual or verbal stimuli. Further, solitary items were

  18. Temporal-contextual processing in working memory: evidence from delayed cued recall and delayed free recall tests.

    Science.gov (United States)

    Loaiza, Vanessa M; McCabe, David P

    2012-02-01

    Three experiments are reported that addressed the nature of processing in working memory by investigating patterns of delayed cued recall and free recall of items initially studied during complex and simple span tasks. In Experiment 1, items initially studied during a complex span task (i.e., operation span) were more likely to be recalled after a delay in response to temporal-contextual cues, relative to items from subspan and supraspan list lengths in a simple span task (i.e., word span). In Experiment 2, items initially studied during operation span were more likely to be recalled from neighboring serial positions during delayed free recall than were items studied during word span trials. Experiment 3 demonstrated that the number of attentional refreshing opportunities strongly predicts episodic memory performance, regardless of whether the information is presented in a spaced or massed format in a modified operation span task. The results indicate that the content-context bindings created during complex span trials reflect attentional refreshing opportunities that are used to maintain items in working memory.

  19. Memory

    Science.gov (United States)

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  20. The role of temporal delay and repeated prospective memory cue exposure on the deactivation of completed intentions.

    Science.gov (United States)

    Walser, Moritz; Plessow, Franziska; Goschke, Thomas; Fischer, Rico

    2014-07-01

    Previous studies have shown that completed prospective memory (PM) intentions entail aftereffects in terms of ongoing-task-performance decrements in trials containing repeated PM cues which previously served as PM cues triggering the intended action. Previous research reported that PM aftereffects decrease over time, thus revealing a specific time course of PM aftereffects. In the present study, we tested two accounts for this pattern, assuming either that the decline of aftereffects is related to the temporal distance to PM task completion or may be a result of the repeated exposure of repeated PM cues in the ongoing task. In three experiments, we manipulated both the temporal distance to PM task completion and the frequency of repeated PM cues and demonstrated that aftereffects of completed intentions declined with repeated exposure of formerly relevant PM cues. In addition, effects of repeated exposure were not only limited to the repetition of specific PM-cue exemplars but also generalized to other semantically related PM cues within the PM-cue category. Together, findings show that decreased aftereffects of completed intentions are not related to the temporal duration of the subsequent test block, but crucially depend on the repeated exposure of the previously relevant PM cues.

  1. Working-Memory Load and Temporal Myopia in Dynamic Decision Making

    Science.gov (United States)

    Worthy, Darrell A.; Otto, A. Ross; Maddox, W. Todd

    2012-01-01

    We examined the role of working memory (WM) in dynamic decision making by having participants perform decision-making tasks under single-task or dual-task conditions. In 2 experiments participants performed dynamic decision-making tasks in which they chose 1 of 2 options on each trial. The decreasing option always gave a larger immediate reward…

  2. Involuntary and voluntary recall of musical memories: A comparison of temporal accuracy and emotional responses.

    Science.gov (United States)

    Jakubowski, Kelly; Bashir, Zaariyah; Farrugia, Nicolas; Stewart, Lauren

    2018-01-29

    Comparisons between involuntarily and voluntarily retrieved autobiographical memories have revealed similarities in encoding and maintenance, with differences in terms of specificity and emotional responses. Our study extended this research area into the domain of musical memory, which afforded a unique opportunity to compare the same memory as accessed both involuntarily and voluntarily. Specifically, we compared instances of involuntary musical imagery (INMI, or "earworms")-the spontaneous mental recall and repetition of a tune-to deliberate recall of the same tune as voluntary musical imagery (VMI) in terms of recall accuracy and emotional responses. Twenty participants completed two 3-day tasks. In an INMI task, participants recorded information about INMI episodes as they occurred; in a VMI task, participants were prompted via text message to deliberately imagine each tune they had previously experienced as INMI. In both tasks, tempi of the imagined tunes were recorded by tapping to the musical beat while wearing an accelerometer and additional information (e.g., tune name, emotion ratings) was logged in a diary. Overall, INMI and VMI tempo measurements for the same tune were strongly correlated. Tempo recall for tunes that have definitive, recorded versions was relatively accurate, and tunes that were retrieved deliberately (VMI) were not recalled more accurately in terms of tempo than spontaneous and involuntary instances of imagined music (INMI). Some evidence that INMI elicited stronger emotional responses than VMI was also revealed. These results demonstrate several parallels to previous literature on involuntary memories and add new insights on the phenomenology of INMI.

  3. Left temporal alpha band activity increases during working memory retention of pitches

    NARCIS (Netherlands)

    Van Dijk, H.; Nieuwenhuis, I.L.C.; Jensen, O.

    2010-01-01

    The functional role and regional specificity of similar to 10 Hz alpha band activity remains of debate. Alpha band activity is strongly modulated in visual working memory tasks and it has been proposed to subserve resource allocation by disengaging task-irrelevant regions. It remains unknown if

  4. Age-Related Differences in the Temporal Dynamics of Prospective Memory Retrieval: A Lifespan Approach

    Science.gov (United States)

    Mattli, Florentina; Zollig, Jacqueline; West, Robert

    2011-01-01

    The efficiency of prospective memory (PM) typically increases from childhood to young adulthood and then decreases in later adulthood. The current study used event-related brain potentials (ERPs) to examine the development of the neural correlates of processes associated with the detection of a PM cue, switching from the ongoing activity to the…

  5. Implicit and Explicit Memory for Affective Passages in Temporal Lobectomy Patients

    Science.gov (United States)

    Burton, Leslie A.; Rabin, Laura; Vardy, Susan Bernstein; Frohlich, Jonathan; Porter, Gwinne Wyatt; Dimitri, Diana; Cofer, Lucas; Labar, Douglas

    2008-01-01

    Eighteen temporal lobectomy patients (9 left, LTL; 9 right, RTL) were administered four verbal tasks, an Affective Implicit Task, a Neutral Implicit Task, an Affective Explicit Task, and a Neutral Explicit Task. For the Affective and Neutral Implicit Tasks, participants were timed while reading aloud passages with affective or neutral content,…

  6. Auditory Temporal Processing and Working Memory: Two Independent Deficits for Dyslexia

    Science.gov (United States)

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    Dyslexia is a neuro-cognitive disorder with a strong genetic basis, characterized by a difficulty in acquiring reading skills. Several hypotheses have been suggested in an attempt to explain the origin of dyslexia, among which some have suggested that dyslexic readers might have a deficit in auditory temporal processing, while others hypothesized…

  7. Life story chapters, specific memories and the reminiscence bump

    DEFF Research Database (Denmark)

    Thomsen, Dorthe Kirkegaard; Pillemer, David B.; Ivcevic, Zorana

    2011-01-01

    Theories of autobiographical memory posit that extended time periods (here termed chapters) and memories are organised hierarchically. If chapters organise memories and guide their recall, then chapters and memories should show similar temporal distributions over the life course. Previous research...... are over-represented at the beginning of chapters. Potential connections between chapters and the cultural life script are also examined. Adult participants first divided their life story into chapters and identified their most positive and most negative chapter. They then recalled a specific memory from...... demonstrates that positive but not negative memories show a reminiscence bump and that memories cluster at the beginning of extended time periods. The current study tested the hypotheses that (1) ages marking the beginning of positive but not negative chapters produce a bump, and that (2) specific memories...

  8. Temporal compression of quantum-information-carrying photons using a photon-echo quantum memory approach

    International Nuclear Information System (INIS)

    Moiseev, S. A.; Tittel, W.

    2010-01-01

    We study quantum compression and decompression of light pulses that carry quantum information using a photon-echo quantum memory technique with controllable inhomogeneous broadening of an isolated atomic absorption line. We investigate media with differently broadened absorption profiles, transverse and longitudinal, finding that the recall efficiency can be as large as unity and that the quantum information encoded into the photonic qubits can remain unperturbed. Our results provide insight into reversible light-atom interaction and are interesting in view of future quantum communication networks, where pulse compression and decompression may play an important role in increasing the qubit rate or in mapping quantum information from photonic carriers with large optical bandwidth into atomic memories with smaller bandwidth.

  9. Attention and working memory: two basic mechanisms for constructing temporal experiences

    OpenAIRE

    Marchetti, Giorgio

    2014-01-01

    Various kinds of observations show that the ability of human beings to both consciously relive past events – episodic memory – and conceive future events, entails an active process of construction. This construction process also underpins many other important aspects of conscious human life, such as perceptions, language, and conscious thinking. This article provides an explanation of what makes the constructive process possible and how it works. The process mainly relies on attentional activ...

  10. The temporal dynamics of visual working memory guidance of selective attention

    Directory of Open Access Journals (Sweden)

    Jinfeng eTan

    2014-09-01

    Full Text Available The biased competition model proposes that there is top-down directing of attention to a stimulus matching the contents of working memory (WM, even when the maintenance of a WM representation is detrimental to target relevant performance. Despite many studies elucidating that spatial WM guidance can be present early in the visual processing system, whether visual WM guidance also influences perceptual selection remains poorly understood. Here, we investigated the electrophysiological correlates of early guidance of attention by WM in humans. Participants were required to perform a visual search task while concurrently maintaining object representations in their visual working memory. Behavioral results showed that response times (RTs were longer when the distractor in the visual search task was held in WM. The earliest WM guidance effect was observed in the P1 component (90-130 ms, with match trials eliciting larger P1 amplitude than mismatch trials. A similar result was also found in the N1 component (160-200 ms. These P1 and N1 effects could not be attributed to bottom-up perceptual priming from the presentation of a memory cue, because there was no significant difference in early ERP component when the cue was merely perceptually identified but not actively held in working memory. Standardized Low Resolution Electrical Tomography Analysis (sLORETA showed that the early WM guidance occurred in the occipital lobe and the N1-related activation occurred in the parietal gyrus. Time-frequency data suggested that alpha-band event-related spectral perturbation (ERSP magnitudes increased under the match condition compared with the mismatch condition. In conclusion, the present study suggests that the reappearance of a stimulus held in WM enhanced activity in the occipital area. Subsequently, this initial capture of attention by WM could be inhibited by competing visual inputs through attention re-orientation, reflecting by the alpha-band rhythm.

  11. Dynamic adjustments in frontal, hippocampal, and inferior temporal interactions with increasing visual working memory load

    OpenAIRE

    Rissman, Jesse; Gazzaley, Adam; D’Esposito, Mark

    2007-01-01

    The active maintenance of visual stimuli across a delay interval in working memory tasks is thought to involve reverberant neural communication between the prefrontal cortex and posterior visual association areas. The hippocampus has also recently been attributed a role in this retention process, presumably via its reciprocal connectivity with visual regions. To characterize the nature of these inter-regional interactions, we applied a recently developed functional connectivity analysis metho...

  12. A buffer model of memory encoding and temporal correlations in retrieval.

    Science.gov (United States)

    Lehman, Melissa; Malmberg, Kenneth J

    2013-01-01

    Atkinson and Shiffrin's (1968) dual-store model of memory includes structural aspects of memory along with control processes. The rehearsal buffer is a process by which items are kept in mind and long-term episodic traces are formed. The model has been both influential and controversial. Here, we describe a novel variant of Atkinson and Shiffrin's buffer model within the framework of the retrieving effectively from memory theory (REM; Shiffrin & Steyvers, 1997) that accounts for findings previously thought to be difficult for such models to explain. This model assumes a limited-capacity buffer where information is stored about items, along with information about associations between items and between items and the context in which they are studied. The strength of association between items and context is limited by the number of items simultaneously occupying the buffer (Lehman & Malmberg, 2009). The contents of the buffer are managed by complementary processes of rehearsal and compartmentalization (Lehman & Malmberg, 2011). New findings that directly test a priori predictions of the model are reported, including serial position effects and conditional and first recall probabilities in immediate and delayed free recall, in a continuous distractor paradigm, and in experiments using list-length manipulations of single-item and paired-item study lists.

  13. Situation models and memory: the effects of temporal and causal information on recall sequence.

    Science.gov (United States)

    Brownstein, Aaron L; Read, Stephen J

    2007-10-01

    Participants watched an episode of the television show Cheers on video and then reported free recall. Recall sequence followed the sequence of events in the story; if one concept was observed immediately after another, it was recalled immediately after it. We also made a causal network of the show's story and found that recall sequence followed causal links; effects were recalled immediately after their causes. Recall sequence was more likely to follow causal links than temporal sequence, and most likely to follow causal links that were temporally sequential. Results were similar at 10-minute and 1-week delayed recall. This is the most direct and detailed evidence reported on sequential effects in recall. The causal network also predicted probability of recall; concepts with more links and concepts on the main causal chain were most likely to be recalled. This extends the causal network model to more complex materials than previous research.

  14. Anterior temporal cortex and semantic memory: reconciling findings from neuropsychology and functional imaging.

    Science.gov (United States)

    Rogers, Timothy T; Hocking, Julia; Noppeney, Uta; Mechelli, Andrea; Gorno-Tempini, Maria Luisa; Patterson, Karalyn; Price, Cathy J

    2006-09-01

    Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.

  15. Risk factors for spatial memory impairment in patients with temporal lobe epilepsy

    Czech Academy of Sciences Publication Activity Database

    Amlerová, J.; Laczó, J.; Vlček, Kamil; Javůrková, A.; Andel, R.; Marusič, P.

    2013-01-01

    Roč. 26, č. 1 (2013), s. 57-60 ISSN 1525-5050 R&D Projects: GA ČR(CZ) GA309/09/1053 Grant - others:GA MŠk(CZ) ED1.100/02/0123 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : spatial navigation * temporal lobe epilepsy * Morris water maze Subject RIV: FH - Neurology Impact factor: 2.061, year: 2013

  16. The Effect of Alpha-Lipoic Acid on Learning and Memory Deficit in a Rat Model of Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Narges Karimi

    2012-07-01

    Full Text Available Introduction : Epilepsy is a chronic neurological disorder in which patients experience spontaneous recurrent seizures and deficiency in learning and memory. Although the most commonly recommended therapy is drug treatment, some patients do not achieve adequate control of their seizures on existing drugs. New medications with novel mechanisms of action are needed to help those patients whose seizures are resistant to currently-available drugs. While alpha-lipoic acid as a antioxidant has some neuroprotective properties, but this action has not been investigated in models of epilepsy. Therefore, the protective effect of pretreatment with alpha-lipoic acid was evaluated in experimental model of temporal lobe epilepsy in male rats. Methods: In the present study, Wistar male rats were injected intrahippocampally with 0.9% saline(Sham-operated group, kainic acid(4 μg alone, or α-lipoic acid (25mg and 50mg/kg in association with kainic acid(4μg. We performed behavior monitoring(spontaneous seizure, learning and memory by Y-maze and passive avoidance test, intracranial electroencepholography (iEEG recording, histological analysis, to evaluate the anti- epilepsy effect of α-lipoic acid in kainate-induced epileptic rats.   Results: Behavior data showed that the kainate rats exhibit spontaneous seizures, lower spontaneous alternation score inY-maze tasks (p<0.01, impaired retention and recall capability in the passive avoidance test (p<0.05. Administration of alpha-lipoic acid, in both doses, significantly decrease the number of spontaneous seizures, improved alternation score in Y-maze task (p<0.005 and impaired retention and recall capability in the passive avoidance test (p<0.01 in kainite rats. Moreover, lipoic acid could improve the lipid peroxidation and nitrite level and superoxid dismutase activity.Conclusion: This study indicates that lipoic acid pretreatment attenuates kainic acid-induced impairment of short-term spatial memory in rats

  17. The Effect of Alpha-Lipoic Acid on Learning and Memory Deficit in a Rat Model of Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Tourandokht Baluchnejadmojarad

    2012-07-01

    Full Text Available Introduction: Epilepsy is a chronic neurological disorder in which patients experience spontaneous recurrent seizures and deficiency in learning and memory. Although the most commonly recommended therapy is drug treatment, some patients do not achieve adequate control of their seizures on existing drugs. New medications with novel mechanisms of action are needed to help those patients whose seizures are resistant to currently-available drugs. While alpha-lipoic acid as a antioxidant has some neuroprotective properties, but this action has not been investigated in models of epilepsy. Therefore, the protective effect of pretreatment with alpha-lipoic acid was evaluated in experimental model of temporal lobe epilepsy in male rats. Methods: In the present study, Wistar male rats were injected intrahippocampally with 0.9% saline(Sham-operated group, kainic acid(4 μg alone, or α-lipoic acid (25mg and 50mg/kg in association with kainic acid(4μg. We performed behavior monitoring(spontaneous seizure, learning and memory by Y-maze and passive avoidance test, intracranial electroencepholography (iEEG recording, histological analysis, to evaluate the anti- epilepsy effect of α-lipoic acid in kainate-induced epileptic rats. Results: Behavior data showed that the kainate rats exhibit spontaneous seizures, lower spontaneous alternation score inY-maze tasks (p<0.01, impaired retention and recall capability in the passive avoidance test (p<0.05. Administration of alpha-lipoic acid, in both doses, significantly decrease the number of spontaneous seizures, improved alternation score in Y-maze task (p<0.005 and impaired retention and recall capability in the passive avoidance test (p<0.01 in kainite rats. Moreover, lipoic acid could improve the lipid peroxidation and nitrite level and superoxid dismutase activity. Discussion: This study indicates that lipoic acid pretreatment attenuates kainic acid-induced impairment of short-term spatial memory in rats

  18. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: a healthy-aging perspective.

