WorldWideScience

Sample records for hierarchical structure building

  1. An approach to separating the levels of hierarchical structure building in language and mathematics.

    Science.gov (United States)

    Makuuchi, Michiru; Bahlmann, Jörg; Friederici, Angela D

    2012-07-19

    We aimed to dissociate two levels of hierarchical structure building in language and mathematics, namely 'first-level' (the build-up of hierarchical structure with externally given elements) and 'second-level' (the build-up of hierarchical structure with internally represented elements produced by first-level processes). Using functional magnetic resonance imaging, we investigated these processes in three domains: sentence comprehension, arithmetic calculation (using Reverse Polish notation, which gives two operands followed by an operator) and a working memory control task. All tasks required the build-up of hierarchical structures at the first- and second-level, resulting in a similar computational hierarchy across language and mathematics, as well as in a working memory control task. Using a novel method that estimates the difference in the integration cost for conditions of different trial durations, we found an anterior-to-posterior functional organization in the prefrontal cortex, according to the level of hierarchy. Common to all domains, the ventral premotor cortex (PMv) supports first-level hierarchy building, while the dorsal pars opercularis (POd) subserves second-level hierarchy building, with lower activation for language compared with the other two tasks. These results suggest that the POd and the PMv support domain-general mechanisms for hierarchical structure building, with the POd being uniquely efficient for language.

  2. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  3. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  4. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  5. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  6. Trees and Hierarchical Structures

    CERN Document Server

    Haeseler, Arndt

    1990-01-01

    The "raison d'etre" of hierarchical dustering theory stems from one basic phe­ nomenon: This is the notorious non-transitivity of similarity relations. In spite of the fact that very often two objects may be quite similar to a third without being that similar to each other, one still wants to dassify objects according to their similarity. This should be achieved by grouping them into a hierarchy of non-overlapping dusters such that any two objects in ~ne duster appear to be more related to each other than they are to objects outside this duster. In everyday life, as well as in essentially every field of scientific investigation, there is an urge to reduce complexity by recognizing and establishing reasonable das­ sification schemes. Unfortunately, this is counterbalanced by the experience of seemingly unavoidable deadlocks caused by the existence of sequences of objects, each comparatively similar to the next, but the last rather different from the first.

  7. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong; Wu, Tao

    2017-01-01

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced

  8. Processing of hierarchical syntactic structure in music.

    Science.gov (United States)

    Koelsch, Stefan; Rohrmeier, Martin; Torrecuso, Renzo; Jentschke, Sebastian

    2013-09-17

    Hierarchical structure with nested nonlocal dependencies is a key feature of human language and can be identified theoretically in most pieces of tonal music. However, previous studies have argued against the perception of such structures in music. Here, we show processing of nonlocal dependencies in music. We presented chorales by J. S. Bach and modified versions in which the hierarchical structure was rendered irregular whereas the local structure was kept intact. Brain electric responses differed between regular and irregular hierarchical structures, in both musicians and nonmusicians. This finding indicates that, when listening to music, humans apply cognitive processes that are capable of dealing with long-distance dependencies resulting from hierarchically organized syntactic structures. Our results reveal that a brain mechanism fundamental for syntactic processing is engaged during the perception of music, indicating that processing of hierarchical structure with nested nonlocal dependencies is not just a key component of human language, but a multidomain capacity of human cognition.

  9. Discovering hierarchical structure in normal relational data

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten

    2014-01-01

    -parametric generative model for hierarchical clustering of similarity based on multifurcating Gibbs fragmentation trees. This allows us to infer and display the posterior distribution of hierarchical structures that comply with the data. We demonstrate the utility of our method on synthetic data and data of functional...

  10. Building structures

    CERN Document Server

    Ambrose, James

    2011-01-01

    James Ambrose is Editor of the Parker/Ambrose Series of Simplified Design Guides. He practiced as an architect in California and Illinois and as a structural engineer in Illinois. He was a professor of architecture at the University of Southern California. Patrick Tripeny is an Associate Professor, former director of the School of Architecture, and the current Director of the Center for Teaching and Learning Excellence at the University of Utah. He is a licensed architect in California. He has been the recipient of a number of teaching awards at the local and national level for his work in teaching structures and design. With James Ambrose, he is the coauthor of Simplified Engineering for Architects and Builders, Eleventh Edition; Simplified Design of Steel Structures, Eighth Edition; Simplified Design of Concrete Structures, Eighth Edition; and Simplified Design of Wood Structures, Sixth Edition, all published by Wiley.

  11. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong

    2017-08-03

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional fluidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.

  12. Zeolitic materials with hierarchical porous structures.

    Science.gov (United States)

    Lopez-Orozco, Sofia; Inayat, Amer; Schwab, Andreas; Selvam, Thangaraj; Schwieger, Wilhelm

    2011-06-17

    During the past several years, different kinds of hierarchical structured zeolitic materials have been synthesized due to their highly attractive properties, such as superior mass/heat transfer characteristics, lower restriction of the diffusion of reactants in the mesopores, and low pressure drop. Our contribution provides general information regarding types and preparation methods of hierarchical zeolitic materials and their relative advantages and disadvantages. Thereafter, recent advances in the preparation and characterization of hierarchical zeolitic structures within the crystallites by post-synthetic treatment methods, such as dealumination or desilication; and structured devices by in situ and ex situ zeolite coatings on open-cellular ceramic foams as (non-reactive as well as reactive) supports are highlighted. Specific advantages of using hierarchical zeolitic catalysts/structures in selected catalytic reactions, such as benzene to phenol (BTOP) and methanol to olefins (MTO) are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Evaluating Hierarchical Structure in Music Annotations.

    Science.gov (United States)

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  14. Evaluating Hierarchical Structure in Music Annotations

    Directory of Open Access Journals (Sweden)

    Brian McFee

    2017-08-01

    Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  15. Modern frame structure buildings

    Directory of Open Access Journals (Sweden)

    В. М. Першаков

    2013-07-01

    Full Text Available The article deals with the design, construction and implementation of reinforced concrete frame structures with span 18, 21 m for agricultural production buildings, hall-premises of public buildings and buildings of agricultural aviation. Structures are prefabricated frame buildings and have such advantages as large space inside the structure and lower cost compared with other facilities with same purpose

  16. Modular Assembly of Hierarchically Structured Polymers

    Science.gov (United States)

    Leophairatana, Porakrit

    The synthesis of macromolecules with complex yet highly controlled molecular architectures has attracted significant attention in the past few decades due to the growing demand for specialty polymers that possess novel properties. Despite recent efforts, current synthetic routes lack the ability to control several important architectural variables while maintaining low polydispersity index. This dissertation explores a new synthetic scheme for the modular assembly of hierarchically structured polymers (MAHP) that allows virtually any complex polymer to be assembled from a few basic molecular building blocks using a single common coupling chemistry. Complex polymer structures can be assembled from a molecular toolkit consisting of (1) copper-catalyzed azide-alkyne cycloaddition (CuAAC), (2) linear heterobifunctional macromonomers, (3) a branching heterotrifunctional molecule, (4) a protection/deprotection strategy, (5) "click" functional solid substrates, and (6) functional and responsive polymers. This work addresses the different challenges that emerged during the development of this synthetic scheme, and presents strategies to overcome those challenges. Chapter 3 investigates the alkyne-alkyne (i.e. Glaser) coupling side reactions associated with the atom transfer radical polymerization (ATRP) synthesis of alkyne-functional macromonomers, as well as with the CuAAC reaction of alkyne functional building blocks. In typical ATRP synthesis of unprotected alkyne functional polymers, Glaser coupling reactions can significantly compromise the polymer functionality and undermine the success of subsequent click reactions in which the polymers are used. Two strategies are reported that effectively eliminate these coupling reactions: (1) maintaining low temperature post-ATRP upon exposure to air, followed by immediate removal of copper catalyst; and (2) adding excess reducing agents post-ATRP, which prevents the oxidation of Cu(I) catalyst required by the Glaser coupling

  17. Hierarchical Fiber Structures Made by Electrospinning Polymers

    Science.gov (United States)

    Reneker, Darrell H.

    2009-03-01

    A filter for water purification that is very thin, with small interstices and high surface area per unit mass, can be made with nanofibers. The mechanical strength of a very thin sheet of nanofibers is not great enough to withstand the pressure drop of the fluid flowing through. If the sheet of nanofibers is made thicker, the strength will increase, but the flow will be reduced to an impractical level. An optimized filter can be made with nanometer scale structures supported on micron scale structures, which are in turn supported on millimeter scale structures. This leads to a durable hierarchical structure to optimize the filtration efficiency with a minimum amount of material. Buckling coils,ootnotetextTao Han, Darrell H Reneker, Alexander L. Yarin, Polymer, Volume 48, issue 20 (September 21, 2007), p. 6064-6076. electrical bending coilsootnotetextDarrell H. Reneker and Alexander L. Yarin, Polymer, Volume 49, Issue 10 (2008) Pages 2387-2425, DOI:10.1016/j.polymer.2008.02.002. Feature Article. and pendulum coilsootnotetextT. Han, D.H. Reneker, A.L. Yarin, Polymer, Volume 49, (2008) Pages 2160-2169, doi:10.1016/jpolymer.2008.01.0487878. spanning dimensions from a few microns to a few centimeters can be collected from a single jet by controlling the position and motion of a collector. Attractive routes to the design and construction of hierarchical structures for filtration are based on nanofibers supported on small coils that are in turn supported on larger coils, which are supported on even larger overlapping coils. ``Such top-down'' hierarchical structures are easy to make by electrospinning. In one example, a thin hierarchical structure was made, with a high surface area and small interstices, having an open area of over 50%, with the thinnest fibers supported at least every 15 microns.

  18. Hierarchical fuzzy control of low-energy building systems

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhen; Dexter, Arthur [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)

    2010-04-15

    A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profile can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)

  19. Hierarchically structured materials for lithium batteries

    International Nuclear Information System (INIS)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-01-01

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg −1 ), new energy storage systems, such as lithium–oxygen (Li–O 2 ) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li–O 2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime. (paper)

  20. Hierarchical structure in the distribution of galaxies

    International Nuclear Information System (INIS)

    Schulman, L.S.; Seiden, P.E.; Technion - Israel Institute of Technology, Haifa; IBM Thomas J. Watson Research Center, Yorktown Heights, NY)

    1986-01-01

    The distribution of galaxies has a hierarchical structure with power-law correlations. This is usually thought to arise from gravity alone acting on an originally uniform distributioon. If, however, the original process of galaxy formation occurs through the stimulated birth of one galaxy due to a nearby recently formed galaxy, and if this process occurs near its percolation threshold, then a hierarchical structure with power-law correlations arises at the time of galaxy formation. If subsequent gravitational evolution within an expanding cosmology is such as to retain power-law correlations, the initial r exp -1 dropoff can steepen to the observed r exp -1.8. The distribution of galaxies obtained by this process produces clustering and voids, as observed. 23 references

  1. Additive Manufacturing of Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division. Polymers and Coatings

    2016-08-30

    Additive manufacturing has become a tool of choice for the development of customizable components. Developments in this technology have led to a powerful array of printers that t serve a variety of needs. However, resin development plays a crucial role in leading the technology forward. This paper addresses the development and application of printing hierarchical porous structures. Beginning with the development of a porous scaffold, which can be functionalized with a variety of materials, and concluding with customized resins for metal, ceramic, and carbon structures.

  2. Inferring hierarchical clustering structures by deterministic annealing

    International Nuclear Information System (INIS)

    Hofmann, T.; Buhmann, J.M.

    1996-01-01

    The unsupervised detection of hierarchical structures is a major topic in unsupervised learning and one of the key questions in data analysis and representation. We propose a novel algorithm for the problem of learning decision trees for data clustering and related problems. In contrast to many other methods based on successive tree growing and pruning, we propose an objective function for tree evaluation and we derive a non-greedy technique for tree growing. Applying the principles of maximum entropy and minimum cross entropy, a deterministic annealing algorithm is derived in a meanfield approximation. This technique allows us to canonically superimpose tree structures and to fit parameters to averaged or open-quote fuzzified close-quote trees

  3. Hierarchical spatial structure of stream fish colonization and extinction

    Science.gov (United States)

    Hitt, N.P.; Roberts, J.H.

    2012-01-01

    Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182-194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life-history traits such as spawning mound construction, associations with mound-building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound-building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound-building fishes serve as keystone species for colonization of headwater streams.

  4. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  5. Hierarchical structure of moral stages assessed by a sorting task

    NARCIS (Netherlands)

    Boom, J.; Brugman, D.; Van der Heijden, P.G.M.

    2001-01-01

    Following criticism of Kohlberg’s theory of moral judgment, an empirical re-examination of hierarchical stage structure was desirable. Utilizing Piaget’s concept of reflective abstraction as a basis, the hierarchical stage structure was investigated using a new method. Study participants (553 Dutch

  6. Hierarchical regression analysis in structural Equation Modeling

    NARCIS (Netherlands)

    de Jong, P.F.

    1999-01-01

    In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

  7. Microfabrication of hierarchical structures for engineered mechanical materials

    Science.gov (United States)

    Vera Canudas, Marc

    Materials found in nature present, in some cases, unique properties from their constituents that are of great interest in engineered materials for applications ranging from structural materials for the construction of bridges, canals and buildings to the fabrication of new lightweight composites for airplane and automotive bodies, to protective thin film coatings, amongst other fields. Research in the growing field of biomimetic materials indicates that the micro-architectures present in natural materials are critical to their macroscopic mechanical properties. A better understanding of the effect that structure and hierarchy across scales have on the material properties will enable engineered materials with enhanced properties. At the moment, very few theoretical models predict mechanical properties of simple materials based on their microstructures. Moreover these models are based on observations from complex biological systems. One way to overcome this challenge is through the use of microfabrication techniques to design and fabricate simple materials, more appropriate for the study of hierarchical organizations and microstructured materials. Arrays of structures with controlled geometry and dimension can be designed and fabricated at different length scales, ranging from a few hundred nanometers to centimeters, in order to mimic similar systems found in nature. In this thesis, materials have been fabricated in order to gain fundamental insight into the complex hierarchical materials found in nature and to engineer novel materials with enhanced mechanical properties. The materials fabricated here were mechanically characterized and compared to simple mechanics models to describe their behavior with the goal of applying the knowledge acquired to the design and synthesis of future engineered materials with novel properties.

  8. Facile fabrication of superhydrophobic surfaces with hierarchical structures.

    Science.gov (United States)

    Lee, Eunyoung; Lee, Kun-Hong

    2018-03-06

    Hierarchical structures were fabricated on the surfaces of SUS304 plates using a one-step process of direct microwave irradiation under a carbon dioxide atmosphere. The surface nanostructures were composed of chrome-doped hematite single crystals. Superhydrophobic surfaces with a water contact angle up to 169° were obtained by chemical modification of the hierarchical structures. The samples maintained superhydrophobicity under NaCl solution up to 2 weeks.

  9. Tensegrity I. Cell structure and hierarchical systems biology

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.

  10. Quantum Ising model on hierarchical structures

    International Nuclear Information System (INIS)

    Lin Zhifang; Tao Ruibao.

    1989-11-01

    A quantum Ising chain with both the exchange couplings and the transverse fields arranged in a hierarchical way is considered. Exact analytical results for the critical line and energy gap are obtained. It is shown that when R 1 not= R 2 , where R 1 and R 2 are the hierarchical parameters for the exchange couplings and the transverse fields, respectively, the system undergoes a phase transition in a different universality class from the pure quantum Ising chain with R 1 =R 2 =1. On the other hand, when R 1 =R 2 =R, there exists a critical value R c dependent on the furcating number of the hierarchy. In case of R > R c , the system is shown to exhibit as Ising-like critical point with the critical behaviour the same as in the pure case, while for R c the system belongs to another universality class. (author). 19 refs, 2 figs

  11. Hierarchically structured distributed microprocessor network for control

    International Nuclear Information System (INIS)

    Greenwood, J.R.; Holloway, F.W.; Rupert, P.R.; Ozarski, R.G.; Suski, G.J.

    1979-01-01

    To satisfy a broad range of control-analysis and data-acquisition requirements for Shiva, a hierarchical, computer-based, modular-distributed control system was designed. This system handles the more than 3000 control elements and 1000 data acquisition units in a severe high-voltage, high-current environment. The control system design gives one a flexible and reliable configuration to meet the development milestones for Shiva within critical time limits

  12. Road Network Selection Based on Road Hierarchical Structure Control

    Directory of Open Access Journals (Sweden)

    HE Haiwei

    2015-04-01

    Full Text Available A new road network selection method based on hierarchical structure is studied. Firstly, road network is built as strokes which are then classified into hierarchical collections according to the criteria of betweenness centrality value (BC value. Secondly, the hierarchical structure of the strokes is enhanced using structural characteristic identification technique. Thirdly, the importance calculation model was established according to the relationships among the hierarchical structure of the strokes. Finally, the importance values of strokes are got supported with the model's hierarchical calculation, and with which the road network is selected. Tests are done to verify the advantage of this method by comparing it with other common stroke-oriented methods using three kinds of typical road network data. Comparision of the results show that this method had few need to semantic data, and could eliminate the negative influence of edge strokes caused by the criteria of BC value well. So, it is better to maintain the global hierarchical structure of road network, and suitable to meet with the selection of various kinds of road network at the same time.

  13. A novel method for a multi-level hierarchical composite with brick-and-mortar structure.

    Science.gov (United States)

    Brandt, Kristina; Wolff, Michael F H; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  14. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    Science.gov (United States)

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-07-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  15. Adaptive building skin structures

    International Nuclear Information System (INIS)

    Del Grosso, A E; Basso, P

    2010-01-01

    The concept of adaptive and morphing structures has gained considerable attention in the recent years in many fields of engineering. In civil engineering very few practical applications are reported to date however. Non-conventional structural concepts like deployable, inflatable and morphing structures may indeed provide innovative solutions to some of the problems that the construction industry is being called to face. To give some examples, searches for low-energy consumption or even energy-harvesting green buildings are amongst such problems. This paper first presents a review of the above problems and technologies, which shows how the solution to these problems requires a multidisciplinary approach, involving the integration of architectural and engineering disciplines. The discussion continues with the presentation of a possible application of two adaptive and dynamically morphing structures which are proposed for the realization of an acoustic envelope. The core of the two applications is the use of a novel optimization process which leads the search for optimal solutions by means of an evolutionary technique while the compatibility of the resulting configurations of the adaptive envelope is ensured by the virtual force density method

  16. A Hierarchical Dispatch Structure for Distribution Network Pricing

    OpenAIRE

    Yuan, Zhao; Hesamzadeh, Mohammad Reza

    2015-01-01

    This paper presents a hierarchical dispatch structure for efficient distribution network pricing. The dispatch coordination problem in the context of hierarchical network operators are addressed. We formulate decentralized generation dispatch into a bilevel optimization problem in which main network operator and the connected distribution network operator optimize their costs in two levels. By using Karush-Kuhn-Tucker conditions and Fortuny-Amat McCarl linearization, the bilevel optimization ...

  17. D Nearest Neighbour Search Using a Clustered Hierarchical Tree Structure

    Science.gov (United States)

    Suhaibah, A.; Uznir, U.; Anton, F.; Mioc, D.; Rahman, A. A.

    2016-06-01

    Locating and analysing the location of new stores or outlets is one of the common issues facing retailers and franchisers. This is due to assure that new opening stores are at their strategic location to attract the highest possible number of customers. Spatial information is used to manage, maintain and analyse these store locations. However, since the business of franchising and chain stores in urban areas runs within high rise multi-level buildings, a three-dimensional (3D) method is prominently required in order to locate and identify the surrounding information such as at which level of the franchise unit will be located or is the franchise unit located is at the best level for visibility purposes. One of the common used analyses used for retrieving the surrounding information is Nearest Neighbour (NN) analysis. It uses a point location and identifies the surrounding neighbours. However, with the immense number of urban datasets, the retrieval and analysis of nearest neighbour information and their efficiency will become more complex and crucial. In this paper, we present a technique to retrieve nearest neighbour information in 3D space using a clustered hierarchical tree structure. Based on our findings, the proposed approach substantially showed an improvement of response time analysis compared to existing approaches of spatial access methods in databases. The query performance was tested using a dataset consisting of 500,000 point locations building and franchising unit. The results are presented in this paper. Another advantage of this structure is that it also offers a minimal overlap and coverage among nodes which can reduce repetitive data entry.

  18. The Structure of Affine Buildings

    CERN Document Server

    Weiss, Richard M

    2009-01-01

    In The Structure of Affine Buildings, Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions, and residues of these buildings. It also includes tables correlating the results in the locally finite case with the results of Tits's classification of absolutely simple algebraic groups defined over a local field. A companion to Weiss's The Structure of Spherical Buildings, The Structure of Affine Buildings is organized around the clas

  19. Hierarchically Structured Recommender System for Improving NPS

    Science.gov (United States)

    Kuang, Jieyan

    2016-01-01

    Net Promoter System (NPS) is well known as an evaluation measure of the growth engine of big companies in the business area. The ultimate goal of my research is to build an action rules and meta-actions based recommender system for improving NPS scores of 34 companies (clients) dealing with similar businesses in the US and Canada. With the given…

  20. Object-oriented Method of Hierarchical Urban Building Extraction from High-resolution Remote-Sensing Imagery

    Directory of Open Access Journals (Sweden)

    TAO Chao

    2016-02-01

    Full Text Available An automatic urban building extraction method for high-resolution remote-sensing imagery,which combines building segmentation based on neighbor total variations with object-oriented analysis,is presented in this paper. Aimed at different extraction complexity from various buildings in the segmented image,a hierarchical building extraction strategy with multi-feature fusion is adopted. Firstly,we extract some rectangle buildings which remain intact after segmentation through shape analysis. Secondly,in order to ensure each candidate building target to be independent,multidirectional morphological road-filtering algorithm is designed which can separate buildings from the neighboring roads with similar spectrum. Finally,we take the extracted buildings and the excluded non-buildings as samples to establish probability model respectively,and Bayesian discriminating classifier is used for making judgment of the other candidate building objects to get the ultimate extraction result. The experimental results have shown that the approach is able to detect buildings with different structure and spectral features in the same image. The results of performance evaluation also support the robustness and precision of the approach developed.

  1. Hierarchical structure of stock price fluctuations in financial markets

    International Nuclear Information System (INIS)

    Gao, Ya-Chun; Cai, Shi-Min; Wang, Bing-Hong

    2012-01-01

    The financial market and turbulence have been broadly compared on account of the same quantitative methods and several common stylized facts they share. In this paper, the She–Leveque (SL) hierarchy, proposed to explain the anomalous scaling exponents deviating from Kolmogorov monofractal scaling of the velocity fluctuation in fluid turbulence, is applied to study and quantify the hierarchical structure of stock price fluctuations in financial markets. We therefore observed certain interesting results: (i) the hierarchical structure related to multifractal scaling generally presents in all the stock price fluctuations we investigated. (ii) The quantitatively statistical parameters that describe SL hierarchy are different between developed financial markets and emerging ones, distinctively. (iii) For the high-frequency stock price fluctuation, the hierarchical structure varies with different time periods. All these results provide a novel analogy in turbulence and financial market dynamics and an insight to deeply understand multifractality in financial markets. (paper)

  2. Detecting the overlapping and hierarchical community structure in complex networks

    International Nuclear Information System (INIS)

    Lancichinetti, Andrea; Fortunato, Santo; Kertesz, Janos

    2009-01-01

    Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this community structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here, we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling different hierarchical levels of organization to be investigated. Tests on real and artificial networks give excellent results.

  3. New insight in magnetic saturation behavior of nickel hierarchical structures

    Science.gov (United States)

    Ma, Ji; Zhang, Jianxing; Liu, Chunting; Chen, Kezheng

    2017-09-01

    It is unanimously accepted that non-ferromagnetic inclusions in a ferromagnetic system will lower down total saturation magnetization in unit of emu/g. In this study, ;lattice strain; was found to be another key factor to have critical impact on magnetic saturation behavior of the system. The lattice strain determined assembling patterns of primary nanoparticles in hierarchical structures and was intimately related with the formation process of these architectures. Therefore, flower-necklace-like and cauliflower-like nickel hierarchical structures were used as prototype systems to evidence the relationship between assembling patterns of primary nanoparticles and magnetic saturation behaviors of these architectures. It was found that the influence of lattice strain on saturation magnetization outperformed that of non-ferromagnetic inclusions in these hierarchical structures. This will enable new insights into fundamental understanding of related magnetic effects.

  4. Hierarchical data structures for graphics program languages

    International Nuclear Information System (INIS)

    Gonauser, M.; Schinner, P.; Weiss, J.

    1978-01-01

    Graphic data processing with a computer makes exacting demands on the interactive capability of the program language and the management of the graphic data. A description of the structure of a graphics program language which has been shown by initial practical experiments to possess a particularly favorable interactive capability is followed by the evaluation of various data structures (list, tree, ring) with respect to their interactive capability in processing graphics. A practical structure is proposed. (orig.) [de

  5. Hierarchical structure of correlation functions for single jets

    International Nuclear Information System (INIS)

    Lupia, S.; Giovannini, A.; Ugoccioni, R.

    1993-01-01

    Theoretical basis of void scaling function properties of hierarchical structure in rapidity and p T intervals are explored. Their phenomenological consequences are analyzed at single jet level by using Monte Carlo methods in e + e - annihilation. It is found that void scaling function study provides an interesting alternative approach for characterizing single jets of different origin. (orig.)

  6. Hierarchical structure of correlation functions for single jets

    Energy Technology Data Exchange (ETDEWEB)

    Lupia, S. (Dipt. di Fisica Teorica, Univ. di Torino, and INFN, Sezione di Torino (Italy)); Giovannini, A. (Dipt. di Fisica Teorica, Univ. di Torino, and INFN, Sezione di Torino (Italy)); Ugoccioni, R. (Dipt. di Fisica Teorica, Univ. di Torino, and INFN, Sezione di Torino (Italy))

    1993-08-01

    Theoretical basis of void scaling function properties of hierarchical structure in rapidity and p[sub T] intervals are explored. Their phenomenological consequences are analyzed at single jet level by using Monte Carlo methods in e[sup +]e[sup -] annihilation. It is found that void scaling function study provides an interesting alternative approach for characterizing single jets of different origin. (orig.)

  7. On Structure, Family and Parameter Estimation of Hierarchical Archimedean Copulas

    Czech Academy of Sciences Publication Activity Database

    Górecki, J.; Hofert, M.; Holeňa, Martin

    2017-01-01

    Roč. 87, č. 17 (2017), s. 3261-3324 ISSN 0094-9655 R&D Projects: GA ČR GA17-01251S Institutional support: RVO:67985807 Keywords : copula estimation * goodness-of-fit * Hierarchical Archimedean copula * structure determination Subject RIV: IN - Informatics, Computer Science OBOR OECD: Statistics and probability Impact factor: 0.757, year: 2016

  8. Content Consumption and Hierarchical Structures of Web-Supported Courses

    Science.gov (United States)

    Hershkovitz, Arnon; Hardof-Jaffe, Sharon; Nachmias, Rafi

    2014-01-01

    This study presents an empirical investigation of the relationship between the hierarchical structure of content delivered to students within a Learning Management System (LMS) and its actual consumption. To this end, campus-wide data relating to 1,203 courses were collected from the LMS' servers and were subsequently analyzed using data mining…

  9. Micro-nanofibers with hierarchical structure by bubbfil-spinning

    Directory of Open Access Journals (Sweden)

    Liu Peng

    2015-01-01

    Full Text Available Bubbfil spinning is used to fabricate micro/nanofibers with hierarchical structure. The wall of a polymer film is attenuated unevenly by a blowing air. The burst of the bubble results in film fragments with different thickness, as a result, different sizes of fibers are obtained.

  10. Enhanced water desalination performance through hierarchically-structured ceramic membranes

    NARCIS (Netherlands)

    Liu, Tong; Lei, Libin; Gu, Jianqiang; Wang, Yao; Winnubst, Louis; Chen, Chusheng; Ye, Chunsong; Chen, Fanglin

    2017-01-01

    Developments of membrane water desalination are impeded by low water vapor flux across the membrane. We present an innovative membrane design to significantly enhance the water vapor flux. A bilayer zirconia-based membrane with a thick hierarchically-structured support and a thin functional layer is

  11. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    Science.gov (United States)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  12. Filamentous phages as building blocks for reconfigurable and hierarchical self-assembly

    Science.gov (United States)

    Gibaud, Thomas

    2017-12-01

    Filamentous bacteriophages such as fd-like viruses are monodisperse rod-like colloids that have well defined properties of diameter, length, rigidity, charge and chirality. Engineering these viruses leads to a library of colloidal rods, which can be used as building blocks for reconfigurable and hierarchical self-assembly. Their condensation in an aqueous solution with additive polymers, which act as depletants to induce attraction between the rods, leads to a myriad of fluid-like micronic structures ranging from isotropic/nematic droplets, colloid membranes, achiral membrane seeds, twisted ribbons, π-wall, pores, colloidal skyrmions, Möbius anchors, scallop membranes to membrane rafts. These structures, and the way that they shape-shift, not only shed light on the role of entropy, chiral frustration and topology in soft matter, but also mimic many structures encountered in different fields of science. On the one hand, filamentous phages being an experimental realization of colloidal hard rods, their condensation mediated by depletion interactions constitutes a blueprint for the self-assembly of rod-like particles and provides a fundamental foundation for bio- or material-oriented applications. On the other hand, the chiral properties of the viruses restrict the generalities of some results but vastly broaden the self-assembly possibilities.

  13. Hierarchical structure for risk criteria applicable to nuclear power plants

    International Nuclear Information System (INIS)

    Hall, R.E.; Mitra, S.P.

    1985-01-01

    This paper discusses the development of a hierarchical structure for risk criteria applicable to nuclear power plants. The structure provides a unified framework to systematically analyze the implications of different types of criteria, each focusing on a particular aspect of nuclear power plant risks. The framework allows investigation of the specific coverage of a particular criterion and comparison of different criteria with regard to areas to which they apply. 5 refs., 2 figs

  14. Structural building screening and evaluation

    Science.gov (United States)

    Kurniawandy, Alex; Nakazawa, Shoji; Hendry, Andy; Ridwan, Firdaus, Rahmatul

    2017-10-01

    An earthquake is a disaster that can be harmful to the community, such as financial loss and also dead injuries. Pekanbaru is a city that located in the middle of Sumatera Island. Even though the city of Pekanbaru is a city that rarely occurs earthquake, but Pekanbaru has ever felt the impact of the big earthquake that occurred in West Sumatera on September 2009. As we know, Indonesia located between Eurasia plate, Pacific plate, and Indo-Australian plate. Particularly the Sumatera Island, It has the Semangko fault or the great Sumatra fault along the island from north to south due to the shift of Eurasia and Indo-Australian Plates. An earthquake is not killing people but the building around the people that could be killing them. The failure of the building can be early prevented by doing an evaluation. In this research, the methods of evaluation have used a guideline for the Federal Emergency Management Agency (FEMA) P-154 and Applied Technology Council (ATC) 40. FEMA P-154 is a rapid visual screening of buildings for potential seismic hazards and ATC-40 is seismic evaluation and retrofit of Concrete Buildings. ATC-40 is a more complex evaluation rather than FEMA P-154. The samples to be evaluated are taken in the surroundings of Universitas Riau facility in Pekanbaru. There are four buildings as case study such as the rent student building, the building of mathematics and natural science faculty, the building teacher training and education faculty and the buildings in the faculty of Social political sciences. Vulnerability for every building facing an earthquake is different, this is depending on structural and non-structural components of the building. Among all of the samples, only the building of mathematics and the natural science faculty is in critical condition according to the FEMA P-154 evaluation. Furthermore, the results of evaluation using ATC-40 for the teacher training building are in damage control conditions, despite the other three buildings are

  15. Biomedical application of hierarchically built structures based on metal oxides

    Science.gov (United States)

    Korovin, M. S.; Fomenko, A. N.

    2017-12-01

    Nowadays, the use of hierarchically built structures in biology and medicine arouses much interest. The aim of this work is to review and summarize the available literature data about hierarchically organized structures in biomedical application. Nanoparticles can serve as an example of such structures. Medicine holds a special place among various application methods of similar systems. Special attention is paid to inorganic nanoparticles based on different metal oxides and hydroxides, such as iron, zinc, copper, and aluminum. Our investigations show that low-dimensional nanostructures based on aluminum oxides and hydroxides have an inhibitory effect on tumor cells and possess an antimicrobial activity. At the same time, it is obvious that the large-scale use of nanoparticles by humans needs to thoroughly study their properties. Special attention should be paid to the study of nanoparticle interaction with living biological objects. The numerous data show that there is no clear understanding of interaction mechanisms between nanoparticles and various cell types.

  16. A new hierarchical method to find community structure in networks

    Science.gov (United States)

    Saoud, Bilal; Moussaoui, Abdelouahab

    2018-04-01

    Community structure is very important to understand a network which represents a context. Many community detection methods have been proposed like hierarchical methods. In our study, we propose a new hierarchical method for community detection in networks based on genetic algorithm. In this method we use genetic algorithm to split a network into two networks which maximize the modularity. Each new network represents a cluster (community). Then we repeat the splitting process until we get one node at each cluster. We use the modularity function to measure the strength of the community structure found by our method, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our method are highly effective at discovering community structure in both computer-generated and real-world network data.

  17. Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kangji [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China); School of Electricity Information Engineering, Jiangsu University, Zhenjiang 212013 (China); Su, Hongye [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China)

    2010-11-15

    There are several ways to forecast building energy consumption, varying from simple regression to models based on physical principles. In this paper, a new method, namely, the hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system (GA-HANFIS) model is developed. In this model, hierarchical structure decreases the rule base dimension. Both clustering and rule base parameters are optimized by GAs and neural networks (NNs). The model is applied to predict a hotel's daily air conditioning consumption for a period over 3 months. The results obtained by the proposed model are presented and compared with regular method of NNs, which indicates that GA-HANFIS model possesses better performance than NNs in terms of their forecasting accuracy. (author)

  18. Structural building response review

    International Nuclear Information System (INIS)

    1980-01-01

    The integrity of a nuclear power plant during a postulated seismic event is required to protect the public against radiation. Therefore, a detailed set of seismic analyses of various structures and equipment is performed while designing a nuclear power plant. This report describes the structural response analysis method, including the structural model, soil-structure interaction as it relates to structural models, methods for seismic structural analysis, numerical integration methods, methods for non-seismic response analysis approaches for various response combinations, structural damping values, nonlinear response, uncertainties in structural properties, and structural response analysis using random properties. The report describes the state-of-the-art in these areas for nuclear power plants. It also details the past studies made at Sargent and Lundy to evaluate different alternatives and the conclusions reached for the specific purposes that those studies were intended. These results were incorporated here because they fall into the general scope of this report. The scope of the present task does not include performing new calculations

  19. Structural rehabilitation of old buildings

    CERN Document Server

    Guedes, João; Varum, Humberto

    2014-01-01

    The present book describes the different construction systems and structural materials and solutions within the main old buildings typologies, and it analyses the particularities of each of them, including mechanical properties, structural behaviour, typical damage patterns and collapse mechanisms. Common or pioneering intervention measures to repair and/or strengthen some of these structural elements are also reviewed.

  20. Growth Mechanism of Pumpkin-Shaped Vaterite Hierarchical Structures

    Science.gov (United States)

    Ma, Guobin; Xu, Yifei; Wang, Mu

    2015-03-01

    CaCO3-based biominerals possess sophisticated hierarchical structures and promising mechanical properties. Recent researches imply that vaterite may play an important role in formation of CaCO3-based biominerals. However, as a less common polymorph of CaCO3, the growth mechanism of vaterite remains not very clear. Here we report the growth of a pumpkin-shaped vaterite hierarchical structure with a six-fold symmetrical axis and lamellar microstructure. We demonstrate that the growth is controlled by supersaturation and the intrinsic crystallographic anisotropy of vaterite. For the scenario of high supersaturation, the nucleation rate is higher than the lateral extension rate, favoring the ``double-leaf'' spherulitic growth. Meanwhile, nucleation occurs preferentially in as determined by the crystalline structure of vaterite, modulating the grown products with a hexagonal symmetry. The results are beneficial for an in-depth understanding of the biomineralization of CaCO3. The growth mechanism may also be applicable to interpret the formation of similar hierarchical structures of other materials. The authors gratefully acknowledge the financial support from National Science Foundation of China (Grant Nos. 51172104 and 50972057) and National Key Basic Research Program of China (Grant No. 2010CB630705).

  1. Localizing age-related individual differences in a hierarchical structure

    OpenAIRE

    Salthouse, Timothy A.

    2004-01-01

    Data from 33 separate studies were combined to create an aggregate data set consisting of 16 cognitive variables and 6832 different individuals who ranged between 18 and 95 years of age. Analyses were conducted to determine where in a hierarchical structure of cognitive abilities individual differences associated with age, gender, education, and self-reported health could be localized. The results indicated that each type of individual difference characteristic exhibited a d...

  2. Hierarchical drivers of reef-fish metacommunity structure.

    Science.gov (United States)

    MacNeil, M Aaron; Graham, Nicholas A J; Polunin, Nicholas V C; Kulbicki, Michel; Galzin, René; Harmelin-Vivien, Mireille; Rushton, Steven P

    2009-01-01

    Coral reefs are highly complex ecological systems, where multiple processes interact across scales in space and time to create assemblages of exceptionally high biodiversity. Despite the increasing frequency of hierarchically structured sampling programs used in coral-reef science, little progress has been made in quantifying the relative importance of processes operating across multiple scales. The vast majority of reef studies are conducted, or at least analyzed, at a single spatial scale, ignoring the implicitly hierarchical structure of the overall system in favor of small-scale experiments or large-scale observations. Here we demonstrate how alpha (mean local number of species), beta diversity (degree of species dissimilarity among local sites), and gamma diversity (overall species richness) vary with spatial scale, and using a hierarchical, information-theoretic approach, we evaluate the relative importance of site-, reef-, and atoll-level processes driving the fish metacommunity structure among 10 atolls in French Polynesia. Process-based models, representing well-established hypotheses about drivers of reef-fish community structure, were assembled into a candidate set of 12 hierarchical linear models. Variation in fish abundance, biomass, and species richness were unevenly distributed among transect, reef, and atoll levels, establishing the relative contribution of variation at these spatial scales to the structure of the metacommunity. Reef-fish biomass, species richness, and the abundance of most functional-groups corresponded primarily with transect-level habitat diversity and atoll-lagoon size, whereas detritivore and grazer abundances were largely correlated with potential covariates of larval dispersal. Our findings show that (1) within-transect and among-atoll factors primarily drive the relationship between alpha and gamma diversity in this reef-fish metacommunity; (2) habitat is the primary correlate with reef-fish metacommunity structure at

  3. Hierarchical sets: analyzing pangenome structure through scalable set visualizations

    Science.gov (United States)

    2017-01-01

    Abstract Motivation: The increase in available microbial genome sequences has resulted in an increase in the size of the pangenomes being analyzed. Current pangenome visualizations are not intended for the pangenome sizes possible today and new approaches are necessary in order to convert the increase in available information to increase in knowledge. As the pangenome data structure is essentially a collection of sets we explore the potential for scalable set visualization as a tool for pangenome analysis. Results: We present a new hierarchical clustering algorithm based on set arithmetics that optimizes the intersection sizes along the branches. The intersection and union sizes along the hierarchy are visualized using a composite dendrogram and icicle plot, which, in pangenome context, shows the evolution of pangenome and core size along the evolutionary hierarchy. Outlying elements, i.e. elements whose presence pattern do not correspond with the hierarchy, can be visualized using hierarchical edge bundles. When applied to pangenome data this plot shows putative horizontal gene transfers between the genomes and can highlight relationships between genomes that is not represented by the hierarchy. We illustrate the utility of hierarchical sets by applying it to a pangenome based on 113 Escherichia and Shigella genomes and find it provides a powerful addition to pangenome analysis. Availability and Implementation: The described clustering algorithm and visualizations are implemented in the hierarchicalSets R package available from CRAN (https://cran.r-project.org/web/packages/hierarchicalSets) Contact: thomasp85@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28130242

  4. A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Yiming Yan

    2017-01-01

    Full Text Available In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM, which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed ‘occlusions of random textures model’ are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images.

  5. An interference cancellation strategy for broadcast in hierarchical cell structure

    KAUST Repository

    Yang, Yuli

    2014-12-01

    In this paper, a hierarchical cell structure is considered, where public safety broadcasting is fulfilled in a femtocell located within a macrocell. In the femtocell, also known as local cell, an access point broadcasts to each local node (LN) over an orthogonal frequency sub-band independently. Since the local cell shares the spectrum licensed to the macrocell, a given LN is interfered by transmissions of the macrocell user (MU) in the same sub-band. To improve the broadcast performance in the local cell, a novel scheme is proposed to mitigate the interference from the MU to the LN while achieving diversity gain. For the sake of performance evaluation, ergodic capacity of the proposed scheme is quantified and a corresponding closed-form expression is obtained. By comparing with the traditional scheme that suffers from the MU\\'s interference, numerical results substantiate the advantage of the proposed scheme and provide a useful tool for the broadcast design in hierarchical cell systems.

  6. An interference cancellation strategy for broadcast in hierarchical cell structure

    KAUST Repository

    Yang, Yuli; Aï ssa, Sonia; Eltawil, Ahmed M.; Salama, Khaled N.

    2014-01-01

    In this paper, a hierarchical cell structure is considered, where public safety broadcasting is fulfilled in a femtocell located within a macrocell. In the femtocell, also known as local cell, an access point broadcasts to each local node (LN) over an orthogonal frequency sub-band independently. Since the local cell shares the spectrum licensed to the macrocell, a given LN is interfered by transmissions of the macrocell user (MU) in the same sub-band. To improve the broadcast performance in the local cell, a novel scheme is proposed to mitigate the interference from the MU to the LN while achieving diversity gain. For the sake of performance evaluation, ergodic capacity of the proposed scheme is quantified and a corresponding closed-form expression is obtained. By comparing with the traditional scheme that suffers from the MU's interference, numerical results substantiate the advantage of the proposed scheme and provide a useful tool for the broadcast design in hierarchical cell systems.

  7. Hierarchical structure of biological systems: a bioengineering approach.

    Science.gov (United States)

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M

    2014-01-01

    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems.

  8. Dynamic control of quadruped robot with hierarchical control structure

    International Nuclear Information System (INIS)

    Wang, Yu-Zhang; Furusho, Junji; Okajima, Yosuke.

    1988-01-01

    For moving on irregular terrain, such as the inside of a nuclear power plant and outer space, it is generally recognized that the multilegged walking robot is suitable. This paper proposes a hierarchical control structure for the dynamic control of quadruped walking robots. For this purpose, we present a reduced order model which can approximate the original higher order model very well. Since this reduced order model does not require much computational time, it can be used in the real-time control of a quadruped walking robot. A hierarchical control experiment is shown in which the optimal control algorithm using a reduced order model is calculated by one microprocessor, and the other control algorithm is calculated by another microprocessor. (author)

  9. Bio-inspired fabrication of stimuli-responsive photonic crystals with hierarchical structures and their applications

    International Nuclear Information System (INIS)

    Lu, Tao; Peng, Wenhong; Zhu, Shenmin; Zhang, Di

    2016-01-01

    When the constitutive materials of photonic crystals (PCs) are stimuli-responsive, the resultant PCs exhibit optical properties that can be tuned by the stimuli. This can be exploited for promising applications in colour displays, biological and chemical sensors, inks and paints, and many optically active components. However, the preparation of the required photonic structures is the first issue to be solved. In the past two decades, approaches such as microfabrication and self-assembly have been developed to incorporate stimuli-responsive materials into existing periodic structures for the fabrication of PCs, either as the initial building blocks or as the surrounding matrix. Generally, the materials that respond to thermal, pH, chemical, optical, electrical, or magnetic stimuli are either soft or aggregate, which is why the manufacture of three-dimensional hierarchical photonic structures with responsive properties is a great challenge. Recently, inspired by biological PCs in nature which exhibit both flexible and responsive properties, researchers have developed various methods to synthesize metals and metal oxides with hierarchical structures by using a biological PC as the template. This review will focus on the recent developments in this field. In particular, PCs with biological hierarchical structures that can be tuned by external stimuli have recently been successfully fabricated. These findings offer innovative insights into the design of responsive PCs and should be of great importance for future applications of these materials. (topical review)

  10. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains P 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  11. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains ⩾ 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  12. Synthesis of hierarchical porous materials with ZSM-5 structures via template-free sol–gel method

    Directory of Open Access Journals (Sweden)

    Wei Han et al

    2007-01-01

    Full Text Available Interests are focused on preparation of hierarchical porous materials with zeolite structures by using soft or rigid templates in order to solve diffusion and mass transfer limitations resulting from the small pore sizes of zeolites. Here we develop a convenient template-free sol–gel method to synthesize hierarchical porous materials with ZSM-5 structures. This method involves hydrothermal recrystallization of the xerogel converted from uniform ZSM-5 sol by a vacuum drying process. By utilizing this method we can manipulate the size of zeolite nanocrystals as building units of porous structures based on controlling temperature of recrystallization, consequently obtain hierarchical porous materials with different intercrystalline pore sizes and ZSM-5 structures.

  13. Hierarchical structure of the otolith of adult wild carp

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhuo; Gao Yonghua [State key laboratory of new ceramics and fine processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-04-30

    The otolith of adult wild carp contains a pair of asterisci, a pair of lappilli and a pair of sagittae. Current research works are mainly restricted to the field of the daily ring structure. The purpose of this work is to explore the structural characteristics of carp's otolith in terms of hierarchy from nanometer to millimeter scale by transmission election microscope (TEM) and scanning electron microscope (SEM). Based on the observation, carp's lapillus is composed of ordered aragonite crystals. Seven hierarchical levels of the microstructure were proposed and described with the scheme representing a complete organization in detail. SEM studies show not only the clear daily growth increment, but also the morphology within the single daily increment. The domain structure of crystal orientation in otolith was observed for the first time. Furthermore, TEM investigation displays that the lapillus is composed of aragonite crystals with nanometer scale. Four hierarchical levels of the microstructure of the sagitta are also proposed. The asteriscus which is composed of nanometer scale vaterite crystals is considered to have a uniform structure.

  14. Hierarchical structure of the otolith of adult wild carp

    International Nuclear Information System (INIS)

    Li Zhuo; Gao Yonghua; Feng Qingling

    2009-01-01

    The otolith of adult wild carp contains a pair of asterisci, a pair of lappilli and a pair of sagittae. Current research works are mainly restricted to the field of the daily ring structure. The purpose of this work is to explore the structural characteristics of carp's otolith in terms of hierarchy from nanometer to millimeter scale by transmission election microscope (TEM) and scanning electron microscope (SEM). Based on the observation, carp's lapillus is composed of ordered aragonite crystals. Seven hierarchical levels of the microstructure were proposed and described with the scheme representing a complete organization in detail. SEM studies show not only the clear daily growth increment, but also the morphology within the single daily increment. The domain structure of crystal orientation in otolith was observed for the first time. Furthermore, TEM investigation displays that the lapillus is composed of aragonite crystals with nanometer scale. Four hierarchical levels of the microstructure of the sagitta are also proposed. The asteriscus which is composed of nanometer scale vaterite crystals is considered to have a uniform structure.

  15. Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter?

    International Nuclear Information System (INIS)

    Borgoni, Riccardo; De Francesco, Davide; De Bartolo, Daniela; Tzavidis, Nikos

    2014-01-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and only second to smoking as major leading cause of lung cancer. The main concern is in indoor environments where the gas tends to accumulate and can reach high concentrations. The primary contributor of this gas into the building is from the soil although architectonic characteristics, such as building materials, can largely affect concentration values. Understanding the factors affecting the concentration in dwellings and workplaces is important both in prevention, when the construction of a new building is being planned, and in mitigation when the amount of Radon detected inside a building is too high. In this paper we investigate how several factors, such as geologic typologies of the soil and a range of building characteristics, impact on indoor concentration focusing, in particular, on how concentration changes as a function of the floor level. Adopting a mixed effects model to account for the hierarchical nature of the data, we also quantify the extent to which such measurable factors manage to explain the variability of indoor radon concentration. - Highlights: • It is assessed how the variability of indoor radon concentration depends on buildings and lithologies. • The lithological component has been found less relevant than the building one. • Radon-prone lithologies have been identified. • The effect of the floor where the room is located has been estimated. • Indoor radon concentration have been predicted for different dwelling typologies

  16. Mental structures and hierarchical brain processing. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    Science.gov (United States)

    Petkov, C. I.

    2014-09-01

    Fitch proposes an appealing hypothesis that humans are dendrophiles, who constantly build mental trees supported by analogous hierarchical brain processes [1]. Moreover, it is argued that, by comparison, nonhuman animals build flat or more compact behaviorally-relevant structures. Should we thus expect less impressive hierarchical brain processes in other animals? Not necessarily.

  17. Three-dimensional hierarchical structures for fog harvesting.

    Science.gov (United States)

    Andrews, H G; Eccles, E A; Schofield, W C E; Badyal, J P S

    2011-04-05

    Conventional fog-harvesting mechanisms are effectively pseudo-2D surface phenomena in terms of water droplet-plant interactions. In the case of the Cotula fallax plant, a unique hierarchical 3D arrangement formed by its leaves and the fine hairs covering them has been found to underpin the collection and retention of water droplets on the foliage for extended periods of time. The mechanisms of water capture and release as a function of the surface 3D structure and chemistry have been identified. Of particular note is that water is retained throughout the entirety of the plant and held within the foliage itself (rather than in localized regions). Individual plant hairs form matlike structures capable of supporting water droplets; these hairs wrap around water droplets in a 3D fashion to secure them via a fine nanoscale groove structure that prevents them from easily falling to the ground.

  18. Colloidal quantum dot solar cells exploiting hierarchical structuring

    KAUST Repository

    Labelle, André J.

    2015-02-11

    Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells that feature transfer-stamped solution-processed pyramid-shaped electrodes employed in a hierarchically structured device. The pyramids increase, by up to a factor of 2, the external quantum efficiency of the device at absorption-limited wavelengths near the absorber band edge. We show that absorption enhancement can be optimized with increased pyramid angle with an appreciable net improvement in power conversion efficiency, that is, with the gain in current associated with improved absorption and extraction overcoming the smaller fractional decrease in open-circuit voltage associated with increased junction area. We show that the hierarchical combination of micron-scale structured electrodes with nanoscale films provides for an optimized enhancement at absorption-limited wavelengths. We fabricate 54.7° pyramid-patterned electrodes, conformally apply the quantum dot films, and report pyramid CQD solar cells that exhibit a 24% improvement in overall short-circuit current density with champion devices providing a power conversion efficiency of 9.2%.

  19. Facile method for preparing superoleophobic surfaces with hierarchical microcubic/nanowire structures

    Science.gov (United States)

    Kwak, Wonshik; Hwang, Woonbong

    2016-02-01

    To facilitate the fabrication of superoleophobic surfaces having hierarchical microcubic/nanowire structures (HMNS), even for low surface tension liquids including octane (surface tension = 21.1 mN m-1), and to understand the influences of surface structures on the oleophobicity, we developed a convenient method to achieve superoleophobic surfaces on aluminum substrates using chemical acid etching, anodization and fluorination treatment. The liquid repellency of the structured surface was validated through observable experimental results the contact and sliding angle measurements. The etching condition required to ensure high surface roughness was established, and an optimal anodizing condition was determined, as a critical parameter in building the superoleophobicity. The microcubic structures formed by acid etching are essential for achieving the formation of the hierarchical structure, and therefore, the nanowire structures formed by anodization lead to an enhancement of the superoleophobicity for low surface tension liquids. Under optimized morphology by microcubic/nanowire structures with fluorination treatment, the contact angle over 150° and the sliding angle less than 10° are achieved even for octane.

  20. HD-RNAS: An automated hierarchical database of RNA structures

    Directory of Open Access Journals (Sweden)

    Shubhra Sankar eRay

    2012-04-01

    Full Text Available One of the important goals of most biological investigations is to classify and organize the experimental findings so that they are readily useful for deriving generalized rules. Although there is a huge amount of information on RNA structures in PDB, there are redundant files, ambiguous synthetic sequences etc. Moreover, a systematic hierarchical organization, reflecting RNA classification, is missing in PDB. In this investigation, we have classified all the available RNA crystal structures from PDB through a programmatic approach. Hence, it would be now a simple assignment to regularly update the classification as and when new structures are released. The classification can further determine (i a non-redundant set of RNA structures and (ii if available, a set of structures of identical sequence and function, which can highlight structural polymorphism, ligand-induced conformational alterations etc. Presently, we have classified the available structures (2095 PDB entries having RNA chain longer than 9 nucleotides solved by X-ray crystallography or NMR spectroscopy into nine functional classes. The structures of same function and same source are mostly seen to be similar with subtle differences depending on their functional complexation. The web-server is available online at http://www.saha.ac.in/biop/www/HD-RNAS.html and is updated regularly.

