WorldWideScience

Sample records for hierarchical storage system

  1. Dynamic Non-Hierarchical File Systems for Exascale Storage

    Energy Technology Data Exchange (ETDEWEB)

    Long, Darrell E. [Univ. of California, Santa Cruz, CA (United States); Miller, Ethan L [Univ. of California, Santa Cruz, CA (United States)

    2015-02-24

    This constitutes the final report for “Dynamic Non-Hierarchical File Systems for Exascale Storage”. The ultimate goal of this project was to improve data management in scientific computing and high-end computing (HEC) applications, and to achieve this goal we proposed: to develop the first, HEC-targeted, file system featuring rich metadata and provenance collection, extreme scalability, and future storage hardware integration as core design goals, and to evaluate and develop a flexible non-hierarchical file system interface suitable for providing more powerful and intuitive data management interfaces to HEC and scientific computing users. Data management is swiftly becoming a serious problem in the scientific community – while copious amounts of data are good for obtaining results, finding the right data is often daunting and sometimes impossible. Scientists participating in a Department of Energy workshop noted that most of their time was spent “...finding, processing, organizing, and moving data and it’s going to get much worse”. Scientists should not be forced to become data mining experts in order to retrieve the data they want, nor should they be expected to remember the naming convention they used several years ago for a set of experiments they now wish to revisit. Ideally, locating the data you need would be as easy as browsing the web. Unfortunately, existing data management approaches are usually based on hierarchical naming, a 40 year-old technology designed to manage thousands of files, not exabytes of data. Today’s systems do not take advantage of the rich array of metadata that current high-end computing (HEC) file systems can gather, including content-based metadata and provenance1 information. As a result, current metadata search approaches are typically ad hoc and often work by providing a parallel management system to the “main” file system, as is done in Linux (the locate utility), personal computers, and enterprise search

  2. A proof-of-concept implementation of persistence in a hierarchical storage system

    International Nuclear Information System (INIS)

    Grossman, R.; Qin, Xiao; Lifka, D.

    1992-01-01

    The concept of providing transparent access to a collection of files in a mass storage system is a familiar one. The goal of this project was to investigate the feasibility of providing similar access to a collection of persistent, complex objects. We describe an architecture for interfacing a persistent store of complex objects to a hierarchical storage system. Persistent object stores support the uniform creation, storage, and access of complex objects, regardless of their lifetimes. In other words, a mechanism is provided so that persistent objects outlive the processes which create them and can be accessed in a uniform manner by other processes. We validated this architecture by implementing a proof-of-concept system and testing the system on two stores of data. These tests indicate that this architecture supports the creation. storage and access of very large persistent object stores

  3. MR-AFS: a global hierarchical file-system

    International Nuclear Information System (INIS)

    Reuter, H.

    2000-01-01

    The next generation of fusion experiments will use object-oriented technology creating the need for world wide sharing of an underlying hierarchical file-system. The Andrew file system (AFS) is a well known and widely spread global distributed file-system. Multiple-resident-AFS (MR-AFS) combines the features of AFS with hierarchical storage management systems. Files in MR-AFS therefore may be migrated on secondary storage, such as roboted tape libraries. MR-AFS is in use at IPP for the current experiments and data originating from super-computer applications. Experiences and scalability issues are discussed

  4. Hierarchical Control Design for Shipboard Power System with DC Distribution and Energy Storage aboard Future More-Electric Ships

    DEFF Research Database (Denmark)

    Jin, Zheming; Meng, Lexuan; Guerrero, Josep M.

    2018-01-01

    power system (SPS) with DC distribution and energy storage system (ESS) is picked as study case. To meet the requirement of control and management of such a large-scale mobile power system, a hierarchical control design is proposed in this paper. In order to fully exploit the benefit of ESS, as well...

  5. Research on high-performance mass storage system

    International Nuclear Information System (INIS)

    Cheng Yaodong; Wang Lu; Huang Qiulan; Zheng Wei

    2010-01-01

    With the enlargement of scientific experiments, more and more data will be produced, which brings great challenge to storage system. Large storage capacity and high data access performance are both important to Mass storage system. This paper firstly reviews some kinds of popular storage systems including network storage system, SAN-based sharing system, WAN File system, object-based parallel file system, hierarchical storage system and cloud storage systems. Then some key technologies are presented. Finally, this paper takes BES storage system as an example and introduces its requirements, architecture and operation results. (authors)

  6. Hierarchical predictive control scheme for distributed energy storage integrated with residential demand and photovoltaic generation

    NARCIS (Netherlands)

    Lampropoulos, I.; Garoufalis, P.; van den Bosch, P.P.J.; Kling, W.L.

    2015-01-01

    A hierarchical control scheme is defined for the energy management of a battery energy storage system which is integrated in a low-voltage distribution grid with residential customers and photovoltaic installations. The scope is the economic optimisation of the integrated system by employing

  7. Hierarchical CuO hollow microspheres: Controlled synthesis for enhanced lithium storage performance

    International Nuclear Information System (INIS)

    Guan Xiangfeng; Li Liping; Li Guangshe; Fu Zhengwei; Zheng Jing; Yan Tingjiang

    2011-01-01

    Graphical abstract: Hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and these microspheres showed excellent cycle performance and enhanced lithium storage capacity. Display Omitted Research highlights: → Hierarchical CuO hollow microspheres were prepared by a hydrothermal method. → The CuO hollow microspheres were assembled from radically oriented nanorods. → The growth mechanism was proposed to proceed via self-assembly and Ostwald's ripening. → The microspheres showed good cycle performance and enhanced lithium storage capacity. → Hierarchical microstructures with hollow interiors promote electrochemical property. - Abstract: In this work, hierarchical CuO hollow microspheres were hydrothermally prepared without use of any surfactants or templates. By controlling the formation reaction conditions and monitoring the relevant reaction processes using time-dependent experiments, it is demonstrated that hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and that hierarchical spheres could be tuned to show different morphologies and microstructures. As a consequence, the formation mechanism was proposed to proceed via a combined process of self-assembly and Ostwald's ripening. Further, these hollow microspheres were initiated as the anode material in lithium ion batteries, which showed excellent cycle performance and enhanced lithium storage capacity, most likely because of the synergetic effect of small diffusion lengths in building blocks of nanorods and proper void space that buffers the volume expansion. The strategy reported in this work is reproducible, which may help to significantly improve the electrochemical performance of transition metal oxide-based anode materials via designing the hollow structures necessary for developing lithium ion batteries and the relevant

  8. A high performance hierarchical storage management system for the Canadian tier-1 centre at TRIUMF

    International Nuclear Information System (INIS)

    Deatrich, D C; Liu, S X; Tafirout, R

    2010-01-01

    We describe in this paper the design and implementation of Tapeguy, a high performance non-proprietary Hierarchical Storage Management (HSM) system which is interfaced to dCache for efficient tertiary storage operations. The system has been successfully implemented at the Canadian Tier-1 Centre at TRIUMF. The ATLAS experiment will collect a large amount of data (approximately 3.5 Petabytes each year). An efficient HSM system will play a crucial role in the success of the ATLAS Computing Model which is driven by intensive large-scale data analysis activities that will be performed on the Worldwide LHC Computing Grid infrastructure continuously. Tapeguy is Perl-based. It controls and manages data and tape libraries. Its architecture is scalable and includes Dataset Writing control, a Read-back Queuing mechanism and I/O tape drive load balancing as well as on-demand allocation of resources. A central MySQL database records metadata information for every file and transaction (for audit and performance evaluation), as well as an inventory of library elements. Tapeguy Dataset Writing was implemented to group files which are close in time and of similar type. Optional dataset path control dynamically allocates tape families and assign tapes to it. Tape flushing is based on various strategies: time, threshold or external callbacks mechanisms. Tapeguy Read-back Queuing reorders all read requests by using an elevator algorithm, avoiding unnecessary tape loading and unloading. Implementation of priorities will guarantee file delivery to all clients in a timely manner.

  9. Frequency-Division Power Sharing and Hierarchical Control Design for DC Shipboard Microgrids with Hybrid Energy Storage Systems

    DEFF Research Database (Denmark)

    Jin, Zheming; Meng, Lexuan; Quintero, Juan Carlos Vasquez

    2017-01-01

    Due to the increasing need to reduce the cost and emission of ships, shipboard applications are calling advanced technologies to go onboard. Recently, cleaner power sources (i.e. gas turbines, fuel cell, solar and wind power), energy storage, advanced control and power/energy management......, the operation point of prime movers can be maintained at their optimal area, meanwhile, different energy storages will provide characteristic based response. On the basis of the proposed power sharing method, voltage restoration and power management-level control methods are also introduced to form hierarchical...

  10. High-performance mass storage system for workstations

    Science.gov (United States)

    Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.

    1993-01-01

    Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive

  11. Hierarchical Nickel Sulfide Coated Halloysite Nanotubes For Efficient Energy Storage

    International Nuclear Information System (INIS)

    Li, Yanan; Zhou, Jie; Liu, Yun; Tang, Jian; Tang, Weihua

    2017-01-01

    Highlights: •An integration strategy was presented to construct Ni 3 S 2 based hierarchical composite. •Nanowhisker Ni 3 S 2 were densely integrated onto halloysite nanotubes. •The well-designed electrode exhibits remarkable capacitance and cycling stability. •This strategy provides good reference to electrode materials design for energy storage -- Abstract: Cost-effective and robust energy storage systems have attracted great attention for portable electronic devices. Three-dimensional electrodes can effectively enhance the charge transfer, increase the mechanical stability and thus improve the electrochemical performance upon continuous charge-discharge. The earth abundant halloysite nanotubes (HNTs) have shown immense potential in constructing nanoarchitectural composites. Here, we first demonstrate the development of hybrid composite of nickel sulfide (Ni 3 S 2 ) and HNTs with glucose as binders for efficient energy storage in supercapacitor. The surface sulfhydrylation of HNTs and glucose-assisted hydrothermal reaction are crucial for the preparation of well-structured composite. Due to the synergistic effect between components, the Ni 3 S 2 /HNTs@HS composite electrode delivers a capacity of 450.4C g −1 and high retention of 82.6% over 2000 cycles in three-electrode supercapacitors. Moreover, the Ni 3 S 2 /HNTs@HS//Whatman paper//Ni 3 S 2 /HNTs@HS two-electrode symmetric supercapacitor exhibits a maximum potential window of 1.3 V, with a capacity of 250C g −1 and performance loss of only 18.2% over 2000 cycling at 1 A g −1 . A maximum energy density of 79.6 Wh kg −1 is achieved at a power density of 1.03 kW kg −1 . Such excellent energy storage performance suggests the great potential of Ni 3 S 2 /HNTs@HS for high-efficiency energy storage systems.

  12. A Hierarchical Transactive Energy Management System for Energy Sharing in Residential Microgrids

    Directory of Open Access Journals (Sweden)

    Most Nahida Akter

    2017-12-01

    Full Text Available This paper presents an analytical framework to develop a hierarchical energy management system (EMS for energy sharing among neighbouring households in residential microgrids. The houses in residential microgrids are categorized into three different types, traditional, proactive and enthusiastic, based on the inclusion of solar photovoltaic (PV systems and battery energy storage systems (BESSs. Each of these three houses has an individual EMS, which is defined as the primary EMS. Two other EMSs (secondary and tertiary are also considered in the proposed hierarchical energy management framework for the purpose of effective energy sharing. The intelligences of each EMS are presented in this paper for the purpose of energy sharing in a residential microgrid along with the priorities. The effectiveness of the proposed hierarchical framework is evaluated on a residential microgrid in Australia. The analytical results clearly reflect that the proposed scheme effectively and efficiently shares the energy among neighbouring houses in a residential microgrid.

  13. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets.

    Science.gov (United States)

    Wang, Meng; Li, Guangda; Xu, Huayun; Qian, Yitai; Yang, Jian

    2013-02-01

    MoS(2), because of its layered structure and high theoretical capacity, has been regarded as a potential candidate for electrode materials in lithium secondary batteries. But it suffers from the poor cycling stability and low rate capability. Here, hierarchical hollow nanoparticles of MoS(2) nanosheets with an increased interlayer distance are synthesized by a simple solvothermal reaction at a low temperature. The formation of hierarchical hollow nanoparticles is based on the intermediate, K(2)NaMoO(3)F(3), as a self-sacrificed template. These hollow nanoparticles exhibit a reversible capacity of 902 mA h g(-1) at 100 mA g(-1) after 80 cycles, much higher than the solid counterpart. At a current density of 1000 mA g(-1), the reversible capacity of the hierarchical hollow nanoparticles could be still maintained at 780 mAh g(-1). The enhanced lithium storage performances of the hierarchical hollow nanoparticles in reversible capacities, cycling stability and rate performances can be attributed to their hierarchical surface, hollow structure feature and increased layer distance of S-Mo-S. Hierarchical hollow nanoparticles as an ensemble of these features, could be applied to other electrode materials for the superior electrochemical performance.

  14. Hierarchically structured materials for lithium batteries

    International Nuclear Information System (INIS)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-01-01

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg −1 ), new energy storage systems, such as lithium–oxygen (Li–O 2 ) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li–O 2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime. (paper)

  15. Dependable Benchmarking for Storage Systems in High-Energy Physics

    CERN Document Server

    Fleri Soler, Edward

    2017-01-01

    In high-energy physics, storage systems play a crucial role to store and secure very valuable data produced by complex experiments. The effectiveness and efficiency of data acquisition systems of such experiments depends directly on those of these storage systems. Coping with present day rates and reliability requirements of such experiments implies operating high-performance hardware under the best possible conditions, with a broad set of hardware and software parameters existing along the hierarchical levels, from networks down to drives. An extensive number of tests are required for the tuning of parameters to achieve optimised I/O operations. Current approaches to I/O optimisation generally consist of manual test execution and result taking. This approach lacks appropriate modularity, durability and reproducibility, attainable through dedicated testing facilities. The aim of this project is to conceive a user-friendly, dedicated storage benchmarking tool for the improved comparison of I/O parameters in re...

  16. Hierarchically Macroporous Graphitic Nanowebs Exhibiting Ultra-fast and Stable Charge Storage Performance

    Science.gov (United States)

    Yun, Young Soo

    2018-02-01

    The macro/microstructures of carbon-based electrode materials for supercapacitor applications play a key role in their electrochemical performance. In this study, hierarchically macroporous graphitic nanowebs (HM-GNWs) were prepared from bacterial cellulose by high-temperature heating at 2400 °C. The HM-GNWs were composed of well-developed graphitic nanobuilding blocks with a high aspect ratio, which was entangled as a nanoweb structure. The morphological and microstructural characteristics of the HM-GNWs resulted in remarkable charge storage performance. In particular, the HM-GNWs exhibited very fast charge storage behaviors at scan rates ranging from 5 to 100 V s-1, in which area capacitances ranging from 8.9 to 3.8 mF cm-2 were achieved. In addition, 97% capacitance retention was observed after long-term cycling for more than 1,000,000 cycles.

  17. Hierarchical energy management system for stand-alone hybrid system based on generation costs and cascade control

    International Nuclear Information System (INIS)

    Torreglosa, J.P.; García, P.; Fernández, L.M.; Jurado, F.

    2014-01-01

    Highlights: • We present an energy management system for a stand-alone WT/PV/hydrogen/battery hybrid system. • Hierarchical control composed by master and slave control strategies. • Control assures reliable electricity support for stand-alone applications subject to technical and economic criteria. - Abstract: This paper presents an energy management system (EMS) for stand-alone hybrid systems composed by photovoltaic (PV) solar panels and a wind turbine (WT) as primary energy sources and two energy storage systems, which are a hydrogen system and a battery. The hydrogen system is composed of fuel cell (FC), electrolyzer and hydrogen storage tank. The EMS is a hierarchical control composed by a master control strategy and a slave control strategy. On the one hand, the master control generates the reference powers to meet several premises (such as to satisfy the load power demand, and to maintain the hydrogen tank level and the state of charge (SOC) of the battery between their target margins), taking also into account economic aspects to discriminate between using the battery or hydrogen system. On the other hand, the slave control modifies the reference powers generated by the master control according to the energy sources dynamic limitations, and maintains the DC bus voltage at its reference value. The models, implemented in MATLAB-Simulink environment, have been developed from commercially available components. To check the viability of the proposed EMS, two kinds of simulations were carried out: (1) A long-term simulation of 25 years (expected lifetime of the system) with a sample time of one hour to validate the master control of the EMS; and (2) A short-term simulation with sudden net power variations to validate the slave control of the EMS

  18. Analysis hierarchical model for discrete event systems

    Science.gov (United States)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  19. A Hierarchical Optimal Operation Strategy of Hybrid Energy Storage System in Distribution Networks with High Photovoltaic Penetration

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2018-02-01

    Full Text Available In this paper, a hierarchical optimal operation strategy for a hybrid energy storage system (HESS is proposed, which is suitable to be utilized in distribution networks (DNs with high photovoltaic (PV penetration to achieve PV power smoothing, voltage regulation and price arbitrage. Firstly, a fuzzy-logic based variable step-size control strategy for an ultracapacitor (UC with the improvement of the lifetime of UC and tracking performance is adopted to smooth PV power fluctuations. The impact of PV forecasting errors is eliminated by adjusting the UC power in real time. Secondly, a coordinated control strategy, which includes centralized and local controls, is proposed for lithium-ion batteries. The centralized control is structured to determine the optimal battery unit for voltage regulation or price arbitrage according to lithium-ion battery performance indices. A modified lithium-ion battery aging model with better accuracy is proposed and the coupling relationship between the lifetime and the effective capacity is also considered. Additionally, the local control of the selected lithium-ion battery unit determines the charging/discharging power. A case study is used to validate the operation strategy and the results show that the lifetime equilibrium among different lithium-ion battery units can be achieved using the proposed strategy.

  20. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.

    Science.gov (United States)

    Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian

    2016-06-13

    Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

  1. The Grid Enabled Mass Storage System (GEMMS): the Storage and Data management system used at the INFN Tier1 at CNAF.

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The storage solution currently used in production at the INFN Tier-1 at CNAF, is the result of several years of case studies, software development and tests. This solution, called the Grid Enabled Mass Storage System (GEMSS), is based on a custom integration between a fast and reliable parallel filesystem (IBM GPFS), with a complete integrated tape backend based on TIVOLI TSM Hierarchical storage management (HSM) and the Storage Resource Manager (StoRM), providing access to grid users through a standard SRM interface. Since the start of the operations of the Large Hadron Collider (LHC), all the LHC experiments have been using GEMMS at CNAF for both the fast access to data on disk and the long-term tape archive. Moreover, during the last year, GEMSS has become the standard solution for all the other experiments hosted at CNAF, allowing the definitive consolidation of the data storage layer. Our choice has proved to be successful in the last two years of production with constant enhancements in the software re...

  2. Scalable Hierarchical Algorithms for stochastic PDEs and UQ

    KAUST Repository

    Litvinenko, Alexander; Chá vez, Gustavo; Keyes,David; Ltaief, Hatem; Yokota, Rio

    2015-01-01

    number of degrees of freedom in the discretization. The storage is reduced to the log-linear as well. This hierarchical structure is a good starting point for parallel algorithms. Parallelization on shared and distributed memory systems was pioneered

  3. Self-Reconstructed Formation of a One-Dimensional Hierarchical Porous Nanostructure Assembled by Ultrathin TiO2 Nanobelts for Fast and Stable Lithium Storage.

    Science.gov (United States)

    Liu, Yuan; Yan, Xiaodong; Xu, Bingqing; Lan, Jinle; Yu, Yunhua; Yang, Xiaoping; Lin, Yuanhua; Nan, Cewen

    2018-06-06

    Owing to their unique structural advantages, TiO 2 hierarchical nanostructures assembled by low-dimensional (LD) building blocks have been extensively used in the energy-storage/-conversion field. However, it is still a big challenge to produce such advanced structures by current synthetic techniques because of the harsh conditions needed to generate primary LD subunits. Herein, a novel one-dimensional (1D) TiO 2 hierarchical porous fibrous nanostructure constructed by TiO 2 nanobelts is synthesized by combining a room-temperature aqueous solution growth mechanism with the electrospinning technology. The nanobelt-constructed 1D hierarchical nanoarchitecture is evolves directly from the amorphous TiO 2 /SiO 2 composite fibers in alkaline solutions at ambient conditions without any catalyst and other reactant. Benefiting from the unique structural features such as 1D nanoscale building blocks, large surface area, and numerous interconnected pores, as well as mixed phase anatase-TiO 2 (B), the optimum 1D TiO 2 hierarchical porous nanostructure shows a remarkable high-rate performance when tested as an anode material for lithium-ion batteries (107 mA h g -1 at ∼10 A g -1 ) and can be used in a hybrid lithium-ion supercapacitor with very stable lithium-storage performance (a capacity retention of ∼80% after 3000 cycles at 2 A g -1 ). The current work presents a scalable and cost-effective method for the synthesis of advanced TiO 2 hierarchical materials for high-power and stable energy-storage/-conversion devices.

  4. A Wireless Power Sharing Control Strategy for Hybrid Energy Storage Systems in DC Microgrids

    DEFF Research Database (Denmark)

    Yang, Jie; Jin, Xinmin; Wu, Xuezhi

    2017-01-01

    In order to compensate multiple time scales power fluctuation resulted from distributed energy resources and loads, hybrid energy storage systems are employed as the buffer unit in DC microgrid. In this paper, a wireless hierarchical control strategy is proposed to realize power sharing between...

  5. Virtual timers in hierarchical real-time systems

    NARCIS (Netherlands)

    Heuvel, van den M.M.H.P.; Holenderski, M.J.; Cools, W.A.; Bril, R.J.; Lukkien, J.J.; Zhu, D.

    2009-01-01

    Hierarchical scheduling frameworks (HSFs) provide means for composing complex real-time systems from welldefined subsystems. This paper describes an approach to provide hierarchically scheduled real-time applications with virtual event timers, motivated by the need for integrating priority

  6. On Utmost Multiplicity of Hierarchical Stellar Systems

    Directory of Open Access Journals (Sweden)

    Gebrehiwot Y. M.

    2016-12-01

    Full Text Available According to theoretical considerations, multiplicity of hierarchical stellar systems can reach, depending on masses and orbital parameters, several hundred, while observational data confirm the existence of at most septuple (seven-component systems. In this study, we cross-match the stellar systems of very high multiplicity (six and more components in modern catalogues of visual double and multiple stars to find among them the candidates to hierarchical systems. After cross-matching the catalogues of closer binaries (eclipsing, spectroscopic, etc., some of their components were found to be binary/multiple themselves, what increases the system's degree of multiplicity. Optical pairs, known from literature or filtered by the authors, were flagged and excluded from the statistics. We compiled a list of hierarchical systems with potentially very high multiplicity that contains ten objects. Their multiplicity does not exceed 12, and we discuss a number of ways to explain the lack of extremely high multiplicity systems.

  7. Ultrafine Cobalt Sulfide Nanoparticles Encapsulated Hierarchical N-doped Carbon Nanotubes for High-performance Lithium Storage

    International Nuclear Information System (INIS)

    Li, Xiaoyan; Fu, Nianqing; Zou, Jizhao; Zeng, Xierong; Chen, Yuming; Zhou, Limin; Lu, Wei; Huang, Haitao

    2017-01-01

    Graphical abstract: Ultrafine cobalt sulfide nanoparticles encapsulated in hierarchical N-doped carbon nanotubes show exceptional lithium ion storage as anodes. - Abstract: Nanostructured cobalt sulfide based materials with rational design are attractive for high-performance lithium-ion batteries. In this work, we report a multistep method to synthesize ultrafine cobalt sulfide nanoparticles encapsulated in hierarchical N-doped carbon nanotubes (CoS x @HNCNTs). Co-based zeolitic imidazolate framework (ZIF-67) nanotubes are obtained from the reaction between electrospun polyacrylonitrile/cobalt acetate and 2-methylimidazole, followed by the dissolution of template. Next, a combined calcination and sulfidation process is employed to convert the ZIF-67 nanotubes to CoS x @HNCNTs. Benefited from the compositional and structural features, the as-prepared nanostructured hybrid materials deliver superior lithium storage properties with high capacity of 1200 mAh g −1 at 0.25 A g −1 . More importantly, a remarkable capacity of 1086 mAh g −1 can be maintained after 100 cycles at the current density of 0.5 A g −1 . Even at a high rate of 5 A g −1 , a reversible capacity of 592 mAh g −1 after 1600 cycles can still be achieved.

  8. The Grid Enabled Mass Storage System (GEMSS): the Storage and Data management system used at the INFN Tier1 at CNAF

    International Nuclear Information System (INIS)

    Ricci, Pier Paolo; Cavalli, Alessandro; Dell'Agnello, Luca; Gregori, Daniele; Prosperini, Andrea; Rinaldi, Lorenzo; Sapunenko, Vladimir; Bonacorsi, Daniele; Vagnoni, Vincenzo

    2012-01-01

    The storage system currently used in production at the INFN Tier1 at CNAF is the result of several years of case studies, software development and tests. This solution, called the Grid Enabled Mass Storage System (GEMSS), is based on a custom integration between a fast and reliable parallel filesystem (the IBM General Parallel File System, GPFS), with a complete integrated tape backend based on the Tivoli Storage Manager (TSM), which provides Hierarchical Storage Management (HSM) capabilities, and the Grid Storage Resource Manager (StoRM), providing access to grid users through a standard SRM interface. Since the start of the Large Hadron Collider (LHC) operation, all LHC experiments have been using GEMSS at CNAF for both disk data access and long-term archival on tape media. Moreover, during last year, GEMSS has become the standard solution for all other experiments hosted at CNAF, allowing the definitive consolidation of the data storage layer. Our choice has proved to be very successful during the last two years of production with continuous enhancements, accurate monitoring and effective customizations according to the end-user requests. In this paper a description of the system is reported, addressing recent developments and giving an overview of the administration and monitoring tools. We also discuss the solutions adopted in order to grant the maximum availability of the service and the latest optimization features within the data access process. Finally, we summarize the main results obtained during these last years of activity from the perspective of some of the end-users, showing the reliability and the high performances that can be achieved using GEMSS.

  9. HiPS - Hierarchical Progressive Survey Version 1.0

    Science.gov (United States)

    Fernique, Pierre; Allen, Mark; Boch, Thomas; Donaldson, Tom; Durand, Daniel; Ebisawa, Ken; Michel, Laurent; Salgado, Jesus; Stoehr, Felix; Fernique, Pierre

    2017-05-01

    This document presents HiPS, a hierarchical scheme for the description, storage and access of sky survey data. The system is based on hierarchical tiling of sky regions at finer and finer spatial resolution which facilitates a progressive view of a survey, and supports multi-resolution zooming and panning. HiPS uses the HEALPix tessellation of the sky as the basis for the scheme and is implemented as a simple file structure with a direct indexing scheme that leads to practical implementations.

  10. Two-Level Control for Fast Electrical Vehicle Charging Stations with Multi Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper applies a hierarchical control for a fast charging station (FCS) composed of paralleled PWM rectifier and dedicated paralleled multiple flywheel energy storage systems (FESSs), in order to mitigate peak power shock on grid caused by sudden connection of electrical vehicle (EV) chargers...

  11. Scalable Hierarchical Algorithms for stochastic PDEs and Uncertainty Quantification

    KAUST Repository

    Litvinenko, Alexander; Chavez, Gustavo; Keyes, David E.; Ltaief, Hatem; Yokota, Rio

    2015-01-01

    number of degrees of freedom in the discretization. The storage is reduced to the log-linear as well. This hierarchical structure is a good starting point for parallel algorithms. Parallelization on shared and distributed memory systems was pioneered by R

  12. Energy management system for stand-alone diesel-wind-biomass microgrid with energy storage system

    International Nuclear Information System (INIS)

    Wang, Chengshan; Liu, Yixin; Li, Xialin; Guo, Li; Qiao, Lei; Lu, Hai

    2016-01-01

    An energy management system for stand-alone microgrid composed of diesel generators, wind turbine generator, biomass generator and an ESS (energy storage system) is proposed in this paper. Different operation objectives are achieved by a hierarchical control structure with different time scales. Firstly, the optimal schedules of the diesel generators, wind turbine generator, biomass generator and ESS are determined fifteen minutes ahead according to the super short-term forecast of load and wind speed in the optimal scheduling layer. Comprehensive analysis which takes the uncertainty of load and wind speed into account is conducted in this layer to minimize the operation cost of the system and ensure a desirable range of the state of charge of the ESS. Secondly, the operation points of each unit are regulated dynamically to guarantee real-time power balance and safety range of diesel generation in the real-time control layer, based on which the response capability when suffering significant forecast deviation and other emergency issues, e.g. sudden load-up can be improved. Finally, the effectiveness of the proposed energy management strategy is verified on an RT-Lab based real-time simulation platform, and the economic performances with different types of ESS are analyzed as well. - Highlights: • A hierarchical control strategy is proposed for a stand-alone microgrid. • The uncertainties of load and wind speed have been considered. • Better economic performance and high reliability of the system can be achieved. • The influences of different energy storage systems have been analyzed.

  13. Superior lithium storage performance of hierarchical porous vanadium pentoxide nanofibers for lithium ion battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bo [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); National Key Laboratory of Power Sources, Tianjin Institute of Power Sources, Tianjin 300381 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Bai, Zhimin, E-mail: zhimibai@cugb.edu.cn [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Li, Minsi [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Dong, Lei; Xiong, Dongbin [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2015-06-15

    Highlights: • Hierarchical porous vanadium pentoxide nanofibers were synthesized by electrospinning. • V{sub 2}O{sub 5} nanofibers showed much enhanced lithium storage performance. • Kinetics process of electrospinning V{sub 2}O{sub 5} nanofibers was studied by means of EIS for the first time. • Strategies to enhance the electrochemical performance of V{sub 2}O{sub 5} electrode were concluded. - Abstract: The hierarchical V{sub 2}O{sub 5} nanofibers cathode materials with diameter of 200–400 nm are successfully synthesized via an electrospinning followed by annealing. Powder X-ray diffraction (XRD) pattern confirms the formation of phase-pure product. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) obviously display the hierarchical porous nanofibers constructed by attached tiny vanadium oxide nanoplates. Electrochemical behavior of the as-prepared product is systematically studied using galvanostatic charge/discharge testing, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). It turns out that in comparison to the commercial V{sub 2}O{sub 5} and other unique nanostructured materials in the literature, our V{sub 2}O{sub 5} nanofibers show much enhanced lithium storage capacity, improved cyclic stability, and higher rate capability. After 100 cycles at a current density of 800 mA g{sup −1}, the specific capacity of the V{sub 2}O{sub 5} nanofibers retain 133.9 mAh g{sup −1}, corresponding to high capacity retention of 96.05%. More importantly, the EIS at various discharge depths clearly reveal the kinetics process of the V{sub 2}O{sub 5} cathode reaction with lithium. Based on our results, the possible approach to improve the specific capacity and rate capability of the V{sub 2}O{sub 5} cathode material is proposed. It is expected that this study could accelerate the development of V{sub 2}O{sub 5} cathode in rechargeable lithium ion batteries.

  14. Metastable states in the hierarchical Dyson model drive parallel processing in the hierarchical Hopfield network

    International Nuclear Information System (INIS)

    Agliari, Elena; Barra, Adriano; Guerra, Francesco; Galluzzi, Andrea; Tantari, Daniele; Tavani, Flavia

    2015-01-01

    In this paper, we introduce and investigate the statistical mechanics of hierarchical neural networks. First, we approach these systems à la Mattis, by thinking of the Dyson model as a single-pattern hierarchical neural network. We also discuss the stability of different retrievable states as predicted by the related self-consistencies obtained both from a mean-field bound and from a bound that bypasses the mean-field limitation. The latter is worked out by properly reabsorbing the magnetization fluctuations related to higher levels of the hierarchy into effective fields for the lower levels. Remarkably, mixing Amit's ansatz technique for selecting candidate-retrievable states with the interpolation procedure for solving for the free energy of these states, we prove that, due to gauge symmetry, the Dyson model accomplishes both serial and parallel processing. We extend this scenario to multiple stored patterns by implementing the Hebb prescription for learning within the couplings. This results in Hopfield-like networks constrained on a hierarchical topology, for which, by restricting to the low-storage regime where the number of patterns grows at its most logarithmical with the amount of neurons, we prove the existence of the thermodynamic limit for the free energy, and we give an explicit expression of its mean-field bound and of its related improved bound. We studied the resulting self-consistencies for the Mattis magnetizations, which act as order parameters, are studied and the stability of solutions is analyzed to get a picture of the overall retrieval capabilities of the system according to both mean-field and non-mean-field scenarios. Our main finding is that embedding the Hebbian rule on a hierarchical topology allows the network to accomplish both serial and parallel processing. By tuning the level of fast noise affecting it or triggering the decay of the interactions with the distance among neurons, the system may switch from sequential retrieval to

  15. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-01-01

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  16. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  17. Hierarchical structure of biological systems: a bioengineering approach.

    Science.gov (United States)

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M

    2014-01-01

    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems.

  18. Statistical dynamics of ultradiffusion in hierarchical systems

    International Nuclear Information System (INIS)

    Gardner, S.

    1987-01-01

    In many types of disordered systems which exhibit frustration and competition, an ultrametric topology is found to exist in the space of allowable states. This ultrametric topology of states is associated with a hierarchical relaxation process called ultradiffusion. Ultradiffusion occurs in hierarchical non-linear (HNL) dynamical systems when constraints cause large scale, slow modes of motion to be subordinated to small scale, fast modes. Examples of ultradiffusion are found throughout condensed matter physics and critical phenomena (e.g. the states of spin glasses), in biophysics (e.g. the states of Hopfield networks) and in many other fields including layered computing based upon nonlinear dynamics. The statistical dynamics of ultradiffusion can be treated as a random walk on an ultrametric space. For reversible bifurcating ultrametric spaces the evolution equation governing the probability of a particle being found at site i at time t has a highly degenerate transition matrix. This transition matrix has a fractal geometry similar to the replica form proposed for spin glasses. The authors invert this fractal matrix using a recursive quad-tree (QT) method. Possible applications of hierarchical systems to communications and symbolic computing are discussed briefly

  19. Final Report of Optimization Algorithms for Hierarchical Problems, with Applications to Nanoporous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Stephen G.

    2013-11-11

    The research focuses on the modeling and optimization of nanoporous materials. In systems with hierarchical structure that we consider, the physics changes as the scale of the problem is reduced and it can be important to account for physics at the fine level to obtain accurate approximations at coarser levels. For example, nanoporous materials hold promise for energy production and storage. A significant issue is the fabrication of channels within these materials to allow rapid diffusion through the material. One goal of our research is to apply optimization methods to the design of nanoporous materials. Such problems are large and challenging, with hierarchical structure that we believe can be exploited, and with a large range of important scales, down to atomistic. This requires research on large-scale optimization for systems that exhibit different physics at different scales, and the development of algorithms applicable to designing nanoporous materials for many important applications in energy production, storage, distribution, and use. Our research has two major research thrusts. The first is hierarchical modeling. We plan to develop and study hierarchical optimization models for nanoporous materials. The models have hierarchical structure, and attempt to balance the conflicting aims of model fidelity and computational tractability. In addition, we analyze the general hierarchical model, as well as the specific application models, to determine their properties, particularly those properties that are relevant to the hierarchical optimization algorithms. The second thrust was to develop, analyze, and implement a class of hierarchical optimization algorithms, and apply them to the hierarchical models we have developed. We adapted and extended the optimization-based multigrid algorithms of Lewis and Nash to the optimization models exemplified by the hierarchical optimization model. This class of multigrid algorithms has been shown to be a powerful tool for

  20. A self-defining hierarchical data system

    Science.gov (United States)

    Bailey, J.

    1992-01-01

    The Self-Defining Data System (SDS) is a system which allows the creation of self-defining hierarchical data structures in a form which allows the data to be moved between different machine architectures. Because the structures are self-defining they can be used for communication between independent modules in a distributed system. Unlike disk-based hierarchical data systems such as Starlink's HDS, SDS works entirely in memory and is very fast. Data structures are created and manipulated as internal dynamic structures in memory managed by SDS itself. A structure may then be exported into a caller supplied memory buffer in a defined external format. This structure can be written as a file or sent as a message to another machine. It remains static in structure until it is reimported into SDS. SDS is written in portable C and has been run on a number of different machine architectures. Structures are portable between machines with SDS looking after conversion of byte order, floating point format, and alignment. A Fortran callable version is also available for some machines.

  1. Hierarchical control system of advanced robot manipulator

    International Nuclear Information System (INIS)

    Oomichi, Takeo; Okino, Akihisa; Nishihara, Masatoshi; Sakamoto, Taizou; Matsuda, Koichi; Ohnishi, Ken

    1990-01-01

    We introduce a double arm with 4-finger's manipulator system which process the large volume of information at high speed. This is under research/development many type of works in the harsh condition. Namely, hierarchization of instruction unit in which motion control system as real time processing unit, and task planning unit as non-real time processing unit, interface with operation through the task planning unit has been made. Also, high speed processing of large volume information has been realized by decentralizing the motion control unit by function, hierarchizing the high speed processing unit, and developing high speed transmission, IC which does not depend on computer OS to avoid the delay in transmission. (author)

  2. Hierarchical Energy Management of Microgrids including Storage and Demand Response

    Directory of Open Access Journals (Sweden)

    Songli Fan

    2018-05-01

    Full Text Available Battery energy storage (BES and demand response (DR are considered to be promising technologies to cope with the uncertainty of renewable energy sources (RES and the load in the microgrid (MG. Considering the distinct prediction accuracies of the RES and load at different timescales, it is essential to incorporate the multi-timescale characteristics of BES and DR in MG energy management. Under this background, a hierarchical energy management framework is put forward for an MG including multi-timescale BES and DR to optimize operation with the uncertainty of RES as well as load. This framework comprises three stages of scheduling: day-ahead scheduling (DAS, hour-ahead scheduling (HAS, and real-time scheduling (RTS. In DAS, a scenario-based stochastic optimization model is established to minimize the expected operating cost of MG, while ensuring its safe operation. The HAS is utilized to bridge DAS and RTS. In RTS, a control strategy is proposed to eliminate the imbalanced power owing to the fluctuations of RES and load. Then, a decomposition-based algorithm is adopted to settle the models in DAS and HAS. Simulation results on a seven-bus MG validate the effectiveness of the proposed methodology.