    Science.gov (United States)

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2015-02-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals--over a range of time scales from milliseconds to seconds--renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own 'privileged' temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory.

    Science.gov (United States)

    Kawasaki, Masahiro; Kitajo, Keiichi; Yamaguchi, Yoko

    2014-01-01

    In humans, theta phase (4-8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  20. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory

    Directory of Open Access Journals (Sweden)

    Masahiro eKawasaki

    2014-03-01

    Full Text Available In humans, theta phase (4–8 Hz synchronization observed on electroencephalography (EEG plays an important role in the manipulation of mental representations during working memory (WM tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  1. Judgments relative to patterns: how temporal sequence patterns affect judgments and memory.

    Science.gov (United States)

    Kusev, Petko; Ayton, Peter; van Schaik, Paul; Tsaneva-Atanasova, Krasimira; Stewart, Neil; Chater, Nick

    2011-12-01

    Six experiments studied relative frequency judgment and recall of sequentially presented items drawn from 2 distinct categories (i.e., city and animal). The experiments show that judged frequencies of categories of sequentially encountered stimuli are affected by certain properties of the sequence configuration. We found (a) a first-run effect whereby people overestimated the frequency of a given category when that category was the first repeated category to occur in the sequence and (b) a dissociation between judgments and recall; respondents may judge 1 event more likely than the other and yet recall more instances of the latter. Specifically, the distribution of recalled items does not correspond to the frequency estimates for the event categories, indicating that participants do not make frequency judgments by sampling their memory for individual items as implied by other accounts such as the availability heuristic (Tversky & Kahneman, 1973) and the availability process model (Hastie & Park, 1986). We interpret these findings as reflecting the operation of a judgment heuristic sensitive to sequential patterns and offer an account for the relationship between memory and judged frequencies of sequentially encountered stimuli.

  2. Short-term Memory of Deep RNN

    OpenAIRE

    Gallicchio, Claudio

    2018-01-01

    The extension of deep learning towards temporal data processing is gaining an increasing research interest. In this paper we investigate the properties of state dynamics developed in successive levels of deep recurrent neural networks (RNNs) in terms of short-term memory abilities. Our results reveal interesting insights that shed light on the nature of layering as a factor of RNN design. Noticeably, higher layers in a hierarchically organized RNN architecture results to be inherently biased ...

  3. Close but no cigar: Spatial precision deficits following medial temporal lobe lesions provide novel insight into theoretical models of navigation and memory.

    Science.gov (United States)

    Kolarik, Branden S; Baer, Trevor; Shahlaie, Kiarash; Yonelinas, Andrew P; Ekstrom, Arne D

    2018-01-01

    Increasing evidence suggests that the human hippocampus contributes to a range of different behaviors, including episodic memory, language, short-term memory, and navigation. A novel theoretical framework, the Precision and Binding Model, accounts for these phenomenon by describing a role for the hippocampus in high-resolution, complex binding. Other theories like Cognitive Map Theory, in contrast, predict a specific role for the hippocampus in allocentric navigation, while Declarative Memory Theory predicts a specific role in delay-dependent conscious memory. Navigation provides a unique venue for testing these predictions, with past results from research with humans providing inconsistent findings regarding the role of the human hippocampus in spatial navigation. Here, we tested five patients with lesions primarily restricted to the hippocampus and those extending out into the surrounding medial temporal lobe cortex on a virtual water maze task. Consistent with the Precision and Binding Model, we found partially intact allocentric memory in all patients, with impairments in the spatial precision of their searches for a hidden target. We found similar impairments at both immediate and delayed testing. Our findings are consistent with the Precision and Binding Model of hippocampal function, arguing for its role across domains in high-resolution, complex binding. Remembering goal locations in one's environment is a critical skill for survival. How this information is represented in the brain is still not fully understood, but is believed to rely in some capacity on structures in the medial temporal lobe. Contradictory findings from studies of both humans and animals have been difficult to reconcile with regard to the role of the MTL, specifically the hippocampus. By assessing impairments observed during navigation to a goal in patients with medial temporal lobe damage we can better understand the role these structures play in such behavior. Utilizing virtual reality

  4. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    Science.gov (United States)

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  5. Neural correlates of associative face memory in the anterior inferior temporal cortex of monkeys.

    Science.gov (United States)

    Eifuku, Satoshi; Nakata, Ryuzaburo; Sugimori, Michiya; Ono, Taketoshi; Tamura, Ryoi

    2010-11-10

    To investigate the neural basis of the associative aspects of facial identification, we recorded neuronal activity from the ventral, anterior inferior temporal cortex (AITv) of macaque monkeys during the performance of an asymmetrical paired-association (APA) task that required associative pairing between an abstract pattern and five different facial views of a single person. In the APA task, after one element of a pair (either an abstract pattern or a face) was presented as a sample cue, the reward-seeking monkey correctly identified the other element of the pair among various repeatedly presented test stimuli (faces or patterns) that were temporally separated by interstimulus delays. The results revealed that a substantial number of AITv neurons responded both to faces and abstract patterns, and the majority of these neurons responded selectively to a particular associative pair. It was demonstrated that in addition to the view-invariant identity of faces used in the APA task, the population of AITv neurons was also able to represent the associative pairing between faces and abstract patterns, which was acquired by training in the APA task. It also appeared that the effect of associative pairing was not so strong that the abstract pattern could be treated in a manner similar to a series of faces belonging to a unique identity. Together, these findings indicate that the AITv plays a crucial role in both facial identification and semantic associations with facial identities.

  6. The temporal dynamics of visual working memory guidance of selective attention.

    Science.gov (United States)

    Tan, Jinfeng; Zhao, Yuanfang; Wu, Shanshan; Wang, Lijun; Hitchman, Glenn; Tian, Xia; Li, Ming; Hu, Li; Chen, Antao

    2014-01-01

    The biased competition model proposes that there is top-down directing of attention to a stimulus matching the contents of working memory (WM), even when the maintenance of a WM representation is detrimental to target relevant performance. Despite many studies elucidating that spatial WM guidance can be present early in the visual processing system, whether visual WM guidance also influences perceptual selection remains poorly understood. Here, we investigated the electrophysiological correlates of early guidance of attention by WM in humans. Participants were required to perform a visual search task while concurrently maintaining object representations in their visual WM. Behavioral results showed that response times (RTs) were longer when the distractor in the visual search task was held in WM. The earliest WM guidance effect was observed in the P1 component (90-130 ms), with match trials eliciting larger P1 amplitude than mismatch trials. A similar result was also found in the N1 component (160-200 ms). These P1 and N1 effects could not be attributed to bottom-up perceptual priming from the presentation of a memory cue, because there was no significant difference in early event-related potential (ERP) component when the cue was merely perceptually identified but not actively held in WM. Standardized Low Resolution Electrical Tomography Analysis (sLORETA) showed that the early WM guidance occurred in the occipital lobe and the N1-related activation occurred in the parietal gyrus. Time-frequency data suggested that alpha-band event-related spectral perturbation (ERSP) magnitudes increased under the match condition compared with the mismatch condition only when the cue was held in WM. In conclusion, the present study suggests that the reappearance of a stimulus held in WM enhanced activity in the occipital area. Subsequently, this initial capture of attention by WM could be inhibited by competing visual inputs through attention re-orientation, reflecting by the

  7. Hierarchical species distribution models

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  8. Dynamic adjustments in prefrontal, hippocampal, and inferior temporal interactions with increasing visual working memory load.

    Science.gov (United States)

    Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark

    2008-07-01

    The maintenance of visual stimuli across a delay interval in working memory tasks is thought to involve reverberant neural communication between the prefrontal cortex and posterior visual association areas. Recent studies suggest that the hippocampus might also contribute to this retention process, presumably via reciprocal interactions with visual regions. To characterize the nature of these interactions, we performed functional connectivity analysis on an event-related functional magnetic resonance imaging data set in which participants performed a delayed face recognition task. As the number of faces that participants were required to remember was parametrically increased, the right inferior frontal gyrus (IFG) showed a linearly decreasing degree of functional connectivity with the fusiform face area (FFA) during the delay period. In contrast, the hippocampus linearly increased its delay period connectivity with both the FFA and the IFG as the mnemonic load increased. Moreover, the degree to which participants' FFA showed a load-dependent increase in its connectivity with the hippocampus predicted the degree to which its connectivity with the IFG decreased with load. Thus, these neural circuits may dynamically trade off to accommodate the particular mnemonic demands of the task, with IFG-FFA interactions mediating maintenance at lower loads and hippocampal interactions supporting retention at higher loads.

  9. Neural Mechanisms Underlying Visual Short-Term Memory Gain for Temporally Distinct Objects.

    Science.gov (United States)

    Ihssen, Niklas; Linden, David E J; Miller, Claire E; Shapiro, Kimron L

    2015-08-01

    Recent research has shown that visual short-term memory (VSTM) can substantially be improved when the to-be-remembered objects are split in 2 half-arrays (i.e., sequenced) or the entire array is shown twice (i.e., repeated), rather than presented simultaneously. Here we investigate the hypothesis that sequencing and repeating displays overcomes attentional "bottlenecks" during simultaneous encoding. Using functional magnetic resonance imaging, we show that sequencing and repeating displays increased brain activation in extrastriate and primary visual areas, relative to simultaneous displays (Study 1). Passively viewing identical stimuli did not increase visual activation (Study 2), ruling out a physical confound. Importantly, areas of the frontoparietal attention network showed increased activation in repetition but not in sequential trials. This dissociation suggests that repeating a display increases attentional control by allowing attention to be reallocated in a second encoding episode. In contrast, sequencing the array poses fewer demands on control, with competition from nonattended objects being reduced by the half-arrays. This idea was corroborated by a third study in which we found optimal VSTM for sequential displays minimizing attentional demands. Importantly these results provide support within the same experimental paradigm for the role of stimulus-driven and top-down attentional control aspects of biased competition theory in setting constraints on VSTM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Separating recognition processes of declarative memory via anodal tDCS: boosting old item recognition by temporal and new item detection by parietal stimulation.

    Science.gov (United States)

    Pisoni, Alberto; Turi, Zsolt; Raithel, Almuth; Ambrus, Géza Gergely; Alekseichuk, Ivan; Schacht, Annekathrin; Paulus, Walter; Antal, Andrea

    2015-01-01

    There is emerging evidence from imaging studies that parietal and temporal cortices act together to achieve successful recognition of declarative information; nevertheless, the precise role of these regions remains elusive. To evaluate the role of these brain areas in declarative memory retrieval, we applied bilateral tDCS, with anode over the left and cathode over the right parietal or temporal cortices separately, during the recognition phase of a verbal learning paradigm using a balanced old-new decision task. In a parallel group design, we tested three different groups of healthy adults, matched for demographic and neurocognitive status: two groups received bilateral active stimulation of either the parietal or the temporal cortex, while a third group received sham stimulation. Accuracy, discriminability index (d') and reaction times of recognition memory performance were measurements of interest. The d' sensitivity index and accuracy percentage improved in both active stimulation groups, as compared with the sham one, while reaction times remained unaffected. Moreover, the analysis of accuracy revealed a different effect of tDCS for old and new item recognition. While the temporal group showed enhanced performance for old item recognition, the parietal group was better at correctly recognising new ones. Our results support an active role of both of these areas in memory retrieval, possibly underpinning different stages of the recognition process.

  11. Monkey’s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices

    Science.gov (United States)

    Fritz, Jonathan B.; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C.

    2016-01-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30–40 seconds to a duration of ~1–2 seconds, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. PMID:26707975

  12. Working-memory load and temporal myopia in dynamic decision making.

    Science.gov (United States)

    Worthy, Darrell A; Otto, A Ross; Maddox, W Todd

    2012-11-01

    We examined the role of working memory (WM) in dynamic decision making by having participants perform decision-making tasks under single-task or dual-task conditions. In 2 experiments participants performed dynamic decision-making tasks in which they chose 1 of 2 options on each trial. The decreasing option always gave a larger immediate reward but caused future rewards for both options to decrease. The increasing option always gave a smaller immediate reward but caused future rewards for both options to increase. In each experiment we manipulated the reward structure such that the decreasing option was the optimal choice in 1 condition and the increasing option was the optimal choice in the other condition. Behavioral results indicated that dual-task participants selected the immediately rewarding decreasing option more often, and single-task participants selected the increasing option more often, regardless of which option was optimal. Thus, dual-task participants performed worse on 1 type of task but better on the other type. Modeling results showed that single-task participants' data were most often best fit by a win-stay, lose-shift (WSLS) rule-based model that tracked differences across trials, and dual-task participants' data were most often best fit by a Softmax reinforcement learning model that tracked recency-weighted average rewards for each option. This suggests that manipulating WM load affects the degree to which participants focus on the immediate versus delayed consequences of their actions and whether they employ a rule-based WSLS strategy, but it does not necessarily affect how well people weigh the immediate versus delayed benefits when determining the long-term utility of each option.

  13. A Hierarchical Bayesian Model for the Identification of PET Markers Associated to the Prediction of Surgical Outcome after Anterior Temporal Lobe Resection

    Directory of Open Access Journals (Sweden)

    Sharon Chiang

    2017-12-01

    Full Text Available We develop an integrative Bayesian predictive modeling framework that identifies individual pathological brain states based on the selection of fluoro-deoxyglucose positron emission tomography (PET imaging biomarkers and evaluates the association of those states with a clinical outcome. We consider data from a study on temporal lobe epilepsy (TLE patients who subsequently underwent anterior temporal lobe resection. Our modeling framework looks at the observed profiles of regional glucose metabolism in PET as the phenotypic manifestation of a latent individual pathologic state, which is assumed to vary across the population. The modeling strategy we adopt allows the identification of patient subgroups characterized by latent pathologies differentially associated to the clinical outcome of interest. It also identifies imaging biomarkers characterizing the pathological states of the subjects. In the data application, we identify a subgroup of TLE patients at high risk for post-surgical seizure recurrence after anterior temporal lobe resection, together with a set of discriminatory brain regions that can be used to distinguish the latent subgroups. We show that the proposed method achieves high cross-validated accuracy in predicting post-surgical seizure recurrence.

  14. Hierarchical Spatio-Temporal Probabilistic Graphical Model with Multiple Feature Fusion for Binary Facial Attribute Classification in Real-World Face Videos.

    Science.gov (United States)

    Demirkus, Meltem; Precup, Doina; Clark, James J; Arbel, Tal

    2016-06-01

    Recent literature shows that facial attributes, i.e., contextual facial information, can be beneficial for improving the performance of real-world applications, such as face verification, face recognition, and image search. Examples of face attributes include gender, skin color, facial hair, etc. How to robustly obtain these facial attributes (traits) is still an open problem, especially in the presence of the challenges of real-world environments: non-uniform illumination conditions, arbitrary occlusions, motion blur and background clutter. What makes this problem even more difficult is the enormous variability presented by the same subject, due to arbitrary face scales, head poses, and facial expressions. In this paper, we focus on the problem of facial trait classification in real-world face videos. We have developed a fully automatic hierarchical and probabilistic framework that models the collective set of frame class distributions and feature spatial information over a video sequence. The experiments are conducted on a large real-world face video database that we have collected, labelled and made publicly available. The proposed method is flexible enough to be applied to any facial classification problem. Experiments on a large, real-world video database McGillFaces [1] of 18,000 video frames reveal that the proposed framework outperforms alternative approaches, by up to 16.96 and 10.13%, for the facial attributes of gender and facial hair, respectively.

  15. The Temporal Dynamics Model of Emotional Memory Processing: A Synthesis on the Neurobiological Basis of Stress-Induced Amnesia, Flashbulb and Traumatic Memories, and the Yerkes-Dodson Law

    OpenAIRE

    Diamond, David M.; Campbell, Adam M.; Park, Collin R.; Halonen, Joshua; Zoladz, Phillip R.

    2007-01-01

    We have reviewed research on the effects of stress on LTP in the hippocampus, amygdala and prefrontal cortex (PFC) and present new findings which provide insight into how the attention and memory-related functions of these structures are influenced by strong emotionality. We have incorporated the stress-LTP findings into our “temporal dynamics†model, which provides a framework for understanding the neurobiological basis of flashbulb and traumatic memories, as well as stress-induced ...

  16. Hierarchical video summarization

    Science.gov (United States)

    Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.

    1998-12-01

    We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.