  1. Hierarchical assembly of inorganic nanostructure building blocks to octahedral superstructures-a true template-free self-assembly

    International Nuclear Information System (INIS)

    Kuchibhatla, Satyanarayana V N T; Karakoti, Ajay S; Seal, Sudipta

    2007-01-01

    A room temperature, template-free, wet chemical synthesis of ceria nanoparticles and their long term ageing characteristics are reported. High resolution transmission electron microscopy and UV-visible spectroscopy techniques are used to observe the variation in size, structure and oxidation state, respectively as a function of time. The morphology variation and the hierarchical assembly (octahedral superstructure) of nanostructures are imputed to the inherent structural aspects of cerium oxide. It is hypothesized that the 3-5 nm individual building blocks will undergo an intra-agglomerate re-orientation to attain the low energy configuration. This communication also emphasizes the need for long term ageing studies of nanomaterials in various solvents for multiple functionalities

  2. Genomic analysis of the hierarchical structure of regulatory networks

    Science.gov (United States)

    Yu, Haiyuan; Gerstein, Mark

    2006-01-01

    A fundamental question in biology is how the cell uses transcription factors (TFs) to coordinate the expression of thousands of genes in response to various stimuli. The relationships between TFs and their target genes can be modeled in terms of directed regulatory networks. These relationships, in turn, can be readily compared with commonplace “chain-of-command” structures in social networks, which have characteristic hierarchical layouts. Here, we develop algorithms for identifying generalized hierarchies (allowing for various loop structures) and use these approaches to illuminate extensive pyramid-shaped hierarchical structures existing in the regulatory networks of representative prokaryotes (Escherichia coli) and eukaryotes (Saccharomyces cerevisiae), with most TFs at the bottom levels and only a few master TFs on top. These masters are situated near the center of the protein–protein interaction network, a different type of network from the regulatory one, and they receive most of the input for the whole regulatory hierarchy through protein interactions. Moreover, they have maximal influence over other genes, in terms of affecting expression-level changes. Surprisingly, however, TFs at the bottom of the regulatory hierarchy are more essential to the viability of the cell. Finally, one might think master TFs achieve their wide influence through directly regulating many targets, but TFs with most direct targets are in the middle of the hierarchy. We find, in fact, that these midlevel TFs are “control bottlenecks” in the hierarchy, and this great degree of control for “middle managers” has parallels in efficient social structures in various corporate and governmental settings. PMID:17003135

  3. Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter?

    Science.gov (United States)

    Borgoni, Riccardo; De Francesco, Davide; De Bartolo, Daniela; Tzavidis, Nikos

    2014-12-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and only second to smoking as major leading cause of lung cancer. The main concern is in indoor environments where the gas tends to accumulate and can reach high concentrations. The primary contributor of this gas into the building is from the soil although architectonic characteristics, such as building materials, can largely affect concentration values. Understanding the factors affecting the concentration in dwellings and workplaces is important both in prevention, when the construction of a new building is being planned, and in mitigation when the amount of Radon detected inside a building is too high. In this paper we investigate how several factors, such as geologic typologies of the soil and a range of building characteristics, impact on indoor concentration focusing, in particular, on how concentration changes as a function of the floor level. Adopting a mixed effects model to account for the hierarchical nature of the data, we also quantify the extent to which such measurable factors manage to explain the variability of indoor radon concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Hierarchical Structure in Semicrystalline Polymers Tethered to Nanospheres

    KAUST Repository

    Kim, Sung A

    2014-01-28

    We report on structural and dynamic transitions of polymers tethered to nanoparticles. In particular, we use X-ray diffraction, vibrational spectroscopy, and thermal measurements to investigate multiscale structure and dynamic transitions of poly(ethylene glycol) (PEG) chains densely grafted to SiO2 nanoparticles. The approach used for synthesizing these hybrid particles leads to homogeneous SiO2-PEG composites with polymer grafting densities as high as 1.5 chains/nm2, which allows the hybrid materials to exist as self-suspended suspensions with distinct hierarchical structure and thermal properties. On angstrom and nanometer length scales, the tethered PEG chains exhibit more dominant TTG conformations and helix unit cell structure, in comparison to the untethered polymer. The nanoparticle tethered PEG chains are also reported to form extended crystallites on tens of nanometers length scales and to exhibit more stable crystalline structure on small dimensions. On length scales comparable to the size of each hybrid SiO 2-PEG unit, the materials are amorphous presumably as a result of the difficulty fitting the nanoparticle anchors into the PEG crystal lattice. This structural change produces large effects on the thermal transitions of PEG molecules tethered to nanoparticles. © 2014 American Chemical Society.

  5. Controlled self-assembly of PbS nanoparticles into macrostar-like hierarchical structures

    International Nuclear Information System (INIS)

    Li, Guowei; Li, Changsheng; Tang, Hua; Cao, Kesheng; Chen, Juan

    2011-01-01

    Graphical abstract: The aggregation and rotation of nanoparticles to adopt parallel orientations in three dimensions was indirectly illustrated by TEM and HRTEM images. Highlights: → Macrostar-like PbS hierarchical structures was successfully synthesized by a simple hydrothermal method and mesostars were assembled from the PbS nanocube building blocks with edge lengths of about 100 nm. → Ostwald-ripening-assisted oriented attachment is believed to play a key role in the growth behavior of novel 3D structures. → Optical properties indicating few defects on the surface of the PbS structure and exhibit large blue-shifts compared to bulk PbS. -- Abstract: The synthesis of macrostar-like PbS hierarchical structures by a simple hydrothermal method at 180 o C for 24 h is proven successful with the assistance of a new surfactant called tetrabutylammonium bromide (TBAB). The as-obtained product is characterized by means of X-ray powder diffraction, field emission scanning electron microscopy, energy dispersive spectrometry, high resolution transmission electron microscopy, and selected area electron diffraction. The presence of TBAB and NaF plays an important role in the formation of PbS macrostructures. Ostwald-ripening-assisted oriented attachment is believed to play a key role in the growth behavior of novel 3D structures. As such, a possible self-assembly mechanism is proposed to explain the formation of the said structures. The present study aims to introduce new insights into understanding the formation process of such unique hierarchical superstructures.

  6. Visualization of hierarchically structured information for human-computer interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Suh Hyun; Lee, J. K.; Choi, I. K.; Kye, S. C.; Lee, N. K. [Dongguk University, Seoul (Korea)

    2001-11-01

    Visualization techniques can be used to support operator's information navigation tasks on the system especially consisting of an enormous volume of information, such as operating information display system and computerized operating procedure system in advanced control room of nuclear power plants. By offering an easy understanding environment of hierarchically structured information, these techniques can reduce the operator's supplementary navigation task load. As a result of that, operators can pay more attention on the primary tasks and ultimately improve the cognitive task performance. In this report, an interface was designed and implemented using hyperbolic visualization technique, which is expected to be applied as a means of optimizing operator's information navigation tasks. 15 refs., 19 figs., 32 tabs. (Author)

  7. Does pop music exist? Hierarchical structure in phonographic markets

    Science.gov (United States)

    Buda, Andrzej

    2012-11-01

    I find a topological arrangement of assets traded in phonographic markets which has associated a meaningful economic taxonomy. I continue using the Minimal Spanning Tree and the correlations between assets, but now outside the stock markets. This is the first attempt to use these methods on phonographic markets where we have artists instead of stocks. The value of an artist is defined by record sales. The graph is obtained starting from the matrix of correlation coefficients computed between the world’s most popular 30 artists by considering the synchronous time evolution of the difference of the logarithm of weekly record sales. This method provides the hierarchical structure of the phonographic market and information on which music genre is meaningful according to customers. Statistical properties (including the Hurst exponent) of weekly record sales in the phonographic market are also discussed.

  8. Bioinspired Omnidirectional Self-Stable Reflectors with Multiscale Hierarchical Structures.

    Science.gov (United States)

    Han, Zhiwu; Mu, Zhengzhi; Li, Bo; Feng, Xiaoming; Wang, Ze; Zhang, Junqiu; Niu, Shichao; Ren, Luquan

    2017-08-30

    Structured surfaces, demonstrating various wondrous physicochemical performances, are ubiquitous phenomena in nature. Butterfly wings with impressive structural colors are an interesting example for multiscale hierarchical structures (MHSs). However, most natural structural colors are relatively unstable and highly sensitive to incident angles, which limit their potential practical applications to a certain extent. Here, we reported a bioinspired color reflector with omnidirectional reflective self-stable (ORS) properties, which is inspired by the wing scales of Papilio palinurus butterfly. Through experimental exploration and theoretical analysis, it was found that the vivid colors of such butterfly wings are structure-based and possess novel ORS properties, which attributes to the multiple optical actions between light and the complex structures coupling the inverse opal-like structures (IOSs) and stacked lamellar ridges (SLRs). On the basis of this, we designed and successfully fabricated the SiO 2 -based bioinspired color reflectors (BCRs) through a facile and effective biotemplate method. It was confirmed that the MHSs in biotemplate are inherited by the obtained SiO 2 -based BCRs. More importantly, the SiO 2 -based BCRs also demonstrated the similar ORS properties in a wide wavelength range. We forcefully anticipate that the reported MHS-based ORS performance discovered in butterfly wing scales here could offer new thoughts for scientists to solve unstable reflection issues in particular optical field. The involved biotemplate fabrication method offers a facile and effective strategy for fabricating functional nanomaterials or bioinspired nanodevices with 3D complex nanostructures, such as structured optical devices, displays, and optoelectronic equipment.

  9. Hierarchical structures of correlations networks among Turkey’s exports and imports by currencies

    Science.gov (United States)

    Kocakaplan, Yusuf; Deviren, Bayram; Keskin, Mustafa

    2012-12-01

    We have examined the hierarchical structures of correlations networks among Turkey’s exports and imports by currencies for the 1996-2010 periods, using the concept of a minimal spanning tree (MST) and hierarchical tree (HT) which depend on the concept of ultrametricity. These trees are useful tools for understanding and detecting the global structure, taxonomy and hierarchy in financial markets. We derived a hierarchical organization and build the MSTs and HTs during the 1996-2001 and 2002-2010 periods. The reason for studying two different sub-periods, namely 1996-2001 and 2002-2010, is that the Euro (EUR) came into use in 2001, and some countries have made their exports and imports with Turkey via the EUR since 2002, and in order to test various time-windows and observe temporal evolution. We have carried out bootstrap analysis to associate a value of the statistical reliability to the links of the MSTs and HTs. We have also used the average linkage cluster analysis (ALCA) to observe the cluster structure more clearly. Moreover, we have obtained the bidimensional minimal spanning tree (BMST) due to economic trade being a bidimensional problem. From the structural topologies of these trees, we have identified different clusters of currencies according to their proximity and economic ties. Our results show that some currencies are more important within the network, due to a tighter connection with other currencies. We have also found that the obtained currencies play a key role for Turkey’s exports and imports and have important implications for the design of portfolio and investment strategies.

  10. Structure of urban movements: polycentric activity and entangled hierarchical flows.

    Directory of Open Access Journals (Sweden)

    Camille Roth

    Full Text Available The spatial arrangement of urban hubs and centers and how individuals interact with these centers is a crucial problem with many applications ranging from urban planning to epidemiology. We utilize here in an unprecedented manner the large scale, real-time 'Oyster' card database of individual person movements in the London subway to reveal the structure and organization of the city. We show that patterns of intraurban movement are strongly heterogeneous in terms of volume, but not in terms of distance travelled, and that there is a polycentric structure composed of large flows organized around a limited number of activity centers. For smaller flows, the pattern of connections becomes richer and more complex and is not strictly hierarchical since it mixes different levels consisting of different orders of magnitude. This new understanding can shed light on the impact of new urban projects on the evolution of the polycentric configuration of a city and the dense structure of its centers and it provides an initial approach to modeling flows in an urban system.

  11. Interaction of light with hematite hierarchical structures: Experiments and simulations

    Science.gov (United States)

    Distaso, Monica; Zhuromskyy, Oleksander; Seemann, Benjamin; Pflug, Lukas; Mačković, Mirza; Encina, Ezequiel; Taylor, Robin Klupp; Müller, Rolf; Leugering, Günter; Spiecker, Erdmann; Peschel, Ulf; Peukert, Wolfgang

    2017-03-01

    Mesocrystalline particles have been recognized as a class of multifunctional materials with potential applications in different fields. However, the internal organization of nanocomposite mesocrystals and its influence on the final properties have not yet been investigated. In this paper, a novel strategy based on electrodynamic simulations is developed to shed light on how the internal structure of mesocrystals influences their optical properties. In a first instance, a unified design protocol is reported for the fabrication of hematite/PVP particles with different morphologies such as pseudo-cubes, rods-like and apple-like structures and controlled particle size distributions. The optical properties of hematite/PVP mesocrystals are effectively simulated by taking their aggregate and nanocomposite structure into consideration. The superposition T-Matrix approach accounts for the aggregate nature of mesocrystalline particles and validate the effective medium approximation used in the framework of the Mie theory and electromagnetic simulation such as Finite Element Method. The approach described in our paper provides the framework to understand and predict the optical properties of mesocrystals and more general, of hierarchical nanostructured particles.

  12. Hierarchical Sets: Analyzing Pangenome Structure through Scalable Set Visualizations

    DEFF Research Database (Denmark)

    Pedersen, Thomas Lin

    2017-01-01

    of hierarchical sets by applying it to a pangenome based on 113 Escherichia and Shigella genomes and find it provides a powerful addition to pangenome analysis. The described clustering algorithm and visualizations are implemented in the hierarchicalSets R package available from CRAN (https...

  13. Hierarchical ZnO microspheres built by sheet-like network: Large-scale synthesis and structurally enhanced catalytic performances

    International Nuclear Information System (INIS)

    Zhu Guoxing; Liu Yuanjun; Ji Zhenyuan; Bai Song; Shen Xiaoping; Xu Zheng

    2012-01-01

    Highlights: ► Hierarchical ZnO microspheres were prepared through a facile precursor procedure in the absence of self-assembled templates, organic additives, or matrices. ► The building blocks of microspheres, sheet-like ZnO networks, are porous mesocrystal terminated with (0 1 −1 0) crystal planes. ► The hierarchical ZnO microsphere catalyst exhibits structure-induced enhancement of catalytic performance and a strong durability. - Abstract: Large-scale novel hierarchical ZnO microspheres were fabricated by a facile precursor procedure in the absence of self-assembled templates, organic additives, or matrices. A field emission scanning electron microscopy (FESEM) image reveals that the ZnO microspheres with diameter of 5–18 μm are built by sheet-like ZnO networks with average thickness of 40 nm and length of several microns. High resolution transmission electron microscopy (HRTEM) image indicates that the building blocks, sheet-like ZnO networks, are porous mesocrystal terminated with {0 1 −1 0} crystal planes. A potential application of the ZnO microspheres as a catalyst in the synthesis of 5-substituted 1H-tetrazoles was investigated. It was found that the hierarchical ZnO microsphere catalyst exhibits structure-induced enhancement of catalytic performance and a strong durability.

  14. Copper oxide assisted cysteine hierarchical structures for immunosensor application

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Chandra Mouli [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India); Sumana, Gajjala, E-mail: sumanagajjala@gmail.com [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Tiwari, Ida [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India)

    2014-09-08

    The present work describes the promising electrochemical immunosensing strategy based on copper (II) assisted hierarchical cysteine structures (CuCys) varying from star to flower like morphology. The CuCys having average size of 10 μm have been synthesised using L-Cysteine as initial precursor in presence of copper oxide under environmentally friendly conditions in aqueous medium. To delineate the synthesis mechanism, detailed structural investigations have been carried out using characterization techniques such as X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The electrochemical behaviour of self-assembled CuCys on gold electrode shows surface controlled electrode reaction with an apparent electron transfer rate constant of 3.38 × 10{sup −4 }cm s{sup −1}. This innovative platform has been utilized to fabricate an immunosensor by covalently immobilizing monoclonal antibodies specific for Escherichia coli O157:H7 (E. coli). Under the optimal conditions, the fabricated immunosensor is found to be sensitive and specific for the detection of E. coli with a detection limit of 10 cfu/ml.

  15. A hierarchical structure approach to MultiSensor Information Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maren, A.J. (Tennessee Univ., Tullahoma, TN (United States). Space Inst.); Pap, R.M.; Harston, C.T. (Accurate Automation Corp., Chattanooga, TN (United States))

    1989-01-01

    A major problem with image-based MultiSensor Information Fusion (MSIF) is establishing the level of processing at which information should be fused. Current methodologies, whether based on fusion at the pixel, segment/feature, or symbolic levels, are each inadequate for robust MSIF. Pixel-level fusion has problems with coregistration of the images or data. Attempts to fuse information using the features of segmented images or data relies an a presumed similarity between the segmentation characteristics of each image or data stream. Symbolic-level fusion requires too much advance processing to be useful, as we have seen in automatic target recognition tasks. Image-based MSIF systems need to operate in real-time, must perform fusion using a variety of sensor types, and should be effective across a wide range of operating conditions or deployment environments. We address this problem through developing a new representation level which facilitates matching and information fusion. The Hierarchical Scene Structure (HSS) representation, created using a multilayer, cooperative/competitive neural network, meets this need. The MSS is intermediate between a pixel-based representation and a scene interpretation representation, and represents the perceptual organization of an image. Fused HSSs will incorporate information from multiple sensors. Their knowledge-rich structure aids top-down scene interpretation via both model matching and knowledge-based,region interpretation.

  16. A hierarchical structure approach to MultiSensor Information Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maren, A.J. [Tennessee Univ., Tullahoma, TN (United States). Space Inst.; Pap, R.M.; Harston, C.T. [Accurate Automation Corp., Chattanooga, TN (United States)

    1989-12-31

    A major problem with image-based MultiSensor Information Fusion (MSIF) is establishing the level of processing at which information should be fused. Current methodologies, whether based on fusion at the pixel, segment/feature, or symbolic levels, are each inadequate for robust MSIF. Pixel-level fusion has problems with coregistration of the images or data. Attempts to fuse information using the features of segmented images or data relies an a presumed similarity between the segmentation characteristics of each image or data stream. Symbolic-level fusion requires too much advance processing to be useful, as we have seen in automatic target recognition tasks. Image-based MSIF systems need to operate in real-time, must perform fusion using a variety of sensor types, and should be effective across a wide range of operating conditions or deployment environments. We address this problem through developing a new representation level which facilitates matching and information fusion. The Hierarchical Scene Structure (HSS) representation, created using a multilayer, cooperative/competitive neural network, meets this need. The MSS is intermediate between a pixel-based representation and a scene interpretation representation, and represents the perceptual organization of an image. Fused HSSs will incorporate information from multiple sensors. Their knowledge-rich structure aids top-down scene interpretation via both model matching and knowledge-based,region interpretation.

  17. About Hierarchical XML Structures, Replacement of Relational Data Structures in Construction and Implementation of ERP Systems

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The projects essential objective is to develop a new ERP system, of homogeneous nature, based on XML structures, as a possible replacement for classic ERP systems. The criteria that guide the objective definition are modularity, portability and Web connectivity. This objective is connected to a series of secondary objectives, considering that the technological approach will be filtered through the economic, social and legislative environment for a validation-by-context study. Statistics and cybernetics are to be used for simulation purposes. The homogeneous approach is meant to provide strong modularity and portability, in relation with the n-tier principles, but the main advantage of the model is its opening to the semantic Web, based on a Small enterprise ontology defined with XML-driven languages. Shockwave solutions will be used for implementing client-oriented hypermedia elements and an XML Gate will be de-fined between black box modules, for a clear separation with obvious advantages. Security and the XMLTP project will be an important issue for XML transfers due to the conflict between the open architecture of the Web, the readability of XML data and the privacy elements which have to be preserved within a business environment. The projects finality is oriented on small business but the semantic Web perspective and the surprising new conflict between hierarchical/network data structures and relational ones will certainly widen its scope. The proposed model is meant to fulfill the IT compatibility requirements of the European environment, defined as a knowledge society. The paper is a brief of the contributions of the team re-search at the project type A applied to CNCSIS "Research on the Role of XML in Building Extensible and Homogeneous ERP Systems".

  18. Transfer printing of 3D hierarchical gold structures using a sequentially imprinted polymer stamp

    International Nuclear Information System (INIS)

    Zhang Fengxiang; Low, Hong Yee

    2008-01-01

    Complex three-dimensional (3D) hierarchical structures on polymeric materials are fabricated through a process referred to as sequential imprinting. In this work, the sequentially imprinted polystyrene film is used as a soft stamp to replicate hierarchical structures onto gold (Au) films, and the Au structures are then transferred to a substrate by transfer printing at an elevated temperature and pressure. Continuous and isolated 3D structures can be selectively fabricated with the assistance of thermo-mechanical deformation of the polymer stamp. Hierarchical Au structures are achieved without the need for a corresponding three-dimensionally patterned mold

  19. ORGANIZATIONAL STRUCTURE FOR RECONSTRUCTION OF BUILDINGS HISTORICAL BUILDING OF ODESSA

    Directory of Open Access Journals (Sweden)

    POSTERNAK I. М.

    2017-05-01

    Full Text Available Summary. Raising of problem. As one of perspective forms of integration various complexes act in town- planning structure. In the course of formation of plans of social and economic development of large cities even more often there is a situation when for increase of efficiency of used resources concentration of efforts is necessary not simply, but also new progressive forms of the organization of building manufacture. Purpose. To offer the organizational structure using in practice the saved up scientific and technical potential for reconstruction of buildings of historical building of Odessa 1820 … 1920 years under standards power efficiency and to execute researches engineering architectonics residential buildings of historical building of a city of Odessa. Conclusion. It is offered to create in the city of Odessa "the Corporate scientific and technical complex town-planning power reconstruction "CSTC T-PPR", as innovative organizational structure which uses in practice the saved up scientific and technical potential for reconstruction of buildings of historical building of Odessa under standards power efficiency. It is considered engineering architectonics residential buildings of historical building of a city of Odessa, in particular, not looking on diverse buildings of inhabited appointment of Odessa, for them there are defining factors on which probably to make their grouping and at the same time to allocate the general lines inherent to a housing estate as a whole. It is resulted a general characteristic and classification of residential buildings of historical building of a city of Odessa ХІХ beginnings ХХ centuries It is allocated and expanded classification of such buildings of inhabited appointment by duration of residing at them.

  20. ORGANIZATIONAL STRUCTURE FOR BUILDINGS RECONSTRUCTION OF HISTORICAL BUILDING OF ODESSA

    Directory of Open Access Journals (Sweden)

    POSTERNAK I. М.

    2016-12-01

    Full Text Available Formulation of the problem. As one of perspective forms of integration various complexes act in town-planning structure. In the course of formation of plans of social and economic development of large cities even more often there is a situation when for increase of efficiency of used resources concentration of efforts is necessary not simply, but also new progressive forms of the organization of building manufacture. Purpose. To offer the organizational structure using in practice the saved up scientific and technical potential for reconstruction of buildings of historical building of Odessa 1820 … 1920 years under standards power efficiency and to execute researches engineering architectonics residential buildings of historical building of a city of Odessa. Conclusion. It is offered to create in the city of Odessa "the Corporate scientific and technical complex town-planning power reconstruction "CSTC T-PPR", as innovative organizational structure which uses in practice the saved up scientific and technical potential for reconstruction of buildings of historical building of Odessa under standards power efficiency. It is considered engineering architectonics residential buildings of historical building of a city of Odessa, in particular, not looking on diverse buildings of inhabited appointment of Odessa, for them there are defining factors on which probably to make their grouping and at the same time to allocate the general lines inherent to a housing estate as a whole. It is resulted a general characteristic and classification of residential buildings of historical building of a city of Odessa ХІХ … beginnings ХХ centuries It is allocated and expanded classification of such buildings of inhabited appointment by duration of residing at them.

  1. The Emergence of Hierarchical Structure in Human Language

    Directory of Open Access Journals (Sweden)

    Shigeru eMiyagawa

    2013-02-01

    Full Text Available We propose a novel account for the emergence of human language syntax. Like many evolutionary innovations, language arose from the adventitious combination of two pre-existing, simpler systems that had been evolved for other functional tasks. The first system, Type E(xpression, is found in birdsong, where it marks territory, mating availability, and similar ‘expressive’ functions. The second system, Type L(exical, has been suggestively found in non-human primate calls and in honeybee waggle dances, where it demarcates predicates with one or more ‘arguments,’ such as combinations of calls in monkeys or compass headings set to sun position in honeybees. We show that human language syntax is composed of two layers that parallel these two independently evolved systems: an E layer resembling the Type E system of birdsong and an L layer providing words. The existence of the E and L layers can be confirmed using standard linguistic methodology. Each layer, E and L, when considered separately, are characterizable as finite state systems, as observed in several non-human species. When the two systems are put together they interact, yielding the unbounded, non-finite state, hierarchical structure that serves as the hallmark of ful

  2. Interactive computer graphics displays for hierarchical data structures

    International Nuclear Information System (INIS)

    Cahn, D.F.; Murano, C.V.

    1980-05-01

    An interactive computer graphical display program was developed as an aid to user visualization and manipulation of hierarchically structured data systems such as thesauri. In the present configuration, a thesaurus term and its primary and secondary conceptual neighbors are presented to the user in tree graph form on a CRT; the user then designates, via light pen or keyboard, any of the neighbors as the next term of interest and receives a new display centered on this term. By successive specification of broader, narrower, and related terms, the user can course rapidly through the thesaurus space and refine his search file. At any stage, he deals with a term-centered, conceptually meaningful picture of a localized portion of the thesaurus, and is freed from the artificial difficulties of handling the traditional alphabetized thesaurus. Intentional limitation of the associative range of each display frame, and the use of color, case, and interconnecting vectors to encode relationships among terms, enhance interpretability of the display. Facile movement through the term space, provided by interactive computation, allows the display to remain simple, and is an essential element of the system. 3 figures

  3. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach

    Directory of Open Access Journals (Sweden)

    Buer Jan

    2004-12-01

    Full Text Available Abstract Background Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN of organisms is important for understanding the structure and function of these fundamental cellular networks and essential for the emerging modular biology. So far, the global connectivity structure of TRN has not been well studied and consequently not applied for the identification of functional modules. Moreover, network motifs such as feed forward loop are recently proposed to be basic building blocks of TRN. However, their relationship to functional modules is not clear. Results In this work we proposed a top-down approach to identify modules in the TRN of E. coli. By studying the global connectivity structure of the regulatory network, we first revealed a five-layer hierarchical structure in which all the regulatory relationships are downward. Based on this regulatory hierarchy, we developed a new method to decompose the regulatory network into functional modules and to identify global regulators governing multiple modules. As a result, 10 global regulators and 39 modules were identified and shown to have well defined functions. We then investigated the distribution and composition of the two basic network motifs (feed forward loop and bi-fan motif in the hierarchical structure of TRN. We found that most of these network motifs include global regulators, indicating that these motifs are not basic building blocks of modules since modules should not contain global regulators. Conclusion The transcriptional regulatory network of E. coli possesses a multi-layer hierarchical modular structure without feedback regulation at transcription level. This hierarchical structure builds the basis for a new and simple decomposition method which is suitable for the identification of functional modules and global regulators in the transcriptional regulatory network of E

  4. A Dynamic Construction Algorithm for the Compact Patricia Trie Using the Hierarchical Structure.

    Science.gov (United States)

    Jung, Minsoo; Shishibori, Masami; Tanaka, Yasuhiro; Aoe, Jun-ichi

    2002-01-01

    Discussion of information retrieval focuses on the use of binary trees and how to compact it to use less memory and take less time. Explains retrieval algorithms and describes data structure and hierarchical structure. (LRW)

  5. On Hierarchical Extensions of Large-Scale 4-regular Grid Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Patel, A.; Knudsen, Thomas Phillip

    2004-01-01

    dependencies between the number of nodes and the distances in the structures. The perfect square mesh is introduced for hierarchies, and it is shown that applying ordered hierarchies in this way results in logarithmic dependencies between the number of nodes and the distances, resulting in better scaling...... structures. For example, in a mesh of 391876 nodes the average distance is reduced from 417.33 to 17.32 by adding hierarchical lines. This is gained by increasing the number of lines by 4.20% compared to the non-hierarchical structure. A similar hierarchical extension of the torus structure also results...

  6. Hierarchical modeling and its numerical implementation for layered thin elastic structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin-Rae [Hongik University, Sejong (Korea, Republic of)

    2017-05-15

    Thin elastic structures such as beam- and plate-like structures and laminates are characterized by the small thickness, which lead to classical plate and laminate theories in which the displacement fields through the thickness are assumed linear or higher-order polynomials. These classical theories are either insufficient to represent the complex stress variation through the thickness or may encounter the accuracy-computational cost dilemma. In order to overcome the inherent problem of classical theories, the concept of hierarchical modeling has been emerged. In the hierarchical modeling, the hierarchical models with different model levels are selected and combined within a structure domain, in order to make the modeling error be distributed as uniformly as possible throughout the problem domain. The purpose of current study is to explore the potential of hierarchical modeling for the effective numerical analysis of layered structures such as laminated composite. For this goal, the hierarchical models are constructed and the hierarchical modeling is implemented by selectively adjusting the level of hierarchical models. As well, the major characteristics of hierarchical models are investigated through the numerical experiments.

  7. Wetting and Dewetting Transitions on Submerged Superhydrophobic Surfaces with Hierarchical Structures.

    Science.gov (United States)

    Wu, Huaping; Yang, Zhe; Cao, Binbin; Zhang, Zheng; Zhu, Kai; Wu, Bingbing; Jiang, Shaofei; Chai, Guozhong

    2017-01-10

    The wetting transition on submersed superhydrophobic surfaces with hierarchical structures and the influence of trapped air on superhydrophobic stability are predicted based on the thermodynamics and mechanical analyses. The dewetting transition on the hierarchically structured surfaces is investigated, and two necessary thermodynamic conditions and a mechanical balance condition for dewetting transition are proposed. The corresponding thermodynamic phase diagram of reversible transition and the critical reversed pressure well explain the experimental results reported previously. Our theory provides a useful guideline for precise controlling of breaking down and recovering of superhydrophobicity by designing superhydrophobic surfaces with hierarchical structures under water.

  8. Topology of foreign exchange markets using hierarchical structure methods

    Science.gov (United States)

    Naylor, Michael J.; Rose, Lawrence C.; Moyle, Brendan J.

    2007-08-01

    This paper uses two physics derived hierarchical techniques, a minimal spanning tree and an ultrametric hierarchical tree, to extract a topological influence map for major currencies from the ultrametric distance matrix for 1995-2001. We find that these two techniques generate a defined and robust scale free network with meaningful taxonomy. The topology is shown to be robust with respect to method, to time horizon and is stable during market crises. This topology, appropriately used, gives a useful guide to determining the underlying economic or regional causal relationships for individual currencies and to understanding the dynamics of exchange rate price determination as part of a complex network.

  9. Multi-Hierarchical Gray Correlation Analysis Applied in the Selection of Green Building Design Scheme

    Science.gov (United States)

    Wang, Li; Li, Chuanghong

    2018-02-01

    As a sustainable form of ecological structure, green building is widespread concerned and advocated in society increasingly nowadays. In the survey and design phase of preliminary project construction, carrying out the evaluation and selection of green building design scheme, which is in accordance with the scientific and reasonable evaluation index system, can improve the ecological benefits of green building projects largely and effectively. Based on the new Green Building Evaluation Standard which came into effect on January 1, 2015, the evaluation index system of green building design scheme is constructed taking into account the evaluation contents related to the green building design scheme. We organized experts who are experienced in construction scheme optimization to mark and determine the weight of each evaluation index through the AHP method. The correlation degree was calculated between each evaluation scheme and ideal scheme by using multilevel gray relational analysis model and then the optimal scheme was determined. The feasibility and practicability of the evaluation method are verified by introducing examples.

  10. Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Dolgopolova, Ekaterina A. [Department; Ejegbavwo, Otega A. [Department; Martin, Corey R. [Department; Smith, Mark D. [Department; Setyawan, Wahyu [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Karakalos, Stavros G. [College; Henager, Charles H. [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; zur Loye, Hans-Conrad [Department; Shustova, Natalia B. [Department

    2017-11-07

    Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures towards fundamental understanding of mechanisms involved in actinide integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials were built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with “unsaturated” metal nodes. The first successful attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt% in mono- and bi-actinide frameworks with minimal structural density. Overall, combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures, and therefore, shed light on possible optimization of nuclear waste administration.

  11. Diagnostic Classifiers: Revealing how Neural Networks Process Hierarchical Structure

    NARCIS (Netherlands)

    Veldhoen, S.; Hupkes, D.; Zuidema, W.

    2016-01-01

    We investigate how neural networks can be used for hierarchical, compositional semantics. To this end, we define the simple but nontrivial artificial task of processing nested arithmetic expressions and study whether different types of neural networks can learn to add and subtract. We find that

  12. Hierarchical Genetic Analysis of German Cockroach (Blattella germanica) Populations from within Buildings to across Continents

    Science.gov (United States)

    Vargo, Edward L.; Crissman, Jonathan R.; Booth, Warren; Santangelo, Richard G.; Mukha, Dmitry V.; Schal, Coby

    2014-01-01

    Understanding the population structure of species that disperse primarily by human transport is essential to predicting and controlling human-mediated spread of invasive species. The German cockroach (Blattella germanica) is a widespread urban invader that can actively disperse within buildings but is spread solely by human-mediated dispersal over longer distances; however, its population structure is poorly understood. Using microsatellite markers we investigated population structure at several spatial scales, from populations within single apartment buildings to populations from several cities across the U.S. and Eurasia. Both traditional measures of genetic differentiation and Bayesian clustering methods revealed increasing levels of genetic differentiation at greater geographic scales. Our results are consistent with active dispersal of cockroaches largely limited to movement within a building. Their low levels of genetic differentiation, yet limited active spread between buildings, suggests a greater likelihood of human-mediated dispersal at more local scales (within a city) than at larger spatial scales (within and between continents). About half the populations from across the U.S. clustered together with other U.S. populations, and isolation by distance was evident across the U.S. Levels of genetic differentiation among Eurasian cities were greater than those in the U.S. and greater than those between the U.S. and Eurasia, but no clear pattern of structure at the continent level was detected. MtDNA sequence variation was low and failed to reveal any geographical structure. The weak genetic structure detected here is likely due to a combination of historical admixture among populations and periodic population bottlenecks and founder events, but more extensive studies are needed to determine whether signatures of global movement may be present in this species. PMID:25020136

  13. Hierarchical assembly strategy and multiscale structural origin of exceptional mechanical performance in nacre

    Science.gov (United States)

    Huang, Zaiwang

    Nacre (mother of pearl) is a self-assembled hierarchical nanocomposite in possession of exquisite multiscale architecture and exceptional mechanical properties. Previous work has shown that the highly-ordered brick-mortar-like structure in nacre is assembled via epitaxial growth and the aragonite platelets are pure single-crystals. Our results challenge this conclusion and propose that nacre's individual aragonite platelets are constructed with highly-aligned aragonite nanoparticles mediated by screw dislocation and amorphous aggregation. The underlying physics mechanism why the aragonite nanoparticles choose highly-oriented attachment as its crystallization pathway is rationalized in terms of thermodynamics. The aragonite nanoparticle order-disorder transformation can be triggered by high temperature and mechanical deformation, which in turn confirms that the aragonite nanoparticles are basic building blocks for aragonite platelets. Particularly fascinating is the fracture toughness enhancement of nacre through exquisitely collecting mechanically inferior calcium carbonate (CaCO3) and biomolecules. The sandwich-like microarchitecture with a geometrically staggered arrangement can induce crack deflection along its biopolymer interface, thus significantly enhancing nacre's fracture toughness. Our new findings ambiguously demonstrate that, aside from crack deflection, the advancing crack can invade aragonite platelet, leaving a zigzag crack propagation pathway. These unexpected experimental observations disclose, for the first time, the inevitable structural role of aragonite platelets in enhancing nacre's fracture toughness. Simultaneously, the findings that the crack propagates in a zigzag manner within individual aragonite platelets overturn the previously well-established wisdom that considers aragonite platelets as brittle single-crystals. Moreover, we investigated the dynamical mechanical response of nacre under unixial compression. Our results show that the

  14. Interference mitigation for broadcast in hierarchical cell structure networks: Transmission strategy and area spectral efficiency

    KAUST Repository

    Yang, Yuli; Salama, Khaled N.; Aï ssa, Sonia

    2014-01-01

    In this paper, a hierarchical cell structure (HCS) is considered, where an access point (AP) broadcasts to local nodes (LNs) over orthogonal frequency subbands within a local cell located in a macrocell. Since the local cell shares the spectrum

  15. Web Application for Hierarchical Organizational Structure Optimization – Human Resource Management Case Study

    Directory of Open Access Journals (Sweden)

    Kofjač Davorin

    2015-08-01

    Full Text Available Background and Purpose: In a complex strictly hierarchical organizational structure, undesired oscillations may occur, which have not yet been adequately addressed. Therefore, parameter values, which define fluctuations and transitions from one state to another, need to be optimized to prevent oscillations and to keep parameter values between lower and upper bounds. The objective was to develop a simulation model of hierarchical organizational structure as a web application to help in solving the aforementioned problem.

  16. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.

    Science.gov (United States)

    Nitta, Tohru

    2017-10-01

    We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).

  17. A Simple Hierarchical Pooling Data Structure for Loop Closure

    Science.gov (United States)

    2016-10-16

    performance empirically on the KITTI [9], Oxford [6] and TUM RGB- D [29] datasets, as well as demonstrate extensions to general image retrieval on the...of a BoW where each word is an element of a dictionary of descriptors obtained off-line by hierarchical k-means clustering, with each word weighted by...to the inverse docu- ment frequency. This standard pipeline, with different clustering procedures to generate the dictionary and different features

  18. Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors

    Science.gov (United States)

    Choi, Bong Gill; Huh, Yun Suk; Hong, Won Hi; Erickson, David; Park, Ho Seok

    2013-04-01

    Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g-1, three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features.Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR

  19. Obstacle Avoidance of a Mobile Robot with Hierarchical Structure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Gyu [Yeungnam College of Science and Technolgy, Taegu (Korea)

    2001-06-01

    This paper proposed a new hierarchical fuzzy-neural network algorithm for navigation of a mobile robot within unknown dynamic environment. Proposed navigation algorithm used the learning ability of the neural network and the feasibility of control highly nonlinear system of fuzzy theory. The proposed navigation algorithm used fuzzy algorithm for goal approach and fuzzy-network for effective collision avoidance. Some computer simulation results for a mobile robot equipped with ultrasonic range sensors show that the suggested navigation algorithm is very effective to escape in stationary and moving obstacles environment. (author). 11 refs., 14 figs., 2 tabs.

  20. Super-structure and building performance

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-11-01

    Full Text Available The super-structure consists predominantly of the load- and no-load-bearing walls-including all doors and windows and suspended floor slabs. The building envelope plays a significant role in the performance of a building, especially with regard...

  1. The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability

    Science.gov (United States)

    Huang, Ying; Zha, Guangyu; Luo, Qiaojie; Zhang, Jianxiang; Zhang, Feng; Li, Xiaohui; Zhao, Shifang; Zhu, Weipu; Li, Xiaodong

    2014-01-01

    The deficient osseointegration and implant-associated infections are pivotal issues for the long-term clinical success of endosteal Ti implants, while development of functional surfaces that can simultaneously overcome these problems remains highly challenging. This study aimed to fabricate sophisticated Ti implant surface with both osteogenic inducing activity and inherent antibacterial ability simply via tailoring surface topographical features. Micro/submciro/nano-scale structure was constructed on Ti by three cumulative subtractive methods, including sequentially conducted sandblasting as well as primary and secondary acid etching treatment. Topographical features of this hierarchical structure can be well tuned by the time of the secondary acid treatment. Ti substrate with mere micro/submicro-scale structure (MS0-Ti) served as a control to examine the influence of hierarchical structures on surface properties and biological activities. Surface analysis indicated that all hierarchically structured surfaces possessed exactly the same surface chemistry as that of MS0-Ti, and all of them showed super-amphiphilicity, high surface free energy, and high protein adsorption capability. Biological evaluations revealed surprisingly antibacterial ability and excellent osteogenic activity for samples with optimized hierarchical structure (MS30-Ti) when compared with MS0-Ti. Consequently, for the first time, a hierarchically structured Ti surface with topography-induced inherent antibacterial capability and excellent osteogenic activity was constructed. PMID:25146099

  2. Hierarchical modular structure enhances the robustness of self-organized criticality in neural networks

    International Nuclear Information System (INIS)

    Wang Shengjun; Zhou Changsong

    2012-01-01

    One of the most prominent architecture properties of neural networks in the brain is the hierarchical modular structure. How does the structure property constrain or improve brain function? It is thought that operating near criticality can be beneficial for brain function. Here, we find that networks with modular structure can extend the parameter region of coupling strength over which critical states are reached compared to non-modular networks. Moreover, we find that one aspect of network function—dynamical range—is highest for the same parameter region. Thus, hierarchical modularity enhances robustness of criticality as well as function. However, too much modularity constrains function by preventing the neural networks from reaching critical states, because the modular structure limits the spreading of avalanches. Our results suggest that the brain may take advantage of the hierarchical modular structure to attain criticality and enhanced function. (paper)

  3. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    Science.gov (United States)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  4. BiOCl nanowire with hierarchical structure and its Raman features

    International Nuclear Information System (INIS)

    Tian Ye; Guo Chuanfei; Guo Yanjun; Wang Qi; Liu Qian

    2012-01-01

    BiOCl is a promising V-VI-VII-compound semiconductor with excellent optical and electrical properties, and has great potential applications in photo-catalysis, photoelectric, etc. We successfully synthesize BiOCl nanowire with a hierarchical structure by combining wet etch (top-down) with liquid phase crystal growth (bottom-up) process, opening a novel method to construct ordered bismuth-based nanostructures. The morphology and lattice structures of Bi nanowires, β-Bi 2 O 3 nanowires and BiOCl nanowires with the hierarchical structure are investigated by scanning electron microscope (SEM) and transition electron microscope (TEM). The formation mechanism of such ordered BiOCl hierarchical structure is considered to mainly originate from the highly preferred growth, which is governed by the lattice match between (1 1 0) facet of BiOCl and (2 2 0) or (0 0 2) facet of β-Bi 2 O 3 . A schematic model is also illustrated to depict the formation process of the ordered BiOCl hierarchical structure. In addition, Raman properties of the BiOCl nanowire with the hierarchical structure are investigated deeply.

  5. Fabrication and properties of dual-level hierarchical structures mimicking gecko foot hairs.

    Science.gov (United States)

    Zhang, Peng; Liu, Shiyuan; Lv, Hao

    2013-02-01

    In nature, geckos have extraordinary adhesive capabilities. The multi-scale hierarchical structure of the gecko foot hairs, especially the high-aspect-ratio structure of its micro-scale seta and nano-scale spatulae is the critical factor of the gecko's ability to adopt and stick to any different surface with powerful adhesion force. In this paper, we present a simple and effective approach to fabricate dual-level hierarchical structures mimicking gecko foot hairs. Polydimethyl-siloxane (PDMS) hierarchical arrays were fabricated by demolding from a double stack mold that was composed of an SU-8 mold by thick film photolithography and a silicon mold by inductively coupled plasma (ICP) etching. Top pillars of the fabricated structures have 3 micom diameter and 18 microm in height, while base pillars have 25 microm diameter and 40 microm in height. The water droplet contact angle tests indicate that the hierarchical structures increase the hydrophobic property significantly compared with the single-level arrays and the unstructured polymers, exhibiting superhydrophobicity (154.2 degrees) like the Tokay gecko's (160.9 degrees). The shear force tests show that the top pillars make attachment through side contact with a value of about 0.25 N/cm2, and moreover, the hierarchical structures are demonstrated to be more suitable for contacting with rough surfaces.

  6. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  7. Band structures of two dimensional solid/air hierarchical phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.L.; Tian, X.G. [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, C.Q., E-mail: chencq@tsinghua.edu.cn [Department of Engineering Mechanics, AML and CNMM, Tsinghua University, Beijing 100084 (China)

    2012-06-15

    The hierarchical phononic crystals to be considered show a two-order 'hierarchical' feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  8. 3D NEAREST NEIGHBOUR SEARCH USING A CLUSTERED HIERARCHICAL TREE STRUCTURE

    Directory of Open Access Journals (Sweden)

    A. Suhaibah

    2016-06-01

    Full Text Available Locating and analysing the location of new stores or outlets is one of the common issues facing retailers and franchisers. This is due to assure that new opening stores are at their strategic location to attract the highest possible number of customers. Spatial information is used to manage, maintain and analyse these store locations. However, since the business of franchising and chain stores in urban areas runs within high rise multi-level buildings, a three-dimensional (3D method is prominently required in order to locate and identify the surrounding information such as at which level of the franchise unit will be located or is the franchise unit located is at the best level for visibility purposes. One of the common used analyses used for retrieving the surrounding information is Nearest Neighbour (NN analysis. It uses a point location and identifies the surrounding neighbours. However, with the immense number of urban datasets, the retrieval and analysis of nearest neighbour information and their efficiency will become more complex and crucial. In this paper, we present a technique to retrieve nearest neighbour information in 3D space using a clustered hierarchical tree structure. Based on our findings, the proposed approach substantially showed an improvement of response time analysis compared to existing approaches of spatial access methods in databases. The query performance was tested using a dataset consisting of 500,000 point locations building and franchising unit. The results are presented in this paper. Another advantage of this structure is that it also offers a minimal overlap and coverage among nodes which can reduce repetitive data entry.

  9. Masking effects of speech and music: does the masker's hierarchical structure matter?

    Science.gov (United States)

    Shi, Lu-Feng; Law, Yvonne

    2010-04-01

    Speech and music are time-varying signals organized by parallel hierarchical rules. Through a series of four experiments, this study compared the masking effects of single-talker speech and instrumental music on speech perception while manipulating the complexity of hierarchical and temporal structures of the maskers. Listeners' word recognition was found to be similar between hierarchically intact and disrupted speech or classical music maskers (Experiment 1). When sentences served as the signal, significantly greater masking effects were observed with disrupted than intact speech or classical music maskers (Experiment 2), although not with jazz or serial music maskers, which differed from the classical music masker in their hierarchical structures (Experiment 3). Removing the classical music masker's temporal dynamics or partially restoring it affected listeners' sentence recognition; yet, differences in performance between intact and disrupted maskers remained robust (Experiment 4). Hence, the effect of structural expectancy was largely present across maskers when comparing them before and after their hierarchical structure was purposefully disrupted. This effect seemed to lend support to the auditory stream segregation theory.

  10. From hierarchies to levels : new solutions for games with hierarchical structure

    NARCIS (Netherlands)

    Álvarez-Mozos, M.; van den Brink, R.; van der Laan, G.; Tejada, O.

    2017-01-01

    Recently, applications of cooperative game theory to economic allocation problems have gained popularity. In many of these problems, players are organized according to either a hierarchical structure or a levels structure that restrict the players’ possibilities to cooperate. In this paper, we

  11. Asymmetric block copolymer membranes with ultrahigh porosity and hierarchical pore structure by plain solvent evaporation

    KAUST Repository

    Yu, H.

    2016-09-14

    Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.

  12. On Hierarchical Extensions of Large-Scale 4-regular Grid Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Patel, A.; Knudsen, Thomas Phillip

    It is studied how the introduction of ordered hierarchies in 4-regular grid network structures decreses distances remarkably, while at the same time allowing for simple topological routing schemes. Both meshes and tori are considered; in both cases non-hierarchical structures have power law depen...

  13. Asymmetric block copolymer membranes with ultrahigh porosity and hierarchical pore structure by plain solvent evaporation

    KAUST Repository

    Yu, H.; Qiu, Xiaoyan; Behzad, Ali Reza; Musteata, Valentina-Elena; Smilgies, D.-M.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-01-01

    Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.

  14. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei

    2011-01-01

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  15. Preparation of disk-like particles with micro/nano hierarchical structures.

    Science.gov (United States)

    Meng, Zhen; Yang, Wenbo; Chen, Pengpeng; Wang, Weina; Jia, Xudong; Xi, Kai

    2013-10-15

    A facile, reproductive method has been successfully developed to produce disk-like microparticles self-assembled from monodispersed hybrid silica nanoparticles under certain circumstance. The disk-like microparticles with micro/nano hierarchical structures could be obtained in large amount under a mild condition and further used to biomimetic design of the superhydrophobic surface of lotus leaf. After traditional surface modification with dodecyltrichlorosiliane, the static contact angle of water on the surface with micro/nano hierarchical structure could reach 168.8°. The method of surface modification could be further simplified by click reaction with the introduction of thiol groups under mild condition. The present strategy for constructing the surface with micro/nano hierarchical structures offers the advantage of simple and large area fabrication, which enables a variety of superhydrophobic applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Hierarchical structure for audio-video based semantic classification of sports video sequences

    Science.gov (United States)

    Kolekar, M. H.; Sengupta, S.

    2005-07-01

    A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.

  17. Hierarchical structure graphitic-like/MoS2 film as superlubricity material

    Science.gov (United States)

    Gong, Zhenbin; Jia, Xiaolong; Ma, Wei; Zhang, Bin; Zhang, Junyan

    2017-08-01

    Friction and wear result in a great amount of energy loss and the invalidation of mechanical parts, thus it is necessary to minimize friction in practical application. In this study, the graphitic-like/MoS2 films with hierarchical structure were synthesized by the combination of pulse current plasma chemical-vapor deposition and medium frequency unbalanced magnetron sputtering in preheated environment. This hierarchical structure composite with multilayer nano sheets endows the films excellent tribological performance, which easily achieves macro superlubricity (friction coefficient ∼0.004) under humid air. Furthermore, it is expected that hierarchical structure of graphitic-like/MoS2 films could match the requirements of large scale, high bear-capacity and wear-resistance of actual working conditions, which could be widely used in the industrial production as a promising superlubricity material.

  18. Hierarchical fiber-optic-based sensing system: impact damage monitoring of large-scale CFRP structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Banshoya, Hidehiko; Takeda, Nobuo; Tsukamoto, Haruka

    2011-01-01

    This study proposes a novel fiber-optic-based hierarchical sensing concept for monitoring randomly induced damage in large-scale composite structures. In a hierarchical system, several kinds of specialized devices are hierarchically combined to form a sensing network. Specifically, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with an optical fiber network through transducing mechanisms. The distributed devices detect damage, and the fiber-optic network gathers the damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of a hierarchical sensing system through comparison with existing fiber-optic-based systems, and an impact damage detection system was then proposed to validate the new concept. The sensor devices were developed based on comparative vacuum monitoring (CVM), and Brillouin-based distributed strain measurement was utilized to identify damaged areas. Verification tests were conducted step-by-step, beginning with a basic test using a single sensor unit, and, finally, the proposed monitoring system was successfully verified using a carbon fiber reinforced plastic (CFRP) fuselage demonstrator. It was clearly confirmed that the hierarchical system has better repairability, higher robustness, and a wider monitorable area compared to existing systems

  19. Earthquake risk assessment of building structures

    International Nuclear Information System (INIS)

    Ellingwood, Bruce R.

    2001-01-01

    During the past two decades, probabilistic risk analysis tools have been applied to assess the performance of new and existing building structural systems. Structural design and evaluation of buildings and other facilities with regard to their ability to withstand the effects of earthquakes requires special considerations that are not normally a part of such evaluations for other occupancy, service and environmental loads. This paper reviews some of these special considerations, specifically as they pertain to probability-based codified design and reliability-based condition assessment of existing buildings. Difficulties experienced in implementing probability-based limit states design criteria for earthquake are summarized. Comparisons of predicted and observed building damage highlight the limitations of using current deterministic approaches for post-earthquake building condition assessment. The importance of inherent randomness and modeling uncertainty in forecasting building performance is examined through a building fragility assessment of a steel frame with welded connections that was damaged during the Northridge Earthquake of 1994. The prospects for future improvements in earthquake-resistant design procedures based on a more rational probability-based treatment of uncertainty are examined

  20. Hierarchical Structure in Semicrystalline Polymers Tethered to Nanospheres

    KAUST Repository

    Kim, Sung A; Archer, Lynden A.