  3. PC-Cluster based Storage System Architecture for Cloud Storage

    OpenAIRE

    Yee, Tin Tin; Naing, Thinn Thu

    2011-01-01

    Design and architecture of cloud storage system plays a vital role in cloud computing infrastructure in order to improve the storage capacity as well as cost effectiveness. Usually cloud storage system provides users to efficient storage space with elasticity feature. One of the challenges of cloud storage system is difficult to balance the providing huge elastic capacity of storage and investment of expensive cost for it. In order to solve this issue in the cloud storage infrastructure, low ...

  4. Nonlinear robust hierarchical control for nonlinear uncertain systems

    Directory of Open Access Journals (Sweden)

    Leonessa Alexander

    1999-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  5. An Evolutionary Approach for Optimizing Hierarchical Multi-Agent System Organization

    OpenAIRE

    Shen, Zhiqi; Yu, Ling; Yu, Han

    2014-01-01

    It has been widely recognized that the performance of a multi-agent system is highly affected by its organization. A large scale system may have billions of possible ways of organization, which makes it impractical to find an optimal choice of organization using exhaustive search methods. In this paper, we propose a genetic algorithm aided optimization scheme for designing hierarchical structures of multi-agent systems. We introduce a novel algorithm, called the hierarchical genetic algorithm...

  6. Hierarchical Data Replication and Service Monitoring Methods in a Scientific Data Grid

    Directory of Open Access Journals (Sweden)

    Weizhong Lu

    2009-04-01

    Full Text Available In a grid and distributed computing environment, data replication is an effective way to improve data accessibility and data accessing efficiency. It is also significant in developing a real-time service monitoring system for a Chinese Scientific Data Grid to guarantee the system stability and data availability. Hierarchical data replication and service monitoring methods are proposed in this paper. The hierarchical data replication method divides the network into different domains and replicates data in local domains. The nodes in a local domain are classified into hierarchies to improve data accessibility according to bandwidth and storage memory space. An extensible agent-based prototype of a hierarchical service monitoring system is presented. The status information of services in the Chinese Scientific Data Grid is collected from the grid nodes based on agent technology and then is transformed into real-time operational pictures for management needs. This paper presents frameworks of the hierarchical data replication and service monitoring methods and gives detailed resolutions. Simulation analyses have demonstrated improved data accessing efficiency and verified the effectiveness of the methods at the same time.

  7. Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems

    Science.gov (United States)

    Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.

    2004-01-01

    This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.

  8. Master–Slave Based Hierarchical Control for a Small Power DC-Distributed Microgrid System with a Storage Device

    Directory of Open Access Journals (Sweden)

    Seung-Woon Lee

    2016-10-01

    Full Text Available In this paper, we analyze one of the main drawbacks of droop control-based DC microgrid systems, and propose a novel control method to overcome this problem. Typically, DC microgrid systems use droop control techniques to enable communication independency and expandability. However, as these advantages are based on bus quality and regulation abandonment, droop-based schemes have limitations in terms of high bus impedance and bus regulation. This paper proposes a novel master–slave based hierarchical control technique for a DC distribution system, in which a DC bus signaling method is used to overcome the communication dependency and the expandability limitations of conventional master–slave control methods. The concept and design considerations of the proposed control method are presented, and a 1 kW simulation under a Powersim (PSIM environment and hardware prototype—built to verify the system—is described.

  9. Energy Storage Systems

    Science.gov (United States)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  10. COMPOSITE METHOD OF RELIABILITY RESEARCH FOR HIERARCHICAL MULTILAYER ROUTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    R. B. Tregubov

    2016-09-01

    Full Text Available The paper deals with the idea of a research method for hierarchical multilayer routing systems. The method represents a composition of methods of graph theories, reliability, probabilities, etc. These methods are applied to the solution of different private analysis and optimization tasks and are systemically connected and coordinated with each other through uniform set-theoretic representation of the object of research. The hierarchical multilayer routing systems are considered as infrastructure facilities (gas and oil pipelines, automobile and railway networks, systems of power supply and communication with distribution of material resources, energy or information with the use of hierarchically nested functions of routing. For descriptive reasons theoretical constructions are considered on the example of task solution of probability determination for up state of specific infocommunication system. The author showed the possibility of constructive combination of graph representation of structure of the object of research and a logic probable analysis method of its reliability indices through uniform set-theoretic representation of its elements and processes proceeding in them.

  11. Dynamics and thermodynamics in hierarchically organized systems applications in physics, biology and economics

    CERN Document Server

    Auger, P

    2013-01-01

    One of the most fundamental and efficient ways of conceptualizing complex systems is to organize them hierarchically. A hierarchically organized system is represented by a network of interconnected subsystems, each of which has its own network of subsystems, and so on, until some elementary subsystems are reached that are not further decomposed. This original and important book proposes a general mathematical theory of a hierarchical system and shows how it can be applied to very different topics such as physics (Hamiltonian systems), biology (coupling the molecular and the cellular levels), e

  12. Analysis and Optimisation of Hierarchically Scheduled Multiprocessor Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Traian; Pop, Paul; Eles, Petru

    2008-01-01

    We present an approach to the analysis and optimisation of heterogeneous multiprocessor embedded systems. The systems are heterogeneous not only in terms of hardware components, but also in terms of communication protocols and scheduling policies. When several scheduling policies share a resource......, they are organised in a hierarchy. In this paper, we first develop a holistic scheduling and schedulability analysis that determines the timing properties of a hierarchically scheduled system. Second, we address design problems that are characteristic to such hierarchically scheduled systems: assignment...... of scheduling policies to tasks, mapping of tasks to hardware components, and the scheduling of the activities. We also present several algorithms for solving these problems. Our heuristics are able to find schedulable implementations under limited resources, achieving an efficient utilisation of the system...

  13. Hierarchical Control of Droop-Controlled DC and AC Microgrids - A General Approach Towards Standardization

    DEFF Research Database (Denmark)

    Guerrero, Josep M.; Vásquez, Juan V.; Teodorescu, Remus

    2009-01-01

    DC and AC Microgrids are key elements to integrate renewable and distributed energy resources as well as distributed energy storage systems. In the last years, efforts toward the standardization of these Microgrids have been made. In this sense, this paper present the hierarchical control derived...

  14. Economics of dry storage systems

    International Nuclear Information System (INIS)

    Moore, G.R.; Winders, R.C.

    1980-01-01

    This paper postulates a dry storage application suitable as a regional away-from-reactor storage (AFR), develops an economical system design concept and estimates system costs. The system discussed uses the experience gained in the dry storage research activities and attempts to present a best foot forward system concept. The major element of the system is the Receiving and Packaging Building. In this building fuel assemblies are removed from transportation casks and encapsulated for storage. This facility could be equally applicable to silo, vault, or caisson storage. However the caisson storage concept has been chosen for discussion purposes

  15. Hierarchic levels of a system classification of radiation-contaminated landscapes

    International Nuclear Information System (INIS)

    Dolyin, V.V.; Sushchik, Yu.Ya.; Bondarenko, G.M.; Shramenko, Yi.F.; Dudar, T.V.

    2001-01-01

    Five hierarchic levels of the systematic organization of natural landscapes are determined: substantial-phase, soil-profile, biogeocenotic, landscape, and geosystematic. Systems and subsystems of compounds of chemical elements and natural and man-caused factors that characterized properties and mechanisms of ecological self-organization of biogeocenoses are brought into accordance with each level. A scheme of hierarchic subordination of systems, subsystems, and processes is worked out. Leading links of transformation and migration of radionuclides that define the contamination of tropic chains are determined

  16. Benchmarking Cloud Storage Systems

    OpenAIRE

    Wang, Xing

    2014-01-01

    With the rise of cloud computing, many cloud storage systems like Dropbox, Google Drive and Mega have been built to provide decentralized and reliable file storage. It is thus of prime importance to know their features, performance, and the best way to make use of them. In this context, we introduce BenchCloud, a tool designed as part of this thesis to conveniently and efficiently benchmark any cloud storage system. First, we provide a study of six commonly-used cloud storage systems to ident...

  17. Agent-based distributed hierarchical control of dc microgrid systems

    DEFF Research Database (Denmark)

    Meng, Lexuan; Vasquez, Juan Carlos; Guerrero, Josep M.

    2014-01-01

    In order to enable distributed control and management for microgrids, this paper explores the application of information consensus and local decisionmaking methods formulating an agent based distributed hierarchical control system. A droop controlled paralleled DC/DC converter system is taken as ....... Standard genetic algorithm is applied in each local control system in order to search for a global optimum. Hardware-in-Loop simulation results are shown to demonstrate the effectiveness of the method.......In order to enable distributed control and management for microgrids, this paper explores the application of information consensus and local decisionmaking methods formulating an agent based distributed hierarchical control system. A droop controlled paralleled DC/DC converter system is taken...... as a case study. The objective is to enhance the system efficiency by finding the optimal sharing ratio of load current. Virtual resistances in local control systems are taken as decision variables. Consensus algorithms are applied for global information discovery and local control systems coordination...

  18. Hierarchical Model Predictive Control for Plug-and-Play Resource Distribution

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2012-01-01

    of autonomous units. The approach is inspired by smart-grid electric power production and consumption systems, where the flexibility of a large number of power producing and/or power consuming units can be exploited in a smart-grid solution. The objective is to accommodate the load variation on the grid......This chapter deals with hierarchical model predictive control (MPC) of distributed systems. A three level hierarchical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level......, arising on one hand from varying consumption, on the other hand by natural variations in power production e.g. from wind turbines. The proposed method can also be applied to supply chain management systems, where the challenge is to balance demand and supply, using a number of storages each with a maximal...

  19. Self-assembly of nano/micro-structured Fe3O4 microspheres among 3D rGO/CNTs hierarchical networks with superior lithium storage performances

    International Nuclear Information System (INIS)

    Liu, Jinlong; Feng, Haibo; Wang, Xipeng; Qian, Dong; Jiang, Jianbo; Li, Junhua; Peng, Sanjun; Deng, Miao; Liu, Youcai

    2014-01-01

    Nano/micro-structured Fe 3 O 4 microspheres among three-dimensional (3D) reduced graphene oxide (rGO)/carbon nanotubes (CNTs) hierarchical networks (the ternary composite is denoted as rGCFs) have been synthesized using a facile, self-assembled and one-pot hydrothermal approach. The rGCFs composite exhibits superior lithium storage performances: initial discharge and charge capacities of 1452 and 1036 mAh g −1 , respectively, remarkable rate capability at current densities from 100 mA g −1 to 10 A g −1 and outstanding cycling performance up to 200 cycles. The highly enhanced electrochemical performances of rGCFs depend heavily on the robust 3D rGO/CNTs hierarchical networks, the stable nano/microstructures of active Fe 3 O 4 microspheres and the positive synergistic effects of building components. The systematic structure characterizations and electrochemical investigations provide insightful understanding towards the relationship between structure/morphology and lithium storage performances, which may pave the way for the rational design of composite materials with desirable goals. (papers)

  20. Hierarchical fiber-optic-based sensing system: impact damage monitoring of large-scale CFRP structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Banshoya, Hidehiko; Takeda, Nobuo; Tsukamoto, Haruka

    2011-01-01

    This study proposes a novel fiber-optic-based hierarchical sensing concept for monitoring randomly induced damage in large-scale composite structures. In a hierarchical system, several kinds of specialized devices are hierarchically combined to form a sensing network. Specifically, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with an optical fiber network through transducing mechanisms. The distributed devices detect damage, and the fiber-optic network gathers the damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of a hierarchical sensing system through comparison with existing fiber-optic-based systems, and an impact damage detection system was then proposed to validate the new concept. The sensor devices were developed based on comparative vacuum monitoring (CVM), and Brillouin-based distributed strain measurement was utilized to identify damaged areas. Verification tests were conducted step-by-step, beginning with a basic test using a single sensor unit, and, finally, the proposed monitoring system was successfully verified using a carbon fiber reinforced plastic (CFRP) fuselage demonstrator. It was clearly confirmed that the hierarchical system has better repairability, higher robustness, and a wider monitorable area compared to existing systems

  1. Hierarchical graphs for rule-based modeling of biochemical systems

    Directory of Open Access Journals (Sweden)

    Hu Bin

    2011-02-01

    Full Text Available Abstract Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal of an edge represents a class of association (dissociation reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for

  2. Implementation of hierarchical control in DC microgrids

    DEFF Research Database (Denmark)

    Jin, Chi; Wang, Peng; Xiao, Jianfang

    2014-01-01

    of Technology, Singapore. The coordination control among multiple dc sources and energy storages is implemented using a novel hierarchical control technique. The bus voltage essentially acts as an indicator of supply-demand balance. A wireless control is implemented for the reliable operation of the grid....... A reasonable compromise between the maximum power harvest and effective battery management is further enhanced using the coordination control based on a central energy management system. The feasibility and effectiveness of the proposed control strategies have been tested by a dc microgrid in WERL....

  3. Storage Policies and Optimal Shape of a Storage System

    NARCIS (Netherlands)

    Zaerpour, N.; De Koster, René; Yu, Yugang

    2013-01-01

    The response time of a storage system is mainly influenced by its shape (configuration), the storage assignment and retrieval policies, and the location of the input/output (I/O) points. In this paper, we show that the optimal shape of a storage system, which minimises the response time for single

  4. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  5. Distributed hierarchical radiation monitoring system

    International Nuclear Information System (INIS)

    Barak, D.

    1985-01-01

    A solution to the problem of monitoring the radiation levels in and around a nuclear facility is presented in this paper. This is a private case of a large scale general purpose data acqisition system with high reliability, availability and short maintenance time. The physical layout of the detectors in the plant, and the strict control demands dictated a distributed and hierarchical system. The system is comprised of three levels, each level contains modules. Level one contains the Control modules which collects data from groups of detectors and executes emergency local control tasks. In level two are the Group controllers which concentrate data from the Control modules, and enable local display and communication. The system computer is in level three, enabling the plant operator to receive information from the detectors and execute control tasks. The described system was built and is operating successfully for about two years. (author)

  6. Considerations for Disposition of Dry Cask Storage System Materials at End of Storage System Life

    International Nuclear Information System (INIS)

    Howard, Rob; Van den Akker, Bret

    2014-01-01

    Dry cask storage systems are deployed at nuclear power plants for used nuclear fuel (UNF) storage when spent fuel pools reach their storage capacity and/or the plants are decommissioned. An important waste and materials disposition consideration arising from the increasing use of these systems is the management of the dry cask storage systems' materials after the UNF proceeds to disposition. Thermal analyses of repository design concepts currently under consideration internationally indicate that waste package sizes for the geologic media under consideration may be significantly smaller than the canisters being used for on-site dry storage by the nuclear utilities. Therefore, at some point along the UNF disposition pathway, there could be a need to repackage fuel assemblies already loaded into the dry storage canisters currently in use. In the United States, there are already over 1650 of these dry storage canisters deployed and approximately 200 canisters per year are being loaded at the current fleet of commercial nuclear power plants. There is about 10 cubic meters of material from each dry storage canister system that will need to be dispositioned. The concrete horizontal storage modules or vertical storage overpacks will need to be reused, re-purposed, recycled, or disposed of in some manner. The empty metal storage canister/cask would also have to be cleaned, and decontaminated for possible reuse or recycling or disposed of, likely as low-level radioactive waste. These material disposition options can have impacts of the overall used fuel management system costs. This paper will identify and explore some of the technical and interface considerations associated with managing the dry cask storage system materials. (authors)

  7. Flow and transport in hierarchically fractured systems

    International Nuclear Information System (INIS)

    Karasaki, K.

    1993-01-01

    Preliminary results indicate that flow in the saturated zone at Yucca Mountain is controlled by fractures. A current conceptual model assumes that the flow in the fracture system can be approximately by a three-dimensionally interconnected network of linear conduits. The overall flow system of rocks at Yucca Mountain is considered to consist of hierarchically structured heterogeneous fracture systems of multiple scales. A case study suggests that it is more appropriate to use the flow parameters of the large fracture system for predicting the first arrival time, rather than using the bulk average parameters of the total system

  8. Unleashed Microactuators electrostatic wireless actuation for probe-based data storage

    NARCIS (Netherlands)

    Hoexum, A.M.

    2007-01-01

    Summary A hierarchical overview of the currently available data storage systems for desktop computer systems can be visualised as a pyramid in which the height represents both the price per bit and the access rate. The width of the pyramid represents the capacity of the medium. At the bottom slow,

  9. Development and evaluation of a low-cost and high-capacity DICOM image data storage system for research.

    Science.gov (United States)

    Yakami, Masahiro; Ishizu, Koichi; Kubo, Takeshi; Okada, Tomohisa; Togashi, Kaori

    2011-04-01

    Thin-slice CT data, useful for clinical diagnosis and research, is now widely available but is typically discarded in many institutions, after a short period of time due to data storage capacity limitations. We designed and built a low-cost high-capacity Digital Imaging and COmmunication in Medicine (DICOM) storage system able to store thin-slice image data for years, using off-the-shelf consumer hardware components, such as a Macintosh computer, a Windows PC, and network-attached storage units. "Ordinary" hierarchical file systems, instead of a centralized data management system such as relational database, were adopted to manage patient DICOM files by arranging them in directories enabling quick and easy access to the DICOM files of each study by following the directory trees with Windows Explorer via study date and patient ID. Software used for this system was open-source OsiriX and additional programs we developed ourselves, both of which were freely available via the Internet. The initial cost of this system was about $3,600 with an incremental storage cost of about $900 per 1 terabyte (TB). This system has been running since 7th Feb 2008 with the data stored increasing at the rate of about 1.3 TB per month. Total data stored was 21.3 TB on 23rd June 2009. The maintenance workload was found to be about 30 to 60 min once every 2 weeks. In conclusion, this newly developed DICOM storage system is useful for research due to its cost-effectiveness, enormous capacity, high scalability, sufficient reliability, and easy data access.

  10. Scale of association: hierarchical linear models and the measurement of ecological systems

    Science.gov (United States)

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  11. High Density Digital Data Storage System

    Science.gov (United States)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  12. Supervision and control of grid connected PV-Storage systems with the five level diode clamped inverter

    International Nuclear Information System (INIS)

    Himour, Kamal; Ghedamsi, Kaci; Berkouk, El Madjid

    2014-01-01

    Highlights: • Use of battery bank in grid connection photovoltaic system to ensure the energetic autonomy of the system. • Improve the quality of energy by the use of five-level inverter in a grid connection PV generation system. • Control of inverter by fast and simplified space vector pulse width modulation. • Control and supervision of active and reactive power in the grid. - Abstract: This paper aimed to evaluate the use of photovoltaic-battery storage systems to supply electric power in the distribution grid through a multilevel inverter. The proposed system is composed by four PV generators with MPPT (P and O) control, four battery storage systems connected to each capacitor of the DC link and a five level diode clamped inverter connected to the grid by a traditional three phase transformer. The proposed control has a hierarchical structure with both a grid side control level to regulate the power and the current injected to the grid and four input side regulation units. The system operator controls the power production of the four PV generators by sending out reference power signals to each input side regulation unit, the input side regulation units regulate the voltage of each capacitor of the DC link, regulate the voltage and the state of charge of each battery storage system

  13. Locally Minimum Storage Regenerating Codes in Distributed Cloud Storage Systems

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Wei Luo; Wei Liang; Xiangyang Liu; Xiaodai Dong

    2017-01-01

    In distributed cloud storage sys-tems, inevitably there exist multiple node fail-ures at the same time. The existing methods of regenerating codes, including minimum storage regenerating (MSR) codes and mini-mum bandwidth regenerating (MBR) codes, are mainly to repair one single or several failed nodes, unable to meet the repair need of distributed cloud storage systems. In this paper, we present locally minimum storage re-generating (LMSR) codes to recover multiple failed nodes at the same time. Specifically, the nodes in distributed cloud storage systems are divided into multiple local groups, and in each local group (4, 2) or (5, 3) MSR codes are constructed. Moreover, the grouping method of storage nodes and the repairing process of failed nodes in local groups are studied. The-oretical analysis shows that LMSR codes can achieve the same storage overhead as MSR codes. Furthermore, we verify by means of simulation that, compared with MSR codes, LMSR codes can reduce the repair bandwidth and disk I/O overhead effectively.

  14. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  15. The potential of near-surface geophysical methods in a hierarchical monitoring approach for the detection of shallow CO2 seeps at geological storage sites

    Science.gov (United States)

    Sauer, U.; Schuetze, C.; Dietrich, P.

    2013-12-01

    The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The

  16. Preventing Distribution Grid Congestion by Integrating Indirect Control in a Hierarchical Electric Vehicles Management System

    DEFF Research Database (Denmark)

    Hu, Junjie; Si, Chengyong; Lind, Morten

    2016-01-01

    In this paper, a hierarchical management system is proposed to integrate electric vehicles (EVs) into a distribution grid. Three types of actors are included in the system: Distribution system operators (DSOs), Fleet operators (FOs) and EV owners. In contrast to a typical hierarchical control sys...

  17. Clinical time series prediction: Toward a hierarchical dynamical system framework.

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2015-09-01

    Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Clinical time series prediction: towards a hierarchical dynamical system framework

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2014-01-01

    Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive

  19. The INFN-CNAF Tier-1 GEMSS Mass Storage System and database facility activity

    Science.gov (United States)

    Ricci, Pier Paolo; Cavalli, Alessandro; Dell'Agnello, Luca; Favaro, Matteo; Gregori, Daniele; Prosperini, Andrea; Pezzi, Michele; Sapunenko, Vladimir; Zizzi, Giovanni; Vagnoni, Vincenzo

    2015-05-01

    The consolidation of Mass Storage services at the INFN-CNAF Tier1 Storage department that has occurred during the last 5 years, resulted in a reliable, high performance and moderately easy-to-manage facility that provides data access, archive, backup and database services to several different use cases. At present, the GEMSS Mass Storage System, developed and installed at CNAF and based upon an integration between the IBM GPFS parallel filesystem and the Tivoli Storage Manager (TSM) tape management software, is one of the largest hierarchical storage sites in Europe. It provides storage resources for about 12% of LHC data, as well as for data of other non-LHC experiments. Files are accessed using standard SRM Grid services provided by the Storage Resource Manager (StoRM), also developed at CNAF. Data access is also provided by XRootD and HTTP/WebDaV endpoints. Besides these services, an Oracle database facility is in production characterized by an effective level of parallelism, redundancy and availability. This facility is running databases for storing and accessing relational data objects and for providing database services to the currently active use cases. It takes advantage of several Oracle technologies, like Real Application Cluster (RAC), Automatic Storage Manager (ASM) and Enterprise Manager centralized management tools, together with other technologies for performance optimization, ease of management and downtime reduction. The aim of the present paper is to illustrate the state-of-the-art of the INFN-CNAF Tier1 Storage department infrastructures and software services, and to give a brief outlook to forthcoming projects. A description of the administrative, monitoring and problem-tracking tools that play a primary role in managing the whole storage framework is also given.

  20. Hierarchical system for autonomous sensing-healing of delamination in large-scale composite structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Sun, Denghao; Takeda, Nobuo

    2014-01-01

    This study combines our hierarchical fiber-optic-based delamination detection system with a microvascular self-healing material to develop the first autonomous sensing-healing system applicable to large-scale composite structures. In this combined system, embedded vascular modules are connected through check valves to a surface-mounted supply tube of a pressurized healing agent while fiber-optic-based sensors monitor the internal pressure of these vascular modules. When delamination occurs, the healing agent flows into the vascular modules breached by the delamination and infiltrates the damage for healing. At the same time, the pressure sensors identify the damaged modules by detecting internal pressure changes. This paper begins by describing the basic concept of the combined system and by discussing the advantages that arise from its hierarchical nature. The feasibility of the system is then confirmed through delamination infiltration tests. Finally, the hierarchical system is validated in a plate specimen by focusing on the detection and infiltration of the damage. Its self-diagnostic function is also demonstrated. (paper)

  1. Robust holographic storage system design.

    Science.gov (United States)

    Watanabe, Takahiro; Watanabe, Minoru

    2011-11-21

    Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration. © 2011 Optical Society of America

  2. Cellular Decomposition Based Hybrid-Hierarchical Control Systems with Applications to Flight Management Systems

    Science.gov (United States)

    Caines, P. E.

    1999-01-01

    The work in this research project has been focused on the construction of a hierarchical hybrid control theory which is applicable to flight management systems. The motivation and underlying philosophical position for this work has been that the scale, inherent complexity and the large number of agents (aircraft) involved in an air traffic system imply that a hierarchical modelling and control methodology is required for its management and real time control. In the current work the complex discrete or continuous state space of a system with a small number of agents is aggregated in such a way that discrete (finite state machine or supervisory automaton) controlled dynamics are abstracted from the system's behaviour. High level control may then be either directly applied at this abstracted level, or, if this is in itself of significant complexity, further layers of abstractions may be created to produce a system with an acceptable degree of complexity at each level. By the nature of this construction, high level commands are necessarily realizable at lower levels in the system.

  3. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage

    Science.gov (United States)

    Yu, Dingshan; Goh, Kunli; Wang, Hong; Wei, Li; Jiang, Wenchao; Zhang, Qiang; Dai, Liming; Chen, Yuan

    2014-07-01

    Micro-supercapacitors are promising energy storage devices that can complement or even replace batteries in miniaturized portable electronics and microelectromechanical systems. Their main limitation, however, is the low volumetric energy density when compared with batteries. Here, we describe a hierarchically structured carbon microfibre made of an interconnected network of aligned single-walled carbon nanotubes with interposed nitrogen-doped reduced graphene oxide sheets. The nanomaterials form mesoporous structures of large specific surface area (396 m2 g-1) and high electrical conductivity (102 S cm-1). We develop a scalable method to continuously produce the fibres using a silica capillary column functioning as a hydrothermal microreactor. The resultant fibres show a specific volumetric capacity as high as 305 F cm-3 in sulphuric acid (measured at 73.5 mA cm-3 in a three-electrode cell) or 300 F cm-3 in polyvinyl alcohol (PVA)/H3PO4 electrolyte (measured at 26.7 mA cm-3 in a two-electrode cell). A full micro-supercapacitor with PVA/H3PO4 gel electrolyte, free from binder, current collector and separator, has a volumetric energy density of ~6.3 mWh cm-3 (a value comparable to that of 4 V-500 µAh thin-film lithium batteries) while maintaining a power density more than two orders of magnitude higher than that of batteries, as well as a long cycle life. To demonstrate that our fibre-based, all-solid-state micro-supercapacitors can be easily integrated into miniaturized flexible devices, we use them to power an ultraviolet photodetector and a light-emitting diode.

  4. Control of discrete event systems modeled as hierarchical state machines

    Science.gov (United States)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  5. Thermochemical Heat Storage: from Reaction Storage Density to System Storage Density

    NARCIS (Netherlands)

    Jong, A.J. de; Vliet, L.D. van; Hoegaerts, C.L.G.; Roelands, C.P.M.; Cuypers, R.

    2016-01-01

    Long-term and compact storage of solar energy is crucial for the eventual transition to a 100% renewable energy economy. For this, thermochemical materials provide a promising solution. The compactness of a long-term storage system is determined by the thermochemical reaction, operating conditions,

  6. Optimal Real-Time Scheduling for Hybrid Energy Storage Systems and Wind Farms Based on Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Meng Xiong

    2015-08-01

    Full Text Available Energy storage devices are expected to be more frequently implemented in wind farms in near future. In this paper, both pumped hydro and fly wheel storage systems are used to assist a wind farm to smooth the power fluctuations. Due to the significant difference in the response speeds of the two storages types, the wind farm coordination with two types of energy storage is a problem. This paper presents two methods for the coordination problem: a two-level hierarchical model predictive control (MPC method and a single-level MPC method. In the single-level MPC method, only one MPC controller coordinates the wind farm and the two storage systems to follow the grid scheduling. Alternatively, in the two-level MPC method, two MPC controllers are used to coordinate the wind farm and the two storage systems. The structure of two level MPC consists of outer level and inner level MPC. They run alternatively to perform real-time scheduling and then stop, thus obtaining long-term scheduling results and sending some results to the inner level as input. The single-level MPC method performs both long- and short-term scheduling tasks in each interval. The simulation results show that the methods proposed can improve the utilization of wind power and reduce wind power spillage. In addition, the single-level MPC and the two-level MPC are not interchangeable. The single-level MPC has the advantage of following the grid schedule while the two-level MPC can reduce the optimization time by 60%.

  7. Automatic Hierarchical Color Image Classification

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2003-02-01

    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  8. Rod-like hierarchical Sn/SnOx@C nanostructures with enhanced lithium storage properties

    Science.gov (United States)

    Yang, Juan; Chen, Sanmei; Tang, Jingjing; Tian, Hangyu; Bai, Tao; Zhou, Xiangyang

    2018-03-01

    Rod-like hierarchical Sn/SnOx@C nanostructures have been designed and synthesized via calcining resorcinol-formaldehyde (RF) resin coated Sn-based metal-organic frameworks. The rod-like hierarchical Sn/SnOx@C nanostructures are made of a great number of carbon-wrapped primary Sn/SnOx nanospheres of 100-200 nm in diameter. The as-prepared hierarchical Sn/SnOx@C nanocomposite manifests a high initial reversible capacity of 1177 mAh g-1 and remains 1001 mAh g-1 after 240 cycles at a current density of 200 mA g-1. It delivers outstanding high-rate performance with a reversible capacity of 823 mAh g-1 even at a high current density of 1000 mA g-1. The enhanced electrochemical performances of the Sn/SnOx@C electrode are mainly attributed to the synergistic effect of the unique hierarchical micro/nanostructures and the protective carbon layer.

  9. Hierarchical electrode architectures for electrical energy storage & conversion.

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, Kevin Robert; Missert, Nancy A.; Shelnutt, John Allen; van Swol, Frank B.

    2012-01-01

    The integration and stability of electrocatalytic nanostructures, which represent one level of porosity in a hierarchical structural scheme when combined with a three-dimensional support scaffold, has been studied using a combination of synthetic processes, characterization techniques, and computational methods. Dendritic platinum nanostructures have been covalently linked to common electrode surfaces using a newly developed chemical route; a chemical route equally applicable to a range of metals, oxides, and semiconductive materials. Characterization of the resulting bound nanostructure system confirms successful binding, while electrochemistry and microscopy demonstrate the viability of these electroactive particles. Scanning tunneling microscopy has been used to image and validate the short-term stability of several electrode-bound platinum dendritic sheet structures toward Oswald ripening. Kinetic Monte Carlo methods have been applied to develop an understanding of the stability of the basic nano-scale porous platinum sheets as they transform from an initial dendrite to hole containing sheets. Alternate synthetic strategies were pursued to grow dendritic platinum structures directly onto subunits (graphitic particles) of the electrode scaffold. A two-step photocatalytic seeding process proved successful at generating desirable nano-scale porous structures. Growth in-place is an alternate strategy to the covalent linking of the electrocatalytic nanostructures.

  10. Optimizing the Use of Storage Systems Provided by Cloud Computing Environments

    Science.gov (United States)

    Gallagher, J. H.; Potter, N.; Byrne, D. A.; Ogata, J.; Relph, J.

    2013-12-01

    Cloud computing systems present a set of features that include familiar computing resources (albeit augmented to support dynamic scaling of processing power) bundled with a mix of conventional and unconventional storage systems. The linux base on which many Cloud environments (e.g., Amazon) are based make it tempting to assume that any Unix software will run efficiently in this environment efficiently without change. OPeNDAP and NODC collaborated on a short project to explore how the S3 and Glacier storage systems provided by the Amazon Cloud Computing infrastructure could be used with a data server developed primarily to access data stored in a traditional Unix file system. Our work used the Amazon cloud system, but we strived for designs that could be adapted easily to other systems like OpenStack. Lastly, we evaluated different architectures from a computer security perspective. We found that there are considerable issues associated with treating S3 as if it is a traditional file system, even though doing so is conceptually simple. These issues include performance penalties because using a software tool that emulates a traditional file system to store data in S3 performs poorly when compared to a storing data directly in S3. We also found there are important benefits beyond performance to ensuring that data written to S3 can directly accessed without relying on a specific software tool. To provide a hierarchical organization to the data stored in S3, we wrote 'catalog' files, using XML. These catalog files map discrete files to S3 access keys. Like a traditional file system's directories, the catalogs can also contain references to other catalogs, providing a simple but effective hierarchy overlaid on top of S3's flat storage space. An added benefit to these catalogs is that they can be viewed in a web browser; our storage scheme provides both efficient access for the data server and access via a web browser. We also looked at the Glacier storage system and

  11. Optimization of Hierarchically Scheduled Heterogeneous Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Traian; Pop, Paul; Eles, Petru

    2005-01-01

    We present an approach to the analysis and optimization of heterogeneous distributed embedded systems. The systems are heterogeneous not only in terms of hardware components, but also in terms of communication protocols and scheduling policies. When several scheduling policies share a resource......, they are organized in a hierarchy. In this paper, we address design problems that are characteristic to such hierarchically scheduled systems: assignment of scheduling policies to tasks, mapping of tasks to hardware components, and the scheduling of the activities. We present algorithms for solving these problems....... Our heuristics are able to find schedulable implementations under limited resources, achieving an efficient utilization of the system. The developed algorithms are evaluated using extensive experiments and a real-life example....

  12. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  13. Generic Formal Framework for Compositional Analysis of Hierarchical Scheduling Systems

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; Hyun Kim, Jin; Thi Xuan Phan, Linh

    We present a compositional framework for the specification and analysis of hierarchical scheduling systems (HSS). Firstly we provide a generic formal model, which can be used to describe any type of scheduling system. The concept of Job automata is introduced in order to model job instantiation...

  14. Management issues for high performance storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Louis, S. [Lawrence Livermore National Lab., CA (United States); Burris, R. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Managing distributed high-performance storage systems is complex and, although sharing common ground with traditional network and systems management, presents unique storage-related issues. Integration technologies and frameworks exist to help manage distributed network and system environments. Industry-driven consortia provide open forums where vendors and users cooperate to leverage solutions. But these new approaches to open management fall short addressing the needs of scalable, distributed storage. We discuss the motivation and requirements for storage system management (SSM) capabilities and describe how SSM manages distributed servers and storage resource objects in the High Performance Storage System (HPSS), a new storage facility for data-intensive applications and large-scale computing. Modem storage systems, such as HPSS, require many SSM capabilities, including server and resource configuration control, performance monitoring, quality of service, flexible policies, file migration, file repacking, accounting, and quotas. We present results of initial HPSS SSM development including design decisions and implementation trade-offs. We conclude with plans for follow-on work and provide storage-related recommendations for vendors and standards groups seeking enterprise-wide management solutions.

  15. Hierarchical unilamellar vesicles of controlled compositional heterogeneity.

    Directory of Open Access Journals (Sweden)

    Maik Hadorn

    Full Text Available Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.

  16. An hierarchical approach to performance evaluation of expert systems

    Science.gov (United States)

    Dominick, Wayne D. (Editor); Kavi, Srinu

    1985-01-01

    The number and size of expert systems is growing rapidly. Formal evaluation of these systems - which is not performed for many systems - increases the acceptability by the user community and hence their success. Hierarchical evaluation that had been conducted for computer systems is applied for expert system performance evaluation. Expert systems are also evaluated by treating them as software systems (or programs). This paper reports many of the basic concepts and ideas in the Performance Evaluation of Expert Systems Study being conducted at the University of Southwestern Louisiana.

  17. Hierarchical fuzzy control of low-energy building systems

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhen; Dexter, Arthur [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)

    2010-04-15

    A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profile can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)

  18. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    Full Text Available To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation, which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network--the optimal number of levels and modular partition at each level--with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural networks, and rich multilevel organizations in systems with highly separated regions, such as road networks.

  19. Storage system architectures and their characteristics

    Science.gov (United States)

    Sarandrea, Bryan M.

    1993-01-01

    Not all users storage requirements call for 20 MBS data transfer rates, multi-tier file or data migration schemes, or even automated retrieval of data. The number of available storage solutions reflects the broad range of user requirements. It is foolish to think that any one solution can address the complete range of requirements. For users with simple off-line storage requirements, the cost and complexity of high end solutions would provide no advantage over a more simple solution. The correct answer is to match the requirements of a particular storage need to the various attributes of the available solutions. The goal of this paper is to introduce basic concepts of archiving and storage management in combination with the most common architectures and to provide some insight into how these concepts and architectures address various storage problems. The intent is to provide potential consumers of storage technology with a framework within which to begin the hunt for a solution which meets their particular needs. This paper is not intended to be an exhaustive study or to address all possible solutions or new technologies, but is intended to be a more practical treatment of todays storage system alternatives. Since most commercial storage systems today are built on Open Systems concepts, the majority of these solutions are hosted on the UNIX operating system. For this reason, some of the architectural issues discussed focus around specific UNIX architectural concepts. However, most of the architectures are operating system independent and the conclusions are applicable to such architectures on any operating system.