  17. Hierarchical architecture of active knits

    International Nuclear Information System (INIS)

    Abel, Julianna; Luntz, Jonathan; Brei, Diann

    2013-01-01

    Nature eloquently utilizes hierarchical structures to form the world around us. Applying the hierarchical architecture paradigm to smart materials can provide a basis for a new genre of actuators which produce complex actuation motions. One promising example of cellular architecture—active knits—provides complex three-dimensional distributed actuation motions with expanded operational performance through a hierarchically organized structure. The hierarchical structure arranges a single fiber of active material, such as shape memory alloys (SMAs), into a cellular network of interlacing adjacent loops according to a knitting grid. This paper defines a four-level hierarchical classification of knit structures: the basic knit loop, knit patterns, grid patterns, and restructured grids. Each level of the hierarchy provides increased architectural complexity, resulting in expanded kinematic actuation motions of active knits. The range of kinematic actuation motions are displayed through experimental examples of different SMA active knits. The results from this paper illustrate and classify the ways in which each level of the hierarchical knit architecture leverages the performance of the base smart material to generate unique actuation motions, providing necessary insight to best exploit this new actuation paradigm. (paper)

  18. A Spatial Hierarchical Analysis of the Temporal Influences of the El Niño-Southern Oscillation and Weather on Dengue in Kalutara District, Sri Lanka

    Directory of Open Access Journals (Sweden)

    Prasad Liyanage

    2016-11-01

    Full Text Available Dengue is the major public health burden in Sri Lanka. Kalutara is one of the highly affected districts. Understanding the drivers of dengue is vital in controlling and preventing the disease spread. This study focuses on quantifying the influence of weather variability on dengue incidence over 10 Medical Officer of Health (MOH divisions of Kalutara district. Weekly weather variables and data on dengue notifications, measured at 10 MOH divisions in Kalutara from 2009 to 2013, were retrieved and analysed. Distributed lag non-linear model and hierarchical-analysis was used to estimate division specific and overall relationships between weather and dengue. We incorporated lag times up to 12 weeks and evaluated models based on the Akaike Information Criterion. Consistent exposure-response patterns between different geographical locations were observed for rainfall, showing increasing relative risk of dengue with increasing rainfall from 50 mm per week. The strongest association with dengue risk centred around 6 to 10 weeks following rainfalls of more than 300 mm per week. With increasing temperature, the overall relative risk of dengue increased steadily starting from a lag of 4 weeks. We found similarly a strong link between the Oceanic Niño Index to weather patterns in the district in Sri Lanka and to dengue at a longer latency time confirming these relationships. Part of the influences of rainfall and temperature can be seen as mediator in the causal pathway of the Ocean Niño Index, which may allow a longer lead time for early warning signals. Our findings describe a strong association between weather, El Niño-Southern Oscillation and dengue in Sri Lanka.

  19. Clinical utility of the Wechsler memory scale - fourth edition (WMS-IV) in patients with intractable temporal lobe epilepsy

    NARCIS (Netherlands)

    Bouman, Zita; Elhorst, Didi; Hendriks, Marc P H; Kessels, Roy P C; Aldenkamp, Albert P.

    2016-01-01

    Introduction: The Wechsler Memory Scale (WMS) is one of the most widely used test batteries to assess memory functions in patients with brain dysfunctions of different etiologies. This study examined the clinical validation of the Dutch Wechsler Memory Scale - Fourth Edition (WMS-IV-NL) in patients

  20. Clinical utility of the Wechsler Memory Scale - Fourth Edition (WMS-IV) in patients with intractable temporal lobe epilepsy

    NARCIS (Netherlands)

    Bouman, Z.; Elhorst, D.; Hendriks, M.P.H.; Kessels, R.P.C.; Aldenkamp, A.P.

    2016-01-01

    Introduction: The Wechsler Memory Scale (WMS) is one of the most widely used test batteries to assess memory functions in patients with brain dysfunctions of different etiologies. This study examined the clinical validation of the Dutch Wechsler Memory Scale-Fourth Edition (WMS-IV-NL) in patients

  1. Memory

    OpenAIRE

    Wager, Nadia

    2017-01-01

    This chapter will explore a response to traumatic victimisation which has divided the opinions of psychologists at an exponential rate. We will be examining amnesia for memories of childhood sexual abuse and the potential to recover these memories in adulthood. Whilst this phenomenon is generally accepted in clinical circles, it is seen as highly contentious amongst research psychologists, particularly experimental cognitive psychologists. The chapter will begin with a real case study of a wo...

  2. The anterior-ventrolateral temporal lobe contributes to boosting visual working memory capacity for items carrying semantic information.

    Science.gov (United States)

    Chiou, Rocco; Lambon Ralph, Matthew A

    2018-04-01

    Working memory (WM) is a buffer that temporarily maintains information, be it visual or auditory, in an active state, caching its contents for online rehearsal or manipulation. How the brain enables long-term semantic knowledge to affect the WM buffer is a theoretically significant issue awaiting further investigation. In the present study, we capitalise on the knowledge about famous individuals as a 'test-case' to study how it impinges upon WM capacity for human faces and its neural substrate. Using continuous theta-burst transcranial stimulation combined with a psychophysical task probing WM storage for varying contents, we provide compelling evidence that (1) faces (regardless of familiarity) continued to accrue in the WM buffer with longer encoding time, whereas for meaningless stimuli (colour shades) there was little increment; (2) the rate of WM accrual was significantly more efficient for famous faces, compared to unknown faces; (3) the right anterior-ventrolateral temporal lobe (ATL) causally mediated this superior WM storage for famous faces. Specifically, disrupting the ATL (a region tuned to semantic knowledge including person identity) selectively hinders WM accrual for celebrity faces while leaving the accrual for unfamiliar faces intact. Further, this 'semantically-accelerated' storage is impervious to disruption of the right middle frontal gyrus and vertex, supporting the specific and causative contribution of the right ATL. Our finding advances the understanding of the neural architecture of WM, demonstrating that it depends on interaction with long-term semantic knowledge underpinned by the ATL, which causally expands the WM buffer when visual content carries semantic information. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. A real-time in-memory discovery service leveraging hierarchical packaging information in a unique identifier network to retrieve track and trace information

    CERN Document Server

    Müller, Jürgen

    2014-01-01

    This book examines how to efficiently retrieve track and trace information for an item that took a certain path through a complex network of manufacturers, wholesalers, retailers and consumers. It includes valuable tips on in-memory data management.

  4. The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law.

    Science.gov (United States)

    Diamond, David M; Campbell, Adam M; Park, Collin R; Halonen, Joshua; Zoladz, Phillip R

    2007-01-01

    We have reviewed research on the effects of stress on LTP in the hippocampus, amygdala and prefrontal cortex (PFC) and present new findings which provide insight into how the attention and memory-related functions of these structures are influenced by strong emotionality. We have incorporated the stress-LTP findings into our "temporal dynamics" model, which provides a framework for understanding the neurobiological basis of flashbulb and traumatic memories, as well as stress-induced amnesia. An important feature of the model is the idea that endogenous mechanisms of plasticity in the hippocampus and amygdala are rapidly activated for a relatively short period of time by a strong emotional learning experience. Following this activational period, both structures undergo a state in which the induction of new plasticity is suppressed, which facilitates the memory consolidation process. We further propose that with the onset of strong emotionality, the hippocampus rapidly shifts from a "configural/cognitive map" mode to a "flashbulb memory" mode, which underlies the long-lasting, but fragmented, nature of traumatic memories. Finally, we have speculated on the significance of stress-LTP interactions in the context of the Yerkes-Dodson Law, a well-cited, but misunderstood, century-old principle which states that the relationship between arousal and behavioral performance can be linear or curvilinear, depending on the difficulty of the task.

  5. Memories.

    Science.gov (United States)

    Brand, Judith, Ed.

    1998-01-01

    This theme issue of the journal "Exploring" covers the topic of "memories" and describes an exhibition at San Francisco's Exploratorium that ran from May 22, 1998 through January 1999 and that contained over 40 hands-on exhibits, demonstrations, artworks, images, sounds, smells, and tastes that demonstrated and depicted the biological,…

  6. A High-Resolution Study of Hippocampal and Medial Temporal Lobe Correlates of Spatial Context and Prospective Overlapping Route Memory

    Science.gov (United States)

    Brown, Thackery I.; Hasselmo, Michael E.; Stern, Chantal E.

    2015-01-01

    When navigating our world we often first plan or retrieve an ideal route to our goal, avoiding alternative paths that lead to other destinations. The medial temporal lobe (MTL) has been implicated in processing contextual information, sequence memory, and uniquely retrieving routes that overlap or “cross paths.” However, the identity of subregions of the hippocampus and neighboring cortex that support these functions in humans remains unclear. The present study used high-resolution functional magnetic resonance imaging (hr-fMRI) in humans to test whether the CA3/DG hippocampal subfield and para-hippocampal cortex are important for processing spatial context and route retrieval, and whether the CA1 subfield facilitates prospective planning of mazes that must be distinguished from alternative overlapping routes. During hr-fMRI scanning, participants navigated virtual mazes that were well-learned from prior training while also learning new mazes. Some routes learned during scanning shared hallways with those learned during pre-scan training, requiring participants to select between alternative paths. Critically, each maze began with a distinct spatial contextual Cue period. Our analysis targeted activity from the Cue period, during which participants identified the current navigational episode, facilitating retrieval of upcoming route components and distinguishing mazes that overlap. Results demonstrated that multiple MTL regions were predominantly active for the contextual Cue period of the task, with specific regions of CA3/DG, parahippocampal cortex, and perirhinal cortex being consistently recruited across trials for Cue periods of both novel and familiar mazes. During early trials of the task, both CA3/DG and CA1 were more active for overlapping than non-overlapping Cue periods. Trial-by-trial Cue period responses in CA1 tracked subsequent overlapping maze performance across runs. Together, our findings provide novel insight into the contributions of MTL

  7. A Temporally Distinct Role for Group I and Group II Metabotropic Glutamate Receptors in Object Recognition Memory

    Science.gov (United States)

    Brown, Malcolm Watson; Warburton, Elizabeth Clea; Barker, Gareth Robert Isaac; Bashir, Zafar Iqbal

    2006-01-01

    Recognition memory, involving the ability to discriminate between a novel and familiar object, depends on the integrity of the perirhinal cortex (PRH). Glutamate, the main excitatory neurotransmitter in the cortex, is essential for many types of memory processes. Of the subtypes of glutamate receptor, metabotropic receptors (mGluRs) have received…

  8. Temporal stability of the Dutch version of the Wechsler Memory Scale - Fourth Edition (WMS-IV-NL)

    NARCIS (Netherlands)

    Bouman, Z.; Hendriks, M.P.H.; Aldenkamp, A.P.; Kessels, R.P.C.

    2015-01-01

    Objective: The Wechsler Memory Scale - Fourth Edition (WMS-IV) is one of the most widely used memory batteries. We examined the test–retest reliability, practice effects, and standardized regression-based (SRB) change norms for the Dutch version of the WMS-IV (WMS-IV-NL) after both short and long

  9. Out of sight but not out of mind : The neurophysiology of iconic memory in the superior temporal sulcus

    NARCIS (Netherlands)

    Keysers, C; Xiao, DK; Foldiak, P; Perrett, DI

    2005-01-01

    Iconic memory, the short-lasting visual memory of a briefly flashed stimulus, is an important component of most models of visual perception. Here we investigate what physiological mechanisms underlie this capacity by showing rapid serial visual presentation (RSVP) sequences with and without

  10. Hippocampal-dependent spatial memory in the water maze is preserved in an experimental model of temporal lobe epilepsy in rats.

    Directory of Open Access Journals (Sweden)

    Marion Inostroza

    Full Text Available Cognitive impairment is a major concern in temporal lobe epilepsy (TLE. While different experimental models have been used to characterize TLE-related cognitive deficits, little is known on whether a particular deficit is more associated with the underlying brain injuries than with the epileptic condition per se. Here, we look at the relationship between the pattern of brain damage and spatial memory deficits in two chronic models of TLE (lithium-pilocarpine, LIP and kainic acid, KA from two different rat strains (Wistar and Sprague-Dawley using the Morris water maze and the elevated plus maze in combination with MRI imaging and post-morten neuronal immunostaining. We found fundamental differences between LIP- and KA-treated epileptic rats regarding spatial memory deficits and anxiety. LIP-treated animals from both strains showed significant impairment in the acquisition and retention of spatial memory, and were unable to learn a cued version of the task. In contrast, KA-treated rats were differently affected. Sprague-Dawley KA-treated rats learned less efficiently than Wistar KA-treated animals, which performed similar to control rats in the acquisition and in a probe trial testing for spatial memory. Different anxiety levels and the extension of brain lesions affecting the hippocampus and the amydgala concur with spatial memory deficits observed in epileptic rats. Hence, our results suggest that hippocampal-dependent spatial memory is not necessarily affected in TLE and that comorbidity between spatial deficits and anxiety is more related with the underlying brain lesions than with the epileptic condition per se.

  11. The impact of intelligence on memory and executive functions of children with temporal lobe epilepsy: Methodological concerns with clinical relevance.

    Science.gov (United States)

    Rzezak, Patricia; Guimarães, Catarina A; Guerreiro, Marilisa M; Valente, Kette D

    2017-05-01

    Patients with TLE are prone to have lower IQ scores than healthy controls. Nevertheless, the impact of IQ differences is not usually considered in studies that compared the cognitive functioning of children with and without epilepsy. This study aimed to determine the effect of using IQ as a covariate on memory and attentional/executive functions of children with TLE. Thirty-eight children and adolescents with TLE and 28 healthy controls paired as to age, gender, and sociodemographic factors were evaluated with a comprehensive neuropsychological battery for memory and executive functions. The authors conducted three analyses to verify the impact of IQ scores on the other cognitive domains. First, we compared performance on cognitive tests without controlling for IQ differences between groups. Second, we performed the same analyses, but we included IQ as a confounding factor. Finally, we evaluated the predictive value of IQ on cognitive functioning. Although patients had IQ score in the normal range, they showed lower IQ scores than controls (p = 0.001). When we did not consider IQ in the analyses, patients had worse performance in verbal and visual memory (short and long-term), semantic memory, sustained, divided and selective attention, mental flexibility and mental tracking for semantic information. By using IQ as a covariate, patients showed worse performance only in verbal memory (long-term), semantic memory, sustained and divided attention and in mental flexibility. IQ was a predictor factor of verbal and visual memory (immediate and delayed), working memory, mental flexibility and mental tracking for semantic information. Intelligence level had a significant impact on memory and executive functioning of children and adolescents with TLE without intellectual disability. This finding opens the discussion of whether IQ scores should be considered when interpreting the results of differences in cognitive performance of patients with epilepsy compared to healthy

  12. The temporal evolution of electromagnetic markers sensitive to the capacity limits of visual short-term memory.

    Science.gov (United States)

    Mitchell, Daniel J; Cusack, Rhodri

    2011-01-01

    An electroencephalographic (EEG) marker of the limited contents of human visual short-term memory (VSTM) has previously been described. Termed contralateral delay activity, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoencephalography (MEG) to characterize its magnetic counterparts and their neural generators as they evolve throughout the memory delay. A parametric manipulation of memory load, within and beyond capacity limits, allows separation of signals that asymptote with behavioral VSTM performance from additional responses that contribute to a linear increase with set-size. Both EEG and MEG yielded bilateral signals that track the number of objects held in memory, and contralateral signals that are independent of memory load. In MEG, unlike EEG, the contralateral interaction between hemisphere and item load is much weaker, suggesting that bilateral and contralateral markers of memory load reflect distinct sources to which EEG and MEG are differentially sensitive. Nonetheless, source estimation allowed both the bilateral and the weaker contralateral capacity-limited responses to be localized, along with a load-independent contralateral signal. Sources of global and hemisphere-specific signals all localized to the posterior intraparietal sulcus during the early delay. However the bilateral load response peaked earlier and its generators shifted later in the delay. Therefore the hemifield-specific response may be more closely tied to memory maintenance while the global load response may be involved in initial processing of a limited number of attended objects, such as their individuation or consolidation into memory.

  13. The temporal evolution of electromagnetic markers sensitive to the capacity limits of visual short-term memory

    Directory of Open Access Journals (Sweden)

    Daniel James Mitchell

    2011-02-01

    Full Text Available An electroencephalographic (EEG marker of the limited contents of human visual short-term memory (VSTM has previously been described. Termed contralateral delay activity (CDA, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoencephalography (MEG to characterise its magnetic counterparts and their neural generators as they evolve throughout the memory delay. A parametric manipulation of memory load, within and beyond capacity limits, allows separation of signals that asymptote with behavioural VSTM performance from additional responses that contribute to a linear increase with set-size. Both EEG and MEG yielded bilateral signals that track the number of objects held in memory, and contralateral signals that are independent of memory load. In MEG, unlike EEG, the contralateral interaction between hemisphere and item load is much weaker, suggesting that bilateral and contralateral markers of memory load reflect distinct sources to which EEG and MEG are differentially sensitive. Nonetheless, source estimation allowed both the bilateral and the weaker contralateral capacity-limited responses to be localised, along with a load-independent contralateral signal. Sources of global and hemisphere-specific signals all localised to the posterior intraparietal sulcus during the early delay. However the bilateral load response peaked earlier and its generators shifted later in the delay. Therefore the hemifield-specific response may be more closely tied to memory maintenance while the global load response may be involved in initial processing of a limited number of attended objects, such as their individuation or consolidation into memory.

  14. Reading, listening and memory-related brain activity in children with early-stage temporal lobe epilepsy of unknown cause-an fMRI study.