    2014-01-01

    We report on structural and dynamic transitions of polymers tethered to nanoparticles. In particular, we use X-ray diffraction, vibrational spectroscopy, and thermal measurements to investigate multiscale structure and dynamic transitions of poly

  1. Hierarchically structured nanocarbon electrodes for flexible solid lithium batteries

    KAUST Repository

    Wei, Di

    2013-09-01

    The ever increasing demand for storage of electrical energy in portable electronic devices and electric vehicles is driving technological improvements in rechargeable batteries. Lithium (Li) batteries have many advantages over other rechargeable battery technologies, including high specific energy and energy density, operation over a wide range of temperatures (-40 to 70. °C) and a low self-discharge rate, which translates into a long shelf-life (~10 years) [1]. However, upon release of the first generation of rechargeable Li batteries, explosions related to the shorting of the circuit through Li dendrites bridging the anode and cathode were observed. As a result, Li metal batteries today are generally relegated to non-rechargeable primary battery applications, because the dendritic growth of Li is associated with the charging and discharging process. However, there still remain significant advantages in realizing rechargeable secondary batteries based on Li metal anodes because they possess superior electrical conductivity, higher specific energy and lower heat generation due to lower internal resistance. One of the most practical solutions is to use a solid polymer electrolyte to act as a physical barrier against dendrite growth. This may enable the use of Li metal once again in rechargeable secondary batteries [2]. Here we report a flexible and solid Li battery using a polymer electrolyte with a hierarchical and highly porous nanocarbon electrode comprising aligned multiwalled carbon nanotubes (CNTs) and carbon nanohorns (CNHs). Electrodes with high specific surface area are realized through the combination of CNHs with CNTs and provide a significant performance enhancement to the solid Li battery performance. © 2013 Elsevier Ltd.

  2. Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell

    Science.gov (United States)

    Song, Jingru; Fan, Cuncai; Ma, Hansong; Wei, Yueguang

    2015-06-01

    In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variation-section pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.

  3. Measurement methods of building structures deflections

    Directory of Open Access Journals (Sweden)

    Wróblewska Magdalena

    2018-01-01

    Full Text Available Underground mining exploitation is leading to the occurrence of deformations manifested by, in particular, sloping terrain. The structures situated on the deforming subsoil are subject to uneven subsidence which is leading in consequence to their deflection. Before a building rectification process takes place by, e.g. uneven raising, the structure's deflection direction and value is determined so that the structure is restored to its vertical position as a result of the undertaken remedial measures. Deflection can be determined by applying classical as well as modern measurement techniques. The article presents examples of measurement methods used considering the measured elements of building structures’ constructions and field measurements. Moreover, for a given example of a mining area, the existing deflections of buildings were compared with mining terrain sloping.

  4. Topology of the correlation networks among major currencies using hierarchical structure methods

    Science.gov (United States)

    Keskin, Mustafa; Deviren, Bayram; Kocakaplan, Yusuf

    2011-02-01

    We studied the topology of correlation networks among 34 major currencies using the concept of a minimal spanning tree and hierarchical tree for the full years of 2007-2008 when major economic turbulence occurred. We used the USD (US Dollar) and the TL (Turkish Lira) as numeraires in which the USD was the major currency and the TL was the minor currency. We derived a hierarchical organization and constructed minimal spanning trees (MSTs) and hierarchical trees (HTs) for the full years of 2007, 2008 and for the 2007-2008 period. We performed a technique to associate a value of reliability to the links of MSTs and HTs by using bootstrap replicas of data. We also used the average linkage cluster analysis for obtaining the hierarchical trees in the case of the TL as the numeraire. These trees are useful tools for understanding and detecting the global structure, taxonomy and hierarchy in financial data. We illustrated how the minimal spanning trees and their related hierarchical trees developed over a period of time. From these trees we identified different clusters of currencies according to their proximity and economic ties. The clustered structure of the currencies and the key currency in each cluster were obtained and we found that the clusters matched nicely with the geographical regions of corresponding countries in the world such as Asia or Europe. As expected the key currencies were generally those showing major economic activity.

  5. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  6. Hierarchically structured identification and classification method for vibrational monitoring of reactor components

    International Nuclear Information System (INIS)

    Saedtler, E.

    1981-01-01

    The dissertation discusses: 1. Approximative filter algorithms for identification of systems and hierarchical structures. 2. Adaptive statistical pattern recognition and classification. 3. Parameter selection, extraction, and modelling for an automatic control system. 4. Design of a decision tree and an adaptive diagnostic system. (orig./RW) [de

  7. Electrochemical design of ZnO hierarchical structures for dye-sensitized solar cells

    Czech Academy of Sciences Publication Activity Database

    Guerin, V. M.; Rathouský, Jiří; Pauporté, T.

    2012-01-01

    Roč. 102, JUL 2012 (2012), s. 8-14 ISSN 0927-0248 R&D Projects: GA AV ČR KAN100400702 Institutional research plan: CEZ:AV0Z40400503 Keywords : ZnO hierarchical structures * epitaxy * dye-sensitized solar cell Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.630, year: 2012

  8. ERP Responses to Violations in the Hierarchical Structure of Functional Categories in Japanese Verb Conjugation

    Science.gov (United States)

    Kobayashi, Yuki; Sugioka, Yoko; Ito, Takane

    2018-01-01

    An event-related potential experiment was conducted in order to investigate readers' response to violations in the hierarchical structure of functional categories in Japanese, an agglutinative language where functional heads like Negation (Neg) as well as Tense (Tns) are realized as suffixes. A left-lateralized negativity followed by a P600 was…

  9. Mapping the Hierarchical Layout of the Structural Network of the Macaque Prefrontal Cortex

    NARCIS (Netherlands)

    Goulas, A.; Uylings, H.B.M.; Stiers, P.

    2014-01-01

    A consensus on the prefrontal cortex (PFC) holds that it is pivotal for flexible behavior and the integration of the cognitive, affective, and motivational domains. Certain models have been put forth and a dominant model postulates a hierarchical anterior-posterior gradient. The structural

  10. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions.

    Science.gov (United States)

    Sun, Junming; Karim, Ayman M; Li, Xiaohong Shari; Rainbolt, James; Kovarik, Libor; Shin, Yongsoon; Wang, Yong

    2015-12-04

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.

  11. Axiomatizations of Banzhaf Permisson Values for Games with a Hierarchical Permission Structure.

    NARCIS (Netherlands)

    van den Brink, J.R.

    2010-01-01

    In games with a permission structure it is assumed that players in a cooperative transferable utility game are hierarchically ordered in the sense that there are players that need permission from other players before they are allowed to cooperate. We provide axiomatic characterizations of Banzhaf

  12. Symptom structure of PTSD: support for a hierarchical model separating core PTSD symptoms from dysphoria

    NARCIS (Netherlands)

    Rademaker, Arthur R.; van Minnen, Agnes; Ebberink, Freek; van Zuiden, Mirjam; Hagenaars, Muriel A.; Geuze, Elbert

    2012-01-01

    As of yet, no collective agreement has been reached regarding the precise factor structure of posttraumatic stress disorder (PTSD). Several alternative factor-models have been proposed in the last decades. The current study examined the fit of a hierarchical adaptation of the Simms et al. (2002)

  13. Task Switching in a Hierarchical Task Structure: Evidence for the Fragility of the Task Repetition Benefit

    Science.gov (United States)

    Lien, Mei-Ching; Ruthruff, Eric

    2004-01-01

    This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms.…

  14. Biomimetic "Cactus Spine" with Hierarchical Groove Structure for Efficient Fog Collection.

    Science.gov (United States)

    Bai, Fan; Wu, Juntao; Gong, Guangming; Guo, Lin

    2015-07-01

    A biomimetic "cactus spine" with hierarchical groove structure is designed and fabricated using simple electrospinning. This novel artificial cactus spine possesses excellent fog collection and water transportation ability. A model cactus equipped with artificial spines also shows a great water storage capacity. The results can be helpful in the development of water collectors and may make a contribution to the world water crisis.

  15. The role of supramolecular chemistry in stimuli responsive and hierarchically structured functional organic materials

    NARCIS (Netherlands)

    Schenning, A.P.H.J.; Bastiaansen, C.W.M.; Broer, D.J.; Debije, M.G.

    2014-01-01

    ABSTRACT: In this review, we show the important role of supramolecular chemistry in the fabrication of stimuli responsive and hierarchically structured liquid crystalline polymer networks. Supramolecular interactions can be used to create three dimensional order or as molecular triggers in materials

  16. Delineating the Structure of Normal and Abnormal Personality: An Integrative Hierarchical Approach

    Science.gov (United States)

    Markon, Kristian E.; Krueger, Robert F.; Watson, David

    2008-01-01

    Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed. PMID:15631580

  17. Delineating the structure of normal and abnormal personality: an integrative hierarchical approach.

    Science.gov (United States)

    Markon, Kristian E; Krueger, Robert F; Watson, David

    2005-01-01

    Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed.

  18. Hierarchical structure and cytocompatibility of fish scales from Carassius auratus

    International Nuclear Information System (INIS)

    Fang, Zhou; Wang, Yukun; Feng, Qingling; Kienzle, Arne; Müller, Werner E.G.

    2014-01-01

    To study the structure and the cytocompatibility of fish scales from Carassius auratus, scanning electron microscopy (SEM) was used to observe the morphology of fish scales treated with different processing methods. Based on varying morphologies and components, the fish scales can be divided into three regions on the surface and three layers in vertical. The functions of these three individual layers were analyzed. SEM results show that the primary inorganic components are spherical or cubic hydroxyapatite (HA) nanoparticles. The fish scales have an ∼ 60° overlapped plywood structure of lamellas in the fibrillary plate. The plywood structure consists of co-aligned type I collagen fibers, which are parallel to the HA lamellas. X-ray diffraction (XRD), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) and Fourier transform infrared (FTIR) analysis indicate that the main components are HA and type I collagen fibers. MC3T3-E1 cell culture results show a high cytocompatibility and the ability to guide cell proliferation and migration along the scale ridge channels of the fish scales. This plywood structure provides inspiration for a structure-enhanced composite material. - Highlights: • The Carassius auratus fish scale can be divided into 3 layers rather than 2. • The functions of these three individual layers were firstly analyzed. • The fish scale shows a high cytocompatibility. • The fish scale can guide cells migration along the scale ridge channels

  19. Hierarchical structure and cytocompatibility of fish scales from Carassius auratus

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhou [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, Yukun [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kienzle, Arne; Müller, Werner E.G. [Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Johannes Gutenberg-Universität, Duesbergweg 6, Mainz 55099 (Germany)

    2014-10-01

    To study the structure and the cytocompatibility of fish scales from Carassius auratus, scanning electron microscopy (SEM) was used to observe the morphology of fish scales treated with different processing methods. Based on varying morphologies and components, the fish scales can be divided into three regions on the surface and three layers in vertical. The functions of these three individual layers were analyzed. SEM results show that the primary inorganic components are spherical or cubic hydroxyapatite (HA) nanoparticles. The fish scales have an ∼ 60° overlapped plywood structure of lamellas in the fibrillary plate. The plywood structure consists of co-aligned type I collagen fibers, which are parallel to the HA lamellas. X-ray diffraction (XRD), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) and Fourier transform infrared (FTIR) analysis indicate that the main components are HA and type I collagen fibers. MC3T3-E1 cell culture results show a high cytocompatibility and the ability to guide cell proliferation and migration along the scale ridge channels of the fish scales. This plywood structure provides inspiration for a structure-enhanced composite material. - Highlights: • The Carassius auratus fish scale can be divided into 3 layers rather than 2. • The functions of these three individual layers were firstly analyzed. • The fish scale shows a high cytocompatibility. • The fish scale can guide cells migration along the scale ridge channels.

  20. Band structures of two dimensional solid/air hierarchical phononic crystals

    International Nuclear Information System (INIS)

    Xu, Y.L.; Tian, X.G.; Chen, C.Q.

    2012-01-01

    The hierarchical phononic crystals to be considered show a two-order “hierarchical” feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  1. The fundamentals of structural building codes

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    2001-01-01

    Partial Factor Design is nowadays a generally accepted design method for building and civil engineering structures. For most engineers the general philosophy that the safety factors depend on the type of the load and on the limit state under consideration makes sense. However, the background, in

  2. On Directionality of Phrase Structure Building

    Science.gov (United States)

    Chesi, Cristiano

    2015-01-01

    Minimalism in grammatical theorizing (Chomsky in "The minimalist program." MIT Press, Cambridge, 1995) led to simpler linguistic devices and a better focalization of the core properties of the structure building engine: a lexicon and a free (recursive) phrase formation operation, dubbed Merge, are the basic components that serve in…

  3. Decentralized Networked Control of Building Structures

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Rehák, Branislav; Papík, Martin

    2016-01-01

    Roč. 31, č. 11 (2016), s. 871-886 ISSN 1093-9687 R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : decentralized control * networked control * building structures Subject RIV: BC - Control Systems Theory Impact factor: 5.786, year: 2016

  4. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.

    Science.gov (United States)

    Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian

    2016-06-13

    Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

  5. An XML-hierarchical data structure for ENSDF

    International Nuclear Information System (INIS)

    Hurst, Aaron M.

    2016-01-01

    A data structure based on an eXtensible Markup Language (XML) hierarchy according to experimental nuclear structure data in the Evaluated Nuclear Structure Data File (ENSDF) is presented. A Python-coded translator has been developed to interpret the standard one-card records of the ENSDF datasets, together with their associated quantities defined according to field position, and generate corresponding representative XML output. The quantities belonging to this mixed-record format are described in the ENSDF manual. Of the 16 ENSDF records in total, XML output has been successfully generated for 15 records. An XML-translation for the Comment Record is yet to be implemented; this will be considered in a separate phase of the overall translation effort. Continuation records, not yet implemented, will also be treated in a future phase of this work. Several examples are presented in this document to illustrate the XML schema and methods for handling the various ENSDF data types. However, the proposed nomenclature for the XML elements and attributes need not necessarily be considered as a fixed set of constructs. Indeed, better conventions may be suggested and a consensus can be achieved amongst the various groups of people interested in this project. The main purpose here is to present an initial phase of the translation effort to demonstrate the feasibility of interpreting ENSDF datasets and creating a representative XML-structured hierarchy for data storage.

  6. INFOGRAPHIC MODELING OF THE HIERARCHICAL STRUCTURE OF THE MANAGEMENT SYSTEM EXPOSED TO AN INNOVATIVE CONFLICT

    Directory of Open Access Journals (Sweden)

    Chulkov Vitaliy Olegovich

    2012-12-01

    Full Text Available This article deals with the infographic modeling of hierarchical management systems exposed to innovative conflicts. The authors analyze the facts that serve as conflict drivers in the construction management environment. The reasons for innovative conflicts include changes in hierarchical structures of management systems, adjustment of workers to new management conditions, changes in the ideology, etc. Conflicts under consideration may involve contradictions between requests placed by customers and the legislation, any risks that may originate from the above contradiction, conflicts arising from any failure to comply with any accepted standards of conduct, etc. One of the main objectives of the theory of hierarchical structures is to develop a model capable of projecting potential innovative conflicts. Models described in the paper reflect dynamic changes in patterns of external impacts within the conflict area. The simplest model element is a monad, or an indivisible set of characteristics of participants at the pre-set level. Interaction between two monads forms a diad. Modeling of situations that involve a different number of monads, diads, resources and impacts can improve methods used to control and manage hierarchical structures in the construction industry. However, in the absence of any mathematical models employed to simulate conflict-related events, processes and situations, any research into, projection and management of interpersonal and group-to-group conflicts are to be performed in the legal environment

  7. Action detection by double hierarchical multi-structure space-time statistical matching model

    Science.gov (United States)

    Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang

    2018-03-01

    Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.

  8. Reliability and Hierarchical Structure of DSM-5 Pathological Traits in a Danish Mixed Sample

    DEFF Research Database (Denmark)

    Bo, Sune; Bach, Bo; Mortensen, Erik Lykke

    2016-01-01

    In this study we assessed the DSM-5 trait model in a large Danish sample (n = 1,119) with respect to reliability of the applied Danish version of the Personality Inventory for DSM-5 (PID-5) self-report form by means of internal consistency and item discrimination. In addition, we tested whether...... the five-factor structure of the DSM-5 trait model can be replicated in a Danish independent sample using the PID-5 self-report form. Finally, we examined the hierarchical structure of DSM-5 traits. In terms of internal consistency and item discrimination, the applied PID-5 scales were generally found...... reliable and functional; our data resembled the five-factor structure of previous findings, and we identified a hierarchical structure from one to five factors that was conceptually reasonable and corresponded with existing findings. These results support the new DSM-5 trait model and suggest that it can...

  9. Multiphase static droplet simulations in hierarchically structured super-hydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Shin; Lee, Joon Sang [School of Mechanical Engineering, Yonsei University, Seoul (Korea, Republic of)

    2016-08-15

    The surface of first part of study is textured with microscopic pillars of prototypical top geometries as a rectangle. The second one is textured with a hierarchical structure, composed of secondary pillar structures added on the primary texture. The length ratio between two scales of texture is 1:16. We evaluated the non-wetting characteristics of two types of surfaces by measuring CAs as well as the transition from the Wenzel's to Cassie's regimes. We measure the Contact angles (CAs), using the Lattice Boltzmann model (LBM), for two different surface configurations. We evaluated the effect of the hierarchical structure; the robustness of the Cassie regime is enhanced and the apparent contact angle is increased by the secondary structures. This is achieved by increasing the energy barrier against the transition between wetting and non-wetting regimes.

  10. How Are Researching and Reading Interwieved during Retrieval from Hierarchically Structured Documents?

    DEFF Research Database (Denmark)

    Hertzum, Morten; Lalmas, M.; Frøkjær, Erik

    2001-01-01

    Effective use of information retrieval systems requires that users know when to – temporarily – cease searching to do some reading and where to start reading. In hierarchically structured documents, users can to some extent interchange searching and reading by entering the text at different levels...... information retrieval systems could exploit document structure to return the best points to support reading, rather than merely hits...

  11. A hierarchical structure for risk criteria applicable to nuclear power plants

    International Nuclear Information System (INIS)

    Hall, R.E.; Mitra, S.P.

    1982-01-01

    This paper discusses the development of a hierarchical structure for risk criteria applicable to nuclear power plants. The structure provides a unified framework to systematically analyze the implications of different types of criteria, each focusing on a particular aspect of nuclear power plant risks. The framework allows investigation of the specific coverage of a particular criterion and comparison of different criteria with regard to areas to which they apply

  12. Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas

    Directory of Open Access Journals (Sweden)

    Górecki J.

    2017-01-01

    Full Text Available Several successful approaches to structure determination of hierarchical Archimedean copulas (HACs proposed in the literature rely on agglomerative clustering and Kendall’s correlation coefficient. However, there has not been presented any theoretical proof justifying such approaches. This work fills this gap and introduces a theorem showing that, given the matrix of the pairwise Kendall correlation coefficients corresponding to a HAC, its structure can be recovered by an agglomerative clustering technique.

  13. Dielectric study on hierarchical water structures restricted in cement and wood materials

    International Nuclear Information System (INIS)

    Abe, Fumiya; Nishi, Akihiro; Saito, Hironobu; Asano, Megumi; Watanabe, Seiei; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin; Fukuzaki, Minoru; Sudo, Seiichi; Suzuki, Youki

    2017-01-01

    Dielectric relaxation processes for mortar observed by broadband dielectric spectroscopy were analyzed in the drying and hydration processes for an aging sample in the frequency region from 1 MHz up to 2 MHz. At least two processes for structured water in the kHz frequency region and another mHz relaxation process affected by ionic behaviors were observed. Comparison of the relaxation parameters obtained for the drying and hydration processes suggests an existence of hierarchical water structures in the exchange of water molecules, which are originally exchanged from free water observed at around 20 GHz. The water molecules reflected in the lower frequency process of the two kHz relaxation processes are more restricted and take more homogeneous structures than the higher kHz relaxation process. These structured water usually hidden in large ionic behaviors for wood samples was observed by electrodes covered by a thin Teflon film, and hierarchical water structures were also suggested for wood samples. Dielectric spectroscopy technique is an effective tool to analyze the new concept of hierarchical water structures in complex materials. (paper)

  14. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    Directory of Open Access Journals (Sweden)

    Javed Iqbal

    2015-12-01

    Full Text Available ZnxCu1−xO (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol% hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  15. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Javed, E-mail: tariqjan84@gmail.com, E-mail: javed.suggau@iiu.edu.pk; Jan, Tariq, E-mail: tariqjan84@gmail.com, E-mail: javed.suggau@iiu.edu.pk; Ul-Hassan, Sibt; Umair Ali, M.; Abbas, Fazal [Laboratory of Nanoscience and Technology, Department of Physics, International Islamic University, H-10, Islamabad (Pakistan); Ahmed, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Mansoor, Qaisar; Ismail, Muhammad [Institute of Biomedical and Genetic Engineering (IBGE), Islamabad (Pakistan)

    2015-12-15

    Zn{sub x}Cu{sub 1−x}O (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol%) hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD) results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM) analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  16. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.

    Science.gov (United States)

    Barthlott, W; Mail, M; Neinhuis, C

    2016-08-06

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  17. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications

    Science.gov (United States)

    Mail, M.; Neinhuis, C.

    2016-01-01

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354736

  18. Assessing the multidimensional and hierarchical structure of SERVQUAL.

    Science.gov (United States)

    Ma, Jun; Harvey, Milton E; Hu, Michael Y

    2007-10-01

    Parasuraman, Zeithaml, and Berry introduced SERVQUAL in 1998 as a scale to measure service quality. Since then, researchers have proposed several variations. This study examines the development of the tool. Marketing researchers have first challenged the conceptualization of a perceptions-expectations gap and have concluded that the performance-based measures are adequate to capture consumers' perception of service quality. Some researchers have argued that the five dimensions of the SERVQUAL scale only focus on the process of service delivery and have extended the SERVQUAL scale into six dimensions by including the service outcome dimension. Others have proposed that service quality is a multilevel construct and should be measured accordingly. From a sample of 467 undergraduate students data on service quality toward up-scale restaurants were collected. Using the structural equation approach, two measurement models of service quality were compared, the extended SERVQUAL model and the restructured multilevel SERVQUAL model. Analysis suggested that the latter model fits the data better than the extended one.

  19. Micro-nano hierarchically structured nylon 6,6 surfaces with unique wettability.

    Science.gov (United States)

    Zhang, Liang; Zhang, Xiaoyan; Dai, Zhen; Wu, Junjie; Zhao, Ning; Xu, Jian

    2010-05-01

    A micro-nano hierarchically structured nylon 6,6 surface was easily fabricated by phase separation. Nylon 6,6 plate was swelled by formic acid and then immersed in a coagulate bath to precipitate. Micro particles with nano protrusions were generated and linked together covering over the surface. After dried up, the as-formed surface showed superhydrophilic ability. Inspired by lotus only employing 2-tier structure and ordinary plant wax to maintain superhydrophobicity, paraffin wax, a low surface energy material, was used to modify the hierarchically structured nylon 6,6 surface. The resultant surface had water contact angle (CA) of 155.2+/-1.3 degrees and a low sliding angle. The whole process was carried on under ambient condition and only need a few minutes. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Hierarchically structured carbon nanotubes for energy conversion and storage

    Science.gov (United States)

    Du, Feng

    As the world population continues to increase, large amounts of energy are consumed. Reality pushes us to find new energy or use our current energy more efficiently. Researches on energy conversion and storage have become increasingly important and essential. This grand challenge research has led to a recent focus on nanostructured materials. Carbon nanomaterials such as carbon nanotubes (CNTs) play a critical role in all of these nanotechnology challenges. CNTs have a very large surface area, a high electrochemical accessibility, high electronic conductivity and strong mechanical properties. This combination of properties makes them promising materials for energy device applications, such as FETs, supercapacitors, fuel cells, and lithium batteries. This study focuses on exploring the possibility of using vertically aligned carbon nanotubes (VA-CNTs) as the electrode materials in these energy applications. For the application of electrode materials, electrical conductive, vertically aligned CNTs with controllable length and diameter were synthesized. Several CVD methods for VA-CNT growth have been explored, although the iron / aluminum pre-coated catalyst CVD system was the main focus. A systematic study of several factors, including growth time, temperature, gas ratio, catalyst coating was conducted. The mechanism of VA-CNTs was discussed and a model for VA-CNT length / time was proposed to explain the CNT growth rate. Furthermore, the preferential growth of semiconducting (up to 96 atom% carbon) VA-SWNTs by using a plasma enhanced CVD process combined with fast heating was also explored, and these semiconducting materials have been directly used for making FETs using simple dispersion in organic solvent, without any separation and purification. Also, by inserting electron-accepting nitrogen atoms into the conjugated VA-CNT structure during the growth process, we synthesized vertically aligned nitrogen containing carbon nanotubes (VA-NCNTs). After purification of

  1. Synthesis of Novel Mesoporous Silica Materials with Hierarchical Pore Structures

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Bon; Choi, Wang Kyu; Choi, Byung Seon; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Porous materials with various pore sizes in the range of micropore (< 2 nm), mesopore (2-50 nm), and macropore (> 50 nm) are attractive due to their many emerging applications such as catalysts, separation systems, and low dielectric constant materials. The discovery of new M41S mesoporous silica families with pore sizes larger than 2 nm in diameter in 1992 extended the applications into much wider pore ranges, bringing in a new prosperous era in porous material research. The synthesis of these silica materials has been mainly accomplished through a self-assembly between surfactant molecules and inorganic species under various pH conditions. Recently, core-shell nanoparticles with a silica core and mesoporous shell under basic conditions were synthesized using the silica nanoparticles as a core, and a silica precursor (TEOS) and cationic surfactant (CTABr) as a material for the formation of the mesoporous shell. The resultant materials were very monodispersive in size and showed a narrow pore size distribution in the range of ca 2-3 nm in diameter, depending on the alkyl-chain length of the surfactants used. In this work, the mesoporous shell coated-fumed silicas (denoted as MS M-5s) were synthesized by using fumed silica instead of the silica nanoparticle as a core based on previous reports. Also, the structural properties of the MS M-5s such as the specific surface area and pore volume were easily controlled by varying the amount of the silica precursor and surfactant. The resultant materials exhibited a BET surface area of ca 279-446 m{sup 2}/g and total pore volume of ca 0.64-0.74 cm{sup 3}/g and showed a narrow pore size distribution (PSD) due to the removal of the organic surfactant molecules

  2. Synthesis and properties of ZnFe2O4 replica with biological hierarchical structure

    International Nuclear Information System (INIS)

    Liu, Hongyan; Guo, Yiping; Zhang, Yangyang; Wu, Fen; Liu, Yun; Zhang, Di

    2013-01-01

    Highlights: • ZFO replica with hierarchical structure was synthesized from butterfly wings. • Biotemplate has a significant impact on the properties of ZFO material. • Our method opens up new avenues for the synthesis of spinel ferrites. -- Abstract: ZnFe 2 O 4 replica with biological hierarchical structure was synthesized from Papilio paris by a sol–gel method followed by calcination. The crystallographic structure and morphology of the obtained samples were characterized by X-ray diffraction, field-emission scanning electron microscope, and transmittance electron microscope. The results showed that the hierarchical structures were retained in the ZFO replica of spinel structure. The magnetic behavior of such novel products was measured by a vibrating sample magnetometer. A superparamagnetism-like behavior was observed due to nanostructuration size effects. In addition, the ZFO replica with “quasi-honeycomb-like structure” showed a much higher specific capacitance of 279.4 F g −1 at 10 mV s −1 in comparison with ZFO powder of 137.3 F g −1 , attributing to the significantly increased surface area. These results demonstrated that ZFO replica is a promising candidate for novel magnetic devices and supercapacitors

  3. A thick hierarchical rutile TiO2 nanomaterial with multilayered structure

    International Nuclear Information System (INIS)

    Zhu, Shengli; Xie, Guoqiang; Yang, Xianjin; Cui, Zhenduo

    2013-01-01

    Highlights: ► We synthesized a new rutile TiO 2 nanomaterial with a hierarchical nanostructure. ► The nano architecture structure consist of nanorods and nanoflower arrays. ► The rutile TiO 2 nanomaterial is thick in size (several 10 μm). ► The TiO 2 nanomaterials present a multilayer structure. - Abstract: In the present paper, we synthesized a new type of rutile TiO 2 nanomaterial with a hierarchical nanostructure using a novel method, which combined dealloying process with chemical synthesis. The structure characters were examined using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The rutile TiO 2 nanomaterial is thick in size (several 10 μm). The hierarchical structure of the rutile TiO 2 nanomaterial consists of large quantities nanorods and nanoflower arrays. The nanoflowers consist of serveral nanopetals with diameter of 100–200 nm. The cross section of TiO 2 nanomaterials presents a multilayer structure with the layer thickness of about 3–5 μm. The rutile TiO 2 nanomaterial has high specific surface area. The formation mechanism of the rutile TiO 2 nanomaterial was discussed according to the experimental results. The rutile TiO 2 nanomaterial has potential applications in catalysis, photocatalysis and solar cells

  4. Hierarchical ZnO with twinned structure: Morphology evolution, formation mechanism and properties

    International Nuclear Information System (INIS)

    Shi, Ruixia; Song, Xueling; Li, Jia; Yang, Ping

    2015-01-01

    Various hierarchical ZnO architectures constructed by twinned structures have been synthesized via a trisodium citrate assisted hydrothermal method on a large scale. The probable formation mechanisms of hierarchical ZnO structures with twinned structure were proposed and discussed. The hierarchical ZnO with twinned structures are composed of two hemispheres with a center concave junction to join them together at their waists. The ZnO microspheres with rough surfaces were obtained when the concentration of trisodium citrate is 0.1 M. However, the football-like microspheres consisted of hexagonal nanosheets were formed when adding glycerol into the water, which should be attributed to the slower nucleation and growth rate of nanocrystals. The hamburger-like ZnO with different aspect ratio and nonuniform ZnO microspheres were generated due to the different quantity of initial nuclei and growth units when simply modulating the concentration of trisodium citrate. The surface area of football-like ZnO is about 3.51 times of microspheres composed of irregular particles. However their photocatalytic performances are similar under UV light irradiation, which indicates that pore sizes of the sample have more important influences on the photocatalytic activity. - Highlights: • Hierarchical ZnO constructed by twinned structures have been synthesized. • The formation mechanisms of ZnO with twinned structure were discussed. • Football-like microspheres were obtained due to the slower nucleation and growth. • Hamburger-like ZnO was formed due to the amount of initial nuclei and growth units. • Pore sizes have important effects on the photocatalytic activity of sample

  5. Hierarchical ZnO with twinned structure: Morphology evolution, formation mechanism and properties

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ruixia; Song, Xueling; Li, Jia; Yang, Ping, E-mail: mse_yangp@ujn.edu.cn

    2015-04-15

    Various hierarchical ZnO architectures constructed by twinned structures have been synthesized via a trisodium citrate assisted hydrothermal method on a large scale. The probable formation mechanisms of hierarchical ZnO structures with twinned structure were proposed and discussed. The hierarchical ZnO with twinned structures are composed of two hemispheres with a center concave junction to join them together at their waists. The ZnO microspheres with rough surfaces were obtained when the concentration of trisodium citrate is 0.1 M. However, the football-like microspheres consisted of hexagonal nanosheets were formed when adding glycerol into the water, which should be attributed to the slower nucleation and growth rate of nanocrystals. The hamburger-like ZnO with different aspect ratio and nonuniform ZnO microspheres were generated due to the different quantity of initial nuclei and growth units when simply modulating the concentration of trisodium citrate. The surface area of football-like ZnO is about 3.51 times of microspheres composed of irregular particles. However their photocatalytic performances are similar under UV light irradiation, which indicates that pore sizes of the sample have more important influences on the photocatalytic activity. - Highlights: • Hierarchical ZnO constructed by twinned structures have been synthesized. • The formation mechanisms of ZnO with twinned structure were discussed. • Football-like microspheres were obtained due to the slower nucleation and growth. • Hamburger-like ZnO was formed due to the amount of initial nuclei and growth units. • Pore sizes have important effects on the photocatalytic activity of sample.

  6. Complexity of major UK companies between 2006 and 2010: Hierarchical structure method approach

    Science.gov (United States)

    Ulusoy, Tolga; Keskin, Mustafa; Shirvani, Ayoub; Deviren, Bayram; Kantar, Ersin; Çaǧrı Dönmez, Cem

    2012-11-01

    This study reports on topology of the top 40 UK companies that have been analysed for predictive verification of markets for the period 2006-2010, applying the concept of minimal spanning tree and hierarchical tree (HT) analysis. Construction of the minimal spanning tree (MST) and the hierarchical tree (HT) is confined to a brief description of the methodology and a definition of the correlation function between a pair of companies based on the London Stock Exchange (LSE) index in order to quantify synchronization between the companies. A derivation of hierarchical organization and the construction of minimal-spanning and hierarchical trees for the 2006-2008 and 2008-2010 periods have been used and the results validate the predictive verification of applied semantics. The trees are known as useful tools to perceive and detect the global structure, taxonomy and hierarchy in financial data. From these trees, two different clusters of companies in 2006 were detected. They also show three clusters in 2008 and two between 2008 and 2010, according to their proximity. The clusters match each other as regards their common production activities or their strong interrelationship. The key companies are generally given by major economic activities as expected. This work gives a comparative approach between MST and HT methods from statistical physics and information theory with analysis of financial markets that may give new valuable and useful information of the financial market dynamics.

  7. Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer

    Science.gov (United States)

    Vallé, Karine; Belleville, Philippe; Pereira, Franck; Sanchez, Clément

    2006-02-01

    The elaborate performances characterizing natural materials result from functional hierarchical constructions at scales ranging from nanometres to millimetres, each construction allowing the material to fit the physical or chemical demands occurring at these different levels. Hierarchically structured materials start to demonstrate a high input in numerous promising applied domains such as sensors, catalysis, optics, fuel cells, smart biologic and cosmetic vectors. In particular, hierarchical hybrid materials permit the accommodation of a maximum of elementary functions in a small volume, thereby optimizing complementary possibilities and properties between inorganic and organic components. The reported strategies combine sol-gel chemistry, self-assembly routes using templates that tune the material's architecture and texture with the use of larger inorganic, organic or biological templates such as latex, organogelator-derived fibres, nanolithographic techniques or controlled phase separation. We propose an approach to forming transparent hierarchical hybrid functionalized membranes using in situ generation of mesostructured hybrid phases inside a non-porogenic hydrophobic polymeric host matrix. We demonstrate that the control of the multiple affinities existing between organic and inorganic components allows us to design the length-scale partitioning of hybrid nanomaterials with tuned functionalities and desirable size organization from ångström to centimetre. After functionalization of the mesoporous hybrid silica component, the resulting membranes have good ionic conductivity offering interesting perspectives for the design of solid electrolytes, fuel cells and other ion-transport microdevices.

  8. A Facile Method to Fabricate Anisotropic Hydrogels with Perfectly Aligned Hierarchical Fibrous Structures.

    Science.gov (United States)

    Mredha, Md Tariful Islam; Guo, Yun Zhou; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

    2018-03-01

    Natural structural materials (such as tendons and ligaments) are comprised of multiscale hierarchical architectures, with dimensions ranging from nano- to macroscale, which are difficult to mimic synthetically. Here a bioinspired, facile method to fabricate anisotropic hydrogels with perfectly aligned multiscale hierarchical fibrous structures similar to those of tendons and ligaments is reported. The method includes drying a diluted physical hydrogel in air by confining its length direction. During this process, sufficiently high tensile stress is built along the length direction to align the polymer chains and multiscale fibrous structures (from nano- to submicro- to microscale) are spontaneously formed in the bulk material, which are well-retained in the reswollen gel. The method is useful for relatively rigid polymers (such as alginate and cellulose), which are susceptible to mechanical signal. By controlling the drying with or without prestretching, the degree of alignment, size of superstructures, and the strength of supramolecular interactions can be tuned, which sensitively influence the strength and toughness of the hydrogels. The mechanical properties are comparable with those of natural ligaments. This study provides a general strategy for designing hydrogels with highly ordered hierarchical structures, which opens routes for the development of many functional biomimetic materials for biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development of ultralight, super-elastic, hierarchical metallic meta-structures with i3DP technology

    Science.gov (United States)

    Zhang, Dongxing; Xiao, Junfeng; Moorlag, Carolyn; Guo, Qiuquan; Yang, Jun

    2017-11-01

    Lightweight and mechanically robust materials show promising applications in thermal insulation, energy absorption, and battery catalyst supports. This study demonstrates an effective method for creation of ultralight metallic structures based on initiator-integrated 3D printing technology (i3DP), which provides a possible platform to design the materials with the best geometric parameters and desired mechanical performance. In this study, ultralight Ni foams with 3D interconnected hollow tubes were fabricated, consisting of hierarchical features spanning three scale orders ranging from submicron to centimeter. The resultant materials can achieve an ultralight density of as low as 5.1 mg cm-3 and nearly recover after significant compression up to 50%. Due to a high compression ratio, the hierarchical structure exhibits superior properties in terms of energy absorption and mechanical efficiency. The relationship of structural parameters and mechanical response was established. The ability of achieving ultralight density printing approach provides metallic structures with substantial benefits from the hierarchical design and fabrication flexibility to ultralight applications.

  10. Superhydrophobic surface based on a coral-like hierarchical structure of ZnO.

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2010-12-01

    Full Text Available Fabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures on the wettability, such as hierarchical ZnO nanostructures, is rare.This study presents a simple and reproducible method to fabricate a superhydrophobic surface with micro-scale roughness based on zinc oxide (ZnO hierarchical structure, which is grown by the hydrothermal method with an alkaline aqueous solution. Coral-like structures of ZnO were fabricated on a glass substrate with a micro-scale roughness, while the antennas of the coral formed the nano-scale roughness. The fresh ZnO films exhibited excellent superhydrophilicity (the apparent contact angle for water droplet was about 0°, while the ability to be wet could be changed to superhydrophobicity after spin-coating Teflon (the apparent contact angle greater than 168°. The procedure reported here can be applied to substrates consisting of other materials and having various shapes.The new process is convenient and environmentally friendly compared to conventional methods. Furthermore, the hierarchical structure generates the extraordinary solid/gas/liquid three-phase contact interface, which is the essential characteristic for a superhydrophobic surface.

  11. The well-designed hierarchical structure of Musa basjoo for supercapacitors

    Science.gov (United States)

    Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue

    2016-01-01

    Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials. PMID:26842714

  12. The well-designed hierarchical structure of Musa basjoo for supercapacitors

    Science.gov (United States)

    Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue

    2016-02-01

    Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials.

  13. STRUCTURAL VULNERABILITY ASSESSMENT OF MASONRY BUILDINGS IN TURKEY

    OpenAIRE

    KORKMAZ, Kasım Armagan; CARHOGLU, Asuman Isıl

    2011-01-01

    Turkey is located in an active seismic zone. Mid to high rise R/C building and low rise masonry buildings are very common construction type in Turkey. In recent earthquakes, lots of existing buildings got damage including masonry buildings. Masonry building history in Turkey goes long years back. For sure, it is an important structure type for Turkey. Therefore, earthquake behavior and structural vulnerability of masonry buildings are crucial issues for Turkey as a earthquake prone country. I...

  14. Rapid fabrication of hierarchically structured supramolecular nanocomposite thin films in one minute

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ting; Kao, Joseph

    2016-11-08

    Functional nanocomposites containing nanoparticles of different chemical compositions may exhibit new properties to meet demands for advanced technology. It is imperative to simultaneously achieve hierarchical structural control and to develop rapid, scalable fabrication to minimize degradation of nanoparticle properties and for compatibility with nanomanufacturing. The assembly kinetics of supramolecular nanocomposite in thin films is governed by the energetic cost arising from defects, the chain mobility, and the activation energy for inter-domain diffusion. By optimizing only one parameter, the solvent fraction in the film, the assembly kinetics can be precisely tailored to produce hierarchically structured thin films of supramolecular nanocomposites in approximately one minute. Moreover, the strong wavelength dependent optical anisotropy in the nanocomposite highlights their potential applications for light manipulation and information transmission. The present invention opens a new avenue in designing manufacture-friendly continuous processing for the fabrication of functional nanocomposite thin films.

  15. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    Science.gov (United States)

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  16. Determining building interior structures using compressive sensing

    Science.gov (United States)

    Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse

    2013-04-01

    We consider imaging of the building interior structures using compressive sensing (CS) with applications to through-the-wall imaging and urban sensing. We consider a monostatic synthetic aperture radar imaging system employing stepped frequency waveform. The proposed approach exploits prior information of building construction practices to form an appropriate sparse representation of the building interior layout. We devise a dictionary of possible wall locations, which is consistent with the fact that interior walls are typically parallel or perpendicular to the front wall. The dictionary accounts for the dominant normal angle reflections from exterior and interior walls for the monostatic imaging system. CS is applied to a reduced set of observations to recover the true positions of the walls. Additional information about interior walls can be obtained using a dictionary of possible corner reflectors, which is the response of the junction of two walls. Supporting results based on simulation and laboratory experiments are provided. It is shown that the proposed sparsifying basis outperforms the conventional through-the-wall CS model, the wavelet sparsifying basis, and the block sparse model for building interior layout detection.

  17. The Relationship between Self-Leadership and Personality: A Comparison of Hierarchical Factor Structures

    OpenAIRE

    Houghton, Jeffery D.

    2000-01-01

    This study examined the relationship between self-leadership and personality through an analysis and comparison of hierarchical factor structures. More specifically, this study examined the relationships between the self-leadership dimensions of behavior-focused strategies, natural reward strategies, and constructive thought strategies, and the personality dimensions of extraversion, emotional stability, and conscientiousness. The results of the study provide evidence that the self-leadershi...

  18. Scaling of the first-passage time of biased diffusion on hierarchical comb structures

    International Nuclear Information System (INIS)

    Lin Zhifang; Tao Ruibao.

    1989-12-01

    Biased diffusion on hierarchical comb structures is studied within an exact renormalization group scheme. The scaling exponents of the moments of the first-passage time for random walks are obtained. It is found that the scaling properties of the diffusion depend only on the direction of bias. In this particular case, the presence of bias may give rise to a new multifractality. (author). 7 refs, 2 figs

  19. CTAB-Assisted Hydrothermal Synthesis of WO3 Hierarchical Porous Structures and Investigation of Their Sensing Properties

    Directory of Open Access Journals (Sweden)

    Dan Meng

    2015-01-01

    Full Text Available WO3 hierarchical porous structures were successfully synthesized via cetyltrimethylammonium bromide- (CTAB- assisted hydrothermal method. The structure and morphology were investigated using scanning electron microscope, X-ray diffractometer, transmission electron microscopy, X-ray photoelectron spectra, Brunauer-Emmett-Teller nitrogen adsorption-desorption, and thermogravimetry and differential thermal analysis. The result demonstrated that WO3 hierarchical porous structures with an orthorhombic structure were constructed by a number of nanoparticles about 50–100 nm in diameters. The H2 gas sensing measurements showed that well-defined WO3 hierarchical porous structures with a large specific surface area exhibited the higher sensitivity compared with products without CTAB at all operating temperatures. Moreover, the reversible and fast response to H2 gas and good selectivity were obtained. The results indicated that the WO3 hierarchical porous structures are promising materials for gas sensors.

  20. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jieliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Su, Zhengliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Department of Automotive Engineering, Tsinghua University, Beijing 100084 (China); Yan, Shaoze, E-mail: yansz@mail.tsinghua.edu.cn [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China)

    2015-12-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  1. Eigenspaces of networks reveal the overlapping and hierarchical community structure more precisely

    International Nuclear Information System (INIS)

    Ma, Xiaoke; Gao, Lin; Yong, Xuerong

    2010-01-01

    Identifying community structure is fundamental for revealing the structure–functionality relationship in complex networks, and spectral algorithms have been shown to be powerful for this purpose. In a traditional spectral algorithm, each vertex of a network is embedded into a spectral space by making use of the eigenvectors of the adjacency matrix or Laplacian matrix of the graph. In this paper, a novel spectral approach for revealing the overlapping and hierarchical community structure of complex networks is proposed by not only using the eigenvalues and eigenvectors but also the properties of eigenspaces of the networks involved. This gives us a better characterization of community. We first show that the communicability between a pair of vertices can be rewritten in term of eigenspaces of a network. An agglomerative clustering algorithm is then presented to discover the hierarchical communities using the communicability matrix. Finally, these overlapping vertices are discovered with the corresponding eigenspaces, based on the fact that the vertices more densely connected amongst one another are more likely to be linked through short cycles. Compared with the traditional spectral algorithms, our algorithm can identify both the overlapping and hierarchical community without increasing the time complexity O(n 3 ), where n is the size of the network. Furthermore, our algorithm can also distinguish the overlapping vertices from bridges. The method is tested by applying it to some computer-generated and real-world networks. The experimental results indicate that our algorithm can reveal community structure more precisely than the traditional spectral approaches

  2. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles.

    Science.gov (United States)

    Ebert, Daniel; Bhushan, Bharat

    2012-02-15

    Surfaces with a very high apparent water contact angle (CA) and low water contact angle hysteresis (CAH) exhibit many useful characteristics, among them extreme water repellency, low drag for fluid flow, and a self-cleaning effect. The leaf of the Lotus plant (Nelumbo nucifera) achieves these properties using a hierarchical structure with roughness on both the micro- and nanoscale. It is of great interest to create durable surfaces with the so-called "Lotus effect" for many important applications. In this study, hierarchically structured surfaces with Lotus-effect properties were fabricated using micro- and nanosized hydrophobic silica particles and a simple spray method. In addition, hierarchically structured surfaces were prepared by spraying a nanoparticulate coating over a micropatterned surface. To examine the similarities between surfaces using microparticles versus a uniform micropattern as the microstructure, CA and CAH were compared across a range of pitch values for the two types of microstructures. Wear experiments were performed using an atomic force microscope (AFM), a ball-on-flat tribometer, and a water jet apparatus to verify multiscale wear resistance. These surfaces have potential uses in engineering applications requiring Lotus-effect properties and high durability. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    International Nuclear Information System (INIS)

    Zhao, Jieliang; Su, Zhengliang; Yan, Shaoze

    2015-01-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  4. UV-assisted capillary force lithography for engineering biomimetic multiscale hierarchical structures: From lotus leaf to gecko foot hairs

    KAUST Repository

    Jeong, Hoon Eui; Kwak, Rhokyun; Khademhosseini, Ali; Suh, Kahp Y.

    2009-01-01

    This feature article provides an overview of the recently developed two-step UV-assisted capillary force lithography and its application to fabricating well-defined micro/nanoscale hierarchical structures. This method utilizes an oxygen inhibition effect in the course of UV irradiation curing and a two-step moulding process, to form multiscale hierarchical or suspended nanobridge structures in a rapid and reproducible manner. After a brief description of the fabrication principles, several examples of the two-step UV-assisted moulding technique are presented. In addition, emerging applications of the multiscale hierarchical structures are briefly described. © The Royal Society of Chemistry 2009.

  5. 7 CFR 51.56 - Buildings and structures.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Buildings and structures. 51.56 Section 51.56... § 51.56 Buildings and structures. The packing plant buildings shall be properly constructed and... be sufficient light consistent with the use to which the particular portion of the building is...

  6. Vibration-damping structure for reactor building

    International Nuclear Information System (INIS)

    Kuno, Toshio; Iba, Chikara; Tanaka, Hideki; Kageyama, Mitsuru

    1998-01-01

    In a damping structure of a reactor building, an inner concrete body and a reactor container are connected by way of a vibration absorbing member. As the vibration absorbing member, springs or dampers are used. The inner concrete body and the reactor container each having weight and inherent frequency different from each other are opposed displaceably by way of the vibration absorbing member thereby enabling to reduce seismic input and reduce shearing force at least at leg portions. Accordingly, seismic loads are reduced to increase the grounding rate of the base thereby enabling to satisfy an allowable value. Therefore, it is not necessary to strengthen the inner concrete body and the reactor container excessively, the amount of reinforcing rods can be reduced, and the amount of a portion of the base buried to the ground can be reduced thereby enabling to constitute the reactor building easily. (N.H.)

  7. A hierarchical structure through imprinting of a polyimide precursor without residual layers

    International Nuclear Information System (INIS)

    Pai, I-Ting; Hon, Min-Hsiung; Leu, Ing-Chi

    2008-01-01

    A patterned polyimide without a residual layer is obtained by imprinting with the assistance of a residual solvent. The effects of the wetting behaviors of the poly-amic acid (PAA) solution coated on various surfaces are examined and the formation of hierarchical patterns without residual layers is demonstrated. polydimethylsiloxane (PDMS) and PEI/PDMS are used as imprinting molds with Si and 300 nm SiO 2 /Si as substrates. The results indicate that the various ambits of patterns without a residual layer are formed due to the dewetting phenomena caused by surface tension (Suh 2006 Small 2 832). During imprinting, PDMS with a low surface energy makes the PAA solution flow away from its surface exposing the contact area due to dewetting. Self-organized hierarchical structures are also obtained from this process due to effective dewetting. The present study provides a new approach for fabricating patterns without residual layers and the consequent preparation of hierarchical structures, which is considered to be impossible using the lithographic technique

  8. Bayesian Hierarchical Structure for Quantifying Population Variability to Inform Probabilistic Health Risk Assessments.

    Science.gov (United States)

    Shao, Kan; Allen, Bruce C; Wheeler, Matthew W

    2017-10-01

    Human variability is a very important factor considered in human health risk assessment for protecting sensitive populations from chemical exposure. Traditionally, to account for this variability, an interhuman uncertainty factor is applied to lower the exposure limit. However, using a fixed uncertainty factor rather than probabilistically accounting for human variability can hardly support probabilistic risk assessment advocated by a number of researchers; new methods are needed to probabilistically quantify human population variability. We propose a Bayesian hierarchical model to quantify variability among different populations. This approach jointly characterizes the distribution of risk at background exposure and the sensitivity of response to exposure, which are commonly represented by model parameters. We demonstrate, through both an application to real data and a simulation study, that using the proposed hierarchical structure adequately characterizes variability across different populations. © 2016 Society for Risk Analysis.

  9. A hierarchical method for structural topology design problems with local stress and displacement constraints

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Stidsen, Thomas K.

    2005-01-01

    In this paper we present a hierarchical optimization method for finding feasible true 0-1 solutions to finite element based topology design problems. The topology design problems are initially modeled as non-convex mixed 0-1 programs. The hierarchical optimization method is applied to the problem...... and then successively refined as needed. At each level of design mesh refinement, a neighborhood optimization method is used to solve the problem considered. The non-convex topology design problems are equivalently reformulated as convex all-quadratic mixed 0-1 programs. This reformulation enables the use of methods...... of minimizing the weight of a structure subject to displacement and local design-dependent stress constraints. The method iteratively solves a sequence of problems of increasing size of the same type as the original problem. The problems are defined on a design mesh which is initially coarse...

  10. A hierarchical method for discrete structural topology design problems with local stress and displacement constraints

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Stidsen, Thomas K.

    2007-01-01

    In this paper, we present a hierarchical optimization method for finding feasible true 0-1 solutions to finite-element-based topology design problems. The topology design problems are initially modelled as non-convex mixed 0-1 programs. The hierarchical optimization method is applied to the problem...... and then successively refined as needed. At each level of design mesh refinement, a neighbourhood optimization method is used to treat the problem considered. The non-convex topology design problems are equivalently reformulated as convex all-quadratic mixed 0-1 programs. This reformulation enables the use of methods...... of minimizing the weight of a structure subject to displacement and local design-dependent stress constraints. The method iteratively treats a sequence of problems of increasing size of the same type as the original problem. The problems are defined on a design mesh which is initially coarse...

  11. Hierarchical coassembly of DNA–triptycene hybrid molecular building blocks and zinc protoporphyrin IX

    Directory of Open Access Journals (Sweden)

    Rina Kumari

    2016-05-01

    Full Text Available Herein, we describe the successful construction of composite DNA nanostructures by the self-assembly of complementary symmetrical 2,6,14-triptycenetripropiolic acid (TPA–DNA building blocks and zinc protoporphyrin IX (Zn PpIX. DNA–organic molecule scaffolds for the composite DNA nanostructure were constructed through covalent conjugation of TPA with 5′-C12-amine-terminated modified single strand DNA (ssDNA and its complementary strand. The repeated covalent conjugation of TPA with DNA was confirmed by using denaturing polyacrylamide gel electrophoresis (PAGE, reverse-phase high-performance liquid chromatography (RP-HPLC and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF. The biologically relevant photosensitizer Zn PpIX was used to direct the hybridization-mediated self-assembly of DNA–TPA molecular building blocks as well as a model guest molecule within the DNA–TPA supramolecular self-assembly. The formation of fiber-like composite DNA nanostructures was observed. Native PAGE, circular dichroism (CD and atomic force microscopy (AFM have been utilized for analyzing the formation of DNA nanofibers after the coassembly. Computational methods were applied to discern the theoretical dimension of the DNA–TPA molecular building block of the nanofibers. A notable change in photocatalytic efficiency of Zn PpIX was observed when it was inside the TPA–DNA scaffold. The significant increase in ROS generation by Zn PpIX when trapped in this biocompatible DNA–TPA hybrid nanofiber may be an effective tool to explore photodynamic therapy (PDT applications as well as photocatalytic reactions.