  20. Expert hierarchical selection of oil and gas distribution systems

    International Nuclear Information System (INIS)

    Frankel, E.G.

    1991-01-01

    Selection and design of oil and gas distribution systems involves a large number of decision makers and interest groups, as well as many alternative technical, financial, network, operating, management and regulatory options. Their objectives and measures of performance are different. Decision models can be effectively represented by hierarchical structures. A simple deterministic analytic hierarchy process is presented with application to oil and gas distribution systems

  1. Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems

    Science.gov (United States)

    Zúñiga-Galindo, W. A.

    2018-06-01

    We initiate the study of non-Archimedean reaction-ultradiffusion equations and their connections with models of complex hierarchic systems. From a mathematical perspective, the equations studied here are the p-adic counterpart of the integro-differential models for phase separation introduced by Bates and Chmaj. Our equations are also generalizations of the ultradiffusion equations on trees studied in the 1980s by Ogielski, Stein, Bachas, Huberman, among others, and also generalizations of the master equations of the Avetisov et al models, which describe certain complex hierarchic systems. From a physical perspective, our equations are gradient flows of non-Archimedean free energy functionals and their solutions describe the macroscopic density profile of a bistable material whose space of states has an ultrametric structure. Some of our results are p-adic analogs of some well-known results in the Archimedean setting, however, the mechanism of diffusion is completely different due to the fact that it occurs in an ultrametric space.

  2. Technology for national asset storage systems

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard

    1993-01-01

    An industry-led collaborative project, called the National Storage Laboratory, was organized to investigate technology for storage systems that will be the future repositories for our national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and the provider of applications. The expected result is an evaluation of a high performance storage architecture assembled from commercially available hardware and software, with some software enhancements to meet the project's goals. It is anticipated that the integrated testbed system will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte class files at gigabit-per-second data rates. The National Storage Laboratory was officially launched on 27 May 1992.

  3. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  4. A hierarchical SVG image abstraction layer for medical imaging

    Science.gov (United States)

    Kim, Edward; Huang, Xiaolei; Tan, Gang; Long, L. Rodney; Antani, Sameer

    2010-03-01

    As medical imaging rapidly expands, there is an increasing need to structure and organize image data for efficient analysis, storage and retrieval. In response, a large fraction of research in the areas of content-based image retrieval (CBIR) and picture archiving and communication systems (PACS) has focused on structuring information to bridge the "semantic gap", a disparity between machine and human image understanding. An additional consideration in medical images is the organization and integration of clinical diagnostic information. As a step towards bridging the semantic gap, we design and implement a hierarchical image abstraction layer using an XML based language, Scalable Vector Graphics (SVG). Our method encodes features from the raw image and clinical information into an extensible "layer" that can be stored in a SVG document and efficiently searched. Any feature extracted from the raw image including, color, texture, orientation, size, neighbor information, etc., can be combined in our abstraction with high level descriptions or classifications. And our representation can natively characterize an image in a hierarchical tree structure to support multiple levels of segmentation. Furthermore, being a world wide web consortium (W3C) standard, SVG is able to be displayed by most web browsers, interacted with by ECMAScript (standardized scripting language, e.g. JavaScript, JScript), and indexed and retrieved by XML databases and XQuery. Using these open source technologies enables straightforward integration into existing systems. From our results, we show that the flexibility and extensibility of our abstraction facilitates effective storage and retrieval of medical images.

  5. Scalable Hierarchical Algorithms for stochastic PDEs and UQ

    KAUST Repository

    Litvinenko, Alexander

    2015-01-07

    H-matrices and Fast Multipole (FMM) are powerful methods to approximate linear operators coming from partial differential and integral equations as well as speed up computational cost from quadratic or cubic to log-linear (O(n log n)), where n number of degrees of freedom in the discretization. The storage is reduced to the log-linear as well. This hierarchical structure is a good starting point for parallel algorithms. Parallelization on shared and distributed memory systems was pioneered by Kriemann [1,2]. Since 2005, the area of parallel architectures and software is developing very fast. Progress in GPUs and Many-Core Systems (e.g. XeonPhi with 64 cores) motivated us to extend work started in [1,2,7,8].

  6. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  7. High-Performance Hydrogen Storage Nanoparticles Inside Hierarchical Porous Carbon Nanofibers with Stable Cycling.

    Science.gov (United States)

    Xia, Guanglin; Chen, Xiaowei; Zhao, Yan; Li, Xingguo; Guo, Zaiping; Jensen, Craig M; Gu, Qinfen; Yu, Xuebin

    2017-05-10

    An effective route based on space-confined chemical reaction to synthesize uniform Li 2 Mg(NH) 2 nanoparticles is reported. The hierarchical pores inside the one-dimensional carbon nanofibers (CNFs), induced by the creation of well-dispersed Li 3 N, serve as intelligent nanoreactors for the reaction of Li 3 N with Mg-containing precursors, resulting in the formation of uniformly discrete Li 2 Mg(NH) 2 nanoparticles. The nanostructured Li 2 Mg(NH) 2 particles inside the CNFs are capable of complete hydrogenation and dehydrogenation at a temperature as low as 105 °C with the suppression of ammonia release. Furthermore, by virtue of the nanosize effects and space-confinement by the porous carbon scaffold, no degradation was observed after 50 de/rehydrogenation cycles at a temperature as low as 130 °C for the as-prepared Li 2 Mg(NH) 2 nanoparticles, indicating excellent reversibility. Moreover, the theoretical calculations demonstrate that the reduction in particle size could significantly enhance the H 2 sorption of Li 2 Mg(NH) 2 by decreasing the relative activation energy barrier, which agrees well with our experimental results. This method could represent an effective, general strategy for synthesizing nanoparticles of complex hydrides with stable reversibility and excellent hydrogen storage performance.

  8. Stress generation and hierarchical fracturing in reactive systems

    Science.gov (United States)

    Jamtveit, B.; Iyer, K.; Royne, A.; Malthe-Sorenssen, A.; Mathiesen, J.; Feder, J.

    2007-12-01

    Hierarchical fracture patterns are the result of a slowly driven fracturing process that successively divides the rocks into smaller domains. In quasi-2D systems, such fracture patterns are characterized by four sided domains, and T-junctions where new fractures stop at right angles to pre-existing fractures. We describe fracturing of mm to dm thick enstatite layers in a dunite matrix from the Leka ophiolite complex in Norway. The fracturing process is driven by expansion of the dunite matrix during serpentinization. The cumulative distributions of fracture lengths show a scaling behavior that lies between a log - normal and power law (fractal) distribution. This is consistent with a simple fragmentation model in which domains are divided according to a 'top hat' distribution of new fracture positions within unfractured domains. Reaction-assisted hierarchical fracturing is also likely to be responsible for other (3-D) structures commonly observed in serpentinized ultramafic rocks, including the mesh-textures observed in individual olivine grains, and the high abundance of rectangular domains at a wide range of scales. Spectacular examples of 3-D hierarchical fracture patterns also form during the weathering of basaltic intrusions (dolerites). Incipient chemical weathering of dolerites in the Karoo Basin in South Africa occurs around water- filled fractures, originally produced by thermal contraction or by externally imposed stresses. This chemical weathering causes local expansion of the rock matrix and generates elastic stresses. On a mm to cm scale, these stresses lead to mechanical layer-by-layer spalling, producing the characteristic spheroidal weathering patterns. However, our field observations and computer simulations demonstrate that in confined environments, the spalling process alone is unable to relieve the elastic stresses. In such cases, chemical weathering drives a much larger scale hierarchical fracturing process in which fresh dolerite undergoes a

  9. Protocol-transparent resource sharing in hierarchically scheduled real-time systems

    NARCIS (Netherlands)

    Heuvel, van den M.M.H.P.; Bril, R.J.; Lukkien, J.J.

    2010-01-01

    Hierarchical scheduling frameworks (HSFs) provide means for composing complex real-time systems from well-defined, independently analyzed subsystems. To support resource sharing within two-level HSFs, three synchronization protocols based on the stack resource policy (SRP) have recently been

  10. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  11. Grand Challenges facing Storage Systems

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    In this talk, we will discuss the future of storage systems. In particular, we will focus on several big challenges which we are facing in storage, such as being able to build, manage and backup really massive storage systems, being able to find information of interest, being able to do long-term archival of data, and so on. We also present ideas and research being done to address these challenges, and provide a perspective on how we expect these challenges to be resolved as we go forward.

  12. System for secure storage

    NARCIS (Netherlands)

    2005-01-01

    A system (100) comprising read means (112) for reading content data and control logic data from a storage medium (101), the control logic data being uniquely linked to the storage medium (101), processing means (113-117), for processing the content data and feeding the processed content data to an

  13. Online mass storage system detailed requirements document

    Science.gov (United States)

    1976-01-01

    The requirements for an online high density magnetic tape data storage system that can be implemented in a multipurpose, multihost environment is set forth. The objective of the mass storage system is to provide a facility for the compact storage of large quantities of data and to make this data accessible to computer systems with minimum operator handling. The results of a market survey and analysis of candidate vendor who presently market high density tape data storage systems are included.

  14. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2012-06-01

    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  15. Hierarchical energy management mechanisms for an electricity market with microgrids

    Directory of Open Access Journals (Sweden)

    Hong-Tzer Yang

    2014-08-01

    Full Text Available This study addresses a micro-grid electricity market (MGEM with day-ahead (DA and real-time market mechanisms integrated. The bidding mechanisms for the market are described in this study, considering the generation cost of different distributed energy resources (DERs, like distributed generator, energy storage system and demand response. Including load and renewable generation forecasting systems and a fuzzy decision supporting system, a hierarchical micro-grid energy management system (MG-EMS is then proposed to ensure the benefits of involved micro-grid central controller, DER owners and customers. To verify the feasibility of the proposed system, the whole-year historical pricing and load data for New England independent system operator are employed. The numerical results show that the proposed MG-EMS is promising and effective for the operations of MGEM.

  16. Risk Assessment for Mobile Systems Through a Multilayered Hierarchical Bayesian Network.

    Science.gov (United States)

    Li, Shancang; Tryfonas, Theo; Russell, Gordon; Andriotis, Panagiotis

    2016-08-01

    Mobile systems are facing a number of application vulnerabilities that can be combined together and utilized to penetrate systems with devastating impact. When assessing the overall security of a mobile system, it is important to assess the security risks posed by each mobile applications (apps), thus gaining a stronger understanding of any vulnerabilities present. This paper aims at developing a three-layer framework that assesses the potential risks which apps introduce within the Android mobile systems. A Bayesian risk graphical model is proposed to evaluate risk propagation in a layered risk architecture. By integrating static analysis, dynamic analysis, and behavior analysis in a hierarchical framework, the risks and their propagation through each layer are well modeled by the Bayesian risk graph, which can quantitatively analyze risks faced to both apps and mobile systems. The proposed hierarchical Bayesian risk graph model offers a novel way to investigate the security risks in mobile environment and enables users and administrators to evaluate the potential risks. This strategy allows to strengthen both app security as well as the security of the entire system.

  17. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  18. Energy Storage and Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2016-12-01

    Full Text Available It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should be disregarded but that it will be needed for other purposes in the future.

  19. 3D hierarchical spatial representation and memory of multimodal sensory data

    Science.gov (United States)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine

  20. Energy storage systems: a strategic road-book

    International Nuclear Information System (INIS)

    2011-01-01

    Dealing with the development and deployment of thermal and electric energy storage systems, this report first identifies four main challenges: to take environmental challenges into account during all the storage system life (design, production, use, end of life), to integrate the issue of economic valorization of the device into its design phase, to promote the development of standards, to make an institutional and legal framework emerge. It defines the geographical scope and the time horizon for the development of these systems. It evokes research and development programs in the United States, Japan, China, Germany and the European Union. These programs concern: mobile electric storage systems, electric storage systems in support of energy networks and renewable energies, heat storage systems. The authors outline that business models are now favourable to the deployment of storage systems. They discuss some key technological and economical parameters. They propose some prospective visions by 2050 with different possible orientations for this sector. They also identify and discuss the possible technological and socio-economical obstacles, research priorities, and stress the importance of implementing experimental platforms and research demonstrators

  1. Maximizing the energy storage performance of phase change thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Amin, N.A.M.; Bruno, F.; Belusko, M. [South Australia Univ., Mawson Lakes, South Australia (Australia). Inst. for Sustainable Systems and Technologies

    2009-07-01

    The demand for electricity in South Australia is highly influenced by the need for refrigeration and air-conditioning. An extensive literature review has been conducted on the use of phase change materials (PCMs) in thermal storage systems. PCMs use latent heat at the solid-liquid phase transition point to store thermal energy. They are considered to be useful as a thermal energy storage (TES) material because they can provide much higher energy storage densities compared to conventional sensible thermal storage materials. This paper reviewed the main disadvantages of using PCMs for energy storage, such as low heat transfer, super cooling and system design issues. Other issues with PCMs include incongruence and corrosion of heat exchanger surfaces. The authors suggested that in order to address these problems, future research should focus on maximizing heat transfer by optimizing the configuration of the encapsulation through a parametric analysis using a PCM numerical model. The effective conductivity in encapsulated PCMs in a latent heat thermal energy storage (LHTES) system can also be increased by using conductors in the encapsulation that have high thermal conductivity. 47 refs., 1 tab., 1 fig.

  2. Optimal routing in an automated storage/retrieval system with dedicated storage

    NARCIS (Netherlands)

    Berg, van den J.P.; Gademann, A.J.R.M.

    1999-01-01

    We address the sequencing of requests in an automated storage/retrieval system with dedicated storage. We consider the block sequencing approach, where a set of storage and retrieval requests is given beforehand and no new requests come in during operation. The objective for this static problem is

  3. Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application

    International Nuclear Information System (INIS)

    Zhao, Pan; Dai, Yiping; Wang, Jiangfeng

    2014-01-01

    Electricity generated from renewable wind sources is highly erratic due to the intermittent nature of wind. This uncertainty of wind power can lead to challenges regarding power system operation and dispatch. Energy storage system in conjunction with wind energy system can offset these effects, making the wind power controllable. Moreover, the power spectrum of wind power exhibits that the fluctuations of wind power include various components with different frequencies and amplitudes. Thus, the hybrid energy storage system is more suitable for smoothing out the wind power fluctuations effectively rather than the independent energy storage system. A hybrid energy storage system consisting of adiabatic compressed air energy storage (A-CAES) system and flywheel energy storage system (FESS) is proposed for wind energy application. The design of the proposed system is laid out firstly. The A-CAES system operates in variable cavern pressure, constant turbine inlet pressure mode, whereas the FESS is controlled by constant power strategy. Then, the off-design analysis of the proposed system is carried out. Meanwhile, a parametric analysis is also performed to investigate the effects of several parameters on the system performance, including the ambient conditions, inlet temperature of compressor, storage cavern temperature, maximum and minimum pressures of storage cavern. - Highlights: • A wind-hybrid energy storage system composed of A-CAES and FESS is proposed. • The design of the proposed hybrid energy storage system is laid out. • The off-design analysis of the proposed system is carried out. • A parametric analysis is conducted to examine the system performance

  4. Hierarchical process memory: memory as an integral component of information processing

    Science.gov (United States)

    Hasson, Uri; Chen, Janice; Honey, Christopher J.

    2015-01-01

    Models of working memory commonly focus on how information is encoded into and retrieved from storage at specific moments. However, in the majority of real-life processes, past information is used continuously to process incoming information across multiple timescales. Considering single unit, electrocorticography, and functional imaging data, we argue that (i) virtually all cortical circuits can accumulate information over time, and (ii) the timescales of accumulation vary hierarchically, from early sensory areas with short processing timescales (tens to hundreds of milliseconds) to higher-order areas with long processing timescales (many seconds to minutes). In this hierarchical systems perspective, memory is not restricted to a few localized stores, but is intrinsic to information processing that unfolds throughout the brain on multiple timescales. “The present contains nothing more than the past, and what is found in the effect was already in the cause.”Henri L Bergson PMID:25980649

  5. A Note on Interfacing Object Warehouses and Mass Storage Systems for Data Mining Applications

    Science.gov (United States)

    Grossman, Robert L.; Northcutt, Dave

    1996-01-01

    Data mining is the automatic discovery of patterns, associations, and anomalies in data sets. Data mining requires numerically and statistically intensive queries. Our assumption is that data mining requires a specialized data management infrastructure to support the aforementioned intensive queries, but because of the sizes of data involved, this infrastructure is layered over a hierarchical storage system. In this paper, we discuss the architecture of a system which is layered for modularity, but exploits specialized lightweight services to maintain efficiency. Rather than use a full functioned database for example, we use light weight object services specialized for data mining. We propose using information repositories between layers so that components on either side of the layer can access information in the repositories to assist in making decisions about data layout, the caching and migration of data, the scheduling of queries, and related matters.

  6. Likelihood Approximation With Hierarchical Matrices For Large Spatial Datasets

    KAUST Repository

    Litvinenko, Alexander; Sun, Ying; Genton, Marc G.; Keyes, David E.

    2017-01-01

    algebra, we approximate the discretized covariance function in the hierarchical (H-) matrix format. The H-matrix format has a log-linear computational cost and storage O(kn log n), where the rank k is a small integer and n is the number of locations. The H

  7. Scalable Hierarchical Algorithms for stochastic PDEs and Uncertainty Quantification

    KAUST Repository

    Litvinenko, Alexander

    2015-01-05

    H-matrices and Fast Multipole (FMM) are powerful methods to approximate linear operators coming from partial differential and integral equations as well as speed up computational cost from quadratic or cubic to log-linear (O(n log n)), where n number of degrees of freedom in the discretization. The storage is reduced to the log-linear as well. This hierarchical structure is a good starting point for parallel algorithms. Parallelization on shared and distributed memory systems was pioneered by R. Kriemann, 2005. Since 2005, the area of parallel architectures and software is developing very fast. Progress in GPUs and Many-Core Systems (e.g. XeonPhi with 64 cores) motivated us to extend work started in [1,2,7,8].

  8. Building a mass storage system for physics applications

    International Nuclear Information System (INIS)

    Holmes, H.; Loken, S.

    1991-03-01

    The IEEE Mass Storage Reference Model and forthcoming standards based on it provide a standardized architecture to facilitate designing and building mass storage systems, and standard interfaces so that hardware and software from different vendors can interoperate in providing mass storage capabilities. A key concept of this architecture is the separation of control and data flows. This separation allows a smaller machine to provide control functions, while the data can flow directly between high-performance channels. Another key concept is the layering of the file system and the storage functions. This layering allows the designers of the mass storage system to focus on storage functions, which can support a variety of file systems, such as the Network File System, the Andrew File System, and others. The mass storage system provides location-independent file naming, essential if files are to be migrated to different storage devices without requiring changes in application programs. Physics data analysis applications are particularly challenging for mass storage systems because they stream vast amounts of data through analysis applications. Special mechanisms are required, to handle the high data rates and to avoid upsetting the caching mechanisms commonly used for smaller, repetitive-use files. High data rates are facilitated by direct channel connections, where, for example, a dual-ported drive will be positioned by the mass storage controller on one channel, then the data will flow on a second channel directly into the user machine, or directly to a high capacity network, greatly reducing the I/O capacity required in the mass storage control computer. Intelligent storage allocation can be used to bypass the cache devices entirely when large files are being moved

  9. A Hierarchical Security Architecture for Cyber-Physical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Quanyan Zhu; Tamer Basar

    2011-08-01

    Security of control systems is becoming a pivotal concern in critical national infrastructures such as the power grid and nuclear plants. In this paper, we adopt a hierarchical viewpoint to these security issues, addressing security concerns at each level and emphasizing a holistic cross-layer philosophy for developing security solutions. We propose a bottom-up framework that establishes a model from the physical and control levels to the supervisory level, incorporating concerns from network and communication levels. We show that the game-theoretical approach can yield cross-layer security strategy solutions to the cyber-physical systems.

  10. Status of electrical energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents an overview of the status of electrical storage systems in the light of the growing use of renewable energy sources and distributed generation (DG) in meeting emission targets and in the interest of the UK electricity supply industry. Examples of storage technologies, their applications and current status are examined along with technical issues and possible activities by UK industries. Details are given of development opportunities in the fields of flow cells, advanced batteries - lithium batteries, high temperature batteries, flywheels, and capacitors. Power conversion systems and system integration, the all-electric ship project, and compressed air energy storage are discussed. Opportunities for development and deployment, small scale systems, demonstration programmes, and research and development issues are considered. An outline of the US Department of Energy Storage programme is given in the Annex to the report.

  11. Hierarchical remote data possession checking method based on massive cloud files

    Directory of Open Access Journals (Sweden)

    Ma Haifeng

    2017-06-01

    Full Text Available Cloud storage service enables users to migrate their data and applications to the cloud, which saves the local data maintenance and brings great convenience to the users. But in cloud storage, the storage servers may not be fully trustworthy. How to verify the integrity of cloud data with lower overhead for users has become an increasingly concerned problem. Many remote data integrity protection methods have been proposed, but these methods authenticated cloud files one by one when verifying multiple files. Therefore, the computation and communication overhead are still high. Aiming at this problem, a hierarchical remote data possession checking (hierarchical-remote data possession checking (H-RDPC method is proposed, which can provide efficient and secure remote data integrity protection and can support dynamic data operations. This paper gives the algorithm descriptions, security, and false negative rate analysis of H-RDPC. The security analysis and experimental performance evaluation results show that the proposed H-RDPC is efficient and reliable in verifying massive cloud files, and it has 32–81% improvement in performance compared with RDPC.

  12. Development of vitrified waste storage system

    International Nuclear Information System (INIS)

    Namiki, S.; Tani, Y.

    1993-01-01

    The authors have developed the radioactive waste vitrification technology and the vitrified waste storage technology. Regarding the vitrified waste storage system development, the authors have completed the design of two types of storage systems. One is a forced convection air cooling system, and the other is a natural convection air cooling system. They have carried out experiments and heat transfer analysis, seismic analysis, vitrified waste dropping and radiation shielding, etc. In this paper, the following three subjects, are discussed: the cooling air flow experiment, the wind effect experiment on the cooling air flow pattern, using a wind tunnel apparatus and the structural integrity evaluation on the dropping vitrified waste

  13. Natural sisal fibers derived hierarchical porous activated carbon as capacitive material in lithium ion capacitor

    Science.gov (United States)

    Yang, Zhewei; Guo, Huajun; Li, Xinhai; Wang, Zhixing; Yan, Zhiliang; Wang, Yansen

    2016-10-01

    Lithium-ion capacitor (LIC) is a novel advanced electrochemical energy storage (EES) system bridging gap between lithium ion battery (LIB) and electrochemical capacitor (ECC). In this work, we report that sisal fiber activated carbon (SFAC) was synthesized by hydrothermal treatment followed by KOH activation and served as capacitive material in LIC for the first time. Different particle structure, morphology, specific surface area and heteroatoms affected the electrochemical performance of as-prepared materials and corresponding LICs. When the mass ratio of KOH to char precursor was 2, hierarchical porous structured SFAC-2 was prepared and exhibited moderate specific capacitance (103 F g-1 at 0.1 A g-1), superior rate capability and cyclic stability (88% capacity retention after 5000 cycles at 1 A g-1). The corresponding assembled LIC (LIC-SC2) with optimal comprehensive electrochemical performance, displayed the energy density of 83 Wh kg-1, the power density of 5718 W kg-1 and superior cyclic stability (92% energy density retention after 1000 cycles at 0.5 A g-1). It is worthwhile that the source for activated carbon is a natural and renewable one and the synthesis method is eco-friendly, which facilitate that hierarchical porous activated carbon has potential applications in the field of LIC and other energy storage systems.

  14. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  15. An Empirical Model for Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scott, Paul [TransPower, Poway, CA (United States)

    2016-03-17

    Improved models of energy storage systems are needed to enable the electric grid’s adaptation to increasing penetration of renewables. This paper develops a generic empirical model of energy storage system performance agnostic of type, chemistry, design or scale. Parameters for this model are calculated using test procedures adapted from the US DOE Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage. We then assess the accuracy of this model for predicting the performance of the TransPower GridSaver – a 1 MW rated lithium-ion battery system that underwent laboratory experimentation and analysis. The developed model predicts a range of energy storage system performance based on the uncertainty of estimated model parameters. Finally, this model can be used to better understand the integration and coordination of energy storage on the electric grid.

  16. Extending an open-source real-time operating system with hierarchical scheduling

    NARCIS (Netherlands)

    Holenderski, M.J.; Cools, W.A.; Bril, R.J.; Lukkien, J.J.

    2010-01-01

    Hierarchical scheduling frameworks (HSFs) have been devised to support the integration of independently developed and analyzed subsystems. This paper presents an efficient, modular and extendible design for enhancing a real-time operating system with periodic tasks, two-level fixed-priority HSF

  17. A Hierarchical Algorithm for Integrated Scheduling and Control With Applications to Power Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Dinesen, Peter Juhler; Jørgensen, John Bagterp

    2016-01-01

    The contribution of this paper is a hierarchical algorithm for integrated scheduling and control via model predictive control of hybrid systems. The controlled system is a linear system composed of continuous control, state, and output variables. Binary variables occur as scheduling decisions in ...

  18. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  19. Biodigester as an energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Borges Neto, M.R.; Lopes, L.C.N. [Federal Institute of Education, Science and Technology of Sertao Pernambucano (IFSertao-PE), Petrolina, PE (Brazil)], Emails: rangel@cefetpet.br; Pinheiro Neto, J.S.; Carvalho, P.C.M. [Federal University of Ceara (UFC), Fortaleza, CE (Brazil). Dept. of Electrical Engineering], Emails: neto@tbmtextil.com.br, carvalho@dee.ufc.br; Silveira, G.C.; Moreira, A.P.; Borges, T.S.H. [Federal Institute of Education, Science and Technology of Ceara (IFCE), Fortaleza, CE (Brazil)], Emails: gcsilveira@cefet-ce.br, apmoreira@ifce.edu.br, thatyanys@yahoo.com.br

    2009-07-01

    Electricity supply for rural and remote areas is becoming an increasing priority to developing countries. The high initial cost of renewable energy based unities usually needs an energy storage system; due its operational and even replacement cost contributes to a higher final cost. The choice of energy storage systems depends on the sort and size of adopted power supply. This paper has a main goal to introduce a renewable energy based storage system weakly explored in Brazil: biogas from anaerobic digestion. It also brings a review of the main energy storage systems applied to electrical energy generation. As reference an experiment with an adapted Indian digester of 5 m{sup 3} that produced nearly 2m{sup 3} of biogas daily. The obtained biogas met the consumption of at least 4 typical Brazilian low income households with installed load of 500 W each and was enough to replace the use of 420 Ah lead-acid batteries. (author)

  20. Electrochemical energy storage systems for solar thermal applications

    Science.gov (United States)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  1. Functional annotation of hierarchical modularity.

    Directory of Open Access Journals (Sweden)

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  2. Tribology of magnetic storage systems

    Science.gov (United States)

    Bhushan, Bharat

    1992-01-01

    The construction and the materials used in different magnetic storage devices are defined. The theories of friction and adhesion, interface temperatures, wear, and solid-liquid lubrication relevant to magnetic storage systems are presented. Experimental data are presented wherever possible to support the relevant theories advanced.

  3. A distributed-memory hierarchical solver for general sparse linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chao [Stanford Univ., CA (United States). Inst. for Computational and Mathematical Engineering; Pouransari, Hadi [Stanford Univ., CA (United States). Dept. of Mechanical Engineering; Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Boman, Erik G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Darve, Eric [Stanford Univ., CA (United States). Inst. for Computational and Mathematical Engineering and Dept. of Mechanical Engineering

    2017-12-20

    We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by every processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.

  4. Optimal Investment Planning of Bulk Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Dina Khastieva

    2018-02-01

    Full Text Available Many countries have the ambition to increase the share of renewable sources in electricity generation. However, continuously varying renewable sources, such as wind power or solar energy, require that the power system can manage the variability and uncertainty of the power generation. One solution to increase flexibility of the system is to use various forms of energy storage, which can provide flexibility to the system at different time ranges and smooth the effect of variability of the renewable generation. In this paper, we investigate three questions connected to investment planning of energy storage systems. First, how the existing flexibility in the system will affect the need for energy storage investments. Second, how presence of energy storage will affect renewable generation expansion and affect electricity prices. Third, who should be responsible for energy storage investments planning. This paper proposes to assess these questions through two different mathematical models. The first model is designed for centralized investment planning and the second model deals with a decentralized investment approach where a single independent profit maximizing utility is responsible for energy storage investments. The models have been applied in various case studies with different generation mixes and flexibility levels. The results show that energy storage system is beneficial for power system operation. However, additional regulation should be considered to achieve optimal investment and allocation of energy storage.

  5. Hierarchical Oxide Nanostructures for High Performance Energy Storage

    Data.gov (United States)

    National Aeronautics and Space Administration — Energy storage is a major concern for space technology. Many functions on spacecraft and on the International Space Station run solely on electrical energy to power...

  6. Present states and views on vault storage systems

    International Nuclear Information System (INIS)

    Yoshimura, Eiji

    2003-01-01

    Storage capacity of spent nuclear fuel storage pools in nuclear power station is reaching to a condition near its limit, and under a condition inevitable on delay of the Pu-thermal utilization plan importance on interim storage of the spent nuclear fuels is further rising. In U.S.A., Germany, and so on, a condition incapable of presenting nuclear energy business itself without its intermediate storage is approaching, so in Japan it will also be a key to smoothly promote the nuclear energy business how the interim storage is used and operated. Under such condition, in Japan storage facilities using a system called by 'metal cask' are established at areas of nuclear power stations to begin their operations. As on the system expensive metal containers are used for storage in themselves, it has a demerit of its high cost. On the other hand, on foreign countries, a storing system called by concrete cask, horizontal silo, or vault is occupying its main stream. Here was introduced present states and future views on vault storage system. (G. K)

  7. Power and resistance within the hospital's hierarchical system: the experiences of chronically ill patients.

    Science.gov (United States)

    Griscti, Odette; Aston, Megan; Warner, Grace; Martin-Misener, Ruth; McLeod, Deborah

    2017-01-01

    To explore experiences of chronically ill patients and registered nurses when they negotiate patient care in hospital settings. Specifically, we explored how social and institutional discourses shape power relations during the negotiation process. The hospital system is embedded in a hierarchical structure where the voice of the healthcare provider as expert is often given more importance than the patient. This system has been criticised as being oppressive to patients who are perceived to be lower in the hierarchy. In this study, we illustrate how the hospital's hierarchical system is not always oppressing but can also create moments of empowerment for patients. A feminist poststructuralist approach informed by the teaching of Foucault was used to explore power relations between nurses and patients when negotiating patient care in hospital settings. Eight individuals who suffered from chronic illness shared their stories about how they negotiated their care with nurses in hospital settings. The interviews were tape-recorded. Discourse analysis was used to analyse the data. Patients recounted various experiences when their voices were not heard because the current hospital system privileged the healthcare provider experts' advice over the patients' voice. The hierarchical structure of hospital supported these dynamics by privileging nurses as gatekeepers of service, by excluding the patients' input in the nursing notes and through a process of self-regulation. However, patients in this study were not passive recipients of care and used their agency creatively to resist these discourses. Nurses need to be mindful of how the hospital's hierarchical system tends to place nurses in a position of power, and how their authoritative position may positively or adversely affect the negotiation of patient care. © 2016 John Wiley & Sons Ltd.

  8. Energy storage for electrical systems in the USA

    Directory of Open Access Journals (Sweden)

    Eugene Freeman

    2016-10-01

    Full Text Available Energy storage is becoming increasingly important as renewable generation sources such as Wind Turbine and Photo Voltaic Solar are added to the mix in electrical power generation and distribution systems. The paper discusses the basic drivers for energy storage and provides brief descriptions of the various energy storage technologies available. The information summarizes current technical tradeoffs with different storage approaches and identifies issues surrounding deployment of large scale energy storage systems.

  9. Improved SIRAP analysis for synchronization in hierarchical scheduled real-time systems

    NARCIS (Netherlands)

    Behnam, M.; Bril, R.J.; Nolte, T.

    2009-01-01

    We present our ongoing work on synchronization in hierarchical scheduled real-time systems, where tasks are scheduled using fixed-priority pre-emptive scheduling. In this paper, we show that the original local schedulability analysis of the synchronization protocol SIRAP [4] is very pessimistic when

  10. Storage Integration in Energy Systems: A New Perspective

    International Nuclear Information System (INIS)

    Faure-Schuyer, Aurelie

    2016-06-01

    Energy storage is partly an 'old story' and a new one. Energy storage is an essential stabilizing factor in existing electrical systems. Looking forward, energy storage is being considered as a key element of the transformation of energy systems, given the higher shares of renewable generation integrating the systems and demand-side management offered to end-customers. Today, the cost of electricity produced from battery storage is approaching parity with electricity bought from the grid. For this trend to gain strength and energy storage to be part of new business models, energy policies and regulatory frameworks need to be adapted. (author)

  11. Monitored Retrievable Storage System Requirements Document

    International Nuclear Information System (INIS)

    1994-03-01

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design

  12. Adaptive hierarchical multi-agent organizations

    NARCIS (Netherlands)

    Ghijsen, M.; Jansweijer, W.N.H.; Wielinga, B.J.; Babuška, R.; Groen, F.C.A.

    2010-01-01

    In this chapter, we discuss the design of adaptive hierarchical organizations for multi-agent systems (MAS). Hierarchical organizations have a number of advantages such as their ability to handle complex problems and their scalability to large organizations. By introducing adaptivity in the

  13. Hierarchical polypyrrole based composites for high performance asymmetric supercapacitors

    Science.gov (United States)

    Chen, Gao-Feng; Liu, Zhao-Qing; Lin, Jia-Ming; Li, Nan; Su, Yu-Zhi

    2015-06-01

    An advanced asymmetric supercapacitor with high energy density, exploiting hierarchical polypyrrole (PPy) based composites as both the anode [three dimensional (3D) chuzzle-like Ni@PPy@MnO2] and (3D cochleate-like Ni@MnO2@PPy) cathode, has been developed. The ultrathin PPy and flower-like MnO2 orderly coating on the high-conductivity 3D-Ni enhance charge storage while the unique 3D chuzzle-like and 3D cochleate-like structures provide storage chambers and fast ion transport pathways for benefiting the transport of electrolyte ions. The 3D cochleate-like Ni@MnO2@PPy possesses excellent pseudocapacitance with a relatively negative voltage window while preserved EDLC and free transmission channels conducive to hold the high power, providing an ideal cathode for the asymmetric supercapacitor. It is the first report of assembling hierarchical PPy based composites as both the anode and cathode for asymmetric supercapacitor, which exhibits wide operation voltage of 1.3-1.5 V with maximum energy and power densities of 59.8 Wh kg-1 and 7500 W kg-1.

  14. Advanced compressed hydrogen fuel storage systems

    International Nuclear Information System (INIS)

    Jeary, B.

    2000-01-01

    Dynetek was established in 1991 by a group of private investors, and since that time efforts have been focused on designing, improving, manufacturing and marketing advanced compressed fuel storage systems. The primary market for Dynetek fuel systems has been Natural Gas, however as the automotive industry investigates the possibility of using hydrogen as the fuel source solution in Alternative Energy Vehicles, there is a growing demand for hydrogen storage on -board. Dynetek is striving to meet the needs of the industry, by working towards developing a fuel storage system that will be efficient, economical, lightweight and eventually capable of storing enough hydrogen to match the driving range of the current gasoline fueled vehicles

  15. Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe3O4 nano-flower architecture with high lithium storage capacity and excellent rate capability

    Science.gov (United States)

    Ma, Yating; Huang, Jian; Lin, Liang; Xie, Qingshui; Yan, Mengyu; Qu, Baihua; Wang, Laisen; Mai, Liqiang; Peng, Dong-Liang

    2017-10-01

    Graphene-encapsulated hierarchical metal oxides architectures can efficiently combine the merits of graphene and hierarchical metal oxides, which are deemed as the potential anode material candidates for the next-generation lithium-ion batteries due to the synergistic effect between them. Herein, a cationic surfactant induced self-assembly method is developed to construct 3D Fe3O4@reduction graphene oxide (H-Fe3O4@RGO) hybrid architecture in which hierarchical Fe3O4 nano-flowers (H-Fe3O4) are intimately encapsulated by 3D graphene network. Each H-Fe3O4 particle is constituted of rod-shaped skeletons surrounded by petal-like nano-flakes that are made up of enormous nanoparticles. When tested as the anode material in lithium-ion batteries, a high reversible capacity of 2270 mA h g-1 after 460 cycles is achieved under a current density of 0.5 A g-1. More impressively, even tested at a large current density of 10 A g-1, a decent reversible capacity of 490 mA h g-1 can be retained, which is still higher than the theoretical capacity of traditional graphite anode, demonstrating the remarkable lithium storage properties. The reasons for the excellent electrochemical performance of H-Fe3O4@RGO electrode have been discussed in detail.

  16. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.

    Science.gov (United States)

    Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C P; Umar, Ahmad

    2014-10-21

    Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g(-1) at a discharge current density of 0.5 A g(-1) was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.