    Science.gov (United States)

    Mankinen, Katariina; Ipatti, Pieta; Harila, Marika; Nikkinen, Juha; Paakki, Jyri-Johan; Rytky, Seppo; Starck, Tuomo; Remes, Jukka; Tokariev, Maksym; Carlson, Synnöve; Tervonen, Osmo; Rantala, Heikki; Kiviniemi, Vesa

    2015-09-01

    The changes in functional brain organization associated with paediatric epilepsy are largely unknown. Since children with epilepsy are at risk of developing learning difficulties even before or shortly after the onset of epilepsy, we assessed the functional organization of memory and language in paediatric patients with temporal lobe epilepsy (TLE) at an early stage in epilepsy. Functional magnetic resonance imaging was used to measure the blood oxygenation level-dependent (BOLD) response to four cognitive tasks measuring reading, story listening, memory encoding and retrieval in a population-based group of children with TLE of unknown cause (n = 21) and of normal intelligence and a healthy age and gender-matched control group (n = 21). Significant BOLD response differences were found only in one of the four tasks. In the story listening task, significant differences were found in the right hemispheric temporal structures, thalamus and basal ganglia. Both activation and deactivation differed significantly between the groups, activation being increased and deactivation decreased in the TLE group. Furthermore, the patients with abnormal electroencephalograms (EEGs) showed significantly increased activation bilaterally in the temporal structures, basal ganglia and thalamus relative to those with normal EEGs. The patients with normal interictal EEGs had a significantly stronger deactivation than those with abnormal EEGs or the controls, the differences being located outside the temporal structures. Our results suggest that TLE entails a widespread disruption of brain networks. This needs to be taken into consideration when evaluating learning abilities in patients with TLE. The thalamus seems to play an active role in TLE. The changes in deactivation may reflect neuronal inhibition. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  15. Hierarchical modeling and analysis for spatial data

    CERN Document Server

    Banerjee, Sudipto; Gelfand, Alan E

    2003-01-01

    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  16. Frontal and temporal lobe contributions to emotional enhancement of memory in behavioral-variant frontotemporal dementia and Alzheimer's disease

    OpenAIRE

    Kumfor, Fiona; Irish, Muireann; Hodges, John R.; Piguet, Olivier

    2014-01-01

    Emotional events gain special priority in how they are remembered, with emotionally arousing events typically recalled more vividly and with greater confidence than non-emotional events. In dementia, memory and emotion processing are affected to varying degrees, however, whether emotional enhancement of memory for complex ecologically-valid events is differentially affected across dementia syndromes remains unclear, with previous studies examining effects of emotion on simple visual recogniti...

  17. A Spatial and Temporal Characterization of the Background Neutron Environment at the Navy and Marine Corps Memorial Stadium

    Science.gov (United States)

    2017-04-01

    Naval Academy Annapolis, MD Abstract This project utilized neutron detection near the Naval Academy football stadium in order to map and quantify...Introduction The Navy and Marine Corps Memorial Stadium is the U.S. Naval Academy’s football venue in Annapolis, Maryland, with a seating capacity of...Ziegler and H. Puchner, SER - History , Trends and Challenges A Guide for Designing with Memory ICs, San Jose: Cypress, 2004. [7] J.D. Dirk et al

  18. Direct Exploration of the Role of the Ventral Anterior Temporal Lobe in Semantic Memory: Cortical Stimulation and Local Field Potential Evidence From Subdural Grid Electrodes.

    Science.gov (United States)

    Shimotake, Akihiro; Matsumoto, Riki; Ueno, Taiji; Kunieda, Takeharu; Saito, Satoru; Hoffman, Paul; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu; Takahashi, Ryosuke; Ikeda, Akio; Lambon Ralph, Matthew A

    2015-10-01

    Semantic memory is a crucial higher cortical function that codes the meaning of objects and words, and when impaired after neurological damage, patients are left with significant disability. Investigations of semantic dementia have implicated the anterior temporal lobe (ATL) region, in general, as crucial for multimodal semantic memory. The potentially crucial role of the ventral ATL subregion has been emphasized by recent functional neuroimaging studies, but the necessity of this precise area has not been selectively tested. The implantation of subdural electrode grids over this subregion, for the presurgical assessment of patients with partial epilepsy or brain tumor, offers the dual yet rare opportunities to record cortical local field potentials while participants complete semantic tasks and to stimulate the functionally identified regions in the same participants to evaluate the necessity of these areas in semantic processing. Across 6 patients, and utilizing a variety of semantic assessments, we evaluated and confirmed that the anterior fusiform/inferior temporal gyrus is crucial in multimodal, receptive, and expressive, semantic processing. © The Author 2014. Published by Oxford University Press.

  19. The Temporal Dynamics Model of Emotional Memory Processing: A Synthesis on the Neurobiological Basis of Stress-Induced Amnesia, Flashbulb and Traumatic Memories, and the Yerkes-Dodson Law

    Directory of Open Access Journals (Sweden)

    Phillip R. Zoladz

    2007-03-01

    Full Text Available We have reviewed research on the effects of stress on LTP in the hippocampus, amygdala and prefrontal cortex (PFC and present new findings which provide insight into how the attention and memory-related functions of these structures are influenced by strong emotionality. We have incorporated the stress-LTP findings into our “temporal dynamics” model, which provides a framework for understanding the neurobiological basis of flashbulb and traumatic memories, as well as stress-induced amnesia. An important feature of the model is the idea that endogenous mechanisms of plasticity in the hippocampus and amygdala are rapidly activated for a relatively short period of time by a strong emotional learning experience. Following this activational period, both structures undergo a state in which the induction of new plasticity is suppressed, which facilitates the memory consolidation process. We further propose that with the onset of strong emotionality, the hippocampus rapidly shifts from a “configural/cognitive map” mode to a “flashbulb memory” mode, which underlies the long-lasting, but fragmented, nature of traumatic memories. Finally, we have speculated on the significance of stress-LTP interactions in the context of the Yerkes-Dodson Law, a well-cited, but misunderstood, century-old principle which states that the relationship between arousal and behavioral performance can be linear or curvilinear, depending on the difficulty of the task.

  20. Exploring the efficacy of a 5-day course of transcranial direct current stimulation (TDCS) on depression and memory function in patients with well-controlled temporal lobe epilepsy.

    Science.gov (United States)

    Liu, Anli; Bryant, Andrew; Jefferson, Ashlie; Friedman, Daniel; Minhas, Preet; Barnard, Sarah; Barr, William; Thesen, Thomas; O'Connor, Margaret; Shafi, Mouhsin; Herman, Susan; Devinsky, Orrin; Pascual-Leone, Alvaro; Schachter, Steven

    2016-02-01

    Depression and memory dysfunction significantly impact the quality of life of patients with epilepsy. Current therapies for these cognitive and psychiatric comorbidities are limited. We explored the efficacy and safety of transcranial direct current stimulation (TDCS) for treating depression and memory dysfunction in patients with temporal lobe epilepsy (TLE). Thirty-seven (37) adults with well-controlled TLE were enrolled in a double-blinded, sham-controlled, randomized, parallel-group study of 5 days of fixed-dose (2 mA, 20 min) TDCS. Subjects were randomized to receive either real or sham TDCS, both delivered over the left dorsolateral prefrontal cortex. Patients received neuropsychological testing and a 20-minute scalp EEG at baseline immediately after the TDCS course and at 2- and 4-week follow-up. There was improvement in depression scores immediately after real TDCS, but not sham TDCS, as measured by changes in the Beck Depression Inventory (BDI change: -1.68 vs. 1.27, pTDCS as a safe and well-tolerated nonpharmacologic approach to improving depressive symptoms in patients with well-controlled TLE. However, there were no changes in memory function immediately following or persisting after a stimulation course. Further studies may determine optimal stimulation parameters for maximal mood benefit. Copyright © 2015. Published by Elsevier Inc.

  1. Scalable Hierarchical Algorithms for stochastic PDEs and UQ

    KAUST Repository

    Litvinenko, Alexander; Chá vez, Gustavo; Keyes,David; Ltaief, Hatem; Yokota, Rio

    2015-01-01

    number of degrees of freedom in the discretization. The storage is reduced to the log-linear as well. This hierarchical structure is a good starting point for parallel algorithms. Parallelization on shared and distributed memory systems was pioneered

  2. Effect of propofol on the medial temporal lobe emotional memory system: a functional magnetic resonance imaging study in human subjects.

    Science.gov (United States)

    Pryor, K O; Root, J C; Mehta, M; Stern, E; Pan, H; Veselis, R A; Silbersweig, D A

    2015-07-01

    Subclinical doses of propofol produce anterograde amnesia, characterized by an early failure of memory consolidation. It is unknown how propofol affects the amygdala-dependent emotional memory system, which modulates consolidation in the hippocampus in response to emotional arousal and neurohumoral stress. We present an event-related functional magnetic resonance imaging study of the effects of propofol on the emotional memory system in human subjects. Thirty-five healthy subjects were randomized to receive propofol, at an estimated brain concentration of 0.90 μg ml(-1), or placebo. During drug infusion, emotionally arousing and neutral images were presented in a continuous recognition task, while blood-oxygen-level-dependent activation responses were acquired. After a drug-free interval of 2 h, subsequent memory for successfully encoded items was assessed. Imaging analysis was performed using statistical parametric mapping and behavioural analysis using signal detection models. Propofol had no effect on the stereotypical amygdalar response to emotional arousal, but caused marked suppression of the hippocampal response. Propofol caused memory performance to become uncoupled from amygdalar activation, but it remained correlated with activation in the posterior hippocampus, which decreased in proportion to amnesia. Propofol is relatively ineffective at suppressing amygdalar activation at sedative doses, but abolishes emotional modulation and causes amnesia via mechanisms that commonly involve hyporesponsiveness of the hippocampus. These findings raise the possibility that amygdala-dependent fear systems may remain intact even when a patient has diminished memory of events. This may be of clinical importance in the perioperative development of fear-based psychopathologies, such as post-traumatic stress disorder. NCT00504894. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions

  3. Variação temporal no desempenho em testes de memória em pacientes com doença vascular cerebral Temporal variation in memory tests performance in cerebral vascular disease patients

    Directory of Open Access Journals (Sweden)

    Tania Fernandes Campos

    2007-01-01

    Full Text Available Buscando adequar a avaliação neuropsicológica à organização temporal do organismo humano, avaliou-se o desempenho em testes de memória em 12 pacientes pós Doença Vascular Cerebral e 12 indivíduos controle, de ambos os sexos, com idade de 45 a 65 anos. Foram aplicados dois testes de memória com estímulos visuais (figuras e dois com estímulos verbais (palavras, em 3 dias consecutivos por semana, às 08:00, 10:00 e 12:00 h na primeira semana e às 14:00 e 16:00 h na seguinte. Os pacientes apresentaram menor número de acertos do que os indivíduos controle em todos os testes aplicados (pThis study intended to investigate the performance in memory tests in order to adequate the neuropsychological evaluation to the temporal order of the human organism. Twelve cerebral vascular accident patients and 12 controls, of both sexes and 45-65 years old were studied. Two memory tests with visual stimuli (pictures and two with verbal stimuli (words were applied three times a day (08:00, 10:00 and 12:00 h during the first week and twice a day (14:00 and 16:00 h in the second week, during three consecutive days in two consecutive weeks. The patients showed lower scores than control subjects in all applied tests (p<0,05. The greater test sensitivity was at 14:00 h for the free recall test and at 16:00 h for recognition tests. According to these results, it is concluded that neuropsychological evaluations should be conducted preferably in the afternoon, as well for the first evaluation as for the re-evaluations.

  4. Pre-learning stress differentially affects long-term memory for emotional words, depending on temporal proximity to the learning experience.

    Science.gov (United States)

    Zoladz, Phillip R; Clark, Brianne; Warnecke, Ashlee; Smith, Lindsay; Tabar, Jennifer; Talbot, Jeffery N

    2011-07-06

    Stress exerts a profound, yet complex, influence on learning and memory and can enhance, impair or have no effect on these processes. Here, we have examined how the administration of stress at different times before learning affects long-term (24-hr) memory for neutral and emotional information. Participants submerged their dominant hand into a bath of ice cold water (Stress) or into a bath of warm water (No stress) for 3 min. Either immediately (Exp. 1) or 30 min (Exp. 2) after the water bath manipulation, participants were presented with a list of 30 words varying in emotional valence. The next day, participants' memory for the word list was assessed via free recall and recognition tests. In both experiments, stressed participants exhibited greater blood pressure, salivary cortisol levels, and subjective pain and stress ratings than non-stressed participants in response to the water bath manipulation. Stress applied immediately prior to learning (Exp. 1) enhanced the recognition of positive words, while stress applied 30 min prior to learning (Exp. 2) impaired free recall of negative words. Participants' recognition of positive words in Experiment 1 was positively associated with their heart rate responses to the water bath manipulation, while participants' free recall of negative words in Experiment 2 was negatively associated with their blood pressure and cortisol responses to the water bath manipulation. These findings indicate that the differential effects of pre-learning stress on long-term memory may depend on the temporal proximity of the stressor to the learning experience and the emotional nature of the to-be-learned information. Copyright © 2011. Published by Elsevier Inc.

  5. Time-Based Loss in Visual Short-Term Memory Is from Trace Decay, Not Temporal Distinctiveness

    Science.gov (United States)

    Ricker, Timothy J.; Spiegel, Lauren R.; Cowan, Nelson

    2014-01-01

    There is no consensus as to why forgetting occurs in short-term memory tasks. In past work, we have shown that forgetting occurs with the passage of time, but there are 2 classes of theories that can explain this effect. In the present work, we investigate the reason for time-based forgetting by contrasting the predictions of temporal…

  6. A model for removing the increased recall of recent events from the temporal distribution of autobiographical memory

    NARCIS (Netherlands)

    Janssen, S.M.J.; Gralak, A.; Murre, J.M.J.

    2011-01-01

    The reminiscence bump is the tendency to recall relatively many personal events from the period in which the individual was between 10 and 30 years old. This effect has only been found in autobiographical memory studies that used participants who were older than 40 years of age. The increased recall

  7. Temporal variation in memory tests performance in cerebral vascular disease patients / Variação temporal no desempenho em testes de memória em pacientes com doença vascular cerebral

    Directory of Open Access Journals (Sweden)

    Tania Fernandes Campos

    2007-01-01

    Full Text Available This study intended to investigate the performance in memory tests in order to adequate the neuropsychological evaluation to the temporal order of the human organism. Twelve cerebral vascular accident patients and 12 controls, of both sexes and 45-65 years old were studied. Two memory tests with visual stimuli (pictures and two with verbal stimuli (words were applied three times a day (08:00, 10:00 and 12:00 h during the first week and twice a day (14:00 and 16:00 h in the second week, during three consecutive days in two consecutive weeks. The patients showed lower scores than control subjects in all applied tests (p<0,05. The greater test sensitivity was at 14:00 h for the free recall test and at 16:00 h for recognition tests. According to these results, it is concluded that neuropsychological evaluations should be conducted preferably in the afternoon, as well for the first evaluation as for the re-evaluations.

  8. Saccades phase-locked to alpha oscillations in the occipital and medial temporal lobe enhance memory encoding

    OpenAIRE

    Noachtar, Soheyl; Doeller, Christian; Jensen, Ole; Hartl, Elisabeth; Staudigl, Tobias

    2017-01-01

    Efficient sampling of visual information requires a coordination of eye movements and ongoing brain oscillations. Using intracranial and MEG recordings, we show that saccades are locked to the phase of visual alpha oscillations, and that this coordination supports mnemonic encoding of visual scenes. Furthermore, parahippocampal and retrosplenial cortex involvement in this coordination reflects effective vision-to-memory mapping, highlighting the importance of neural oscillations for the inter...

  9. The effect of a concurrent working memory task and temporal offsets on the integration of auditory and visual speech information.

    Science.gov (United States)

    Buchan, Julie N; Munhall, Kevin G

    2012-01-01

    Audiovisual speech perception is an everyday occurrence of multisensory integration. Conflicting visual speech information can influence the perception of acoustic speech (namely the McGurk effect), and auditory and visual speech are integrated over a rather wide range of temporal offsets. This research examined whether the addition of a concurrent cognitive load task would affect the audiovisual integration in a McGurk speech task and whether the cognitive load task would cause more interference at increasing offsets. The amount of integration was measured by the proportion of responses in incongruent trials that did not correspond to the audio (McGurk response). An eye-tracker was also used to examine whether the amount of temporal offset and the presence of a concurrent cognitive load task would influence gaze behavior. Results from this experiment show a very modest but statistically significant decrease in the number of McGurk responses when subjects also perform a cognitive load task, and that this effect is relatively constant across the various temporal offsets. Participant's gaze behavior was also influenced by the addition of a cognitive load task. Gaze was less centralized on the face, less time was spent looking at the mouth and more time was spent looking at the eyes, when a concurrent cognitive load task was added to the speech task.