  12. MODERN BUILDING STRUCTURES USED FOR MILITARY PURPOSES

    Directory of Open Access Journals (Sweden)

    Mariana Domnica STANCIU

    2014-04-01

    Full Text Available This paper investigates the technical aspects of the spherical spatial structures, focusing on the tensegrity building systems used for military purpose. The spherical spatial structures have been studied and used since antiquity. Pythagoras, Plato and Euclid were conducted extensive research on the concept of such type of structures. Regular pentagon has properties related to the value of the golden section, intuitively used by great architects and engineers since ancient times. In the Middle Ages, Leonardo Da Vinci created spatial objects using proportions based on the golden number, and later R. B. Fuller made the famous geodesic domes. The structures proposed by the authors are based on concepts related to the "golden section", on studies made on the regular pentagon, on the spatial volumes able to be inscribed in spheres and on the tensegrity systems. The proposed structures present some advantages related to the ease of mounting, to the volume covered, to the resistance to the environmental factors (snow, wind, earthquake, and so on. The paper presents the conclusions of the investigations on the components of the spatial structures and on the outcomes of their use.

  13. Fabrication of semi-transparent superoleophobic thin film from fabrics and nanoparticle-based hierarchical structure

    Directory of Open Access Journals (Sweden)

    Nishizawa S.

    2013-08-01

    Full Text Available Superoleophobic thin films have many potential applications including fluid transfer, fluid power systems, stain resistant and antifouling materials, and microfluidics among others. Transparency is also desired with superhydrophobicity for their numerous applications; however transparency and oleophobicity are almost incompatible relationship with each other in the point of surface structure. Because oleophobicity required rougher structure at nano-micro scale than hydrophobicity, and these rough structure brings light scattering. So far, there is very few report of the compatible of transparency and superoleophobicity. In this report, we proposed the see-through type fabrics using the nanoparticle-based hierarchical structure thin film for improving both of oleophobicity and transparency. The vacant space between fibrils of fabrics has two important roles: the one is to through the light, another one is to introduce air layer to realize Cassie state of liquid droplet on thin film. To realize the low surface energy and nanoscale rough structure surface on fibrils, we used the spray method with perfluoroalkyl methacrylic copolymer (PMC, silica nano particles and volatile solvent. From the SEM image, the hierarchical structures of nanoparticle were formed uniformly on the fabrics. The transparency of thin film obtained was approximately 61% and the change of transparency between pre-coated fabrics and coated was 11%. From investigation of the surface wettability, the contact angles of oils (rapeseed oil and hexadecane and water droplet on the fabricated film were over 150 degree.

  14. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    International Nuclear Information System (INIS)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-01-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ -1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  15. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    Science.gov (United States)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-04-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ-1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  16. Substrate dependent hierarchical structures of RF sputtered ZnS films

    Science.gov (United States)

    Chalana, S. R.; Mahadevan Pillai, V. P.

    2018-05-01

    RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.

  17. Hierarchical system for autonomous sensing-healing of delamination in large-scale composite structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Sun, Denghao; Takeda, Nobuo

    2014-01-01

    This study combines our hierarchical fiber-optic-based delamination detection system with a microvascular self-healing material to develop the first autonomous sensing-healing system applicable to large-scale composite structures. In this combined system, embedded vascular modules are connected through check valves to a surface-mounted supply tube of a pressurized healing agent while fiber-optic-based sensors monitor the internal pressure of these vascular modules. When delamination occurs, the healing agent flows into the vascular modules breached by the delamination and infiltrates the damage for healing. At the same time, the pressure sensors identify the damaged modules by detecting internal pressure changes. This paper begins by describing the basic concept of the combined system and by discussing the advantages that arise from its hierarchical nature. The feasibility of the system is then confirmed through delamination infiltration tests. Finally, the hierarchical system is validated in a plate specimen by focusing on the detection and infiltration of the damage. Its self-diagnostic function is also demonstrated. (paper)

  18. Structural and photovoltaic characteristics of hierarchical ZnO nanostructures electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Muhammad, E-mail: saleem.malikape@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044 (China); Fang, L. [Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044 (China); Shaukat, Saleem F.; Ahmad, M. Ashfaq [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Akhtar, Majid Niaz; Jamil, Ayesha; Aslam, Samia [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Abbas, Ghazanfar [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2015-04-15

    Highlights: • Hierarchically ZnO nanostructures electrodes were grown using hot plate magnetic stirring at different growth reaction temperature. • We have investigated the effect of working temperature of 160°, 170°, 180°, and 190° on the growth mechanism of nanospheres and on the power conversion efficiency of DSSCs. • ZnO nanospheres with perfect aggregation show superior power conversion efficiency of 1.24% which is about 83% higher than nanoparticles DSSC. • An obvious vogue is that the overall power conversion efficiency decreases as the degree of the spherical aggregation is gradually destroyed. - Abstract: Structural and photovoltaic characteristics of hierarchical ZnO nanostructures solar cell have been studied in relation to growth reaction temperature. It is found that the hierarchical ZnO nanostructures network to act not only as large surface area substrates but also as a transport medium for electrons injected from the dye molecules. The incident photon-to-current conversion efficiency is decreased by increasing the growth reaction temperature of ZnO electrodes. The best conversion efficiency of a 0.25 cm{sup 2} cell is measured to be 1.24% under 100 mW cm{sup −2} irradiation.

  19. Structural and photovoltaic characteristics of hierarchical ZnO nanostructures electrodes

    International Nuclear Information System (INIS)

    Saleem, Muhammad; Fang, L.; Shaukat, Saleem F.; Ahmad, M. Ashfaq; Raza, Rizwan; Akhtar, Majid Niaz; Jamil, Ayesha; Aslam, Samia; Abbas, Ghazanfar

    2015-01-01

    Highlights: • Hierarchically ZnO nanostructures electrodes were grown using hot plate magnetic stirring at different growth reaction temperature. • We have investigated the effect of working temperature of 160°, 170°, 180°, and 190° on the growth mechanism of nanospheres and on the power conversion efficiency of DSSCs. • ZnO nanospheres with perfect aggregation show superior power conversion efficiency of 1.24% which is about 83% higher than nanoparticles DSSC. • An obvious vogue is that the overall power conversion efficiency decreases as the degree of the spherical aggregation is gradually destroyed. - Abstract: Structural and photovoltaic characteristics of hierarchical ZnO nanostructures solar cell have been studied in relation to growth reaction temperature. It is found that the hierarchical ZnO nanostructures network to act not only as large surface area substrates but also as a transport medium for electrons injected from the dye molecules. The incident photon-to-current conversion efficiency is decreased by increasing the growth reaction temperature of ZnO electrodes. The best conversion efficiency of a 0.25 cm 2 cell is measured to be 1.24% under 100 mW cm −2 irradiation

  20. A facile approach to fabricate hierarchically structured poly(3-hexylthiophene-2,5-diyl) films

    DEFF Research Database (Denmark)

    Zhang, Weihua; Zong, Chuanyong; Xie, Jixun

    2017-01-01

    Microstructured surfaces have great potentials to improve the performances and efficiency of optoelectronic devices. In this work, a simple robust approach based on surface instabilities was presented to fabricate poly(3-hexylthiophene-2,5-diyl) (P3HT) films with ridge-like/wrinkled composite...... microstructures. Namely, the hierarchically patterned films were prepared by spin coating the P3HT/tetrahydrofuran (THF) solution on a polydimethylsiloxane (PDMS) substrate to form stable ridge-like structures, followed by solvent vapor swelling to create surface wrinkles with the orientation guided by the ridge......-like structures. During spin coating of the P3HT/THF solution, the ridge-like structures were generated by the in-situ template of the THF swelling-induced creasing structures on the PDMS substrate. To our knowledge, it is the first report that the creasing structures are used as a recoverable template...

  1. Synthesis and Characterization of Hierarchical Structured TiO2 Nanotubes and Their Photocatalytic Performance on Methyl Orange

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2015-01-01

    Full Text Available Hierarchical structured TiO2 nanotubes were prepared by mechanical ball milling of highly ordered TiO2 nanotube arrays grown by electrochemical anodization of titanium foil. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, specific surface area analysis, UV-visible absorption spectroscopy, photocurrent measurement, photoluminescence spectra, electrochemical impedance spectra, and photocatalytic degradation test were applied to characterize the nanocomposites. Surface area increased as the milling time extended. After 5 h ball milling, TiO2 hierarchical nanotubes exhibited a corn-like shape and exhibited enhanced photoelectrochemical activity in comparison to commercial P25. The superior photocatalytic activity is suggested to be due to the combined advantages of high surface area of nanoparticles and rapid electron transfer as well as collection of the nanotubes in the hierarchical structure. The hierarchical structured TiO2 nanotubes could be applied into flexible applications on solar cells, sensors, and other photoelectrochemical devices.

  2. A study of hierarchical structure on South China industrial electricity-consumption correlation

    Science.gov (United States)

    Yao, Can-Zhong; Lin, Ji-Nan; Liu, Xiao-Feng

    2016-02-01

    Based on industrial electricity-consumption data of five southern provinces of China from 2005 to 2013, we study the industrial correlation mechanism with MST (minimal spanning tree) and HT (hierarchical tree) models. First, we comparatively analyze the industrial electricity-consumption correlation structure in pre-crisis and after-crisis period using MST model and Bootstrap technique of statistical reliability test of links. Results exhibit that all industrial electricity-consumption trees of five southern provinces of China in pre-crisis and after-crisis time are in formation of chain, and the "center-periphery structure" of those chain-like trees is consistent with industrial specialization in classical industrial chain theory. Additionally, the industrial structure of some provinces is reorganized and transferred in pre-crisis and after-crisis time. Further, the comparative analysis with hierarchical tree and Bootstrap technique demonstrates that as for both observations of GD and overall NF, the industrial electricity-consumption correlation is non-significant clustered in pre-crisis period, whereas it turns significant clustered in after-crisis time. Therefore we propose that in perspective of electricity-consumption, their industrial structures are directed to optimized organization and global correlation. Finally, the analysis of distance of HTs verifies that industrial reorganization and development may strengthen market integration, coordination and correlation of industrial production. Except GZ, other four provinces have a shorter distance of industrial electricity-consumption correlation in after-crisis period, revealing a better performance of regional specialization and integration.

  3. Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures.

    Science.gov (United States)

    Zhang, Xiao-Sheng; Zhu, Fu-Yun; Han, Meng-Di; Sun, Xu-Ming; Peng, Xu-Hua; Zhang, Hai-Xia

    2013-08-27

    This paper reports a novel single-step wafer-level fabrication of superhydrophobic micro/nano dual-scale (MNDS) poly(dimethylsiloxane) (PDMS) films. The MNDS PDMS films were replicated directly from an ultralow-surface-energy silicon substrate at high temperature without any surfactant coating, achieving high precision. An improved deep reactive ion etching (DRIE) process with enhanced passivation steps was proposed to easily realize the ultralow-surface-energy MNDS silicon substrate and also utilized as a post-treatment process to strengthen the hydrophobicity of the MNDS PDMS film. The chemical modification of this enhanced passivation step to the surface energy has been studied by density functional theory, which is also the first investigation of C4F8 plasma treatment at molecular level by using first-principle calculations. From the results of a systematic study on the effect of key process parameters (i.e., baking temperature and time) on PDMS replication, insight into the interaction of hierarchical multiscale structures of polymeric materials during the micro/nano integrated fabrication process is experimentally obtained for the first time. Finite element simulation has been employed to illustrate this new phenomenon. Additionally, hierarchical PDMS pyramid arrays and V-shaped grooves have been developed and are intended for applications as functional structures for a light-absorption coating layer and directional transport of liquid droplets, respectively. This stable, self-cleaning PDMS film with functional micro/nano hierarchical structures, which is fabricated through a wafer-level single-step fabrication process using a reusable silicon mold, shows attractive potential for future applications in micro/nanodevices, especially in micro/nanofluidics.

  4. High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers

    International Nuclear Information System (INIS)

    Tzounis, Lazaros; Debnath, Subhas; Rooj, Sandip; Fischer, Dieter; Mäder, Edith; Das, Amit; Stamm, Manfred; Heinrich, Gert

    2014-01-01

    A simple and facile method for depositing multiwall carbon nanotubes (MWCNTs) onto the surface of naturally occurring short jute fibers (JFs) is reported. Hierarchical multi-scale structures were formed with CNT-networks uniformly distributed and fully covering the JFs (JF–CNT), as depicted by the scanning electron microscopy (SEM) micrographs. The impact of these hybrid fillers on the mechanical properties of a natural rubber (NR) matrix was systematically investigated. Pristine JFs were cut initially to an average length of 2.0 mm and exposed to an alkali treatment (a-JFs) to remove impurities existing in the raw jute. MWCNTs were treated under mild acidic conditions to generate carboxylic acid moieties. Afterward, MWCNTs were dispersed in an aqueous media and short a-JFs were allowed to react with them. Raman spectroscopy confirmed the chemical interaction between CNTs and JFs. The JF–CNT exposed quite hydrophobic behavior as revealed by the water contact angle measurements, improving the wettability of the non-polar NR. Consequently, the composite interfacial adhesion strength was significantly enhanced while a micro-scale “mechanical interlocking” mechanism was observed from the interphase-section transmission electron microscopy (TEM) images. SEM analysis of the composite fracture surfaces demonstrated the interfacial strength of NR/a-JF and NR/JF–CNT composites, at different fiber loadings. It can be presumed that the CNT-coating effectively compatibillized the composite structure acting as a macromolecular coupling agent. A detailed analysis of stress-strain and dynamic mechanical spectra confirmed the high mechanical performance of the hierarchical composites, consisting mainly of materials arising from natural resources. - Highlights: • Natural rubber (NR) composites reinforced with CNT-modified short jute fibers. • MWCNTs deposited to the surface of jute fibers via non-covalent interactions. • Hierarchical reinforcement structure with

  5. Synthetic building materials for transport buildings and structures

    Science.gov (United States)

    Gerasimova, Vera

    2017-10-01

    The most effective building materials account for the highest growth not only in construction of residential and public buildings, but also other capital projects including roadways, bridges, drainage, communications and other engineering projects. Advancement in the technology of more efficient and ecologically responsible insulation materials have been a priority for safety, minimal maintenance and longevity of finished construction projects. The practical use of modern building materials such as insulation, sound reduction and low energy consumption are a benefit in cost and application compared to the use of outdated heavier and labor-intensive materials. The most efficient way for maximizing insolation and sound proofing should be done during the design stages of the project according to existing codes and regulations that are required by Western Government. All methods and materials that are used need to be optimized in order to reach a high durability and low operational and maintenance cost exceeding more than 50 years of the life of the building, whether it is for public, industrial or residential use. Western construction techniques and technologies need to be applied and adapted by the Russian Federation to insure the most productive successful methods are being implemented. The issues of efficient insulation materials are outlined in this article.

  6. Hierarchical organization in the temporal structure of infant-direct speech and song.

    Science.gov (United States)

    Falk, Simone; Kello, Christopher T

    2017-06-01

    Caregivers alter the temporal structure of their utterances when talking and singing to infants compared with adult communication. The present study tested whether temporal variability in infant-directed registers serves to emphasize the hierarchical temporal structure of speech. Fifteen German-speaking mothers sang a play song and told a story to their 6-months-old infants, or to an adult. Recordings were analyzed using a recently developed method that determines the degree of nested clustering of temporal events in speech. Events were defined as peaks in the amplitude envelope, and clusters of various sizes related to periods of acoustic speech energy at varying timescales. Infant-directed speech and song clearly showed greater event clustering compared with adult-directed registers, at multiple timescales of hundreds of milliseconds to tens of seconds. We discuss the relation of this newly discovered acoustic property to temporal variability in linguistic units and its potential implications for parent-infant communication and infants learning the hierarchical structures of speech and language. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Exploring hierarchical and overlapping modular structure in the yeast protein interaction network

    Directory of Open Access Journals (Sweden)

    Zhao Yi

    2010-12-01

    Full Text Available Abstract Background Developing effective strategies to reveal modular structures in protein interaction networks is crucial for better understanding of molecular mechanisms of underlying biological processes. In this paper, we propose a new density-based algorithm (ADHOC for clustering vertices of a protein interaction network using a novel subgraph density measurement. Results By statistically evaluating several independent criteria, we found that ADHOC could significantly improve the outcome as compared with five previously reported density-dependent methods. We further applied ADHOC to investigate the hierarchical and overlapping modular structure in the yeast PPI network. Our method could effectively detect both protein modules and the overlaps between them, and thus greatly promote the precise prediction of protein functions. Moreover, by further assaying the intermodule layer of the yeast PPI network, we classified hubs into two types, module hubs and inter-module hubs. Each type presents distinct characteristics both in network topology and biological functions, which could conduce to the better understanding of relationship between network architecture and biological implications. Conclusions Our proposed algorithm based on the novel subgraph density measurement makes it possible to more precisely detect hierarchical and overlapping modular structures in protein interaction networks. In addition, our method also shows a strong robustness against the noise in network, which is quite critical for analyzing such a high noise network.

  8. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries

    Science.gov (United States)

    Odziomek, Mateusz; Chaput, Frédéric; Rutkowska, Anna; Świerczek, Konrad; Olszewska, Danuta; Sitarz, Maciej; Lerouge, Frédéric; Parola, Stephane

    2017-05-01

    High-performance Li-ion batteries require materials with well-designed and controlled structures on nanometre and micrometre scales. Electrochemical properties can be enhanced by reducing crystallite size and by manipulating structure and morphology. Here we show a method for preparing hierarchically structured Li4Ti5O12 yielding nano- and microstructure well-suited for use in lithium-ion batteries. Scalable glycothermal synthesis yields well-crystallized primary 4-8 nm nanoparticles, assembled into porous secondary particles. X-ray photoelectron spectroscopy reveals presence of Ti+4 only; combined with chemical analysis showing lithium deficiency, this suggests oxygen non-stoichiometry. Electron microscopy confirms hierarchical morphology of the obtained material. Extended cycling tests in half cells demonstrates capacity of 170 mAh g-1 and no sign of capacity fading after 1,000 cycles at 50C rate (charging completed in 72 s). The particular combination of nanostructure, microstructure and non-stoichiometry for the prepared lithium titanate is believed to underlie the observed electrochemical performance of material.

  9. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, G.

    1999-12-16

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements.

  10. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    International Nuclear Information System (INIS)

    Mertz, G.

    1999-01-01

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements

  11. * Hierarchically Structured Electrospun Scaffolds with Chemically Conjugated Growth Factor for Ligament Tissue Engineering.

    Science.gov (United States)

    Pauly, Hannah M; Sathy, Binulal N; Olvera, Dinorath; McCarthy, Helen O; Kelly, Daniel J; Popat, Ketul C; Dunne, Nicholas J; Haut Donahue, Tammy Lynn

    2017-08-01

    The anterior cruciate ligament (ACL) of the knee is vital for proper joint function and is commonly ruptured during sports injuries or car accidents. Due to a lack of intrinsic healing capacity and drawbacks with allografts and autografts, there is a need for a tissue-engineered ACL replacement. Our group has previously used aligned sheets of electrospun polycaprolactone nanofibers to develop solid cylindrical bundles of longitudinally aligned nanofibers. We have shown that these nanofiber bundles support cell proliferation and elongation and the hierarchical structure and material properties are similar to the native human ACL. It is possible to combine multiple nanofiber bundles to create a scaffold that attempts to mimic the macroscale structure of the ACL. The goal of this work was to develop a hierarchical bioactive scaffold for ligament tissue engineering using connective tissue growth factor (CTGF)-conjugated nanofiber bundles and evaluate the behavior of mesenchymal stem cells (MSCs) on these scaffolds in vitro and in vivo. CTGF was immobilized onto the surface of individual nanofiber bundles or scaffolds consisting of multiple nanofiber bundles. The conjugation efficiency and the release of conjugated CTGF were assessed using X-ray photoelectron spectroscopy, assays, and immunofluorescence staining. Scaffolds were seeded with MSCs and maintained in vitro for 7 days (individual nanofiber bundles), in vitro for 21 days (scaled-up scaffolds of 20 nanofiber bundles), or in vivo for 6 weeks (small scaffolds of 4 nanofiber bundles), and ligament-specific tissue formation was assessed in comparison to non-CTGF-conjugated control scaffolds. Results showed that CTGF conjugation encouraged cell proliferation and ligament-specific tissue formation in vitro and in vivo. The results suggest that hierarchical electrospun nanofiber bundles conjugated with CTGF are a scalable and bioactive scaffold for ACL tissue engineering.

  12. Statistical discovery of site inter-dependencies in sub-molecular hierarchical protein structuring.

    Science.gov (United States)

    Durston, Kirk K; Chiu, David Ky; Wong, Andrew Kc; Li, Gary Cl

    2012-07-13

    Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families. The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function. Our results

  13. Synthesis and Characterization of Wooden Magnetic Activated Carbon Fibers with Hierarchical Pore Structures

    Directory of Open Access Journals (Sweden)

    Dongna Li

    2018-04-01

    Full Text Available Wooden magnetic activated carbon fibers (WMACFs with hierarchical pore structures were obtained by adding magnetic iron oxide (Fe3O4 nanoparticles into the liquefied wood. The structures and properties of WMACFs were analyzed by scanning electronmicroscopy (SEM, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, N2 adsorption, and vibrating sample magnetometer (VSM. The results showed that WMACFs had high Brunauer-Emmett-Teller (BET surface area (1578 m2/g and total pore volume (0.929 cm3/g, of which 45% was the contribution of small mesopores of 2–3 nm. It is believed that Fe3O4 nanoparticles play an important role in the formation of hierarchical pores. With the Fe3O4 content increasing, the yield rate of WMACFs decreased, and the Fe3O4 crystal plane diffraction peaks and characteristic adsorption peaks were obviously observed. At the same time, it was also found that WMACFs had favorable magnetic properties when the Fe3O4 content was above 1.5%. As a result, WMACFs could be a promising candidate for high efficiency, low cost, and convenient separation for the magnetic field.

  14. Fabrication of hydrophobic surface with hierarchical structure on Mg alloy and its corrosion resistance

    International Nuclear Information System (INIS)

    Wang Jun; Li Dandan; Liu Qi; Yin Xi; Zhang Ying; Jing Xiaoyan; Zhang Milin

    2010-01-01

    A hydrotalcite/hydromagnesite conversion coating with hierarchical structure has been fabricated on a Mg alloy substrate by in situ hydrothermal crystallization method. A MgO layer existing between the hydrotalcite/hydromagnesite film and the substrate was formed prior to the hydrotalcite/hydromagnesite film during the crystallization process. After surface treatment with silane coupling agent, the surface of conversion coating changes from hydrophilic to hydrophobic. Scanning electron microscopy (SEM) revealed that the silylated conversion coating with hierarchical structure maintains the original rough surface of which was composed of numerous micro-scale flakes and beautiful flower-like protrusions. Polarization measurements have shown that the hydrophobic conversion coating exhibited a low corrosion current density value of 0.432 μA/cm 2 , which means that the hydrophobic conversion coating can effectively protect Mg alloy from corrosion. Electrochemical impedance spectroscopy (EIS) showed that the impedance of the hydrophobic conversion coating was 9000 Ω. It means that the coating served as a passive layer with high charge transfer resistance.

  15. The hierarchical structure of childhood personality in five countries: continuity from early childhood to early adolescence.

    Science.gov (United States)

    Tackett, Jennifer L; Slobodskaya, Helena R; Mar, Raymond A; Deal, James; Halverson, Charles F; Baker, Spencer R; Pavlopoulos, Vassilis; Besevegis, Elias

    2012-08-01

    Childhood personality is a rapidly growing area of investigation within individual differences research. One understudied topic is the universality of the hierarchical structure of childhood personality. In the present investigation, parents rated the personality characteristics of 3,751 children from 5 countries and 4 age groups. The hierarchical structure of childhood personality was examined for 1-, 2-, 3-, 4-, and 5-factor models across country (Canada, China, Greece, Russia, and the United States) and age group (3-5, 6-8, 9-11, and 12-14 years of age). Many similarities were noted across both country and age. The Five-Factor Model was salient beginning in early childhood (ages 3-5). Deviations across groups and from adult findings are noted, including the prominent role of antagonism in childhood personality and the high covariation between Conscientiousness and intellect. Future directions, including the need for more explicit attempts to merge temperament and personality models, are discussed. © 2011 The Authors. Journal of Personality © 2011, Wiley Periodicals, Inc.

  16. Near-Infrared Trigged Stimulus-Responsive Photonic Crystals with Hierarchical Structures.

    Science.gov (United States)

    Lu, Tao; Pan, Hui; Ma, Jun; Li, Yao; Zhu, Shenmin; Zhang, Di

    2017-10-04

    Stimuli-responsive photonic crystals (PCs) trigged by light would provide a novel intuitive and quantitative method for noninvasive detection. Inspired by the flame-detecting aptitude of fire beetles and the hierarchical photonic structures of butterfly wings, we herein developed near-infrared stimuli-responsive PCs through coupling photothermal Fe 3 O 4 nanoparticles with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM), with hierarchical photonic structured butterfly wing scales as the template. The nanoparticles within 10 s transferred near-infrared radiation into heat that triggered the phase transition of PNIPAM; this almost immediately posed an anticipated effect on the PNIPAM refractive index and resulted in a composite spectrum change of ∼26 nm, leading to the direct visual readout. It is noteworthy that the whole process is durable and stable mainly owing to the chemical bonding formed between PNIPAM and the biotemplate. We envision that this biologically inspired approach could be utilized in a broad range of applications and would have a great impact on various monitoring processes and medical sensing.

  17. The contribution of reinforcement sensitivity to the personality-psychopathology hierarchical structure in childhood and adolescence.

    Science.gov (United States)

    Slobodskaya, Helena R

    2016-11-01

    This study examined the contribution of reinforcement sensitivity to the hierarchical structure of child personality and common psychopathology in community samples of parent reports of children aged 2-18 (N = 968) and self-reports of adolescents aged 10-18 (N = 1,543) using the Inventory of Child Individual Differences-Short version (ICID-S), the Strengths and Difficulties Questionnaire (SDQ), and the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ). A joint higher-order factor analysis of the ICID-S and SDQ scales suggested a 4-factor solution; congruence coefficients indicated replicability of the factors across the 2 samples at all levels of the personality-psychopathology hierarchy. The canonical correlation analyses indicated that reinforcement sensitivity and personality-psychopathology dimensions shared much of their variance. The main contribution of reinforcement sensitivity was through opposing effects of reward and punishment sensitivities. The superordinate factors Beta and Internalizing were best predicted by reinforcement sensitivity, followed by the Externalizing and Positive personality factors. These findings provide evidence for consistency of the hierarchical structure of personality and common psychopathology across informants and highlight the role of reinforcement systems in the development of normal and abnormal patterns of behavior and affect. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Hierarchically structured self-supported latex films for flexible and semi-transparent electronics

    International Nuclear Information System (INIS)

    Määttänen, Anni; Ihalainen, Petri; Törngren, Björn; Rosqvist, Emil; Pesonen, Markus; Peltonen, Jouko

    2016-01-01

    Graphical abstract: - Highlights: • Transparent self-supported latex films were fabricated by a peel-off process. • Various template substrates were used for creating e.g. hierarchically structured latex films. • Ultra-thin and semi-transparent conductive gold electrodes were evaporated on the latex films.Electrochemical experiments were carried out to verify the applicability of the electrodes. - Abstract: Different length scale alterations in topography, surface texture, and symmetry are known to evoke diverse cell behavior, including adhesion, orientation, motility, cytoskeletal condensation, and modulation of intracellular signaling pathways. In this work, self-supported latex films with well-defined isotropic/anisotropic surface features and hierarchical morphologies were fabricated by a peel-off process from different template surfaces. In addition, the latex films were used as substrates for evaporated ultrathin gold films with nominal thicknesses of 10 and 20 nm. Optical properties and topography of the samples were characterized using UV–vis spectroscopy and Atomic Force Microscopy (AFM) measurements, respectively. The latex films showed high-level transmittance of visible light, enabling the fabrication of semi-transparent gold electrodes. Electrochemical impedance spectroscopy (EIS) measurements were carried out for a number of days to investigate the long-term stability of the electrodes. The effect of 1-octadecanethiol (ODT) and HS(CH_2)_1_1OH (MuOH) thiolation and protein (human serum albumin, HSA) adsorption on the impedance and capacitance was studied. In addition, cyclic voltammetry (CV) measurements were carried out to determine active medicinal components, i.e., caffeic acid with interesting biological activities and poorly water-soluble anti-inflammatory drug, piroxicam. The results show that the fabrication procedure presented in this study enables the formation of platforms with hierarchical morphologies for multimodal (optical and

  19. Hierarchically structured self-supported latex films for flexible and semi-transparent electronics

    Energy Technology Data Exchange (ETDEWEB)

    Määttänen, Anni, E-mail: anni.maattanen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Ihalainen, Petri, E-mail: petri.ihalainen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Törngren, Björn, E-mail: bjorn.torngren@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Rosqvist, Emil, E-mail: emil.rosqvist@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Pesonen, Markus, E-mail: markus.pesonen@abo.fi [Physics, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Peltonen, Jouko, E-mail: jouko.peltonen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland)

    2016-02-28

    Graphical abstract: - Highlights: • Transparent self-supported latex films were fabricated by a peel-off process. • Various template substrates were used for creating e.g. hierarchically structured latex films. • Ultra-thin and semi-transparent conductive gold electrodes were evaporated on the latex films.Electrochemical experiments were carried out to verify the applicability of the electrodes. - Abstract: Different length scale alterations in topography, surface texture, and symmetry are known to evoke diverse cell behavior, including adhesion, orientation, motility, cytoskeletal condensation, and modulation of intracellular signaling pathways. In this work, self-supported latex films with well-defined isotropic/anisotropic surface features and hierarchical morphologies were fabricated by a peel-off process from different template surfaces. In addition, the latex films were used as substrates for evaporated ultrathin gold films with nominal thicknesses of 10 and 20 nm. Optical properties and topography of the samples were characterized using UV–vis spectroscopy and Atomic Force Microscopy (AFM) measurements, respectively. The latex films showed high-level transmittance of visible light, enabling the fabrication of semi-transparent gold electrodes. Electrochemical impedance spectroscopy (EIS) measurements were carried out for a number of days to investigate the long-term stability of the electrodes. The effect of 1-octadecanethiol (ODT) and HS(CH{sub 2}){sub 11}OH (MuOH) thiolation and protein (human serum albumin, HSA) adsorption on the impedance and capacitance was studied. In addition, cyclic voltammetry (CV) measurements were carried out to determine active medicinal components, i.e., caffeic acid with interesting biological activities and poorly water-soluble anti-inflammatory drug, piroxicam. The results show that the fabrication procedure presented in this study enables the formation of platforms with hierarchical morphologies for multimodal

  20. Enhanced photocatalytic properties of hierarchical three-dimensional TiO{sub 2} grown on femtosecond laser structured titanium substrate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ting, E-mail: huangting@bjut.edu.cn; Lu, Jinlong; Xiao, Rongshi; Wu, Qiang; Yang, Wuxiong

    2017-05-01

    Highlights: • The hierarchical 3D-TiO{sub 2} is fabricated on femtosecond laser structured Ti substrate. • The formation mechanism of hierarchical 3D-TiO{sub 2} is proposed. • The structure-induced improvement of photocatalytic activity is reported. - Abstract: Three-dimensional micro-/nanostructured TiO{sub 2} (3D-TiO{sub 2}) fabricated on titanium substrate effectively improves its performance in photocatalysis, dye-sensitized solar cell and lithium-ion battery applications. In this study, the hierarchical 3D-TiO{sub 2} with anatase phase directly grown on femtosecond laser structured titanium substrate is reported. First, the primary columnar arrays were fabricated on the surface of titanium substrate by femtosecond laser structuring. Next, the secondary nano-sheet substructures were grown on the primary columnar arrays by NaOH hydrothermal treatment. Followed by ion-exchange process in HCl and annealing in the air, the hierarchical anatase 3D-TiO{sub 2} was achieved. The hierarchical anatase 3D-TiO{sub 2} exhibited enhanced performances in light harvesting and absorption ability compared to that of nano-sheet TiO{sub 2} grown on flat titanium surface without femtosecond laser structuring. The photocatalytic degradation of methyl orange reveals that photocatalytic efficiency of the hierarchical anatase 3D-TiO{sub 2} was improved by a maximum of 57% compared to that of nano-sheet TiO{sub 2} (55% vs 35%). Meanwhile, the hierarchical anatase 3D-TiO{sub 2} remained mechanically stable and constant in consecutive degradation cycles, which promises significance in practical application.

  1. A conceptual modeling framework for discrete event simulation using hierarchical control structures

    Science.gov (United States)

    Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.

    2015-01-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940

  2. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition

    International Nuclear Information System (INIS)

    Hang Tao; Hu Anmin; Ling Huiqin; Li Ming; Mao Dali

    2010-01-01

    Super-hydrophobic nickel films were prepared by a simple and low cost electrodepositing method. The surface morphologies of the films characterized by scanning electronic microscope exhibit hierarchical structure with micro-nanocones array, which can be responsible for their super-hydrophobic characteristic (water contact angle over 150 o ) without chemical modification. The wettability of the film can be varied from super-hydrophobic (water contact angle 154 o ) to relatively hydrophilic (water contact angle 87 o ) by controlling the size of the micro-nanocones. The mechanism of the hydrophobic characteristic of nickel films with this unique structure was illustrated by several models. Such micro-nanostructure and its special wettability are expected to be applied in the practical industry.

  3. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting

    Science.gov (United States)

    Migliaccio, Christopher P.; Lazarus, Nathan

    2015-10-01

    Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.

  4. A conceptual modeling framework for discrete event simulation using hierarchical control structures.

    Science.gov (United States)

    Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D

    2015-08-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.

  5. Utilization of structural steel in buildings.

    Science.gov (United States)

    Moynihan, Muiris C; Allwood, Julian M

    2014-08-08

    Over one-quarter of steel produced annually is used in the construction of buildings. Making this steel causes carbon dioxide emissions, which climate change experts recommend be reduced by half in the next 37 years. One option to achieve this is to design and build more efficiently, still delivering the same service from buildings but using less steel to do so. To estimate how much steel could be saved from this option, 23 steel-framed building designs are studied, sourced from leading UK engineering firms. The utilization of each beam is found and buildings are analysed to find patterns. The results for over 10 000 beams show that average utilization is below 50% of their capacity. The primary reason for this low value is 'rationalization'-providing extra material to reduce labour costs. By designing for minimum material rather than minimum cost, steel use in buildings could be drastically reduced, leading to an equivalent reduction in 'embodied' carbon emissions.

  6. The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors

    Science.gov (United States)

    Zheng, Kaiwen; Li, Yuanyuan; Zhu, Ming; Yu, Xi; Zhang, Mengyan; Shi, Ling; Cheng, Jue

    2017-10-01

    A hierarchical porous water hyacinth-derived carbon (WHC) is fabricated by pre-carbonization and KOH activation for supercapacitors. The physicochemical properties of WHC are researched by scanning electron microscopy (SEM), N2 adsorption-desorption measurements, X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results indicate that WHC exhibits hierarchical porous structure and high specific surface area of 2276 m2/g. And the electrochemical properties of WHC are studied by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) tests. In a three-electrode test system, WHC shows considerable specific capacitance of 344.9 F/g at a current density of 0.5 A/g, good rate performance with 225.8 F/g even at a current density of 30 A/g, and good cycle stability with 95% of the capacitance retention after 10000 cycles of charge-discharge at a current density of 5 A/g. Moreover, WHC cell delivers an energy density of 23.8 Wh/kg at 0.5 A/g and a power density of 15.7 kW/kg at 10 A/g. Thus, using water hyacinth as carbon source to fabricate supercapacitors electrodes is a promising approach for developing inexpensive, sustainable and high-performance carbon materials. Additionally, this study supports the sustainable development and the control of biological invasion.

  7. Power flow analysis for islanded microgrid in hierarchical structure of control system using optimal control theory

    Directory of Open Access Journals (Sweden)

    Thang Diep Thanh

    2017-12-01

    Full Text Available In environmental uncertainties, the power flow problem in islanded microgrid (MG becomes complex and non-trivial. The optimal power flow (OPL problem is described in this paper by using the energy balance between the power generation and load demand. The paper also presents the hierarchical control structure which consists of primary, secondary, tertiary, and emergency controls. Clearly, optimal power flow (OPL which implements a distributed tertiary control in hierarchical control. MG consists of diesel engine generator (DEG, wind turbine generator (WTG, and photovoltaic (PV power. In the control system considered, operation planning is realized based on profiles such that the MG, load, wind and photovoltaic power must be forecasted in short-period, meanwhile the dispatch source (i.e., DEG needs to be scheduled. The aim of the control problem is to find the dispatch output power by minimizing the total cost of energy that leads to the Hamilton-Jacobi-Bellman equation. Experimental results are presented, showing the effectiveness of optimal control such that the generation allows demand profile.

  8. Photoelectrochemical properties of the TiO2-ZnO nanorod hierarchical structure prepared by hydrothermal process

    Directory of Open Access Journals (Sweden)

    Bao SUN

    2018-02-01

    Full Text Available In order to increase the transport channels of the photogenerated electrons and enhance the photosensitizer loading ability of the electrode, a new TiO2-ZnO nanorod hierarchical structure is prepared through two-step hydrothermal process. First, TiO2 nanorod array is grown on the FTO conductive glass substrate by hydrothermal proess. Then, ZnO sol is coated onto the TiO2 nanorods through dip-coating method and inverted to ZnO seed layer by sintering. Finally, the secondary ZnO nanorods are grown onto the TiO2 nanorods by the sencond hydrothermal method to form the designed TiO2-ZnO nanorod hierarchical structure. A spin-coating assisted successive ionic layer reaction method (SC-SILR is used to deposit the CdS nanocrystals into the TiO2 nanorod array and the TiO2-ZnO nanorod hierarchical structure is used to form the CdS/TiO2 and CdS/TiO2-ZnO nanocomposite films. Different methods, such as SEM, TEM, XRD, UV-Vis and transient photocurrent, are employed to characterize and measure the morphologies, structures, light absorption and photoelectric conversion performance of all the samples, respectively. The results indicate that, compared with the pure TiO2 nanorod array, the TiO2-ZnO nanorod hierarchical structure can load more CdS photosensitizer. The light absorption properties and transient photocurrent performance of the CdS/TiO2-ZnO nanorod hierarchical structure composite film are evidently superior to that of the CdS/TiO2 nanocomposite films. The excellent photoelctrochemical performance of theTiO2-ZnO hierarchical structure reveales its application prospect in photoanode material of the solar cells.

  9. Intrinsic hierarchical structural imperfections in a natural ceramic of bivalve shell with distinctly graded properties.

    Science.gov (United States)

    Jiao, Da; Liu, Zengqian; Zhang, Zhenjun; Zhang, Zhefeng

    2015-07-22

    Despite the extensive investigation on the structure of natural biological materials, insufficient attention has been paid to the structural imperfections by which the mechanical properties of synthetic materials are dominated. In this study, the structure of bivalve Saxidomus purpuratus shell has been systematically characterized quantitatively on multiple length scales from millimeter to sub-nanometer. It is revealed that hierarchical imperfections are intrinsically involved in the crossed-lamellar structure of the shell despite its periodically packed platelets. In particular, various favorable characters which are always pursued in synthetic materials, e.g. nanotwins and low-angle misorientations, have been incorporated herein. The possible contributions of these imperfections to mechanical properties are further discussed. It is suggested that the imperfections may serve as structural adaptations, rather than detrimental defects in the real sense, to help improve the mechanical properties of natural biological materials. This study may aid in understanding the optimizing strategies of structure and properties designed by nature, and accordingly, provide inspiration for the design of synthetic materials.

  10. Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries

    Science.gov (United States)

    Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan

    2017-05-01

    Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.

  11. Adsorption-Induced Deformation of Hierarchically Structured Mesoporous Silica-Effect of Pore-Level Anisotropy.

    Science.gov (United States)

    Balzer, Christian; Waag, Anna M; Gehret, Stefan; Reichenauer, Gudrun; Putz, Florian; Hüsing, Nicola; Paris, Oskar; Bernstein, Noam; Gor, Gennady Y; Neimark, Alexander V

    2017-06-06

    The goal of this work is to understand adsorption-induced deformation of hierarchically structured porous silica exhibiting well-defined cylindrical mesopores. For this purpose, we performed an in situ dilatometry measurement on a calcined and sintered monolithic silica sample during the adsorption of N 2 at 77 K. To analyze the experimental data, we extended the adsorption stress model to account for the anisotropy of cylindrical mesopores, i.e., we explicitly derived the adsorption stress tensor components in the axial and radial direction of the pore. For quantitative predictions of stresses and strains, we applied the theoretical framework of Derjaguin, Broekhoff, and de Boer for adsorption in mesopores and two mechanical models of silica rods with axially aligned pore channels: an idealized cylindrical tube model, which can be described analytically, and an ordered hexagonal array of cylindrical mesopores, whose mechanical response to adsorption stress was evaluated by 3D finite element calculations. The adsorption-induced strains predicted by both mechanical models are in good quantitative agreement making the cylindrical tube the preferable model for adsorption-induced strains due to its simple analytical nature. The theoretical results are compared with the in situ dilatometry data on a hierarchically structured silica monolith composed by a network of mesoporous struts of MCM-41 type morphology. Analyzing the experimental adsorption and strain data with the proposed theoretical framework, we find the adsorption-induced deformation of the monolithic sample being reasonably described by a superposition of axial and radial strains calculated on the mesopore level. The structural and mechanical parameters obtained from the model are in good agreement with expectations from independent measurements and literature, respectively.

  12. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces

    International Nuclear Information System (INIS)

    Katz, J. Lawrence; Misra, Anil; Spencer, Paulette; Wang, Yong; Bumrerraj, Sauwanan; Nomura, Tsutomu; Eppell, Steven J.; Tabib-Azar, Massood

    2007-01-01

    This paper presents a review plus new data that describes the role hierarchical nanostructural properties play in developing an understanding of the effect of scale on the material properties (chemical, elastic and electrical) of calcified tissues as well as the interfaces that form between such tissues and biomaterials. Both nanostructural and microstructural properties will be considered starting with the size and shape of the apatitic mineralites in both young and mature bovine bone. Microstructural properties for human dentin and cortical and trabecular bone will be considered. These separate sets of data will be combined mathematically to advance the effects of scale on the modeling of these tissues and the tissue/biomaterial interfaces as hierarchical material/structural composites. Interfacial structure and properties to be considered in greatest detail will be that of the dentin/adhesive (d/a) interface, which presents a clear example of examining all three material properties, (chemical, elastic and electrical). In this case, finite element modeling (FEA) was based on the actual measured values of the structure and elastic properties of the materials comprising the d/a interface; this combination provides insight into factors and mechanisms that contribute to premature failure of dental composite fillings. At present, there are more elastic property data obtained by microstructural measurements, especially high frequency ultrasonic wave propagation (UWP) and scanning acoustic microscopy (SAM) techniques. However, atomic force microscopy (AFM) and nanoindentation (NI) of cortical and trabecular bone and the dentin-enamel junction (DEJ) among others have become available allowing correlation of the nanostructural level measurements with those made on the microstructural level

  13. Hierarchical periodic micro/nano-structures on nitinol and their influence on oriented endothelialization and anti-thrombosis

    International Nuclear Information System (INIS)

    Nozaki, Kosuke; Shinonaga, Togo; Ebe, Noriko; Horiuchi, Naohiro; Nakamura, Miho; Tsutsumi, Yusuke; Hanawa, Takao; Tsukamoto, Masahiro; Yamashita, Kimihiro; Nagai, Akiko

    2015-01-01

    The applications of hierarchical micro/nano-structures, which possess properties of two-scale roughness, have been studied in various fields. In this study, hierarchical periodic micro/nano-structures were fabricated on nitinol, an equiatomic Ni–Ti alloy, using a femtosecond laser for the surface modification of intravascular stents. By controlling the laser fluence, two types of surfaces were developed: periodic nano- and micro/nano-structures. Evaluation of water contact angles indicated that the nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. Endothelial cells aligned along the nano-structures on both surfaces, whereas platelets failed to adhere to the micro/nano-surface. Decorrelation between the responses of the two cell types and the results of water contact angle analysis were a result of the pinning effect. This is the first study to show the applicability of hierarchical periodic micro/nano-structures for surface modification of nitinol. - Highlights: • Hierarchical micro/nano-structures were created on nitinol using a femtosecond laser. • The nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. • Endothelial cells aligned along the nano-structures • Platelets failed to adhere to the micro/nano-surface

  14. Hierarchical periodic micro/nano-structures on nitinol and their influence on oriented endothelialization and anti-thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Kosuke [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Shinonaga, Togo [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ebe, Noriko; Horiuchi, Naohiro; Nakamura, Miho; Tsutsumi, Yusuke; Hanawa, Takao [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Tsukamoto, Masahiro [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Yamashita, Kimihiro [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Nagai, Akiko, E-mail: nag-bcr@tmd.ac.jp [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan)

    2015-12-01

    The applications of hierarchical micro/nano-structures, which possess properties of two-scale roughness, have been studied in various fields. In this study, hierarchical periodic micro/nano-structures were fabricated on nitinol, an equiatomic Ni–Ti alloy, using a femtosecond laser for the surface modification of intravascular stents. By controlling the laser fluence, two types of surfaces were developed: periodic nano- and micro/nano-structures. Evaluation of water contact angles indicated that the nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. Endothelial cells aligned along the nano-structures on both surfaces, whereas platelets failed to adhere to the micro/nano-surface. Decorrelation between the responses of the two cell types and the results of water contact angle analysis were a result of the pinning effect. This is the first study to show the applicability of hierarchical periodic micro/nano-structures for surface modification of nitinol. - Highlights: • Hierarchical micro/nano-structures were created on nitinol using a femtosecond laser. • The nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. • Endothelial cells aligned along the nano-structures • Platelets failed to adhere to the micro/nano-surface.

  15. Structure-function relationship in complex brain networks expressed by hierarchical synchronization

    International Nuclear Information System (INIS)

    Zhou Changsong; Zemanova, Lucia; Zamora-Lopez, Gorka; Hilgetag, Claus C; Kurths, Juergen

    2007-01-01

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks

  16. Structure-function relationship in complex brain networks expressed by hierarchical synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Changsong [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Zemanova, Lucia [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Zamora-Lopez, Gorka [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Hilgetag, Claus C [Jacobs University Bremen, Campus Ring 6, Rm 116, D-28759 Bremen (Germany); Kurths, Juergen [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany)

    2007-06-15

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.

  17. A Persistent Structured Hierarchical Overlay Network to Counter Intentional Churn Attack

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2016-01-01

    Full Text Available The increased use of structured overlay network for a variety of applications has attracted a lot of attention from both research community and attackers. However, the structural constraints, open nature (anybody can join and anybody may leave, and unreliability of its participant nodes significantly affect the performance of these applications and make it vulnerable to a variety of attacks such as eclipse, Sybil, and churn. One attack to compromise the service availability in overlay network is intentional churn (join/leave attack, where a large number of malicious users will join and leave the overlay network so frequently that the entire structure collapses and becomes unavailable. The focus of this paper is to provide a new robust, efficient, and scalable hierarchical overlay architecture that will counter these attacks by providing a structure that can accommodate the fleeting behaviour of nodes without causing much structural inconsistencies. The performance evaluation showed that the proposed architecture has more failure resilience and self-organization as compared to chord based architecture. Experimental results have demonstrated that the effect of failures on an overlay is proportional to the size of failure.

  18. A hierarchical model for structure learning based on the physiological characteristics of neurons

    Institute of Scientific and Technical Information of China (English)

    WEI Hui

    2007-01-01

    Almost all applications of Artificial Neural Networks (ANNs) depend mainly on their memory ability.The characteristics of typical ANN models are fixed connections,with evolved weights,globalized representations,and globalized optimizations,all based on a mathematical approach.This makes those models to be deficient in robustness,efficiency of learning,capacity,anti-jamming between training sets,and correlativity of samples,etc.In this paper,we attempt to address these problems by adopting the characteristics of biological neurons in morphology and signal processing.A hierarchical neural network was designed and realized to implement structure learning and representations based on connected structures.The basic characteristics of this model are localized and random connections,field limitations of neuron fan-in and fan-out,dynamic behavior of neurons,and samples represented through different sub-circuits of neurons specialized into different response patterns.At the end of this paper,some important aspects of error correction,capacity,learning efficiency,and soundness of structural representation are analyzed theoretically.This paper has demonstrated the feasibility and advantages of structure learning and representation.This model can serve as a fundamental element of cognitive systems such as perception and associative memory.Key-words structure learning,representation,associative memory,computational neuroscience

  19. Estimating the Term Structure With a Semiparametric Bayesian Hierarchical Model: An Application to Corporate Bonds1

    Science.gov (United States)

    Cruz-Marcelo, Alejandro; Ensor, Katherine B.; Rosner, Gary L.

    2011-01-01

    The term structure of interest rates is used to price defaultable bonds and credit derivatives, as well as to infer the quality of bonds for risk management purposes. We introduce a model that jointly estimates term structures by means of a Bayesian hierarchical model with a prior probability model based on Dirichlet process mixtures. The modeling methodology borrows strength across term structures for purposes of estimation. The main advantage of our framework is its ability to produce reliable estimators at the company level even when there are only a few bonds per company. After describing the proposed model, we discuss an empirical application in which the term structure of 197 individual companies is estimated. The sample of 197 consists of 143 companies with only one or two bonds. In-sample and out-of-sample tests are used to quantify the improvement in accuracy that results from approximating the term structure of corporate bonds with estimators by company rather than by credit rating, the latter being a popular choice in the financial literature. A complete description of a Markov chain Monte Carlo (MCMC) scheme for the proposed model is available as Supplementary Material. PMID:21765566

  20. Hierarchically Porous Carbon Materials for CO 2 Capture: The Role of Pore Structure

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Luis [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Barpaga, Dushyant [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Zheng, Jian [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Sabale, Sandip [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Patel, Rajankumar L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Zhang, Ji-Guang [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; McGrail, B. Peter [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Motkuri, Radha Kishan [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States

    2018-01-17

    With advances in porous carbon synthesis techniques, hierarchically porous carbon (HPC) materials are being utilized as relatively new porous carbon sorbents for CO2 capture applications. These HPC materials were used as a platform to prepare samples with differing textural properties and morphologies to elucidate structure-property relationships. It was found that high microporous content, rather than overall surface area was of primary importance for predicting good CO2 capture performance. Two HPC materials were analyzed, each with near identical high surface area (~2700 m2/g) and colossally high pore volume (~10 cm3/g), but with different microporous content and pore size distributions, which led to dramatically different CO2 capture performance. Overall, large pore volumes obtained from distinct mesopores were found to significantly impact adsorption performance. From these results, an optimized HPC material was synthesized that achieved a high CO2 capacity of ~3.7 mmol/g at 25°C and 1 bar.

  1. Functional Biomass Carbons with Hierarchical Porous Structure for Supercapacitor Electrode Materials

    International Nuclear Information System (INIS)

    Chen, Hao; Liu, Duo; Shen, Zhehong; Bao, Binfu; Zhao, Shuyan; Wu, Limin

    2015-01-01

    Highlights: • We successfully prepared bamboo-derived porous carbon with B and N co-doping. • This novel carbon exhibits significantly enhanced specific capacitance and energy density. • The highest specific capacitance exceeds those of most similar carbon materials. • Asymmetric supercapacitor based on this carbon shows satisfactory capacitive performance. - Abstract: This paper presents nitrogen and boron co-doped KOH-activated bamboo-derived carbon as a porous biomass carbon with utility as a supercapacitor electrode material. Owing to the high electrochemical activity promoted by the hierarchical porous structure and further endowed by boron and nitrogen co-doping, electrodes based on the as-obtained material exhibit significantly enhanced specific capacitance and energy density relative to those based on most similar materials. An asymmetric supercapacitor based on this novel carbon material demonstrated satisfactory energy density and electrochemical cycling stability.