  17. A Multi-layer, Hierarchical Information Management System for the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ning; Du, Pengwei; Paulson, Patrick R.; Greitzer, Frank L.; Guo, Xinxin; Hadley, Mark D.

    2011-10-10

    This paper presents the modeling approach, methodologies, and initial results of setting up a multi-layer, hierarchical information management system (IMS) for the smart grid. The IMS allows its users to analyze the data collected by multiple control and communication networks to characterize the states of the smart grid. Abnormal, corrupted, or erroneous measurement data and outliers are detected and analyzed to identify whether they are caused by random equipment failures, unintentional human errors, or deliberate tempering attempts. Data collected from different information networks are crosschecked for data integrity based on redundancy, dependency, correlation, or cross-correlations, which reveal the interdependency between data sets. A hierarchically structured reasoning mechanism is used to rank possible causes of an event to aid the system operators to proactively respond or provide mitigation recommendations to remove or neutralize the threats. The model provides satisfactory performance on identifying the cause of an event and significantly reduces the need of processing myriads of data collected.

  18. Key-value Storage Systems (and Beyond with Python

    Directory of Open Access Journals (Sweden)

    2010-09-01

    Full Text Available Web application developers often use RDBMS systems such as MySql or PostgreSql but there are many other types of databases out there. Key-value storage, schema and schema-less document storage, and column-oriented DBMS systems abound. These kind of database systems are becoming more popular when developing scalable web applications but many developers are unsure how to integrate them into their projects. This talk will focus on the key-value class of data storage systems, weigh the strengths and drawbacks of each and discuss typical use cases for key value storage.

  19. Design of double containment canister cask storage system

    International Nuclear Information System (INIS)

    Asami, M.; Matsumoto, T.; Oohama, T.; Kuriyama, K.; Kawakami, K.

    2004-01-01

    Spent fuels discharged from Japanese LWR will be stored as recycled-fuel-resources in interim storage facilities. The concrete cask storage system is one of important forms for the spent fuel interim storage. In Japan, the interim storage facility will be located near the coast, therefore it is important to prevent SCC (Stress Corrosion Cracking) caused by sea salt particles and to assure the containment integrity of the canister which contains spent fuels. KEPCO, NFT and OCL have designed the double containment canister cask storage system that can assure the long-term containment integrity and monitor the containment performance without storage capacity decrease. Major features of the combined canister cask system are shown as follows: This system can survey containment integrity of dual canisters by monitoring the pressure of the gap between canisters. The primary canister has dual lids sealed by welding. The secondary canister has single lid tightened by bolts and sealed by metallic gaskets. The primary canister is contained in the transport cask during transportation, and the gap between the primary canister and the transport cask is filled with He gas. Under storage condition in the concrete cask, the primary canister is contained in the secondary canister, and the gap between these canisters is filled with helium gas. Hence this system can prevent the primary canister to contact sea salt particle in the air and from SCC. Decrease of cooling performance because of the double canister is compensated by fins fitted on the secondary canister surface. Then, this system can prevent the decrease of storage capacity determined by the fuel temperature limit. This system can assure that the primary canister will keep intact for long term storage. Therefore, in the case of pressure down of the gap between canisters, it can be considered that the secondary canister containment is damaged, and the primary canister will be transferred to another secondary canister at the

  20. Storage system software solutions for high-end user needs

    Science.gov (United States)

    Hogan, Carole B.

    1992-01-01

    Today's high-end storage user is one that requires rapid access to a reliable terabyte-capacity storage system running in a distributed environment. This paper discusses conventional storage system software and concludes that this software, designed for other purposes, cannot meet high-end storage requirements. The paper also reviews the philosophy and design of evolving storage system software. It concludes that this new software, designed with high-end requirements in mind, provides the potential for solving not only the storage needs of today but those of the foreseeable future as well.

  1. Impact of Storage Technologies upon Power System Losses

    Directory of Open Access Journals (Sweden)

    DULAU Lucian Ioan

    2015-05-01

    Full Text Available The paper describes the main characteristics of storage technologies. The most important storage technologies are the batteries, hydrogen, pumped hydro, flywheels, compressed air, super-capacitors and superconducting magnetic devices. The storage technologies can be classified based on the function principle into electrochemical, mechanical and electromagnetic devices. The storage systems can also be classified based on their capacity to store power into short and long term devices. A power flow analysis is performed for the situation with and without a storage unit. The storage unit is inserted into the IEEE 14 bus test system.

  2. Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications

    CSIR Research Space (South Africa)

    Annamalai, Perushini

    2017-01-01

    Full Text Available -defined hierarchical pore structure. The study involved encapsulation of highly porous zeolite-templated carbon (ZTC) into electrospun fibres and testing of the resulting composites for hydrogen storage. The hydrogen storage capacity of the composite fibres was 1...

  3. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  4. Energy storage system for a pulsed DEMO

    International Nuclear Information System (INIS)

    Lucas, J.; Cortes, M.; Mendez, P.; Hayward, J.; Maisonnier, D.

    2007-01-01

    Several designs have been proposed for the DEMO fusion reactor. Some of them are working in a non-steady state mode. Since a power plant should be able to deliver to the grid a constant power, this challenge must be solved. Energy storage is required at a level of 250 MWh e with the capability of delivering a power of 1 GWe. A review of different technologies for energy storage is made. Thermal energy storage (TES), fuel cells and other hydrogen storage, compressed air storage, water pumping, batteries, flywheels and supercapacitors are the most promising solutions to energy storage. Each one is briefly described in the paper, showing its basis, features, advantages and disadvantages for this application. The conclusion of the review is that, based on existing technology, thermal energy storage using molten salts and a system based on hydrogen storage are the most promising candidates to meet the requirements of a pulsed DEMO. These systems are investigated in more detail together with an economic assessment of each

  5. Safety considerations for compressed hydrogen storage systems

    International Nuclear Information System (INIS)

    Gleason, D.

    2006-01-01

    An overview of the safety considerations for various hydrogen storage options, including stationary, vehicle storage, and mobile refueling technologies. Indications of some of the challenges facing the industry as the demand for hydrogen fuel storage systems increases. (author)

  6. Prototype thermochemical heat storage with open reactor system

    NARCIS (Netherlands)

    Zondag, H.A.; Kikkert, B.; Smeding, S.F.; Boer, de R.; Bakker, M.

    2013-01-01

    Thermochemical (TC) heat storage is an interesting technology for future seasonal storage of solar heat in the built environment. This technology enables high thermal energy storage densities and low energy storage losses. A small-scale laboratory prototype TC storage system has been realized at

  7. AnalyzeThis: An Analysis Workflow-Aware Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Hyogi [ORNL; Kim, Youngjae [ORNL; Vazhkudai, Sudharshan S [ORNL; Tiwari, Devesh [ORNL; Anwar, Ali [Virginia Tech, Blacksburg, VA; Butt, Ali R [Virginia Tech, Blacksburg, VA; Ramakrishnan, Lavanya [Lawrence Berkeley National Laboratory (LBNL)

    2015-01-01

    The need for novel data analysis is urgent in the face of a data deluge from modern applications. Traditional approaches to data analysis incur significant data movement costs, moving data back and forth between the storage system and the processor. Emerging Active Flash devices enable processing on the flash, where the data already resides. An array of such Active Flash devices allows us to revisit how analysis workflows interact with storage systems. By seamlessly blending together the flash storage and data analysis, we create an analysis workflow-aware storage system, AnalyzeThis. Our guiding principle is that analysis-awareness be deeply ingrained in each and every layer of the storage, elevating data analyses as first-class citizens, and transforming AnalyzeThis into a potent analytics-aware appliance. We implement the AnalyzeThis storage system atop an emulation platform of the Active Flash array. Our results indicate that AnalyzeThis is viable, expediting workflow execution and minimizing data movement.

  8. Ceph, a distributed storage system for scientific computing

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Ceph is a distributed storage system designed to providing high performance and reliability at scales of up to thousands of storage nodes. The system is based on a distributed object storage layer call RADOS that provides durability, availability, efficient data distribution, and rich object semantics. This storage can be consumed directly via an object-based interface, or via file, block, or REST-based object services that are built on top of it. Clusters are composed of commodity components to provide a reliable storage service serving multiple use-cases. This seminar will cover the basic architecture of Ceph, with a focus on how each service can be consumed in a research and infrastructure environment. About the speaker Sage Weil, Founder and current CTO of Inktank Inc, is the creator of the Ceph project. He originally designed it as part of his PhD research in Storage Systems at the University of California, Santa Cruz. Since graduating, he has continued to refine the system with the goal of providi...

  9. The Design of Distributed Micro Grid Energy Storage System

    Science.gov (United States)

    Liang, Ya-feng; Wang, Yan-ping

    2018-03-01

    Distributed micro-grid runs in island mode, the energy storage system is the core to maintain the micro-grid stable operation. For the problems that it is poor to adjust at work and easy to cause the volatility of micro-grid caused by the existing energy storage structure of fixed connection. In this paper, an array type energy storage structure is proposed, and the array type energy storage system structure and working principle are analyzed. Finally, the array type energy storage structure model is established based on MATLAB, the simulation results show that the array type energy storage system has great flexibility, which can maximize the utilization of energy storage system, guarantee the reliable operation of distributed micro-grid and achieve the function of peak clipping and valley filling.

  10. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Science.gov (United States)

    2010-07-01

    ... storage systems. 910.18 Section 910.18 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... storage systems. (a) Improvement of the existing vehicular storage and circulation system is necessary in order to create the balanced transportation system called for in the Plan, which recognizes the need to...

  11. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Science.gov (United States)

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  12. DICOM implementation on online tape library storage system

    Science.gov (United States)

    Komo, Darmadi; Dai, Hailei L.; Elghammer, David; Levine, Betty A.; Mun, Seong K.

    1998-07-01

    The main purpose of this project is to implement a Digital Image and Communications (DICOM) compliant online tape library system over the Internet. Once finished, the system will be used to store medical exams generated from U.S. ARMY Mobile ARMY Surgical Hospital (MASH) in Tuzla, Bosnia. A modified UC Davis implementation of DICOM storage class is used for this project. DICOM storage class user and provider are implemented as the system's interface to the Internet. The DICOM software provides flexible configuration options such as types of modalities and trusted remote DICOM hosts. Metadata is extracted from each exam and indexed in a relational database for query and retrieve purposes. The medical images are stored inside the Wolfcreek-9360 tape library system from StorageTek Corporation. The tape library system has nearline access to more than 1000 tapes. Each tape has a capacity of 800 megabytes making the total nearline tape access of around 1 terabyte. The tape library uses the Application Storage Manager (ASM) which provides cost-effective file management, storage, archival, and retrieval services. ASM automatically and transparently copies files from expensive magnetic disk to less expensive nearline tape library, and restores the files back when they are needed. The ASM also provides a crash recovery tool, which enable an entire file system restore in a short time. A graphical user interface (GUI) function is used to view the contents of the storage systems. This GUI also allows user to retrieve the stored exams and send the exams to anywhere on the Internet using DICOM protocols. With the integration of different components of the system, we have implemented a high capacity online tape library storage system that is flexible and easy to use. Using tape as an alternative storage media as opposed to the magnetic disk has the great potential of cost savings in terms of dollars per megabyte of storage. As this system matures, the Hospital Information Systems

  13. Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage

    International Nuclear Information System (INIS)

    Fiorentini, Massimo; Wall, Josh; Ma, Zhenjun; Braslavsky, Julio H.; Cooper, Paul

    2017-01-01

    Highlights: • A comprehensive approach to managing thermal energy in residential buildings. • Solar-assisted HVAC system with on-site energy generation and storage. • Mixed logic-dynamical building model identified using experimental data. • Design and implementation of a logic-dynamical model predictive control strategy. • MPC applied to the Net-Zero Energy house winner of the Solar Decathlon China 2013. - Abstract: This paper describes the development, implementation and experimental investigation of a Hybrid Model Predictive Control (HMPC) strategy to control solar-assisted heating, ventilation and air-conditioning (HVAC) systems with on-site thermal energy generation and storage. A comprehensive approach to the thermal energy management of a residential building is presented to optimise the scheduling of the available thermal energy resources to meet a comfort objective. The system has a hybrid nature with both continuous variables and discrete, logic-driven operating modes. The proposed control strategy is organized in two hierarchical levels. At the high-level, an HMPC controller with a 24-h prediction horizon and a 1-h control step is used to select the operating mode of the HVAC system. At the low-level, each operating mode is optimised using a 1-h rolling prediction horizon with a 5-min control step. The proposed control strategy has been practically implemented on the Building Management and Control System (BMCS) of a Net Zero-Energy Solar Decathlon house. This house features a sophisticated HVAC system comprising of an air-based photovoltaic thermal (PVT) collector and a phase change material (PCM) thermal storage integrated with the air-handling unit (AHU) of a ducted reverse-cycle heat pump system. The simulation and experimental results demonstrated the high performance achievable using an HMPC approach to optimising complex multimode HVAC systems in residential buildings, illustrating efficient selection of the appropriate operating modes

  14. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Michael [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  15. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  16. Design of annual storage solar space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F C; Cook, J D

    1979-11-01

    Design considerations for annual storage solar space heating systems are discussed. A simulation model for the performance of suh systems is described, and a method of classifying system configurations is proposed. It is shown that annual systems sized for unconstrained performance, with no unused collector or storage capacity, and no rejected heat, minimize solar acquisition costs. The optimal performance corresponds to the condition where the marginal storage-to-collector sizing ratio is equal to the corresponding marginal cost ratio.

  17. Value and cost analyses for solar thermal-storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Luft, W.; Copeland, R.J.

    1983-04-01

    Value and cost data for thermal energy storage are presented for solar thermal central receiver systems for which thermal energy storage appears to be attractive. Both solar thermal electric power and industrial process heat applications are evaluated. The value of storage is based on the cost for fossil fuel and solar thermal collector systems in 1990. The costing uses a standard lifetime methodology with the storage capacity as a parameter. Both value and costs are functions of storage capacity. However, the value function depends on the application. Value/cost analyses for first-generation storage concepts for five central receiver systems (molten salt, water/steam, organic fluid, air, and liquid metal) established the reference against which new systems were compared. Some promising second-generation energy storage concepts have been identified, and some more advanced concepts have also been evaluated.

  18. TiO_2 hierarchical hollow microspheres with different size for application as anodes in high-performance lithium storage

    International Nuclear Information System (INIS)

    Wang, Xiaobing; Meng, Qiuxia; Wang, Yuanyuan; Liang, Huijun; Bai, Zhengyu; Wang, Kui; Lou, Xiangdong; Cai, Bibo; Yang, Lin

    2016-01-01

    Graphical abstract: In the application of lithium-ion batteries, the influences of microsphere sizes are more significant than the secondary nanoparticles size and crystallinity of TiO_2-HSs for their transfer resistance and cycling performance, so that the bigger sizes of TiO_2-HSs can retain high reversible capacities after 30 recycles. - Highlights: • Hierarchical hollow microspheres have size-effect in the application of lithium ion battery. • The microsphere sizes can significantly affect the cycling capacities of TiO_2. • The nanoparticles size affect the initial discharge capacity and lithium ion diffusion. • Controlled microsphere size is more significant for improving TiO_2 cycling capacities. - Abstract: Nowadays, the safety issue has greatly hindered the development of large capacity lithium-ion batteries (LIBs), especially in electric vehicles applications. TiO_2 is a kind of potential anode candidate for improving the safety of LIBs. However, it still needs to understand how to improve the performance of TiO_2 anode in the practical applications. Herein, we design a contrast experiment by using three sizes of TiO_2 hierarchical hollow microspheres (TiO_2-HSs). The research results indicated that the cycling performance of TiO_2-HSs anode can be affected by the size of microspheres, and the nanoparticles size of microspheres and crystallinity of TiO_2 can affect their initial discharge capacity and lithium ion diffusion. And, the influence of microspheres size is more significant. This may provide a new strategy for improving the lithium-ion storage property of TiO_2 anode material in the practical applications.

  19. Combined solar collector and storage systems

    International Nuclear Information System (INIS)

    Norton, B.; Smyth, M.; Eames, P.; Lo, S.N.G.

    2000-01-01

    The article discusses reasons why fossil-fuelled water heating systems are included in new houses but solar systems are not. The technology and market potential for evacuated tube systems and integral collector storage systems (ICSS) are explained. The challenge for the designers of ICSSWH has been how to reduce heat loss without compromising solar energy collection. A new concept for enhanced energy storage is described in detail and input/output data are given for two versions of ICSSWH units. A table compares the costs of ICSSWH in houses compared with other (i.e. fossil fuel) water heating systems

  20. Research on an IP disaster recovery storage system

    Science.gov (United States)

    Zeng, Dong; Wang, Yusheng; Zhu, Jianfeng

    2008-12-01

    According to both the Fibre Channel (FC) Storage Area Network (SAN) switch and Fabric Application Interface Standard (FAIS) mechanism, an iSCSI storage controller is put forward and based upon it, an internet Small Computer System Interface (iSCSI) SAN construction strategy for disaster recovery (DR) is proposed and some multiple sites replication models and a closed queue performance analysis method are also discussed in this paper. The iSCSI storage controller lies in the fabric level of the networked storage infrastructure, and it can be used to connect to both the hybrid storage applications and storage subsystems, besides, it can provide virtualized storage environment and support logical volume access control, and by cooperating with the remote peerparts, a disaster recovery storage system can be built on the basis of the data replication, block-level snapshot and Internet Protocol (IP) take-over functions.

  1. The Stability of Tidal Equilibrium for Hierarchical Star-Planet-Moon Systems

    Science.gov (United States)

    Adams, Fred C.

    2018-04-01

    Motivated by the current search for exomoons, this talk considers the stability of tidal equilibrium for hierarchical three-body systems containing a star, a planet, and a moon. In this treatment, the energy and angular momentum budgets include contributions from the planetary orbit, lunar orbit, stellar spin, planetary spin, and lunar spin. The goal is to determine the optimized energy state of the system subject to the constraint of constant angular momentum. Due to the lack of a closed form solution for the full three-body problem, however, we must use use an approximate description of the orbits. We first consider the Keplerian limit and find that the critical energy states are saddle points, rather than minima, so that these hierarchical systems have no stable tidal equilibrium states. We then generalize the calculation so that the lunar orbit is described by a time-averaged version of the circular restricted three-body problem. In this latter case, the critical energy state is a shallow minimum, so that a tidal equilibrium state exists. In both cases, however, the lunar orbit for the critical point lies outside the boundary (roughly half the Hill radius) where (previous) numerical simulations indicate dynamical instability.

  2. Optimization of Hierarchical System for Data Acquisition

    Directory of Open Access Journals (Sweden)

    V. Novotny

    2011-04-01

    Full Text Available Television broadcasting over IP networks (IPTV is one of a number of network applications that are except of media distribution also interested in data acquisition from group of information resources of variable size. IP-TV uses Real-time Transport Protocol (RTP protocol for media streaming and RTP Control Protocol (RTCP protocol for session quality feedback. Other applications, for example sensor networks, have data acquisition as the main task. Current solutions have mostly problem with scalability - how to collect and process information from large amount of end nodes quickly and effectively? The article deals with optimization of hierarchical system of data acquisition. Problem is mathematically described, delay minima are searched and results are proved by simulations.

  3. Three-dimensional hierarchical porous tubular carbon as a host matrix for long-term lithium-selenium batteries

    Science.gov (United States)

    Jia, Min; Lu, Shiyu; Chen, Yuming; Liu, Ting; Han, Jin; Shen, Bolei; Wu, Xiaoshuai; Bao, Shu-Juan; Jiang, Jian; Xu, Maowen

    2017-11-01

    Lithium-selenium (Li-Se) batteries are of great interest as a representative family of electrochemical energy storage systems because of their high theoretical volumetric capacity and considerable electronic conductivity. However, the main drawback of Se electrodes is the rapid capacity fading caused by the dissolution of polyselenides upon cycling. Here, we report a simple, economical, and effective method for the synthesis of three-dimensional (3D) hierarchical porous carbon with a hollow tubular structure as a host matrix for loading Se and trapping polyselenides. The as-obtained porous tubular carbon shows a superior specific surface area of 1786 m2 g-1, a high pore volume of 0.79 cm3 g-1, and many nanostructured pores. Benefiting from the unique structural characteristics, the resulting hierarchical porous carbon/Se composite exhibits a high capacity of 515 mAh g-1 at 0.2 C. More importantly, a remarkable cycling stability over 900 cycles at 2 C with a capacity fading rate of merely 0.02% per cycle can be achieved. The 3D hollow porous tubular carbon can be also used for other high-performance electrodes of electrochemical energy storage.

  4. Exascale Storage Systems the SIRIUS Way

    Science.gov (United States)

    Klasky, S. A.; Abbasi, H.; Ainsworth, M.; Choi, J.; Curry, M.; Kurc, T.; Liu, Q.; Lofstead, J.; Maltzahn, C.; Parashar, M.; Podhorszki, N.; Suchyta, E.; Wang, F.; Wolf, M.; Chang, C. S.; Churchill, M.; Ethier, S.

    2016-10-01

    As the exascale computing age emerges, data related issues are becoming critical factors that determine how and where we do computing. Popular approaches used by traditional I/O solution and storage libraries become increasingly bottlenecked due to their assumptions about data movement, re-organization, and storage. While, new technologies, such as “burst buffers”, can help address some of the short-term performance issues, it is essential that we reexamine the underlying storage and I/O infrastructure to effectively support requirements and challenges at exascale and beyond. In this paper we present a new approach to the exascale Storage System and I/O (SSIO), which is based on allowing users to inject application knowledge into the system and leverage this knowledge to better manage, store, and access large data volumes so as to minimize the time to scientific insights. Central to our approach is the distinction between the data, metadata, and the knowledge contained therein, transferred from the user to the system by describing “utility” of data as it ages.

  5. Thermal analysis of near-isothermal compressed gas energy storage system

    International Nuclear Information System (INIS)

    Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; Abdelaziz, Omar; Jackson, Roderick K.; Daniel, Claus; Graham, Samuel; Momen, Ayyoub M.

    2016-01-01

    Highlights: • A novel, high-efficiency, scalable, near-isothermal, energy storage system is introduced. • A comprehensive analytical physics-based model for the system is presented. • Efficiency improvement is achieved via heat transfer enhancement and use of waste heat. • Energy storage roundtrip efficiency (RTE) of 82% and energy density of 3.59 MJ/m"3 is shown. - Abstract: Due to the increasing generation capacity of intermittent renewable electricity sources and an electrical grid ill-equipped to handle the mismatch between electricity generation and use, the need for advanced energy storage technologies will continue to grow. Currently, pumped-storage hydroelectricity and compressed air energy storage are used for grid-scale energy storage, and batteries are used at smaller scales. However, prospects for expansion of these technologies suffer from geographic limitations (pumped-storage hydroelectricity and compressed air energy storage), low roundtrip efficiency (compressed air energy storage), and high cost (batteries). Furthermore, pumped-storage hydroelectricity and compressed air energy storage are challenging to scale-down, while batteries are challenging to scale-up. In 2015, a novel compressed gas energy storage prototype system was developed at Oak Ridge National Laboratory. In this paper, a near-isothermal modification to the system is proposed. In common with compressed air energy storage, the novel storage technology described in this paper is based on air compression/expansion. However, several novel features lead to near-isothermal processes, higher efficiency, greater system scalability, and the ability to site a system anywhere. The enabling features are utilization of hydraulic machines for expansion/compression, above-ground pressure vessels as the storage medium, spray cooling/heating, and waste-heat utilization. The base configuration of the novel storage system was introduced in a previous paper. This paper describes the results

  6. Compiling software for a hierarchical distributed processing system

    Science.gov (United States)

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-12-31

    Compiling software for a hierarchical distributed processing system including providing to one or more compiling nodes software to be compiled, wherein at least a portion of the software to be compiled is to be executed by one or more nodes; compiling, by the compiling node, the software; maintaining, by the compiling node, any compiled software to be executed on the compiling node; selecting, by the compiling node, one or more nodes in a next tier of the hierarchy of the distributed processing system in dependence upon whether any compiled software is for the selected node or the selected node's descendents; sending to the selected node only the compiled software to be executed by the selected node or selected node's descendent.

  7. Dry storage systems using casks for long term storage in an AFR and repository

    International Nuclear Information System (INIS)

    Einfeld, K.; Popp, F.W.

    1986-01-01

    In conclusion it can be stated that two basic routes with respect to spent fuel storage casks are feasible. One is the Multiple Transport Cask, which with certain modifications can be upgraded to meet the criteria for intermediate storage. Its status is characterized by the licensing of several types of Castor Casks for an intermediate storage period of 30 years in the AFR Storage Facility of DWK at Gorleben in the FRG. The other one is the Final Disposal (Repository) Cask, which can be made suitable for long term storage before a final decision with respect to a repository application is taken. The licensing procedure for a Pilot Conditioning Facility with the Pollux Cask System as reference case will be initiated by DWK in the near future. Under the assumption that in addition to the present Multiple Transport/Storage Casks a license for a Final disposal Cask with respect to long term storage is available, the relative merits of different cask storage systems would have to be evaluated

  8. Integrated Building Energy Systems Design Considering Storage Technologies

    OpenAIRE

    Stadler, Michael

    2009-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 em...

  9. Nearly Cyclic Pursuit and its Hierarchical variant for Multi-agent Systems

    DEFF Research Database (Denmark)

    Iqbal, Muhammad; Leth, John-Josef; Ngo, Trung Dung

    2015-01-01

    The rendezvous problem for multiple agents under nearly cyclic pursuit and hierarchical nearly cyclic pursuit is discussed in this paper. The control law designed under nearly cyclic pursuit strategy enables the agents to converge at a point dictated by a beacon. A hierarchical version of the nea......The rendezvous problem for multiple agents under nearly cyclic pursuit and hierarchical nearly cyclic pursuit is discussed in this paper. The control law designed under nearly cyclic pursuit strategy enables the agents to converge at a point dictated by a beacon. A hierarchical version...

  10. Heat pipe based cold energy storage systems for datacenter energy conservation

    International Nuclear Information System (INIS)

    Singh, Randeep; Mochizuki, Masataka; Mashiko, Koichi; Nguyen, Thang

    2011-01-01

    In the present paper, design and economics of the novel type of thermal control system for datacenter using heat pipe based cold energy storage has been proposed and discussed. Two types of cold energy storage system namely: ice storage system and cold water storage system are explained and sized for datacenter with heat output capacity of 8800 kW. Basically, the cold energy storage will help to reduce the chiller running time that will save electricity related cost and decrease greenhouse gas emissions resulting from the electricity generation from non-renewable sources. The proposed cold energy storage system can be retrofit or connected in the existing datacenter facilities without major design changes. Out of the two proposed systems, ice based cold energy storage system is mainly recommended for datacenters which are located in very cold locations and therefore can offer long term seasonal storage of cold energy within reasonable cost. One of the potential application domains for ice based cold energy storage system using heat pipes is the emergency backup system for datacenter. Water based cold energy storage system provides more compact size with short term storage (hours to days) and is potential for datacenters located in areas with yearly average temperature below the permissible cooling water temperature (∼25 o C). The aforesaid cold energy storage systems were sized on the basis of metrological conditions in Poughkeepsie, New York. As an outcome of the thermal and cost analysis, water based cold energy storage system with cooling capability to handle 60% of datacenter yearly heat load will provide an optimum system size with minimum payback period of 3.5 years. Water based cold energy storage system using heat pipes can be essentially used as precooler for chiller. Preliminary results obtained from the experimental system to test the capability of heat pipe based cold energy storage system have provided satisfactory outcomes and validated the proposed

  11. Choosing a spent fuel interim storage system

    International Nuclear Information System (INIS)

    Roland, V.; Hunter, I.

    2001-01-01

    The Transnucleaire Group has developed different modular solutions to address spent fuel interim storage needs of NPP. These solutions, that are present in Europe, USA and Asia are metal casks (dual purpose or storage only) of the TN 24 family and the NUHOMS canister based system. It is not always simple for an operator to sort out relevant choice criteria. After explaining the basic designs involved on the examples of the TN 120 WWER dual purpose cask and the NUHOMS 56 WWER for WWER 440 spent fuel, we shall discuss the criteria that govern the choice of a given spent fuel interim storage system from the stand point of the operator. In conclusion, choosing and implementing an interim storage system is a complex process, whose implications can be far reaching for the long-term success of a spent fuel management policy. (author)

  12. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.

    Science.gov (United States)

    Xu, Wangwang; Xie, Zhiqiang; Cui, Xiaodan; Zhao, Kangning; Zhang, Lei; Dietrich, Grant; Dooley, Kerry M; Wang, Ying

    2015-10-14

    Complex hierarchical structures have received tremendous attention due to their superior properties over their constitute components. In this study, hierarchical graphene-encapsulated hollow SnO2@SnS2 nanostructures are successfully prepared by in situ sulfuration on the backbones of hollow SnO2 spheres via a simple hydrothermal method followed by a solvothermal surface modification. The as-prepared hierarchical SnO2@SnS2@rGO nanocomposite can be used as anode material in lithium ion batteries, exhibiting excellent cyclability with a capacity of 583 mAh/g after 100 electrochemical cycles at a specific current of 200 mA/g. This material shows a very low capacity fading of only 0.273% per cycle from the second to the 100th cycle, lower than the capacity degradation of bare SnO2 hollow spheres (0.830%) and single SnS2 nanosheets (0.393%). Even after being cycled at a range of specific currents varied from 100 mA/g to 2000 mA/g, hierarchical SnO2@SnS2@rGO nanocomposites maintain a reversible capacity of 664 mAh/g, which is much higher than single SnS2 nanosheets (374 mAh/g) and bare SnO2 hollow spheres (177 mAh/g). Such significantly improved electrochemical performance can be attributed to the unique hierarchical hollow structure, which not only effectively alleviates the stress resulting from the lithiation/delithiation process and maintaining structural stability during cycling but also reduces aggregation and facilitates ion transport. This work thus demonstrates the great potential of hierarchical SnO2@SnS2@rGO nanocomposites for applications as a high-performance anode material in next-generation lithium ion battery technology.

  13. Global distribution of grid connected electrical energy storage systems

    Directory of Open Access Journals (Sweden)

    Katja Buss

    2016-06-01

    Full Text Available This article gives an overview of grid connected electrical energy storage systems worldwide, based on public available data. Technologies considered in this study are pumped hydroelectric energy storage (PHES, compressed air energy storage (CAES, sodium-sulfur batteries (NaS, lead-acid batteries, redox-flow batteries, nickel-cadmium batteries (NiCd and lithium-ion batteries. As the research indicates, the worldwide installed capacity of grid connected electrical energy storage systems is approximately 154 GW. This corresponds to a share of 5.5 % of the worldwide installed generation capacity. Furthermore, the article gives an overview of the historical development of installed and used storage systems worldwide. Subsequently, the focus is on each considered technology concerning the current storage size, number of plants and location. In summary it can be stated, PHES is the most commonly used technology worldwide, whereas electrochemical technologies are increasingly gaining in importance. Regarding the distribution of grid connected storage systems reveals the share of installed storage capacity is in Europe and Eastern Asia twice as high as in North America.

  14. Embedded system of image storage based on fiber channel

    Science.gov (United States)

    Chen, Xiaodong; Su, Wanxin; Xing, Zhongbao; Wang, Hualong

    2008-03-01

    In domains of aerospace, aviation, aiming, and optic measure etc., the embedded system of imaging, processing and recording is absolutely necessary, which has small volume, high processing speed and high resolution. But the embedded storage technology becomes system bottleneck because of developing slowly. It is used to use RAID to promote storage speed, but it is unsuitable for the embedded system because of its big volume. Fiber channel (FC) technology offers a new method to develop the high-speed, portable storage system. In order to make storage subsystem meet the needs of high storage rate, make use of powerful Virtex-4 FPGA and high speed fiber channel, advance a project of embedded system of digital image storage based on Xilinx Fiber Channel Arbitrated Loop LogiCORE. This project utilizes Virtex- 4 RocketIO MGT transceivers to transmit the data serially, and connects many Fiber Channel hard drivers by using of Arbitrated Loop optionally. It can achieve 400MBps storage rate, breaks through the bottleneck of PCI interface, and has excellences of high-speed, real-time, portable and massive capacity.

  15. Evaporative cooling enhanced cold storage system

    Science.gov (United States)

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  16. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs

    International Nuclear Information System (INIS)

    Liu, Hui; He, Qing; Borgia, Andrea; Pan, Lehua; Oldenburg, Curtis M.

    2016-01-01

    Highlights: • A compressed CO_2 energy storage system using two storage reservoirs is presented. • Compressed CO_2 energy storage density is higher than that of CAES. • The effects of storage reservoir pressure on the system performance are studied. - Abstract: Compressed air energy storage (CAES) is one of the leading large-scale energy storage technologies. However, low thermal efficiency and low energy storage density restrict its application. To improve the energy storage density, we propose a two-reservoir compressed CO_2 energy storage system. We present here thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO_2 energy storage system under supercritical and transcritical conditions using a steady-state mathematical model. Results show that the transcritical compressed CO_2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO_2 energy storage. However, the configuration of supercritical compressed CO_2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of CAES, which is advantageous in terms of storage volume for a given power rating.

  17. A new approach for global synchronization in hierarchical scheduled real-time systems

    NARCIS (Netherlands)

    Behnam, M.; Nolte, T.; Bril, R.J.

    2009-01-01

    We present our ongoing work to improve an existing synchronization protocol SIRAP for hierarchically scheduled real-time systems. A less pessimistic schedulability analysis is presented which can make the SIRAP protocol more efficient in terms of calculated CPU resource needs. In addition and for

  18. Horizontal modular dry irradiated fuel storage system

    Science.gov (United States)

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  19. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  20. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  1. Energy storage systems program report for FY1996

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1997-05-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

  2. Pumped storage in systems with very high wind penetration

    International Nuclear Information System (INIS)

    Tuohy, A.; O'Malley, M.

    2011-01-01

    This paper examines the operation of the Irish power system with very high levels of wind energy, with and without pumped storage. A unit commitment model which accounts for the uncertainty in wind power is used. It is shown that as wind penetration increases, the optimal operation of storage depends on wind output as well as load. The main benefit from storage is shown to be a decrease in wind curtailment. The economics of the system are examined to find the level at which storage justifies its capital costs and inefficiencies. It is shown that the uncertainty of wind makes the option of storage more attractive. The size of the energy store has an impact on results. At lower levels of installed wind (up to approximately 50% of energy from wind in Ireland), the reduction in curtailment is insufficient to justify building storage. At greater levels of wind, storage reduces curtailment sufficiently to justify the additional capital costs. It can be seen that if storage replaces OCGTs in the plant mix instead of CCGTs, then the level at which it justifies itself is lower. Storage increases the level of carbon emissions at wind penetration below 60%. - Research highlights: → Examines operation of pumped storage unit in a system with levels of wind from 34%-68% of energy. → High capital cost of storage is not justified until system has high (approx. 45%) wind penetration. → Results are driven by the amount of wind curtailment avoided and plant mix of system. → Other flexible options (e.g. interconnection) offer many of the same benefits as storage.

  3. Kinetic energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Folini, P.

    1983-09-03

    A flywheel system for the purpose of energy storage in decentral solar- or wind energy plants is introduced. The system comprises a rotor made out of plastic fibre, a motor/generator serving as electro-mechanical energy converter and a frequency-voltage transformer serving as electric adapter. The storable energy quantity amounts to several kWh.

  4. A strategy for load balancing in distributed storage systems

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Distributed storage systems are critical to the operation of the WLCG. These systems are not limited to fulfilling the long term storage requirements. They also serve data for computational analysis and other computational jobs. Distributed storage systems provide the ability to aggregate the storage and IO capacity of disks and tapes, but at the end of the day IO rate is still bound by the capabilities of the hardware, in particular the hard drives. Throughput of hard drives has increased dramatically over the decades, however for computational analysis IOPS is typically the limiting factor. To maximize return of investment, balancing IO load over available hardware is crucial. The task is made complicated by the common use of heterogeneous hardware and software environments that results from combining new and old hardware into a single storage system. This paper describes recent advances made in load balancing in the dCache distributed storage system. We describe a set of common requirements for load balan...

  5. Methanol wetting enthalpy on few-layer graphene decorated hierarchical carbon foam for cooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Paul, R., E-mail: paul24@purdue.edu [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Zemlyanov, D. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Voevodin, A.A.; Roy, A.K. [Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States); Fisher, T.S. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2014-12-01

    Vertical few-layer thick graphene petals are grown on macro-porous carbon foam surfaces having an intrinsic open porosity of 75%. This provides a hierarchical porous structure with a potential for surface adsorption/desorption or wetting/dewetting based thermal energy storage applications. Carbon foams have a combined advantage of large surface area and high thermal conductivity critical for thermal energy storage, but they are prone to oxidation and exhibit low adsorption enthalpies for lightweight hydrocarbons. Here we report graphene petal decoration of carbon foam surfaces and subsequent chemical modification through boron nitride incorporation in hexagonal carbon planes of both carbon foams and graphene petals. This chemically reactive hierarchical structure is characterized with FESEM, Raman, XRD, and XPS measurements. Methanol wetting enthalpy of this three-dimensional hierarchical material was measured with a solution calorimeter, and had shown a six fold increase (from 78 to 522 J/g of foam) as compared to the carbon foam prior to the surface modification. Influences of petal decoration on the surface morphology of carbon foam, BN chemical modification, structure and stoichiometry of the hierarchical material surface, and methanol wetting enthalpy improvement are discussed in detail. The applicability of this hierarchical porous material for thermal energy applications is established. - Highlights: • 500 nm thick few layer graphene petals decoration vertically on macroporous carbon foam surface. • Microwave heating assisted chemical treatment for boron-nitride modification. • Defective petals edges due to boron nitride domain formation. • 20 at. % boron and nitrogen incorporation. • Six fold increase in methanol wetting enthalpy on boron-nitride modification.