  10. Practical use of visual medial temporal lobe atrophy cut-off scores in Alzheimer's disease: Validation in a large memory clinic population

    International Nuclear Information System (INIS)

    Claus, Jules J.; Holl, Dana C.; Roorda, Jelmen J.; Staekenborg, Salka S.; Schuur, Jacqueline; Koster, Pieter; Tielkes, Caroline E.M.; Scheltens, Philip

    2017-01-01

    To provide age-specific medial temporal lobe atrophy (MTA) cut-off scores for routine clinical practice as marker for Alzheimer's disease (AD). Patients with AD (n = 832, mean age 81.8 years) were compared with patients with subjective cognitive impairment (n = 333, mean age 71.8 years) in a large single-centre memory clinic. Mean of right and left MTA scores was determined with visual rating (Scheltens scale) using CT (0, no atrophy to 4, severe atrophy). Relationships between age and MTA scores were analysed with regression analysis. For various MTA cut-off scores, decade-specific sensitivity and specificity and area under the curve (AUC) values, computed with receiver operator characteristic curves, were determined. MTA strongly increased with age in both groups to a similar degree. Optimal MTA cut-off values for the age ranges <65, 65-74, 75-84 and ≥85 were: ≥1.0, ≥1.5, ≥ 2.0 and ≥2.0. Corresponding values of sensitivity and specificity were 83.3% and 86.4%; 73.7% and 84.6%; 73.7% and 76.2%; and 84.0% and 62.5%. From this large unique memory clinic cohort we suggest decade-specific MTA cut-off scores for clinical use. After age 85 years, however, the practical usefulness of the MTA cut-off is limited. (orig.)

  11. Practical use of visual medial temporal lobe atrophy cut-off scores in Alzheimer's disease: Validation in a large memory clinic population

    Energy Technology Data Exchange (ETDEWEB)

    Claus, Jules J.; Holl, Dana C.; Roorda, Jelmen J. [Tergooi Hospital, Department of Neurology, Blaricum (Netherlands); Staekenborg, Salka S. [Tergooi Hospital, Department of Neurology, Blaricum (Netherlands); VU University Medical Center, Department of Neurology, Alzheimer Center, Amsterdam (Netherlands); Schuur, Jacqueline [Tergooi Hospital, Department of Geriatrics, Blaricum (Netherlands); Koster, Pieter [Tergooi Hospital, Department of Radiology, Blaricum (Netherlands); Tielkes, Caroline E.M. [Tergooi Hospital, Department of Medical Psychology, Blaricum (Netherlands); Scheltens, Philip [VU University Medical Center, Department of Neurology, Alzheimer Center, Amsterdam (Netherlands)

    2017-08-15

    To provide age-specific medial temporal lobe atrophy (MTA) cut-off scores for routine clinical practice as marker for Alzheimer's disease (AD). Patients with AD (n = 832, mean age 81.8 years) were compared with patients with subjective cognitive impairment (n = 333, mean age 71.8 years) in a large single-centre memory clinic. Mean of right and left MTA scores was determined with visual rating (Scheltens scale) using CT (0, no atrophy to 4, severe atrophy). Relationships between age and MTA scores were analysed with regression analysis. For various MTA cut-off scores, decade-specific sensitivity and specificity and area under the curve (AUC) values, computed with receiver operator characteristic curves, were determined. MTA strongly increased with age in both groups to a similar degree. Optimal MTA cut-off values for the age ranges <65, 65-74, 75-84 and ≥85 were: ≥1.0, ≥1.5, ≥ 2.0 and ≥2.0. Corresponding values of sensitivity and specificity were 83.3% and 86.4%; 73.7% and 84.6%; 73.7% and 76.2%; and 84.0% and 62.5%. From this large unique memory clinic cohort we suggest decade-specific MTA cut-off scores for clinical use. After age 85 years, however, the practical usefulness of the MTA cut-off is limited. (orig.)

  12. Temporal phases of activity-dependent plasticity and memory are mediated by compartmentalized routing of MAPK signaling in aplysia sensory neurons.

    Science.gov (United States)

    Shobe, Justin L; Zhao, Yali; Stough, Shara; Ye, Xiaojing; Hsuan, Vickie; Martin, Kelsey C; Carew, Thomas J

    2009-01-15

    An activity-dependent form of intermediate memory (AD-ITM) for sensitization is induced in Aplysia by a single tail shock that gives rise to plastic changes (AD-ITF) in tail sensory neurons (SNs) via the interaction of action potential firing in the SN coupled with the release of serotonin in the CNS. Activity-dependent long-term facilitation (AD-LTF, lasting >24hr) requires protein synthesis dependent persistent mitogen-activated protein kinase (MAPK) activation and translocation to the SN nucleus. We now show that the induction of the earlier temporal phase (AD-ITM and AD-ITF), which is translation and transcription independent, requires the activation of a compartmentally distinct novel signaling cascade that links second messengers, MAPK and PKC into a unified pathway within tail SNs. Since both AD-ITM and AD-LTM require MAPK activity, these collective findings suggest that presynaptic SNs route the flow of molecular information to distinct subcellular compartments during the induction of activity-dependent long-lasting memories.

  13. Temporal Stability of the Dutch Version of the Wechsler Memory Scale-Fourth Edition (WMS-IV-NL).

    Science.gov (United States)

    Bouman, Zita; Hendriks, Marc P H; Aldenkamp, Albert P; Kessels, Roy P C

    2015-01-01

    The Wechsler Memory Scale-Fourth Edition (WMS-IV) is one of the most widely used memory batteries. We examined the test-retest reliability, practice effects, and standardized regression-based (SRB) change norms for the Dutch version of the WMS-IV (WMS-IV-NL) after both short and long retest intervals. The WMS-IV-NL was administered twice after either a short (M = 8.48 weeks, SD = 3.40 weeks, range = 3-16) or a long (M = 17.87 months, SD = 3.48, range = 12-24) retest interval in a sample of 234 healthy participants (M = 59.55 years, range = 16-90; 118 completed the Adult Battery; and 116 completed the Older Adult Battery). The test-retest reliability estimates varied across indexes. They were adequate to good after a short retest interval (ranging from .74 to .86), with the exception of the Visual Working Memory Index (r = .59), yet generally lower after a long retest interval (ranging from .56 to .77). Practice effects were only observed after a short retest interval (overall group mean gains up to 11 points), whereas no significant change in performance was found after a long retest interval. Furthermore, practice effect-adjusted SRB change norms were calculated for all WMS-IV-NL index scores. Overall, this study shows that the test-retest reliability of the WMS-IV-NL varied across indexes. Practice effects were observed after a short retest interval, but no evidence was found for practice effects after a long retest interval from one to two years. Finally, the SRB change norms were provided for the WMS-IV-NL.

  14. Laminar Module Cascade from Layer 5 to 6 Implementing Cue-to-Target Conversion for Object Memory Retrieval in the Primate Temporal Cortex.

    Science.gov (United States)

    Koyano, Kenji W; Takeda, Masaki; Matsui, Teppei; Hirabayashi, Toshiyuki; Ohashi, Yohei; Miyashita, Yasushi

    2016-10-19

    The cerebral cortex computes through the canonical microcircuit that connects six stacked layers; however, how cortical processing streams operate in vivo, particularly in the higher association cortex, remains elusive. By developing a novel MRI-assisted procedure that reliably localizes recorded single neurons at resolution of six individual layers in monkey temporal cortex, we show that transformation of representations from a cued object to a to-be-recalled object occurs at the infragranular layer in a visual cued-recall task. This cue-to-target conversion started in layer 5 and was followed by layer 6. Finally, a subset of layer 6 neurons exclusively encoding the sought target became phase-locked to surrounding field potentials at theta frequency, suggesting that this coordinated cell assembly implements cortical long-distance outputs of the recalled target. Thus, this study proposes a link from local computation spanning laminar modules of the temporal cortex to the brain-wide network for memory retrieval in primates. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Memory Dysfunction

    Science.gov (United States)

    Matthews, Brandy R.

    2015-01-01

    Purpose of Review: This article highlights the dissociable human memory systems of episodic, semantic, and procedural memory in the context of neurologic illnesses known to adversely affect specific neuroanatomic structures relevant to each memory system. Recent Findings: Advances in functional neuroimaging and refinement of neuropsychological and bedside assessment tools continue to support a model of multiple memory systems that are distinct yet complementary and to support the potential for one system to be engaged as a compensatory strategy when a counterpart system fails. Summary: Episodic memory, the ability to recall personal episodes, is the subtype of memory most often perceived as dysfunctional by patients and informants. Medial temporal lobe structures, especially the hippocampal formation and associated cortical and subcortical structures, are most often associated with episodic memory loss. Episodic memory dysfunction may present acutely, as in concussion; transiently, as in transient global amnesia (TGA); subacutely, as in thiamine deficiency; or chronically, as in Alzheimer disease. Semantic memory refers to acquired knowledge about the world. Anterior and inferior temporal lobe structures are most often associated with semantic memory loss. The semantic variant of primary progressive aphasia (svPPA) is the paradigmatic disorder resulting in predominant semantic memory dysfunction. Working memory, associated with frontal lobe function, is the active maintenance of information in the mind that can be potentially manipulated to complete goal-directed tasks. Procedural memory, the ability to learn skills that become automatic, involves the basal ganglia, cerebellum, and supplementary motor cortex. Parkinson disease and related disorders result in procedural memory deficits. Most memory concerns warrant bedside cognitive or neuropsychological evaluation and neuroimaging to assess for specific neuropathologies and guide treatment. PMID:26039844

  16. Michael Jackson, Bin Laden and I: functions of positive and negative, public and private flashbulb memories.

    Science.gov (United States)

    Demiray, Burcu; Freund, Alexandra M

    2015-01-01

    This study examined the perceived psychosocial functions of flashbulb memories: It compared positive and negative public flashbulb memories (positive: Bin Laden's death, negative: Michael Jackson's death) with private ones (positive: pregnancy, negative: death of a loved one). A sample of n = 389 young and n = 176 middle-aged adults answered canonical category questions used to identify flashbulb memories and rated the personal significance, the psychological temporal distance, and the functions of each memory (i.e., self-continuity, social-boding, directive functions). Hierarchical regressions showed that, in general, private memories were rated more functional than public memories. Positive and negative private memories were comparable in self-continuity and directionality, but the positive private memory more strongly served social functions. In line with the positivity bias in autobiographical memory, positive flashbulb memories felt psychologically closer than negative ones. Finally, middle-aged adults rated their memories as less functional regarding self-continuity and social-bonding than young adults. Results are discussed regarding the tripartite model of autobiographical memory functions.

  17. Temporal limits of selection and memory encoding: A comparison of whole versus partial report in rapid serial visual presentation.

    Science.gov (United States)

    Nieuwenstein, Mark R; Potter, Mary C

    2006-06-01

    People often fail to recall the second of two visual targets presented within 500 ms in rapid serial visual presentation (RSVP). This effect is called the attentional blink. One explanation of the attentional blink is that processes involved in encoding the first target into memory are slow and capacity limited. Here, however, we show that the attentional blink should be ascribed to attentional selection, not consolidation of the first target. Rapid sequences of six letters were presented, and observers had to report either all the letters (whole-report condition) or a subset of the letters (partial-report condition). Selection in partial report was based on color (e.g., report the two red letters) or identity (i.e., report all letters from a particular letter onward). In both cases, recall of letters presented shortly after the first selected letter was impaired, whereas recall of the corresponding letters was relatively accurate with whole report.

  18. The nature of short-term consolidation in visual working memory.

    Science.gov (United States)

    Ricker, Timothy J; Hardman, Kyle O

    2017-11-01

    Short-term consolidation is the process by which stable working memory representations are created. This process is fundamental to cognition yet poorly understood. The present work examines short-term consolidation using a Bayesian hierarchical model of visual working memory recall to determine the underlying processes at work. Our results show that consolidation functions largely through changing the proportion of memory items successfully maintained until test. Although there was some evidence that consolidation affects representational precision, this change was modest and could not account for the bulk of the consolidation effect on memory performance. The time course of the consolidation function and selective influence of consolidation on specific serial positions strongly indicates that short-term consolidation induces an attentional blink. The blink leads to deficits in memory for the immediately following item when time pressure is introduced. Temporal distinctiveness accounts of the consolidation process are tested and ruled out. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Evaluating Hierarchical Structure in Music Annotations.

    Science.gov (United States)

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  20. Evaluating Hierarchical Structure in Music Annotations

    Directory of Open Access Journals (Sweden)

    Brian McFee

    2017-08-01

    Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  1. Working memory load-dependent spatio-temporal activity of single-trial P3 response detected with an adaptive wavelet denoiser.

    Science.gov (United States)

    Zhang, Qiushi; Yang, Xueqian; Yao, Li; Zhao, Xiaojie

    2017-03-27

    Working memory (WM) refers to the holding and manipulation of information during cognitive tasks. Its underlying neural mechanisms have been explored through both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Trial-by-trial coupling of simultaneously collected EEG and fMRI signals has become an important and promising approach to study the spatio-temporal dynamics of such cognitive processes. Previous studies have demonstrated a modulation effect of the WM load on both the BOLD response in certain brain areas and the amplitude of P3. However, much remains to be explored regarding the WM load-dependent relationship between the amplitude of ERP components and cortical activities, and the low signal-to-noise ratio (SNR) of the EEG signal still poses a challenge to performing single-trial analyses. In this paper, we investigated the spatio-temporal activities of P3 during an n-back verbal WM task by introducing an adaptive wavelet denoiser into the extraction of single-trial P3 features and using general linear model (GLM) to integrate simultaneously collected EEG and fMRI data. Our results replicated the modulation effect of the WM load on the P3 amplitude. Additionally, the activation of single-trial P3 amplitudes was detected in multiple brain regions, including the insula, the cuneus, the lingual gyrus (LG), and the middle occipital gyrus (MOG). Moreover, we found significant correlations between P3 features and behavioral performance. These findings suggest that the single-trial integration of simultaneous EEG and fMRI signals may provide new insights into classical cognitive functions. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Correlated continuous time random walks: combining scale-invariance with long-range memory for spatial and temporal dynamics

    International Nuclear Information System (INIS)

    Schulz, Johannes H P; Chechkin, Aleksei V; Metzler, Ralf

    2013-01-01

    Standard continuous time random walk (CTRW) models are renewal processes in the sense that at each jump a new, independent pair of jump length and waiting time are chosen. Globally, anomalous diffusion emerges through scale-free forms of the jump length and/or waiting time distributions by virtue of the generalized central limit theorem. Here we present a modified version of recently proposed correlated CTRW processes, where we incorporate a power-law correlated noise on the level of both jump length and waiting time dynamics. We obtain a very general stochastic model, that encompasses key features of several paradigmatic models of anomalous diffusion: discontinuous, scale-free displacements as in Lévy flights, scale-free waiting times as in subdiffusive CTRWs, and the long-range temporal correlations of fractional Brownian motion (FBM). We derive the exact solutions for the single-time probability density functions and extract the scaling behaviours. Interestingly, we find that different combinations of the model parameters lead to indistinguishable shapes of the emerging probability density functions and identical scaling laws. Our model will be useful for describing recent experimental single particle tracking data that feature a combination of CTRW and FBM properties. (paper)

  3. Estimation and Application of Ecological Memory Functions in Time and Space

    Science.gov (United States)

    Itter, M.; Finley, A. O.; Dawson, A.

    2017-12-01

    A common goal in quantitative ecology is the estimation or prediction of ecological processes as a function of explanatory variables (or covariates). Frequently, the ecological process of interest and associated covariates vary in time, space, or both. Theory indicates many ecological processes exhibit memory to local, past conditions. Despite such theoretical understanding, few methods exist to integrate observations from the recent past or within a local neighborhood as drivers of these processes. We build upon recent methodological advances in ecology and spatial statistics to develop a Bayesian hierarchical framework to estimate so-called ecological memory functions; that is, weight-generating functions that specify the relative importance of local, past covariate observations to ecological processes. Memory functions are estimated using a set of basis functions in time and/or space, allowing for flexible ecological memory based on a reduced set of parameters. Ecological memory functions are entirely data driven under the Bayesian hierarchical framework—no a priori assumptions are made regarding functional forms. Memory function uncertainty follows directly from posterior distributions for model parameters allowing for tractable propagation of error to predictions of ecological processes. We apply the model framework to simulated spatio-temporal datasets generated using memory functions of varying complexity. The framework is also applied to estimate the ecological memory of annual boreal forest growth to local, past water availability. Consistent with ecological understanding of boreal forest growth dynamics, memory to past water availability peaks in the year previous to growth and slowly decays to zero in five to eight years. The Bayesian hierarchical framework has applicability to a broad range of ecosystems and processes allowing for increased understanding of ecosystem responses to local and past conditions and improved prediction of ecological

  4. Deep hierarchical attention network for video description

    Science.gov (United States)

    Li, Shuohao; Tang, Min; Zhang, Jun

    2018-03-01

    Pairing video to natural language description remains a challenge in computer vision and machine translation. Inspired by image description, which uses an encoder-decoder model for reducing visual scene into a single sentence, we propose a deep hierarchical attention network for video description. The proposed model uses convolutional neural network (CNN) and bidirectional LSTM network as encoders while a hierarchical attention network is used as the decoder. Compared to encoder-decoder models used in video description, the bidirectional LSTM network can capture the temporal structure among video frames. Moreover, the hierarchical attention network has an advantage over single-layer attention network on global context modeling. To make a fair comparison with other methods, we evaluate the proposed architecture with different types of CNN structures and decoders. Experimental results on the standard datasets show that our model has a more superior performance than the state-of-the-art techniques.