  2. Hierarchically structured exergetic and exergoeconomic analysis and evaluation of energy conversion processes

    International Nuclear Information System (INIS)

    Hebecker, Dietrich; Bittrich, Petra; Riedl, Karsten

    2005-01-01

    Evaluation of the efficiency and economic benefit of energy conversion processes and technologies requires a scientifically based analysis. The hierarchically structured exergetic analysis provides a detailed characterization of complex technical systems. By defining corresponding evaluation coefficients, the exergetic efficiency can be assessed for units within the whole system. Based on this exergetic analysis, a thermoeconomic evaluation method is developed. A cost function is defined for all units, subsystems and the total plant, so that the cost flow in the system can be calculated. Three dimensionless coefficients, the Pauer factor, the loss coefficient and the cost factor, enable pinpointing cost intensive process units, allocating cost in cases of co-production and gaining insight for future design improvements. The methodology is demonstrated by a biomass gasification plant producing electricity, heat and cold

  3. Effects of a GPC-PID control strategy with hierarchical structure for a cooling coil unit

    International Nuclear Information System (INIS)

    Xu Min; Li Shaoyuan; Cai Wenjian; Lu Lu

    2006-01-01

    This paper presents a GPC-PID control strategy for a cooling-coil unit in heating, ventilation and air conditioning systems. By analysis of the cooling towers and chillers, different models in the occupied period are considered in each operating condition. Because of the complication of components, well tuned PID controllers are unsatisfied, and the results are poor over a wide range of operation conditions. To solve this problem, a GPC-PID controller with hierarchical structure is proposed based on minimizing the generalized predictive control criterion to tune conventional PID controller parameters. Simulation and experiments show that the proposed controller is able to deal with a wide range of operating conditions and to achieve better performance than conventional methods

  4. Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids

    International Nuclear Information System (INIS)

    Wang Shutao; Song Yanlin; Jiang Lei

    2007-01-01

    Inspired by the lotus effect, we fabricate new microscale and nanoscale hierarchical structured copper mesh films by a simple electrochemical deposition. After modification of the long-chain fatty acid monolayer, these films show superhydrophobic and superoleophilic properties, which could be used for the effective separation of oil and water. The length of the fatty acid chain strongly influences the surface wettability of as-prepared films. It is confirmed that the cooperative effect of the hierarchical structure of the copper film and the nature of the long-chain fatty acid contribute to this unique surface wettability

  5. Hierarchically porous Ni monolith@branch-structured NiCo2O4 for high energy density supercapacitors

    Directory of Open Access Journals (Sweden)

    Mengjie Xu

    2016-06-01

    Full Text Available A variety of NiCo2O4 nanostrucutures ranging from nanowire to nanoplate and branched structures were successfully prepared via a simple hydrothermal process. The experimental results show that NiCo2O4 with branched structures possesses the best overall electrochemical performance. The improvement of energy density was explored in terms of hierarchically three-dimensional (3D metal substrates and a high specific area capacitance, and area energy density is obtained with hierarchically porous Ni monolith synthesized through a controlled combustion procedure.

  6. AFM study of excimer laser patterning of block-copolymer: Creation of ordered hierarchical, hybrid, or recessed structures

    International Nuclear Information System (INIS)

    Švanda, Jan; Siegel, Jakub; Švorčík, Vaclav; Lyutakov, Oleksiy

    2016-01-01

    Highlights: • Combination of bottom-up (BCP separation) and top-down (laser patterning) technologies allows obtaining hierarchical structures. • Surface morphologies were determined by the order of patterning steps (laser modification, annealing, surface reconstruction). • Tuning the order of steps enables the reorientation of BCP domain at large scale, fabrication of hierarchical, hybrid or recessed structures. • The obtained structures can find potential applications in nanotechnology, plasmonics, information storage, sensors and smart surfaces. - Abstract: We report fabrication of the varied range of hierarchical structures by combining bottom-up self-assembly of block copolymer poly(styrene-block-vinylpyridine) (PS-b-P4VP) with top-down excimer laser patterning method. Different procedures were tested, where laser treatment was applied before phase separation and after phase separation or phase separation and surface reconstruction. Laser treatment was performed using either polarized laser light with the aim to create periodical pattern on polymer surface or non-polarized light for preferential removing of polystyrene (PS) part from PS-b-P4VP. Additionally, dye was introduced into one part of block copolymer (P4VP) with the aim to modify its response to laser light. Resulting structures were analyzed by XPS, UV–vis and AFM techniques. Application of polarized laser light leads to creation of structures with hierarchical, recessed or hybrid geometries. Non-polarized laser beam allows pronouncing the block copolymer phase separated structure. Tuning the order of steps or individual step conditions enables the efficient reorientation of block-copolymer domain at large scale, fabrication of hierarchical, hybrid or recessed structures. The obtained structures can find potential applications in nanotechnology, photonics, plasmonics, information storage, optical devices, sensors and smart surfaces.

  7. Seismic Safety Margins Research Program (Phase I). Project IV. Structural building response; Structural Building Response Review

    International Nuclear Information System (INIS)

    Healey, J.J.; Wu, S.T.; Murga, M.

    1980-02-01

    As part of the Phase I effort of the Seismic Safety Margins Research Program (SSMRP) being performed by the University of California Lawrence Livermore Laboratory for the US Nuclear Regulatory Commission, the basic objective of Subtask IV.1 (Structural Building Response Review) is to review and summarize current methods and data pertaining to seismic response calculations particularly as they relate to the objectives of the SSMRP. This material forms one component in the development of the overall computational methodology involving state of the art computations including explicit consideration of uncertainty and aimed at ultimately deriving estimates of the probability of radioactive releases due to seismic effects on nuclear power plant facilities

  8. Au functionalized ZnO rose-like hierarchical structures and their enhanced NO2 sensing performance

    Science.gov (United States)

    Shingange, K.; Swart, H. C.; Mhlongo, G. H.

    2018-04-01

    Herein, we present ZnO rose-like hierarchical nanostructures employed as support to Au nanoparticles to produce Au functionalized three dimensional (3D) ZnO hierarchical nanostructures (Au/ZnO) for NO2 detection using a microwave-assisted method. Comparative analysis of NO2 sensing performance between the pristine ZnO and Au/ZnO rose-like structures at 300 °C revealed improved NO2 response and rapid response-recovery times with Au incorporation owing to a combination of high surface accessibility induced by hierarchical nanostructure design and catalytic activity of the small Au nanoparticles. Structural and optical analyses acquired from X-ray diffraction, scanning electron microscopy, transmission electron microscope and photoluminescence spectroscopy were also performed.

  9. From Nano to Macro: Studying the Hierarchical Structure of the Corneal Extracellular Matrix

    Science.gov (United States)

    Quantock, Andrew J.; Winkler, Moritz; Parfitt, Geraint J.; Young, Robert D.; Brown, Donald J.; Boote, Craig; Jester, James V.

    2014-01-01

    In this review, we discuss current methods for studying ocular extracellular matrix (ECM) assembly from the ‘nano’ to the ‘macro’ levels of hierarchical organization. Since collagen is the major structural protein in the eye, providing mechanical strength and controlling ocular shape, the methods presented focus on understanding the molecular assembly of collagen at the nanometer level using x-ray scattering through to the millimeter to centimeter level using nonlinear optical (NLO) imaging of second harmonic generated (SHG) signals. Three-dimensional analysis of ECM structure is also discussed, including electron tomography, serial block face scanning electron microscopy (SBF-SEM) and digital image reconstruction. Techniques to detect non-collagenous structural components of the ECM are also presented, and these include immunoelectron microscopy and staining with cationic dyes. Together, these various approaches are providing new insights into the structural blueprint of the ocular ECM, and in particular that of the cornea, which impacts upon our current understanding of the control of corneal shape, pathogenic mechanisms underlying ectatic disorders of the cornea and the potential for corneal tissue engineering. PMID:25819457

  10. Elementary structural building blocks encountered in silicon surface reconstructions

    International Nuclear Information System (INIS)

    Battaglia, Corsin; Monney, Claude; Didiot, Clement; Schwier, Eike Fabian; Garnier, Michael Gunnar; Aebi, Philipp; Gaal-Nagy, Katalin; Onida, Giovanni

    2009-01-01

    Driven by the reduction of dangling bonds and the minimization of surface stress, reconstruction of silicon surfaces leads to a striking diversity of outcomes. Despite this variety even very elaborate structures are generally comprised of a small number of structural building blocks. We here identify important elementary building blocks and discuss their integration into the structural models as well as their impact on the electronic structure of the surface. (topical review)

  11. The Green Bank Ammonia Survey: Observations of Hierarchical Dense Gas Structures in Cepheus-L1251

    Science.gov (United States)

    Keown, Jared; Di Francesco, James; Kirk, Helen; Friesen, Rachel K.; Pineda, Jaime E.; Rosolowsky, Erik; Ginsburg, Adam; Offner, Stella S. R.; Caselli, Paola; Alves, Felipe; Chacón-Tanarro, Ana; Punanova, Anna; Redaelli, Elena; Seo, Young Min; Matzner, Christopher D.; Chun-Yuan Chen, Michael; Goodman, Alyssa A.; Chen, How-Huan; Shirley, Yancy; Singh, Ayushi; Arce, Hector G.; Martin, Peter; Myers, Philip C.

    2017-11-01

    We use Green Bank Ammonia Survey observations of NH3 (1, 1) and (2, 2) emission with 32″ FWHM resolution from a ˜10 pc2 portion of the Cepheus-L1251 molecular cloud to identify hierarchical dense gas structures. Our dendrogram analysis of the NH3 data results in 22 top-level structures, which reside within 13 lower-level parent structures. The structures are compact (0.01 {pc}≲ {R}{eff}≲ 0.1 {pc}) and are spatially correlated with the highest H2 column density portions of the cloud. We also compare the ammonia data to a catalog of dense cores identified by higher-resolution (18.″2 FWHM) Herschel Space Observatory observations of dust continuum emission from Cepheus-L1251. Maps of kinetic gas temperature, velocity dispersion, and NH3 column density, derived from detailed modeling of the NH3 data, are used to investigate the stability and chemistry of the ammonia-identified and Herschel-identified structures. We show that the dust and dense gas in the structures have similar temperatures, with median T dust and T K measurements of 11.7 ± 1.1 K and 10.3 ± 2.0 K, respectively. Based on a virial analysis, we find that the ammonia-identified structures are gravitationally dominated, yet may be in or near a state of virial equilibrium. Meanwhile, the majority of the Herschel-identified dense cores appear to be not bound by their own gravity and instead confined by external pressure. CCS (20 - 10) and HC5N (9-8) emission from the region reveal broader line widths and centroid velocity offsets when compared to the NH3 (1, 1) emission in some cases, likely due to these carbon-based molecules tracing the turbulent outer layers of the dense cores.

  12. Motion Tree Delineates Hierarchical Structure of Protein Dynamics Observed in Molecular Dynamics Simulation.

    Directory of Open Access Journals (Sweden)

    Kei Moritsugu

    Full Text Available Molecular dynamics (MD simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a "Motion Tree", to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations. The method was first applied to the MD trajectory of substrate-free adenylate kinase to clarify the usefulness of the Motion Tree, which illustrated a clear-cut dynamics picture of the inter-domain motions involving the ATP/AMP lid and the core domain together with the associated amplitudes and correlations. The comparison of two Motion Trees calculated from MD simulations of ligand-free and -bound glutamine binding proteins clarified changes in inherent dynamics upon ligand binding appeared in both large domains and a small loop that stabilized ligand molecule. Another application to a huge protein, a multidrug ATP binding cassette (ABC transporter, captured significant increases of fluctuations upon binding a drug molecule observed in both large scale inter-subunit motions and a motion localized at a transmembrane helix, which may be a trigger to the subsequent structural change from inward-open to outward-open states to transport the drug molecule. These applications demonstrated the capabilities of Motion Trees to provide an at-a-glance view of various sizes of functional motions inherent in the complicated MD trajectory.

  13. Hierarchical mixture of experts and diagnostic modeling approach to reduce hydrologic model structural uncertainty: STRUCTURAL UNCERTAINTY DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Moges, Edom [Civil and Environmental Engineering Department, Washington State University, Richland Washington USA; Demissie, Yonas [Civil and Environmental Engineering Department, Washington State University, Richland Washington USA; Li, Hong-Yi [Hydrology Group, Pacific Northwest National Laboratory, Richland Washington USA

    2016-04-01

    In most water resources applications, a single model structure might be inadequate to capture the dynamic multi-scale interactions among different hydrological processes. Calibrating single models for dynamic catchments, where multiple dominant processes exist, can result in displacement of errors from structure to parameters, which in turn leads to over-correction and biased predictions. An alternative to a single model structure is to develop local expert structures that are effective in representing the dominant components of the hydrologic process and adaptively integrate them based on an indicator variable. In this study, the Hierarchical Mixture of Experts (HME) framework is applied to integrate expert model structures representing the different components of the hydrologic process. Various signature diagnostic analyses are used to assess the presence of multiple dominant processes and the adequacy of a single model, as well as to identify the structures of the expert models. The approaches are applied for two distinct catchments, the Guadalupe River (Texas) and the French Broad River (North Carolina) from the Model Parameter Estimation Experiment (MOPEX), using different structures of the HBV model. The results show that the HME approach has a better performance over the single model for the Guadalupe catchment, where multiple dominant processes are witnessed through diagnostic measures. Whereas, the diagnostics and aggregated performance measures prove that French Broad has a homogeneous catchment response, making the single model adequate to capture the response.

  14. Scaling behavior in urban development process of Tokyo City and hierarchical dynamical structure

    International Nuclear Information System (INIS)

    Matsuba, Ikuo; Namatame, Masanori

    2003-01-01

    We study a geometric structure of urban development process which pays particular attention to scaling properties in the settlement area and inhabitant population through changes in the scaling exponents. Both the degree to which the space is fulfilled and the rate at which it is filled are obtained for the residential development in Tokyo. For distances larger than the city boundary, there is a sharp cross-over to a suburban region with a quite intriguing variation with a distance from the center of the city. The population densities in this region are found to collapse into a single scaling function with the scaling exponent 0.678 in the early 1990s in which the growth of the population attenuates. We propose a cellular automata model using the simulated annealing method that succeeds in reproducing the qualitative similar structural complexity of the actual city by taking into account the transportation system, especially railroad network. Finally, a possible theoretical consideration is given in analogous with fluid dynamics. Scaling of the population density is obtained assuming that there is a dynamical hierarchical structure in the scaling region where the stationarity is fulfilled. The theoretically obtained exponent 2/3 agrees well with the observed one

  15. Hierarchical structure and mechanical properties of snake (Naja atra) and turtle (Ocadia sinensis) eggshells.

    Science.gov (United States)

    Chang, Yin; Chen, Po-Yu

    2016-02-01

    studied while there are very few studies on reptilian eggshells and most of them focused on mineralization and embryotic development. For the first time, the hierarchical structure and mechanical properties of snake and turtle eggshells are comprehensively and comparatively studied. Both snake and turtle eggshells are multilayer, hierarchically-structured composites consisting mainly of keratin yet their mechanical behaviors are distinctly different. Turtle eggshells are stiff and rigid, while snake eggshells are highly extensible (>200%) and reversible due to multiple deformation stages, phase transition of keratin and various toughening mechanisms. We believe that this study will make positive scientific impact and interest the broad and multidisciplinary readership. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Construction of 3D Arrays of Cylindrically Hierarchical Structures with ZnO Nanorods Hydrothermally Synthesized on Optical Fiber Cores

    Directory of Open Access Journals (Sweden)

    Weixuan Jing

    2014-01-01

    Full Text Available With ZnO nanorods hydrothermally synthesized on manually assembled arrays of optical fiber cores, 3D arrays of ZnO nanorod-based cylindrically hierarchical structures with nominal pitch 250 μm or 375 μm were constructed. Based on micrographs of scanning electron microscopy and image processing operators of MATLAB software, the 3D arrays of cylindrically hierarchical structures were quantitatively characterized. The values of the actual diameters, the actual pitches, and the parallelism errors suggest that the process capability of the manual assembling is sufficient and the quality of the 3D arrays of cylindrically hierarchical structures is acceptable. The values of the characteristic parameters such as roughness, skewness, kurtosis, correlation length, and power spectrum density show that the surface morphologies of the cylindrically hierarchical structures not only were affected significantly by Zn2+ concentration of the growth solution but also were anisotropic due to different curvature radii of the optical fiber core at side and front view.

  17. Synthesis of a hierarchically structured zeolite-templated carbon starting from fly ash-derived zeolite X

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-05-01

    Full Text Available A hierarchically structured zeolite derived from coal fly ash was used as a hard templating agent for the synthesis of a templated carbonaceous material. The samples were characterized using XRD, SEM, TEM, TGA, EDS and BET. The resulting carbon had...

  18. Hierarchical structure of the European countries based on debts as a percentage of GDP during the 2000-2011 period

    Science.gov (United States)

    Kantar, Ersin; Deviren, Bayram; Keskin, Mustafa

    2014-11-01

    We investigate hierarchical structures of the European countries by using debt as a percentage of Gross Domestic Product (GDP) of the countries as they change over a certain period of time. We obtain the topological properties among the countries based on debt as a percentage of GDP of European countries over the period 2000-2011 by using the concept of hierarchical structure methods (minimal spanning tree, (MST) and hierarchical tree, (HT)). This period is also divided into two sub-periods related to 2004 enlargement of the European Union, namely 2000-2004 and 2005-2011, in order to test various time-window and observe the temporal evolution. The bootstrap techniques is applied to see a value of statistical reliability of the links of the MSTs and HTs. The clustering linkage procedure is also used to observe the cluster structure more clearly. From the structural topologies of these trees, we identify different clusters of countries according to their level of debts. Our results show that by the debt crisis, the less and most affected Eurozone’s economies are formed as a cluster with each other in the MSTs and hierarchical trees.

  19. Morphologies and wetting properties of copper film with 3D porous micro-nano hierarchical structure prepared by electrochemical deposition

    International Nuclear Information System (INIS)

    Wang, Hongbin; Wang, Ning; Hang, Tao; Li, Ming

    2016-01-01

    Highlights: • A 3D porous micro-nano hierarchical structure Cu films were prepared. • The evolution of morphology and wettability with deposition time was reported. • The effects of EDA on the microscopic morphology were revealed. • A high contact angle of 162.1° was measured when deposition time is 5 s. • The mechanism of super-hydrophobicity was illustrated by two classical models. - Abstract: Three-dimensional porous micro-nano hierarchical structure Cu films were prepared by electrochemical deposition with the Hydrogen bubble dynamic template. The morphologies of the deposited films characterized by Scanning Electronic Microscopy (SEM) exhibit a porous micro-nano hierarchical structure, which consists of three levels in different size scales, namely the honeycomb-like microstructure, the dendritic substructure and the nano particles. Besides, the factors which influenced the microscopic morphology were studied, including the deposition time and the additive Ethylene diamine. By measuring the water contact angle, the porous copper films were found to be super-hydrophobic. The maximum of the contact angles could reach as high as 162.1°. An empirical correlation between morphologies and wetting properties was revealed for the first time. The pore diameter increased simultaneously with the deposition time while the contact angle decreased. The mechanism was illustrated by two classical models. Such super-hydrophobic three-dimensional hierarchical micro-nano structure is expected to have practical application in industry.

  20. Synthesis and Visible-Light Photocatalytic Property of Bi2WO6Hierarchical Octahedron-Like Structures

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2008-01-01

    Full Text Available Abstract A novel octahedron-like hierarchical structure of Bi2WO6has been fabricated by a facile hydrothermal method in high quantity. XRD, SEM, TEM, and HRTEM were used to characterize the product. The results indicated that this kind of Bi2WO6crystals had an average size of ~4 μm, constructed by quasi-square single-crystal nanosheets assembled in a special fashion. The formation of octahedron-like hierarchical structure of Bi2WO6depended crucially on the pH value of the precursor suspensions. The photocatalytic activity of the hierarchical Bi2WO6structures toward RhB degradation under visible light was investigated, and it was found to be significantly better than that of the sample fabricated by SSR. The better photocatalytic property should be strongly associated with the high specific surface area and the abundant pore structure of the hierarchical octahedron-like Bi2WO6.

  1. Biomolecule-Assisted Hydrothermal Synthesis and Self-Assembly of Bi2Te3 Nanostring-Cluster Hierarchical Structure

    DEFF Research Database (Denmark)

    Mi, Jianli; Lock, Nina; Sun, Ting

    2010-01-01

    A simple biomolecule-assisted hydrothermal approach has been developed for the fabrication of Bi2Te3 thermoelectric nanomaterials. The product has a nanostring-cluster hierarchical structure which is composed of ordered and aligned platelet-like crystals. The platelets are100 nm in diameter...

  2. Predicting allergic contact dermatitis: a hierarchical structure activity relationship (SAR) approach to chemical classification using topological and quantum chemical descriptors

    Science.gov (United States)

    Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.

    2008-06-01

    A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.

  3. Self-assembly of nano/micro-structured Fe3O4 microspheres among 3D rGO/CNTs hierarchical networks with superior lithium storage performances

    International Nuclear Information System (INIS)

    Liu, Jinlong; Feng, Haibo; Wang, Xipeng; Qian, Dong; Jiang, Jianbo; Li, Junhua; Peng, Sanjun; Deng, Miao; Liu, Youcai

    2014-01-01

    Nano/micro-structured Fe 3 O 4 microspheres among three-dimensional (3D) reduced graphene oxide (rGO)/carbon nanotubes (CNTs) hierarchical networks (the ternary composite is denoted as rGCFs) have been synthesized using a facile, self-assembled and one-pot hydrothermal approach. The rGCFs composite exhibits superior lithium storage performances: initial discharge and charge capacities of 1452 and 1036 mAh g −1 , respectively, remarkable rate capability at current densities from 100 mA g −1 to 10 A g −1 and outstanding cycling performance up to 200 cycles. The highly enhanced electrochemical performances of rGCFs depend heavily on the robust 3D rGO/CNTs hierarchical networks, the stable nano/microstructures of active Fe 3 O 4 microspheres and the positive synergistic effects of building components. The systematic structure characterizations and electrochemical investigations provide insightful understanding towards the relationship between structure/morphology and lithium storage performances, which may pave the way for the rational design of composite materials with desirable goals. (papers)

  4. Internal structure of reactor building for Madras Atomic Power Project

    International Nuclear Information System (INIS)

    Pandit, D.P.

    1975-01-01

    The structural configuration and analysis of structural elements of the internal structure of reactor building for the Madras Atomic Power Project has been presented. Two methods of analysis of the internal structure, viz. Equivalent Plane Frame and Finite Element Method, are explained and compared with the use of bending moments obtained. (author)

  5. Building Investigation: Material or Structural Performance

    Directory of Open Access Journals (Sweden)

    Yusof M.Z.

    2014-03-01

    Full Text Available Structures such as roof trusses will not suddenly collapse without ample warning such as significant deflection, tilting etc. if the designer manages to avoid the cause of structural failure at the material level and the structural level. This paper outlines some principles and procedures of PDCA circle and QC tools which can show some clues of structural problems in terms of material or structural performance

  6. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Moriarty, Nigel W.; Zwart, Peter H.; Hung, Li-Wei; Read, Randy J.; Adams, Paul D.

    2008-01-01

    The highly automated PHENIX AutoBuild wizard is described. The procedure can be applied equally well to phases derived from isomorphous/anomalous and molecular-replacement methods. The PHENIX AutoBuild wizard is a highly automated tool for iterative model building, structure refinement and density modification using RESOLVE model building, RESOLVE statistical density modification and phenix.refine structure refinement. Recent advances in the AutoBuild wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model-completion algorithms and automated solvent-molecule picking. Model-completion algorithms in the AutoBuild wizard include loop building, crossovers between chains in different models of a structure and side-chain optimization. The AutoBuild wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 to 3.2 Å, resulting in a mean R factor of 0.24 and a mean free R factor of 0.29. The R factor of the final model is dependent on the quality of the starting electron density and is relatively independent of resolution

  7. Impact of hierarchical modular structure on ranking of individual nodes in directed networks

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Naoki [Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Kawamura, Yoji [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Kori, Hiroshi [PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)], E-mail: masuda@mist.i.u-tokyo.ac.jp

    2009-11-15

    Many systems, ranging from biological and engineering systems to social systems, can be modeled as directed networks, with links representing directed interaction between two nodes. To assess the importance of a node in a directed network, various centrality measures based on different criteria have been proposed. However, calculating the centrality of a node is often difficult because of the overwhelming size of the network or because the information held about the network is incomplete. Thus, developing an approximation method for estimating centrality measures is needed. In this study, we focus on modular networks; many real-world networks are composed of modules, where connection is dense within a module and sparse across different modules. We show that ranking-type centrality measures, including the PageRank, can be efficiently estimated once the modular structure of a network is extracted. We develop an analytical method to evaluate the centrality of nodes by combining the local property (i.e. indegree and outdegree of nodes) and the global property (i.e. centrality of modules). The proposed method is corroborated by real data. Our results provide a linkage between the ranking-type centrality values of modules and those of individual nodes. They also reveal the hierarchical structure of networks in the sense of subordination (not nestedness) laid out by connectivity among modules of different relative importance. The present study raises a novel motive for identifying modules in networks.

  8. Multiscale mining of fMRI data with hierarchical structured sparsity

    International Nuclear Information System (INIS)

    Jenatton, R.; Obozinski, G.; Bach, F.; Gramfort, Alexandre; Michel, Vincent; Thirion, Bertrand; Eger, Evelyne

    2012-01-01

    Reverse inference, or 'brain reading', is a recent paradigm for analyzing functional magnetic resonance imaging (fMRI) data, based on pattern recognition and statistical learning. By predicting some cognitive variables related to brain activation maps, this approach aims at decoding brain activity. Reverse inference takes into account the multivariate information between voxels and is currently the only way to assess how precisely some cognitive information is encoded by the activity of neural populations within the whole brain. However, it relies on a prediction function that is plagued by the curse of dimensionality, since there are far more features than samples, i.e., more voxels than fMRI volumes. To address this problem, different methods have been proposed, such as, among others, univariate feature selection, feature agglomeration and regularization techniques. In this paper, we consider a sparse hierarchical structured regularization. Specifically, the penalization we use is constructed from a tree that is obtained by spatially-constrained agglomerative clustering. This approach encodes the spatial structure of the data at different scales into the regularization, which makes the overall prediction procedure more robust to inter-subject variability. The regularization used induces the selection of spatially coherent predictive brain regions simultaneously at different scales. We test our algorithm on real data acquired to study the mental representation of objects, and we show that the proposed algorithm not only delineates meaningful brain regions but yields as well better prediction accuracy than reference methods. (authors)

  9. A Hierarchical structure of key performance indicators for operation management and continuous improvement in production systems.

    Science.gov (United States)

    Kang, Ningxuan; Zhao, Cong; Li, Jingshan; Horst, John A

    2016-01-01

    Key performance indicators (KPIs) are critical for manufacturing operation management and continuous improvement (CI). In modern manufacturing systems, KPIs are defined as a set of metrics to reflect operation performance, such as efficiency, throughput, availability, from productivity, quality and maintenance perspectives. Through continuous monitoring and measurement of KPIs, meaningful quantification and identification of different aspects of operation activities can be obtained, which enable and direct CI efforts. A set of 34 KPIs has been introduced in ISO 22400. However, the KPIs in a manufacturing system are not independent, and they may have intrinsic mutual relationships. The goal of this paper is to introduce a multi-level structure for identification and analysis of KPIs and their intrinsic relationships in production systems. Specifically, through such a hierarchical structure, we define and layer KPIs into levels of basic KPIs, comprehensive KPIs and their supporting metrics, and use it to investigate the relationships and dependencies between KPIs. Such a study can provide a useful tool for manufacturing engineers and managers to measure and utilize KPIs for CI.

  10. Impact of hierarchical modular structure on ranking of individual nodes in directed networks

    International Nuclear Information System (INIS)

    Masuda, Naoki; Kawamura, Yoji; Kori, Hiroshi

    2009-01-01

    Many systems, ranging from biological and engineering systems to social systems, can be modeled as directed networks, with links representing directed interaction between two nodes. To assess the importance of a node in a directed network, various centrality measures based on different criteria have been proposed. However, calculating the centrality of a node is often difficult because of the overwhelming size of the network or because the information held about the network is incomplete. Thus, developing an approximation method for estimating centrality measures is needed. In this study, we focus on modular networks; many real-world networks are composed of modules, where connection is dense within a module and sparse across different modules. We show that ranking-type centrality measures, including the PageRank, can be efficiently estimated once the modular structure of a network is extracted. We develop an analytical method to evaluate the centrality of nodes by combining the local property (i.e. indegree and outdegree of nodes) and the global property (i.e. centrality of modules). The proposed method is corroborated by real data. Our results provide a linkage between the ranking-type centrality values of modules and those of individual nodes. They also reveal the hierarchical structure of networks in the sense of subordination (not nestedness) laid out by connectivity among modules of different relative importance. The present study raises a novel motive for identifying modules in networks.

  11. Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors

    International Nuclear Information System (INIS)

    Liu, Dong; Shen, Jun; Liu, Nianping; Yang, Huiyu; Du, Ai

    2013-01-01

    Activated carbon aerogels (ACAs) with hierarchically porous structures and high specific surface area have been prepared via CO 2 and KOH activation processes. The pore structures of ACAs are characterized by N 2 adsorption/desorption and scanning electron microscopy. The experimental results show that the ACAs contain three types of pores: micropores with diameters below 2 nm, small mesopores with diameters from 2 to 4 nm and large pores or channels with diameters over 30 nm. The typical sample ACAs-4, which possess pore volume of 2.73 cm 3 g −1 and specific surface area of 2119 m 2 g −1 , exhibits high specific capacitances of 250 F g −1 and 198 F g −1 at the current densities of 0.5 A g −1 and 20 A g −1 respectively in 6 M KOH aqueous solution. Furthermore, the resultant ACAs electrode materials also exhibit high power density, good cycling stability and long lifetime. With these features, ACAs are expected to be promising electrode materials for electrical double layer capacitors

  12. Multicriteria Analysis of Assembling Buildings from Steel Frame Structures

    Science.gov (United States)

    Miniotaite, Ruta

    2017-10-01

    Steel frame structures are often used in the construction of public and industrial buildings. They are used for: all types of slope roofs; walls of newly-built public and industrial buildings; load bearing structures; roofs of renovated buildings. The process of assembling buildings from steel frame structures should be analysed as an integrated process influenced by such factors as construction materials and machinery used, the qualification level of construction workers, complexity of work, available finance. It is necessary to find a rational technological design solution for assembling buildings from steel frame structures by conducting a multiple criteria analysis. The analysis provides a possibility to evaluate the engineering considerations and find unequivocal solutions. The rational alternative of a complex process of assembling buildings from steel frame structures was found through multiple criteria analysis and multiple criteria evaluation. In multiple criteria evaluation of technological solutions for assembling buildings from steel frame structures by pairwise comparison method the criteria by significance are distributed as follows: durability is the most important criterion in the evaluation of alternatives; the price (EUR/unit of measurement) of a part of assembly process; construction workers’ qualification level (category); mechanization level of a part of assembling process (%), and complexity of assembling work (in points) are less important criteria.

  13. Monitoring of Building Structure by Tiltsensors

    Directory of Open Access Journals (Sweden)

    Alojz Kopáčik

    2005-06-01

    Full Text Available This paper discusses about the dynamic monitoring of stability (tilt measurement of bearing pillar of high-rise building using the electronic measuring system. The electronic measuring system consists of Libela 2800 tilt sensor, input/output device for the AE 2DN tilt sensor, measuring amplifier and also the Spider8 analog/digital converter and the registration equipment (notebook. The basic part of uniaxial tilt sensor creates a frame, on which is among damping plates hung a pendulum (ferromagnetic kernel. The tilt value is determined on a principle of electromagnetic induction by changing the position of ferromagnetic kernel in the reel. The range of pendulum movement is ± 2,5 mm/m and the accuracy of the tilt determination is 0,001 mm/m. The monitored building represents, from the point of constructional view, a ferro-concrete rectangular sceleton, which consists of vertical bearing pillars, on which are guyed longitudinal and transverse girders. The building ground-plan is rectangular with the dimensions of 75 m (distance and 12 m (width. The building has two underground and six above the ground floors with constructional high of 3,40 m. Whole highth of the above ground part of building is 20,4 m. The pillar tilt was measured in the transverse direction of the building at the level of the second floor using the Libela 2800 electronic sensor. The sensor was situated on the metallic console (L-profile, which was assembled on a lateral side of the circuit bearing pillar at the highth of 8,3 m above the ground level. Together with the tilt monitoring, the outside air temperature in the close area of pillar was measured. The tilt measurement was carried out continuously for 168 hours with the recording frequency of 1 Hz (1 measurement/second. The file of the measured data with 603 950 records was reduced to the file with 1006 records, which corresponds to the record of the every tenth minute. The measured tilt values represent from the

  14. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanli, E-mail: flmeng@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Hou, Nannan [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Ge, Sheng [Department of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Sun, Bai [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Jin, Zhen, E-mail: zjin@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Shen, Wei; Kong, Lingtao; Guo, Zheng [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Yufeng, E-mail: sunyufeng118@126.com [Department of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Wu, Hao; Wang, Chen [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Li, Minqiang [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-03-25

    Highlights: • Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets were synthesized. • The flower-like hierarchical structured ZnO exhibited higher response and shorter response and recovery times. • The sensing mechanism of the flower-like hierarchical has been systematically analyzed. - Abstract: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets (FHPSCZNs) were synthesized by a one-pot wet-chemical method followed by an annealing treatment, which combined the advantages between flower-like hierarchical structure and porous single-crystalline structure. XRD, SEM and HRTEM were used to characterize the synthesized FHPSCZN samples. The sensing properties of the FHPSCZN sensor were also investigated by comparing with ZnO powder sensor, which exhibited higher response and shorter response and recovery times. The sensing mechanism of the FHPSCZN sensor has been further analyzed from the aspects of electronic transport and gas diffusion.

  15. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Meng, Fanli; Hou, Nannan; Ge, Sheng; Sun, Bai; Jin, Zhen; Shen, Wei; Kong, Lingtao; Guo, Zheng; Sun, Yufeng; Wu, Hao; Wang, Chen; Li, Minqiang

    2015-01-01

    Highlights: • Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets were synthesized. • The flower-like hierarchical structured ZnO exhibited higher response and shorter response and recovery times. • The sensing mechanism of the flower-like hierarchical has been systematically analyzed. - Abstract: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets (FHPSCZNs) were synthesized by a one-pot wet-chemical method followed by an annealing treatment, which combined the advantages between flower-like hierarchical structure and porous single-crystalline structure. XRD, SEM and HRTEM were used to characterize the synthesized FHPSCZN samples. The sensing properties of the FHPSCZN sensor were also investigated by comparing with ZnO powder sensor, which exhibited higher response and shorter response and recovery times. The sensing mechanism of the FHPSCZN sensor has been further analyzed from the aspects of electronic transport and gas diffusion

  16. Hydrothermal synthesis of copper sulfide with novel hierarchical structures and its application in lithium-ion batteries

    International Nuclear Information System (INIS)

    Chen, Guang-Yi; Wei, Zhi-Yong; Jin, Bo; Zhong, Xiao-Bin; Wang, Heng; Zhang, Wan-Xi; Liang, Ji-Cai; Jiang, Qing

    2013-01-01

    Novel stick-like CuS hierarchical structures have been fabricated by a hydrothermal approach use β-cyclodextrin as ligand and structure-directing agent. SEM and TEM characterizations show that the CuS stick-like structures are composed of tens to hundreds of well-arranged and self-assembled nanoplates with a thickness of about 25 nm. The mechanism for the formation of the final stick-like hierarchical structures is proposed and discussed. β-cyclodextrin is found to be the key factor in controlling the morphologies. Meanwhile, the possibility of using CuS as the electrode material for lithium ion batteries (LIBs) is studied. Electrochemical measurements reveal that the as-prepared CuS exhibits outstanding cycle stability, indicating that it might find possible application as a cathode material for LIBs in the long term.

  17. Building with electromagnetic shield structure for individual floors

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1991-09-10

    This invention relates to a building having a floor-by-floor electromagnetic shield structure well-suited for application to an information network system in which an electromagnetically shielded space is divided by individual floors and electric waves are utilized within the building on a floor-by-floor basis. (author). 8 figs.

  18. Radar Mapping of Building Structures Applying Sparse Reconstruction

    NARCIS (Netherlands)

    Tan, R.G.; Wit, J.J.M. de; Rossum, W.L. van

    2012-01-01

    The ability to map building structures at a certain stand-off distance allows intelligence, reconnaissance, and clearance tasks to be performed in a covert way by driving around a building. This will greatly improve security, response time, and reliability of aforementioned tasks. Therefore,

  19. Building with electromagnetic shield structure for individual floors

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1991-01-01

    This invention relates to a building having a floor-by-floor electromagnetic shield structure well-suited for application to an information network system in which an electromagnetically shielded space is divided by individual floors and electric waves are utilized within the building on a floor-by-floor basis. (author). 8 figs

  20. Structural evaluation of the 2736Z Building for seismic loads

    International Nuclear Information System (INIS)

    Giller, R.A.

    1994-01-01

    The 2736Z building structure is evaluated for high-hazard loads. The 2736Z building is analyzed herein for normal and seismic loads and is found to successfully meet the guidelines of UCRL-15910 along with the related codes requirements

  1. Environmental effect of structural solutions and building materials to a building

    International Nuclear Information System (INIS)

    Haapio, Appu; Viitaniemi, Pertti

    2008-01-01

    The field of building environmental assessment tools has become a popular research area over the past decade. However, how the service life of a building affects the results of the environmental assessment of a building has not been emphasised previously. The aim of this study is to analyse how different structural solutions and building materials affect the results of the environmental assessment of a whole building over the building's life cycle. Furthermore, how the length of the building's service life affects the results is analysed. The environmental assessments of 78 single-family houses were calculated for this study. The buildings have different wall insulations, claddings, window frames, and roof materials, and the length of the service life varies from 60 years up to 160 years. The current situation and the future of the environmental assessment of buildings are discussed. In addition, topics for further research are suggested; for example, how workmanship affects the service life and the environmental impact of a building should be studied

  2. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures.

    Science.gov (United States)

    Schargott, M

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  3. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    Energy Technology Data Exchange (ETDEWEB)

    Schargott, M [Institute of Mechanics, Technische Universitaet Berlin, Strd 17 Juni 135, 10623 Berlin (Germany)], E-mail: martin.schargott@tu-berlin.de

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  4. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    International Nuclear Information System (INIS)

    Schargott, M

    2009-01-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface

  5. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure

    OpenAIRE

    Yingzhi Li; Qinghua Zhang; Junxian Zhang; Lei Jin; Xin Zhao; Ting Xu

    2015-01-01

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific ca...

  6. Iterative model-building, structure refinement, and density modification with the PHENIX AutoBuild Wizard

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.

    2007-04-29

    The PHENIX AutoBuild Wizard is a highly automated tool for iterative model-building, structure refinement and density modification using RESOLVE or TEXTAL model-building, RESOLVE statistical density modification, and phenix.refine structure refinement. Recent advances in the AutoBuild Wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model completion algorithms, and automated solvent molecule picking. Model completion algorithms in the AutoBuild Wizard include loop-building, crossovers between chains in different models of a structure, and side-chain optimization. The AutoBuild Wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 {angstrom} to 3.2 {angstrom}, resulting in a mean R-factor of 0.24 and a mean free R factor of 0.29. The R-factor of the final model is dependent on the quality of the starting electron density, and relatively independent of resolution.

  7. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors.

    Science.gov (United States)

    Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong

    2015-01-01

    Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.

  8. Intelligent seismic risk mitigation system on structure building

    Science.gov (United States)

    Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.

    2018-01-01

    Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.

  9. PS buildings : reinforced concrete structure for shielding "bridge" pillar

    CERN Multimedia

    CERN PhotoLab

    1956-01-01

    The PS ring traverses the region between the experimental halls South and North (buildings Nos 150 and 151) under massive bridge-shaped concrete beams. This pillar stands at the S-W end of the structure.

  10. Personality in chimpanzees (Pan troglodytes: exploring the hierarchical structure and associations with the vasopressin V1A receptor gene.

    Directory of Open Access Journals (Sweden)

    Robert D Latzman

    Full Text Available One of the major contributions of recent personality psychology is the finding that traits are related to each other in an organized hierarchy. To date, however, researchers have yet to investigate this hierarchy in nonhuman primates. Such investigations are critical in confirming the cross-species nature of trait personality helping to illuminate personality as neurobiologically-based and evolutionarily-derived dimensions of primate disposition. Investigations of potential genetic polymorphisms associated with hierarchical models of personality among nonhuman primates represent a critical first step. The current study examined the hierarchical structure of chimpanzee personality as well as sex-specific associations with a polymorphism in the promoter region of the vasopressin V1a receptor gene (AVPR1A, a gene associated with dispositional traits, among 174 chimpanzees. Results confirmed a hierarchical structure of personality across species and, despite differences in early rearing experiences, suggest a sexually dimorphic role of AVPR1A polymorphisms on hierarchical personality profiles at a higher-order level.

  11. Personality in Chimpanzees (Pan troglodytes): Exploring the Hierarchical Structure and Associations with the Vasopressin V1A Receptor Gene

    Science.gov (United States)

    Latzman, Robert D.; Hopkins, William D.; Keebaugh, Alaine C.; Young, Larry J.

    2014-01-01

    One of the major contributions of recent personality psychology is the finding that traits are related to each other in an organized hierarchy. To date, however, researchers have yet to investigate this hierarchy in nonhuman primates. Such investigations are critical in confirming the cross-species nature of trait personality helping to illuminate personality as neurobiologically-based and evolutionarily-derived dimensions of primate disposition. Investigations of potential genetic polymorphisms associated with hierarchical models of personality among nonhuman primates represent a critical first step. The current study examined the hierarchical structure of chimpanzee personality as well as sex-specific associations with a polymorphism in the promoter region of the vasopressin V1a receptor gene (AVPR1A), a gene associated with dispositional traits, among 174 chimpanzees. Results confirmed a hierarchical structure of personality across species and, despite differences in early rearing experiences, suggest a sexually dimorphic role of AVPR1A polymorphisms on hierarchical personality profiles at a higher-order level. PMID:24752497

  12. Improvements to the hierarchically structured ZnO nanosphere based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yongzhe; Wu Lihui; Liu Yanping; Xie Erqing, E-mail: zhangyzh04@126.co, E-mail: xieeq@lzu.edu.c [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2009-04-21

    Hierarchically structured ZnO nanospheres are synthesized by a wet-chemical method and ZnO sphere-consisting films are applied to dye-sensitized solar cells (DSSCs). It is found that the overall light-to-electricity conversion efficiency ({eta}) is significantly enhanced from 0.474% to 1.03% due to light scattering compared with the ZnO nanoparticle-based DSSC. However, the fill factor (FF) and open-circuit voltage (V{sub oc}) decrease obviously. After annealing the films in an oxygen environment and placing a ZnO blocking layer on the fluorine-doped SnO{sub 2} (FTO) conducting substrate, the FF and V{sub oc} are greatly improved and {eta} increases from 1.03% to 1.59% and 2.25%, respectively. According to the results of x-ray diffraction and photoluminescence, the significant improvements in the cell performances might be due to the suppression of the recombination and the decrease in the resistances existing in the cell.

  13. Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells

    International Nuclear Information System (INIS)

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A

    2011-01-01

    Fluctuations in the size of the apical cell surface have been associated with apical constriction and tissue invagination. However, it is currently not known if apical oscillatory behaviors are a unique property of constricting cells or if they constitute a universal feature of the force balance between cells in multicellular tissues. Here, we set out to determine whether oscillatory cell behaviors occur in parallel with cell intercalation during the morphogenetic process of axis elongation in the Drosophila embryo. We applied multi-color, time-lapse imaging of living embryos and SIESTA, an integrated tool for automated and semi-automated cell segmentation, tracking, and analysis of image sequences. Using SIESTA, we identified cycles of contraction and expansion of the apical surface in intercalating cells and characterized them at the molecular, cellular, and tissue scales. We demonstrate that apical oscillations are anisotropic, and this anisotropy depends on the presence of intact cell–cell junctions and spatial cues provided by the anterior–posterior patterning system. Oscillatory cell behaviors during axis elongation are associated with the hierarchical assembly and disassembly of contractile actomyosin structures at the medial cortex of the cell, with actin localization preceding myosin II and with the localization of both proteins preceding changes in cell shape. We discuss models to explain how the architecture of cytoskeletal networks regulates their contractile behavior and the mechanisms that give rise to oscillatory cell behaviors in intercalating cells

  14. Mastering algebra retrains the visual system to perceive hierarchical structure in equations.

    Science.gov (United States)

    Marghetis, Tyler; Landy, David; Goldstone, Robert L

    2016-01-01

    Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.

  15. Hierarchically structured Co₃O₄@Pt@MnO₂ nanowire arrays for high-performance supercapacitors.

    Science.gov (United States)

    Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping

    2013-10-17

    Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2-based nanowire arrays for constructing next-generation supercapacitors.

  16. Facile synthesis of mesoporous silica sublayer with hierarchical pore structure on ceramic membrane using anionic polyelectrolyte.

    Science.gov (United States)

    Kang, Taewook; Oh, Seogil; Kim, Honggon; Yi, Jongheop

    2005-06-21

    A facile method for introducing mesoporous silica sublayer onto the surface of a ceramic membrane for use in liquid-phase separation is described. To reduce the electrostatic repulsion between the mesoporous silica sol and the ceramic membrane in highly acidic conditions (pH ceramic membrane, as confirmed by experimental titration data. Consistent with the titration results, the amount of mesoporous silica particles on the surface of the ceramic membrane was low, in the absence of PSS- treatment, whereas mesoporous silica sublayer with hierarchical pore structure was produced, when 1 wt % PSS- was used. The results show that mesoporous silica grows in the confined surface, eventually forming a multistacked surface architecture. The mesoporous silica sublayer contained uniform, ordered (P6 mm) mesopores of ca. 7.5 nm from mesoporous silica as well as macropores ( approximately mum) from interparticle voids, as evidenced by transmission electron microscopy and scanning electron microscopy analyses. The morphologies of the supported mesoporous silica could be manipulated, thus permitting the generation of uniform needlelike forms or uniform spheroid particles by varying the concentration of PSS-.

  17. Interference mitigation for broadcast in hierarchical cell structure networks: Transmission strategy and area spectral efficiency

    KAUST Repository

    Yang, Yuli

    2014-10-01

    In this paper, a hierarchical cell structure (HCS) is considered, where an access point (AP) broadcasts to local nodes (LNs) over orthogonal frequency subbands within a local cell located in a macrocell. Since the local cell shares the spectrum licensed to the macrocell, a given LN is interfered with by the macrocell user (MU)\\'s transmissions over the same subband. To improve the performance of the AP\\'s broadcast service, a novel transmission strategy is proposed to mitigate the interference from the MU to the LN while achieving diversity gain. For the purpose of performance evaluation, the ergodic capacity of the proposed scheme is quantified, and the corresponding closed-form expression is obtained. By comparing with the traditional transmission scheme, which suffers from MU\\'s interference, illustrative numerical results substantiate that the proposed scheme achieves better performance than the traditional scheme as the MU-LN mean channel power gain is larger than half of the AP-LN mean channel power gain. Subsequently, we develop an optimized network design by maximizing the area spectral efficiency (ASE) of the AP\\'s broadcast in the local cell.

  18. Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites.

    Science.gov (United States)

    Li, Xueqin; Hao, Changlong; Tang, Bochong; Wang, Yue; Liu, Mei; Wang, Yuanwei; Zhu, Yihua; Lu, Chenguang; Tang, Zhiyong

    2017-02-09

    Due to their high specific surface area and good electric conductivity, nitrogen-doped porous carbons (NPCs) and carbon nanotubes (CNTs) have attracted much attention for electrochemical energy storage applications. In the present work, we firstly prepared MWCNT/ZIF-8 composites by decoration of zeolitic imidazolate frameworks (ZIF-8) onto the surface of multi-walled CNTs (MWCNTs), then obtained MWCNT/NPCs by the direct carbonization of MWCNT/ZIF-8. By controlling the reaction conditions, MWCNT/ZIF-8 with three different particle sizes were synthesized. The effect of NPCs size on capacitance performance has been evaluated in detail. The MWCNT/NPC with large-sized NPC (MWCNT/NPC-L) displayed the highest specific capacitance of 293.4 F g -1 at the scan rate of 5 mV s -1 and only lost 4.2% of capacitance after 10 000 cyclic voltammetry cycles, which was attributed to the hierarchically structured pores, N-doping and high electrical conductivity. The studies of symmetric two-electrode supercapacitor cells also confirmed MWCNT/NPC-L as efficient electrode materials that have good electrochemical performance, especially for high-rate applications.

  19. Hierarchically structured graphene-carbon nanotube-cobalt hybrid electrocatalyst for seawater battery

    Science.gov (United States)

    Suh, Dong Hoon; Park, Sul Ki; Nakhanivej, Puritut; Kim, Youngsik; Hwang, Soo Min; Park, Ho Seok

    2017-12-01

    The design of cost-effective and highly active catalysts is a critical challenge. Inspired by the strong points of stability and conductivity of carbon nanotubes (CNTs), high catalytic activity of Co nanoparticles, and rapid ion diffusion and large accessible area of three-dimensional (3D) graphene, we demonstrate a novel strategy to construct a hierarchical hybrid structure consisting of Co/CoOx nanoparticles-incorporated CNT branches onto the 3D reduced graphene oxide (rGO) architecture. The surface-modified 3D rGO by steam activation process has a large surface area and abundant defect sites, which serve as active sites to uniformly grow Co/CoOx nanoparticles. Furthermore, the CNTs preserve their performance stably by encapsulating Co nanoparticles, while the uniformly decorated Co/CoOx nanoparticles exhibit superior electrocatalytic activity toward oxygen evolution/reduction reaction due to highly exposed active sites. Employing the hybrid particle electrocatalyst, the seawater battery operates stably at 0.01 mA cm-2 during 50 cycles, owing to the good electrocatalytic ability.

  20. An Empirical Examination of the Relationship Between Test Factor Structure and Test Hierarchical Structure.

    Science.gov (United States)

    Bart, William M.; Airasian, Peter W.

    The question of whether test factor structure is indicative of the test item hierarchy was examined. Data from 1,000 subjects on two sets of five bivalued Law School Admission Test items, which were analyzed with latent trait methods of Bock and Lieberman and of Christoffersson in Psychometrika, were analyzed with an ordering-theoretic method to…

  1. Structural response of steel high rise buildings to fire

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2013-01-01

    Due to the significant vertical elevation and complexity of the structural system, high rise buildings may suffer from the effects of fire more than other structures. For this reason, in addition to evacuation strategies and active fire protection, a careful consideration of structural response t...

  2. Structural Group-based Auditing of Missing Hierarchical Relationships in UMLS

    Science.gov (United States)

    Chen, Yan; Gu, Huanying(Helen); Perl, Yehoshua; Geller, James

    2009-01-01

    The Metathesaurus of the UMLS was created by integrating various source terminologies. The inter-concept relationships were either integrated into the UMLS from the source terminologies or specially generated. Due to the extensive size and inherent complexity of the Metathesaurus, the accidental omission of some hierarchical relationships was inevitable. We present a recursive procedure which allows a human expert, with the support of an algorithm, to locate missing hierarchical relationships. The procedure starts with a group of concepts with exactly the same (correct) semantic type assignments. It then partitions the concepts, based on child-of hierarchical relationships, into smaller, singly rooted, hierarchically connected subgroups. The auditor only needs to focus on the subgroups with very few concepts and their concepts with semantic type reassignments. The procedure was evaluated by comparing it with a comprehensive manual audit and it exhibits a perfect error recall. PMID:18824248

  3. FEM Updating of the Heritage Court Building Structure

    DEFF Research Database (Denmark)

    Ventura, C. E.; Brincker, Rune; Dascotte, E.

    2001-01-01

    . The starting model of the structure was developed from the information provided in the design documentation of the building. Different parameters of the model were then modified using an automated procedure to improve the correlation between measured and calculated modal parameters. Careful attention......This paper describes results of a model updating study conducted on a 15-storey reinforced concrete shear core building. The output-only modal identification results obtained from ambient vibration measurements of the building were used to update a finite element model of the structure...

  4. Folded Plate Structures as Building Envelopes

    DEFF Research Database (Denmark)

    Falk, Andreas; Buelow, Peter von; Kirkegaard, Poul Henning

    2012-01-01

    This paper treats applications of cross-laminated timber (CLT) in structural systems for folded façade solutions. Previous work on CLT-based systems for folded roofs has shown a widening range of structural possibilities to develop timber-based shells. Geometric and material properties play...... CLT-based systems, which are studied and analysed by using a combination of digital tools for structural and environmental design and analysis. The results show gainful, rational properties of folded systems and beneficial effects from an integration of architectural and environmental performance...... criteria in the design of CLT-based façades....

  5. Synthesis and properties of ZnFe{sub 2}O{sub 4} replica with biological hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongyan; Guo, Yiping, E-mail: ypguo@sjtu.edu.cn; Zhang, Yangyang; Wu, Fen; Liu, Yun; Zhang, Di, E-mail: zhangdi@sjtu.edu.cn

    2013-09-20

    Highlights: • ZFO replica with hierarchical structure was synthesized from butterfly wings. • Biotemplate has a significant impact on the properties of ZFO material. • Our method opens up new avenues for the synthesis of spinel ferrites. -- Abstract: ZnFe{sub 2}O{sub 4} replica with biological hierarchical structure was synthesized from Papilio paris by a sol–gel method followed by calcination. The crystallographic structure and morphology of the obtained samples were characterized by X-ray diffraction, field-emission scanning electron microscope, and transmittance electron microscope. The results showed that the hierarchical structures were retained in the ZFO replica of spinel structure. The magnetic behavior of such novel products was measured by a vibrating sample magnetometer. A superparamagnetism-like behavior was observed due to nanostructuration size effects. In addition, the ZFO replica with “quasi-honeycomb-like structure” showed a much higher specific capacitance of 279.4 F g{sup −1} at 10 mV s{sup −1} in comparison with ZFO powder of 137.3 F g{sup −1}, attributing to the significantly increased surface area. These results demonstrated that ZFO replica is a promising candidate for novel magnetic devices and supercapacitors.