  6. Methanol wetting enthalpy on few-layer graphene decorated hierarchical carbon foam for cooling applications

    International Nuclear Information System (INIS)

    Paul, R.; Zemlyanov, D.; Voevodin, A.A.; Roy, A.K.; Fisher, T.S.

    2014-01-01

    Vertical few-layer thick graphene petals are grown on macro-porous carbon foam surfaces having an intrinsic open porosity of 75%. This provides a hierarchical porous structure with a potential for surface adsorption/desorption or wetting/dewetting based thermal energy storage applications. Carbon foams have a combined advantage of large surface area and high thermal conductivity critical for thermal energy storage, but they are prone to oxidation and exhibit low adsorption enthalpies for lightweight hydrocarbons. Here we report graphene petal decoration of carbon foam surfaces and subsequent chemical modification through boron nitride incorporation in hexagonal carbon planes of both carbon foams and graphene petals. This chemically reactive hierarchical structure is characterized with FESEM, Raman, XRD, and XPS measurements. Methanol wetting enthalpy of this three-dimensional hierarchical material was measured with a solution calorimeter, and had shown a six fold increase (from 78 to 522 J/g of foam) as compared to the carbon foam prior to the surface modification. Influences of petal decoration on the surface morphology of carbon foam, BN chemical modification, structure and stoichiometry of the hierarchical material surface, and methanol wetting enthalpy improvement are discussed in detail. The applicability of this hierarchical porous material for thermal energy applications is established. - Highlights: • 500 nm thick few layer graphene petals decoration vertically on macroporous carbon foam surface. • Microwave heating assisted chemical treatment for boron-nitride modification. • Defective petals edges due to boron nitride domain formation. • 20 at. % boron and nitrogen incorporation. • Six fold increase in methanol wetting enthalpy on boron-nitride modification

  7. Federal Tax Incentives for Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Katherine H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Settle, Donald E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-16

    Investments in renewable energy are more attractive due to the contribution of two key federal tax incentives. The investment tax credit (ITC) and the Modified Accelerated Cost Recovery System (MACRS) depreciation deduction may apply to energy storage systems such as batteries depending on who owns the battery and how the battery is used. The guidelines in this fact sheet apply to energy storage systems installed at the same time as the renewable energy system.

  8. Super-hierarchical porous carbons derived from mixed biomass wastes by a stepwise removal strategy for high-performance supercapacitors

    Science.gov (United States)

    Peng, Lin; Liang, Yeru; Dong, Hanwu; Hu, Hang; Zhao, Xiao; Cai, Yijing; Xiao, Yong; Liu, Yingliang; Zheng, Mingtao

    2018-02-01

    The synthesis and energy storage application of hierarchical porous carbons with size ranging from nano-to micrometres has attracted considerable attention all over the world. Exploring eco-friendly and reliable synthesis of hierarchical porous carbons for supercapacitors with high energy density and high power is still of ongoing challenge. In this work, we report the design and synthesis of super-hierarchical porous carbons with highly developed porosity by a stepwise removal strategy for high-rate supercapacitors. The mixed biomass wastes of coconut shell and sewage sludge are employed as raw material. The as-prepared super-hierarchical porous carbons present high surface areas (3003 m2 g-1), large pore volume (2.04 cm3 g-1), appropriate porosity, and outstanding electrochemical performance. The dependence of electrochemical performance on structural, textural, and functional properties of carbons engineered by various synthesis strategies is investigated in detail. Moreover, the as-assembled symmetrical supercapacitor exhibits high energy density of 25.4 Wh kg-1 at a power density of 225 W kg-1 and retains 20.7 Wh kg-1 even at a very high power of 9000 W kg-1. This work provides an environmentally benign strategy and new insights to efficiently regulate the porosity of hierarchical porous carbons derived from biomass wastes for energy storage applications.

  9. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose. Chapter 3 presents a sequential simulation model of a general wind hydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to

  10. State Space Analysis of Hierarchical Coloured Petri Nets

    DEFF Research Database (Denmark)

    Christensen, Søren; Kristensen, Lars Michael

    2003-01-01

    In this paper, we consider state space analysis of Coloured Petri Nets. It is well-known that almost all dynamic properties of the considered system can be verified when the state space is finite. However, state space analysis is more than just formulating a set of formal requirements and invokin...... supporting computation and storage of state spaces which exploi the hierarchical structure of the models....... in which formal verification, partial state spaces, and analysis by means of graphical feedback and simulation are integrated entities. The focus of the paper is twofold: the support for graphical feedback and the way it has been integrated with simulation, and the underlying algorithms and data-structures......In this paper, we consider state space analysis of Coloured Petri Nets. It is well-known that almost all dynamic properties of the considered system can be verified when the state space is finite. However, state space analysis is more than just formulating a set of formal requirements and invoking...

  11. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  12. Reliability-oriented energy storage sizing in wind power systems

    DEFF Research Database (Denmark)

    Qin, Zian; Liserre, Marco; Blaabjerg, Frede

    2014-01-01

    Energy storage can be used to suppress the power fluctuations in wind power systems, and thereby reduce the thermal excursion and improve the reliability. Since the cost of the energy storage in large power application is high, it is crucial to have a better understanding of the relationship...... between the size of the energy storage and the reliability benefit it can generate. Therefore, a reliability-oriented energy storage sizing approach is proposed for the wind power systems, where the power, energy, cost and the control strategy of the energy storage are all taken into account....... With the proposed approach, the computational effort is reduced and the impact of the energy storage system on the reliability of the wind power converter can be quantified....

  13. Energy Storage Systems Program Report for FY98

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1999-04-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the U.S. Department of Energy's Office of Power Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1998.

  14. Energy storage systems program report for FY97

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1998-08-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1997. 46 figs., 20 tabs.

  15. Energy Storage Systems Program Report for FY99

    Energy Technology Data Exchange (ETDEWEB)

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  16. Modular vault dry storage system for interim storage of irradiated fuel

    International Nuclear Information System (INIS)

    Cundill, B.R.; Ealing, C.J.; Agarwal, B.K.

    1988-01-01

    The Foster Wheeler Energy Application (FWEA) Modular Vault Dry Store (MVDS) is a dry storage concept for the storage of all types of irradiated reactor fuel. For applications in the US, FWEA submitted an MVDS Topical Report to the US NRC during 1986. Following NRC approval of the MVDS Topical Report concept for unconsolidated LWR fuel, US utilities have available a new, compact, economic and flexible system for the storage of irradiated fuel at the reactor site for time periods of at least 20 years (the period of the first license). The MVDS concept jointly developed by FWEA and GEC in the U.K., has other applications for large central away from reactor storage facilities such as a Monitorable Retrievable Storage (MRS) installation. This paper describes the licensed MVDS design, aspects of performance are discussed and capital costs compared with alternative concepts. Alternative configurations of MVDS are outlined

  17. Performance enhancement of a subcooled cold storage air conditioning system

    International Nuclear Information System (INIS)

    Hsiao, M.-J.; Cheng, C.-H.; Huang, M.-C.; Chen, S.-L.

    2009-01-01

    This article experimentally investigates the enhancement of thermal performance for an air conditioning system utilizing a cold storage unit as a subcooler. The cold storage unit is composed of an energy storage tank, liquid-side heat exchanger, suction-side heat exchanger and energy storage material (ESM), water. When the cooling load is lower than the nominal cooling capacity of the system, the cold storage unit can store extra cold energy of the system to subcool the condenser outlet refrigerant. Hence, both the cooling capacity and coefficient of performance (COP) of the system will be increased. This experiment tests the two operation modes: subcooled mode with energy storage and non-subcooled mode without energy storage. The results show that for fixed cooling loads at 3.05 kW, 3.5 kW and 3.95 kW, the COP of the subcooled mode are 16.0%, 15.6% and 14.1% higher than those of the non-subcooled mode, respectively. In the varied cooling load experiments, the COP of the subcooled cold storage air conditioning system is 15.3% higher than the conventional system.

  18. Energy storage management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  19. APS storage ring vacuum system performance

    International Nuclear Information System (INIS)

    Noonan, J.R.; Gagliano, J.; Goeppner, G.A.

    1997-01-01

    The Advanced Photon Source (APS) storage ring was designed to operated with 7-GeV, 100-mA positron beam with lifetimes > 20 hours. The lifetime is limited by residual gas scattering and Touschek scattering at this time. Photon-stimulated desorption and microwave power in the rf cavities are the main gas loads. Comparison of actual system gas loads and design calculations will be given. In addition, several special features of the storage ring vacuum system will be presented

  20. Enabling data-intensive science with Tactical Storage Systems

    CERN Multimedia

    CERN. Geneva; Marquina, Miguel Angel

    2006-01-01

    Large scale scientific computing requires the ability to share and consume data and storage in complex ways across multiple systems. However, conventional systems constrain users to the fixed abstractions selected by the local system administrator. The result is that users must either move data manually over the wide area or simply be satisfied with the resources of a single cluster. To remedy this situation, we introduce the concept of a tactical storage system (TSS) that allows users to create, reconfigure, and destroy distributed storage systems without special privileges or complex configuration. We have deployed a prototype TSS of 200 disks and 8 TB of storage at the University of Notre Dame and applied it to several problems in astrophysics, high energy physics, and bioinformatics. This talk will focus on novel system structures that support data-intensive science. About the speaker: Douglas Thain is an Assistant Professor of Computer Science and Engineering at the University of Notre Dame. He received ...

  1. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  2. A price and performance comparison of three different storage architectures for data in cloud-based systems

    Science.gov (United States)

    Gallagher, J. H. R.; Jelenak, A.; Potter, N.; Fulker, D. W.; Habermann, T.

    2017-12-01

    Providing data services based on cloud computing technology that is equivalent to those developed for traditional computing and storage systems is critical for successful migration to cloud-based architectures for data production, scientific analysis and storage. OPeNDAP Web-service capabilities (comprising the Data Access Protocol (DAP) specification plus open-source software for realizing DAP in servers and clients) are among the most widely deployed means for achieving data-as-service functionality in the Earth sciences. OPeNDAP services are especially common in traditional data center environments where servers offer access to datasets stored in (very large) file systems, and a preponderance of the source data for these services is being stored in the Hierarchical Data Format Version 5 (HDF5). Three candidate architectures for serving NASA satellite Earth Science HDF5 data via Hyrax running on Amazon Web Services (AWS) were developed and their performance examined for a set of representative use cases. The performance was based both on runtime and incurred cost. The three architectures differ in how HDF5 files are stored in the Amazon Simple Storage Service (S3) and how the Hyrax server (as an EC2 instance) retrieves their data. The results for both the serial and parallel access to HDF5 data in the S3 will be presented. While the study focused on HDF5 data, OPeNDAP and the Hyrax data server, the architectures are generic and the analysis can be extrapolated to many different data formats, web APIs, and data servers.

  3. Carbon footprint reductions via grid energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Trevor S. [Naval Facilities Engineering Service Center, 1100 23rd Avenue, Port Huenem, CA 93043 (United States); Department of Management, Marketing, and Business Administration, University of Houston - Downtown, Houston, Texas (United States); Weeks, Kelly [Department of Maritime Administration, Texas A and M University at Galveston, Galveston, TX 77553 (United States); Tucker, Coleman [Department of Management, Marketing, and Business Administration, University of Houston - Downtown, Houston, Texas 77002 (United States)

    2011-07-01

    This effort presents a framework for reducing carbon emissions through the use of large-scale grid-energy-storage (GES) systems. The specific questions under investigation herein are as follows: Is it economically sound to invest in a GES system and is the system at least carbon footprint neutral? This research will show the answer to both questions is in the affirmative. Scilicet, when utilized judiciously, grid energy storage systems can be both net present value positive as well as be total carbon footprint negative. The significant contribution herein is a necessary and sufficient condition for achieving carbon footprint reductions via grid energy storage systems.

  4. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  5. Entropy, pumped-storage and energy system finance

    Science.gov (United States)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  6. Integrated spent fuel storage and transportation system using NUHOMS

    International Nuclear Information System (INIS)

    Lehnert, R.; McConaghy, W.; Rosa, J.

    1990-01-01

    As utilities with nuclear power plants face increasing near term spent fuel store needs, various systems for dry storage such as the NUTECH Horizontal Modular Storage (NUHOMS) system are being implemented to augment existing spent fuel pool storage capacities. These decisions are based on a number of generic and utility specific considerations including both short term and long term economics. Since the US Department of Energy (DOE) is tasked by the Nuclear Waste Policy Act with the future responsibility of transporting spent fuel from commercial nuclear power plants to a Monitored Retrievable Storage (MRS) facility anchor a permanent geologic repository, the interfaces between the utilities at-reactor dry storage system and the DOE's away-from-reactor transportation system become important. This paper presents a study of the interfaces between the current at-reactor NUHOMS system and the future away-from-reactor DOE transportation system being developed under the Office of Civilian Radioactive Waste Management (OCRWM) program. 7 refs., 9 figs., 1 tab

  7. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  8. Design of hierarchical CuS/graphene architectures with enhanced lithium storage capability

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Caihua; Su, Dezhi [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China); Ma, Wenxian [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 (China); Zhao, Yongjie, E-mail: zhaoyjpeace@gmail.com [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China); Yan, Dong [Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084 (China); Li, Jingbo; Jin, Haibo [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China)

    2017-05-01

    Highlights: • A delicate route was proposed for rational design of CuS/graphene composite. • Hierarchical CuS was composed of large amounts of well-arranged nanosheets. • The rationally designed structure of composite offered stable-hosts for Li{sup +} insertion. • The graphene constructed conductive paths and a network for fast transport of Li{sup +}. • The presence of the graphene in the composite reduced the dissolution of polysulfides. - Abstract: Metal-sulfides electrode materials usually suffer from poor cyclability and low rate capability in rechargeable batteries as a result of the pulverization of active materials and the loss of sulfur material induced by polysulfide dissolution. Herein, we reported a delicate and scalable route for rational design of CuS/graphene composites. Hierarchical CuS microparticles comprising of large amounts of self-assembled and well-arranged nanosheets uniformly mixed with flexible graphene layers. The obtained CuS/graphene electrodes exhibited high specific capacities, excellent cycling stability and desirable rate capability when being evaluated as anode materials for lithium-ion batteries. The high specific capacities of 568 mA h g{sup −1} after 100 cycles at 50 mA g{sup −1} and 143 mA h g{sup −1} at 1000 mA g{sup −1} (in rate testing) were achieved, suggesting a very promising candidate for high-performance lithium-ion batteries. The rationally designed structures of the CuS/graphene composites offered stable-hosts for Li{sup +} insertion and alleviated the volume changes upon cycling. The presence of the graphene in composite not only constructed conductive paths and a network for fast transport of Li{sup +}, but also effectively reduced the dissolution of polysulfides into electrolyte. This graphene-based composite with hierarchical structure could be used as a safe, low-cost, and versatile material for extensively potential applications.

  9. Design of hierarchical CuS/graphene architectures with enhanced lithium storage capability

    International Nuclear Information System (INIS)

    Ding, Caihua; Su, Dezhi; Ma, Wenxian; Zhao, Yongjie; Yan, Dong; Li, Jingbo; Jin, Haibo

    2017-01-01

    Highlights: • A delicate route was proposed for rational design of CuS/graphene composite. • Hierarchical CuS was composed of large amounts of well-arranged nanosheets. • The rationally designed structure of composite offered stable-hosts for Li + insertion. • The graphene constructed conductive paths and a network for fast transport of Li + . • The presence of the graphene in the composite reduced the dissolution of polysulfides. - Abstract: Metal-sulfides electrode materials usually suffer from poor cyclability and low rate capability in rechargeable batteries as a result of the pulverization of active materials and the loss of sulfur material induced by polysulfide dissolution. Herein, we reported a delicate and scalable route for rational design of CuS/graphene composites. Hierarchical CuS microparticles comprising of large amounts of self-assembled and well-arranged nanosheets uniformly mixed with flexible graphene layers. The obtained CuS/graphene electrodes exhibited high specific capacities, excellent cycling stability and desirable rate capability when being evaluated as anode materials for lithium-ion batteries. The high specific capacities of 568 mA h g −1 after 100 cycles at 50 mA g −1 and 143 mA h g −1 at 1000 mA g −1 (in rate testing) were achieved, suggesting a very promising candidate for high-performance lithium-ion batteries. The rationally designed structures of the CuS/graphene composites offered stable-hosts for Li + insertion and alleviated the volume changes upon cycling. The presence of the graphene in composite not only constructed conductive paths and a network for fast transport of Li + , but also effectively reduced the dissolution of polysulfides into electrolyte. This graphene-based composite with hierarchical structure could be used as a safe, low-cost, and versatile material for extensively potential applications.

  10. INFOGRAPHIC MODELING OF THE HIERARCHICAL STRUCTURE OF THE MANAGEMENT SYSTEM EXPOSED TO AN INNOVATIVE CONFLICT

    Directory of Open Access Journals (Sweden)

    Chulkov Vitaliy Olegovich

    2012-12-01

    Full Text Available This article deals with the infographic modeling of hierarchical management systems exposed to innovative conflicts. The authors analyze the facts that serve as conflict drivers in the construction management environment. The reasons for innovative conflicts include changes in hierarchical structures of management systems, adjustment of workers to new management conditions, changes in the ideology, etc. Conflicts under consideration may involve contradictions between requests placed by customers and the legislation, any risks that may originate from the above contradiction, conflicts arising from any failure to comply with any accepted standards of conduct, etc. One of the main objectives of the theory of hierarchical structures is to develop a model capable of projecting potential innovative conflicts. Models described in the paper reflect dynamic changes in patterns of external impacts within the conflict area. The simplest model element is a monad, or an indivisible set of characteristics of participants at the pre-set level. Interaction between two monads forms a diad. Modeling of situations that involve a different number of monads, diads, resources and impacts can improve methods used to control and manage hierarchical structures in the construction industry. However, in the absence of any mathematical models employed to simulate conflict-related events, processes and situations, any research into, projection and management of interpersonal and group-to-group conflicts are to be performed in the legal environment

  11. Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors

    Science.gov (United States)

    Choi, Bong Gill; Huh, Yun Suk; Hong, Won Hi; Erickson, David; Park, Ho Seok

    2013-04-01

    Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g-1, three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features.Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR

  12. Joint Planning Of Energy Storage and Transmission Considering Wind-Storage Combined System and Demand Side Response

    Science.gov (United States)

    Huang, Y.; Liu, B. Z.; Wang, K. Y.; Ai, X.

    2017-12-01

    In response to the new requirements of the operation mode of wind-storage combined system and demand side response for transmission network planning, this paper presents a joint planning of energy storage and transmission considering wind-storage combined system and demand side response. Firstly, the charge-discharge strategy of energy storage system equipped at the outlet of wind farm and demand side response strategy are analysed to achieve the best comprehensive benefits through the coordination of the two. Secondly, in the general transmission network planning model with wind power, both energy storage cost and demand side response cost are added to the objective function. Not only energy storage operation constraints and but also demand side response constraints are introduced into the constraint condition. Based on the classical formulation of TEP, a new formulation is developed considering the simultaneous addition of the charge-discharge strategy of energy storage system equipped at the outlet of the wind farm and demand side response strategy, which belongs to a typical mixed integer linear programming model that can be solved by mature optimization software. The case study based on the Garver-6 bus system shows that the validity of the proposed model is verified by comparison with general transmission network planning model. Furthermore, the results demonstrate that the joint planning model can gain more economic benefits through setting up different cases.

  13. Power Management of MEMS-Based Storage Devices for Mobile Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    2008-01-01

    Because of its small form factor, high capacity, and expected low cost, MEMS-based storage is a suitable storage technology for mobile systems. MEMS-based storage devices should also be energy efficient for deployment in mobile systems. The problem is that MEMS-based storage devices are mechanical,

  14. Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode

    Science.gov (United States)

    Zhang, Jia-Jia; Fan, Hao-Xiang; Dai, Xiao-Hu; Yuan, Shi-Jie

    2018-04-01

    Digested sludge, as the main by-product of the sewage sludge anaerobic digestion process, still contains considerable organic compounds. In this protocol, we report a facile method for preparing digested sludge-derived self-doped porous carbon material for high-performance supercapacitor electrodes via a sustainable pyrolysis/activation process. The obtained digested sludge-derived carbon material (HPDSC) exhibits versatile O-, N-doped hierarchical porous framework, high specific surface area (2103.6 m2 g-1) and partial graphitization phase, which can facilitate ion transport, provide more storage sites for electrolyte ions and enhance the conductivity of active electrode materials. The HPDSC-based supercapacitor electrodes show favourable energy storage performance, with a specific capacitance of 245 F g-1 at 1.0 A g-1 in 0.5 M Na2SO4; outstanding cycling stability, with 98.4% capacitance retention after 2000 cycles; and good rate performance (211 F g-1 at 11 A g-1). This work provides a unique self-doped three-dimensional hierarchical porous carbon material with a favourable charge storage capacity and at the same time finds a high value-added and environment-friendly strategy for disposal and recycling of digested sludge.

  15. Pulsed power generators using an inductive energy storage system

    International Nuclear Information System (INIS)

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  16. Combined storage system for LWR spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Baxter, B.J.; Ganley, J.T.; Washington, J.A.

    1983-01-01

    The MODREX storage system consists of four basic elements: (1) the storage canister, (2) the storage module, (3) the storage cask, and (4) the transport cask. The storage canister is the heart of the system and, when used in combination with the module or either of the casks, allows the MODREX system to respond quickly to varied storage system requirements. The MODREX system can be used to hold either spent fuel assemblies or canistered solidified HLW. The ability to combine a basic storage canister with either a concrete module or a metal cask provides flexibility to meet a wide range of storage requirements. The spent fuel is stored in a dry, inert atmosphere, which essentially eliminates corrosion or deterioration of the cladding during extended storage periods. The storage canister and concrete storage module provide additional barriers against radioactivity release, enhancing long-term safety. Heat dissipation is passive, eliminating the need for additional emergency cooling systems or special redundancy. Modular, expandable construction permits minimum initial investment and capital carrying charges; additional capacity is built and paid for only as it is needed, retaining flexibility. 6 references, 2 figures, 1 table

  17. Uncoupling File System Components for Bridging Legacy and Modern Storage Architectures

    Science.gov (United States)

    Golpayegani, N.; Halem, M.; Tilmes, C.; Prathapan, S.; Earp, D. N.; Ashkar, J. S.

    2016-12-01

    Long running Earth Science projects can span decades of architectural changes in both processing and storage environments. As storage architecture designs change over decades such projects need to adjust their tools, systems, and expertise to properly integrate such new technologies with their legacy systems. Traditional file systems lack the necessary support to accommodate such hybrid storage infrastructure resulting in more complex tool development to encompass all possible storage architectures used for the project. The MODIS Adaptive Processing System (MODAPS) and the Level 1 and Atmospheres Archive and Distribution System (LAADS) is an example of a project spanning several decades which has evolved into a hybrid storage architecture. MODAPS/LAADS has developed the Lightweight Virtual File System (LVFS) which ensures a seamless integration of all the different storage architectures, including standard block based POSIX compliant storage disks, to object based architectures such as the S3 compliant HGST Active Archive System, and the Seagate Kinetic disks utilizing the Kinetic Protocol. With LVFS, all analysis and processing tools used for the project continue to function unmodified regardless of the underlying storage architecture enabling MODAPS/LAADS to easily integrate any new storage architecture without the costly need to modify existing tools to utilize such new systems. Most file systems are designed as a single application responsible for using metadata to organizing the data into a tree, determine the location for data storage, and a method of data retrieval. We will show how LVFS' unique approach of treating these components in a loosely coupled fashion enables it to merge different storage architectures into a single uniform storage system which bridges the underlying hybrid architecture.

  18. Thermal Instability Induced Oriented 2D Pores for Enhanced Sodium Storage.

    Science.gov (United States)

    Kong, Lingjun; Xie, Chen-Chao; Gu, Haichen; Wang, Chao-Peng; Zhou, Xianlong; Liu, Jian; Zhou, Zhen; Li, Zhao-Yang; Zhu, Jian; Bu, Xian-He

    2018-04-19

    Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium-based metal-organic frameworks (MOFs). High-temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit-like 2D pores in vanadium oxide/porous carbon nanorods (VO x /PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VO x /PCs demonstrate high-rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs-derived composites with hierarchical porous architectures for energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  20. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  1. A Novel Pumped Hydro Combined with Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Erren Yao

    2013-03-01

    Full Text Available A novel pumped hydro combined with compressed air energy storage (PHCA system is proposed in this paper to resolve the problems of bulk energy storage in the wind power generation industry over an area in China, which is characterised by drought and water shortages. Thermodynamic analysis of the energy storage system, which focuses on the pre-set pressure, storage volume capacity, water air volume ratio, pump performance, and water turbine performance of the storage system, is also presented. This paper discovers how such parameters affect the performance of the whole system. The ideal performance of this novel system has the following advantages: a simple, highly effective and low cost structure, which is comparable to the efficiency of a traditional pumped hydro storage system. Research results show a great solution to the current storage constraints encountered in the development of the wind power industry in China, which have been widely recognised as a bottleneck in the wind energy storage industry.

  2. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  3. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...... solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out....

  4. Sparsey^TM: Spatiotemporal Event Recognition via Deep Hierarchical Sparse Distributed Codes

    Directory of Open Access Journals (Sweden)

    Gerard J Rinkus

    2014-12-01

    Full Text Available The visual cortex’s hierarchical, multi-level organization is captured in many biologically inspired computational vision models, the general idea being that progressively larger scale (spatially/temporally and more complex visual features are represented in progressively higher areas. However, most earlier models use localist representations (codes in each representational field (which we equate with the cortical macrocolumn, mac, at each level. In localism, each represented feature/concept/event (hereinafter item is coded by a single unit. The model we describe, Sparsey, is hierarchical as well but crucially, it uses sparse distributed coding (SDC in every mac in all levels. In SDC, each represented item is coded by a small subset of the mac’s units. The SDCs of different items can overlap and the size of overlap between items can be used to represent their similarity. The difference between localism and SDC is crucial because SDC allows the two essential operations of associative memory, storing a new item and retrieving the best-matching stored item, to be done in fixed time for the life of the model. Since the model’s core algorithm, which does both storage and retrieval (inference, makes a single pass over all macs on each time step, the overall model’s storage/retrieval operation is also fixed-time, a criterion we consider essential for scalability to the huge (Big Data problems. A 2010 paper described a non-hierarchical version of this model in the context of purely spatial pattern processing. Here, we elaborate a fully hierarchical model (arbitrary numbers of levels and macs per level, describing novel model principles like progressive critical periods, dynamic modulation of principal cells’ activation functions based on a mac-level familiarity measure, representation of multiple simultaneously active hypotheses, a novel method of time warp invariant recognition, and we report results showing learning/recognition of

  5. Designing Microporus Carbons for Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  6. FPGA-based prototype storage system with phase change memory

    Science.gov (United States)

    Li, Gezi; Chen, Xiaogang; Chen, Bomy; Li, Shunfen; Zhou, Mi; Han, Wenbing; Song, Zhitang

    2016-10-01

    With the ever-increasing amount of data being stored via social media, mobile telephony base stations, and network devices etc. the database systems face severe bandwidth bottlenecks when moving vast amounts of data from storage to the processing nodes. At the same time, Storage Class Memory (SCM) technologies such as Phase Change Memory (PCM) with unique features like fast read access, high density, non-volatility, byte-addressability, positive response to increasing temperature, superior scalability, and zero standby leakage have changed the landscape of modern computing and storage systems. In such a scenario, we present a storage system called FLEET which can off-load partial or whole SQL queries to the storage engine from CPU. FLEET uses an FPGA rather than conventional CPUs to implement the off-load engine due to its highly parallel nature. We have implemented an initial prototype of FLEET with PCM-based storage. The results demonstrate that significant performance and CPU utilization gains can be achieved by pushing selected query processing components inside in PCM-based storage.

  7. Automated Storage Retrieval System (ASRS) Role Towards Achievement of Safety Objective and Safety Culture in Radioactive Storage Facilities

    International Nuclear Information System (INIS)

    Mohamad Hakiman Mohd Yusoff; Nurul Wahida Ahmad Khairuddin; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin; Muhammad, Z.A.; Nur Azna Mahmud; Norfazlina Zainal Abidin

    2012-01-01

    Waste Technology Development Centre (WasTeC) has been awarded with quality management system ISO 9001:2000 in June 2004 or now known as ISO 9001:2008. The scope of the unit's ISO certification is radioactive waste management and storage of radioactive material. To meet the objectives and requirements ISO 9001:2008, WasTeC has started a project known as Automated Storage and Retrieval System (ASRS). ASRS is a computing controlled method for automatically depositing and retrieving waste from defined locations. The system is used to replace the existing process of storage and retrieval of radioactive waste at storage facility at block 33.The main objective of this project is to reduced the radiation exposure to the worker and potential forklift accident occur during storage and retrieval of the radioactive waste. By using the ASRS system, WasTeC/ Nuclear Malaysia can provide a safe storage of radioactive waste and the use of this system can eliminate the repeat handling and can improve productivity. (author)

  8. Entropy, pricing and macroeconomics of pumped-storage systems

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2014-05-01

    We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir's water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes -such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir's capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology. Keywords: Entropy, uncertainty, pricing, hub energy resource, RES, energy storage, capacity scarcity, macroeconomics

  9. Toxicity of systems for energy generation and storage

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.

    1979-01-01

    This section contains summaries of research on assessment of health and environmental effects of electric storage systems, and the metabolism and toxicity of metal compounds associated with energy production and storage. The first project relates to the production and use of electric storage battery systems. The second project deals with the effects of pregnancy and lactation on the gastrointestinal absorption, tissue distribution, and toxic effects of metals (Cd). Also included in this study is work on the absorption of actinides ( 239 Pu)

  10. Long-term cryogenic space storage system

    Science.gov (United States)

    Hopkins, R. A.; Chronic, W. L.

    1973-01-01

    Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.

  11. Multiple-Time-Scales Hierarchical Frequency Stability Control Strategy of Medium-Voltage Isolated Microgrid

    DEFF Research Database (Denmark)

    Zhao, Zhuoli; Yang, Ping; Guerrero, Josep M.

    2016-01-01

    In this paper, an islanded medium-voltage (MV) microgrid placed in Dongao Island is presented, which integrates renewable-energy-based distributed generations (DGs), energy storage system (ESS), and local loads. In an isolated microgrid without connection to the main grid to support the frequency......, it is more complex to control and manage. Thus in order to maintain the frequency stability in multiple-time-scales, a hierarchical control strategy is proposed. The proposed control architecture divides the system frequency in three zones: (A) stable zone, (B) precautionary zone and (C) emergency zone...... of Zone B. Theoretical analysis, time-domain simulation and field test results under various conditions and scenarios in the Dongao Island microgrid are presented to prove the validity of the introduced control strategy....

  12. Artificial 3D hierarchical and isotropic porous polymeric materials

    KAUST Repository

    Chisca, Stefan; Musteata, Valentina-Elena; Sougrat, Rachid; Behzad, Ali Reza; Nunes, Suzana Pereira

    2018-01-01

    Hierarchical porous materials that replicate complex living structures are attractive for a wide variety of applications, ranging from storage and catalysis to biological and artificial systems. However, the preparation of structures with a high level of complexity and long-range order at the mesoscale and microscale is challenging. We report a simple, nonextractive, and nonreactive method used to prepare three-dimensional porous materials that mimic biological systems such as marine skeletons and honeycombs. This method exploits the concurrent occurrence of the self-assembly of block copolymers in solution and macrophase separation by nucleation and growth. We obtained a long-range order of micrometer-sized compartments. These compartments are interconnected by ordered cylindrical nanochannels. The new approach is demonstrated using polystyrene-b-poly(t-butyl acrylate), which can be further explored for a broad range of applications, such as air purification filters for viruses and pollution particle removal or growth of bioinspired materials for bone regeneration.

  13. Artificial 3D hierarchical and isotropic porous polymeric materials

    KAUST Repository

    Chisca, Stefan

    2018-05-11

    Hierarchical porous materials that replicate complex living structures are attractive for a wide variety of applications, ranging from storage and catalysis to biological and artificial systems. However, the preparation of structures with a high level of complexity and long-range order at the mesoscale and microscale is challenging. We report a simple, nonextractive, and nonreactive method used to prepare three-dimensional porous materials that mimic biological systems such as marine skeletons and honeycombs. This method exploits the concurrent occurrence of the self-assembly of block copolymers in solution and macrophase separation by nucleation and growth. We obtained a long-range order of micrometer-sized compartments. These compartments are interconnected by ordered cylindrical nanochannels. The new approach is demonstrated using polystyrene-b-poly(t-butyl acrylate), which can be further explored for a broad range of applications, such as air purification filters for viruses and pollution particle removal or growth of bioinspired materials for bone regeneration.

  14. Artificial 3D hierarchical and isotropic porous polymeric materials.

    Science.gov (United States)

    Chisca, Stefan; Musteata, Valentina-Elena; Sougrat, Rachid; Behzad, Ali Reza; Nunes, Suzana P

    2018-05-01

    Hierarchical porous materials that replicate complex living structures are attractive for a wide variety of applications, ranging from storage and catalysis to biological and artificial systems. However, the preparation of structures with a high level of complexity and long-range order at the mesoscale and microscale is challenging. We report a simple, nonextractive, and nonreactive method used to prepare three-dimensional porous materials that mimic biological systems such as marine skeletons and honeycombs. This method exploits the concurrent occurrence of the self-assembly of block copolymers in solution and macrophase separation by nucleation and growth. We obtained a long-range order of micrometer-sized compartments. These compartments are interconnected by ordered cylindrical nanochannels. The new approach is demonstrated using polystyrene- b -poly( t -butyl acrylate), which can be further explored for a broad range of applications, such as air purification filters for viruses and pollution particle removal or growth of bioinspired materials for bone regeneration.

  15. Hierarchical Downlink Resource Management Framework for OFDMA based WiMAX Systems

    DEFF Research Database (Denmark)

    Wang, Hua; Iversen, Villy Bæk

    2008-01-01

    IEEE 802.16, known as WiMAX, has received much attention for its capability to support multiple types of applications with diverse QoS requirements. Beyond what the standard has defined, radio resource management (RRM) still remains an open issue. In this paper, we propose a hierarchical downlink...... belonging to different service classes with the objective of increasing the spectral efficiency while satisfying the diverse QoS requirements in each service class. CAC highlights how to limit the number of ongoing connections preventing the system capacity from being overused. Through system...

  16. Simulation study of an automated storage/retrieval system

    NARCIS (Netherlands)

    Berg, van den J.P.; Gademann, A.J.R.M.

    2000-01-01

    In this paper we present a simulation study of an automated storage/retrieval system and examine a wide variety of control policies. We compare several storage location assignment policies. For the class-based storage policy, we apply a recent algorithm that enables us to evaluate the trade-off

  17. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature...... from solid to liquid form (Fig. 1). Keeping the temperature as low as possible is an efficient way to reduce the heat loss from the storage. Furthermore, the PCM storage might be smaller than the equivalent water storage as more energy can be stored per volume. If the PCM further has the possibility...... systems through further improvement of water based storages and in parallel to investigate the potential of using storage designs with phase change materials, PCM. The advantage of phase change materials is that large amounts of energy can be stored without temperature increase when the material is going...

  18. Research on Battery Energy Storage System Based on User Side

    Science.gov (United States)

    Wang, Qian; Zhang, Yichi; Yun, Zejian; Wang, Xuguang; Zhang, Dong; Bian, Di

    2018-01-01

    This paper introduces the effect of user side energy storage on the user side and the network side, a battery energy storage system for the user side is designed. The main circuit topology of the battery energy storage system based on the user side is given, the structure is mainly composed of two parts: DC-DC two-way half bridge converter and DC-AC two-way converter, a control strategy combining battery charging and discharging characteristics is proposed to decouple the grid side and the energy storage side, and the block diagram of the charging and discharging control of the energy storage system is given. The simulation results show that the battery energy storage system of the user side can not only realize reactive power compensation of low-voltage distribution network, but also improve the power quality of the users.

  19. Energy storage systems: power grid and energy market use cases

    Directory of Open Access Journals (Sweden)

    Komarnicki Przemysław

    2016-09-01

    Full Text Available Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.

  20. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    Science.gov (United States)

    Peng, Jiankun; He, Hongwen; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved. PMID:26236772

  1. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle.

    Science.gov (United States)

    Peng, Jiankun; He, Hongwen; Liu, Wei; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.

  2. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Jiankun Peng

    2015-01-01

    Full Text Available This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.

  3. Chemical heat pump and chemical energy storage system

    Science.gov (United States)

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  4. Hierarchical Control for Optimal and Distributed Operation of Microgrid Systems

    DEFF Research Database (Denmark)

    Meng, Lexuan

    manages the power flow with external grids, while the economic and optimal operation of MGs is not guaranteed by applying the existing schemes. Accordingly, this project dedicates to the study of real-time optimization methods for MGs, including the review of optimization algorithms, system level...... mathematical modeling, and the implementation of real-time optimization into existing hierarchical control schemes. Efficiency enhancement in DC MGs and optimal unbalance compensation in AC MGs are taken as the optimization objectives in this project. Necessary system dynamic modeling and stability analysis......, a discrete-time domain modeling method is proposed to establish an accurate system level model. Taking into account the different sampling times of real world plant, digital controller and communication devices, the system is modeled with these three parts separately, and with full consideration...