  5. Examining Brain-Cognition Effects of Ginkgo Biloba Extract: Brain Activation in the Left Temporal and Left Prefrontal Cortex in an Object Working Memory Task

    Directory of Open Access Journals (Sweden)

    R. B. Silberstein

    2011-01-01

    Full Text Available Ginkgo Biloba extract (GBE is increasingly used to alleviate symptoms of age related cognitive impairment, with preclinical evidence pointing to a pro-cholinergic effect. While a number of behavioral studies have reported improvements to working memory (WM associated with GBE, electrophysiological studies of GBE have typically been limited to recordings during a resting state. The current study investigated the chronic effects of GBE on steady state visually evoked potential (SSVEP topography in nineteen healthy middle-aged (50-61 year old male participants whilst completing an object WM task. A randomized double-blind crossover design was employed in which participants were allocated to receive 14 days GBE and 14 days placebo in random order. For both groups, SSVEP was recorded from 64 scalp electrode sites during the completion of an object WM task both pre- and 14 days post-treatment. GBE was found to improve behavioural performance on the WM task. GBE was also found to increase the SSVEP amplitude at occipital and frontal sites and increase SSVEP latency at left temporal and left frontal sites during the hold component of the WM task. These SSVEP changes associated with GBE may represent more efficient processing during WM task completion.

  6. Alteration of functional connectivity within visuospatial working memory-related brain network in patients with right temporal lobe epilepsy: a resting-state fMRI study.

    Science.gov (United States)

    Lv, Zong-xia; Huang, Dong-Hong; Ye, Wei; Chen, Zi-rong; Huang, Wen-li; Zheng, Jin-ou

    2014-06-01

    This study aimed to investigate the resting-state brain network related to visuospatial working memory (VSWM) in patients with right temporal lobe epilepsy (rTLE). The functional mechanism underlying the cognitive impairment in VSWM was also determined. Fifteen patients with rTLE and 16 healthy controls matched for age, gender, and handedness underwent a 6-min resting-state functional MRI session and a neuropsychological test using VSWM_Nback. The VSWM-related brain network at rest was extracted using multiple independent component analysis; the spatial distribution and the functional connectivity (FC) parameters of the cerebral network were compared between groups. Behavioral data were subsequently correlated with the mean Z-value in voxels showing significant FC difference during intergroup comparison. The distribution of the VSWM-related resting-state network (RSN) in the group with rTLE was virtually consistent with that in the healthy controls. The distribution involved the dorsolateral prefrontal lobe and parietal lobe in the right hemisphere and the partial inferior parietal lobe and posterior lobe of the cerebellum in the left hemisphere (pright superior frontal lobe (BA8), right middle frontal lobe, and right ventromedial prefrontal lobe compared with the controls (pright superior frontal lobe (BA11), right superior parietal lobe, and left posterior lobe of the cerebellum (prights reserved.

  7. Testing the importance of the Medial Temporal Lobes in human interoception: Does it matter if there is a memory component to the task?

    Science.gov (United States)

    Berriman, Joanne; Stevenson, Richard J; Thayer, Zoe C; Thompson, Elizabeth; Mohamed, Armin; Watson, John D G; Miller, Laurie A

    2016-10-01

    Interoception is the ability to consciously perceive internal bodily states. Neuroimaging suggests that the insula (IC) and anterior cingulate cortex (ACC) mediate interoception, while studies involving patients/animals with brain lesions suggest the medial temporal lobe (MTL) is particularly important. One reason for these contrasting conclusions may lie in the types of interoceptive task used by these different approaches. Some tasks probably require integration of current physiological state with mnemonic information (e.g., how much one last ate), and these may be especially reliant upon MTL processing. We compared one task that probably requires integration - a water load task - with one that likely does not - a heart-rate tracking task - in two individuals with selective MTL damage (and with intact IC and ACC). A group of matched healthy individuals served as controls. The main finding was that individuals with MTL damage, relative to controls, were equally and significantly impaired on both types of interoception task. This suggests that MTL structures are involved in mediating interoception even when using a task (heart rate tracking) that does not seemingly require memory and that in neuroimaging studies activates the IC and ACC. The reasons for this apparent inconsistency with neuroimaging findings and the functional role of the MTL in interoception are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A Hierarchical Feature Extraction Model for Multi-Label Mechanical Patent Classification

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2018-01-01

    Full Text Available Various studies have focused on feature extraction methods for automatic patent classification in recent years. However, most of these approaches are based on the knowledge from experts in related domains. Here we propose a hierarchical feature extraction model (HFEM for multi-label mechanical patent classification, which is able to capture both local features of phrases as well as global and temporal semantics. First, a n-gram feature extractor based on convolutional neural networks (CNNs is designed to extract salient local lexical-level features. Next, a long dependency feature extraction model based on the bidirectional long–short-term memory (BiLSTM neural network model is proposed to capture sequential correlations from higher-level sequence representations. Then the HFEM algorithm and its hierarchical feature extraction architecture are detailed. We establish the training, validation and test datasets, containing 72,532, 18,133, and 2679 mechanical patent documents, respectively, and then check the performance of HFEMs. Finally, we compared the results of the proposed HFEM and three other single neural network models, namely CNN, long–short-term memory (LSTM, and BiLSTM. The experimental results indicate that our proposed HFEM outperforms the other compared models in both precision and recall.

  9. Hierarchical modeling of active materials

    International Nuclear Information System (INIS)

    Taya, Minoru

    2003-01-01

    Intelligent (or smart) materials are increasingly becoming key materials for use in actuators and sensors. If an intelligent material is used as a sensor, it can be embedded in a variety of structure functioning as a health monitoring system to make their life longer with high reliability. If an intelligent material is used as an active material in an actuator, it plays a key role of making dynamic movement of the actuator under a set of stimuli. This talk intends to cover two different active materials in actuators, (1) piezoelectric laminate with FGM microstructure, (2) ferromagnetic shape memory alloy (FSMA). The advantage of using the FGM piezo laminate is to enhance its fatigue life while maintaining large bending displacement, while that of use in FSMA is its fast actuation while providing a large force and stroke capability. Use of hierarchical modeling of the above active materials is a key design step in optimizing its microstructure for enhancement of their performance. I will discuss briefly hierarchical modeling of the above two active materials. For FGM piezo laminate, we will use both micromechanical model and laminate theory, while for FSMA, the modeling interfacing nano-structure, microstructure and macro-behavior is discussed. (author)

  10. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...

  11. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... with changing and increasing demands. Two-layer networks consist of one backbone network, which interconnects cluster networks. The clusters consist of nodes and links, which connect the nodes. One node in each cluster is a hub node, and the backbone interconnects the hub nodes of each cluster and thus...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks...

  12. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  13. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  14. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  15. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-01-01

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  16. The dynamics of access to groups in working memory.

    Science.gov (United States)

    Farrell, Simon; Lelièvre, Anna

    2012-11-01

    The finding that participants leave a pause between groups when attempting serial recall of temporally grouped lists has been taken to indicate access to a hierarchical representation of the list in working memory. An alternative explanation is that the dynamics of serial recall solely reflect output (rather than memorial) processes, with the temporal pattern at input merely suggesting a basis for the pattern of output buffering. Three experiments are presented here that disentangle input structure from output buffering in serial recall. In Experiment 1, participants were asked to recall a subset of visually presented digits from a temporally grouped list in their original order, where either within-group position or group position was kept constant. In Experiment 2, participants performed more standard serial recall of spoken digits, and input and output position were dissociated by asking participants to initiate recall from a post-cued position in the list. In Experiment 3, participants were asked to serially recall temporally grouped lists of visually presented digits where the grouping structure was unpredictable, under either articulatory suppression or silent conditions. The 3 experiments point to a tight linkage between implied memorial structures (i.e., the pattern of grouping at encoding) and the output structure implied by retrieval times and call into question a purely motoric account of the dynamics of recall.

  17. Episodic memory, semantic memory, and amnesia.

    Science.gov (United States)

    Squire, L R; Zola, S M

    1998-01-01

    Episodic memory and semantic memory are two types of declarative memory. There have been two principal views about how this distinction might be reflected in the organization of memory functions in the brain. One view, that episodic memory and semantic memory are both dependent on the integrity of medial temporal lobe and midline diencephalic structures, predicts that amnesic patients with medial temporal lobe/diencephalic damage should be proportionately impaired in both episodic and semantic memory. An alternative view is that the capacity for semantic memory is spared, or partially spared, in amnesia relative to episodic memory ability. This article reviews two kinds of relevant data: 1) case studies where amnesia has occurred early in childhood, before much of an individual's semantic knowledge has been acquired, and 2) experimental studies with amnesic patients of fact and event learning, remembering and knowing, and remote memory. The data provide no compelling support for the view that episodic and semantic memory are affected differently in medial temporal lobe/diencephalic amnesia. However, episodic and semantic memory may be dissociable in those amnesic patients who additionally have severe frontal lobe damage.

  18. Errors on interrupter tasks presented during spatial and verbal working memory performance are linearly linked to large-scale functional network connectivity in high temporal resolution resting state fMRI.

    Science.gov (United States)

    Magnuson, Matthew Evan; Thompson, Garth John; Schwarb, Hillary; Pan, Wen-Ju; McKinley, Andy; Schumacher, Eric H; Keilholz, Shella Dawn

    2015-12-01

    The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence. Sustained attention performance was also evaluated in a task interleaved between resting state scans. Functional connectivity within and between the DMN and TPN was related to performance on these tasks. Decreased TPN resting state connectivity was found to significantly correlate with fewer errors on an interrupter task presented during a spatial working memory paradigm and decreased DMN/TPN anti-correlation was significantly correlated with fewer errors on an interrupter task presented during a verbal working memory paradigm. A trend for increased DMN resting state connectivity to correlate to measures of fluid intelligence was also observed. These results provide additional evidence of the relationship between resting state networks and behavioral performance, and show that such results can be observed with high temporal resolution fMRI. Because cognitive scores and functional connectivity were collected on nonconsecutive days, these results highlight the stability of functional connectivity/cognitive performance coupling.

  19. The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension: evidence from 210 patients with stroke

    OpenAIRE

    Leff, Alexander P.; Schofield, Thomas M.; Crinion, Jennifer T.; Seghier, Mohamed L.; Grogan, Alice; Green, David W.; Price, Cathy J.

    2009-01-01

    Competing theories of short-term memory function make specific predictions about the functional anatomy of auditory short-term memory and its role in language comprehension. We analysed high-resolution structural magnetic resonance images from 210 stroke patients and employed a novel voxel based analysis to test the relationship between auditory short-term memory and speech comprehension. Using digit span as an index of auditory short-term memory capacity we found that the structural integrit...

  20. Sparsey^TM: Spatiotemporal Event Recognition via Deep Hierarchical Sparse Distributed Codes

    Directory of Open Access Journals (Sweden)

    Gerard J Rinkus

    2014-12-01

    Full Text Available The visual cortex’s hierarchical, multi-level organization is captured in many biologically inspired computational vision models, the general idea being that progressively larger scale (spatially/temporally and more complex visual features are represented in progressively higher areas. However, most earlier models use localist representations (codes in each representational field (which we equate with the cortical macrocolumn, mac, at each level. In localism, each represented feature/concept/event (hereinafter item is coded by a single unit. The model we describe, Sparsey, is hierarchical as well but crucially, it uses sparse distributed coding (SDC in every mac in all levels. In SDC, each represented item is coded by a small subset of the mac’s units. The SDCs of different items can overlap and the size of overlap between items can be used to represent their similarity. The difference between localism and SDC is crucial because SDC allows the two essential operations of associative memory, storing a new item and retrieving the best-matching stored item, to be done in fixed time for the life of the model. Since the model’s core algorithm, which does both storage and retrieval (inference, makes a single pass over all macs on each time step, the overall model’s storage/retrieval operation is also fixed-time, a criterion we consider essential for scalability to the huge (Big Data problems. A 2010 paper described a non-hierarchical version of this model in the context of purely spatial pattern processing. Here, we elaborate a fully hierarchical model (arbitrary numbers of levels and macs per level, describing novel model principles like progressive critical periods, dynamic modulation of principal cells’ activation functions based on a mac-level familiarity measure, representation of multiple simultaneously active hypotheses, a novel method of time warp invariant recognition, and we report results showing learning/recognition of

  1. Contributions of Feature Binding During Encoding and Functional Connectivity of the Medial Temporal Lobe Structures to Episodic Memory Deficits Across the Prodromal and First-Episode Phases of Schizophrenia.

    Science.gov (United States)

    Haut, Kristen M; van Erp, Theo G M; Knowlton, Barbara; Bearden, Carrie E; Subotnik, Kenneth; Ventura, Joseph; Nuechterlein, Keith H; Cannon, Tyrone D

    2015-03-01

    Patients with and at risk for psychosis may have difficulty using associative strategies to facilitate episodic memory encoding and recall. In parallel studies, patients with first-episode schizophrenia ( n = 27) and high psychosis risk ( n = 28) compared with control participants ( n = 22 and n = 20, respectively) underwent functional MRI during a remember-know memory task. Psychophysiological interaction analyses, using medial temporal lobe (MTL) structures as regions of interest, were conducted to measure functional connectivity patterns supporting successful episodic memory. During encoding, patients with first-episode schizophrenia demonstrated reduced functional coupling between MTL regions and regions involved in stimulus representations, stimulus selection, and cognitive control. Relative to control participants and patients with high psychosis risk who did not convert to psychosis, patients with high psychosis risk who later converted to psychosis also demonstrated reduced connectivity between MTL regions and auditory-verbal and visual-association regions. These results suggest that episodic memory deficits in schizophrenia are related to inefficient recruitment of cortical connections involved in associative memory formation; such deficits precede the onset of psychosis among those individuals at high clinical risk.

  2. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Michael [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  3. Neutrosophic Hierarchical Clustering Algoritms

    Directory of Open Access Journals (Sweden)

    Rıdvan Şahin

    2014-03-01

    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  4. Aging Memories: Differential Decay of Episodic Memory Components

    Science.gov (United States)

    Talamini, Lucia M.; Gorree, Eva

    2012-01-01

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a…

  5. Associative working memory and subsequent episodic memory in Alzheimer's disease.

    NARCIS (Netherlands)

    Geldorp, B. van; Konings, E.P.; Tilborg, I.A. Van; Kessels, R.P.C.

    2012-01-01

    Recent studies indicate deficits in associative working memory in patients with medial-temporal lobe amnesia. However, it is unclear whether these deficits reflect working memory processing or are due to hippocampally mediated long-term memory impairment. We investigated associative working memory

  6. Associative working memory and subsequent episodic memory in Alzheimer's disease

    NARCIS (Netherlands)

    Geldorp, B. van; Konings, E.P.C.; Tilborg, I.A.D.A. van; Kessels, R.P.C.

    2012-01-01

    Recent studies indicate deficits in associative working memory in patients with medial-temporal lobe amnesia. However, it is unclear whether these deficits reflect working memory processing or are due to hippocampally mediated long-term memory impairment. We investigated associative working memory

  7. Application of hierarchical matrices for partial inverse

    KAUST Repository

    Litvinenko, Alexander

    2013-11-26

    In this work we combine hierarchical matrix techniques (Hackbusch, 1999) and domain decomposition methods to obtain fast and efficient algorithms for the solution of multiscale problems. This combination results in the hierarchical domain decomposition (HDD) method, which can be applied for solution multi-scale problems. Multiscale problems are problems that require the use of different length scales. Using only the finest scale is very expensive, if not impossible, in computational time and memory. Domain decomposition methods decompose the complete problem into smaller systems of equations corresponding to boundary value problems in subdomains. Then fast solvers can be applied to each subdomain. Subproblems in subdomains are independent, much smaller and require less computational resources as the initial problem.

  8. A Dynamic Construction Algorithm for the Compact Patricia Trie Using the Hierarchical Structure.

    Science.gov (United States)

    Jung, Minsoo; Shishibori, Masami; Tanaka, Yasuhiro; Aoe, Jun-ichi

    2002-01-01

    Discussion of information retrieval focuses on the use of binary trees and how to compact it to use less memory and take less time. Explains retrieval algorithms and describes data structure and hierarchical structure. (LRW)

  9. A self-defining hierarchical data system

    Science.gov (United States)

    Bailey, J.

    1992-01-01

    The Self-Defining Data System (SDS) is a system which allows the creation of self-defining hierarchical data structures in a form which allows the data to be moved between different machine architectures. Because the structures are self-defining they can be used for communication between independent modules in a distributed system. Unlike disk-based hierarchical data systems such as Starlink's HDS, SDS works entirely in memory and is very fast. Data structures are created and manipulated as internal dynamic structures in memory managed by SDS itself. A structure may then be exported into a caller supplied memory buffer in a defined external format. This structure can be written as a file or sent as a message to another machine. It remains static in structure until it is reimported into SDS. SDS is written in portable C and has been run on a number of different machine architectures. Structures are portable between machines with SDS looking after conversion of byte order, floating point format, and alignment. A Fortran callable version is also available for some machines.

  10. Hierarchical wave functions revisited

    International Nuclear Information System (INIS)

    Li Dingping.