  6. Fabrication of three-dimensional poly(ε-caprolactone) scaffolds with hierarchical pore structures for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingchun [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Luo, Houyong [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Yan [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhou, Yan [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237 (China); Ye, Zhaoyang, E-mail: zhaoyangye@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237 (China); Tan, Wensong [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237 (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2013-05-01

    The physical properties of tissue engineering scaffolds such as microstructures play important roles in controlling cellular behaviors and neotissue formation. Among them, the pore size stands out as a key determinant factor. In the present study, we aimed to fabricate porous scaffolds with pre-defined hierarchical pore sizes, followed by examining cell growth in these scaffolds. This hierarchical porous microstructure was implemented via integrating different pore-generating methodologies, including salt leaching and thermal induced phase separation (TIPS). Specifically, large (L, 200–300 μm), medium (M, 40–50 μm) and small (S, < 10 μm) pores were able to be generated. As such, three kinds of porous scaffolds with a similar porosity of ∼ 90% creating pores of either two (LS or MS) or three (LMS) different sizes were successfully prepared. The number fractions of different pores in these scaffolds were determined to confirm the hierarchical organization of pores. It was found that the interconnectivity varied due to the different pore structures. Besides, these scaffolds demonstrated similar compressive moduli under dry and hydrated states. The adhesion, proliferation, and spatial distribution of human fibroblasts within the scaffolds during a 14-day culture were evaluated with MTT assay and fluorescence microscopy. While all three scaffolds well supported the cell attachment and proliferation, the best cell spatial distribution inside scaffolds was achieved with LMS, implicating that such a controlled hierarchical microstructure would be advantageous in tissue engineering applications. Highlights: ► The scaffolds with dual-pore and triple-pore structures were fabricated. ► Triple-pore structure had better interconnectivity than dual-pore structures. ► Better cell migration and distribution were found on the triple-pore structures. ► The medium pore size (45–50 μm) was appropriate for cell migration. ► Scaffolds with triple-pore structure

  7. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage

    Science.gov (United States)

    Yu, Dingshan; Goh, Kunli; Wang, Hong; Wei, Li; Jiang, Wenchao; Zhang, Qiang; Dai, Liming; Chen, Yuan

    2014-07-01

    Micro-supercapacitors are promising energy storage devices that can complement or even replace batteries in miniaturized portable electronics and microelectromechanical systems. Their main limitation, however, is the low volumetric energy density when compared with batteries. Here, we describe a hierarchically structured carbon microfibre made of an interconnected network of aligned single-walled carbon nanotubes with interposed nitrogen-doped reduced graphene oxide sheets. The nanomaterials form mesoporous structures of large specific surface area (396 m2 g-1) and high electrical conductivity (102 S cm-1). We develop a scalable method to continuously produce the fibres using a silica capillary column functioning as a hydrothermal microreactor. The resultant fibres show a specific volumetric capacity as high as 305 F cm-3 in sulphuric acid (measured at 73.5 mA cm-3 in a three-electrode cell) or 300 F cm-3 in polyvinyl alcohol (PVA)/H3PO4 electrolyte (measured at 26.7 mA cm-3 in a two-electrode cell). A full micro-supercapacitor with PVA/H3PO4 gel electrolyte, free from binder, current collector and separator, has a volumetric energy density of ~6.3 mWh cm-3 (a value comparable to that of 4 V-500 µAh thin-film lithium batteries) while maintaining a power density more than two orders of magnitude higher than that of batteries, as well as a long cycle life. To demonstrate that our fibre-based, all-solid-state micro-supercapacitors can be easily integrated into miniaturized flexible devices, we use them to power an ultraviolet photodetector and a light-emitting diode.

  8. Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures.

    Science.gov (United States)

    Wang, Pengwei; Zhao, Tianyi; Bian, Ruixin; Wang, Guangyan; Liu, Huan

    2017-12-26

    Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.

  9. Assessment of structural reliability of precast concrete buildings

    Directory of Open Access Journals (Sweden)

    Koyankin Alexandr

    2018-01-01

    Full Text Available Precast housing construction is currently being under rapid development, however, reliability of building structures made from precast reinforced concrete cannot be assessed rationally due to insufficient research data on that subject. In this regard, experimental and numerical studies were conducted to assess structural reliability of precast buildings as described in the given paper. Experimental studies of full-scale and model samples were conducted; numerical studies were held based on finite element models using “Lira” software. The objects under study included fragment of flooring of a building under construction, full-size fragment of flooring, full-scale models of precast cross-beams-to-columns joints and joints between hollow-core floor slabs and precast and cast-in-place cross-beams. Conducted research enabled to perform an objective assessment of structural reliability of precast buildings.

  10. Classification of Hyperspectral Images by SVM Using a Composite Kernel by Employing Spectral, Spatial and Hierarchical Structure Information

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2018-03-01

    Full Text Available In this paper, we introduce a novel classification framework for hyperspectral images (HSIs by jointly employing spectral, spatial, and hierarchical structure information. In this framework, the three types of information are integrated into the SVM classifier in a way of multiple kernels. Specifically, the spectral kernel is constructed through each pixel’s vector value in the original HSI, and the spatial kernel is modeled by using the extended morphological profile method due to its simplicity and effectiveness. To accurately characterize hierarchical structure features, the techniques of Fish-Markov selector (FMS, marker-based hierarchical segmentation (MHSEG and algebraic multigrid (AMG are combined. First, the FMS algorithm is used on the original HSI for feature selection to produce its spectral subset. Then, the multigrid structure of this subset is constructed using the AMG method. Subsequently, the MHSEG algorithm is exploited to obtain a hierarchy consist of a series of segmentation maps. Finally, the hierarchical structure information is represented by using these segmentation maps. The main contributions of this work is to present an effective composite kernel for HSI classification by utilizing spatial structure information in multiple scales. Experiments were conducted on two hyperspectral remote sensing images to validate that the proposed framework can achieve better classification results than several popular kernel-based classification methods in terms of both qualitative and quantitative analysis. Specifically, the proposed classification framework can achieve 13.46–15.61% in average higher than the standard SVM classifier under different training sets in the terms of overall accuracy.

  11. Organosilane with gemini-type structure as the mesoporogen for synthesis of hierarchical porous ZSM-5 zeolite

    KAUST Repository

    Zhu, Haibo; Abou-Hamad, Edy; Chen, Yin; Saih, Youssef; Liu, Weibing; Basset, Jean-Marie; Samal, Akshaya Kumar

    2016-01-01

    A new kind of organosilane (1,6-bis (diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double hydrolysable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveals information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratios, which confirms this organosilane has high flexibility of using as template for the synthesis of hierarchical porous zeolite.

  12. Organosilane with gemini-type structure as the mesoporogen for synthesis of hierarchical porous ZSM-5 zeolite

    KAUST Repository

    Zhu, Haibo

    2016-02-08

    A new kind of organosilane (1,6-bis (diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double hydrolysable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveals information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratios, which confirms this organosilane has high flexibility of using as template for the synthesis of hierarchical porous zeolite.

  13. Performance evaluation of existing building structure with pushover analysis

    Science.gov (United States)

    Handana, MAP; Karolina, R.; Steven

    2018-02-01

    In the management of the infrastructure of the building, during the period of buildings common building damage as a result of several reasons, earthquakes are common. The building is planned to work for a certain service life. But during the certain service life, the building vulnerable to damage due to various things. Any damage to cultivate can be detected as early as possible, because the damage could spread, triggering and exacerbating the latest. The newest concept to earthquake engineering is Performance Based Earthquake Engineering (PBEE). PBEE divided into two, namely Performance Based Seismic Design (PBSD) and Performance Based Seismic Evaluation (PBSE). Evaluation on PBSE one of which is the analysis of nonlinear pushover. Pushover analysis is a static analysis of nonlinear where the influence of the earthquake plan on building structure is considered as burdens static catch at the center of mass of each floor, which it was increased gradually until the loading causing the melting (plastic hinge) first within the building structure, then the load increases further changes the shapes of post-elastic large it reached the condition of elastic. Then followed melting (plastic hinge) in the location of the other structured.

  14. Structure of pool in reactor building

    International Nuclear Information System (INIS)

    Yokoyama, Shigeki.

    1997-01-01

    Shielding walls made of iron-reinforced concrete having a metal liner including two body walls rigidly combined to the upper surface of a reactor container are disposed at least to one of an equipment pool or spent fuel storage pool in a reactor building. A rack for temporarily placing an upper lattice plate is detachably attached at least above one of a steam dryer or a gas/liquid separator temporarily placed in the temporary pool, and the height from the bottom portion to the upper end of the shielding wall is determined based on the height of an upper lattice plate temporary placed on the rack and the water depth required for shielding radiation from the upper lattice plate. An operator's exposure on the operation floor can be reduced by the shielding wall, and radiation dose from the spent fuels is reduced. The increase of the height of a pool guarder enhances bending resistance as a ceiling. In addition, the total height of them is made identical with the depth of the spent fuel storage pool thereby enabling to increase storage area for spent fuels. (N.H.)

  15. Structuring oil by protein building blocks

    NARCIS (Netherlands)

    Vries, de Auke

    2017-01-01

    Over the recent years, structuring of oil into ‘organogels’ or ‘oleogels’ has gained much attention amongst colloid-, material,- and food scientists. Potentially, these oleogels could be used as an alternative for saturated- and trans fats in food products. To develop oleogels as a

  16. Building nuclear structures : challenges and achievements

    International Nuclear Information System (INIS)

    Gad, V.M.

    1981-01-01

    Reliability and safety are factors of prime importance in construction of civil engineering structures of nuclear facilities. There cannot be any compromise in the strength and life of the structure. This involves rigorous control of: (1) quality of materials and end products, (2) time taken for construction, (3) cost, and also continuing innovation. India has now accumulated more than three decades of experience in nuclear civil engineering and the civil engineering fraternity of India and particularly of the Department of Atomic Energy is now fully capable of designing and construction of all types of structures involved in the nuclear field. Illustrative examples are given. Dome of the CIRUS reactor was constructed in steel plates, but then there was a switch over to reinforced concrete for containment structures and subsequently to prestressed concrete. The aspects taken into consideration of the design to ensure absolute leak tightness are: (1) earthquake safeguards, (2) concrete surface protection, and (3) minimization of cracking in concrete due to pressure loading and shrinkage. Coordination charts are prepared for monitoring time required for various operations and time and motion studies are employed to cut down on construction time. Close control over the cost is kept through internal and external audit, executing the work departmentally or employing an outside agency as the occasion demands and proper selection of materials. Some of the innovations in materials use and construction techniques are mentioned. (K.M.)

  17. Automated detection of repeated structures in building facades

    Directory of Open Access Journals (Sweden)

    M. Previtali

    2013-10-01

    Full Text Available Automatic identification of high-level repeated structures in 3D point clouds of building façades is crucial for applications like digitalization and building modelling. Indeed, in many architectural styles building façades are governed by arrangements of objects into repeated patterns. In particular, façades are generally designed as the repetition of some few basic objects organized into interlaced and\\or concatenated grid structures. Starting from this key observation, this paper presents an algorithm for Repeated Structure Detection (RSD in 3D point clouds of building façades. The presented methodology consists of three main phases. First, in the point cloud segmentation stage (i the building façade is decomposed into planar patches which are classified by means of some weak prior knowledge of urban buildings formulated in a classification tree. Secondly (ii, in the element clustering phase detected patches are grouped together by means of a similarity function and pairwise transformations between patches are computed. Eventually (iii, in the structure regularity estimation step the parameters of repeated grid patterns are calculated by using a Least- Squares optimization. Workability of the presented approach is tested using some real data from urban scenes.

  18. Flood damage to historic buildings and structures

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš

    2010-01-01

    Roč. 24, č. 5 (2010), s. 439-445 ISSN 0887-3828 Grant - others:evropská komise(XE) FP6 Project cultural heritage protection against flood CHEF-SSPI-044251 Institutional research plan: CEZ:AV0Z20710524 Keywords : flood impact * historic structures * damage category Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 0.293, year: 2010

  19. An Approach to Structure Determination and Estimation of Hierarchical Archimedean Copulas and its Application to Bayesian Classification

    Czech Academy of Sciences Publication Activity Database

    Górecki, J.; Hofert, M.; Holeňa, Martin

    2016-01-01

    Roč. 46, č. 1 (2016), s. 21-59 ISSN 0925-9902 R&D Projects: GA ČR GA13-17187S Grant - others:Slezská univerzita v Opavě(CZ) SGS/21/2014 Institutional support: RVO:67985807 Keywords : Copula * Hierarchical archimedean copula * Copula estimation * Structure determination * Kendall’s tau * Bayesian classification Subject RIV: IN - Informatics, Computer Science Impact factor: 1.294, year: 2016

  20. Coevolutionary and genetic algorithm based building spatial and structural design

    NARCIS (Netherlands)

    Hofmeyer, H.; Davila Delgado, J.M.

    2015-01-01

    In this article, two methods to develop and optimize accompanying building spatial and structural designs are compared. The first, a coevolutionary method, applies deterministic procedures, inspired by realistic design processes, to cyclically add a suitable structural design to the input of a

  1. Hydrothermal deposition and photochromic performances of three kinds of hierarchical structure arrays of WO3 thin films

    International Nuclear Information System (INIS)

    Ding, Defang; Shen, Yi; Ouyang, Yali; Li, Zhen

    2012-01-01

    Three kinds of tungsten oxide (WO 3 ) thin films have been fabricated by a simple hydrothermal deposition method. Scanning electron microscopy images of the products revealed that the capping agents did impact the microstructure of WO 3 films. Films prepared without capping agents were ordered nanorod arrays, while the ones obtained with ethanol and oxalic acid revealed peeled-orange-like and cauliflower-like hierarchical structure arrays, respectively. Both of the two hierarchical structures were composed of much thinner nanorods compared with the one obtained without capping agents. All the WO 3 films exhibited good photochromic properties and the two with inducers performed even better, which could be due to the changes in the microstructure that increased the amount of photogenerated electron–hole pairs and the proton diffusion rates. - Highlights: ► Ordered WO 3 nanorod arrays were prepared by hydrothermal deposition process. ► Two hierarchical WO 3 structure arrays were obtained with ethanol and oxalic acid. ► Mechanism for the improved photochromic performances of WO 3 films is proposed.

  2. Page Layout Analysis of the Document Image Based on the Region Classification in a Decision Hierarchical Structure

    Directory of Open Access Journals (Sweden)

    Hossein Pourghassem

    2010-10-01

    Full Text Available The conversion of document image to its electronic version is a very important problem in the saving, searching and retrieval application in the official automation system. For this purpose, analysis of the document image is necessary. In this paper, a hierarchical classification structure based on a two-stage segmentation algorithm is proposed. In this structure, image is segmented using the proposed two-stage segmentation algorithm. Then, the type of the image regions such as document and non-document image is determined using multiple classifiers in the hierarchical classification structure. The proposed segmentation algorithm uses two algorithms based on wavelet transform and thresholding. Texture features such as correlation, homogeneity and entropy that extracted from co-occurrenc matrix and also two new features based on wavelet transform are used to classifiy and lable the regions of the image. The hierarchical classifier is consisted of two Multilayer Perceptron (MLP classifiers and a Support Vector Machine (SVM classifier. The proposed algorithm is evaluated on a database consisting of document and non-document images that provides from Internet. The experimental results show the efficiency of the proposed approach in the region segmentation and classification. The proposed algorithm provides accuracy rate of 97.5% on classification of the regions.

  3. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure.

    Science.gov (United States)

    Li, Yingzhi; Zhang, Qinghua; Zhang, Junxian; Jin, Lei; Zhao, Xin; Xu, Ting

    2015-09-23

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific capacitance of 204 F g(-1) at 1 A g(-1); good rate capability, as indicated by the residual initial capacitance of 85.5% at 10 A g(-1); and a long cycle life. These performance characteristics are attributed to the outstanding hierarchical structures of the electrode material. Appropriate carbonization conditions enable the bio-carbon materials to inherit the inherent hierarchical texture of the original biomass, thereby facilitating effective channels for fast ion transfer. The macropores and mesopores that result from chemical activation significantly increase the specific surface area and also play the role of temporary ion-buffering reservoirs, further shortening the ionic diffusion distance.

  4. Hydrothermal deposition and photochromic performances of three kinds of hierarchical structure arrays of WO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Defang; Shen, Yi, E-mail: sysy7373@163.com; Ouyang, Yali; Li, Zhen

    2012-10-01

    Three kinds of tungsten oxide (WO{sub 3}) thin films have been fabricated by a simple hydrothermal deposition method. Scanning electron microscopy images of the products revealed that the capping agents did impact the microstructure of WO{sub 3} films. Films prepared without capping agents were ordered nanorod arrays, while the ones obtained with ethanol and oxalic acid revealed peeled-orange-like and cauliflower-like hierarchical structure arrays, respectively. Both of the two hierarchical structures were composed of much thinner nanorods compared with the one obtained without capping agents. All the WO{sub 3} films exhibited good photochromic properties and the two with inducers performed even better, which could be due to the changes in the microstructure that increased the amount of photogenerated electron-hole pairs and the proton diffusion rates. - Highlights: Black-Right-Pointing-Pointer Ordered WO{sub 3} nanorod arrays were prepared by hydrothermal deposition process. Black-Right-Pointing-Pointer Two hierarchical WO{sub 3} structure arrays were obtained with ethanol and oxalic acid. Black-Right-Pointing-Pointer Mechanism for the improved photochromic performances of WO{sub 3} films is proposed.

  5. Effect of structural design on traffic-induced building vibrations

    DEFF Research Database (Denmark)

    Persson, Peter; Andersen, Lars Vabbersgaard; Persson, Kent

    2017-01-01

    Population growth and urbanization results in densified cities, where new buildings are being built closer to existing vibration sources such as road-, tram- and rail traffic. In addition, new transportation systems are constructed closer to existing buildings. Potential disturbing vibrations...... are one issue to consider in planning urban environment and densification of cities. Vibrations can be disturbing for humans but also for sensitive equipment in, for example, hospitals. In determining the risk for disturbing vibrations, the distance between the source and the receiver, the ground...... properties, and type and size of the building are governing factors. In the paper, a study is presented aiming at investigating the influence of various parameters of the building's structural design on vibration levels in the structure caused by ground surface loads, e.g. traffic. Parameters studied...

  6. Dynamic analysis of clustered building structures using substructures methods

    International Nuclear Information System (INIS)

    Leimbach, K.R.; Krutzik, N.J.

    1989-01-01

    The dynamic substructure approach to the building cluster on a common base mat starts with the generation of Ritz-vectors for each building on a rigid foundation. The base mat plus the foundation soil is subjected to kinematic constraint modes, for example constant, linear, quadratic or cubic constraints. These constraint modes are also imposed on the buildings. By enforcing kinematic compatibility of the complete structural system on the basis of the constraint modes a reduced Ritz model of the complete cluster is obtained. This reduced model can now be analyzed by modal time history or response spectrum methods

  7. The structure of nearby clusters of galaxies Hierarchical clustering and an application to the Leo region

    CERN Document Server

    Materne, J

    1978-01-01

    A new method of classifying groups of galaxies, called hierarchical clustering, is presented as a tool for the investigation of nearby groups of galaxies. The method is free from model assumptions about the groups. The scaling of the different coordinates is necessary, and the level from which one accepts the groups as real has to be determined. Hierarchical clustering is applied to an unbiased sample of galaxies in the Leo region. Five distinct groups result which have reasonable physical properties, such as low crossing times and conservative mass-to-light ratios, and which follow a radial velocity- luminosity relation. Only 4 out of 39 galaxies were adopted as field galaxies. (27 refs).

  8. Phonons as building blocks in nuclear structure

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.

    1980-01-01

    The structure of a nuclear system in terms of eigenmodes (phonons) of subsystems is investigated in three different approaches. In the frame of nuclear field theory the three identical particle system is analysed and the elimination of spurious states due to the violation of the Pauli principle is emphasized. In terms of weak coupling, a new approach of the shell model is proposed which is shown to be rapidly convergent with the number of basis vectors. Applications of three particle systems in the lead region are made. Lastly, a microscopic multiphonon theorie of collective K=0 states in deformed nuclei based on a Tamm Dancoff phonon is developed. The role of the Pauli principle as well as comparisons with boson expansion methods are deeply analysed [fr

  9. Facile and tunable synthesis of hierarchical mesoporous silica materials ranging from flower structure with wrinkled edges to hollow structure with coarse surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Nanjing, E-mail: nanjing.hao@dartmouth.edu [Dartmouth College, Thayer School of Engineering (United States); Li, Laifeng; Tang, Fangqiong, E-mail: tangfq@mail.ipc.ac.cn [Chinese Academy of Sciences, Technical Institute of Physics and Chemistry (China)

    2016-11-15

    Mesoporous silica materials have attracted great attention in many fields. However, facile and tunable synthesis of hierarchical mesoporous silica structures is still a big challenge, and thus the development of them still lags behind. Herein, well-defined mesoporous silica flower structure with wrinkled edges and mesoporous silica hollow structure with coarse surface were synthesized simply by using poly(vinylpyrrolidone) and hexadecylamine as cotemplates in different water/ethanol solvent systems. The shape evolution from flower to hollow can be easily realized by tuning the volume ratio of water to ethanol, and the yields of both materials can reach gram scale. The formation mechanisms of mesoporous silica flower and hollow structures were also experimentally investigated and discussed. These novel hierarchical structures having unique physicochemical properties may bring many interesting insights into scientific research and technological application.

  10. Seismic safety of building structures of NPP Kozloduy III

    International Nuclear Information System (INIS)

    Varbanov, G.I.; Kostov, M.K.; Stefanov, D.D.; Kaneva, A.D.

    2005-01-01

    In the proposed paper is presented a general summary of the analyses carried out to evaluate the dynamic behavior and to assess the seismic safety of some safety related building structures of NPP Kozloduy. The design seismic loads for the site of Kozloduy NPP has been reevaluated and increased during and after the construction of investigated Units 5 and 6. Deterministic and probabilistic approaches are applied to assess the seismic vulnerability of the investigated structures, taking into account the newly defined seismic excitations. The presented results show sufficient seismic safety for the studied critical structures and good efficiency of the seismic upgrading. The applicability of the investigated structures at sites with some higher seismic activities is discussed. The presented study is dealing mainly with the civil structures of the Reactor building, Turbine hall, Diesel Generator Station and Water Intake Structure. (authors)

  11. Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer

    Science.gov (United States)

    Liang, Yeru; Wu, Dingcai; Fu, Ruowen

    2013-01-01

    Electrospinning offers a powerful route for building one-dimensional (1D) micro/nanostructures, but a common requirement for toxic or corrosive organic solvents during the preparation of precursor solution has limited their large scale synthesis and broad applications. Here we report a facile and low-cost way to prepare 1D porous carbon microfibers by using an electrospun fiber-like natural product, i.e., silk cocoon, as precursor. We surprisingly found that by utilizing a simple carbonization treatment, the cocoon microfiber can be directly transformed into 1D carbon microfiber of ca. 6 μm diameter with a unique three-dimensional porous network structure composed of interconnected carbon nanoparticles of 10~40 nm diameter. We further showed that the as-prepared carbon product presents superior electrochemical performance as binder-free electrodes of supercapacitors and good adsorption property toward organic vapor.

  12. Automated and fast building of three-dimensional RNA structures.

    Science.gov (United States)

    Zhao, Yunjie; Huang, Yangyu; Gong, Zhou; Wang, Yanjie; Man, Jianfen; Xiao, Yi

    2012-01-01

    Building tertiary structures of non-coding RNA is required to understand their functions and design new molecules. Current algorithms of RNA tertiary structure prediction give satisfactory accuracy only for small size and simple topology and many of them need manual manipulation. Here, we present an automated and fast program, 3dRNA, for RNA tertiary structure prediction with reasonable accuracy for RNAs of larger size and complex topology.

  13. A Hierarchical FEM approach for Simulation of Geometrical and Material induced Instability of Composite Structures

    DEFF Research Database (Denmark)

    Hansen, Anders L.; Lund, Erik; Pinho, Silvestre T.

    2009-01-01

    In this paper a hierarchical FE approach is utilized to simulate delamination in a composite plate loaded in uni-axial compression. Progressive delamination is modelled by use of cohesive interface elements that are automatically embedded. The non-linear problem is solved quasi-statically in whic...

  14. Towards directional assembly of hierarchical structures: aniline oligomers as the model precursors

    Czech Academy of Sciences Publication Activity Database

    Zhao, Y.; Stejskal, Jaroslav; Wang, J.

    2013-01-01

    Roč. 5, č. 7 (2013), s. 2620-2626 ISSN 2040-3364 R&D Projects: GA ČR GAP205/12/0911 Institutional support: RVO:61389013 Keywords : aniline oligomers * hierarchical nanostructures * microflowers Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.739, year: 2013

  15. Structural integrity analysis of an INPP building under external loading

    International Nuclear Information System (INIS)

    Dundulis, G.; Karalevicius, R.; Uspuras, E.; Kulak, R.F.; Marchertas, A.

    2005-01-01

    After the terrorist attacks in New York and Washington D. C. using civil airplanes, the evaluation of civil airplane crashes into civil and NPP structures has become very important. The interceptions of many terrorists' communications reveal that the use of commandeered commercial aircraft is still a major part of their plans for destruction. Aircraft crash or other flying objects in the territory of the Ignalina Nuclear Power Plant (INPP) represents a concern to the plant. Aircraft traveling at high velocity have a destructive potential. The aircraft crash may damage the roof and walls of buildings, pipelines, electric motors, cases of power supplies, power cables of electricity transmission and other elements and systems, which are important for safety. Therefore, the evaluation of the structural response to an of aircraft crash is important and was selected for analysis. The structural integrity analysis due to the effects of an aircraft crash on an NPP building structure is the subject of this paper. The finite element method was used for the structural analysis of a typical Ignalina NPP building. The structural integrity analysis was performed for a portion of the ALS using the dynamic loading of an aircraft crash impact model. The computer code NEPTUNE was used for this analysis. The local effects caused by impact of the aircraft's engine on the building wall were evaluated independently by using an empirical formula. (authors)

  16. KEY ASPECTS OF ENSURING ENERGY EFFICIENCY OF BUILDINGS AND STRUCTURES

    Directory of Open Access Journals (Sweden)

    S.G. Abramyan

    2017-06-01

    Full Text Available The paper is based on the review of the foreign and national academic literature and intended to emphasize the issues of ensuring energy efficiency of buildings and structures applicable to all the countries as for reconstruction of existing buildings as for erection of new ones . The author highlights the key aspects of the provision of energy efficiency of buildings and structures in some foreign countries. The conclusion is made that the studies are mainly aimed at discovering new heat insulation materials, whereby polystyrene insulation is found to be the most widespread wall insulation material in a number of countries. At the same time, it is observed that the ongoing research is focused on solutions to optimize the structure of walling systems in terms of both insulant thickness and the number and sequence of insulation layers in the walling structure. A conclusion is made that hyper insulation of external walls leads to considerable expenses arising due to cooling during the summer season. The use of prefabricated vacuum panels as a heat insulation layer and off-the-shelf single-layer structures, subject to their heat insulation characteristics, appears a more constructive way to meet the energy efficiency requirements, as the arrangement of ideal air space in multilayered walls proves a significant challenge today. One of the most promising ways to ensure energy efficiency is the use of multifunctional polyvalent walls and provision of polyvalent heat supply from renewable energy sources. Since energy efficiency depends on the spatial arrangement of buildings, construction must ensure a minimum ratio of the area of enclosing structures to the overall building volume (by adding on new facilities in case of reconstruction. It is noted that a systemic approach to ensuring energy efficiency of buildings is impossible without proper regard to the environmental parameters of heat insulation materials.

  17. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles.

    Science.gov (United States)

    Lin, Naibo; Liu, Xiang Yang

    2015-11-07

    This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted

  18. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors

    Science.gov (United States)

    Sun, Zhipeng; Firdoz, Shaik; Ying-Xuan Yap, Esther; Li, Lan; Lu, Xianmao

    2013-05-01

    We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization.We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly

  19. One-Step Synthesis of Hierarchical ZSM-5 Using Cetyltrimethylammonium as Mesoporogen and Structure-Directing Agent

    OpenAIRE

    Meng, Lingqian; Mezari, Brahim; Goesten, Maarten G.; Hensen, Emiel J. M.

    2017-01-01

    Hierarchical ZSM-5 zeolite is hydrothermally synthesized in a single step with cetyltrimethylammonium (CTA) hydroxide acting as mesoporogen and structure-directing agent. Essential to this synthesis is the replacement of NaOH with KOH. An in-depth solid-state NMR study reveals that, after early electrostatic interaction between condensed silica and the head group of CTA, ZSM-5 crystallizes around the structure-directing agent. The crucial aspect of using KOH instead of NaOH lies in the faster...

  20. Damping in building structures during earthquakes: test data and modeling

    International Nuclear Information System (INIS)

    Coats, D.W. Jr.

    1982-01-01

    A review and evaluation of the state-of-the-art of damping in building structures during earthquakes is presented. The primary emphasis is in the following areas: 1) the evaluation of commonly used mathematical techniques for incorporating damping effects in both simple and complex systems; 2) a compilation and interpretation of damping test data; and 3) an evaluation of structure testing methods, building instrumentation practices, and an investigation of rigid-body rotation effects on damping values from test data. A literature review provided the basis for evaluating mathematical techiques used to incorporate earthquake induced damping effects in simple and complex systems. A discussion on the effectiveness of damping, as a function of excitation type, is also included. Test data, from a wide range of sources, has been compiled and interpreted for buidings, nuclear power plant structures, piping, equipment, and isolated structural elements. Test methods used to determine damping and frequency parameters are discussed. In particular, the advantages and disadvantages associated with the normal mode and transfer function approaches are evaluated. Additionally, the effect of rigid-body rotations on damping values deduced from strong-motion building response records is investigated. A discussion of identification techniques typically used to determine building parameters (frequency and damping) from strong motion records is included. Finally, an analytical demonstration problem is presented to quantify the potential error in predicting fixed-base structural frequency and damping values from strong motion records, when rigid-body rotations are not properly accounted for

  1. Deployable bamboo structure project: A building life-cycle report

    Science.gov (United States)

    Firdaus, Adrian; Prastyatama, Budianastas; Sagara, Altho; Wirabuana, Revian N.

    2017-11-01

    Bamboo is considered as a sustainable material in the world of construction, and it is vastly available in Indonesia. The general utilization of the material is increasingly frequent, however, its usage as a deployable structure-a recently-developed use of bamboo, is still untapped. This paper presents a report on a deployable bamboo structure project, covering the entire building life-cycle phase. The cycle encompasses the designing; fabrication; transportation; construction; operation and maintenance; as well as a plan for future re-use. The building is made of a configuration of the structural module, each being a folding set of bars which could be reduced in size to fit into vehicles for easy transportation. Each structural module was made of Gigantochloa apus bamboo. The fabrication, transportation, and construction phase require by a minimum of three workers. The fabrication and construction phase require three hours and fifteen minutes respectively. The building is utilized as cafeteria stands, the operation and maintenance phase started since early March 2017. The maintenance plan is scheduled on a monthly basis, focusing on the inspection of the locking mechanism element and the entire structural integrity. The building is designed to allow disassembly process so that it is reusable in the future.

  2. Analysis of the structural design process of the adaptive reuse of building structures

    NARCIS (Netherlands)

    Pasterkamp, S.

    2014-01-01

    In the field of structural building engineering there is a market shift taking place as a result of the growing number of buildings that are listed as cultural heritage, secularization, the economic situation and the increasing office vacancy rate in Europe and the US. More and more structural

  3. A Review of Influence of Various Types of Structural Bracing to the Structural Performance of Buildings

    Science.gov (United States)

    Razak, S. M.; Kong, T. C.; Zainol, N. Z.; Adnan, A.; Azimi, M.

    2018-03-01

    Excessive lateral drift can contribute significantly towards crack formation, leading to structural damage. The structural damage will in turn reduce the capacity of the structure and weaken it from the intended design capacity. Generally, lateral drift is more pronounced in higher and longer structure, such as high rise buildings and bridges. A typical method employed to control lateral drift is structural bracing, which works by increasing stiffness and stability of structure. This paper reviews the influence of various types of structural bracing to structural performance of buildings. The history of structural bracing is visited and the differences between numerous structural bracing in term of suitability to different types of buildings and loading, mechanisms, technical details, advantages and limitations, and the overall effect on the structural behaviour and performance are dissected. Proper and efficient structural bracing is pertinent for each high rise building as this will lead towards safer, sustainable and more economical buildings, which are cheaper to maintain throughout the life of the buildings in the future.

  4. Hierarchical temporal structure in music, speech and animal vocalizations: jazz is like a conversation, humpbacks sing like hermit thrushes.

    Science.gov (United States)

    Kello, Christopher T; Bella, Simone Dalla; Médé, Butovens; Balasubramaniam, Ramesh

    2017-10-01

    Humans talk, sing and play music. Some species of birds and whales sing long and complex songs. All these behaviours and sounds exhibit hierarchical structure-syllables and notes are positioned within words and musical phrases, words and motives in sentences and musical phrases, and so on. We developed a new method to measure and compare hierarchical temporal structures in speech, song and music. The method identifies temporal events as peaks in the sound amplitude envelope, and quantifies event clustering across a range of timescales using Allan factor (AF) variance. AF variances were analysed and compared for over 200 different recordings from more than 16 different categories of signals, including recordings of speech in different contexts and languages, musical compositions and performances from different genres. Non-human vocalizations from two bird species and two types of marine mammals were also analysed for comparison. The resulting patterns of AF variance across timescales were distinct to each of four natural categories of complex sound: speech, popular music, classical music and complex animal vocalizations. Comparisons within and across categories indicated that nested clustering in longer timescales was more prominent when prosodic variation was greater, and when sounds came from interactions among individuals, including interactions between speakers, musicians, and even killer whales. Nested clustering also was more prominent for music compared with speech, and reflected beat structure for popular music and self-similarity across timescales for classical music. In summary, hierarchical temporal structures reflect the behavioural and social processes underlying complex vocalizations and musical performances. © 2017 The Author(s).

  5. Historic Structure Assessment for Building 839, Carlisle Barracks: Carlisle, Pennsylvania

    Science.gov (United States)

    2017-10-01

    Restoration Reconstruction Stabilization Condition Assessment Standard Definitions Qualitative Condition Ratings Maintenance Deficiency Priority...Structure Name Building 839 Other Name(s) Farmhouse Location Patton Road Carlisle Barracks Cumberland County, Pennsylvania Date of Construction ca...that guide the project; 4. Condition Assessment Survey: architectural fabric survey and assessment, summary of condition ratings, and maintenance

  6. Structure Building Predicts Grades in College Psychology and Biology

    Science.gov (United States)

    Arnold, Kathleen M.; Daniel, David B.; Jensen, Jamie L.; McDaniel, Mark A.; Marsh, Elizabeth J.

    2016-01-01

    Knowing what skills underlie college success can allow students, teachers, and universities to identify and to help at-risk students. One skill that may underlie success across a variety of subject areas is structure building, the ability to create mental representations of narratives (Gernsbacher, Varner, & Faust, 1990). We tested if…

  7. Measuring structural (un)safety in the Dutch building industry

    NARCIS (Netherlands)

    Terwel, K.C.; Waarts, P; E Rademaeker, de

    2010-01-01

    The last 10 years the Dutch Building Industry was shocked by several major accidents. In 2001 the steel structure of a theatre in Hoorn collapsed during erection. No one was hurt, because it collapsed during the night. In 2002 part of the parking deck of a hotel collapsed just some time after a

  8. Structural capacity assessment of machine-building enterprises and associations

    Directory of Open Access Journals (Sweden)

    Prilutskay Maria

    2017-01-01

    Full Text Available Multidirectional tendencies of machine-building enterprises integration and disintegration resulted in the emergence of the formal and informal associations. These associations consist of the obviously and/or implicitly affiliated legal entities. Thus, a new element appears in the direct enterprise environment, i.e a management company or a head enterprise. The management company influences the participants even in an informal association. New environment restrictions led to the changes in the management structure. The paper considers the enterprise structures interrelation: organizational, financial, production, resource, and others. The authors draw a conclusion that the structures are hierarchy, and there are the coherence structures assessment criteria. The coordinated structures form the structural capacity of the enterprise. The suggested assessment coherence criteria (for example resource and functional structures allow estimating the structural potential and defining the directions of the enterprise efficiency increase.

  9. Dynamic soil-structure interactions on embedded buildings

    International Nuclear Information System (INIS)

    Kobarg, J.; Werkle, H.; Henseleit, O.

    1983-01-01

    The dynamic soil-structure interaction on the horizontal seismic excitation is investigated on two typical embedded auxiliary buildings of a nuclear power plant. The structure and the soil are modelled by various analytical and numerical methods. Under the condition of the linear viscoelastic theory, i.e. soil characteristic constant in time and independent of strain, the interaction influences between a homogenous soil layer and a structure are analysied for the following parameters: 4) mathematical soil modells; 4) mathematical structure modells; 4) shear wave velocities; 3) embedment conditions; 4) earthquake time histories. (orig.) [de

  10. Layer-by-layer assembly of TiO(2) colloids onto diatomite to build hierarchical porous materials.

    Science.gov (United States)

    Jia, Yuxin; Han, Wei; Xiong, Guoxing; Yang, Weishen

    2008-07-15

    TiO(2) colloids with the most probably particle size of 10 nm were deposited on the surface of macroporous diatomite by a layer-by-layer (LBL) assembly method with using phytic acid as molecular binder. For preparation of colloidal TiO(2), titanium(IV) isopropoxide (Ti(C(3)H(7)O)(4)) was used as titanium precursor, nitric acid (HNO(3)) as peptizing agent and deionized water and isopropanol (C(3)H(7)OH) as solvent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N(2) adsorption-desorption, and UV-vis spectra are used to assess the morphology and physical chemistry properties of the resulting TiO(2) coated diatomite. It was shown that the mesoporosity has been introduced into macroporous diatomite by LBL deposition. The mesoporosity was originated from close-packing of the uniform TiO(2) nanoparticles. More TiO(2) could be coated on the surface of diatomite by increasing the deposition cycles. This hierarchical porous material has potential for applications in catalytic reactions involved diffusion limit, especially in photocatalytic reactions.

  11. Osteogenic activity of titanium surfaces with hierarchical micro/nano-structures obtained by hydrofluoric acid treatment

    Directory of Open Access Journals (Sweden)

    Liang J

    2017-02-01

    Full Text Available Jianfei Liang,1,* Shanshan Xu,1,* Mingming Shen,2,* Bingkun Cheng,3 Yongfeng Li,4 Xiangwei Liu,1 Dongze Qin,1 Anuj Bellare,5 Liang Kong1 1State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, 2Department of Stomatology, Xinhua Hospital of Beijing, Beijing, 3Department of Oral and Maxillofacial Surgery, School of Stomatology, The Second Hospital of Hebei Medical University, Shijiazhuang, 4Department of Stomatology, Chinese PLA 532 Hospital, Huangshan, People’s Republic of China; 5Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA *These authors contributed equally to this work Abstract: An easier method for constructing the hierarchical micro-/nano-structures on the surface of dental implants in the clinic is needed. In this study, three different titanium surfaces with microscale grooves (width 0.5–1, 1–1.5, and 1.5–2 µm and nanoscale nanoparticles (diameter 20–30, 30–50, and 50–100 nm, respectively were obtained by treatment with different concentrations of hydrofluoric acid (HF and at different etching times (1%, 3 min; 0.5%, 12 min; and 1.5%, 12 min, respectively; denoted as groups HF1, HF2, and HF3. The biological response to the three different titanium surfaces was evaluated by in vitro human bone marrow-derived mesenchymal stem cell (hBMMSC experiments and in vivo animal experiments. The results showed that cell adhesion, proliferation, alkaline phosphatase activity, and mineralization of hBMMSCs were increased in the HF3 group. After the different surface implants were inserted into the distal femurs of 40 rats, the bone–implant contact in groups HF1, HF2, and HF3 was 33.17%±2.2%, 33.82%±3.42%, and 41.04%±3.08%, respectively. Moreover, the maximal pullout

  12. Building a Tree Structure: The Development of Hierarchical Complexity and Interrupted Strategies in Children's Construction Activity

    Science.gov (United States)

    Greenfield, Patricia Marks; Schneider, Leslie

    1977-01-01

    This study examined the construction of a mobile with plastic construction straws in order to study the development of tree representations in a domain other than language. Subjects were 70 children between the ages of 3 and 11. (Author/JMB)

  13. The role of the hierarchical theory in explaining the capital structure of the firms based on enterprise life cycle model

    Directory of Open Access Journals (Sweden)

    Jamal Bahiri Saleth

    2016-01-01

    Full Text Available Capital structure is a controversial issue in the field of corporate finance. There are several studies to find a way to determine the optimal capital structure to minimize the cost of capital and maximize the corporate value. In fact, capital structure is a combination of firms’ liabilities and capital to meet long term assets. This paper investigates the role of the hierarchical theory in explaining the capital structure of the firms based on enterprise life cycle model on selected firms listed on Tehran Stock Exchange (TSE using three methods of net equities, net liabilities and retained earnings. The study uses Park and Chen’s (2006 method [Park, Y., & Chen, K. H. (2006. The effect of accounting conservatism and life-cycle stages on firm valuation. Journal of Applied Business Research (JABR, 22(3, 75-92.] to categorize the life cycle of 81 randomly selected firms from TSE over the period 2007-2012. The results indicate that the hierarchical theory represents the growing firms better than the matured firms do. The results also show that firms were more willing to reduce their dividend per share for financing their projects.

  14. Models test on dynamic structure-structure interaction of nuclear power plant buildings

    International Nuclear Information System (INIS)

    Kitada, Y.; Hirotani, T.

    1999-01-01

    A reactor building of an NPP (nuclear power plant) is generally constructed closely adjacent to a turbine building and other buildings such as the auxiliary building, and in increasing numbers of NPPs, multiple plants are being planned and constructed closely on a single site. In these situations, adjacent buildings are considered to influence each other through the soil during earthquakes and to exhibit dynamic behaviour different from that of separate buildings, because those buildings in NPP are generally heavy and massive. The dynamic interaction between buildings during earthquake through the soil is termed here as 'dynamic cross interaction (DCI)'. In order to comprehend DCI appropriately, forced vibration tests and earthquake observation are needed using closely constructed building models. Standing on this background, Nuclear Power Engineering Corporation (NUPEC) had planned the project to investigate the DCI effect in 1993 after the preceding SSI (soil-structure interaction) investigation project, 'model tests on embedment effect of reactor building'. The project consists of field and laboratory tests. The field test is being carried out using three different building construction conditions, e.g. a single reactor building to be used for the comparison purposes as for a reference, two same reactor buildings used to evaluate pure DCI effects, and two different buildings, reactor and turbine building models to evaluate DCI effects under the actual plant conditions. Forced vibration tests and earthquake observations are planned in the field test. The laboratory test is planned to evaluate basic characteristics of the DCI effects using simple soil model made of silicon rubber and structure models made of aluminum. In this test, forced vibration tests and shaking table tests are planned. The project was started in April 1994 and will be completed in March 2002. This paper describes an outline and the summary of the current status of this project. (orig.)

  15. The type I error rate for in vivo Comet assay data when the hierarchical structure is disregarded

    DEFF Research Database (Denmark)

    Hansen, Merete Kjær; Kulahci, Murat

    the type I error rate is greater than the nominal _ at 0.05. Closed-form expressions based on scaled F-distributions using the Welch-Satterthwaite approximation are provided to show how the type I error rate is aUected. With this study we hope to motivate researchers to be more precise regarding......, and this imposes considerable impact on the type I error rate. This study aims to demonstrate the implications that result from disregarding the hierarchical structure. DiUerent combinations of the factor levels as they appear in a literature study give type I error rates up to 0.51 and for all combinations...

  16. Criteria of choosing building structures for rooftop boiler rooms

    Directory of Open Access Journals (Sweden)

    Plotnikov Artyom

    2018-01-01

    Full Text Available The paper investigates parameters of noise and vibration distribution in the territory of residential area depending on the structural materials and power of independent heat supply systems. Rooftop boiler rooms are decentralized heat supply systems in buildings. Today, residential areas are strongly affected by noise and vibrations. Adverse effects are isolated by buildings materials, protective shields and floating floors. Rooftop boiler rooms located in Tyumen city were investigated within this research. Structures of rooftop boiler rooms were analyzed. Acoustic analysis results and the parameters of equivalent continuous sound level are presented. An option for improvement of rooftop boiler rooms structures is suggested. Comparison of capital investments in construction and installation activities is carried out. Conclusion on capital investments required for noise protection is made.

  17. Life management for a non replaceable structure: the reactor building

    International Nuclear Information System (INIS)

    Torres, V.; Francia, L.

    1998-01-01

    Phase 1 of UNESA N.P.P. Lifetime Management Project identified and ranked important components, relative to plant life management. The list showed the Reactor Containment Structure in the third position, and thirteen concrete structures were among the list top twenty. Since the Reactor Containment Building, together with the Reactor Vessel, is the only non-replaceable plant component, and has a big impact on the plant technical life, there is an increasing interest on understanding its behavior to maintain structural integrity. This paper presents: a) IAEA (International Atomic Energy Agency) Coordinated Research Program experiences and studies. Under this Program, international experts address the most frequent degradation mechanisms affecting the containment building. b) IAEA Aging Management Program adapted to our plants. The paper addresses the aging mechanisms affecting the concrete structures, reinforcing steel and prestress systems as well as the aging management programs and the mitigation and control methods. Finally, this paper presents a new module called STRUCTURES, included in phase 2 of the above mentioned project, which will monitor and document the different aging mechanisms and management programs described in item b) regarding the Reactor Containment Building (concrete liner, post stressing system, anchor elements). This module will also support the Maintenance Rule related practices. (Author)

  18. Structural design of SBWR reactor building complex using microcomputers

    International Nuclear Information System (INIS)

    Mandagi, K.; Rajagopal, R.S.; Sawhney, P.S.; Gou, P.F.

    1993-01-01

    The design concept of Simplified Boiling Water Reactor (SBWR) plant is based on simplicity and passive features to enhance safety and reliability, improve performance, and increase economic viability. The SBWR utilizes passive systems such as Gravity Driven Core-Cooling System (GDCS) and Passive Containment Cooling System (PCCS). To suit these design features the Reactor Building (RB) complex of the SBWR is configured as an integrated structure consisting of a cylindrical Reinforced Concrete Containment Vessel (RCCV) surrounded by square reinforced concrete safety envelope and outer box structures, all sharing a common reinforced concrete basemat. This paper describes the structural analysis and design aspects of the RB complex. A 3D STARDYNE finite element model has been developed for the structural analysis of the complex using a PC Compaq 486/33L microcomputer. The structural analysis is performed for service and factored load conditions for the applicable loading combinations. The dynamic responses of containment structures due to pool hydrodynamic loads have been calculated by an axisymmetric shell model using COSMOS/M program. The RCCV is designed in accordance with ASME Section 3, Division 2 Code. The rest of the RB which is classified as Seismic Category 1 structure is designed in accordance with the ACI 349 Code. This paper shows that microcomputers can be efficiently used for the analysis and design of large and complex structures such as RCCV and Reactor Building complex. The use of microcomputers can result in significant savings in the computational cost compared with that of mainframe computers

  19. Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jubouri, Sama M. [Chemical Engineering & Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Curry, Nicholas A. [Materials Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Holmes, Stuart M., E-mail: stuart.holmes@manchester.ac.uk [Chemical Engineering & Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-12-15

    A hierarchical structured composite made from clinoptilolite supported on date stones carbon is synthesized using two techniques. The composites are manufactured by fixing a natural zeolite (clinoptilolite) to the porous surface of date stones carbon or by direct hydrothermal synthesis on to the surface to provide a supported high surface area ion-exchange material for metal ion removal from aqueous streams. The fixing of the clinoptilolite is achieved using sucrose and citric acid as a binder. The composites and pure clinoptilolite were compared to test the efficacy for the removal of Sr{sup 2+} ions from an aqueous phase. The encapsulation of the Sr{sup 2+} using either vitrification or a geo-polymer addition was tested to ensure that the hazardous waste can be made safe for disposal. The hierarchical structured composites were shown to achieve a higher ion exchange capacity per gram of zeolite than the pure clinoptilolite (65 mg/g for the pure natural clinoptilolite and 72 mg/g for the pure synthesized clinoptilolite) with the synthesized composite (160 mg/g) having higher capacity than the natural clinoptilolite composite (95 mg/g). The rate at which the equilibria were established followed the same trend showing the composite structure facilitates diffusion to the ion-exchange sites in the zeolite.

  20. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    International Nuclear Information System (INIS)

    Martínez-Calderon, M.; Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M.

    2016-01-01

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm"2 were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  1. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Calderon, M., E-mail: mmcalderon@ceit.es [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M. [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain)

    2016-06-30

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm{sup 2} were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  2. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  3. The Origin of Hierarchical Structure in Self-Assembled Graphene Oxide Papers and the Effect on Mechanical Properties

    Science.gov (United States)

    Nandy, Krishanu

    The quest for new materials with ever improving properties has motivated interest in bulk nanostructured materials. Graphene, a two-dimensional sheet of hexagonally arranged carbon atoms, has been of particular interest given its exceptional mechanical, thermal, optical and electrical properties. Graphene oxide is a chemically modified form of graphene in which the honeycomb lattice of carbon atoms is decorated with oxygen bearing functional groups. Graphene oxide represents a facile route for the production of large quantities of graphene based materials, is stable in aqueous and polar organic solvents and has the potential for further chemical modification. In this dissertation, the origin and influence of hierarchical structure on the mechanical properties of graphene oxide paper and graphene oxide paper based materials has been investigated. Free-standing papers derived from graphene oxide are of interest as structural materials due to their impressive mechanical properties. While studies have investigated the mechanical properties of graphene oxide papers, little is known about the formation mechanism. Using a series of flash-freezing experiments on graphene oxide papers undergoing formation, a stop-motion animation of the fabrication process was obtained. The results explain the origin of the hierarchical nature of graphene oxide papers and provide a method for the tailoring of graphene oxide based materials. An in depth study of fusion of graphene oxide papers demonstrates a simple single-step route for the fabrication of practical materials derived from graphene oxide papers. Fused papers retain the properties of constituent papers allowing for the fabrication of mechanical heterostructures that replicate the hierarchical nature of natural materials. The contribution of the hierarchical nature of graphene oxide papers to the mechanical properties was examined by comparing papers formed by two different mechanisms. The intermediate length scale structures

  4. Salt Damage and Rising Damp Treatment in Building Structures

    Directory of Open Access Journals (Sweden)

    J. M. P. Q. Delgado

    2016-01-01

    Full Text Available Salt damage can affect the service life of numerous building structures, both historical and contemporary, in a significant way. In this review, various damage mechanisms to porous building materials induced by salt action are analyzed. The importance of pretreatment investigations is discussed as well; in combination with the knowledge of salt and moisture transport mechanisms they can give useful indications regarding treatment options. The methods of salt damage treatment are assessed then, including both passive techniques based on environmental control, reduction of water transport, or conversion to less soluble salts and active procedures resulting in the removal of salts from deterioration zones. It is concluded that cellulose can still be considered as the favorite material presently used in desalination poultices but hydrophilic mineral wool can serve as its prospective alternative in future applications. Another important cause of building pathologies is the rising damp and, in this phenomenon, it is particularly severe considering the presence of salts in water. The treatment of rising damp in historic building walls is a very complex procedure and at Laboratory of Building Physics (LFC-FEUP a wall base hygroregulated ventilation system was developed and patented.

  5. Multi functional roof structures of the energy efficient buildings

    Directory of Open Access Journals (Sweden)

    Krstić Aleksandra

    2006-01-01

    Full Text Available Modern architectural concepts, which are based on rational energy consumption of buildings and the use of solar energy as a renewable energy source, give the new and significant role to the roofs that become multifunctional structures. Various energy efficient roof structures and elements, beside the role of protection, provide thermal and electric energy supply, natural ventilation and cooling of a building, natural lighting of the indoor space sunbeam protection, water supply for technical use, thus according to the above mentioned functions, classification and analysis of such roof structures and elements are made in this paper. The search for new architectural values and optimization in total energy balance of a building or the likewise for the urban complex, gave to roofs the role of "climatic membranes". Contemporary roof forms and materials clearly exemplify their multifunctional features. There are numerous possibilities to achieve the new and attractive roof design which broadens to the whole construction. With such inducement, this paper principally analyze the configuration characteristics of the energy efficient roof structures and elements, as well as the visual effects that may be achieved by their application.