  5. New data storage and retrieval systems for JET data

    Energy Technology Data Exchange (ETDEWEB)

    Layne, Richard E-mail: richard.layne@ukaea.org.uk; Wheatley, Martin E-mail: martin.wheatley@ukaea.org.uk

    2002-06-01

    Since the start of the Joint European Torus (JET), an IBM mainframe has been the main platform for data analysis and storage (J. Comput. Phys. 73 (1987) 85). The mainframe was removed in June 2001 and Solaris and Linux are now the main data storage and analysis platforms. New data storage and retrieval systems have therefore been developed: the Data Warehouse, the JET pulse file server, and the processed pulse file system. In this paper, the new systems will be described, and the design decisions that led to the final systems will be outlined.

  6. New data storage and retrieval systems for JET data

    International Nuclear Information System (INIS)

    Layne, Richard; Wheatley, Martin

    2002-01-01

    Since the start of the Joint European Torus (JET), an IBM mainframe has been the main platform for data analysis and storage (J. Comput. Phys. 73 (1987) 85). The mainframe was removed in June 2001 and Solaris and Linux are now the main data storage and analysis platforms. New data storage and retrieval systems have therefore been developed: the Data Warehouse, the JET pulse file server, and the processed pulse file system. In this paper, the new systems will be described, and the design decisions that led to the final systems will be outlined

  7. Detailed modeling of superconducting magnetic energy storage (SMES) system

    NARCIS (Netherlands)

    Chen, L.; Liu, Y.; Arsoy, A.B.; Ribeiro, P.F.; Steurer, M.; Iravani, M.R.

    2006-01-01

    This paper presents a detailed model for simulation of a Superconducting Magnetic Energy Storage (SMES) system. SMES technology has the potential to bring real power storage characteristic to the utility transmission and distribution systems. The principle of SMES system operation is reviewed in

  8. Solar hydrogen hybrid system with carbon storage

    International Nuclear Information System (INIS)

    Zini, G.; Marazzi, R.; Pedrazzi, S.; Tartarini, P.

    2009-01-01

    A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

  9. Pseudocapacitive and hierarchically ordered porous electrode materials supercapacitors

    Science.gov (United States)

    Saruhan, B.; Gönüllü, Y.; Arndt, B.

    2013-05-01

    Commercially available double layer capacitors store energy in an electrostatic field. This forms in the form of a double layer by charged particles arranged on two electrodes consisting mostly of active carbon. Such double layer capacitors exhibit a low energy density, so that components with large capacity according to large electrode areas are required. Our research focuses on the development of new electrode materials to realize the production of electrical energy storage systems with high energy density and high power density. Metal oxide based electrodes increase the energy density and the capacitance by addition of pseudo capacitance to the static capacitance present by the double layer super-capacitor electrodes. The so-called hybrid asymmetric cell capacitors combine both types of energy storage in a single component. In this work, the production routes followed in our laboratories for synthesis of nano-porous and aligned metal oxide electrodes using the electrochemical and sputter deposition as well as anodization methods will be described. Our characterisation studies concentrate on electrodes having redox metal-oxides (e.g. MnOx and WOx) and hierarchically aligned nano-porous Li-doped TiO2-NTs. The material specific and electrochemical properties achieved with these electrodes will be presented.

  10. Activation of hydrogen storage materials in the Li-Mg-N-H system: Effect on storage properties

    International Nuclear Information System (INIS)

    Yang, Jun; Sudik, Andrea; Wolverton, C.

    2007-01-01

    We investigate the thermodynamics, kinetics, and capacity of the hydrogen storage reaction: Li 2 Mg(NH) 2 + 2H 2 ↔ Mg(NH 2 ) 2 + 2LiH. Starting with LiNH 2 and MgH 2 , two distinct procedures have been previously proposed for activating samples to induce the reversible storage reaction. We clarify here the impact of these two activation procedures on the resulting capacity for the Li-Mg-N-H reaction. Additionally, we measure the temperature-dependent kinetic absorption data for this hydrogen storage system. Finally, our experiments confirm the previously reported formation enthalpy (ΔH), hydrogen capacity, and pressure-composition-isotherm (PCI) data, and suggest that this system represents a kinetically (but not thermodynamically) limited system for vehicular on-board storage applications

  11. Induction Motors Most Efficient Operation Points in Pumped Storage Systems

    DEFF Research Database (Denmark)

    Busca-Forcos, Andreea; Marinescu, Corneliu; Busca, Cristian

    2015-01-01

    A clear focus is nowadays on developing and improving the energy storage technologies. Pumped storage is a well-established one, and is capable of enhancing the integration of renewable energy sources. Pumped storage has an efficiency between 70-80%, and each of its elements affects it. Increased...... efficiency is desired especially when operating with renewable energy systems, which present low energy conversion factor (up to 50% - performance coefficient for wind turbines, and efficiency up to 40% for photovoltaic systems). In this paper the most efficient operation points of the induction motors...... in pumped storage systems are established. The variable speed operation of the pumped storage systems and motor loading conditions for pump applications have been the key factors for achieving the purpose of the paper....

  12. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  13. Biased trapping issue on weighted hierarchical networks

    Indian Academy of Sciences (India)

    archical networks which are based on the classic scale-free hierarchical networks. ... Weighted hierarchical networks; weight-dependent walks; mean first passage ..... The weighted networks can mimic some real-world natural and social systems to ... the Priority Academic Program Development of Jiangsu Higher Education ...

  14. Design and evaluation of a microgrid for PEV charging with flexible distribution of energy sources and storage

    Science.gov (United States)

    Pyne, Moinak

    This thesis aspires to model and control, the flow of power in a DC microgrid. Specifically, the energy sources are a photovoltaic system and the utility grid, a lead acid battery based energy storage system and twenty PEV charging stations as the loads. Theoretical principles of large scale state space modeling are applied to model the considerable number of power electronic converters needed for controlling voltage and current thresholds. The energy storage system is developed using principles of neural networks to facilitate a stable and uncomplicated model of the lead acid battery. Power flow control is structured as a hierarchical problem with multiple interactions between individual components of the microgrid. The implementation is done using fuzzy logic with scheduling the maximum use of available solar energy and compensating demand or excess power with the energy storage system, and minimizing utility grid use, while providing multiple speeds of charging the PEVs.

  15. Storage monitoring systems for the year 2000

    International Nuclear Information System (INIS)

    Nilsen, C.; Pollock, R.

    1997-01-01

    In September 1993, President Clinton stated the US would ensure that its fissile material meet the highest standards of safety, security, and international accountability. Frequent human inspection of the material could be used to ensure these standards. However, it may be more effective and less expensive to replace these manual inspections with virtual inspections via remote monitoring technologies. To prepare for this future, Sandia National Laboratories has developed several monitoring systems, including the Modular Integrated Monitoring System (MIMS) and Project Straight-Line. The purpose of this paper is to describe a Sandia effort that merges remote monitoring technologies into a comprehensive storage monitoring system that will meet the near-term as well as the long-term requirements for these types of systems. Topics discussed include: motivations for storage monitoring systems to include remote monitoring; an overview of the needs and challenges of providing a storage monitoring system for the year 2000; an overview of how the MIMS and Straight-Line can be enhanced so that together they create an integrated and synergistic information system by the end of 1997; and suggested milestones for 1998 and 1999 to assure steady progress in preparing for the needs of 2000

  16. Numerical modeling of underground storage system for natural gas

    Science.gov (United States)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  17. Mass-storage management for distributed image/video archives

    Science.gov (United States)

    Franchi, Santina; Guarda, Roberto; Prampolini, Franco

    1993-04-01

    The realization of image/video database requires a specific design for both database structures and mass storage management. This issue has addressed the project of the digital image/video database system that has been designed at IBM SEMEA Scientific & Technical Solution Center. Proper database structures have been defined to catalog image/video coding technique with the related parameters, and the description of image/video contents. User workstations and servers are distributed along a local area network. Image/video files are not managed directly by the DBMS server. Because of their wide size, they are stored outside the database on network devices. The database contains the pointers to the image/video files and the description of the storage devices. The system can use different kinds of storage media, organized in a hierarchical structure. Three levels of functions are available to manage the storage resources. The functions of the lower level provide media management. They allow it to catalog devices and to modify device status and device network location. The medium level manages image/video files on a physical basis. It manages file migration between high capacity media and low access time media. The functions of the upper level work on image/video file on a logical basis, as they archive, move and copy image/video data selected by user defined queries. These functions are used to support the implementation of a storage management strategy. The database information about characteristics of both storage devices and coding techniques are used by the third level functions to fit delivery/visualization requirements and to reduce archiving costs.

  18. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  19. Biomimetic "Cactus Spine" with Hierarchical Groove Structure for Efficient Fog Collection.

    Science.gov (United States)

    Bai, Fan; Wu, Juntao; Gong, Guangming; Guo, Lin

    2015-07-01

    A biomimetic "cactus spine" with hierarchical groove structure is designed and fabricated using simple electrospinning. This novel artificial cactus spine possesses excellent fog collection and water transportation ability. A model cactus equipped with artificial spines also shows a great water storage capacity. The results can be helpful in the development of water collectors and may make a contribution to the world water crisis.

  20. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.; Hagstroem, M.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The main technical constraint in solar energy systems which operate around the year is the lack of suitable long-term energy storage. Conventional solutions to overcome the problem of seasonal storage in PV power systems are to use oversized batteries as a seasonal energy storage, or to use a diesel back-up generator. However, affordable lead-acid batteries are not very suitable for seasonal energy storage because of a high self-discharge rate and enhanced deterioration and divergence of the single cells during prolonged periods of low state of charge in times of low irradiation. These disadvantages can be avoided by a back-up system, e.g. a diesel generator, which car supply energy to the loads and charge the battery to the full state of charge to avoid the above mentioned disadvantages. Unfortunately, diesel generators have several disadvantages, e.g. poor starting reliability, frequent need for maintenance and noise

  1. Monitored Retrievable Storage System Requirements Document. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design.

  2. Sequencing dynamic storage systems with multiple lifts and shuttles

    NARCIS (Netherlands)

    Carlo, Hector J.; Vis, Iris F. A.

    2012-01-01

    New types of Automated Storage and Retrieval Systems (AS/RS) able to achieve high throughput are continuously being developed and require new control polices to take full advantage of the developed system. In this paper, a dynamic storage system has been studied as developed by Vanderlande

  3. Pattern overlap implies runaway growth in hierarchical tile systems

    Directory of Open Access Journals (Sweden)

    David Doty

    2015-11-01

    Full Text Available We show that in the hierarchical tile assembly model, if there is a producible assembly that overlaps a nontrivial translation of itself consistently (i.e., the pattern of tile types in the overlap region is identical in both translations, then arbitrarily large assemblies are producible. The significance of this result is that tile systems intended to controllably produce finite structures must avoid pattern repetition in their producible assemblies that would lead to such overlap.This answers an open question of Chen and Doty (SODA 2012, who showed that so-called "partial-order" systems producing a unique finite assembly and avoiding such overlaps must require time linear in the assembly diameter. An application of our main result is that any system producing a unique finite assembly is automatically guaranteed to avoid such overlaps, simplifying the hypothesis of Chen and Doty's main theorem.

  4. The Impact Of Optical Storage Technology On Image Processing Systems

    Science.gov (United States)

    Garges, Daniel T.; Durbin, Gerald T.

    1984-09-01

    The recent announcement of commercially available high density optical storage devices will have a profound impact on the information processing industry. Just as the initial introduction of random access storage created entirely new processing strategies, optical technology will allow dramatic changes in the storage, retrieval, and dissemination of engineering drawings and other pictorial or text-based documents. Storage Technology Corporation has assumed a leading role in this arena with the introduction of the 7600 Optical Storage Subsystem, and the formation of StorageTek Integrated Systems, a subsidiary chartered to incorporate this new technology into deliverable total systems. This paper explores the impact of optical storage technology from the perspective of a leading-edge manufacturer and integrator.

  5. Economic analysis of using above ground gas storage devices for compressed air energy storage system

    Science.gov (United States)

    Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing

    2014-12-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.

  6. Economic feasibility of thermal energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Habeebullah, B.A. [Faculty of Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)

    2007-07-01

    This paper investigates the economic feasibility of both building an ice thermal storage and structure a time of rate tariff for the unique air conditioning (A/C) plant of the Grand Holy Mosque of Makkah, Saudi Arabia. The features of the building are unique where the air-conditioned 39,300 m{sup 2} zone is open to the atmosphere and the worshippers fully occupy the building five times a day, in addition hundreds of thousands of worshippers attend the blessed weekend's prayer at noontime, which escalates the peak electricity load. For economic analysis, the objective function is the daily electricity bill that includes the operation cost and the capital investment of the ice storage system. The operation cost is function of the energy imported for operating the plant in which the tariff structure, number of operating hours and the ambient temperature are parameters. The capital recovery factor is calculated for 10% interest rate and payback period of 10 years. Full and partial load storage scenarios are considered. The results showed that with the current fixed electricity rate (0.07 $/kWh), there is no gain in introducing ice storage systems for both storage schemes. Combining energy storage and an incentive time structured rate showed reasonable daily bill savings. For base tariff of 0.07 $/kWh during daytime operation and 0.016 $/kWh for off-peak period, savings were achieved for full load storage scenario. Different tariff structure is discussed and the break-even nighttime rate was determined (varies between 0.008 and 0.03 $/kWh). Partial load storage scenario showed to be unattractive where the savings for the base structured tariff was insignificant. (author)

  7. Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode.

    Science.gov (United States)

    Zhang, Jia-Jia; Fan, Hao-Xiang; Dai, Xiao-Hu; Yuan, Shi-Jie

    2018-04-01

    Digested sludge, as the main by-product of the sewage sludge anaerobic digestion process, still contains considerable organic compounds. In this protocol, we report a facile method for preparing digested sludge-derived self-doped porous carbon material for high-performance supercapacitor electrodes via a sustainable pyrolysis/activation process. The obtained digested sludge-derived carbon material (HPDSC) exhibits versatile O-, N-doped hierarchical porous framework, high specific surface area (2103.6 m 2  g -1 ) and partial graphitization phase, which can facilitate ion transport, provide more storage sites for electrolyte ions and enhance the conductivity of active electrode materials. The HPDSC-based supercapacitor electrodes show favourable energy storage performance, with a specific capacitance of 245 F g -1 at 1.0 A g -1 in 0.5 M Na 2 SO 4 ; outstanding cycling stability, with 98.4% capacitance retention after 2000 cycles; and good rate performance (211 F g -1 at 11 A g -1 ). This work provides a unique self-doped three-dimensional hierarchical porous carbon material with a favourable charge storage capacity and at the same time finds a high value-added and environment-friendly strategy for disposal and recycling of digested sludge.

  8. Graphene-Based Systems for Energy Storage

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Phillips, James, III; Hogue, Michael; Kaner, Richard B.; El-Kady, Maher

    2016-01-01

    Development of graphene-based energy storage devices based on the Laser Scribe system developed by the University of California Los Angeles. These devices These graphene-based devices store charge on graphene sheets and take advantage of the large accessible surface area of graphene (2,600 m2g) to increase the electrical energy that can be stored. The proposed devices should have the electrical storage capacity of thin-film-ion batteries but with much shorter charge discharge cycle times as well as longer lives The proposed devices will be carbon-based and so will not have the same issues with flammability or toxicity as the standard lithium-based storage cells.

  9. A new compressed air energy storage refrigeration system

    International Nuclear Information System (INIS)

    Wang Shenglong; Chen Guangming; Fang Ming; Wang Qin

    2006-01-01

    In this study, a new compressed air energy storage (CAES) refrigeration system is proposed for electrical power load shifting application. It is a combination of a gas refrigeration cycle and a vapor compression refrigeration cycle. Thermodynamic calculations are conducted to investigate the performance of this system. Economic analysis is performed to study the operating cost of the system, and comparison is made with a vapor compression refrigeration system and an ice storage refrigeration system. The results indicate that the CAES refrigeration system has the advantages of simple structure, high efficiency and low operating cost

  10. Development of HF-systems for electron storage systems

    International Nuclear Information System (INIS)

    Androsov, V.P.; Karnaukhov, I.M.; Popkov, Yu.P.; Reva, S.N.; Telegin, Yu.N.

    1999-01-01

    Development of HF systems for electron storages is described. Its final task is construction of 100 kW HF station at 699,3 MHz frequency consisting from low-power HF system, klystron amplifier, wave line for HF power transmission and accelerating section. Functional parameters of HF station are given

  11. Hierarchical Velocity Control Based on Differential Flatness for a DC/DC Buck Converter-DC Motor System

    Directory of Open Access Journals (Sweden)

    R. Silva-Ortigoza

    2014-01-01

    Full Text Available This paper presents a hierarchical controller that carries out the angular velocity trajectory tracking task for a DC motor driven by a DC/DC Buck converter. The high level control is related to the DC motor and the low level control is dedicated to the DC/DC Buck converter; both controls are designed via differential flatness. The high level control provides a desired voltage profile for the DC motor to achieve the tracking of a desired angular velocity trajectory. Then, a low level control is designed to ensure that the output voltage of the DC/DC Buck converter tracks the voltage profile imposed by the high level control. In order to experimentally verify the hierarchical controller performance, a DS1104 electronic board from dSPACE and Matlab-Simulink are used. The switched implementation of the hierarchical average controller is accomplished by means of pulse width modulation. Experimental results of the hierarchical controller for the velocity trajectory tracking task show good performance and robustness against the uncertainties associated with different system parameters.

  12. Maximum entropy approach to H-theory: Statistical mechanics of hierarchical systems.

    Science.gov (United States)

    Vasconcelos, Giovani L; Salazar, Domingos S P; Macêdo, A M S

    2018-02-01

    A formalism, called H-theory, is applied to the problem of statistical equilibrium of a hierarchical complex system with multiple time and length scales. In this approach, the system is formally treated as being composed of a small subsystem-representing the region where the measurements are made-in contact with a set of "nested heat reservoirs" corresponding to the hierarchical structure of the system, where the temperatures of the reservoirs are allowed to fluctuate owing to the complex interactions between degrees of freedom at different scales. The probability distribution function (pdf) of the temperature of the reservoir at a given scale, conditioned on the temperature of the reservoir at the next largest scale in the hierarchy, is determined from a maximum entropy principle subject to appropriate constraints that describe the thermal equilibrium properties of the system. The marginal temperature distribution of the innermost reservoir is obtained by integrating over the conditional distributions of all larger scales, and the resulting pdf is written in analytical form in terms of certain special transcendental functions, known as the Fox H functions. The distribution of states of the small subsystem is then computed by averaging the quasiequilibrium Boltzmann distribution over the temperature of the innermost reservoir. This distribution can also be written in terms of H functions. The general family of distributions reported here recovers, as particular cases, the stationary distributions recently obtained by Macêdo et al. [Phys. Rev. E 95, 032315 (2017)10.1103/PhysRevE.95.032315] from a stochastic dynamical approach to the problem.

  13. Kinetic Storage as an Energy Management System

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.

    2007-01-01

    The possibility of storing energy is increasingly important and necessary. The reason is that storage modifies the basic equation of the energy production balance which states that the power produced should equal the power consumed. When there is a storage device in the grid, this equation is modified such that, in the new balance, the energy produced should equal the algebraic sum of the energy consumed and the energy stored (positive in storage phase and negative when released). This means that the generation profile can be uncoupled from the consumption profile, with the resulting improvement of efficiency. Even small-sized storage systems can be very effective. (Author) 10 refs

  14. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    OpenAIRE

    Peng, Jiankun; He, Hongwen; Liu, Wei; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking s...

  15. Compressed gas fuel storage system

    Science.gov (United States)

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  16. Fast multichannel analog storage system

    International Nuclear Information System (INIS)

    Freytag, D.R.

    1982-11-01

    A Multichannel Analog Storage System based on a commercial 32-channel parallel in/serial out (PISO) analog shift register is described. The basic unit is a single width CAMAC module containing 512 analog cells and the associated logic for data storage and subsequent readout. At sampling rates of up to 30 MHz the signals are strobed directly into the PISO. At higher rates signals are strobed into a fast presampling stage and subsequently transferred in block form into an array of PISO's. Sampling rates of 300 MHz have been achieved with the present device and 1000 MHz are possible with improved signal drivers. The system is well suited for simultaneous handling of many signal channels with moderate numbers of samples in each channel. RMS noise over full scale signal has been measured as 1:3000 (approx. = 11 bit). However, nonlinearities in the response and differences in sensitivity of the analog cells require an elaborate calibration system in order to realize 11 bit accuracy for the analog information

  17. A Network-Attached Storage System Supporting Guaranteed QoS

    Institute of Scientific and Technical Information of China (English)

    KONG Hua-feng; YU Sheng-sheng; LU Hong-wei

    2005-01-01

    We propose a network-attached storage system that can support guaranteed Quality of Service (QoS), called POPNet Storage. The special policy of date access and disk scheduling is enable users to access files quickly and directly with guaranteed QoS in the POPNet Storage. The POPNet Storage implements a measurement-based admission control algorithm (PSMBAC) to determine whether to admit a new data access request stream and admit as many requests as possible while meeting the QoS guarantees to its clients. The data reconstruction algorithms in the POPNet Storage also put more emphasis on data availability and guaranteed QoS, thus it is designed to complete the data recovery as soon as possible and at the same time provide the guaranteed QoS for high-priority data access. The experiment results show that the POPNet Storage can provide more significant performance, reliability, and guaranteed QoS than conventional storage systems.

  18. Chelonia: A self-healing, replicated storage system

    International Nuclear Information System (INIS)

    Kerr Nilsen, Jon; Read, Alex; Toor, Salman; Nagy, Zsombor

    2011-01-01

    Chelonia is a novel grid storage system designed to fill the requirements gap between those of large, sophisticated scientific collaborations which have adopted the grid paradigm for their distributed storage needs, and of corporate business communities gravitating towards the cloud paradigm. Chelonia is an integrated system of heterogeneous, geographically dispersed storage sites which is easily and dynamically expandable and optimized for high availability and scalability. The architecture and implementation in term of web-services running inside the Advanced Resource Connector Hosting Environment Dameon (ARC HED) are described and results of tests in both local -area and wide-area networks that demonstrate the fault tolerance, stability and scalability of Chelonia will be presented. In addition, example setups for production deployments for small and medium-sized VO's are described.

  19. Chelonia: A self-healing, replicated storage system

    Science.gov (United States)

    Kerr Nilsen, Jon; Toor, Salman; Nagy, Zsombor; Read, Alex

    2011-12-01

    Chelonia is a novel grid storage system designed to fill the requirements gap between those of large, sophisticated scientific collaborations which have adopted the grid paradigm for their distributed storage needs, and of corporate business communities gravitating towards the cloud paradigm. Chelonia is an integrated system of heterogeneous, geographically dispersed storage sites which is easily and dynamically expandable and optimized for high availability and scalability. The architecture and implementation in term of web-services running inside the Advanced Resource Connector Hosting Environment Dameon (ARC HED) are described and results of tests in both local -area and wide-area networks that demonstrate the fault tolerance, stability and scalability of Chelonia will be presented. In addition, example setups for production deployments for small and medium-sized VO's are described.

  20. OPTIMUM HEAT STORAGE DESIGN FOR SDHW SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1997-01-01

    Two simulation models have been used to analyse the heat storage design’s influence on the thermal performance of solar domestic hot water (SDHW) systems. One model is especially designed for traditional SDHW systems based on a heat storage design where the solar heat exchanger is a built-in spiral....... The other model is especially designed for low flow SDHW systems based on a mantle tank.The tank design’s influence on the thermal performance of the SDHW systems has been investigated in a way where only one tank parameter has been changed at a time in the calculations. In this way a direct analysis...

  1. Neutronic and thermal hydraulic of dry cask storage systems

    International Nuclear Information System (INIS)

    Yavuz, U.

    2000-01-01

    Interim spent fuel storage systems must provide for the safe receipt, handling, retrieval and storage of spent nuclear fuel before reprocessing or disposal. In the context of achieving these objectives, the following features of the design are to be taken into consideration: to maintain fuel subcritical, to remove spent fuel residualheat, and to provide for radiation protection. These features in the design of a dry cask storage system were analyzed for normal operating conditions by employing COBRA-SFS, SCALE4.4 (ORIGEN, XSDOSE, CSAS6) codes. For a metal-shielded type storage system, appropriate designs, in accordance with safety assurance limits of IAEA, were obtained for spent fuel burned to 33000, 45000 and 55000 MW d/t and cooled for 5 and 10 years

  2. Bounds for the time to failure of hierarchical systems of fracture

    DEFF Research Database (Denmark)

    Gómez, J.B.; Vázquez-Prada, M.; Moreno, Y.

    1999-01-01

    an exact algebraic iterative method to compute the successive time intervals for individual breaking in systems of height n in terms of the information calculated in the previous height n - 1. As a byproduct of this method, rigorous lower and higher bounds for the time to failure of very large systems......For years limited Monte Carlo simulations have led to the suspicion that the time to failure of hierarchically organized load-transfer models of fracture is nonzero for sets of infinite size. This fact could have profound significance in engineering practice and also in geophysics. Here, we develop...

  3. Wind turbine storage systems

    International Nuclear Information System (INIS)

    Ibrahim, H.; Ilinca, A.; Perron, J.

    2005-01-01

    Electric power is often produced in locations far from the point of utilization which creates a challenge in stabilizing power grids, particularly since electricity cannot be stored. The production of decentralized electricity by renewable energy sources offers a greater security of supply while protecting the environment. Wind power holds the greatest promise in terms of environmental protection, competitiveness and possible applications. It is known that wind energy production is not always in phase with power needs because of the uncertainty of wind. For that reason, energy storage is the key for the widespread integration of wind energy into the power grids. This paper proposed various energy storage methods that can be used in combination with decentralized wind energy production where an imbalance exists between electricity production and consumption. Energy storage can play an essential role in bringing value to wind energy, particularly if electricity is to be delivered during peak hours. Various types of energy storage are already in use or are being developed. This paper identified the main characteristics of various electricity storage techniques and their applications. They include stationary or embarked storage for long or short term applications. A comparison of characteristics made it possible to determine which types of electricity storage are best suited for wind energy. These include gravity energy; thermal energy; compressed air energy; coupled storage with natural gas; coupled storage with liquefied gas; hydrogen storage for fuel cells; chemical energy storage; storage in REDOX batteries; storage by superconductive inductance; storage in supercondensers; and, storage as kinetic energy. 21 refs., 21 figs

  4. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ranjan [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: ranjan.k@ks3.ecs.kyoto-u.ac.jp; Izui, Kazuhiro [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: izui@prec.kyoto-u.ac.jp; Yoshimura, Masataka [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: yoshimura@prec.kyoto-u.ac.jp; Nishiwaki, Shinji [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shinji@prec.kyoto-u.ac.jp

    2009-04-15

    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets.

  5. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    International Nuclear Information System (INIS)

    Kumar, Ranjan; Izui, Kazuhiro; Yoshimura, Masataka; Nishiwaki, Shinji

    2009-01-01

    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets

  6. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-07-01

    Full Text Available In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP are incorporated to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In the proposed energy storage system, all power switches have zero-voltage-switching (ZVS feature at turn-on transition. Therefore, the conversion efficiency can be increased. Finally, a prototype energy storage system for wind energy conversion is built and implemented. Experimental results have verified the performance and feasibility of the proposed energy storage system for wind energy conversion.

  7. Influence of Hydrogen-Based Storage Systems on Self-Consumption and Self-Sufficiency of Residential Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Christian Pötzinger

    2015-08-01

    Full Text Available This paper analyzes the behavior of residential solar-powered electrical energy storage systems. For this purpose, a simulation model based on MATLAB/Simulink is developed. Investigating both short-time and seasonal hydrogen-based storage systems, simulations on the basis of real weather data are processed on a timescale of 15 min for a consideration period of 3 years. A sensitivity analysis is conducted in order to identify the most important system parameters concerning the proportion of consumption and the degree of self-sufficiency. Therefore, the influences of storage capacity and of storage efficiencies are discussed. A short-time storage system can increase the proportion of consumption by up to 35 percentage points compared to a self-consumption system without storage. However, the seasonal storing system uses almost the entire energy produced by the photovoltaic (PV system (nearly 100% self-consumption. Thereby, the energy drawn from the grid can be reduced and a degree of self-sufficiency of about 90% is achieved. Based on these findings, some scenarios to reach self-sufficiency are analyzed. The results show that full self-sufficiency will be possible with a seasonal hydrogen-based storage system if PV area and initial storage level are appropriate.

  8. Valuing the Resilience Provided by Solar and Battery Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mullendore, Seth [Clean Energy Group

    2018-02-05

    This paper explores the impact of valuing resilience on the economics of photovoltaics (PV) and storage systems for commercial buildings. The analysis presented here illustrates that accounting for the cost of grid power outages can change the breakeven point for PV and storage system investment, and increase the size of systems designed to deliver the greatest economic benefit over time. In other words, valuing resilience can make PV and storage systems economical in cases where they would not be otherwise. As storage costs decrease, and outages occur more frequently, PV and storage are likely to play a larger role in building design and management considerations.

  9. Cost Benefit and Alternatives Analysis of Distribution Systems with Energy Storage Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Tom; Nagarajan, Adarsh; Baggu, Murali; Bialek, Tom

    2017-06-27

    This paper explores monetized and non-monetized benefits from storage interconnected to distribution system through use cases illustrating potential applications for energy storage in California's electric utility system. This work supports SDG&E in its efforts to quantify, summarize, and compare the cost and benefit streams related to implementation and operation of energy storage on its distribution feeders. This effort develops the cost benefit and alternatives analysis platform, integrated with QSTS feeder simulation capability, and analyzed use cases to explore the cost-benefit of implementation and operation of energy storage for feeder support and market participation.

  10. Optimal control of building storage systems using both ice storage and thermal mass – Part I: Simulation environment

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A simulation environment is described to account for both passive and active thermal energy storage (TES) systems. ► Laboratory testing results have been used to validate the predictions from the simulation environment. ► Optimal control strategies for TES systems have been developed as part of the simulation environment. - Abstract: This paper presents a simulation environment that can evaluate the benefits of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs including energy and demand charges while maintaining adequate occupant comfort conditions within commercial buildings. The building thermal storage is controlled through pre-cooling strategies by setting space indoor air temperatures. The ice storage system is controlled by charging the ice tank and operating the chiller during low electrical charge periods and melting the ice during on-peak periods. Optimal controls for both building thermal storage and ice storage are developed to minimize energy charges, demand charges, or combined energy and demand charges. The results obtained from the simulation environment are validated using laboratory testing for an optimal controller.

  11. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Kenneth I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, Nicholas A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pires, Richard P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ronnebro, Ewa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-29

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design and evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.

  12. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  13. Facile Fabrication of 3D Hierarchically Porous Carbon Foam as Supercapacitor Electrode Material

    Directory of Open Access Journals (Sweden)

    Yunfang Gao

    2018-04-01

    Full Text Available A hierarchically porous 3D starch-derived carbon foam (SCF with a high specific surface area (up to 1693 m2·g−1 was first prepared by a facile solvothermal treatment, in which Na2CO3 is used as both the template and activating agent. The hierarchically porous structure and high specific area endow the SCF with favorable electrochemical properties such as a high specific capacitance of 179.6 F·g−1 at 0.5 A·g−1 and a great rate capability and cycling stability, which suggest that the material can be a promising candidate for energy storage applications.

  14. Integrated Bidding and Operating Strategies for Wind-Storage Systems

    DEFF Research Database (Denmark)

    Ding, Huajie; Pinson, Pierre; Hu, Zechun

    2016-01-01

    Due to their flexible charging and discharging capabilities, energy storage systems (ESS) are considered a promising complement to wind farms (WFs) participating in electricity markets. This paper presents integrated day-ahead bidding and real-time operation strategies for a wind-storage system...

  15. Performance characteristics of solar-photovoltaic flywheel-storage systems

    Science.gov (United States)

    Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.

    A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.

  16. Design and management of energy-efficient hybrid electrical energy storage systems

    CERN Document Server

    Kim, Younghyun

    2014-01-01

    This book covers system-level design optimization and implementation of hybrid energy storage systems. The author introduces various techniques to improve the performance of hybrid energy storage systems, in the context of design optimization and automation. Various energy storage techniques are discussed, each with its own advantages and drawbacks, offering viable, hybrid approaches to building a high performance, low cost energy storage system. Novel design optimization techniques and energy-efficient operation schemes are introduced. The author also describes the technical details of an act

  17. Optimum Design and Operation of Cyclic Storage Systems; Lumped Approach

    Directory of Open Access Journals (Sweden)

    Leila Ostadrahimi

    2007-01-01

    Full Text Available Conjunctive use of surface and groundwater resources is a preferred approach in water resources management. Compared to dam construction, groundwater has certain advantages, among which are less costs, less sedimentation and evaporation, fewer water quality problems, and less social and cultural problems. To reduce the major problems associated with the development of large-scale surface impoundment systems, cyclic storage systems can be used as an alternative. A cyclic storage system (CYCS is an integrated interactive system consisting of two subsystems of surface water storage (reservoir and groundwater; this system together with artificial recharge is able to satisfy the predefined demands with rather high reliability. In order to optimize these systems, one must consider the hydraulic interactions between all the components, but unfortunately it has been neglected in many studies. In this article, a nonlinear optimization model for design and operation of cyclic storage systems has been developed using the lumped approach. In order to evaluate the model, its results have been compared with the results of a model in which distributed approach had been deployed, and so the efficiency of lumped models to solve the problems of cyclic storage systems has been investigated.

  18. Surface-enhanced raman optical data storage system

    Science.gov (United States)

    Vo-Dinh, Tuan

    1994-01-01

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level.

  19. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  20. The design of data storage system based on Lustre for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng, E-mail: wangfeng@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Chen, Ying; Li, Shi [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Yang, Fei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Department of Computer Science, Anhui Medical University, Hefei, Anhui (China); Xiao, Bingjia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui (China)

    2016-11-15

    Highlights: • A high performance data storage system based on Lustre and InfiniBand network has been designed and implemented on EAST tokamak. • The acquired data are stored into MDSplus database continuously on Lustre storage system during discharge. • The high performance computing clusters are interconnected with data acquisition and storage system by Lustre and InfiniBand network. - Abstract: The quasi-steady state operation is one of the main purposes of EAST tokamak, and more than 400 s discharge pulse has been achieved in the past campaigns. The acquired data amount increases continuously with the discharge length. At the same time to meet the requirement of the upgrade and improvement of the diagnostic systems, more and more data acquisition channels have come into service. Some new diagnostic systems require high sampling rate data acquisition more than 10MSPS. In the last campaign 2014, the data streaming is about 2000MB/s and the total data amount is more than 100TB. How to store the huge data continuously becomes a big problem. A new data storage system based on Lustre has been designed to solve the problem. All the storage nodes and servers are connected to InfiniBand FDR 56Gbps network. The maximum parallel throughput of the total storage system is about 10GB/s. It is easy to expand the storage system by adding I/O nodes when more capacity and performance are required in the future. The new data storage system will be applied in the next campaign of EAST. The system details are given in the paper.

  1. The design of data storage system based on Lustre for EAST

    International Nuclear Information System (INIS)

    Wang, Feng; Chen, Ying; Li, Shi; Yang, Fei; Xiao, Bingjia

    2016-01-01

    Highlights: • A high performance data storage system based on Lustre and InfiniBand network has been designed and implemented on EAST tokamak. • The acquired data are stored into MDSplus database continuously on Lustre storage system during discharge. • The high performance computing clusters are interconnected with data acquisition and storage system by Lustre and InfiniBand network. - Abstract: The quasi-steady state operation is one of the main purposes of EAST tokamak, and more than 400 s discharge pulse has been achieved in the past campaigns. The acquired data amount increases continuously with the discharge length. At the same time to meet the requirement of the upgrade and improvement of the diagnostic systems, more and more data acquisition channels have come into service. Some new diagnostic systems require high sampling rate data acquisition more than 10MSPS. In the last campaign 2014, the data streaming is about 2000MB/s and the total data amount is more than 100TB. How to store the huge data continuously becomes a big problem. A new data storage system based on Lustre has been designed to solve the problem. All the storage nodes and servers are connected to InfiniBand FDR 56Gbps network. The maximum parallel throughput of the total storage system is about 10GB/s. It is easy to expand the storage system by adding I/O nodes when more capacity and performance are required in the future. The new data storage system will be applied in the next campaign of EAST. The system details are given in the paper.

  2. A novel storage system for cryoEM samples.

    Science.gov (United States)

    Scapin, Giovanna; Prosise, Winifred W; Wismer, Michael K; Strickland, Corey

    2017-07-01

    We present here a new CryoEM grid boxes storage system designed to simplify sample labeling, tracking and retrieval. The system is based on the crystal pucks widely used by the X-ray crystallographic community for storage and shipping of crystals. This system is suitable for any cryoEM laboratory, but especially for large facilities that will need accurate tracking of large numbers of samples coming from different sources. Copyright © 2017. Published by Elsevier Inc.

  3. Electromechanical Storage Systems for Application to Isolated Wind Energy Plants

    International Nuclear Information System (INIS)

    Avia Aranda, F.; Cruz Cruz, I.