    1997-11-01

    We study the hierarchical wave functions on a sphere and on a torus. We simplify some wave functions on a sphere or a torus using the analytic properties of wave functions. The open question, the construction of the wave function for quasi electron excitation on a torus, is also solved in this paper. (author)

  11. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  12. The Hierarchical Perspective

    Directory of Open Access Journals (Sweden)

    Daniel Sofron

    2015-05-01

    Full Text Available This paper is focused on the hierarchical perspective, one of the methods for representing space that was used before the discovery of the Renaissance linear perspective. The hierarchical perspective has a more or less pronounced scientific character and its study offers us a clear image of the way the representatives of the cultures that developed it used to perceive the sensitive reality. This type of perspective is an original method of representing three-dimensional space on a flat surface, which characterises the art of Ancient Egypt and much of the art of the Middle Ages, being identified in the Eastern European Byzantine art, as well as in the Western European Pre-Romanesque and Romanesque art. At the same time, the hierarchical perspective is also present in naive painting and infantile drawing. Reminiscences of this method can be recognised also in the works of some precursors of the Italian Renaissance. The hierarchical perspective can be viewed as a subjective ranking criterion, according to which the elements are visually represented by taking into account their relevance within the image while perception is ignored. This paper aims to show how the main objective of the artists of those times was not to faithfully represent the objective reality, but rather to emphasize the essence of the world and its perennial aspects. This may represent a possible explanation for the refusal of perspective in the Egyptian, Romanesque and Byzantine painting, characterised by a marked two-dimensionality.

  13. Scalable Hierarchical Algorithms for stochastic PDEs and Uncertainty Quantification

    KAUST Repository

    Litvinenko, Alexander; Chavez, Gustavo; Keyes, David E.; Ltaief, Hatem; Yokota, Rio

    2015-01-01

    number of degrees of freedom in the discretization. The storage is reduced to the log-linear as well. This hierarchical structure is a good starting point for parallel algorithms. Parallelization on shared and distributed memory systems was pioneered by R

  14. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    David Meunier

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  15. Bayesian nonparametric hierarchical modeling.

    Science.gov (United States)

    Dunson, David B

    2009-04-01

    In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.

  16. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  17. Priming and competition of associated memory representations: A comparison between response times and event-related potentials following lesions to left temporal cortex

    Directory of Open Access Journals (Sweden)

    Vitória Piai

    2015-05-01

    These results suggest that associated concepts and words in memory prime each other (as indexed by the N400 effect, but also incur a stronger competition between them (as indicated by the RT effect, delaying response selection.

  18. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  19. Medial temporal lobe function during emotional memory in early Alzheimer's disease, mild cognitive impairment and healthy ageing: an fMRI study.

    Science.gov (United States)

    Parra, Mario A; Pattan, Vivek; Wong, Dichelle; Beaglehole, Anna; Lonie, Jane; Wan, Hong I; Honey, Garry; Hall, Jeremy; Whalley, Heather C; Lawrie, Stephen M

    2013-03-06

    Relative to intentional memory encoding, which quickly declines in Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD), incidental memory for emotional stimuli appears to deteriorate more slowly. We hypothesised that tests of incidental emotional memory may inform on different aspects of cognitive decline in MCI and AD. Patients with MCI, AD and Healthy Controls (HC) were asked to attend to emotional pictures (i.e., positive and neutral) sequentially presented during an fMRI session. Attention was monitored behaviourally. A surprise post-scan recognition test was then administered. The groups remained attentive within the scanner. The post-scan recognition pattern was in the form of (HC = MCI) > AD, with only the former group showing a clear benefit from emotional pictures. fMRI analysis of incidental encoding demonstrated clusters of activation in para-hippocampal regions and in the hippocampus in HC and MCI patients but not in AD patients. The pattern of activation observed in MCI patients tended to be greater than that found in HC. The results suggest that incidental emotional memory might offer a suitable platform to investigate, using behavioural and fMRI measures, subtle changes in the process of developing AD. These changes seem to differ from those found using standard episodic memory tests. The underpinnings of such differences and the potential clinical use of this methodology are discussed in depth.

  20. Context updates are hierarchical

    Directory of Open Access Journals (Sweden)

    Anton Karl Ingason

    2016-10-01

    Full Text Available This squib studies the order in which elements are added to the shared context of interlocutors in a conversation. It focuses on context updates within one hierarchical structure and argues that structurally higher elements are entered into the context before lower elements, even if the structurally higher elements are pronounced after the lower elements. The crucial data are drawn from a comparison of relative clauses in two head-initial languages, English and Icelandic, and two head-final languages, Korean and Japanese. The findings have consequences for any theory of a dynamic semantics.

  1. Neuropsychology and Advances in Memory Function

    Directory of Open Access Journals (Sweden)

    B. Gordon

    1997-01-01

    Full Text Available Recent developments in the functional and neural bases of several aspects of memory are described including long term cortical memory storage, the transition from immediate to permanent memory mediated by medial temporal structures, working memory, memory retrieval, and implicit memory. These are linked to current data on the nature of anterograde and retrograde amnesia in the degenerative diseases, and also to issues in the clinical diagnosis of memory impairments. Understanding the bases of memory can inform the diagnosis of memory impairments in degenerative diseases, and the patterns of impairment seen in the degenerative diseases can help contribute to knowledge of the mechanisms of normal memory.

  2. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  3. Why does brain damage impair memory? A connectionist model of object recognition memory in perirhinal cortex.

    Science.gov (United States)

    Cowell, Rosemary A; Bussey, Timothy J; Saksida, Lisa M

    2006-11-22

    Object recognition is the canonical test of declarative memory, the type of memory putatively impaired after damage to the temporal lobes. Studies of object recognition memory have helped elucidate the anatomical structures involved in declarative memory, indicating a critical role for perirhinal cortex. We offer a mechanistic account of the effects of perirhinal cortex damage on object recognition memory, based on the assumption that perirhinal cortex stores representations of the conjunctions of visual features possessed by complex objects. Such representations are proposed to play an important role in memory when it is difficult to solve a task using representations of only individual visual features of stimuli, thought to be stored in regions of the ventral visual stream caudal to perirhinal cortex. The account is instantiated in a connectionist model, in which development of object representations with visual experience provides a mechanism for judgment of previous occurrence. We present simulations addressing the following empirical findings: (1) that impairments after damage to perirhinal cortex (modeled by removing the "perirhinal cortex" layer of the network) are exacerbated by lengthening the delay between presentation of to-be-remembered items and test, (2) that such impairments are also exacerbated by lengthening the list of to-be-remembered items, and (3) that impairments are revealed only when stimuli are trial unique rather than repeatedly presented. This study shows that it may be possible to account for object recognition impairments after damage to perirhinal cortex within a hierarchical, representational framework, in which complex conjunctive representations in perirhinal cortex play a critical role.

  4. Hierarchical quark mass matrices

    International Nuclear Information System (INIS)

    Rasin, A.

    1998-02-01

    I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s 23 ) and the angle in the (1,2) plane (s 12 ) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consist of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s 13 diagonalization angles are sufficiently small compared to the product s 12 s 23 , two special CKM parametrizations emerge: the R 12 R 23 R 12 parametrization follows with s 23 taken before the s 12 rotation, and vice versa for the R 23 R 12 R 23 parametrization. (author)

  5. Hierarchical partial order ranking

    International Nuclear Information System (INIS)

    Carlsen, Lars

    2008-01-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters

  6. Aging memories: differential decay of episodic memory components

    NARCIS (Netherlands)

    Talamini, L.M.; Gorree, E.

    2012-01-01

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent

  7. Imaging a memory trace over half a life-time in the medial temporal lobe reveals a time-limited role of CA3 neurons in retrieval

    Science.gov (United States)

    Lux, Vanessa; Atucha, Erika; Kitsukawa, Takashi; Sauvage, Magdalena M

    2016-01-01

    Whether retrieval still depends on the hippocampus as memories age or relies then on cortical areas remains a major controversy. Despite evidence for a functional segregation between CA1, CA3 and parahippocampal areas, their specific role within this frame is unclear. Especially, the contribution of CA3 is questionable as very remote memories might be too degraded to be used for pattern completion. To identify the specific role of these areas, we imaged brain activity in mice during retrieval of recent, early remote and very remote fear memories by detecting the immediate-early gene Arc. Investigating correlates of the memory trace over an extended period allowed us to report that, in contrast to CA1, CA3 is no longer recruited in very remote retrieval. Conversely, we showed that parahippocampal areas are then maximally engaged. These results suggest a shift from a greater contribution of the trisynaptic loop to the temporoammonic pathway for retrieval. DOI: http://dx.doi.org/10.7554/eLife.11862.001 PMID:26880561

  8. Nested and Hierarchical Archimax copulas

    KAUST Repository

    Hofert, Marius; Huser, Raphaë l; Prasad, Avinash

    2017-01-01

    The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.

  9. Nested and Hierarchical Archimax copulas

    KAUST Repository

    Hofert, Marius

    2017-07-03

    The class of Archimax copulas is generalized to nested and hierarchical Archimax copulas in several ways. First, nested extreme-value copulas or nested stable tail dependence functions are introduced to construct nested Archimax copulas based on a single frailty variable. Second, a hierarchical construction of d-norm generators is presented to construct hierarchical stable tail dependence functions and thus hierarchical extreme-value copulas. Moreover, one can, by itself or additionally, introduce nested frailties to extend Archimax copulas to nested Archimax copulas in a similar way as nested Archimedean copulas extend Archimedean copulas. Further results include a general formula for the density of Archimax copulas.

  10. True and False Memories, Parietal Cortex, and Confidence Judgments

    Science.gov (United States)

    Urgolites, Zhisen J.; Smith, Christine N.; Squire, Larry R.

    2015-01-01

    Recent studies have asked whether activity in the medial temporal lobe (MTL) and the neocortex can distinguish true memory from false memory. A frequent complication has been that the confidence associated with correct memory judgments (true memory) is typically higher than the confidence associated with incorrect memory judgments (false memory).…

  11. Episodic memory after trauma exposure: Medial temporal lobe function is positively related to re-experiencing and inversely related to negative affect symptoms

    Directory of Open Access Journals (Sweden)

    Jennifer S. Stevens

    2018-01-01

    Full Text Available Hippocampal structure is particularly sensitive to trauma and other stressors. However, previous findings linking hippocampal function with trauma-related psychopathology have been mixed. Heterogeneity in psychological responses to trauma has not been considered with respect to hippocampal function and may contribute to mixed findings. To address these issues, we examined associations between data-driven symptom dimensions and episodic memory formation, a key function of the hippocampus, in a trauma-exposed sample. Symptom dimensions were defined using principal components analysis (PCA in 3881 trauma-exposed African-American women recruited from primary care waiting rooms of a large urban hospital. Hippocampal and amygdala function were subsequently investigated in an fMRI study of episodic memory formation in a subset of 54 women. Participants viewed scenes with neutral, negative, and positive content during fMRI, and completed a delayed cued recall task. PCA analysis produced five symptom dimensions interpreted as reflecting negative affect, somatic symptoms, re-experiencing, hyper-arousal, and numbing. Re-experiencing was the only symptom type associated with hippocampal function, predicting increased memory encoding-related activation in the hippocampus as well as the amygdala. In contrast, the negative affect component predicted lower amygdala activation for subsequently recalled scenes, and lower functional coupling with other important memory-related regions including the precuneus, inferior frontal gyrus, and occipital cortex. Symptom dimensions were not related to hippocampal volume. The fMRI findings for re-experiencing versus negative affect parallel differences in behavioral memory phenomena in PTSD versus MDD, and highlight a need for more complex models of trauma-related pathology.

  12. Going beyond LTM in the MTL: A Synthesis of Neuropsychological and Neuroimaging Findings on the Role of the Medial Temporal Lobe in Memory and Perception

    Science.gov (United States)

    Graham, Kim S.; Barense, Morgan D.; Lee, Andy C. H.

    2010-01-01

    Studies in rats and non-human primates suggest that medial temporal lobe (MTL) structures play a role in perceptual processing, with the hippocampus necessary for spatial discrimination, and the perirhinal cortex for object discrimination. Until recently, there was little convergent evidence for analogous functional specialisation in humans, or…

  13. Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space

    OpenAIRE

    Loewenstein, Yaniv; Portugaly, Elon; Fromer, Menachem; Linial, Michal

    2008-01-01

    Motivation: UPGMA (average linking) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. However, UPGMA requires the entire dissimilarity matrix in memory. Due to this prohibitive requirement, UPGMA is not scalable to very large datasets. Application: We present a novel class of memory-constrained UPGMA (MC-UPGMA) algorithms. Given any practical memory size constraint, this framework guarantees the correct clustering solution without ex...

  14. Transmutations across hierarchical levels

    International Nuclear Information System (INIS)

    O'Neill, R.V.

    1977-01-01

    The development of large-scale ecological models depends implicitly on a concept known as hierarchy theory which views biological systems in a series of hierarchical levels (i.e., organism, population, trophic level, ecosystem). The theory states that an explanation of a biological phenomenon is provided when it is shown to be the consequence of the activities of the system's components, which are themselves systems in the next lower level of the hierarchy. Thus, the behavior of a population is explained by the behavior of the organisms in the population. The initial step in any modeling project is, therefore, to identify the system components and the interactions between them. A series of examples of transmutations in aquatic and terrestrial ecosystems are presented to show how and why changes occur. The types of changes are summarized and possible implications of transmutation for hierarchy theory, for the modeler, and for the ecological theoretician are discussed

  15. Trees and Hierarchical Structures

    CERN Document Server

    Haeseler, Arndt

    1990-01-01

    The "raison d'etre" of hierarchical dustering theory stems from one basic phe­ nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das­ sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.

  16. Optimisation by hierarchical search

    Science.gov (United States)

    Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias

    2015-03-01

    Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.

  17. Temporal dynamics of attention during encoding vs. maintenance of working memory: complementary views from event-related potentials and alpha-band oscillations

    Science.gov (United States)

    Myers, Nicholas E.; Walther, Lena; Wallis, George; Stokes, Mark G.; Nobre, Anna C.

    2015-01-01

    Working memory (WM) is strongly influenced by attention. In visual working-memory tasks, recall performance can be improved by an attention-guiding cue presented before encoding (precue) or during maintenance (retrocue). Although precues and retrocues recruit a similar fronto-parietal control network, the two are likely to exhibit some processing differences, since precues invite anticipation of upcoming information, while retrocues may guide prioritisation, protection, and selection of information already in mind. Here we explored the behavioral and electrophysiological differences between precueing and retrocueing in a new visual working-memory task designed to permit a direct comparison between cueing conditions. We found marked differences in event-related potential (ERP) profiles between the precue and retrocue conditions. In line with precues primarily generating an anticipatory shift of attention toward the location of an upcoming item, we found a robust lateralization in late cue-evoked potentials associated with target anticipation. Retrocues elicited a different pattern of ERPs that was compatible with an early selection mechanism, but not with stimulus anticipation. In contrast to the distinct ERP patterns, alpha band (8-14 Hz) lateralization was indistinguishable between cue types (reflecting, in both conditions, the location of the cued item). We speculate that whereas alpha-band lateralization after a precue is likely to enable anticipatory attention, lateralization after a retrocue may instead enable the controlled spatiotopic access to recently encoded visual information. PMID:25244118

  18. Hierarchical Bass model

    International Nuclear Information System (INIS)

    Tashiro, Tohru

    2014-01-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model

  19. Hierarchical Bass model

    Science.gov (United States)

    Tashiro, Tohru

    2014-03-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model.

  20. Parallel hierarchical global illumination

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Quinn O. [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  1. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.

    2012-01-01

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157

  2. Numerical analysis of a neural network with hierarchically organized patterns

    International Nuclear Information System (INIS)

    Bacci, Silvia; Wiecko, Cristina; Parga, Nestor

    1988-01-01

    A numerical analysis of the retrieval behaviour of an associative memory model where the memorized patterns are stored hierarchically is performed. It is found that the model is able to categorize errors. For a finite number of categories, these are retrieved correctly even when the stored patterns are not. Instead, when they are allowed to increase with the number of neurons, their retrieval quality deteriorates above a critical category capacity. (Author)

  3. Algorithm of parallel: hierarchical transformation and its implementation on FPGA

    Science.gov (United States)

    Timchenko, Leonid I.; Petrovskiy, Mykola S.; Kokryatskay, Natalia I.; Barylo, Alexander S.; Dembitska, Sofia V.; Stepanikuk, Dmytro S.; Suleimenov, Batyrbek; Zyska, Tomasz; Uvaysova, Svetlana; Shedreyeva, Indira

    2017-08-01

    In this paper considers the algorithm of laser beam spots image classification in atmospheric-optical transmission systems. It discusses the need for images filtering using adaptive methods, using, for example, parallel-hierarchical networks. The article also highlights the need to create high-speed memory devices for such networks. Implementation and simulation results of the developed method based on the PLD are demonstrated, which shows that the presented method gives 15-20% better prediction results than similar methods.