  6. Assessment of Technogenic Accident Risk of Industrial Building Structures

    Science.gov (United States)

    Baiburin, D. A.; Baiburin, A. Kh

    2017-11-01

    A methodology for assessing the risk of an industrial building accident was developed taking into account the damage caused by various localization of collapse. Before the beginning of the survey of a facility technical condition, groups including the same type of building structures are selected. Further, assessment is made for the reduction in their load-carrying capacity from the strength and stability conditions taking into account defects. The characteristics of the influence of defects and structural damage on a building safety is the degree of compliance with the standards expressed by the reliability level. Reliability levels assignment is carried out on the basis of calculations, operating experience and inspection of a particular type of structure according to the formalized rules. The risk of collapse according to a separate scenario is calculated for structures that are capable and incapable of causing a progressive ossification. The results of the technique application are based on the analysis of the accident risk at the welding shop “Vysota (Height) 239” of the Chelyabinsk Pipe Rolling Plant.

  7. Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chunping; Lu, Zhong; Zhao, Huiping; Yang, Hao, E-mail: hyangwit@hotmail.com; Chen, Rong, E-mail: rchenhku@hotmail.com

    2015-10-30

    Graphical abstract: - Highlights: • Hierarchical bismuth nanostructures were synthesized by galvanic replacement reaction. • The bismuth coating shows superhydrophobicity after being modified by stearic acid. • Wetting transition could be realized by alternation of irradiation and modification. - Abstract: Special wettability such as superhydrophobicity and superhydrophilicity has aroused considerable attention in recent years, especially for the surface that can be switched between superhydrophobicity and superhydrophilicity. In this work, hierarchical bismuth nanostructures with hyperbranched dendritic architectures were synthesized via the galvanic replacement reaction between zinc plate and BiCl{sub 3} in ethylene glycol solution, which was composed of a trunk, branches (secondary branch), and leaves (tertiary branch). After being modified by stearic acid, the as-prepared bismuth coating shows superhydrophobicity with a high water contact angle of 164.8° and a low sliding angle of 3°. More importantly, a remarkable surface wettability transition between superhydrophobicity and superhydrophilicity could be easily realized by the alternation of UV–vis irradiation and modification with stearic acid. The tunable wetting behavior of bismuth coating could be used as smart materials to make a great application in practice.

  8. Hierarchically structured self-supported latex films for flexible and semi-transparent electronics

    Science.gov (United States)

    Määttänen, Anni; Ihalainen, Petri; Törngren, Björn; Rosqvist, Emil; Pesonen, Markus; Peltonen, Jouko

    2016-02-01

    Different length scale alterations in topography, surface texture, and symmetry are known to evoke diverse cell behavior, including adhesion, orientation, motility, cytoskeletal condensation, and modulation of intracellular signaling pathways. In this work, self-supported latex films with well-defined isotropic/anisotropic surface features and hierarchical morphologies were fabricated by a peel-off process from different template surfaces. In addition, the latex films were used as substrates for evaporated ultrathin gold films with nominal thicknesses of 10 and 20 nm. Optical properties and topography of the samples were characterized using UV-vis spectroscopy and Atomic Force Microscopy (AFM) measurements, respectively. The latex films showed high-level transmittance of visible light, enabling the fabrication of semi-transparent gold electrodes. Electrochemical impedance spectroscopy (EIS) measurements were carried out for a number of days to investigate the long-term stability of the electrodes. The effect of 1-octadecanethiol (ODT) and HS(CH2)11OH (MuOH) thiolation and protein (human serum albumin, HSA) adsorption on the impedance and capacitance was studied. In addition, cyclic voltammetry (CV) measurements were carried out to determine active medicinal components, i.e., caffeic acid with interesting biological activities and poorly water-soluble anti-inflammatory drug, piroxicam. The results show that the fabrication procedure presented in this study enables the formation of platforms with hierarchical morphologies for multimodal (optical and electrical) real-time monitoring of length-scale-dependent biomaterial-surface interactions.

  9. Biomimetic fabrication and tunable wetting properties of three-dimensional hierarchical ZnO structures by combining soft lithography templated with lotus leaf and hydrothermal treatments

    OpenAIRE

    Dai, Shuxi; Zhang, Dianbo; Shi, Qing; Han, Xiao; Wang, Shujie; Du, Zuliang

    2013-01-01

    Three-dimensional hierarchical ZnO films with lotus-leaf-like micro/nano structures were successfully fabricated via a biomimetic route combining sol-gel technique, soft lithography and hydrothermal treatments. PDMS mold replicated from a fresh lotus leaf was used to imprint microscale pillar structures directly into a ZnO sol film. Hierarchical ZnO micro/nano structures were subsequently fabricated by a low-temperature hydrothermal growth of secondary ZnO nanorod arrays on the micro-structur...

  10. Direct Georeferencing of Uav Data Based on Simple Building Structures

    Science.gov (United States)

    Tampubolon, W.; Reinhardt, W.

    2016-06-01

    Unmanned Aerial Vehicle (UAV) data acquisition is more flexible compared with the more complex traditional airborne data acquisition. This advantage puts UAV platforms in a position as an alternative acquisition method in many applications including Large Scale Topographical Mapping (LSTM). LSTM, i.e. larger or equal than 1:10.000 map scale, is one of a number of prominent priority tasks to be solved in an accelerated way especially in third world developing countries such as Indonesia. As one component of fundamental geospatial data sets, large scale topographical maps are mandatory in order to enable detailed spatial planning. However, the accuracy of the products derived from the UAV data are normally not sufficient for LSTM as it needs robust georeferencing, which requires additional costly efforts such as the incorporation of sophisticated GPS Inertial Navigation System (INS) or Inertial Measurement Unit (IMU) on the platform and/or Ground Control Point (GCP) data on the ground. To reduce the costs and the weight on the UAV alternative solutions have to be found. This paper outlines a direct georeferencing method of UAV data by providing image orientation parameters derived from simple building structures and presents results of an investigation on the achievable results in a LSTM application. In this case, the image orientation determination has been performed through sequential images without any input from INS/IMU equipment. The simple building structures play a significant role in such a way that geometrical characteristics have been considered. Some instances are the orthogonality of the building's wall/rooftop and the local knowledge of the building orientation in the field. In addition, we want to include the Structure from Motion (SfM) approach in order to reduce the number of required GCPs especially for the absolute orientation purpose. The SfM technique applied to the UAV data and simple building structures additionally presents an effective tool

  11. Enhanced photoelectrochemical properties of F-containing TiO2 sphere thin film induced by its novel hierarchical structure

    International Nuclear Information System (INIS)

    Dong Xiang; Tao Jie; Li Yingying; Zhu Hong

    2009-01-01

    The novel nanostructured F-containing TiO 2 (F-TiO 2 ) sphere was directly synthesized on the surface of Ti foil in the solution of NH 4 F and HCl by one-step hydrothermal approach under low-temperature condition. The samples were characterized respectively by means of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results showed that the F-TiO 2 sphere was hierarchical structure, which composed of porous octahedron crystals with one truncated cone, leading to a football-like morphology. XPS results indicated that F - anions were just physically adsorbed on the surface of TiO 2 microspheres. The studies on the optical properties of the F-TiO 2 were carried out by UV-vis light absorption spectrum. The surface fluorination of the spheres, the unique nanostructure induced accessible macropores or mesopores, and the increased light-harvesting abilities were crucial for the high photoelectrochemical activity of the synthesized F-TiO 2 sphere for water-splitting. The photocurrent density of the F-TiO 2 sphere thin film was more than two times than that of the P25 thin film. Meanwhile, a formation mechanism was briefly proposed. This approach could provide a facile method to synthesize F-TiO 2 microsphere with a special morphology and hierarchical structure in large scale.

  12. Effect of hierarchical pore structure on ALP expression of MC3T3-E1 cells on bioglass films.

    Science.gov (United States)

    Yu, Cuixia; Zhuang, Junjun; Dong, Lingqing; Cheng, Kui; Weng, Wenjian

    2017-08-01

    Hierarchical porous bioglass films on the tantalum were designed to enhance osteointegration of metallic implants. The films were prepared by a sol-gel method using P123 as the mesopore template and polystyrene microsphere as the nanopore template. The films with 5.4nm mesopores and 100nm nanopores (MBG-100) elicited an obviously elongated morphology of the cultured MC3T3-E1 cells, as a result, a higher alkaline phosphatase level was expressed. It is suggested that the nanopores play an important role in regulating cellular behavior by initial protein adsorption through nanopore curvatures. The mesopores were proven very effective for loading rhBMP-2, and the rhBMP-2 loaded on MBG-100 films showed a better function of enhancing osteogenic differentiation, which is attributed to that the nanopore structure could expedite rhBMP-2 release and provide a microenvironment for intensifying the interaction of rhBMP-2 with the cells. Hence, the cell osteogenic differentiation can be enhanced by hierarchical porous bioglass films through both the porous structure and rhBMP-2 induction. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Application of Bayesian networks in a hierarchical structure for environmental risk assessment: a case study of the Gabric Dam, Iran.

    Science.gov (United States)

    Malekmohammadi, Bahram; Tayebzadeh Moghadam, Negar

    2018-04-13

    Environmental risk assessment (ERA) is a commonly used, effective tool applied to reduce adverse effects of environmental risk factors. In this study, ERA was investigated using the Bayesian network (BN) model based on a hierarchical structure of variables in an influence diagram (ID). ID facilitated ranking of the different alternatives under uncertainty that were then used to evaluate comparisons of the different risk factors. BN was used to present a new model for ERA applicable to complicated development projects such as dam construction. The methodology was applied to the Gabric Dam, in southern Iran. The main environmental risk factors in the region, presented by the Gabric Dam, were identified based on the Delphi technique and specific features of the study area. These included the following: flood, water pollution, earthquake, changes in land use, erosion and sedimentation, effects on the population, and ecosensitivity. These risk factors were then categorized based on results from the output decision node of the BN, including expected utility values for risk factors in the decision node. ERA was performed for the Gabric Dam using the analytical hierarchy process (AHP) method to compare results of BN modeling with those of conventional methods. Results determined that a BN-based hierarchical structure to ERA present acceptable and reasonable risk assessment prioritization in proposing suitable solutions to reduce environmental risks and can be used as a powerful decision support system for evaluating environmental risks.

  14. Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor – new design principles for biomimetic materials

    Directory of Open Access Journals (Sweden)

    Anna J. Schulte

    2011-05-01

    Full Text Available Hierarchically structured flower leaves (petals of many plants are superhydrophobic, but water droplets do not roll-off when the surfaces are tilted. On such surfaces water droplets are in the “Cassie impregnating wetting state”, which is also known as the “petal effect”. By analyzing the petal surfaces of different species, we discovered interesting new wetting characteristics of the surface of the flower of the wild pansy (Viola tricolor. This surface is superhydrophobic with a static contact angle of 169° and very low hysteresis, i.e., the petal effect does not exist and water droplets roll-off as from a lotus (Nelumbo nucifera leaf. However, the surface of the wild pansy petal does not possess the wax crystals of the lotus leaf. Its petals exhibit high cone-shaped cells (average size 40 µm with a high aspect ratio (2.1 and a very fine cuticular folding (width 260 nm on top. The applied water droplets are in the Cassie–Baxter wetting state and roll-off at inclination angles below 5°. Fabricated hydrophobic polymer replicas of the wild pansy were prepared in an easy two-step moulding process and possess the same wetting characteristics as the original flowers. In this work we present a technical surface with a new superhydrophobic, low adhesive surface design, which combines the hierarchical structuring of petals with a wetting behavior similar to that of the lotus leaf.

  15. Shape-tailored polymer colloids on the road to become structural motifs for hierarchically organized materials.

    Science.gov (United States)

    Plüisch, Claudia Simone; Wittemann, Alexander

    2013-12-01

    Anisometric polymer colloids are likely to behave differently when compared with centrosymmetric particles. Their study may not only shine new light on the organization of matter; they may also serve as building units with specific symmetries and complexity to build new materials from them. Polymer colloids of well-defined complex geometries can be obtained by packing a limited number of spherical polymer particles into clusters with defined configurations. Such supracolloidal architectures can be fabricated at larger scales using narrowly dispersed emulsion droplets as templates. Assemblies built from at least two different types of particles as elementary building units open perspectives in selective targeting of colloids with specific properties, aiming for mesoscale building blocks with tailor-made morphologies and multifunctionality. Polymer colloids with defined geometries are also ideal to study shape-dependent properties such as the diffusion of complex particles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Seismic response analysis of an instrumented building structure

    Science.gov (United States)

    Li, H.-J.; Zhu, S.-Y.; Celebi, M.

    2003-01-01

    The Sheraton - Universal hotel, an instrumented building lying in North Hollywood, USA is selected for case study in this paper. The finite element method is used to produce a linear time - invariant structural model, and the SAP2000 program is employed for the time history analysis of the instrumented structure under the base excitation of strong motions recorded in the basement during the Northridge, California earthquake of 17 January 1994. The calculated structural responses are compared with the recorded data in both time domain and frequency domain, and the effects of structural parameters evaluation and indeterminate factors are discussed. Some features of structural response, such as the reason why the peak responses of acceleration in the ninth floor are larger than those in the sixteenth floor, are also explained.

  17. Study on reactor building structure using ultrahigh strength materials, 1

    International Nuclear Information System (INIS)

    Ishimura, Kikuo; Odajima, Masahiro; Irino, Kazuo; Hashiba, Toshio.

    1991-01-01

    This study was promoted to be aimed at realization of the optimal nuclear reactor building structure of the future. As the first step, the study regarding ultrahigh strength reinforced concrete (abbr. RC) shear wall was selected. As the result of various tests, the application of ultrahigh strength RC shear walls was verified. The tests conducted were relevant to; ultrahigh strength concrete material tests; pure shear tests of RC flat panels; and bending shear tests and its simulation analysis of RC shear walls. (author)

  18. Ambient Response Analysis of the Heritage Court Tower Building Structure

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, Palle

    2000-01-01

    In this paper an ambient response analysis of the Heritage Court Building structure is presented. The work is a part of a blind test organized by Professor Carlos Ventura, University of British Columbia. The response data were analyses using two different techniques: a non-parametric based on Fre...... modes, natural frequencies identified by the two techniques shoved good agreement, mode shape estimates were nearly identical, and damping ratios reasonably close and around 1-2% in the most cases....

  19. Ambient Response Analysis of the Heritage Court Tower Building Structure

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, Palle

    2000-01-01

    In this paper an ambient response analysis of the Heritage Court Building structure is presented. The work is a part of a blind test organized by Professor Carlos Ventura, University of British Columbia. The response data were analyses using two different techniques: a non-parametric based...... modes, natural frequencies identified by the two techniques shoved good agreement, mode shape estimates were nearly identical, and damping ratios reasonably close and around 1-2% in the most cases....

  20. Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data?

    NARCIS (Netherlands)

    Odong, T.L.; Heerwaarden, van J.; Jansen, J.; Hintum, van T.J.L.; Eeuwijk, van F.A.

    2011-01-01

    Despite the availability of newer approaches, traditional hierarchical clustering remains very popular in genetic diversity studies in plants. However, little is known about its suitability for molecular marker data. We studied the performance of traditional hierarchical clustering techniques using

  1. 3D hierarchically porous Cu-BiOCl nanocomposite films: one-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties

    Science.gov (United States)

    Guerrero, Miguel; Pané, Salvador; Nelson, Bradley J.; Baró, Maria Dolors; Roldán, Mònica; Sort, Jordi; Pellicer, Eva

    2013-11-01

    Three-dimensional (3D) hierarchically porous composite Cu-BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(ii) and Bi(iii) chloride salts and Triton X-100. The films show spherical, micron-sized pores that spread over the whole film thickness. In turn, the pore walls are made of randomly packed BiOCl nanoplates that are assembled leaving micro-nanopore voids beneath. It is believed that Cu grows within the interstitial spaces between the hydrogen bubbles produced from the reduction of H+ ions. Then, the BiOCl sheets accommodate in the porous network defined by the Cu building blocks. The presence of Cu tends to enhance the mechanical stability of the composite material. The resulting porous Cu-BiOCl films exhibit homogeneous and stable-in-time photoluminescent response arising from the BiOCl component that spreads over the entire 3D porous structure, as demonstrated by confocal scanning laser microscopy. A broad-band emission covering the entire visible range, in the wavelength interval 450-750 nm, is obtained. The present work paves the way for the facile and controlled preparation of a new generation of photoluminescent membranes.Three-dimensional (3D) hierarchically porous composite Cu-BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(ii) and Bi(iii) chloride salts and Triton X-100. The films show spherical, micron-sized pores that spread over the whole film thickness. In turn, the pore walls are made of randomly packed BiOCl nanoplates that are assembled leaving micro-nanopore voids beneath. It is believed that Cu grows within the interstitial spaces between the hydrogen bubbles produced from the reduction of H+ ions. Then, the BiOCl sheets accommodate in the porous network defined by the Cu building blocks. The presence of Cu tends to enhance the mechanical stability of the

  2. Hierarchical spatial segregation of two Mediterranean vole species: the role of patch-network structure and matrix composition.

    Science.gov (United States)

    Pita, Ricardo; Lambin, Xavier; Mira, António; Beja, Pedro

    2016-09-01

    According to ecological theory, the coexistence of competitors in patchy environments may be facilitated by hierarchical spatial segregation along axes of environmental variation, but empirical evidence is limited. Cabrera and water voles show a metapopulation-like structure in Mediterranean farmland, where they are known to segregate along space, habitat, and time axes within habitat patches. Here, we assess whether segregation also occurs among and within landscapes, and how this is influenced by patch-network and matrix composition. We surveyed 75 landscapes, each covering 78 ha, where we mapped all habitat patches potentially suitable for Cabrera and water voles, and the area effectively occupied by each species (extent of occupancy). The relatively large water vole tended to be the sole occupant of landscapes with high habitat amount but relatively low patch density (i.e., with a few large patches), and with a predominantly agricultural matrix, whereas landscapes with high patch density (i.e., many small patches) and low agricultural cover, tended to be occupied exclusively by the small Cabrera vole. The two species tended to co-occur in landscapes with intermediate patch-network and matrix characteristics, though their extents of occurrence were negatively correlated after controlling for environmental effects. In combination with our previous studies on the Cabrera-water vole system, these findings illustrated empirically the occurrence of hierarchical spatial segregation, ranging from within-patches to among-landscapes. Overall, our study suggests that recognizing the hierarchical nature of spatial segregation patterns and their major environmental drivers should enhance our understanding of species coexistence in patchy environments.

  3. Nanocrystalline TiO{sub 2} photocatalytic membranes with a hierarchical mesoporous multilayer structure: synthesis, characterization, and multifunction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.; Dionysiou, D.D. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0071 (United States); Sofranko, A.C. [Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904-4741 (United States)

    2006-05-19

    A novel sol-gel dip-coating process to fabricate nanocrystalline TiO{sub 2} photocatalytic membranes with a robust hierarchical mesoporous multilayer and improved performance has been studied. Various titania sols containing poly(oxyethylenesorbitan monooleate) (Tween 80) surfactant as a pore-directing agent to tailor-design the porous structure of TiO{sub 2} materials at different molar ratios of Tween 80/isopropyl alcohol/acetic acid/titanium tetraisopropoxide = R:45:6:1 have been synthesized. The sols are dip-coated on top of a homemade porous alumina substrate to fabricate TiO{sub 2}/Al{sub 2}O{sub 3} composite membranes, dried, and calcined, and this procedure is repeated with varying sols in succession. The resulting asymmetric mesoporous TiO{sub 2} membrane with a thickness of 0.9 {mu}m exhibits a hierarchical change in pore diameter from 2-6, through 3-8, to 5-11 nm from the top to the bottom layer. Moreover, the corresponding porosity is incremented from 46.2, through 56.7, to 69.3 %. Compared to a repeated-coating process using a single sol, the hierarchical multilayer process improves water permeability significantly without sacrificing the organic retention and photocatalytic activity of the TiO{sub 2} membranes. The prepared TiO{sub 2} photocatalytic membrane has great potential in developing highly efficient water treatment and reuse systems, for example, decomposition of organic pollutants, inactivation of pathogenic microorganisms, physical separation of contaminants, and self-antifouling action because of its multifunctional capability. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  4. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    International Nuclear Information System (INIS)

    Wu, Sangik; Kim, Y. K.; Kim, H. R.

    2007-05-01

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future

  5. Rigging dark haloes: why is hierarchical galaxy formation consistent with the inside-out build-up of thin discs?

    Science.gov (United States)

    Pichon, C.; Pogosyan, D.; Kimm, T.; Slyz, A.; Devriendt, J.; Dubois, Y.

    2011-12-01

    State-of-the-art hydrodynamical simulations show that gas inflow through the virial sphere of dark matter haloes is focused (i.e. has a preferred inflow direction), consistent (i.e. its orientation is steady in time) and amplified (i.e. the amplitude of its advected specific angular momentum increases with time). We explain this to be a consequence of the dynamics of the cosmic web within the neighbourhood of the halo, which produces steady, angular momentum rich, filamentary inflow of cold gas. On large scales, the dynamics within neighbouring patches drives matter out of the surrounding voids, into walls and filaments before it finally gets accreted on to virialized dark matter haloes. As these walls/filaments constitute the boundaries of asymmetric voids, they acquire a net transverse motion, which explains the angular momentum rich nature of the later infall which comes from further away. We conjecture that this large-scale driven consistency explains why cold flows are so efficient at building up high-redshift thin discs inside out.

  6. A Hierarchical Phosphorus Nanobarbed Nanowire Hybrid: Its Structure and Electrochemical Properties.

    Science.gov (United States)

    Zhao, Dan; Li, Beibei; Zhang, Jinying; Li, Xin; Xiao, Dingbin; Fu, Chengcheng; Zhang, Lihui; Li, Zhihui; Li, Jun; Cao, Daxian; Niu, Chunming

    2017-06-14

    Nanostructured phosphorus-carbon composites are promising materials for Li-ion and Na-ion battery anodes. A hierarchical phosphorus hybrid, SiC@graphene@P, has been synthesized by the chemical vapor deposition of phosphorus on the surfaces of barbed nanowires, where the barbs are vertically grown graphene nanosheets and the cores are SiC nanowires. A temperature-gradient vaporization-condensation method has been used to remove the unhybridized phosphorus particles formed by homogeneous nucleation. The vertically grown barb shaped graphene nanosheets and a high concentration of edge carbon atoms induced a fibrous red phosphorus (f-RP) growth with its {001} planes in parallel to {002} planes of nanographene sheets and led to a strong interpenetrated interface interaction between phosphorus and the surfaces of graphene nanosheets. This hybridization has been demonstrated to significantly enhance the electrochemical performances of phosphorus.

  7. Control Strategies for Islanded Microgrid using Enhanced Hierarchical Control Structure with Multiple Current-Loop Damping Schemes

    DEFF Research Database (Denmark)

    Han, Yang; Shen, Pan; Zhao, Xin

    2017-01-01

    In this paper, the modeling, controller design, and stability analysis of the islanded microgrid (MG) using enhanced hierarchical control structure with multiple current loop damping schemes is proposed. The islanded MG is consisted of the parallel-connected voltage source inverters using LCL...... output filters, and the proposed control structure includes: the primary control with additional phase-shift loop, the secondary control for voltage amplitude and frequency restoration, the virtual impedance loops which contains virtual positive- and negative-sequence impedance loops at fundamental...... frequency, and virtual variable harmonic impedance loop at harmonic frequencies, and the inner voltage and current loop controllers. A small-signal model for the primary and secondary controls with additional phase-shift loop is presented, which shows an over-damped feature from eigenvalue analysis...

  8. DIRECT GEOREFERENCING OF UAV DATA BASED ON SIMPLE BUILDING STRUCTURES

    Directory of Open Access Journals (Sweden)

    W. Tampubolon

    2016-06-01

    Full Text Available Unmanned Aerial Vehicle (UAV data acquisition is more flexible compared with the more complex traditional airborne data acquisition. This advantage puts UAV platforms in a position as an alternative acquisition method in many applications including Large Scale Topographical Mapping (LSTM. LSTM, i.e. larger or equal than 1:10.000 map scale, is one of a number of prominent priority tasks to be solved in an accelerated way especially in third world developing countries such as Indonesia. As one component of fundamental geospatial data sets, large scale topographical maps are mandatory in order to enable detailed spatial planning. However, the accuracy of the products derived from the UAV data are normally not sufficient for LSTM as it needs robust georeferencing, which requires additional costly efforts such as the incorporation of sophisticated GPS Inertial Navigation System (INS or Inertial Measurement Unit (IMU on the platform and/or Ground Control Point (GCP data on the ground. To reduce the costs and the weight on the UAV alternative solutions have to be found. This paper outlines a direct georeferencing method of UAV data by providing image orientation parameters derived from simple building structures and presents results of an investigation on the achievable results in a LSTM application. In this case, the image orientation determination has been performed through sequential images without any input from INS/IMU equipment. The simple building structures play a significant role in such a way that geometrical characteristics have been considered. Some instances are the orthogonality of the building’s wall/rooftop and the local knowledge of the building orientation in the field. In addition, we want to include the Structure from Motion (SfM approach in order to reduce the number of required GCPs especially for the absolute orientation purpose. The SfM technique applied to the UAV data and simple building structures additionally presents an

  9. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1996-05-01

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5

  10. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allen Lantham [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering

    1996-05-01

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5.

  11. Hierarchical structure of genetic distances: Effects of matrix size, spatial distribution and correlation structure among gene frequencies

    Directory of Open Access Journals (Sweden)

    Flávia Melo Rodrigues

    1998-06-01

    Full Text Available Geographic structure of genetic distances among local populations within species, based on allozyme data, has usually been evaluated by estimating genetic distances clustered with hierarchical algorithms, such as the unweighted pair-group method by arithmetic averages (UPGMA. The distortion produced in the clustering process is estimated by the cophenetic correlation coefficient. This hierarchical approach, however, can fail to produce an accurate representation of genetic distances among populations in a low dimensional space, especially when continuous (clinal or reticulate patterns of variation exist. In the present study, we analyzed 50 genetic distance matrices from the literature, for animal taxa ranging from Platyhelminthes to Mammalia, in order to determine in which situations the UPGMA is useful to understand patterns of genetic variation among populations. The cophenetic correlation coefficients, derived from UPGMA based on three types of genetic distance coefficients, were correlated with other parameters of each matrix, including number of populations, loci, alleles, maximum geographic distance among populations, relative magnitude of the first eigenvalue of covariance matrix among alleles and logarithm of body size. Most cophenetic correlations were higher than 0.80, and the highest values appeared for Nei's and Rogers' genetic distances. The relationship between cophenetic correlation coefficients and the other parameters analyzed was defined by an "envelope space", forming triangles in which higher values of cophenetic correlations are found for higher values in the parameters, though low values do not necessarily correspond to high cophenetic correlations. We concluded that UPGMA is useful to describe genetic distances based on large distance matrices (both in terms of elevated number of populations or alleles, when dimensionality of the system is low (matrices with large first eigenvalues or when local populations are separated

  12. Development of building envelope structures; Udvikling af klimaskaermskonstruktioner

    Energy Technology Data Exchange (ETDEWEB)

    Monefeldt Tommerup, H. [Danmarks Tekniske Univ., Lyngby (Denmark); Munch-Andersen, J. [Statens Byggeforskningsinstitut, Hoersholm (Denmark); Kjaer Esbensen, P. [Danmarks Tekniske Univ., Lyngby (Denmark)

    2000-08-01

    The present report concludes the work concerning the development of building envelope constructions, which can form the basis of new buildings with considerably less heat demand than in the present building regulations. It has been made probable that it is technically possible to build exterior walls with less heat loss than those just complying with the requirements of the current building regulations with no considerable added use of material apart from insulation. In their structure many of the shown constructions resemble types that are used today, while others presuppose that one part of the wall is attached to the other part or possibly to the rafters. Calculations concerning the importance of heat capacity for a 100 m{sup 2} single-family house have been made which confirm that by using heavy rather than light envelope constructions the reduction of the heating requirements is relatively small. Therefore optimisation of the insulation level can be carried out separately on the building components. A method has been developed for the evaluation of the optimum insulation level for the individual building components of the building envelope based on life cycle cost analysis. The method is based on making up the changes in the operational energy costs/ heating-costs and the cost of construction due to a change in the insulation thickness over a 30-year period. The life span of the primary parts of the building envelope is estimated at 100 years. It is assumed that the gross energy consumption that covers the heating requirements and the heat loss (determined by a simple calculation of degree days) changes concurrently with the change in the insulation thickness, which has been proved to be a reasonable approximation. The life cycle cost analysis has been carried out for a test-house of about 100 m{sup 2} and with two different energy price scenarios: 0.60 dkk/kWh (including taxes and VAT) which roughly corresponds to the present energy price level, and 1.20 dkk

  13. Hierarchical Micro/Nano Structures by Combined Self-Organized Dewetting and Photopatterning of Photoresist Thin Films.

    Science.gov (United States)

    Sachan, Priyanka; Kulkarni, Manish; Sharma, Ashutosh

    2015-11-17

    Photoresists are the materials of choice for micro/nanopatterning and device fabrication but are rarely used as a self-assembly material. We report for the first time a novel interplay of self-assembly and photolithography for fabrication of hierarchical and ordered micro/nano structures. We create self-organized structures by the intensified dewetting of unstable thin (∼10 nm to 1 μm) photoresist films by annealing them in an optimal solvent and nonsolvent liquid mixture that allows spontaneous dewetting to form micro/nano smooth dome-like structures. The density, size (∼100 nm to millimeters), and curvature/contact angle of the dome/droplet structures are controlled by the film thickness, composition of the dewetting liquid, and time of annealing. Ordered dewetted structures are obtained simply by creating spatial variation of viscosity by ultraviolet exposure or by photopatterning before dewetting. Further, the structures thus fabricated are readily photopatterned again on the finer length scales after dewetting. We illustrate the approach by fabricating several three-dimensional structures of varying complexity with secondary and tertiary features.

  14. Balanced Evaluation of Structural and Environmental Performances in Building Design

    Directory of Open Access Journals (Sweden)

    Marco Lamperti Tornaghi

    2018-03-01

    Full Text Available The design of new buildings, and even more the rehabilitation of existing ones, needs to satisfy modern criteria in terms of energy efficiency and environmental performance, within the context of adequate safety requirements. Tackling all these needs at the same time is cumbersome, as demonstrated by several experiences during recent earthquakes, where the improvement of energy performance vanished by seismic-induced damages. The costs of energy retrofitting must be added to the normal losses caused by the earthquake. Even though the minimum safety requirements are met (no collapse, the damage due to earthquake might be enough to waste the investment made to improve energy efficiency. Since these measures are often facilitated by corresponding incentives, the use of public funding is not cost effective. The application of the existing impact assessment methods is typically performed at the end of the architectural and structural design process. Thus, no real optimisation can be achieved, because a good structural solution could correspond to a poor environmental performance and vice versa. The proposed Sustainable Structural Design method (SSD considers both environmental and structural parameters in the life cycle perspective. The integration of environmental data in the structural performance is the focus of the method. Structural performances are considered in a probabilistic approach, through the introduction of a simplified Performance Based Assessment method. Finally, the SSD method is implemented with a case-study of an office-occupancy building, both for precast and cast-in-situ structural systems, with the aim to find the best solution in terms of sustainability and structural performance for the case at hand.

  15. Effects of Hierarchical Levels on Social Network Structures within Communities of Learning

    Science.gov (United States)

    Rehm, Martin; Gijselaers, Wim; Segers, Mien

    2014-01-01

    Facilitating an interpersonal knowledge transfer among employees constitutes a key building block in setting up organizational training initiatives. With practitioners and researchers looking for innovative training methods, online Communities of Learning (CoL) have been promoted as a promising methodology to foster this kind of transfer. However,…

  16. Toward Accessing Spatial Structure from Building Information Models

    Science.gov (United States)

    Schultz, C.; Bhatt, M.

    2011-08-01

    Data about building designs and layouts is becoming increasingly more readily available. In the near future, service personal (such as maintenance staff or emergency rescue workers) arriving at a building site will have immediate real-time access to enormous amounts of data relating to structural properties, utilities, materials, temperature, and so on. The critical problem for users is the taxing and error prone task of interpreting such a large body of facts in order to extract salient information. This is necessary for comprehending a situation and deciding on a plan of action, and is a particularly serious issue in time-critical and safety-critical activities such as firefighting. Current unifying building models such as the Industry Foundation Classes (IFC), while being comprehensive, do not directly provide data structures that focus on spatial reasoning and spatial modalities that are required for high-level analytical tasks. The aim of the research presented in this paper is to provide computational tools for higher level querying and reasoning that shift the cognitive burden of dealing with enormous amounts of data away from the user. The user can then spend more energy and time in planning and decision making in order to accomplish the tasks at hand. We present an overview of our framework that provides users with an enhanced model of "built-up space". In order to test our approach using realistic design data (in terms of both scale and the nature of the building models) we describe how our system interfaces with IFC, and we conduct timing experiments to determine the practicality of our approach. We discuss general computational approaches for deriving higher-level spatial modalities by focusing on the example of route graphs. Finally, we present a firefighting scenario with alternative route graphs to motivate the application of our framework.

  17. Structural impact response for assessing railway vibration induced on buildings

    Science.gov (United States)

    Kouroussis, Georges; Mouzakis, Harris P.; Vogiatzis, Konstantinos E.

    2018-03-01

    Over the syears, the rapid growth in railway infrastructure has led to numerous environmental challenges. One such significant issue, particularly in urban areas, is ground-borne vibration. A common source of ground-borne vibration is caused by local defects (e.g. rail joints, switches, turnouts, etc.) that generate large amplitude excitations at isolated locations. Modelling these excitation sources is particularly challenging and requires the use of complex and extensive computational efforts. For some situations, the use of experiments and measured data offers a rapid way to estimate the effect of such defects and to evaluate the railway vibration levels using a scoping approach. In this paper, the problem of railway-induced ground vibrations is presented along with experimental studies to assess the ground vibration and ground borne noise levels, with a particular focus on the structural response of sensitive buildings. The behaviour of particular building foundations is evaluated through experimental data collected in Brussels Region, by presenting the expected frequency responses for various types of buildings, taking into account both the soil-structure interaction and the tramway track response. A second study is dedicated to the Athens metro, where transmissibility functions are used to analyse the effect of various Athenian building face to metro network trough comprehensive measurement campaigns. This allows the verification of appropriate vibration mitigation measures. These benchmark applications based on experimental results have been proved to be efficient to treat a complex problem encountered in practice in urban areas, where the urban rail network interacts with important local defects and where the rise of railway ground vibration problems has clearly been identified.

  18. Building

    OpenAIRE

    Seavy, Ryan

    2014-01-01

    Building for concrete is temporary. The building of wood and steel stands against the concrete to give form and then gives way, leaving a trace of its existence behind. Concrete is not a building material. One does not build with concrete. One builds for concrete. MARCH

  19. Assembly of CdS Quantum Dots onto Hierarchical TiO2 Structure for Quantum Dots Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Syed Mansoor Ali

    2015-05-01

    Full Text Available Quantum dot (QD sensitized solar cells based on Hierarchical TiO2 structure (HTS consisting of spherical nano-urchins on transparent conductive fluorine doped tin oxide glass substrate is fabricated. The hierarchical TiO2 structure consisting of spherical nano-urchins on transparent conductive fluorine doped tin oxide glass substrate synthesized by hydrothermal route. The CdS quantum dots were grown by the successive ionic layer adsorption and reaction deposition method. The quantum dot sensitized solar cell based on the hierarchical TiO2 structure shows a current density JSC = 1.44 mA, VOC = 0.46 V, FF = 0.42 and η = 0.27%. The QD provide a high surface area and nano-urchins offer a highway for fast charge collection and multiple scattering centers within the photoelectrode.

  20. Contextual effects in visual working memory reveal hierarchically structured memory representations.

    Science.gov (United States)

    Brady, Timothy F; Alvarez, George A

    2015-01-01

    Influential slot and resource models of visual working memory make the assumption that items are stored in memory as independent units, and that there are no interactions between them. Consequently, these models predict that the number of items to be remembered (the set size) is the primary determinant of working memory performance, and therefore these models quantify memory capacity in terms of the number and quality of individual items that can be stored. Here we demonstrate that there is substantial variance in display difficulty within a single set size, suggesting that limits based on the number of individual items alone cannot explain working memory storage. We asked hundreds of participants to remember the same sets of displays, and discovered that participants were highly consistent in terms of which items and displays were hardest or easiest to remember. Although a simple grouping or chunking strategy could not explain this individual-display variability, a model with multiple, interacting levels of representation could explain some of the display-by-display differences. Specifically, a model that includes a hierarchical representation of items plus the mean and variance of sets of the colors on the display successfully accounts for some of the variability across displays. We conclude that working memory representations are composed only in part of individual, independent object representations, and that a major factor in how many items are remembered on a particular display is interitem representations such as perceptual grouping, ensemble, and texture representations.

  1. FRF-based structural damage detection of controlled buildings with podium structures: Experimental investigation

    Science.gov (United States)

    Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.

    2014-06-01

    How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.

  2. Automated structure solution, density modification and model building.

    Science.gov (United States)

    Terwilliger, Thomas C

    2002-11-01

    The approaches that form the basis of automated structure solution in SOLVE and RESOLVE are described. The use of a scoring scheme to convert decision making in macromolecular structure solution to an optimization problem has proven very useful and in many cases a single clear heavy-atom solution can be obtained and used for phasing. Statistical density modification is well suited to an automated approach to structure solution because the method is relatively insensitive to choices of numbers of cycles and solvent content. The detection of non-crystallographic symmetry (NCS) in heavy-atom sites and checking of potential NCS operations against the electron-density map has proven to be a reliable method for identification of NCS in most cases. Automated model building beginning with an FFT-based search for helices and sheets has been successful in automated model building for maps with resolutions as low as 3 A. The entire process can be carried out in a fully automatic fashion in many cases.

  3. Falling Leaves Inspired ZnO Nanorods-Nanoslices Hierarchical Structure for Implant Surface Modification with Two Stage Releasing Features.

    Science.gov (United States)

    Liao, Hang; Miao, Xinxin; Ye, Jing; Wu, Tianlong; Deng, Zhongbo; Li, Chen; Jia, Jingyu; Cheng, Xigao; Wang, Xiaolei

    2017-04-19

    Inspired from falling leaves, ZnO nanorods-nanoslices hierarchical structure (NHS) was constructed to modify the surfaces of two widely used implant materials: titanium (Ti) and tantalum (Ta), respectively. By which means, two-stage release of antibacterial active substances were realized to address the clinical importance of long-term broad-spectrum antibacterial activity. At early stages (within 48 h), the NHS exhibited a rapid releasing to kill the bacteria around the implant immediately. At a second stage (over 2 weeks), the NHS exhibited a slow releasing to realize long-term inhibition. The excellent antibacterial activity of ZnO NHS was confirmed once again by animal test in vivo. According to the subsequent experiments, the ZnO NHS coating exhibited the great advantage of high efficiency, low toxicity, and long-term durability, which could be a feasible manner to prevent the abuse of antibiotics on implant-related surgery.

  4. Hierarchical linear modeling (HLM) of longitudinal brain structural and cognitive changes in alcohol-dependent individuals during sobriety

    DEFF Research Database (Denmark)

    Yeh, P.H.; Gazdzinski, S.; Durazzo, T.C.

    2007-01-01

    faster brain volume gains, which were also related to greater smoking and drinking severities. Over 7 months of abstinence from alcohol, sALC compared to nsALC showed less improvements in visuospatial learning and memory despite larger brain volume gains and ventricular shrinkage. Conclusions: Different......)-derived brain volume changes and cognitive changes in abstinent alcohol-dependent individuals as a function of smoking status, smoking severity, and drinking quantities. Methods: Twenty non-smoking recovering alcoholics (nsALC) and 30 age-matched smoking recovering alcoholics (sALC) underwent quantitative MRI...... time points. Using HLM, we modeled volumetric and cognitive outcome measures as a function of cigarette and alcohol use variables. Results: Different hierarchical linear models with unique model structures are presented and discussed. The results show that smaller brain volumes at baseline predict...

  5. A Decentralized Approach to the Formulation of Hypotheses: A Hierarchical Structural Model for a Prion Self-Assembled System

    Science.gov (United States)

    Wang, Mingyang; Zhang, Feifei; Song, Chao; Shi, Pengfei; Zhu, Jin

    2016-07-01

    Innovation in hypotheses is a key transformative driver for scientific development. The conventional centralized hypothesis formulation approach, where a dominant hypothesis is typically derived from a primary phenomenon, can, inevitably, impose restriction on the range of conceivable experiments and legitimate hypotheses, and ultimately impede understanding of the system of interest. We report herein the proposal of a decentralized approach for the formulation of hypotheses, through initial preconception-free phenomenon accumulation and subsequent reticular logical reasoning processes. The two-step approach can provide an unbiased, panoramic view of the system and as such should enable the generation of a set of more coherent and therefore plausible hypotheses. As a proof-of-concept demonstration of the utility of this open-ended approach, a hierarchical model has been developed for a prion self-assembled system, allowing insight into hitherto elusive static and dynamic features associated with this intriguing structure.

  6. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors

    International Nuclear Information System (INIS)

    Zampieri, Alessandro; Mabande, Godwin T.P.; Selvam, Thangaraj; Schwieger, Wilhelm; Rudolph, Alexander; Hermann, Ralph; Sieber, Heino; Greil, Peter

    2006-01-01

    Biomorphic self-supporting MFI-type zeolite frameworks with hierarchical porosity and complex architecture were prepared using a 2-step (in-situ seeding and secondary crystal growth) hydrothermal synthesis in the presence of a biological template (Luffa sponge), employed as a macroscale sacrificial structure builder. The bio-inspired zeolitic replica inherited the complex spongy morphology and the intricate open-porous architecture of the biotemplate. Moreover, it exhibited reasonable mechanical stability in order to study the applicability of the biomorphic catalyst in a technical catalytic process. A bio-inspired catalytic reactor utilising the self-supporting ZSM-5 scaffold in monolithic configuration was developed in order to test the catalytic performance of the material

  7. Calcium Carbonate Polymorphs Growing in the Presence of Sericin: A New Composite Mimicking the Hierarchic Structure of Nacre

    Directory of Open Access Journals (Sweden)

    Linda Pastero

    2018-06-01

    Full Text Available Bioinspired self-assembled composite materials are appealing both for their industrial applications and importance in natural sciences, and represent a stimulating topic in the area of materials science, biology, and medicine. The function of the organic matrix has been studied from the biological, chemical, crystallographic, and engineering point of view. Little attention has been paid to the effect of one of the two main components of the organic matrix, the sericin fraction, on the growth morphology of calcium carbonate polymorphs. In the present work, we address this issue experimentally, emphasizing the morphological effects of sericin on calcite and aragonite crystals, and on the formation of a sericin-aragonite-calcite self-assembled composite with a hierarchic structure comparable to that of natural nacre.

  8. Equipment and building structures ageing management for WWER type NPPs

    International Nuclear Information System (INIS)

    Mayboroda, O.

    2001-01-01

    This report presents the working group 'Equipment and building structures ageing management for WWER type NPPs' activities. The analysis of experience in ageing management, recommendations for regulatory guidelines on ageing management, investigation of case studies, definition suitable communication channels among regulators for ageing related data are given. Analyses of water chemistry, inspection data (safety margins criteria), plugging criteria, volume and time of ECT implementation in all WWER countries are presented. The results of Working group activity show that it is advisable to concentrate efforts on: set up the permanent communication channel among regulators, collection of regulatory criteria for WWER type NPP key components based on understanding of ageing mechanisms and data collection

  9. Contaminant deposition building shielding factors for US residential structures

    International Nuclear Information System (INIS)

    Dickson, E D; Hamby, D M; Eckerman, K F

    2015-01-01

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit. (paper)

  10. Cloud immersion building shielding factors for US residential structures

    International Nuclear Information System (INIS)

    Dickson, E D; Hamby, D M

    2014-01-01

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario within a semi-infinite cloud of radioactive material. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement, as well for single-wide manufactured housing-units. (paper)

  11. Contaminant deposition building shielding factors for US residential structures.

    Science.gov (United States)

    Dickson, Elijah; Hamby, David; Eckerman, Keith

    2017-10-10

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit. © 2017 IOP Publishing Ltd.

  12. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing; Wang, Runwei; Li, Ang; Huang, Weiwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity

  13. A novel 3D structure composed of strings of hierarchical TiO{sub 2} spheres formed on TiO{sub 2} nanobelts with high photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yongjian [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Suzhou Institute, North China Electric Power University, Suzhou 215123 (China); Song, Dandan; Li, Xiaodan; Yu, Yue [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China)

    2014-03-15

    A novel hierarchical titanium dioxide (TiO{sub 2}) composite nanostructure with strings of anatase TiO{sub 2} hierarchical micro-spheres and rutile nanobelts framework (TiO{sub 2} HSN) is successfully synthesized via a one-step hydrothermal method. Particularly, the strings of hierarchical spheres are assembled by very thin TiO{sub 2} nanosheets, which are composed of highly crystallized anatase nanocrystals. Meanwhile, the HSN has a large surface area of 191 m{sup 2}/g, which is about 3 times larger than Degussa P25. More importantly, the photocatalytic activity of HSN and P25 were evaluated by the photocatalytic oxidation decomposition of methyl orange (MO) under UV light illumination, and the TiO{sub 2} HSN shows enhanced photocatalytic activity compared with Degussa P25, as result of its continuous hierarchical structures, special conductive channel and large specific surface area. With these features, the hierarchical TiO{sub 2} may have more potential applications in the fields of dye-sensitized solar cells and lithium ion batteries. -- Graphical abstract: Novel TiO{sub 2} with anatase micro-spheres and rutile nanobelts is synthesized. Enhanced photocatalysis is attributed to hierarchical structures (3D spheres), conductive channel (1D nanobelts) and large specific surface area (2D nanosheet). Highlights: • The novel TiO{sub 2} nanostructure (HSN) is fabricated for the first time. • HSN is composed of strings of anatase hierarchical spheres and rutile nanobelt. • HSN presents a larger S{sub BET} of 191 m{sup 2}/g, 3 times larger than the Degussa P25 (59 m{sup 2}/g). • HSN owns three kinds of dimensional TiO{sub 2} (1D, 2D and 3D) simultaneously. • HSN exhibits better photocatalytic performance compared with Degussa P25.

  14. 30 CFR 57.4530 - Exits for surface buildings and structures.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exits for surface buildings and structures. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4530 Exits for surface buildings and structures. Surface buildings or structures in which persons work shall have a sufficient number...

  15. Floor response spectra of buildings with uncertain structural properties

    International Nuclear Information System (INIS)

    Chen, P.C.

    1975-01-01

    All Category I equipment, such as reactors, vessels, and major piping systems of nuclear power plants, is required to withstand earthquake loadings in order to minimize risk of seismic damage. The equipment is designed by using response spectra of the floor on which the equipment is mounted. The floor response spectra are constructed usually from the floor response time histories which are obtained through a deterministic dynamic analysis. This analysis assumes that all structural parameters, such as mass, stiffness, and damping have been calculated precisely, and that the earthquakes are known. However, structural parameters are usually difficult to determine precisely if the structures are massive and/or irregular, such as nuclear containments and its internal structures with foundation soil incorporated into the analysis. Faced with these uncertainties, it has been the practice to broaden the floor response spectra peaks by +-10 percent of the peak frequencies on the basis of conservatism. This approach is based on engineering judgement and does not have an analytical basis to provide a sufficient level of confidence in using these spectra for equipment design. To insure reliable design, it is necessary to know structural response variations due to variations in structural properties. This consideration leads to the treatment of structural properties as random variables and the use of probabilistic methods to predict structural response more accurately. New results on floor response spectra of buildings with uncertain structural properties obtained by determining the probabilistic dynamic response from the deterministic dynamic response and its standard deviation are presented. The resulting probabilistic floor response spectra are compared with those obtained deterministically, and are shown to provide a more reliable method for determining seismic forces

  16. Exploring the hierarchical structure of the MMPI-2-RF Personality Psychopathology Five in psychiatric patient and university student samples.

    Science.gov (United States)

    Bagby, R Michael; Sellbom, Martin; Ayearst, Lindsay E; Chmielewski, Michael S; Anderson, Jaime L; Quilty, Lena C

    2014-01-01

    In this study our goal was to examine the hierarchical structure of personality pathology as conceptualized by Harkness and McNulty's (1994) Personality Psychopathology Five (PSY-5) model, as recently operationalized by the MMPI-2-RF (Ben-Porath & Tellegen, 2011) PSY-5r scales. We used Goldberg's (2006) "bass-ackwards" method to obtain factor structure using PSY-5r item data, successively extracting from 1 to 5 factors in a sample of psychiatric patients (n = 1,000) and a sample of university undergraduate students (n = 1,331). Participants from these samples had completed either the MMPI-2 or the MMPI-2-RF. The results were mostly consistent across the 2 samples, with some differences at the 3-factor level. In the patient sample a factor structure representing 3 broad psychopathology domains (internalizing, externalizing, and psychoticism) emerged; in the student sample the 3-factor level represented what is more commonly observed in "normal-range" personality models (negative emotionality, introversion, and disconstraint). At the 5-factor level the basic structure was similar across the 2 samples and represented well the PSY-5r domains.

  17. Hierarchical Cantor set in the large scale structure with torus geometry

    Energy Technology Data Exchange (ETDEWEB)

    Murdzek, R. [Physics Department, ' Al. I. Cuza' University, Blvd. Carol I, Nr. 11, Iassy 700506 (Romania)], E-mail: rmurdzek@yahoo.com

    2008-12-15

    The formation of large scale structures is considered within a model with string on toroidal space-time. Firstly, the space-time geometry is presented. In this geometry, the Universe is represented by a string describing a torus surface. Thereafter, the large scale structure of the Universe is derived from the string oscillations. The results are in agreement with the cellular structure of the large scale distribution and with the theory of a Cantorian space-time.

  18. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu; Schrader, Alex M.; Lee, Dong Woog; Gallo, Adair; Chen, Szu-Ying; Kaufman, Yair; Das, Saurabh; Israelachvili, Jacob N.

    2015-01-01

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and

  19. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu

    2015-12-28

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and

  20. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing

    2016-08-03

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity is investigated by adding an organosilane surfactant as a mesopore-generating agent.

  1. Fukunaga-Koontz feature transformation for statistical structural damage detection and hierarchical neuro-fuzzy damage localisation

    Science.gov (United States)

    Hoell, Simon; Omenzetter, Piotr

    2017-07-01

    Considering jointly damage sensitive features (DSFs) of signals recorded by multiple sensors, applying advanced transformations to these DSFs and assessing systematically their contribution to damage detectability and localisation can significantly enhance the performance of structural health monitoring systems. This philosophy is explored here for partial autocorrelation coefficients (PACCs) of acceleration responses. They are interrogated with the help of the linear discriminant analysis based on the Fukunaga-Koontz transformation using datasets of the healthy and selected reference damage states. Then, a simple but efficient fast forward selection procedure is applied to rank the DSF components with respect to statistical distance measures specialised for either damage detection or localisation. For the damage detection task, the optimal feature subsets are identified based on the statistical hypothesis testing. For damage localisation, a hierarchical neuro-fuzzy tool is developed that uses the DSF ranking to establish its own optimal architecture. The proposed approaches are evaluated experimentally on data from non-destructively simulated damage in a laboratory scale wind turbine blade. The results support our claim of being able to enhance damage detectability and localisation performance by transforming and optimally selecting DSFs. It is demonstrated that the optimally selected PACCs from multiple sensors or their Fukunaga-Koontz transformed versions can not only improve the detectability of damage via statistical hypothesis testing but also increase the accuracy of damage localisation when used as inputs into a hierarchical neuro-fuzzy network. Furthermore, the computational effort of employing these advanced soft computing models for damage localisation can be significantly reduced by using transformed DSFs.

  2. Relations between constructive peculiarities and structural behavior in Venice buildings

    Directory of Open Access Journals (Sweden)

    Doglioni, F.

    2012-12-01

    Full Text Available Here we are synthetically describing some constructive peculiarities of Venice civil buildings, analyzing the relation with the features of their structural decay and behavior in the long run. We suppose Venetian buildings, especially those parts which are conceived to suit the lagoon environment, to have undergone an evolution made of some adjustments, which were based on the observation of damages in previous buildings. That is we suppose ancient builders to rely on their awareness of the behavior of structures yet to come, and to be able to forecast it in part. This process brought some building contrivances to perfection, as exclusive and enduring features of Venice, overcoming changes in style and architectural layout, till they grew into essential elements of a whole and adaptable “device”. This writing is meant for a concise interpretation of this device, which is the result of some research works carried out at Venice IUAV University.