    1999-01-01

    Substantial technology advances have occurred during the last decade that have had and appreciated impact on performance and feasibility of the Electromechanical Storage Systems. Improvements in magnetic bearings, composite materials, power conversion systems, microelectronic control systems and computer simulation models have increased flywheel reliability, and energy storage capacity, while decreasing overall system size, weight and cost. These improvements have brought flywheels to the forefront in the quest for alternate systems. The result of the study carried out under the scope of the SEDUCTOR, about the state of art of the Electromechanical Storage Systems is presented in this report. (Author) 15 refs

  4. Bulk energy storage increases United States electricity system emissions.

    Science.gov (United States)

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  5. Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems

    Science.gov (United States)

    Koch, Patrick Nathan

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.

  6. Mass storage system by using broadcast technology

    International Nuclear Information System (INIS)

    Fujii, Hirofumi; Itoh, Ryosuke; Manabe, Atsushi; Miyamoto, Akiya; Morita, Youhei; Nozaki, Tadao; Sasaki, Takashi; Watase, Yoshiyuko; Yamasaki, Tokuyuki

    1996-01-01

    There are many similarities between data recording systems for high energy physics and broadcast systems; the data flow is almost one-way, requires real-time recording; requires large-scale automated libraries for 24-hours operation, etc. In addition to these functional similarities, the required data-transfer and data-recording speeds are also close to those for near future experiments. For these reasons, we have collaborated with SONY Broadcast Company to study the usability of broadcast devices for our data storage system. Our new data storage system consists of high-speed data recorders and tape-robots which are originally based on the digital video-tape recorder and the tape-robot for broadcast systems. We are also studying the possibility to use these technologies for the online data-recording system for B-physics experiment at KEK. (author)

  7. Screening of metal hydride pairs for closed thermal energy storage systems

    International Nuclear Information System (INIS)

    Aswin, N.; Dutta, Pradip; Murthy, S. Srinivasa

    2016-01-01

    Thermal energy storage systems based on metal/hydrides usually are closed systems composed of two beds of metal/alloy – one meant for energy storage and the other for hydrogen storage. It can be shown that a feasible operating cycle for such a system using a pair of metals/alloys operating between specified temperature values can be ensured if the equilibrium hydrogen intake characteristics satisfy certain criteria. In addition, application of first law of thermodynamics to an idealized operating cycle can provide the upper bounds of selected performance indices, namely volumetric energy storage density, energy storage efficiency and peak discharge temperature. This is demonstrated for a representative system composed of LaNi 4.7 Al 0.3 –LaNi 5 operating between 353 K and 303 K which gave values of about 56 kW h m −3 for volumetric storage density, about 85% for energy storage efficiency and 343 K for peak discharge temperature. A system level heat and mass transfer study considering the reaction kinetics, hydrogen flow between the beds and heat exchanger models is presented which gave second level estimates of about 40 kW h m −3 for volumetric energy storage density, 73% for energy storage efficiency and 334 K for peak temperature for the representative system. The results from such studies lead to identifying metal/alloy pairs which can be shortlisted for detailed studies.

  8. Hierarchical ordering with partial pairwise hierarchical relationships on the macaque brain data sets.

    Directory of Open Access Journals (Sweden)

    Woosang Lim

    Full Text Available Hierarchical organizations of information processing in the brain networks have been known to exist and widely studied. To find proper hierarchical structures in the macaque brain, the traditional methods need the entire pairwise hierarchical relationships between cortical areas. In this paper, we present a new method that discovers hierarchical structures of macaque brain networks by using partial information of pairwise hierarchical relationships. Our method uses a graph-based manifold learning to exploit inherent relationship, and computes pseudo distances of hierarchical levels for every pair of cortical areas. Then, we compute hierarchy levels of all cortical areas by minimizing the sum of squared hierarchical distance errors with the hierarchical information of few cortical areas. We evaluate our method on the macaque brain data sets whose true hierarchical levels are known as the FV91 model. The experimental results show that hierarchy levels computed by our method are similar to the FV91 model, and its errors are much smaller than the errors of hierarchical clustering approaches.

  9. Space Station thermal storage/refrigeration system research and development

    Science.gov (United States)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  10. Lessons Learned from the Puerto Rico Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  11. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  12. Energy Management Systems and tertiary regulation in hierarchical control architectures for islanded micro-grids

    DEFF Research Database (Denmark)

    Sanseverino, Eleonora Riva; Di Silvestre, Maria Luisa; Quang, Ninh Nguyen

    2015-01-01

    In this paper, the structure of the highest level of a hierarchical control architecture for micro-grids is proposed. Such structure includes two sub-levels: the Energy Management System, EMS, and the tertiary regulation. The first devoted to energy resources allocation in each time slot based...

  13. Virtual model of an automated system for the storage of collected waste

    Directory of Open Access Journals (Sweden)

    Enciu George

    2017-01-01

    Full Text Available One of the problems identified in waste collection integrated systems is the storage space. The design process of an automated system for the storage of collected waste includes finding solutions for the optimal exploitation of the limited storage space, seen that the equipment for the loading, identification, transport and transfer of the waste covers most of the available space inside the integrated collection system. In the present paper a three-dimensional model of an automated storage system designed by the authors for a business partner is presented. The storage system can be used for the following types of waste: plastic and glass recipients, aluminium cans, paper, cardboard and WEEE (waste electrical and electronic equipment. Special attention has been given to the transfer subsystem, specific for the storage system, which should be able to transfer different types and shapes of waste. The described virtual model of the automated system for the storage of collected waste will be part of the virtual model of the entire integrated waste collection system as requested by the beneficiary.

  14. Hierarchical cellulose-derived carbon nanocomposites for electrostatic energy storage

    International Nuclear Information System (INIS)

    Kuzmenko, V; Saleem, A M; Bhaskar, A; Staaf, H; Desmaris, V; Enoksson, P

    2015-01-01

    The problem of energy storage and its continuous delivery on demand needs new effective solutions. Supercapacitors are viewed as essential devices for solving this problem since they can quickly provide high power basically countless number of times. The performance of supercapacitors is mostly dependent on the properties of electrode materials used for electrostatic charge accumulation, i.e. energy storage. This study presents new sustainable cellulose-derived materials that can be used as electrodes for supercapacitors. Nanofibrous carbon nanofiber (CNF) mats were covered with vapor-grown carbon nanotubes (CNTs) in order to get composite CNF/CNT electrode material. The resulting composite material had significantly higher surface area and was much more conductive than pure CNF material. The performance of the CNF/CNT electrodes was evaluated by various analysis methods such as cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy and cyclic stability. The results showed that the cellulose-derived composite electrodes have fairly high values of specific capacitance and power density and can retain excellent performance over at least 2 000 cycles. Therefore it can be stated that sustainable cellulose-derived CNF/CNT composites are prospective materials for supercapacitor electrodes. (paper)

  15. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials.

    Science.gov (United States)

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R

    2017-03-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.

  16. HLIBCov: Parallel Hierarchical Matrix Approximation of Large Covariance Matrices and Likelihoods with Applications in Parameter Identification

    KAUST Repository

    Litvinenko, Alexander

    2017-01-01

    matrices. Therefore covariance matrices are approximated in the hierarchical ($\\H$-) matrix format with computational cost $\\mathcal{O}(k^2n \\log^2 n/p)$ and storage $\\mathcal{O}(kn \\log n)$, where the rank $k$ is a small integer (typically $k<25$), $p

  17. Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density.

    Science.gov (United States)

    Yao, Lei; Wu, Qin; Zhang, Peixin; Zhang, Junmin; Wang, Dongrui; Li, Yongliang; Ren, Xiangzhong; Mi, Hongwei; Deng, Libo; Zheng, Zijian

    2018-03-01

    2D carbon nanomaterials such as graphene and its derivatives, have gained tremendous research interests in energy storage because of their high capacitance and chemical stability. However, scalable synthesis of ultrathin carbon nanosheets with well-defined pore architectures remains a great challenge. Herein, the first synthesis of 2D hierarchical porous carbon nanosheets (2D-HPCs) with rich nitrogen dopants is reported, which is prepared with high scalability through a rapid polymerization of a nitrogen-containing thermoset and a subsequent one-step pyrolysis and activation into 2D porous nanosheets. 2D-HPCs, which are typically 1.5 nm thick and 1-3 µm wide, show a high surface area (2406 m 2 g -1 ) and with hierarchical micro-, meso-, and macropores. This 2D and hierarchical porous structure leads to robust flexibility and good energy-storage capability, being 139 Wh kg -1 for a symmetric supercapacitor. Flexible supercapacitor devices fabricated by these 2D-HPCs also present an ultrahigh volumetric energy density of 8.4 mWh cm -3 at a power density of 24.9 mW cm -3 , which is retained at 80% even when the power density is increased by 20-fold. The devices show very high electrochemical life (96% retention after 10000 charge/discharge cycles) and excellent mechanical flexibility. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Motivation and Design of the Sirocco Storage System Version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Matthew Leon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ward, H. Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Danielson, Geoffrey Charles [Hewlett-Packard Company, Palo Alto, CA (United States)

    2015-07-01

    Sirocco is a massively parallel, high performance storage system for the exascale era. It emphasizes client-to-client coordination, low server-side coupling, and free data movement to improve resilience and performance. Its architecture is inspired by peer-to-peer and victim- cache architectures. By leveraging these ideas, Sirocco natively supports several media types, including RAM, flash, disk, and archival storage, with automatic migration between levels. Sirocco also includes storage interfaces and support that are more advanced than typical block storage. Sirocco enables clients to efficiently use key-value storage or block-based storage with the same interface. It also provides several levels of transactional data updates within a single storage command, including full ACID-compliant updates. This transaction support extends to updating several objects within a single transaction. Further support is provided for con- currency control, enabling greater performance for workloads while providing safe concurrent modification. By pioneering these and other technologies and techniques in the storage system, Sirocco is poised to fulfill a need for a massively scalable, write-optimized storage system for exascale systems. This is version 1.0 of a document reflecting the current and planned state of Sirocco. Further versions of this document will be accessible at http://www.cs.sandia.gov/Scalable_IO/ sirocco .

  19. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  20. Hierarchical control of vehicular fuel cell / battery hybrid powertrain

    OpenAIRE

    Xu, Liangfei; Ouyang, Minggao; Li, Jianqiu; Hua, Jianfeng

    2010-01-01

    In a proton exchange membrane (PEM) fuel cell/battery hybrid vehicle, a fuel cell system fulfills the stationary power demand, and a traction battery provides the accelerating power and recycles braking energy. The entire system is coordinated by a distributed control system, incorporating three key strategies: 1) vehicle control, 2) fuel cell control and 3) battery management. They make up a hierarchical control system. This paper introduces a hierarchical control strategy for a fuel cell / ...

  1. Design method for photovoltaics-battery storage systems under tropical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, A I.E.; Bassyouni, A H; Al-Motawakel, M K

    1989-01-01

    A very limited number of the available design methods can be used with confidence in sizing and costing the stand-alone photovoltaic-battery storage systems operating under the weather conditions of the tropical countries located between 0 and 30/sup 0/N. For this reason we investigated the performance and economics of various photovoltaic-battery storage system configurations. The aim was to prepare a number of sizing and costing design diagrams which detail the effect of climatic, social, and economics parameters on the choice of the stand-alone photovoltaic-battery storage systems. Our strategy was to guide designers, particularly those trying to utilize the stand-alone photovoltaic-battery storage systems in Sana'a (15/sup 0/N) and Cairo (30/sup 0/N), to the logic for selecting a system that physically and economically matches the site potential and the user's electrical needs. Considered here are the relatively small stand-alone photovoltaic-battery storage systems that can be purchased by individuals or commercial and governmental firms to supply all or part of the electrical needs consumed in residence, farms, remote rural communities, or small factories.

  2. Force balanced magnetic energy storage system

    International Nuclear Information System (INIS)

    Mawardi, O.K.; Nara, H.; Grabnic, M.

    1979-01-01

    A novel scheme of constructing coils suited for inductive storage system is described. By means of a force-compensating method, the reinforcement structure can be made considerably smaller than that needed for conventional coils. The economics of this system is shown to be capable of achieving savings of upwards of 40% when compared to a conventional system

  3. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    Science.gov (United States)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  4. Small magnetic energy storage systems using high temperature superconductors

    International Nuclear Information System (INIS)

    Kumar, B.

    1991-01-01

    This paper reports on magnetic energy storage for power systems that has been considered for commercial utility power, air and ground mobile power sources, and spacecraft applications. Even at the current technology limits of energy storage (100 KJ/Kg*), superconducting magnetic energy storage inductors do not offer a strong advantage over state-of-the-art batteries. The commercial utility application does not have a weight and volume limitation, and is under intense study in several countries for diurnal cycle energy storage and high power delivery. The advent of high temperature superconductors has reduced one of the penalties of superconducting magnetic energy storage in that refrigeration and cryocontainers become greatly simplified. Still, structural and current density issues that limit the energy density and size of superconducting inductors do not change. Cold weather starting of aircraft engines is an application where these limitations are not as significant, and where current systems lack performance. The very cold environments make it difficult to achieve high power densities in state-of-the-art batteries and hydraulically activated starters. The same cold environments make it possible to cool superconducting systems for weeks using a single charge of liquid nitrogen. At the same, the ground carts can handle the size and weight of superconducting magnetic storage (SMES) devices

  5. Cellulose nanofiber-templated three-dimension TiO 2 hierarchical nanowire network for photoelectrochemical photoanode

    Science.gov (United States)

    Zhaodong Li; Chunhua Yao; Fei Wang; Zhiyong Cai; Xudong Wang

    2014-01-01

    Three dimensional (3D) nanostructures with extremely large porosity possess a great promise for the development of high-performance energy harvesting storage devices. In this paper, we developed a high-density 3D TiO2 fiber-nanorod (NR) heterostructure for photoelectrochemical (PEC) water splitting. The hierarchical structure was synthesized on a...

  6. Construction of VLCC marine oil storage cost index system

    Science.gov (United States)

    Li, Yuan; Li, Yule; Lu, Jinshu; Wu, Wenfeng; Zhu, Faxin; Chen, Tian; Qin, Beichen

    2018-04-01

    VLCC as the research object, the basic knowledge of VLCC is summarized. According to the phenomenon that VLCC is applied to offshore oil storage gradually, this paper applies the theoretical analysis method to analyze the excess capacity from VLCC, the drop of oil price, the aging VLCC is more suitable for offshore storage The paper analyzes the reason of VLCC offshore oil storage from three aspects, analyzes the cost of VLCC offshore storage from the aspects of manpower cost and shipping cost, and constructs the cost index system of VLCC offshore oil storage.

  7. Failure Analysis of Storage Data Magnetic Systems

    Directory of Open Access Journals (Sweden)

    Ortiz–Prado A.

    2010-10-01

    Full Text Available This paper shows the conclusions about the corrosion mechanics in storage data magnetic systems (hard disk. It was done from the inspection of 198 units that were in service in nine different climatic regions characteristic for Mexico. The results allow to define trends about the failure forms and the factors that affect them. In turn, this study has analyzed the causes that led to mechanical failure and those due to deterioration by atmospheric corrosion. On the basis of the results obtained from the field sampling, demonstrates that the hard disk failure is fundamentally by mechanical effects. The deterioration by environmental effects were found in read-write heads, integrated circuits, printed circuit boards and in some of the electronic components of the controller card of the device, but not in magnetic storage surfaces. There fore, you can discard corrosion on the surface of the disk as the main kind of failure due to environmental deterioration. To avoid any inconvenience in the magnetic data storage system it is necessary to ensure sealing of the system.

  8. Serial grey-box model of a stratified thermal tank for hierarchical control of a solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Arahal, Manuel R. [Universidad de Sevilla, Dpto. de Ingenieria de Sistemas y Automatica, Camino de los Descubrimientos s/n, 41092 Sevilla (Spain); Cirre, Cristina M. [Convenio Universidad de Almeria-Plataforma Solar de Almeria, Ctra. Senes s/n, 04200 Tabernas, Almeria (Spain); Berenguel, Manuel [Universidad de Almeria, Dpto. Lenguajes y Computacion, Ctra. Sacramento s/n, 04120, Almeria (Spain)

    2008-05-15

    The ACUREX collector field together with a thermal storage tank and a power conversion system forms the Small Solar Power Systems plant of the Plataforma Solar de Almeria, a facility that has been used for research for the last 25 years. A simulator of the collector field produced by the last author has been available to and used as a test-bed for control strategies. Up to now, however, there is not a model for the whole plant. Such model is needed for hierarchical control schemes also proposed by the authors. In this paper a model of the thermal storage tank is derived using the Simultaneous Perturbation Stochastic Approximation technique to adjust the parameters of a serial grey-box model structure. The benefits of the proposed approach are discussed in the context of the intended use, requiring a model capable of simulating the behavior of the storage tank with low computational load and low error over medium to large horizons. The model is tested against real data in a variety of situations showing its performance in terms of simulation error in the temperature profile and in the usable energy stored in the tank. The results obtained demonstrate the viability of the proposed approach. (author)

  9. Battery storage for PV power systems: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chaurey, A; Deambi, S [Tata Energy Research Inst., New Delhi (India)

    1992-06-01

    Batteries used in photovoltaic applications are required to have particular properties in order to minimize the system cost, in addition to meeting stringent reliability requirements associated with PV system installations. The battery sizing, installations, operation and maintenance, thus, are fundamentally different from those used in several other energy storage applications. The current paper gives an overview of battery systems commonly used in PV installation, as well as several new options which are found suitable or have been modified suitably to meet PV energy storage requirements. The systems are discussed briefly with respect to their construction, performance characteristics and compatibility with PV systems. The battery sizing procedures are also reviewed. (Author).

  10. Efficiency improvement for wind energy pumped storage systems

    DEFF Research Database (Denmark)

    Forcos, A.; Marinescu, C.; Teodorescu, Remus

    2011-01-01

    Integrating wind energy into the grid may raise stability problems. Solutions for avoiding these situations are studied and energy storage methods are suitable for balancing the energy between the wind turbine and grid. In this paper, an autonomous wind turbine pumped storage system is presented...

  11. Thermodynamic analysis of a liquid air energy storage system

    International Nuclear Information System (INIS)

    Guizzi, Giuseppe Leo; Manno, Michele; Tolomei, Ludovica Maria; Vitali, Ruggero Maria

    2015-01-01

    The rapid increase in the share of electricity generation from renewable energy sources is having a profound impact on the power sector; one of the most relevant effects of this trend is the increased importance of energy storage systems, which can be used to smooth out peaks and troughs of production from renewable energy sources. Besides their role in balancing the electric grid, energy storage systems may provide also several other useful services, such as price arbitrage, stabilizing conventional generation, etc.; therefore, it is not surprising that many research projects are under way in order to explore the potentials of new technologies for electric energy storage. This paper presents a thermodynamic analysis of a cryogenic energy storage system, based on air liquefaction and storage in an insulated vessel. This technology is attractive thanks to its independence from geographical constraints and because it can be scaled up easily to grid-scale ratings, but it is affected by a low round-trip efficiency due to the energy intensive process of air liquefaction. The present work aims to assess the efficiency of such a system and to identify if and how it can achieve an acceptable round-trip efficiency (in the order of 50–60%).

  12. Energy Storage Management in Grid Connected Solar Photovoltaic System

    OpenAIRE

    Vidhya M.E

    2015-01-01

    The penetration of renewable sources in the power system network in the power system has been increasing in the recent years. One of the solutions being proposed to improve the reliability and performance of these systems is to integrate energy storage device into the power system network. This paper discusses the modeling of photo voltaic and status of the storage device such as lead acid battery for better energy management in the system. The energy management for the grid conne...

  13. 78 FR 32077 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-05-29

    ... Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct... All-purpose Storage (MAGNASTOR[supreg]) System listing within the ``List of Approved Spent Fuel... CoC No. 1031, MAGNASTOR[supreg] System listing within the ``List of Approved Spent Fuel Storage Casks...

  14. AFM study of excimer laser patterning of block-copolymer: Creation of ordered hierarchical, hybrid, or recessed structures

    International Nuclear Information System (INIS)

    Švanda, Jan; Siegel, Jakub; Švorčík, Vaclav; Lyutakov, Oleksiy

    2016-01-01

    Highlights: • Combination of bottom-up (BCP separation) and top-down (laser patterning) technologies allows obtaining hierarchical structures. • Surface morphologies were determined by the order of patterning steps (laser modification, annealing, surface reconstruction). • Tuning the order of steps enables the reorientation of BCP domain at large scale, fabrication of hierarchical, hybrid or recessed structures. • The obtained structures can find potential applications in nanotechnology, plasmonics, information storage, sensors and smart surfaces. - Abstract: We report fabrication of the varied range of hierarchical structures by combining bottom-up self-assembly of block copolymer poly(styrene-block-vinylpyridine) (PS-b-P4VP) with top-down excimer laser patterning method. Different procedures were tested, where laser treatment was applied before phase separation and after phase separation or phase separation and surface reconstruction. Laser treatment was performed using either polarized laser light with the aim to create periodical pattern on polymer surface or non-polarized light for preferential removing of polystyrene (PS) part from PS-b-P4VP. Additionally, dye was introduced into one part of block copolymer (P4VP) with the aim to modify its response to laser light. Resulting structures were analyzed by XPS, UV–vis and AFM techniques. Application of polarized laser light leads to creation of structures with hierarchical, recessed or hybrid geometries. Non-polarized laser beam allows pronouncing the block copolymer phase separated structure. Tuning the order of steps or individual step conditions enables the efficient reorientation of block-copolymer domain at large scale, fabrication of hierarchical, hybrid or recessed structures. The obtained structures can find potential applications in nanotechnology, photonics, plasmonics, information storage, optical devices, sensors and smart surfaces.

  15. Four-channel high speed synchronized acquisition multiple trigger storage measurement system

    International Nuclear Information System (INIS)

    Guo Jian; Wang Wenlian; Zhang Zhijie

    2010-01-01

    A new storage measurement system based on the CPLD, MCU and FLASH (large-capacity flash memory) is proposed. The large capacity storage characteristic of the FLASH MEMORY is used to realize multi channel synchronized acquisition and the function of multiple records and read once. The function of multi channel synchronization, high speed data acquisition, the triggering several times, and the adjustability of working parameters expands the application of storage measurement system. The storage measurement system can be used in a variety of pressure and temperature test in explosion field. (authors)

  16. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Yingying Lv

    2014-11-01

    Full Text Available A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ∼2200 m2/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li+ ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  17. Development of hydrogen storage systems using sodium alanate

    Energy Technology Data Exchange (ETDEWEB)

    Lozano Martinez, Gustavo Adolfo

    2010-12-06

    In this work, hydrogen storage systems based on sodium alanate were studied, modelled and optimised, using both experimental and theoretical approaches. The experimental approach covered investigations of the material from mg scale up to kg scale in demonstration test tanks, while the theoretical approach discussed modelling and simulation of the hydrogen sorption process in a hydride bed. Both approaches demonstrated the strong effect of heat transfer on the sorption behaviour of the hydride bed and led to feasible methods to improve and optimise the volumetric and gravimetric capacities of hydrogen storage systems. The applied approaches aimed at an optimal integration of sodium alanate material in practical hydrogen storage systems. First, it was experimentally shown that the size of the hydride bed influences the hydrogen sorption behaviour of the material. This is explained by the different temperature profiles that are developed inside the hydride bed during the sorptions. In addition, in a self-constructed cell it was possible to follow the hydrogen sorptions and the developed temperature profiles within the bed. Moreover, the effective thermal conductivity of the material was estimated in-situ in this cell, given very good agreement with reported values of ex-situ measurements. It was demonstrated that the effective thermal conductivity of the hydride bed can be enhanced by the addition of expanded graphite. This enhancement promotes lower temperature peaks during the sorptions due to faster heat conduction through the bed, which in addition allows faster heat transfer during sorption. Looking towards simulations and further evaluations, empirical kinetic models for both hydrogen absorption and desorption of doped sodium alanate were developed. Based on the results of the model, the optimal theoretical pressure-temperature conditions for hydrogen sorptions were determined. A new approach is proposed for the mass balance of the reactions when implementing

  18. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  19. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes

    Science.gov (United States)

    Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai

    2013-05-01

    A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer. Electronic supplementary information (ESI) available: Sample preparation, material characterization, electrochemical characterization and specific mass capacitance and energy density. See DOI: 10.1039/c3nr00738c

  20. Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors

    Science.gov (United States)

    Miao, Fujun; Shao, Changlu; Li, Xinghua; Wang, Kexin; Lu, Na; Liu, Yichun

    2016-10-01

    Freestanding hierarchically porous carbon electrode materials with favorable features of large surface areas, hierarchical porosity and continuous conducting pathways are very attractive for practical applications in electrochemical devices. Herein, three-dimensional freestanding hierarchically porous carbon (HPC) materials have been fabricated successfully mainly by the facile phase separation method. In order to further improve the energy storage ability, polyaniline (PANI) with high pseudocapacitance has been decorated on HPC through in situ chemical polymerization of aniline monomers. Benefiting from the synergistic effects between HPC and PANI, the resulting HPC/PANI composites as electrode materials present dramatic electrochemical performance with high specific capacitance up to 290 F g-1 at 0.5 A g-1 and good rate capability with ∼86% (248 F g-1) capacitance retention at 64 A g-1 of initial capacitance in three-electrode configuration. Moreover, the as-assembled symmetric supercapacitor based on HPC/PANI composites also demonstrates good capacitive properties with high energy density of 9.6 Wh kg-1 at 223 W kg-1 and long-term cycling stability with 78% capacitance retention after 10 000 cycles. Therefore, this work provides a new approach for designing high-performance electrodes with exceptional electrochemical performance, which are very promising for practical application in the energy storage field.

  1. Environmental performance of electricity storage systems for grid applications, a life cycle approach

    International Nuclear Information System (INIS)

    Oliveira, L.; Messagie, M.; Mertens, J.; Laget, H.; Coosemans, T.; Van Mierlo, J.

    2015-01-01

    Highlights: • Large energy storage systems: environmental performance under different scenarios. • ReCiPe midpoint and endpoint impact assessment results are analyzed. • Energy storage systems can replace peak power generation units. • Energy storage systems and renewable energy have the best environmental scores. • Environmental performance of storage systems is application dependent. - Abstract: In this paper, the environmental performance of electricity storage technologies for grid applications is assessed. Using a life cycle assessment methodology we analyze the impacts of the construction, disposal/end of life, and usage of each of the systems. Pumped hydro and compressed air storage are studied as mechanical storage, and advanced lead acid, sodium sulfur, lithium-ion and nickel–sodium-chloride batteries are addressed as electrochemical storage systems. Hydrogen production from electrolysis and subsequent usage in a proton exchange membrane fuel cell are also analyzed. The selected electricity storage systems mimic real world installations in terms of capacity, power rating, life time, technology and application. The functional unit is one kW h of energy delivered back to the grid, from the storage system. The environmental impacts assessed are climate change, human toxicity, particulate matter formation, and fossil resource depletion. Different electricity mixes are used in order to exemplify scenarios where the selected technologies meet specific applications. Results indicate that the performance of the storage systems is tied to the electricity feedstocks used during use stage. Renewable energy sources have lower impacts throughout the use stage of the storage technologies. Using the Belgium electricity mix of 2011 as benchmark, the sodium sulfur battery is shown to be the best performer for all the impacts analyzed. Pumped hydro storage follows in second place. Regarding infrastructure and end of life, results indicate that battery systems

  2. 78 FR 16601 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-03-18

    ... Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule... (MAGNASTOR[supreg]) System listing within the ``List of Approved Spent Fuel Storage Casks'' to include... for the MAGNASTOR[supreg] System cask design within the list of approved spent fuel storage casks that...

  3. Experimental investigation of thermal storage integrated micro trigeneration system

    International Nuclear Information System (INIS)

    Johar, Dheeraj Kishor; Sharma, Dilip; Soni, Shyam Lal; Goyal, Rahul; Gupta, Pradeep K.

    2017-01-01

    Highlights: • Energy Storage System is integrated with Micro trigeneration system. • Erythritol is used as Phase Change Material. • Maximum energy saved is 15.30%. • Combined systems are feasible to increase energy efficiency. - Abstract: In this study a 4.4 kW stationary compression ignition engine is coupled with a double pipe heat exchanger, vapour absorption refrigeration system and thermal energy storage system to achieve Trigeneration i.e. power, heating and cooling. A shell and tube type heat exchanger filled with erythritol is used to store thermal energy of engine exhaust. Various combinations of thermal energy storage system integrated micro-trigeneration were investigated and results related to performance and emissions are reported in this paper. The test results show that micro capacity (4.4 kW) stationary single cylinder diesel engine can be successfully modified to simultaneously produce power, heating and cooling and also store thermal energy.

  4. Experimental Results of Integrated Refrigeration and Storage System Testing

    Science.gov (United States)

    Notardonato, W. U.; Johnson, W. L.; Jumper, K.

    2009-01-01

    Launch operations engineers at the Kennedy Space Center have identified an Integrated Refrigeration and Storage system as a promising technology to reduce launch costs and enable advanced cryogenic operations. This system uses a close cycle Brayton refrigerator to remove energy from the stored cryogenic propellant. This allows for the potential of a zero loss storage and transfer system, as well and control of the state of the propellant through densification or re-liquefaction. However, the behavior of the fluid in this type of system is different than typical cryogenic behavior, and there will be a learning curve associated with its use. A 400 liter research cryostat has been designed, fabricated and delivered to KSC to test the thermo fluid behavior of liquid oxygen as energy is removed from the cryogen by a simulated DC cycle cryocooler. Results of the initial testing phase focusing on heat exchanger characterization and zero loss storage operations using liquid oxygen are presented in this paper. Future plans for testing of oxygen densification tests and oxygen liquefaction tests will also be discussed. KEYWORDS: Liquid Oxygen, Refrigeration, Storage

  5. Thermoeconomic evaluation of air conditioning system with chilled water storage

    International Nuclear Information System (INIS)

    Lin, Hu; Li, Xin-hong; Cheng, Peng-sheng; Xu, Bu-gong

    2014-01-01

    Highlights: • A new thermoeconomic evaluation methodology has been presented. • The relationship between thermodynamic and economic performances has been revealed. • A key point for thermal storage technology further application is discovered. • A system has been analyzed via the new method and EUD method. - Abstract: As a good load shifting technology for power grid, chilled energy storage has been paid more and more attention, but it always consumes more energy than traditional air conditioning system, and the performance analysis is mostly from the viewpoint of peak-valley power price to get cost saving. The paper presents a thermoeconomic evaluation methodology for the system with chilled energy storage, by which thermodynamic performance influence on cost saving has been revealed. And a system with chilled storage has been analyzed, which can save more than 15% of power cost with no energy consumption increment, and just certain difference between peak and valley power prices can make the technology for good economic application. The results show that difference between peak and valley power prices is not the only factor on economic performance, thermodynamic performance of the storage system is the more important factor, and too big price difference is a barrier for its application, instead of for more cost saving. All of these give a new direction for thermal storage technology application

  6. Estimation of polarization distribution on gold nanorods system from hierarchical features of optical near-field

    Science.gov (United States)

    Uchiyama, Kazuharu; Nishikawa, Naoki; Nakagomi, Ryo; Kobayashi, Kiyoshi; Hori, Hirokazu

    2018-02-01

    To design optoelectronic functionalities in nanometer scale based on interactions of electronic system with optical near-fields, it is essential to evaluate the relationship between optical near-fields and their sources. Several theoretical studies have been performed, so far, to analyze such complex relationship to design the interaction fields of several specific scales. In this study, we have performed detailed and high-precision measurements of optical near-field structures woven by a large number of independent polarizations generated in the gold nanorods array under laser light irradiation at the resonant frequency. We have accumulated the multi-layered data of optical near-field imaging at different heights above the planar surface with the resolution of several nm by a STM-assisted scanning near-field optical microscope. Based on these data, we have performed an inverse calculation to estimate the position, direction, and strength of the local polarization buried under the flat surface of the sample. As a result of the inverse operation, we have confirmed that the complexities in the nanometer scale optical near-fields could be reconstructed by combinations of induced polarization in each gold nanorod. We have demonstrated the hierarchical properties of optical near-fields based on spatial frequency expansion and superposition of dipole fields to provide insightful information for applications such for secure multi-layered information storage.

  7. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-12-01

    Full Text Available Battery energy storage systems have gained increasing interest for serving grid support in various application tasks. In particular, systems based on lithium-ion batteries have evolved rapidly with a wide range of cell technologies and system architectures available on the market. On the application side, different tasks for storage deployment demand distinct properties of the storage system. This review aims to serve as a guideline for best choice of battery technology, system design and operation for lithium-ion based storage systems to match a specific system application. Starting with an overview to lithium-ion battery technologies and their characteristics with respect to performance and aging, the storage system design is analyzed in detail based on an evaluation of real-world projects. Typical storage system applications are grouped and classified with respect to the challenges posed to the battery system. Publicly available modeling tools for technical and economic analysis are presented. A brief analysis of optimization approaches aims to point out challenges and potential solution techniques for system sizing, positioning and dispatch operation. For all areas reviewed herein, expected improvements and possible future developments are highlighted. In order to extract the full potential of stationary battery storage systems and to enable increased profitability of systems, future research should aim to a holistic system level approach combining not only performance tuning on a battery cell level and careful analysis of the application requirements, but also consider a proper selection of storage sub-components as well as an optimized system operation strategy.

  8. System Specification for Immobilized High-Level Waste Interim Storage

    International Nuclear Information System (INIS)

    CALMUS, R.B.

    2000-01-01

    This specification establishes the system-level functional, performance, design, interface, and test requirements for Phase 1 of the IHLW Interim Storage System, located at the Hanford Site in Washington State. The IHLW canisters will be produced at the Hanford Site by a Selected DOE contractor. Subsequent to storage the canisters will be shipped to a federal geologic repository

  9. Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors

    Science.gov (United States)

    Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming

    2015-08-01

    Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm-2 or 1734 F g-1 at 5 mA cm-2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application.

  10. Optimal sizing of energy storage system for microgrids

    Indian Academy of Sciences (India)

    Microgrids (MGs) are Low Voltage distribution networks comprising various distributed generators (DG), storage devices and controllable loads that can operate either interconnected or isolated from the main distribution grid as a controlled entity. Energy storage system (ESS) is a vital part of an MG. In this paper, a ...

  11. Standardized, utility-DOE compatible, spent fuel storage-transport systems

    International Nuclear Information System (INIS)

    Smith, M.L.

    1991-01-01

    Virginia Power has developed and licensed a facility for dry storage of spent nuclear fuel in metal spent fuel storage casks. The modifications to the design of these casks necessary for licensing for both storage and transport of spent fuel are discussed along with the operational advantages of dual purpose storage-transport casks. Dual purpose casks can be used for storage at utility and DOE sites (MRS or repository) and for shipment between these sites with minimal spent fuel handling. The cost for a standardized system of casks that are compatible for use at both DOE and utility sites is discussed along with possible arrangements for sharing both the cost and benefits of dual purpose storage-transport casks

  12. Optimal Scheduling of Residential Microgrids Considering Virtual Energy Storage System

    Directory of Open Access Journals (Sweden)

    Weiliang Liu

    2018-04-01

    Full Text Available The increasingly complex residential microgrids (r-microgrid consisting of renewable generation, energy storage systems, and residential buildings require a more intelligent scheduling method. Firstly, aiming at the radiant floor heating/cooling system widely utilized in residential buildings, the mathematical relationship between the operative temperature and heating/cooling demand is established based on the equivalent thermodynamic parameters (ETP model, by which the thermal storage capacity is analyzed. Secondly, the radiant floor heating/cooling system is treated as virtual energy storage system (VESS, and an optimization model based on mixed-integer nonlinear programming (MINLP for r-microgrid scheduling is established which takes thermal comfort level and economy as the optimization objectives. Finally, the optimal scheduling results of two typical r-microgrids are analyzed. Case studies demonstrate that the proposed scheduling method can effectively employ the thermal storage capacity of radiant floor heating/cooling system, thus lowering the operating cost of the r-microgrid effectively while ensuring the thermal comfort level of users.

  13. Water-storage-tube systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  14. Preparation and Lithium-Storage Performance of a Novel Hierarchical Porous Carbon from Sucrose Using Mg-Al Layered Double Hydroxides as Template

    International Nuclear Information System (INIS)

    Shi, Liluo; Chen, Yaxin; Song, Huaihe; Li, Ang; Chen, Xiaohong; Zhou, Jisheng; Ma, Zhaokun

    2017-01-01

    Highlights: • A new hierarchical porous carbon containing slit-shaped mesopores and 3D carbon nanosheets were prepared using Mg-Al layered double hydroxides as template. • The hierarchical porous carbon electrode showed a high capacity and excellent cycle stability when used in lithium-ion battery. • The excellent performance is ascribed to its hierarchical porous structure, especially the mesoporous struture. - Abstract: Novel hierarchical porous carbons (NHPCs) containing 3D carbon nanosheets and slit-mesopores are prepared in this work, using MgAl-layered double hydroxides as template and sucrose as carbon source, and their electrochemical performances as anodes of lithium-ion batteries are also investigated. Owing to the existence of abundant carbon nanosheets and slit-mesopores, the NHPCs electrode exhibits the specific reversible capacity of 1151.9 mA h/g at the current density of 50 mA/g, which is significantly higher than other hierarchical porous carbons reported in previous literatures. The contributions of carbon nanosheets and mesopores to the electrochemical performance are further clarified by nitrogen adsorption-desorption test, electrochemical impedance spectroscopy, cyclic voltammograms and galvanostatic charge/discharge test. This work not only provides an easy and effective method to prepare hierarchical porous carbon materials, but also is beneficial for the design of high-performance anode materials for lithium ion batteries.