  4. Hierarchical Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Di Lu

    2018-01-01

    Full Text Available The Internet of Things (IoT generates lots of high-dimensional sensor intelligent data. The processing of high-dimensional data (e.g., data visualization and data classification is very difficult, so it requires excellent subspace learning algorithms to learn a latent subspace to preserve the intrinsic structure of the high-dimensional data, and abandon the least useful information in the subsequent processing. In this context, many subspace learning algorithms have been presented. However, in the process of transforming the high-dimensional data into the low-dimensional space, the huge difference between the sum of inter-class distance and the sum of intra-class distance for distinct data may cause a bias problem. That means that the impact of intra-class distance is overwhelmed. To address this problem, we propose a novel algorithm called Hierarchical Discriminant Analysis (HDA. It minimizes the sum of intra-class distance first, and then maximizes the sum of inter-class distance. This proposed method balances the bias from the inter-class and that from the intra-class to achieve better performance. Extensive experiments are conducted on several benchmark face datasets. The results reveal that HDA obtains better performance than other dimensionality reduction algorithms.

  5. Hierarchical Linked Views

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, Robert; Frincke, Deb

    2007-07-02

    Coordinated views have proven critical to the development of effective visualization environments. This results from the fact that a single view or representation of the data cannot show all of the intricacies of a given data set. Additionally, users will often need to correlate more data parameters than can effectively be integrated into a single visual display. Typically, development of multiple-linked views results in an adhoc configuration of views and associated interactions. The hierarchical model we are proposing is geared towards more effective organization of such environments and the views they encompass. At the same time, this model can effectively integrate much of the prior work on interactive and visual frameworks. Additionally, we expand the concept of views to incorporate perceptual views. This is related to the fact that visual displays can have information encoded at various levels of focus. Thus, a global view of the display provides overall trends of the data while focusing in on individual elements provides detailed specifics. By integrating interaction and perception into a single model, we show how one impacts the other. Typically, interaction and perception are considered separately, however, when interaction is being considered at a fundamental level and allowed to direct/modify the visualization directly we must consider them simultaneously and how they impact one another.

  6. Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.

    Science.gov (United States)

    Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming

    2018-05-01

    The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.

  7. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    Science.gov (United States)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream

  8. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  9. Hierarchical materials: Background and perspectives

    DEFF Research Database (Denmark)

    2016-01-01

    Hierarchical design draws inspiration from analysis of biological materials and has opened new possibilities for enhancing performance and enabling new functionalities and extraordinary properties. With the development of nanotechnology, the necessary technological requirements for the manufactur...

  10. Functional annotation of hierarchical modularity.

    Directory of Open Access Journals (Sweden)

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  11. Aging memories: differential decay of episodic memory components.

    Science.gov (United States)

    Talamini, Lucia M; Gorree, Eva

    2012-05-17

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a preferential loss of hippocampus-dependent, configurational information over more cortically based memory components, including memory for individual objects. The current study systematically tests this hypothesis, using a new paradigm that allows the contemporaneous assessment of memory for objects, object pairings, and object-position conjunctions. Retention of each memory component was tested, at multiple intervals, up to 3 mo following encoding. The three memory subtasks adopted the same retrieval paradigm and were matched for initial difficulty. Results show differential decay of the tested episodic memory components, whereby memory for configurational aspects of a scene (objects' co-occurrence and object position) decays faster than memory for featured objects. Interestingly, memory requiring a visually detailed object representation decays at a similar rate as global object recognition, arguing against interpretations based on task difficulty and against the notion that (visual) detail is forgotten preferentially. These findings show that memories undergo qualitative changes as they age. More specifically, event memories become less configurational over time, preferentially losing some of the higher order associations that are dependent on the hippocampus for initial fast encoding. Implications for theories of long-term memory are discussed.

  12. Memory dynamics under stress.

    Science.gov (United States)

    Quaedflieg, Conny W E M; Schwabe, Lars

    2018-03-01

    Stressful events have a major impact on memory. They modulate memory formation in a time-dependent manner, closely linked to the temporal profile of action of major stress mediators, in particular catecholamines and glucocorticoids. Shortly after stressor onset, rapidly acting catecholamines and fast, non-genomic glucocorticoid actions direct cognitive resources to the processing and consolidation of the ongoing threat. In parallel, control of memory is biased towards rather rigid systems, promoting habitual forms of memory allowing efficient processing under stress, at the expense of "cognitive" systems supporting memory flexibility and specificity. In this review, we discuss the implications of this shift in the balance of multiple memory systems for the dynamics of the memory trace. Specifically, stress appears to hinder the incorporation of contextual details into the memory trace, to impede the integration of new information into existing knowledge structures, to impair the flexible generalisation across past experiences, and to hamper the modification of memories in light of new information. Delayed, genomic glucocorticoid actions might reverse the control of memory, thus restoring homeostasis and "cognitive" control of memory again.

  13. Using temporal information to construct, update, and retrieve situation models of narratives

    NARCIS (Netherlands)

    Rinck, M.; Hähnel, A.; Becker, G.

    2001-01-01

    Four experiments explored how readers use temporal information to construct and update situation models and retrieve them from memory. In Experiment 1, readers spontaneously constructed temporal and spatial situation models of single sentences. In Experiment 2, temporal inconsistencies caused

  14. Memória de orientação espacial: avaliação em pacientes com doença de Alzheimer e com epilepsia mesial temporal refratária Spatial orientation memory: evaluation in patents with Alzheimer disease and temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Lisiane Tuon

    2006-06-01

    Full Text Available Estudos experimentais identificaram células piramidais no hipocampo de ratos com participação na memória de orientação espacial (MOE, denominadas células de localização. O objetivo deste estudo foi adaptar um teste baseado nesses experimentos para verificar o desempenho de MOE e a participação do hipocampo na MOE em pacientes com esclerose mesial temporal (EMT. Dividiu-se a pesquisa em dois estudos: no primeiro adaptou-se o teste e visando verificar sua capacidade de investigação de déficits de MOE aplicou-se em grupos de 10 indivíduos, um com doença de Alzheimer (DA e outro de idosos saudáveis (pExperimental studies have identified pyramidal cells in hippocampus in rats with participation in the spatial orientation memory (SOM, which are named location cells. This study had the purpose to adapt a test based in these experiments in order to check the performance of SOM and the participation of hippocampus into SOM in patients with mesial temporal sclerosis (MTS. The research was divided into two studies: the first one the test was adapted, and in order to check its capacity to investigate the deficits of SOM, it has applied in groups of 10 (ten subjects, one group with patients that have Alzheimer disease and the other one with healthy elderly (p<0.001. The second study has evaluated the participation of hippocampus into SOM in 43 patients (23 with mesial temporal sclerosis (MTS and 20 submitted to selective amygdala hippocampectomy (SAH and 23 healthy volunteers with p<0,05 between MTS and SAH and between controled and SAH. It was shown that the test of SOM is suitable to evaluate deficits, but it seems the SOM is not a specific function of human hippocampus.

  15. Time for memory

    DEFF Research Database (Denmark)

    Murakami, Kyoko

    2012-01-01

    This article is a continuous dialogue on memory triggered by Brockmeier’s (2010) article. I drift away from the conventionalization of the archive as a spatial metaphor for memory in order to consider the greater possibility of “time” for conceptualizing memory. The concept of time is central...... in terms of autobiographical memory. The second category of time is discussed, drawing on Augustine and Bergson amongst others. Bergson’s notion of duration has been considered as a promising concept for a better understanding of autobiographical memory. Psychological phenomena such as autobiographical...... memory should embrace not only spatial dimension, but also a temporal dimension, in which a constant flow of irreversible time, where multiplicity, momentarily, dynamic stability and becoming and emergence of novelty can be observed....

  16. Integrating what and when across the primate medial temporal lobe.

    Science.gov (United States)

    Naya, Yuji; Suzuki, Wendy A

    2011-08-05

    Episodic memory or memory for the detailed events in our lives is critically dependent on structures of the medial temporal lobe (MTL). A fundamental component of episodic memory is memory for the temporal order of items within an episode. To understand the contribution of individual MTL structures to temporal-order memory, we recorded single-unit activity and local field potential from three MTL areas (hippocampus and entorhinal and perirhinal cortex) and visual area TE as monkeys performed a temporal-order memory task. Hippocampus provided incremental timing signals from one item presentation to the next, whereas perirhinal cortex signaled the conjunction of items and their relative temporal order. Thus, perirhinal cortex appeared to integrate timing information from hippocampus with item information from visual sensory area TE.

  17. Not All Order Memory Is Equal: Test Demands Reveal Dissociations in Memory for Sequence Information

    Science.gov (United States)

    Jonker, Tanya R.; MacLeod, Colin M.

    2017-01-01

    Remembering the order of a sequence of events is a fundamental feature of episodic memory. Indeed, a number of formal models represent temporal context as part of the memory system, and memory for order has been researched extensively. Yet, the nature of the code(s) underlying sequence memory is still relatively unknown. Across 4 experiments that…

  18. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance

    Directory of Open Access Journals (Sweden)

    Arnold Bakker

    2015-01-01

    Full Text Available Studies of individuals with amnestic mild cognitive impairment (aMCI have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI. Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3 during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism

  19. Temporal networks

    CERN Document Server

    Saramäki, Jari

    2013-01-01

    The concept of temporal networks is an extension of complex networks as a modeling framework to include information on when interactions between nodes happen. Many studies of the last decade examine how the static network structure affect dynamic systems on the network. In this traditional approach  the temporal aspects are pre-encoded in the dynamic system model. Temporal-network methods, on the other hand, lift the temporal information from the level of system dynamics to the mathematical representation of the contact network itself. This framework becomes particularly useful for cases where there is a lot of structure and heterogeneity both in the timings of interaction events and the network topology. The advantage compared to common static network approaches is the ability to design more accurate models in order to explain and predict large-scale dynamic phenomena (such as, e.g., epidemic outbreaks and other spreading phenomena). On the other hand, temporal network methods are mathematically and concept...

  20. Sensory Dissonance Using Memory Model

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2015-01-01

    Music may occur concurrently or in temporal sequences. Current machine-based methods for the estimation of qualities of the music are unable to take into account the influence of temporal context. A method for calculating dissonance from audio, called sensory dissonance is improved by the use of ...... of a memory model. This approach is validated here by the comparison of the sensory dissonance using memory model to data obtained using human subjects....

  1. Toward a clinic of temporality?

    Science.gov (United States)

    Rivasseau Jonveaux, Thérèse; Batt, Martine; Trognon, Alain

    2017-12-01

    The discovery of time cells has expanded our knowledge in the field of spatial and temporal information coding and the key role of the hippocampus. The internal clock model complemented with the attentional gate model allows a more in-depth understanding of the perception of time. The motor representation of duration is ensured by the basal ganglia, while the cerebellum synchronizes short duration for the movement. The right prefrontal cortex seemingly intervenes in the handling of temporal information in working memory. The temporal lobe ensures the comparison of durations, especially the right lobe for the reference durations and the medial lobe for the reproduction of durations in episodic memory. During normal aging, the hypothesis of slowing of the temporal processor is evoked when noting the perception of the acceleration of the passage of time that seemingly occurs with advancing age. The various studies pertaining specifically to time cognition, albeit heterogeneous in terms of methodology, attest to the wide-ranging disturbances of this cognitive field during the course of numerous disorders, whether psychiatric - depression and schizophrenia notably - or neurological. Hence, perturbations in temporality are observed in focal brain lesions and in subcortical disorders, such as Parkinson's disease or Huntington's chorea. Alzheimer's disease represents a particularly fertile field of exploration with regard to time cognition and temporality. The objectified deconstruction of temporal experience provides insights into the very processes of temporality and their nature: episodic, semantic and procedural. In addition to exploration based on elementary stimuli, one should also consider the time lived, i.e. that of the subject, to better understand cognition as it relates to time. While the temporal dimension permeates the whole cognitive field, it remains largely neglected: integration of a genuine time cognition and temporality clinic in daily practice remains

  2. Deliberate change without hierarchical influence?

    DEFF Research Database (Denmark)

    Nørskov, Sladjana; Kesting, Peter; Ulhøi, John Parm

    2017-01-01

    reveals that deliberate change is indeed achievable in a non-hierarchical collaborative OSS community context. However, it presupposes the presence and active involvement of informal change agents. The paper identifies and specifies four key drivers for change agents’ influence. Originality....../value The findings contribute to organisational analysis by providing a deeper understanding of the importance of leadership in making deliberate change possible in non-hierarchical settings. It points to the importance of “change-by-conviction”, essentially based on voluntary behaviour. This can open the door...

  3. Hierarchical effects on target detection and conflict monitoring

    Science.gov (United States)

    Cao, Bihua; Gao, Feng; Ren, Maofang; Li, Fuhong

    2016-01-01

    Previous neuroimaging studies have demonstrated a hierarchical functional structure of the frontal cortices of the human brain, but the temporal course and the electrophysiological signature of the hierarchical representation remains unaddressed. In the present study, twenty-one volunteers were asked to perform a nested cue-target task, while their scalp potentials were recorded. The results showed that: (1) in comparison with the lower-level hierarchical targets, the higher-level targets elicited a larger N2 component (220–350 ms) at the frontal sites, and a smaller P3 component (350–500 ms) across the frontal and parietal sites; (2) conflict-related negativity (non-target minus target) was greater for the lower-level hierarchy than the higher-level, reflecting a more intensive process of conflict monitoring at the final step of target detection. These results imply that decision making, context updating, and conflict monitoring differ among different hierarchical levels of abstraction. PMID:27561989

  4. Principles of Temporal Processing Across the Cortical Hierarchy.

    Science.gov (United States)

    Himberger, Kevin D; Chien, Hsiang-Yun; Honey, Christopher J

    2018-05-02

    The world is richly structured on multiple spatiotemporal scales. In order to represent spatial structure, many machine-learning models repeat a set of basic operations at each layer of a hierarchical architecture. These iterated spatial operations - including pooling, normalization and pattern completion - enable these systems to recognize and predict spatial structure, while robust to changes in the spatial scale, contrast and noisiness of the input signal. Because our brains also process temporal information that is rich and occurs across multiple time scales, might the brain employ an analogous set of operations for temporal information processing? Here we define a candidate set of temporal operations, and we review evidence that they are implemented in the mammalian cerebral cortex in a hierarchical manner. We conclude that multiple consecutive stages of cortical processing can be understood to perform temporal pooling, temporal normalization and temporal pattern completion. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Project Temporalities

    DEFF Research Database (Denmark)

    Tryggestad, Kjell; Justesen, Lise; Mouritsen, Jan

    2013-01-01

    Purpose – The purpose of this paper is to explore how animals can become stakeholders in interaction with project management technologies and what happens with project temporalities when new and surprising stakeholders become part of a project and a recognized matter of concern to be taken...... into account. Design/methodology/approach – The paper is based on a qualitative case study of a project in the building industry. The authors use actor-network theory (ANT) to analyze the emergence of animal stakeholders, stakes and temporalities. Findings – The study shows how project temporalities can...... multiply in interaction with project management technologies and how conventional linear conceptions of project time may be contested with the emergence of new non-human stakeholders and temporalities. Research limitations/implications – The study draws on ANT to show how animals can become stakeholders...

  6. Sparse distributed memory overview

    Science.gov (United States)

    Raugh, Mike

    1990-01-01

    The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.

  7. Modular networks with hierarchical organization

    Indian Academy of Sciences (India)

    Several networks occurring in real life have modular structures that are arranged in a hierarchical fashion. In this paper, we have proposed a model for such networks, using a stochastic generation method. Using this model we show that, the scaling relation between the clustering and degree of the nodes is not a necessary ...

  8. Hierarchical Microaggressions in Higher Education

    Science.gov (United States)

    Young, Kathryn; Anderson, Myron; Stewart, Saran

    2015-01-01

    Although there has been substantial research examining the effects of microaggressions in the public sphere, there has been little research that examines microaggressions in the workplace. This study explores the types of microaggressions that affect employees at universities. We coin the term "hierarchical microaggression" to represent…

  9. Olfactory memory traces in Drosophila.

    Science.gov (United States)

    Berry, Jacob; Krause, William C; Davis, Ronald L

    2008-01-01

    In Drosophila, the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological, or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons' response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed researchers to observe cellular memory traces in intact animals. These investigations have revealed interesting temporal and spatial dynamics of cellular memory traces. First, a short-term cellular memory trace was discovered that exists in the antennal lobe, an early site of olfactory processing. This trace represents the recruitment of new synaptic activity into the odor representation and forms for only a short period of time just after training. Second, an intermediate-term cellular memory trace was found in the dorsal paired medial neuron, a neuron thought to play a role in stabilizing olfactory memories. Finally, a long-term protein synthesis-dependent cellular memory trace was discovered in the mushroom bodies, a structure long implicated in olfactory learning and memory. Therefore, it appears that aversive olfactory associations are encoded by multiple cellular memory traces that occur in different regions of the brain with different temporal domains.

  10. Robust and scalable hierarchical matrix-based fast direct solver and preconditioner for the numerical solution of elliptic partial differential equations

    KAUST Repository

    Chavez Chavez, Gustavo Ivan

    2017-01-01

    Numerical experiments corroborate the robustness, accuracy, and complexity claims and provide a baseline of the performance and memory footprint by comparisons with competing approaches such as the multigrid solver hypre, and the STRUMPACK implementation of the multifrontal factorization with hierarchically semi-separable matrices. The companion implementation can utilize many thousands of cores of Shaheen, KAUST's Haswell-based Cray XC-40 supercomputer, and compares favorably with other implementations of hierarchical solvers in terms of time-to-solution and memory consumption.