    En este texto, se describen sintéticamente algunas peculiaridades de la edificación residencial de Venecia, analizando su relación con el abanico de problemas estructurales que caracterizan el comportamiento estructural del edificio a lo largo del tiempo. Se aventura la hipótesis que las construcciones venecianas y, en particular, algunos de sus detalles, concebidos específicamente para la laguna donde se enclava, han sido objeto de una adaptación evolutiva a través de la observación de los problemas estructurales de los edificios precedentes. Los alarifes venecianos aprendieron a tener en cuenta el comportamiento estructural posterior del edificio, que previeron en cierta medida. Este proceso ha llevado a perfeccionar algunos detalles constructivos exclusivos de Venecia que han perdurado en el tiempo, que han resistido impertérritos a mutaciones de estilo y de configuración arquitectónica, hasta constituir elementos esenciales de un aparato indivisible y adaptable cuya interpretaci

  3. The TiO2 Hierarchical Structure with Nanosheet Spheres for Improved Photoelectric Performance in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Yin, Xin; Guan, Yingli; Song, Lixin; Xie, Xueyao; Du, Pingfan; Xiong, Jie

    2018-04-01

    A bi-layer photoanode is successfully fabricated for dye-sensitized solar cells (DSSCs) composed of P25/TiO2 nanorod (P25/TNR) as the underlayer and TiO2 nanosheet spheres (TNSs) as the light-scattering layer. Notably, the P25-TNR provides multiple functions, including more dye loading, more efficient charge transport and a lower electron recombination rate for the photoanode. Besides, the unique structure of TNS can significantly improve the light-harvesting capacity, boosting the light-harvesting efficiency. Therefore, an enhanced short-circuit current and power conversion efficiency of 18.04 mA cm-2 and 5.99%, respectively, were achieved for the P25/TNR-TNS-based DSSC, which was better than that of the P25-TNS-based (15.17 mA cm-2, 5.36%) and bare TNS-based (11.43 mA cm-2, 4.14%) DSSCs. This indicates that this bi-layer structure effectively combines the advantages of the one-dimensional (1D) nanostructure and three-dimensional (3D) hierarchical structure. In short, this work demonstrates the possibility of fabricating desirable photoanodes for high-performance DSSCs by rational design of nanostructures and effective combination of multi-functional components.

  4. Flexible Near-Field Nanopatterning with Ultrathin, Conformal Phase Masks on Nonplanar Substrates for Biomimetic Hierarchical Photonic Structures.

    Science.gov (United States)

    Kwon, Young Woo; Park, Junyong; Kim, Taehoon; Kang, Seok Hee; Kim, Hyowook; Shin, Jonghwa; Jeon, Seokwoo; Hong, Suck Won

    2016-04-26

    Multilevel hierarchical platforms that combine nano- and microstructures have been intensively explored to mimic superior properties found in nature. However, unless directly replicated from biological samples, desirable multiscale structures have been challenging to efficiently produce to date. Departing from conventional wafer-based technology, new and efficient techniques suitable for fabricating bioinspired structures are highly desired to produce three-dimensional architectures even on nonplanar substrates. Here, we report a facile approach to realize functional nanostructures on uneven microstructured platforms via scalable optical fabrication techniques. The ultrathin form (∼3 μm) of a phase grating composed of poly(vinyl alcohol) makes the material physically flexible and enables full-conformal contact with rough surfaces. The near-field optical effect can be identically generated on highly curved surfaces as a result of superior conformality. Densely packed nanodots with submicron periodicity are uniformly formed on microlens arrays with a radius of curvature that is as low as ∼28 μm. Increasing the size of the gratings causes the production area to be successfully expanded by up to 16 in(2). The "nano-on-micro" structures mimicking real compound eyes are transferred to flexible and stretchable substrates by sequential imprinting, facilitating multifunctional optical films applicable to antireflective diffusers for large-area sheet-illumination displays.

  5. Metafier - a Tool for Annotating and Structuring Building Metadata

    DEFF Research Database (Denmark)

    Holmegaard, Emil; Johansen, Aslak; Kjærgaard, Mikkel Baun

    2017-01-01

    in achieving this goal, but often they work as silos. Improving at scale the energy performance of buildings depends on applications breaking these silos and being portable among buildings. To enable portable building applications, the building instrumentation should be supported by a metadata layer...

  6. 3D Nearest Neighbour Search Using a Clustered Hierarchical Tree Structure

    DEFF Research Database (Denmark)

    Suhaibah, A.; Uznir, U.; Antón Castro, Francesc/François

    2016-01-01

    Locating and analysing the location of new stores or outlets is one of the common issues facing retailers and franchisers. This is due to assure that new opening stores are at their strategic location to attract the highest possible number of customers. Spatial information is used to manage......, maintain and analyse these store locations. However, since the business of franchising and chain stores in urban areas runs within high rise multi-level buildings, a three-dimensional (3D) method is prominently required in order to locate and identify the surrounding information such as at which level...... of the franchise unit will be located or is the franchise unit located is at the best level for visibility purposes. One of the common used analyses used for retrieving the surrounding information is Nearest Neighbour (NN) analysis. It uses a point location and identifies the surrounding neighbours. However...

  7. Self-assembly of NiO/graphene with three-dimension hierarchical structure as high performance electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bing; Zhuang, Hua; Fang, Tao; Jiao, Zheng; Liu, Ruizhe; Ling, Xuetao [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Lu, Bo [Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444 (China); Jiang, Yong, E-mail: jiangyong@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2014-06-01

    Highlights: • 3D hierarchical NiO/graphene is prepared by a refluxing method with aqua-based solvent. • Time-dependent experiments are carried out to investigate formation mechanism. • Hierarchical sphere is formed through self-assembly of NiO grown on disc-shaped CTAB micelles. • It delivers a capacitance of 555 F g{sup −1} at 1 A g{sup −1} with 90.8% retention after 2000 cycles. - Abstract: This article reports a facile preparation of NiO/graphene composite by the combination of a controlled refluxing method with water based solvent in the presence of cetyltrimethylammonium bromide and subsequent annealing. X-ray diffraction and scanning electron microscopy reveal that the graphene nanosheets are uniformly wrapped by hierarchical porous NiO spheres with three-dimension hierarchical structure in the product. The composite shows highly improved electrochemical performance as electrode material for supercapacitor. The three-dimension hierarchical structure NiO/graphene composite delivers a first discharge capacitance of 555 F g{sup −1} and remains a reversible capacitance up to 504 F g{sup −1} after 2000 cycles at a current of 1 A g{sup −1} in three-electrode system. Contrarily, the pure NiO shows only a first discharge capacitance of 166 F g{sup −1} and remains only a reversible capacitance of 107 F g{sup −1} after 2000 cycles. The NiO/graphene composite also exhibits ameliorative rate capacitance of 402.9 F g{sup −1} at the current density of 5 A g{sup −1}. The enhanced electrochemical performances are ascribed to the higher surface area, the stable three-dimension hierarchical structure and the synergistic effects between the conductive graphene and porous NiO spheres.

  8. The Synthesis of the Hierarchical Structure of Information Resources for Management of Electronic Commerce Entities

    Directory of Open Access Journals (Sweden)

    Krutova Anzhelika S.

    2017-06-01

    Full Text Available The aim of the article is to develop the theoretical bases for the classification and coding of economic information and the scientific justification of the content of information resources of an electronic commerce enterprise. The essence of information resources for management of electronic business entities is investigated. It is proved that the organization of accounting in e-commerce systems is advisable to be built on the basis of two circuits: accounting for financial flows and accounting associated with transformation of business factors in products and services as a result of production activities. There presented a sequence of accounting organization that allows to combine the both circuits in a single information system, which provides a possibility for the integrated replenishment and distributed simultaneous use of the e-commerce system by all groups of users. It is proved that the guarantee of efficient activity of the information management system of electronic commerce entities is a proper systematization of the aggregate of information resources on economic facts and operations of an enterprise in accordance with the management tasks by building the hierarchy of accounting nomenclatures. It is suggested to understand nomenclature as an objective, primary information aggregate concerning a certain fact of the economic activity of an enterprise, which is characterized by minimum requisites, is entered into the database of the information system and is to be reflected in the accounting system. It is proposed to build a database of e-commerce systems as a part of directories (constants, personnel, goods / products, suppliers, buyers and the hierarchy of accounting nomenclatures. The package of documents regulating the organization of accounting at an enterprise should include: the provision on the accounting services, the order on the accounting policy, the job descriptions, the schedules of information exchange, the report card and

  9. Soil-structure interaction in fuel handling building

    International Nuclear Information System (INIS)

    Elaidi, B.M.; Eissa, M.A.

    1998-01-01

    This paper presents an accurate three-dimensional seismic soil-structure interaction analysis for large structures. The method is applied to the fuel building in nuclear power plants. The analysis is performed numerically in the frequency domain and the responses are obtained by inverse Fourier transformation. The size of the structure matrices is reduced by transforming the equation of motion to the modal coordinate system. The soil is simulated as a layered media on top of viscoelastic half space. Soil impedance matrices are calculated from the principles of continuum mechanics and account for soil stiffness and energy dissipation. Effects of embedment on the field equations is incorporated through the scattering matrices or by simply scaling the soil impedance. Finite element methods are used to discretize the concrete foundation for the generation of the soil interaction matrices. Decoupling of the sloshing water in the spent fuel pools and the free-standing spent fuel racks is simulated. The input seismic motions are defined by three artificial time history accelerations. These input motions are generated to match the ground design basis response spectra and the target power spectral density function. The methods described in this paper can handle arbitrary foundation layouts, allows for large structural models, and accurately represents the soil impedance. Time history acceleration responses were subsequently used to generate floor response spectra at applicable damping values. (orig.)

  10. How hierarchical is language use?

    Science.gov (United States)

    Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.

    2012-01-01

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157

  11. Hierarchical core-shell structure of ZnO nanorod@NiO/MoO₂ composite nanosheet arrays for high-performance supercapacitors.

    Science.gov (United States)

    Hou, Sucheng; Zhang, Guanhua; Zeng, Wei; Zhu, Jian; Gong, Feilong; Li, Feng; Duan, Huigao

    2014-08-27

    A hierarchical core-shell structure of ZnO nanorod@NiO/MoO2 composite nanosheet arrays on nickel foam substrate for high-performance supercapacitors was constructed by a two-step solution-based method involving two hydrothermal processes followed by a calcination treatment. Compared to one composed of pure NiO/MoO2 composite nanosheets, the hierarchical core-shell structure electrode displays better pseudocapacitive behaviors in 2 M KOH, including high areal specific capacitance values of 1.18 F cm(-2) at 5 mA cm(-2) and 0.6 F cm(-2) at 30 mA cm(-2) as well as relatively good rate capability at high current densities. Furthermore, it also shows remarkable cycle stability, remaining at 91.7% of the initial value even after 4000 cycles at a current density of 10 mA cm(-2). The enhanced pseudocapacitive behaviors are mainly due to the unique hierarchical core-shell structure and the synergistic effect of combining ZnO nanorod arrays and NiO/MoO2 composite nanosheets. This novel hierarchical core-shell structure shows promise for use in next-generation supercapacitors.

  12. Self-Concepts in Reading, Writing, Listening, and Speaking: A Multidimensional and Hierarchical Structure and Its Generalizability across Native and Foreign Languages

    Science.gov (United States)

    Arens, A. Katrin; Jansen, Malte

    2016-01-01

    Academic self-concept has been conceptualized as a multidimensional and hierarchical construct. Previous research has mostly focused on its multidimensionality, distinguishing between verbal and mathematical self-concept domains, and only a few studies have examined the factorial structure within specific self-concept domains. The present study…

  13. Self-assembled 3D-hierarchical structure Cu2ZnSnS4 photocathodes by tuning anion ratios in precursor solution

    International Nuclear Information System (INIS)

    Wen, Xin; Shao, Hansen; Fu, Gao; Zhou, Yong; Zou, Zhigang; Luo, Wenjun; Guan, Zhongjie

    2016-01-01

    Cu 2 ZnSnS 4 (CZTS) is one of the most promising light capture materials for solar cells or solar fuels. Construction of 3D hierarchical structure is very important for efficient optoelectronic devices. It is challenging to directly fabricate 3D hierarchical structure CZTS film by a facile solution method. Herein, we present a one-step sol–gel method for fabrication of CZTS thin films with 3D hierarchical structures. For the first time, it is found that the morphologies of thin films can be adjusted between dense, porous and 3D hierarchical structures by tuning anion ratios of Cl − /Ac − in precursor solution. Further analysis suggests the formation of intermediate phases of SnO 2 nanoparticles and SnS 2 nanosheets by tuning ratios of Cl − /Ac − in precursor solution, which has important effects on the formation of different nanostructures of CZTS. This study can deepen understanding of anion’ effect on morphologies of samples using a solution method and forms a reference to prepare novel nanostructures of other materials. (paper)

  14. Sustainable solid-state strategy to hierarchical core-shell structured Fe 3 O 4 @graphene towards a safer and green sodium ion full battery

    KAUST Repository

    Ding, Xiang; Huang, Xiaobing; Jin, Junling; Ming, Hai; Wang, Limin; Ming, Jun

    2017-01-01

    A sustainable solid-state strategy of SPEX milling is developed to coat metal oxide (e.g., Fe3O4) with tunable layers of graphene, and a new hierarchical core-shell structured Fe3O4@graphene composite is constructed. The presented green process can

  15. Structure of steel reactor building and construction method therefor

    International Nuclear Information System (INIS)

    Yamakawa, Toshikimi.

    1997-01-01

    The building of the present invention contains a reactor pressure vessel, and has double steel plate walls endurable to elevation of inner pressure and keeping airtightness, and shielding concretes are filled between the double steel plate walls. It also has empty double steel plate walls not filled with concretes and has pipelines, vent ducts, wirings and a support structures for attaching them between the double steel plate walls. It is endurable to a great inner pressure satisfactory and keeps airtightness by the two spaced steel plates. It can be greatly reduced in the weight, and can be manufactured efficiently with high quality in a plant by so called module construction, and the dimension of the entire of the reactor building can be reduced. It is constructed in a dock, transported on the sea while having the space between the two steel plate walls as a ballast tanks, placed in the site, and shielding concretes are filled between the double steel plate walls. The term for the construction can be reduced, and the cost for the construction can be saved. (N.H.)

  16. Secular dynamics of hierarchical multiple systems composed of nested binaries, with an arbitrary number of bodies and arbitrary hierarchical structure - II. External perturbations: flybys and supernovae

    Science.gov (United States)

    Hamers, Adrian S.

    2018-05-01

    We extend the formalism of a previous paper to include the effects of flybys and instantaneous perturbations such as supernovae on the long-term secular evolution of hierarchical multiple systems with an arbitrary number of bodies and hierarchy, provided that the system is composed of nested binary orbits. To model secular encounters, we expand the Hamiltonian in terms of the ratio of the separation of the perturber with respect to the barycentre of the multiple system, to the separation of the widest orbit. Subsequently, we integrate over the perturber orbit numerically or analytically. We verify our method for secular encounters and illustrate it with an example. Furthermore, we describe a method to compute instantaneous orbital changes to multiple systems, such as asymmetric supernovae and impulsive encounters. The secular code, with implementation of the extensions described in this paper, is publicly available within AMUSE, and we provide a number of simple example scripts to illustrate its usage for secular and impulsive encounters and asymmetric supernovae. The extensions presented in this paper are a next step towards efficiently modelling the evolution of complex multiple systems embedded in star clusters.

  17. Biomimetics Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    This book presents an overview of the general field of biomimetics - lessons from nature. It presents various examples of biomimetics, including roughness-induced superomniphobic surfaces which provide functionality of commercial interest. The major focus in the book is on lotus effect, rose petal effect, shark skin effect, and gecko adhesion.  For each example, the book first presents characterization of an object to understand how a natural object provides functionality, followed by modeling and then fabrication of structures in the lab using nature’s route to verify one’s understanding of nature and provide guidance for development of optimum structures. Once it is understood how nature does it, examples of fabrication of optimum structures using smart materials and fabrication techniques, are presented. Examples of nature inspired objects are also presented throughout.

  18. Design of 3D Graphene-Oxide Spheres and Their Derived Hierarchical Porous Structures for High Performance Supercapacitors.

    Science.gov (United States)

    Li, Zhuangnan; Gadipelli, Srinivas; Yang, Yuchen; Guo, Zhengxiao

    2017-11-01

    Graphene-oxide (GO) based porous structures are highly desirable for supercapacitors, as the charge storage and transfer can be enhanced by advancement in the synthesis. An effective route is presented of, first, synthesis of three-dimensional (3D) assembly of GO sheets in a spherical architecture (GOS) by flash-freezing of GO dispersion, and then development of hierarchical porous graphene (HPG) networks by facile thermal-shock reduction of GOS. This leads to a superior gravimetric specific capacitance of ≈306 F g -1 at 1.0 A g -1 , with a capacitance retention of 93% after 10 000 cycles. The values represent a significant capacitance enhancement by 30-50% compared with the GO powder equivalent, and are among the highest reported for GO-based structures from different chemical reduction routes. Furthermore, a solid-state flexible supercapacitor is fabricated by constructing the HPG with polymer gel electrolyte, exhibiting an excellent areal specific capacitance of ≈220 mF cm -2 at 1.0 mA cm -2 with exceptional cyclic stability. The work reveals a facile but efficient synthesis approach of GO-based materials to enhance the capacitive energy storage. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hierarchical structured graphene/metal oxide/porous carbon composites as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Guo, Rong; Yue, Wenbo; Ren, Yu; Zhou, Wuzong

    2016-01-01

    Highlights: • CeO 2 and Co 3 O 4 nanoparticles display different behavior within CMK-3. • CMK-3-CeO 2 and Co 3 O 4 show various electrochemical properties • CMK-3-CeO 2 and Co 3 O 4 are further wrapped by graphene nanosheets. • Graphene-encapsulated composites show better electrochemical performances. - Abstract: As a novel anode material for lithium-ion batteries, CeO 2 displays imperceptible volumetric and morphological changes during the lithium insertion and extraction processes, and thereby exhibits good cycling stability. However, the low theoretical capacity and poor electronic conductivity of CeO 2 hinder its practical application. In contrast, Co 3 O 4 possesses high theoretical capacity, but undergoes huge volume change during cycling. To overcome these issues, CeO 2 and Co 3 O 4 nanoparticles are formed inside the pores of CMK-3 and display various electrochemical behaviors due to the different morphological structures of CeO 2 and Co 3 O 4 within CMK-3. Moreover, the graphene/metal oxide/CMK-3 composites with a hierarchical structure are then prepared and exhibit better electrochemical performances than metal oxides with or without CMK-3. This novel synthesis strategy is hopefully employed in the electrode materials design for Li-ion batteries or other energy conversion and storage devices.

  20. Hierarchical structure of ecological and non-ecological processes of differentiation shaped ongoing gastropod radiation in the Malawi Basin.

    Science.gov (United States)

    Van Bocxlaer, Bert

    2017-09-13

    Ecological processes, non-ecological processes or a combination of both may cause reproductive isolation and speciation, but their specific roles and potentially complex interactions in evolutionary radiations remain poorly understood, which defines a central knowledge gap at the interface of microevolution and macroevolution. Here I examine genome scans in combination with phenotypic and environmental data to disentangle how ecological and non-ecological processes contributed to population differentiation and speciation in an ongoing radiation of Lanistes gastropods from the Malawi Basin. I found a remarkable hierarchical structure of differentiation mechanisms in space and time: neutral and mutation-order processes are older and occur mainly between regions, whereas more recent adaptive processes are the main driver of genetic differentiation and reproductive isolation within regions. The strongest differentiation occurs between habitats and between regions, i.e. when ecological and non-ecological processes act synergistically. The structured occurrence of these processes based on the specific geographical setting and ecological opportunities strongly influenced the potential for evolutionary radiation. The results highlight the importance of interactions between various mechanisms of differentiation in evolutionary radiations, and suggest that non-ecological processes are important in adaptive radiations, including those of cichlids. Insight into such interactions is critical to understanding large-scale patterns of organismal diversity. © 2017 The Author(s).

  1. Engineering method to build the composite structure ply database

    Directory of Open Access Journals (Sweden)

    Qinghua Shi

    Full Text Available In this paper, a new method to build a composite ply database with engineering design constraints is proposed. This method has two levels: the core stacking sequence design and the whole stacking sequence design. The core stacking sequences are obtained by the full permutation algorithm considering the ply ratio requirement and the dispersion character which characterizes the dispersion of ply angles. The whole stacking sequences are the combinations of the core stacking sequences. By excluding the ply sequences which do not meet the engineering requirements, the final ply database is obtained. One example with the constraints that the total layer number is 100 and the ply ratio is 30:60:10 is presented to validate the method. This method provides a new way to set up the ply database based on the engineering requirements without adopting intelligent optimization algorithms. Keywords: Composite ply database, VBA program, Structure design, Stacking sequence

  2. Effect of pre-tension on the peeling behavior of a bio-inspired nano-film and a hierarchical adhesive structure

    Science.gov (United States)

    Peng, Zhilong; Chen, Shaohua

    2012-10-01

    Inspired by the reversible adhesion behaviors of geckos, the effects of pre-tension in a bio-inspired nano-film and a hierarchical structure on adhesion are studied theoretically. In the case with a uniformly distributing pre-tension in a spatula-like nano-film under peeling, a closed-form solution to a critical peeling angle is derived, below or above which the peel-off force is enhanced or reduced, respectively, compared with the case without pre-tension. The effects of a non-uniformly distributing pre-tension on adhesion are further investigated for both a spatula-like nano-film and a hierarchical structure-like gecko's seta. Compared with the case without pre-tension, the pre-tension, no matter uniform or non-uniform, can increase the adhesion force not only for the spatula-like nano-film but also for the hierarchical structure at a small peeling angle, while decrease it at a relatively large peeling angle. Furthermore, if the pre-tension is large enough, the effective adhesion energy of a hierarchical structure tends to vanish at a critical peeling angle, which results in spontaneous detachment of the hierarchical structure from the substrate. The present theoretical predictions can not only give some explanations on the existing experimental observation that gecko's seta always detaches at a specific angle and no apparent adhesion force can be detected above the critical angle but also provide a deep understanding for the reversible adhesion mechanism of geckos and be helpful to the design of biomimetic reversible adhesives.

  3. Hierarchical population structure in greater sage-grouse provides insight into management boundary delineation

    Science.gov (United States)

    Todd B. Cross; David E. Naugle; John C. Carlson; Michael K. Schwartz

    2016-01-01

    Understanding population structure is important for guiding ongoing conservation and restoration efforts. The greater sage-grouse (Centrocercus urophasianus) is a species of concern distributed across 1.2 million km2 of western North America. We genotyped 1499 greater sagegrouse from 297 leks across Montana, North Dakota and South Dakota using a 15 locus...

  4. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi; Hemar, Yacine; Hilliou, loic; Gilbert, Elliot P.; McGillivray, Duncan James; Williams, Martin A. K.; Chaieb, Saharoui

    2015-01-01

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  5. Orthogonal Higher Order Structure of the WISC-IV Spanish Using Hierarchical Exploratory Factor Analytic Procedures

    Science.gov (United States)

    McGill, Ryan J.; Canivez, Gary L.

    2016-01-01

    As recommended by Carroll, the present study examined the factor structure of the Wechsler Intelligence Scale for Children-Fourth Edition Spanish (WISC-IV Spanish) normative sample using higher order exploratory factor analytic techniques not included in the WISC-IV Spanish Technical Manual. Results indicated that the WISC-IV Spanish subtests were…

  6. Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas

    Czech Academy of Sciences Publication Activity Database

    Górecki, J.; Hofert, M.; Holeňa, Martin

    2017-01-01

    Roč. 5, č. 1 (2017), s. 75-87 ISSN 2300-2298 R&D Projects: GA ČR GA17-01251S Institutional support: RVO:67985807 Keywords : structure determination * agglomerative clustering * Kendall’s tau * Archimedean copula Subject RIV: IN - Informatics, Computer Science OBOR OECD: Statistics and probability

  7. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi

    2015-12-14

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  8. One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation

    International Nuclear Information System (INIS)

    Rukosuyev, Maxym V.; Lee, Jason; Cho, Seong Jin; Lim, Geunbae; Jun, Martin B.G.

    2014-01-01

    Highlights: • Superhydrophobic surface patterns by femtosecond laser ablation in open air. • Micron scale ridge-like structure with superimposed submicron convex features. • Hydrophobic or even superhydrophobic behavior with no additional silanization. - Abstract: Hydrophobic surface properties are sought after in many areas of research, engineering, and consumer product development. Traditionally, hydrophobic surfaces are produced by using various types of coatings. However, introduction of foreign material onto the surface is often undesirable as it changes surface chemistry and cannot provide a long lasting solution (i.e. reapplication is needed). Therefore, surface modification by transforming the base material itself can be preferable in many applications. Femtosecond laser ablation is one of the methods that can be used to create structures on the surface that will exhibit hydrophobic behavior. The goal of the presented research was to create micro and nano-scale patterns that will exhibit hydrophobic properties with no additional post treatment. As a result, dual scale patterned structures were created on the surface of steel aluminum and tungsten carbide samples. Ablation was performed in the open air with no subsequent treatment. Resultant surfaces appeared to be strongly hydrophobic or even superhydrophobic with contact angle values of 140° and higher. In conclusion, the nature of surface hydrophobicity proved to be highly dependent on surface morphology as the base materials used are intrinsically hydrophilic. It was also proven that the hydrophobicity inducing structures could be manufactured using femtosecond laser machining in a single step with no subsequent post treatment

  9. One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Rukosuyev, Maxym V.; Lee, Jason [Mechanical Engineering, University of Victoria (Canada); Cho, Seong Jin; Lim, Geunbae [Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of); Jun, Martin B.G., E-mail: mbgjun@uvic.ca [Mechanical Engineering, University of Victoria (Canada)

    2014-09-15

    Highlights: • Superhydrophobic surface patterns by femtosecond laser ablation in open air. • Micron scale ridge-like structure with superimposed submicron convex features. • Hydrophobic or even superhydrophobic behavior with no additional silanization. - Abstract: Hydrophobic surface properties are sought after in many areas of research, engineering, and consumer product development. Traditionally, hydrophobic surfaces are produced by using various types of coatings. However, introduction of foreign material onto the surface is often undesirable as it changes surface chemistry and cannot provide a long lasting solution (i.e. reapplication is needed). Therefore, surface modification by transforming the base material itself can be preferable in many applications. Femtosecond laser ablation is one of the methods that can be used to create structures on the surface that will exhibit hydrophobic behavior. The goal of the presented research was to create micro and nano-scale patterns that will exhibit hydrophobic properties with no additional post treatment. As a result, dual scale patterned structures were created on the surface of steel aluminum and tungsten carbide samples. Ablation was performed in the open air with no subsequent treatment. Resultant surfaces appeared to be strongly hydrophobic or even superhydrophobic with contact angle values of 140° and higher. In conclusion, the nature of surface hydrophobicity proved to be highly dependent on surface morphology as the base materials used are intrinsically hydrophilic. It was also proven that the hydrophobicity inducing structures could be manufactured using femtosecond laser machining in a single step with no subsequent post treatment.

  10. Hierarchical formation of large scale structures of the Universe: observations and models

    International Nuclear Information System (INIS)

    Maurogordato, Sophie

    2003-01-01

    In this report for an Accreditation to Supervise Research (HDR), the author proposes an overview of her research works in cosmology. These works notably addressed the large scale distribution of the Universe (with constraints on the scenario of formation, and on the bias relationship, and the structuring of clusters), the analysis of galaxy clusters during coalescence, mass distribution within relaxed clusters [fr

  11. Construct Validity of the WISC-IV with a Referred Sample: Direct versus Indirect Hierarchical Structures

    Science.gov (United States)

    Canivez, Gary L.

    2014-01-01

    The Wechsler Intelligence Scale for Children--Fourth Edition (WISC-IV) is one of the most frequently used intelligence tests in clinical assessments of children with learning difficulties. Construct validity studies of the WISC-IV have generally supported the higher order structure with four correlated first-order factors and one higher-order…

  12. Hydraulic behaviour of a representative structural volume for containment buildings

    International Nuclear Information System (INIS)

    Jason, Ludovic; Pijaudier-Cabot, Gilles; Ghavamian, Shahrokh; Huerta, Antonio

    2007-01-01

    For particular structures like containment buildings of nuclear power plants, the study of the hydraulic behaviour is of great concern. These structures are indeed the third barrier used to protect the environment in case of accidents. The evolution of the leaking rate through the porous medium is closely related to the changes in the permeability during the ageing process of the structure. It is thus essential to know the relation between concrete degradation and the transfer property when the consequences of a mechanical loading on the hydraulic behaviour have to be evaluated. A chained approach is designed for this purpose. The mechanical behaviour is described by an elastic plastic damage formulation, where damage is responsible for the softening evolution while plasticity accounts for the development of irreversible strains. The drying process is evaluated according to a non-linear equation of diffusion. From the knowledge of the damage and the degree of saturation, a relation is proposed to calculate the permeability of concrete. Finally, the non-homogeneous distribution of the hydraulic conductivity is included in the hydraulic problem which is in fact the association of the mass balance equation for gas phase and Darcy law. From this methodology, it is shown how an indicator for the hydraulic flows can be deduced

  13. Building alternate protein structures using the elastic network model.

    Science.gov (United States)

    Yang, Qingyi; Sharp, Kim A

    2009-02-15

    We describe a method for efficiently generating ensembles of alternate, all-atom protein structures that (a) differ significantly from the starting structure, (b) have good stereochemistry (bonded geometry), and (c) have good steric properties (absence of atomic overlap). The method uses reconstruction from a series of backbone framework structures that are obtained from a modified elastic network model (ENM) by perturbation along low-frequency normal modes. To ensure good quality backbone frameworks, the single force parameter ENM is modified by introducing two more force parameters to characterize the interaction between the consecutive carbon alphas and those within the same secondary structure domain. The relative stiffness of the three parameters is parameterized to reproduce B-factors, while maintaining good bonded geometry. After parameterization, violations of experimental Calpha-Calpha distances and Calpha-Calpha-Calpha pseudo angles along the backbone are reduced to less than 1%. Simultaneously, the average B-factor correlation coefficient improves to R = 0.77. Two applications illustrate the potential of the approach. (1) 102,051 protein backbones spanning a conformational space of 15 A root mean square deviation were generated from 148 nonredundant proteins in the PDB database, and all-atom models with minimal bonded and nonbonded violations were produced from this ensemble of backbone structures using the SCWRL side chain building program. (2) Improved backbone templates for homology modeling. Fifteen query sequences were each modeled on two targets. For each of the 30 target frameworks, dozens of improved templates could be produced In all cases, improved full atom homology models resulted, of which 50% could be identified blind using the D-Fire statistical potential. (c) 2008 Wiley-Liss, Inc.

  14. Towards smart building structures : adaptive structures in earthquake and wind loading control response – a review

    NARCIS (Netherlands)

    Morales-Beltran, M.; Teuffel, P.M.

    2013-01-01

    This article is a review about applications for non-passive control response of buildings (namely active, hybrid and semi-active systems), wherein the degree of integration between control devices and structural system is explored. The purpose is to establish the current state-of-the-art in the

  15. Three Ways to Link Merge with Hierarchical Concept-Combination

    Directory of Open Access Journals (Sweden)

    Chris Thornton

    2016-11-01

    Full Text Available In the Minimalist Program, language competence is seen to stem from a fundamental ability to construct hierarchical structure, an operation dubbed ‘Merge’. This raises the problem of how to view hierarchical concept-combination. This is a conceptual operation which also builds hierarchical structure. We can conceive of a garden that consists of a lawn and a flower-bed, for example, or a salad consisting of lettuce, fennel and rocket, or a crew consisting of a pilot and engineer. In such cases, concepts are put together in a way that makes one the accommodating element with respect to the others taken in combination. The accommodating element becomes the root of a hierarchical unit. Since this unit is itself a concept, the operation is inherently recursive. Does this mean the mind has two independent systems of hierarchical construction? Or is some form of integration more likely? Following a detailed examination of the operations involved, this paper shows there are three main ways in which Merge might be linked to hierarchical concept-combination. Also examined are the architectural implications that arise in each case.

  16. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    Directory of Open Access Journals (Sweden)

    Chunping Liu

    Full Text Available Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE, whereas it has a scattered and patchy distribution in South China (SC. In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM. Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278 among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  17. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    Science.gov (United States)

    Liu, Chunping; Tsuda, Yoshiaki; Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  18. Genetic Structure and Hierarchical Population Divergence History of Acer mono var. mono in South and Northeast China

    Science.gov (United States)

    Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species’ evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST = 0.073; G′ST = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species’ more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study. PMID:24498039

  19. Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

    Directory of Open Access Journals (Sweden)

    Julia Patzsch

    2017-05-01

    Full Text Available Mesoscopic, nanoporous carbon tubes were synthesized by a combination of the Stoeber process and the use of electrospun macrosized polystyrene fibres as structure directing templates. The obtained carbon tubes have a macroporous nature characterized by a thick wall structure and a high specific surface area of approximately 500 m²/g resulting from their micro- and mesopores. The micropore regime of the carbon tubes is composed of turbostratic graphitic areas observed in the microstructure. The employed templating process was also used for the synthesis of silicon carbide tubes. The characterization of all porous materials was performed by nitrogen adsorption at 77 K, Raman spectroscopy, infrared spectroscopy, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM as well as transmission electron microscopy (TEM. The adsorption of carbon dioxide on the carbon tubes at 25 °C at pressures of up to 30 bar was studied using a volumetric method. At 26 bar, an adsorption capacity of 4.9 mmol/g was observed. This is comparable to the adsorption capacity of molecular sieves and vertically aligned carbon nanotubes. The high pressure adsorption process of CO2 was found to irreversibly change the microporous structure of the carbon tubes.

  20. Green Building Premium Cost Analysis in Indonesia Using Work Breakdown Structure Method

    Science.gov (United States)

    Basten, V.; Latief, Y.; Berawi, M. A.; Riswanto; Muliarto, H.

    2018-03-01

    The concept of green building in the construction industry is indispensable for mitigating environmental issues such as waste, pollution, and carbon emissions. There are some countries that have Green Building rating tools. Indonesia particularly is the country which has Greenship rating tools but the number of Green Building is relatively low. Development of building construction is depended on building investors or owner initiation, so this research is conducted to get the building aspects that have significant effect on the attractiveness using The Green Building Concept. The method in this research is work breakdown structure method that detailing the green building activities. The particular activities will be processed to get the cost elements for the green building achievement that it was targeted to improve better than conventional building. The final result of the study was a very significant work package on green building construction in the city of Indonesia case study.

  1. MUNI Ways and Structures Building Integrated Solar Membrane Project

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  2. Integral Building Design workshops : a concept to structure communication

    NARCIS (Netherlands)

    Savanovic, P.; Zeiler, W.; Tzou, H.S.; Jalili, N.

    2007-01-01

    Following the developments in (Dutch) building practice, where besides specialist skills a design approach is increasingly being asked, the Building Services chair of the Faculty of Architecture, Building and Planning of Technische Universiteit Eindhoven (TU/e) initiated in academic year 2005/06 a

  3. Hierarchical, decentralized control system for large-scale smart-structures

    International Nuclear Information System (INIS)

    Algermissen, Stephan; Fröhlich, Tim; Monner, Hans Peter

    2014-01-01

    Active control of sound and vibration has gained much attention in all kinds of industries in the past decade. Future prospects for maximizing airline passenger comfort are especially promising. The objectives of recent research projects in this area are the reduction of noise transmission through thin walled structures such as fuselages, linings or interior elements. Besides different external noise sources, such as the turbulent boundary layer, rotor or jet noise, the actuator and sensor placement as well as different control concepts are addressed. Mostly, the work is focused on a single panel or section of the fuselage, neglecting the fact that for effective noise reduction the entire fuselage has to be taken into account. Nevertheless, extending the scope of an active system from a single panel to the entire fuselage increases the effort for control hardware dramatically. This paper presents a control concept for large structures using distributed control nodes. Each node has the capability to execute a vibration or noise controller for a specific part or section of the fuselage. For maintenance, controller tuning or performance measurement, all nodes are connected to a host computer via Universal Serial Bus (USB). This topology allows a partitioning and distributing of tasks. The nodes execute the low-level control functions. High-level tasks like maintenance, system identification and control synthesis are operated by the host using streamed data from the nodes. By choosing low-price nodes, a very cost effective way of implementing an active system for large structures is realized. Besides the system identification and controller synthesis on the host computer, a detailed view on the hardware and software concept for the nodes is given. Finally, the results of an experimental test of a system running a robust vibration controller at an active panel demonstrator are shown. (paper)

  4. Hierarchical spatial genetic structure in a distinct population segment of greater sage-grouse

    Science.gov (United States)

    Oyler-McCance, Sara J.; Casazza, Michael L.; Fike, Jennifer A.; Coates, Peter S.

    2014-01-01

    Greater sage-grouse (Centrocercus urophasianus) within the Bi-State Management Zone (area along the border between Nevada and California) are geographically isolated on the southwestern edge of the species’ range. Previous research demonstrated that this population is genetically unique, with a high proportion of unique mitochondrial DNA (mtDNA) haplotypes and with significant differences in microsatellite allele frequencies compared to populations across the species’ range. As a result, this population was considered a distinct population segment (DPS) and was recently proposed for listing as threatened under the U.S. Endangered Species Act. A more comprehensive understanding of the boundaries of this genetically unique population (where the Bi-State population begins) and an examination of genetic structure within the Bi-State is needed to help guide effective management decisions. We collected DNA from eight sampling locales within the Bi-State (N = 181) and compared those samples to previously collected DNA from the two most proximal populations outside of the Bi-State DPS, generating mtDNA sequence data and amplifying 15 nuclear microsatellites. Both mtDNA and microsatellite analyses support the idea that the Bi-State DPS represents a genetically unique population, which has likely been separated for thousands of years. Seven mtDNA haplotypes were found exclusively in the Bi-State population and represented 73 % of individuals, while three haplotypes were shared with neighboring populations. In the microsatellite analyses both STRUCTURE and FCA separate the Bi-State from the neighboring populations. We also found genetic structure within the Bi-State as both types of data revealed differences between the northern and southern part of the Bi-State and there was evidence of isolation-by-distance. STRUCTURE revealed three subpopulations within the Bi-State consisting of the northern Pine Nut Mountains (PNa), mid Bi-State, and White Mountains (WM) following a

  5. Exact Solutions of the Hierarchical Korteweg-de Vries Equation of Micro structured Granular Materials

    International Nuclear Information System (INIS)

    Abourabia, A.M.; El-Danaf, T.S.; Morad, A.M.

    2008-01-01

    The problem under consideration are related to wave propagation in micro structured materials, characterized by higher-order nonlinear and higher-order dispersive effects; particularly, the wave propagation in dilatant granular materials. In the present paper the model equation is solved analytically by exact method called Jacobi elliptic method. The types of solutions are defined and discussed over a wide range of material parameters (two dispersion parameters and one microstructure parameter). The dispersion properties and the relation between group and phase velocities of the model equation are studied. The diagrams are drawn to illustrate the physical properties of the exact solutions

  6. Hierarchical spatial genetic structure of Common Eiders (Somateria mollissima) breeding along a migratory corridor

    Science.gov (United States)

    Sonsthagen, S.A.; Talbot, S.L.; Lanctot, Richard B.; Scribner, K.T.; McCracken, K.G.

    2009-01-01

    Documentation of spatial genetic discordance among breeding populations of Arctic-nesting avian species is important, because anthropogenic change is altering environmental linkages at micro- and macrogeographic scales. We estimated levels of population subdivision within Pacific Common Eiders (Somateria mollissima v-nigrum) breeding on 12 barrier islands in the western Beaufort Sea, Alaska, using molecular markers and capture—mark—recapture (CMR) data. Common Eider populations were genetically structured on a microgeographic scale. Regional comparisons between populations breeding on island groups separated by 90 km (Mikkelsen Bay and Simpson Lagoon) revealed structuring at 14 microsatellite loci (F ST = 0.004, P Sea are strongly philopatric to island groups rather than to a particular island. Despite the apparent high site fidelity of females, coalescence-based models of gene flow suggest that asymmetrical western dispersal occurs between island groups and is likely mediated by Mikkelsen Bay females stopping early on spring migration at Simpson Lagoon to breed. Alternatively, late-arriving females may be predisposed to nest in Simpson Lagoon because of the greater availability and wider distribution of nesting habitat. Our results indicate that genetic discontinuities, mediated by female philopatry, can exist at microgeographic scales along established migratory corridors.

  7. Hierarchical bounding structures for efficient virial computations: Towards a realistic molecular description of cholesterics

    Science.gov (United States)

    Tortora, Maxime M. C.; Doye, Jonathan P. K.

    2017-12-01

    We detail the application of bounding volume hierarchies to accelerate second-virial evaluations for arbitrary complex particles interacting through hard and soft finite-range potentials. This procedure, based on the construction of neighbour lists through the combined use of recursive atom-decomposition techniques and binary overlap search schemes, is shown to scale sub-logarithmically with particle resolution in the case of molecular systems with high aspect ratios. Its implementation within an efficient numerical and theoretical framework based on classical density functional theory enables us to investigate the cholesteric self-assembly of a wide range of experimentally relevant particle models. We illustrate the method through the determination of the cholesteric behavior of hard, structurally resolved twisted cuboids, and report quantitative evidence of the long-predicted phase handedness inversion with increasing particle thread angles near the phenomenological threshold value of 45°. Our results further highlight the complex relationship between microscopic structure and helical twisting power in such model systems, which may be attributed to subtle geometric variations of their chiral excluded-volume manifold.

  8. Principles of structure building in music, language and animal song

    Science.gov (United States)

    Rohrmeier, Martin; Zuidema, Willem; Wiggins, Geraint A.; Scharff, Constance

    2015-01-01

    Human language, music and a variety of animal vocalizations constitute ways of sonic communication that exhibit remarkable structural complexity. While the complexities of language and possible parallels in animal communication have been discussed intensively, reflections on the complexity of music and animal song, and their comparisons, are underrepresented. In some ways, music and animal songs are more comparable to each other than to language as propositional semantics cannot be used as indicator of communicative success or wellformedness, and notions of grammaticality are less easily defined. This review brings together accounts of the principles of structure building in music and animal song. It relates them to corresponding models in formal language theory, the extended Chomsky hierarchy (CH), and their probabilistic counterparts. We further discuss common misunderstandings and shortcomings concerning the CH and suggest ways to move beyond. We discuss language, music and animal song in the context of their function and motivation and further integrate problems and issues that are less commonly addressed in the context of language, including continuous event spaces, features of sound and timbre, representation of temporality and interactions of multiple parallel feature streams. We discuss these aspects in the light of recent theoretical, cognitive, neuroscientific and modelling research in the domains of music, language and animal song. PMID:25646520

  9. Principles of structure building in music, language and animal song.

    Science.gov (United States)

    Rohrmeier, Martin; Zuidema, Willem; Wiggins, Geraint A; Scharff, Constance

    2015-03-19

    Human language, music and a variety of animal vocalizations constitute ways of sonic communication that exhibit remarkable structural complexity. While the complexities of language and possible parallels in animal communication have been discussed intensively, reflections on the complexity of music and animal song, and their comparisons, are underrepresented. In some ways, music and animal songs are more comparable to each other than to language as propositional semantics cannot be used as indicator of communicative success or wellformedness, and notions of grammaticality are less easily defined. This review brings together accounts of the principles of structure building in music and animal song. It relates them to corresponding models in formal language theory, the extended Chomsky hierarchy (CH), and their probabilistic counterparts. We further discuss common misunderstandings and shortcomings concerning the CH and suggest ways to move beyond. We discuss language, music and animal song in the context of their function and motivation and further integrate problems and issues that are less commonly addressed in the context of language, including continuous event spaces, features of sound and timbre, representation of temporality and interactions of multiple parallel feature streams. We discuss these aspects in the light of recent theoretical, cognitive, neuroscientific and modelling research in the domains of music, language and animal song. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly; Zimmermann, Elizabeth; Schaible, Eric; Tang, Simon; Alliston, Tamara; Ritchie, Robert

    2011-08-19

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-­ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-­scale, fracture properties, evaluated using in-situ scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with in-situ tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-­induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-­scales, loss of plasticity from suppressed fibrillar sliding at sub-­micron scales, and the loss and damage of collagen at the nano-­scales, the latter being assessed using Raman and Fourier-Transform-Infrared spectroscopy and a fluorometric assay.

  11. Hierarchical genetic structure of the introduced wasp Vespula germanica in Australia.

    Science.gov (United States)

    Goodisman, M A; Matthews, R W; Crozier, R H

    2001-06-01

    The wasp Vespula germanica is a highly successful invasive pest. This study examined the population genetic structure of V. germanica in its introduced range in Australia. We sampled 1320 workers and 376 males from 141 nests obtained from three widely separated geographical areas on the Australian mainland and one on the island of Tasmania. The genotypes of all wasps were assayed at three polymorphic DNA microsatellite markers. Our analyses uncovered significant allelic differentiation among all four V. germanica populations. Pairwise estimates of genetic divergence between populations agreed with the results of a model-based clustering algorithm which indicated that the Tasmanian population was particularly distinct from the other populations. Within-population analyses revealed that genetic similarity declined with spatial distance, indicating that wasps from nests separated by more than approximately 25 km belonged to separate mating pools. We suggest that the observed genetic patterns resulted from frequent bottlenecks experienced by the V. germanica populations during their colonization of Australia.

  12. Hierarchically templated beads with tailored pore structure for phosphopeptide capture and phosphoproteomics

    DEFF Research Database (Denmark)

    Wierzbicka, Celina; Torsetnes, Silje B.; Jensen, Ole N.

    2017-01-01

    Two templating approaches to produce imprinted phosphotyrosine capture beads with a controllable pore structure are reported and compared with respect to their ability to enrich phosphopeptides from a tryptic peptide mixture. The beads were prepared by the polymerization of urea-based host monomers...... and crosslinkers inside the pores of macroporous silica beads with both free and immobilized template. In the final step the silica was removed by fluoride etching resulting in mesoporous polymer replicas with narrow pore size distributions, pore diameters ≈ 10 nm and surface area > 260 m2 g-1. The beads displayed...... pronounced phosphotyrosine affinity and selectivity in binding tests using model peptides in acetonitrile rich solutions with a performance surpassing solution polymerized bulk imprinted materials. Tests of the beads for the enrichment of phosphopeptides from tryptic digests of twelve proteins revealed both...

  13. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  14. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Wang, Yaming [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO{sub 3} solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  15. Technical and economic viability of electric power plants on the basis of renewable energy resources regarding hierarchical structure

    Directory of Open Access Journals (Sweden)

    Balzannikov Mikhail

    2017-01-01

    Full Text Available The article deals with power stations working on the basis of non-renewable energy resources and finite resources which will inevitably come to depletion in the future. These installations produce considerable negative impact on the environment, including air pollution. It is noted that considerable amounts of emissions of harmful substances accounts for the share of small thermal installations which aren’t always considered in calculations of pollution. The author specifies that emission reduction of harmful substances should be achieved due to wider use of environmentally friendly renewable energy resources. It is recommended to use hierarchical structure with the priority of ecological and social conditions of the region for technical and economic viability of consumers’ power supply systems and installations, based on renewable energy resources use. At the same time the author suggests considering federal, regional and object levels of viability. It is recommended to consider the main stages of lifecycle of an object for object level: designing, construction, operation, reconstruction of an object and its preservation. The author shows the example of calculation of power plant efficiency, based on renewable energy resources during its reconstruction, followed by power generation increase.

  16. Hierarchical structured Sm2O3 modified CuO nanoflowers as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Zhang, Xiaojuan; He, Mingqian; He, Ping; Liu, Hongtao; Bai, Hongmei; Chen, Jingchao; He, Shaoying; Zhang, Xingquan; Dong, Faqing; Chen, Yang

    2017-12-01

    By a simple and cost effective chemical precipitation-hydrothermal method, novel hierarchical structured Sm2O3 modified CuO nanoflowers are prepared and investigated as electrode materials for supercapacitors. The physical properties of prepared materials are characterized by XRD, FE-SEM, EDX and FTIR techniques. Furthermore, electrochemical performances of prepared materials are investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum in 1.0 M KOH electrolyte. The resulting Sm2O3 modified CuO based electrodes exhibit obviously enhanced capacitive properties owing to the unique nanostructures and strong synergistic effects. It is worth noting that the optimized SC-3 based electrode exhibits the best electrochemical performances in all prepared electrodes, including higher specific capacitance (383.4 F g-1 at 0.5 A g-1) and good rate capability (393.2 F g-1 and 246.3 F g-1 at 0.3 A g-1 and 3.0 A g-1, respectively), as well as excellent cycling stability (84.6% capacitance retention after 2000 cycles at 1.0 A g-1). The present results show that Sm2O3 is used as a promising modifier to change the morphology and improve electrochemical performances of CuO materials.

  17. Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors

    Science.gov (United States)

    Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping

    2013-10-01

    Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2-based nanowire arrays for constructing next-generation supercapacitors.

  18. Surprising transformation of a block copolymer into a high performance polystyrene ultrafiltration membrane with a hierarchically organized pore structure

    KAUST Repository

    Shevate, Rahul

    2018-02-08

    We describe the preparation of hierarchical polystyrene nanoporous membranes with a very narrow pore size distribution and an extremely high porosity. The nanoporous structure is formed as a result of unusual degradation of the poly(4-vinyl pyridine) block from self-assembled poly(styrene)-b-poly(4-vinyl pyridine) (PS-b-P4VP) membranes through the formation of an unstable pyridinium intermediate in an alkaline medium. During this process, the confined swelling and controlled degradation produced a tunable pore size. We unequivocally confirmed the successful elimination of the P4VP block from a PS-b-P4VPVP membrane using 1D/2D NMR spectroscopy and other characterization techniques. Surprisingly, the long range ordered surface porosity was preserved even after degradation of the P4VP block from the main chain of the diblock copolymer, as revealed by SEM. Aside from a drastically improved water flux (∼67% increase) compared to the PS-b-P4VP membrane, the hydraulic permeability measurements validated pH independent behaviour of the isoporous PS membrane over a wide pH range from 3 to 10. The effect of the pore size on protein transport rate and selectivity (a) was investigated for lysozyme (Lys), bovine serum albumin (BSA) and globulin-γ (IgG). A high selectivity of 42 (Lys/IgG) and 30 (BSA/IgG) was attained, making the membranes attractive for size selective separation of biomolecules from their synthetic model mixture solutions.

  19. Interactive computer graphics displays for hierarchical data structures. [Description of THESGRAF, in FORTRAN IV for CDC and IBM computers

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, D.F.; Murano, C.V.

    1980-05-01

    An interactive computer graphical display program was developed as an aid to user visualization and manipulation of hierarchically structured data systems such as thesauri. In the present configuration, a thesaurus term and its primary and secondary conceptual neighbors are presented to the user in tree graph form on a CRT; the user then designates, via light pen or keyboard, any of the neighbors as the next term of interest and receives a new display centered on this term. By successive specification of broader, narrower, and related terms, the user can course rapidly through the thesaurus space and refine his search file. At any stage, he deals with a term-centered, conceptually meaningful picture of a localized portion of the thesaurus, and is freed from the artificial difficulties of handling the traditional alphabetized thesaurus. Intentional limitation of the associative range of each display frame, and the use of color, case, and interconnecting vectors to encode relationships among terms, enhance interpretability of the display. Facile movement through the term space, provided by interactive computation, allows the display to remain simple, and is an essential element of the system. 3 figures.

  20. Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles.

    Science.gov (United States)

    Hao, Yao-Ming; Lou, Shi-Yun; Zhou, Shao-Min; Yuan, Rui-Jian; Zhu, Gong-Yu; Li, Ning

    2012-02-02

    In this study, a series of manganese [Mn]-doped zinc oxide [ZnO] hierarchical microspheres [HMSs] are prepared by hydrothermal method only using zinc acetate and manganese acetate as precursors and ethylene glycol as solvent. X-ray diffraction indicates that all of the as-obtained samples including the highest Mn (7 mol%) in the crystal lattice of ZnO have a pure phase (hexagonal wurtzite structure). A broad Raman spectrum from as-synthesized doping samples ranges from 500 to 600 cm-1, revealing the successful doping of paramagnetic Mn2+ ions in the host ZnO. Optical absorption analysis of the samples exhibits a blueshift in the absorption band edge with increasing dopant concentration, and corresponding photoluminescence spectra show that Mn doping suppresses both near-band edge UV emission and defect-related blue emission. In particular, magnetic measurements confirm robust room-temperature ferromagnetic behavior with a high Curie temperature exceeding 400 K, signifying that the as-formed Mn-doped ZnO HMSs will have immense potential in spintronic devices and spin-based electronic technologies.