  15. Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity.

    Science.gov (United States)

    Schwieger, Wilhelm; Machoke, Albert Gonche; Weissenberger, Tobias; Inayat, Amer; Selvam, Thangaraj; Klumpp, Michael; Inayat, Alexandra

    2016-06-13

    'Hierarchy' is a property which can be attributed to a manifold of different immaterial systems, such as ideas, items and organisations or material ones like biological systems within living organisms or artificial, man-made constructions. The property 'hierarchy' is mainly characterised by a certain ordering of individual elements relative to each other, often in combination with a certain degree of branching. Especially mass-flow related systems in the natural environment feature special hierarchically branched patterns. This review is a survey into the world of hierarchical systems with special focus on hierarchically porous zeolite materials. A classification of hierarchical porosity is proposed based on the flow distribution pattern within the respective pore systems. In addition, this review might serve as a toolbox providing several synthetic and post-synthetic strategies to prepare zeolitic or zeolite containing material with tailored hierarchical porosity. Very often, such strategies with their underlying principles were developed for improving the performance of the final materials in different technical applications like adsorptive or catalytic processes. In the present review, besides on the hierarchically porous all-zeolite material, special focus is laid on the preparation of zeolitic composite materials with hierarchical porosity capable to face the demands of industrial application.

  16. Wind energy management for smart grids with storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, Manuel [Universidad de Alicante (Spain). Area de Ingenieria Electrica; Rios, Alberto [Universidad Europea de Madrid (Spain). Area de Ingenieria Electrica

    2012-07-01

    Increasing integration of wind energy into the power system makes the optimal management of different situations that can occur more and more important. The objective of the present study is to replace the power necessary for electrical feed when the wind resources are not available, and to make a continuous demand tracking of the power. The energy storage systems treated in this study are as follows: a fuel cell, flywheel, pump systems and turbine systems, compressed air systems, electrochemical cells, electric vehicles, supercapacitors and superconductors. As a result the maximum benefit of the smart grid is achieved and it includes coexistence of the energy storage systems described and integrated in the numerous microgrids which can form the distribution grid. The current capacity is observed in order to be able to manage the wind generation for short periods of time. This way it is possible to plan the production which would be adjusted to the variations through these storage systems allowing the systems to maintain their constant programming for the base plants, adjusting the variations in these systems in the short term. (orig.)

  17. Free-standing Hierarchical Porous Assemblies of Commercial TiO_2 Nanocrystals and Multi-walled Carbon Nanotubes as High-performance Anode Materials for Sodium Ion Batteries

    International Nuclear Information System (INIS)

    Liu, Xiong; Xu, Guobao; Xiao, Huaping; Wei, Xiaolin; Yang, Liwen

    2017-01-01

    Highlights: • Utilization of commercial nanomaterials to freestanding sodium electrode is demonstrated. • Free-standing electrodes composed of TiO_2 and MWCNTs are hierarchically porous. • Hierarchical porous architecture benefits charge transport and interfacial Na"+ adsorption. • Free-standing hierarchical porous electrodes exhibit superior Na storage performance. - Abstract: Freestanding hierarchical porous assemblies of commercial TiO_2 nanocrystals and multi-wall carbon nanotubes (MWCNTs) as electrode materials for sodium ion batteries (SIBs) are prepared via modified vacuum filtration, free-drying and annealing. Microstructure characterizations reveal that TiO_2 nanocrystals are confined in hierarchically porous, highly electrically conductive and mechanically robust MWCNTs networks with cross-linking of thermally-treated bovine serum albumin. The hierarchical porous architecture not only enables rapid charge transportation and sufficient interaction between electrode and electrolyte, but also guarantees abundant interfacial sites for Na"+ adsorption, which benefits substantial contribution from pseudocapacitive Na storage. When it is used directly as an anode for sodium-ion batteries, the prepared electrode delivers high specific capacity of 100 mA h g"−"1 at a current density of 3000 mA g"−"1, and 150 mA h g"−"1 after 500 cycles at a current density of 500 mA g"−"1. The low-cost TiO_2-based freestanding anode has large potential application in high-performance SIBs for portable, flexible and wearable electronics.

  18. [On the principle of substance stability and thermodynamic feedback in hierarchic systems of the bio-world].

    Science.gov (United States)

    Gladyshev, G P

    2002-01-01

    The creation of structural hierarchies in open natural biosystems within the framework of quasi-closed systems is investigated by the methods of hierarchic thermodynamics (thermostatics). During the evolution of natural open systems, every higher hierarchic level j appears as a consequence of thermodynamic self-organization (self-assembly) of the structures of the lower (j-1)-th level. Such a self-assembly proceeds as a result of stabilization of the j-th level. This is related to the Gibbs' (Helmholtz') specific function of formation of the structure of the j-th level tending to a minimum. As a result of action of the principle of substance (matter) stability, the structures of the j-th level are enriched with less stable structures of the (j-1)-th level in the course of evolution. This provides a thermodynamic feedback between the structures of the higher j-th level and lower (j-1)-th level, thus preventing full structural stabilization of the j-th level and causing "thermodynamic rejuvenation" of biosystems. The latter enhances "thermodynamic" deceleration of evolution and practically unlimited maintenance of life. Examples of quantitative correlations are provided that call for further application of the substance stability principle to living and nonliving hierarchic structures.

  19. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    David Meunier

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  20. Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

    International Nuclear Information System (INIS)

    Raymond, Rick E.; Frederickson, James R.; Criddle, James; Hamilton, Dennis; Johnson, Mike W.

    2012-01-01

    This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS)

  1. Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Rick E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Frederickson, James R. [AREVA, Avignon (France); Criddle, James [AREVA, Avignon (France); Hamilton, Dennis [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Johnson, Mike W. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-10-18

    This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS).

  2. Order Picking Optimization in Carousels Storage System

    Directory of Open Access Journals (Sweden)

    Xiong-zhi Wang

    2013-01-01

    Full Text Available This paper addresses the order picking problem in a material handling system consisting of multiple carousels and one picker. Carousels are rotatable closed-loop storage systems for small items, where items are stored in bins along the loop. An order at carousels consists of n different items stored there. The objective is to find an optimal picking sequence to minimizing the total order picking time. After proving the problem to be strongly NP-hard and deriving two characteristics, we develop a dynamic programming algorithm (DPA for a special case (two-carousel storage system and an improved nearest items heuristics (INIH for the general problem. Experimental results verify that the solutions are quickly and steadily achieved and show their better performance.

  3. Joint Optimal Design and Operation of Hybrid Energy Storage Systems

    NARCIS (Netherlands)

    Y. Ghiassi-Farrokhfal (Yashar); C. Rosenberg; S. Keshav (Srinivasam); M.-B. Adjaho (Marie-Benedicte)

    2016-01-01

    markdownabstractThe wide range of performance characteristics of storage technologies motivates the use of a hybrid energy storage systems (HESS) that combines the best features of multiple technologies. However, HESS design is complex, in that it involves the choice of storage technologies, the

  4. Energy storage in future power systems

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Østergaard, Jacob; Divya, K. C.

    2011-01-01

    Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional conventi......Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional...... conventional generation form being used. In addition to this, one of the strongest concerns in relation to renewable power is the instability in the electric power system that it may introduce as a result of large and relatively fast power fluctuations. An additional benefit of energy storage is therefore its...

  5. Primary frequency regulation supported by battery storage systems in power systems dominated by renewable energy sources

    DEFF Research Database (Denmark)

    Turk, Ana; Sandelic, Monika; Noto, Giancarlo

    2018-01-01

    replaced by intermittent renewable generators. Therefore, maintaining system quality and stability in terms of power system frequency control is one of the major challenges that requires new resources and their system integration. Battery energy storage systems (BESS), as fast-acting energy storage systems...

  6. A fast multichannel analog storage system

    International Nuclear Information System (INIS)

    Freytag, D.R.

    1983-01-01

    A Multichannel Analog Storage System based on a commercial 32-channel parallel in/serial out (PISO) analog shift register is described. The basic unit is a single width CAMAC module containing 512 analog cells and the associated logic for data storage and subsequent readout. At sampling rates of up to 30 MHz the signals are strobed directly into the PISO. At higher rates signals are strobed into a fast presampling stage and subsequently transferred in block form into an array of PISO's. Sampling rates of 300 MHz have been achieved with the present device and 1000 MHz are possible with improved signal drivers. The system is well suited for simultaneous handling of many signal channels with moderate numbers of samples in each channel. RMS noise over full scale signal has been measured as 1:3000 (approx. =11 bit). However, nonlinearities in the response and differences in sensitivity of the analog cells require an elaborate calibration system in order to realize 11 bit accuracy for the analog information

  7. Data systems and computer science space data systems: Onboard memory and storage

    Science.gov (United States)

    Shull, Tom

    1991-01-01

    The topics are presented in viewgraph form and include the following: technical objectives; technology challenges; state-of-the-art assessment; mass storage comparison; SODR drive and system concepts; program description; vertical Bloch line (VBL) device concept; relationship to external programs; and backup charts for memory and storage.

  8. A Hierarchical Method for Transient Stability Prediction of Power Systems Using the Confidence of a SVM-Based Ensemble Classifier

    Directory of Open Access Journals (Sweden)

    Yanzhen Zhou

    2016-09-01

    Full Text Available Machine learning techniques have been widely used in transient stability prediction of power systems. When using the post-fault dynamic responses, it is difficult to draw a definite conclusion about how long the duration of response data used should be in order to balance the accuracy and speed. Besides, previous studies have the problem of lacking consideration for the confidence level. To solve these problems, a hierarchical method for transient stability prediction based on the confidence of ensemble classifier using multiple support vector machines (SVMs is proposed. Firstly, multiple datasets are generated by bootstrap sampling, then features are randomly picked up to compress the datasets. Secondly, the confidence indices are defined and multiple SVMs are built based on these generated datasets. By synthesizing the probabilistic outputs of multiple SVMs, the prediction results and confidence of the ensemble classifier will be obtained. Finally, different ensemble classifiers with different response times are built to construct different layers of the proposed hierarchical scheme. The simulation results show that the proposed hierarchical method can balance the accuracy and rapidity of the transient stability prediction. Moreover, the hierarchical method can reduce the misjudgments of unstable instances and cooperate with the time domain simulation to insure the security and stability of power systems.

  9. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  10. Thermodynamic characteristics of a novel supercritical compressed air energy storage system

    International Nuclear Information System (INIS)

    Guo, Huan; Xu, Yujie; Chen, Haisheng; Zhou, Xuezhi

    2016-01-01

    Highlights: • A novel supercritical compressed air energy storage system is proposed. • The energy density of SC-CAES is approximately 18 times larger than that of conventional CAES. • The characteristic of thermodynamics and exergy destruction is comprehensively analysed. • The corresponding optimum relationship between charging and discharging pressure is illustrated. • A turning point of efficiency is indicated because of the heat transfer of crossing the critical point. - Abstract: A novel supercritical compressed air energy storage (SC-CAES) system is proposed by our team to solve the problems of conventional CAES. The system eliminates the dependence on fossil fuel and large gas-storage cavern, as well as possesses the advantages of high efficiency by employing the special properties of supercritical air, which is significant for the development of electrical energy storage. The thermodynamic model of the SC-CAES system is built, and the thermodynamic characters are revealed. Through the exergy analysis of the system, the processes of the larger exergy destruction include compression, expansion, cold storage/heat exchange and throttle. Furthermore, sensitivity analysis shows that there is an optimal energy releasing pressure to make the system achieve the highest efficiency when energy storage pressure is constant. The efficiency of SC-CAES is expected to reach about 67.41% when energy storage pressure and energy releasing pressure are 120 bar and 95.01 bar, respectively. At the same time, the energy density is 18 times larger than that of conventional CAES. Sensitivity analysis also shows the change laws of system efficiency varying with other basic system parameters. The study provides support for the design and engineering of SC-CAES.

  11. Materials used in refrigerated storage system

    Energy Technology Data Exchange (ETDEWEB)

    Abakians, H

    1970-09-01

    Applications of cryogenic technology have increased at a phenomenal rate during the past decade. With the installation of a number of refrigerated storage tanks in Iran, e.g., LPG storage at Bandar Mah Shahr and Kharg Is., and ammonia storage at Bandar Shahpour, it is appropriate to review the materials used in constructing low temperature storage systems. In order to have an economical fully refrigerated storage installation without assuming the risk of brittle fracture, appropriate notch-tough material should be selected for the important and highly stressed components. In general, the lower the operating temperature, the more expensive is the material to be used. Hence, care should be taken to select the required material in such a manner that it will be suitable for the operating temperature and not lower. The most economical materials for low temperatures are steels. Ordinary carbon steel can be used down to -20$F and the Killed carbon steel down to -50$F. Nickel steels (2 1/4%) can be used down to -75$ to 100$F, Nickel steels (3 1/2%) down to -150$F, and 9% nickel steels down to 1,320$F. Stainless and aluminum alloys can be used down to -423$F. Tabular data give some commonly used materials in low temperature and cryogenic services with their lowest allowable temperature, tensile strength, and relative cost.

  12. Current status of and problems in ice heat storage systems contributing to improving load rate. Air conditioning system utilizing ice heat storage and building frame storage (Takenaka Corporation); Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. Kori chikunetsu to kutai chikunetsu wo riyoshita kucho system

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y.; Yoshitake, Y. [Takenaka Corp., Osaka (Japan)

    1998-02-01

    Development was made on a new air conditioning system, `building frame heat storage air conditioning system`, which combines an ice heat storage system with a building frame heat storage. With the building frame heat storage system, a damper is installed on an indoor device to blow cold air from the air conditioner onto slabs on the upper floor during nighttime power generating period. Heat is stored in beams, pillars and walls, and the shell absorbs and dissipates heat during daytime. Since general office buildings consume primary energy at 22.8% for heat source and 26.9% for transportation, which is greater, a natural coolant circulation type air conditioning system was developed as an air conditioning system for the secondary side. This made the building frame heat regeneration possible for the first time. With regard to heat storage quantity and heat dissipation quantity, the quantity of heat which can be stored during nighttime (10 hours) and dissipated during air conditioning using period in daytime (10 hours) is 80% of the stored heat quantity. This system was installed in a building in Kobe City. As a result of the measurement, it was found that indoor heat load reduction rate as a result of using the building frame heat storage was 24% or more in summer and 80% or more in winter. 7 figs., 2 tabs.

  13. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage.

    Science.gov (United States)

    Wicki, Samuel; Hansen, Erik G

    2017-09-20

    The emergence and diffusion of green and sustainable technologies is full of obstacles and has therefore become an important area of research. We are interested in further understanding the dynamics between entrepreneurial experimentation, market formation, and institutional contexts, together playing a decisive role for successful diffusion of such technologies. Accordingly, we study these processes by adopting a technological innovation system perspective focusing on actors, networks, and institutions as well as the functions provided by them. Using a qualitative case study research design, we focus on the high-speed flywheel energy storage technology. As flywheels are based on a rotating mass allowing short-term storage of energy in kinetic form, they represent an environmentally-friendly alternative to electrochemical batteries and therefore can play an important role in sustainable energy transitions. Our contribution is threefold: First , regarding the flywheel energy storage technology, our findings reveal two subsystems and related markets in which development took different courses. In the automotive sector, flywheels are developing well as a braking energy recovery technology under the influence of two motors of innovation. In the electricity sector, they are stagnating at the stage of demonstration projects because of two important system weaknesses that counteract demand for storage. Second , we contribute to the theory of technological innovation systems by better understanding the internal dynamics between different functions of an innovation system as well as between the innovation system and its (external) contextual structures. Our third contribution is methodological. According to our best knowledge, we are the first to use system dynamics to (qualitatively) analyze and visualize dynamics between the diverse functions of innovation systems with the aim of enabling a better understanding of complex and iterative system processes. The paper also

  14. Preparation of hierarchical porous carbon from waste printed circuit boards for high performance electric double-layer capacitors

    Science.gov (United States)

    Du, Xuan; Wang, Li; Zhao, Wei; Wang, Yi; Qi, Tao; Li, Chang Ming

    2016-08-01

    Renewable clean energy and resources recycling have become inevitable choices to solve worldwide energy shortages and environmental pollution problems. It is a great challenge to recycle tons of waste printed circuit boards (PCB) produced every year for clean environment while creating values. In this work, low cost, high quality activated carbons (ACs) were synthesized from non-metallic fractions (NMF) of waste PCB to offer a great potential for applications of electrochemical double-layer capacitors (EDLCs). After recovering metal from waste PCB, hierarchical porous carbons were produced from NMF by carbonization and activation processes. The experimental results exhibit that some pores were formed after carbonization due to the escape of impurity atoms introduced by additives in NMF. Then the pore structure was further tailored by adjusting the activation parameters. Roles of micropores and non-micropores in charge storage were investigated when the hierarchical porous carbons were applied as electrode of EDLCs. The highest specific capacitance of 210 F g-1 (at 50 mA g-1) and excellent rate capability were achieved when the ACs possessing a proper micropores/non-micropores ratio. This work not only provides a promising method to recycle PCB, but also investigates the structure tailoring arts for a rational hierarchical porous structure in energy storage/conversion.

  15. (LiNH2-MgH2): a viable hydrogen storage system

    International Nuclear Information System (INIS)

    Luo Weifang

    2004-01-01

    One of the problems related to the employment of hydrogen-based fuel cells for vehicular transportation is 'on board' storage. Hydrogen storage in solids has long been recognized as one of the most practical approaches for this purpose. The capacity of existing storage materials is markedly below that needed for vehicular use. Recently Chen et al. [Nature 420 (21) (2002) 302; J. Phys. Chem. B 107 (2003) 10967] reported a lithium nitride/imide system, with a high capacity, 11.5 wt.%, however, its operating temperature and pressure are not satisfactory for vehicular application. In this research a new storage material has been developed, which is from the partial substitution of lithium by magnesium in the nitride/imide system. The plateau pressure of this new Mg-substituted system is about 30 bar and 200 deg. C with a H capacity of 4.5 wt.% and possibly higher. This is a very promising H-storage material for 'on board' storage for vehicular applications

  16. Grid Converters for Stationary Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Trintis, Ionut

    The integration of renewable energy sources in the power system, with high percentage, is a well known challenge nowadays. Power sources like wind and solar are highly volatile, with uctuations on various time scales. One long term solution is to build a continentwide or worldwide supergrid....... Another solution is to use distributed energy storage units, and create virtual power plants. Stationary energy storage is a complementary solution, which can postpone the network expansion and can be optimized for dierent kind of grid services. As an energy storage solution with timing for few seconds...... multilevel converter structure with integrated energy storage is introduced. This converter structure is suitable to interface low and medium voltage energy storage units to medium and high voltage grids. It can also interconnect a DC and AC grid with bidirectional power ow, were both can be backed...

  17. Optimal controls of building storage systems using both ice storage and thermal mass – Part II: Parametric analysis

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A detailed analysis is presented to assess the performance of thermal energy storage (TES) systems. ► Utility rates have been found to be significant in assessing the operation of TES systems. ► Optimal control strategies for TES systems can save up to 40% of total energy cost of office buildings. - Abstract: This paper presents the results of a series of parametric analysis to investigate the factors that affect the effectiveness of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs (including energy and demand costs) while maintaining adequate occupant comfort conditions in buildings. The analysis is based on a validated model-based simulation environment and includes several parameters including the optimization cost function, base chiller size, and ice storage tank capacity, and weather conditions. It found that the combined use of building thermal mass and active thermal energy storage system can save up to 40% of the total energy costs when integrated optimal control are considered to operate commercial buildings.

  18. Sharing economy as a new business model for energy storage systems

    International Nuclear Information System (INIS)

    Lombardi, P.; Schwabe, F.

    2017-01-01

    Highlights: • Sharing economy as new business model for Energy Storage Operators. • More attractiveness of Battery Storage Systems. • Optimal Dimensioning of Battery Storage Systems for sharing economy application. - Abstract: Energy storage systems (ESS) are the candidate solution to integrate the high amount of electric power generated by volatile renewable energy sources into the electric grid. However, even though the investment costs of some ESS technologies have decreased over the last few years, few business models seem to be attractive for investors. In most of these models, ESS are applied only for one use case, such as primary control reserve. In this study, a business model based on the sharing economy principle has been developed and analyzed. In this model, the energy storage operator offers its storage system to different kinds of customers. Each customer uses the ESS for their single use case. A set of different use cases has been identified to make the operation of the ESS profitable (e.g. peak shaving, self-consumption and day-ahead market participation). Different kinds of stationary batteries (lithium-ion, sodium-sulfur and vanadium redox-flow) have been considered as energy storage technologies, which differ both in their investment costs and their technical properties, such as round-trip efficiency. The simulation of the business model developed showed that a sharing economy-based model may increase the profitability of operating a battery storage system compared to the single use case business model. Additionally, larger battery dimensions regarding power and capacity were found to be profitable and resulted in an increased revenue stream.

  19. A Novel Constant-Pressure Pumped Hydro Combined with Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Erren Yao

    2014-12-01

    Full Text Available As intermittent renewable energy is receiving increasing attention, the combination of intermittent renewable energy with large-scale energy storage technology is considered as an important technological approach for the wider application of wind power and solar energy. Pumped hydro combined with compressed air energy storage system (PHCA is one of the energy storage systems that not only integrates the advantages but also overcomes the disadvantages of compressed air energy storage (CAES systems and pumped hydro energy storage systems to solve the problem of energy storage in China’s arid regions. Aiming at the variable working conditions of PHCA system technology, this study proposes a new constant-pressure PHCA. The most significant characteristics of this system were that the water pump and hydroturbine work under stable conditions and this improves the working efficiency of the equipment without incurring an energy loss. In addition, the constant-pressure PHCA system was subjected to energy and exergy analysis, in expectation of exploring an attractive solution for the large-scale storage of existing intermittent renewable energy.

  20. Eco-friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte.

    Science.gov (United States)

    Kim, Jae-Kwang; Mueller, Franziska; Kim, Hyojin; Jeong, Sangsik; Park, Jeong-Sun; Passerini, Stefano; Kim, Youngsik

    2016-01-08

    As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, novel concepts are urgently needed concerning batteries that have high energy densities, low costs, and high levels of safety. Here, a novel eco-friendly energy storage system (ESS) using seawater and an ionic liquid is proposed for the first time; this represents an intermediate system between a battery and a fuel cell, and is accordingly referred to as a hybrid rechargeable cell. Compared to conventional organic electrolytes, the ionic liquid electrolyte significantly enhances the cycle performance of the seawater hybrid rechargeable system, acting as a very stable interface layer between the Sn-C (Na storage) anode and the NASICON (Na3 Zr2 Si2 PO12) ceramic solid electrolyte, making this system extremely promising for cost-efficient and environmentally friendly large-scale energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Data modelling and performance of data base systems

    International Nuclear Information System (INIS)

    Rossiter, B.N.

    1984-01-01

    The three main methods of data modelling, hierarchical, network, and relational are described together with their advantages and disadvantages. The hierarchical model has strictly limited applicability, but the other two are of general use, although the network model in many respects defines a storage structure whilst the relational model defines a logical structure. Because of this, network systems are more difficult to use than relational systems but are easier to tune to obtain efficient performance. More advanced models have been developed to capture more semantic detail, and two of these RM/T and the role model are discussed. (orig.)

  2. Hierarchical Planning Methodology for a Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Virna ORTIZ-ARAYA

    2012-01-01

    Full Text Available Hierarchical production planning is a widely utilized methodology for real world capacitated production planning systems with the aim of establishing different decision–making levels of the planning issues on the time horizon considered. This paper presents a hierarchical approach proposed to a company that produces reusable shopping bags in Chile and Perú, to determine the optimal allocation of resources at the tactical level as well as over the most immediate planning horizon to meet customer demands for the next weeks. Starting from an aggregated production planning model, the aggregated decisions are disaggregated into refined decisions in two levels, using a couple of optimization models that impose appropriate constraints to keep coherence of the plan on the production system. The main features of the hierarchical solution approach are presented.

  3. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications

    International Nuclear Information System (INIS)

    Konikkara, Niketha; Kennedy, L. John; Vijaya, J. Judith

    2016-01-01

    Highlights: • Solid leather waste was used as a precursor for preparing HPCs—waste to energy storage. • The textural, structural and morphological properties show the hierarchical porous nature. • Porous carbon with surface area 716 m"2/g and pore volume 0.4030 cm"3/g has been produced. • HPCs based supercapacitor electrodes are fabricated with three electrode system in 1 M KCl. • Specific capacitance of 1960 F/g is achieved at scan rate of 1 mV/s in 1 M KCl. - Abstract: Utilization of crust leather waste (CLW) as precursors for the preparation of hierarchical porous carbons (HPC) were investigated. HPCs were prepared from CLW by pre-carbonization followed by chemical activation using KOH at relatively high temperatures. Textural properties of HPC’s showed an extent of micro-and mesoporosity with maximum BET surface area of 716 m"2/g. Inducements of graphitic planes in leather waste derived carbons were observed from X-ray diffraction and HR-TEM analysis. Microstructure, thermal behavior and surface functional groups were identified using FT-Raman, thermo gravimetric analysis and FT-IR techniques. HPCs were evaluated for electrochemical properties by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) by three electrode system. CLC9 sample showed a maximum capacitance of 1960 F/g in 1 M KCl electrolyte. Results achieved from rectangular curves of CV, GCD symmetric curves and Nyquist plots show that the leather waste carbon is suitable to fabricate supercapacitors as it possess high specific capacitance and electrochemical cycle stability. The present study proposes an effective method for solid waste management in leather industry by the way of converting toxic leather waste to new graphitic porous carbonaceous materials as a potential candidate for energy storage devices.

  4. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Konikkara, Niketha [Materials Division, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Chennai Campus, Chennai 600 127 (India); Kennedy, L. John, E-mail: jklsac14@yahoo.co.in [Materials Division, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Chennai Campus, Chennai 600 127 (India); Vijaya, J. Judith [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College (Autonomous) Chennai 600 034 (India)

    2016-11-15

    Highlights: • Solid leather waste was used as a precursor for preparing HPCs—waste to energy storage. • The textural, structural and morphological properties show the hierarchical porous nature. • Porous carbon with surface area 716 m{sup 2}/g and pore volume 0.4030 cm{sup 3}/g has been produced. • HPCs based supercapacitor electrodes are fabricated with three electrode system in 1 M KCl. • Specific capacitance of 1960 F/g is achieved at scan rate of 1 mV/s in 1 M KCl. - Abstract: Utilization of crust leather waste (CLW) as precursors for the preparation of hierarchical porous carbons (HPC) were investigated. HPCs were prepared from CLW by pre-carbonization followed by chemical activation using KOH at relatively high temperatures. Textural properties of HPC’s showed an extent of micro-and mesoporosity with maximum BET surface area of 716 m{sup 2}/g. Inducements of graphitic planes in leather waste derived carbons were observed from X-ray diffraction and HR-TEM analysis. Microstructure, thermal behavior and surface functional groups were identified using FT-Raman, thermo gravimetric analysis and FT-IR techniques. HPCs were evaluated for electrochemical properties by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) by three electrode system. CLC9 sample showed a maximum capacitance of 1960 F/g in 1 M KCl electrolyte. Results achieved from rectangular curves of CV, GCD symmetric curves and Nyquist plots show that the leather waste carbon is suitable to fabricate supercapacitors as it possess high specific capacitance and electrochemical cycle stability. The present study proposes an effective method for solid waste management in leather industry by the way of converting toxic leather waste to new graphitic porous carbonaceous materials as a potential candidate for energy storage devices.

  5. Flexible System Integration and Advanced Hierarchical Control Architectures in the Microgrid Research Laboratory of Aalborg University

    DEFF Research Database (Denmark)

    Meng, Lexuan; Hernández, Adriana Carolina Luna; Diaz, Enrique Rodriguez

    2016-01-01

    This paper presents the system integration and hierarchical control implementation in an inverter-based microgrid research laboratory (MGRL) in Aalborg University, Denmark. MGRL aims to provide a flexible experimental platform for comprehensive studies of microgrids. The structure of the laborato...

  6. Understanding I/O workload characteristics of a Peta-scale storage system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngjae [ORNL; Gunasekaran, Raghul [ORNL

    2015-01-01

    Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization, and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.

  7. Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kangji [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China); School of Electricity Information Engineering, Jiangsu University, Zhenjiang 212013 (China); Su, Hongye [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China)

    2010-11-15

    There are several ways to forecast building energy consumption, varying from simple regression to models based on physical principles. In this paper, a new method, namely, the hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system (GA-HANFIS) model is developed. In this model, hierarchical structure decreases the rule base dimension. Both clustering and rule base parameters are optimized by GAs and neural networks (NNs). The model is applied to predict a hotel's daily air conditioning consumption for a period over 3 months. The results obtained by the proposed model are presented and compared with regular method of NNs, which indicates that GA-HANFIS model possesses better performance than NNs in terms of their forecasting accuracy. (author)

  8. Economic evaluations of fusion-based energy storage systems in an electric utility

    International Nuclear Information System (INIS)

    Hwang, W.G.

    1977-01-01

    The feasibility of introducing a fusion energy storage system, which consists of a fusion-fission reactor and a water-splitting process, in an electric utility was investigated. The fusion energy storage system was assumed to be run during off-peak periods in order to make use of unused, low fuel cost capacity of an electric utility. The fusion energy storage system produces both fissile fuel and hydrogen. The produced hydrogen was assumed to be transmitted through and stored in existing natural gas trunklines for later use during peak-load hours. The peaking units in the utility were assumed to burn the hydrogen. Reserve power is usually cheap on systems with heavy nuclear fission reactor installation. The system studied utilizes this cheap energy for producing expensive fuel. The thermochemical water-splitting process was employed to recover thermal energy from the fusion-fission reactor system. The cost of fusion energy storage systems as well as the value of produced fuel were calculated. In order to simulate the operations of the fusion energy storage system for a multi-year planning period, a computer program, FESUT (Fusion Energy Simulation at the University of Texas), was developed for the present study. Two year utility simulations with the fusion energy storage system were performed

  9. Thermo-economic optimization of the impact of renewable generators on poly-generation smart-grids including hot thermal storage

    International Nuclear Information System (INIS)

    Rivarolo, M.; Greco, A.; Massardo, A.F.

    2013-01-01

    Highlights: ► We model a poly-generation grid including thermal storage and renewable generators. ► We analyze the impact of random renewable generators on the grid performance. ► We carry out the grid optimization using a time-dependent thermo-economic approach. ► We present the importance of the storage system to optimize the RES impact. - Abstract: In this paper, the impact of not controllable renewable energy generators (wind turbines and solar photovoltaic panels) on the thermo-economic optimum performance of poly-generation smart grids is investigated using an original time dependent hierarchical approach. The grid used for the analysis is the one installed at the University of Genoa for research activities. It is based on different prime movers: (i) 100 kWe micro gas turbine, (ii) 20 kWe internal combustion engine powered by gases to produce both electrical and thermal (hot water) energy and (iii) a 100 kWth adsorption chiller to produce cooling (cold water) energy. The grid includes thermal storage tanks to manage the thermal demand load during the year. The plant under analysis is also equipped with two renewable non-controllable generators: a small size wind turbine and photovoltaic solar panels. The size and the management of the system studied in this work have been optimized, in order to minimize both capital and variable costs. A time-dependent thermo-economic hierarchical approach developed by the authors has been used, considering the time-dependent electrical, thermal and cooling load demands during the year as problem constraints. The results are presented and discussed in depth and show the strong interaction between fossil and renewable resources, and the importance of an appropriate storage system to optimize the RES impact taking into account the multiproduct character of the grid under investigation.

  10. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  11. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  12. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    Science.gov (United States)

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  13. Simulation of interim spent fuel storage system with discrete event model

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Song, Ki Chan; Lee, Jae Sol; Park, Hyun Soo

    1989-01-01

    This paper describes dynamic simulation of the spent fuel storage system which is described by statistical discrete event models. It visualizes flow and queue of system over time, assesses the operational performance of the system activities and establishes the system components and streams. It gives information on system organization and operation policy with reference to the design. System was tested and analyzed over a number of critical parameters to establish the optimal system. Workforce schedule and resources with long processing time dominate process. A combination of two workforce shifts a day and two cooling pits gives the optimal solution of storage system. Discrete system simulation is an useful tool to get information on optimal design and operation of the storage system. (Author)

  14. Hierarchically structured carbon-coated SnO{sub 2}-Fe{sub 3}O{sub 4} microparticles with enhanced lithium storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Xiaohan; Shi, Chunsheng [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Liu, Enzuo [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Li, Jiajun [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Zhao, Naiqin [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072 (China); He, Chunnian, E-mail: cnhe08@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072 (China)

    2016-01-15

    Graphical abstract: Hierarchically structured SnO{sub 2}-Fe{sub 3}O{sub 4}@C microparticles for lithium-ion battery anode are developed by a facile and scalable strategy. - Highlights: • Hierarchically structured SnO{sub 2}-Fe{sub 3}O{sub 4}@C micrometer-sized particles were synthesized. • The SnO{sub 2}-Fe{sub 3}O{sub 4}@C micrometer-sized particles deliver high reversible lithium storage capacity. • The wrapped carbon layer can buffer the volume expansion of SnO{sub 2}-Fe{sub 3}O{sub 4}. - Abstract: A facile and scalable strategy was developed to fabricate SnO{sub 2}-Fe{sub 3}O{sub 4}@C micrometer-sized particles as a good lithium-ion battery anode. The obtained materials were constructed by aggregated nanoclusters (100–200 nm) consisting of SnO{sub 2}-Fe{sub 3}O{sub 4}@C nanospheres (20 ∼ 30 nm), in which SnO{sub 2} and Fe{sub 3}O{sub 4} nanoparticles (5 ∼ 8 nm) were homogeneously embedded in a percolating carbonaceous network with an average thickness of about 3 nm. SnO{sub 2}-Fe{sub 3}O{sub 4}@C microparticles were synthesized by a one-pot hydrothermal process followed by annealing under Ar and subsequent chemical vapor transformation (CVT) under vacuum. The peculiar strategy allows to obtain hierarchical structure of micrometer-sized particles including nanospheres, nanoclusters and micro-scale particles, and the combination of SnO{sub 2} and Fe{sub 3}O{sub 4} could promote the synergistic effects to enhance the reversible capacity as well as the structural stability. Meanwhile, the carbon layer, homogeneously covering the nanoparticles does not only accommodate the volume change of active materials to maintain the structural integrity but also forms a conductive network throughout the whole micro-sized structure during charge/discharge processes. As a result, the electrode of SnO{sub 2}-Fe{sub 3}O{sub 4}@C microparticles exhibits good rate performance (1056 mAh g{sup −1} at 0.1 C, 734 mAh g{sup −1} at 0.2 C, 449 mAh g{sup −1} at 0.5 C, 212

  15. Utility battery storage systems. Program report for FY95

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  16. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  17. Availability-based computer management of a cold thermal storage system

    International Nuclear Information System (INIS)

    Wong, K.F.V.; Ferrano, F.J.

    1990-01-01

    This paper reports on work to develop an availability-based, on-line expert system to manage a thermal energy storage air-conditioning system. The management system is designed to be used by mechanical engineers in the field of air-conditioning control and maintenance. Specifically, the expert system permits the user to easily monitor the second law of thermodynamics operating efficiencies of the major components and the system as a whole in addition to the daily scheduled operating parameters of a cold thermal storage system. Through the use of computer-generated and continually updated screen display pages, the user is permitted interaction with the expert system. The knowledge-based system is developed with a commercially available expert system shell that is resident in a personal computer. In the case studied, 130 various analog and binary inputs/outputs are used. The knowledge base for the thermal energy storage expert system included nine different display pages that are continually updated, 25 rules, three tasks, and three loops

  18. Safety Test Report for the SNF Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Seo, K. S.; Lee, J. H.; Lee, J. C.; Choi, W. S

    2008-11-15

    This is technical report conducted by KAERI under the contract with NETEC for safety test for the PWR S/F dry storage system. Leak Test was performed after drop test and turn-over test, the measured leakage rate was lower than allowable leakage rate. It is revealed that the containment integrity of the dry storage system is maintained. In the seismic test, the moving of the model was measured at SRTH seismic response of 0.4 g and 0.8 g. Therefore the seismic test results can be used fully to the test data for verification of the seismic analysis. In the thermal test, the direction of the inlet and outlet of the air has no effect on the heat transfer performance. The passive heat removal system of the horizontal storage module was designed well.

  19. Demonstration of a transportable storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Shetler, J.R.; Miller, K.R.; Jones, R.E.

    1993-01-01

    The purpose of this paper is to discuss the joint demonstration project between the Sacramento Municipal Utility District (SMUD) and the US Department of Energy (DOE) regarding the use of a transportable storage system for the long-term storage and subsequent transport of spent nuclear fuel. SMUD's Rancho Seco nuclear generating station was shut down permanently in June 1989. After the shutdown, SMUD began planning the decommissioning process, including the disposition of the spent nuclear fuel. Concurrently, Congress had directed the Secretary of Energy to develop a plan for the use of dual-purpose casks. Licensing and demonstrating a dual-purpose cask, or transportable storage system, would be a step toward achieving Congress's goal of demonstrating a technology that can be used to minimize the handling of spent nuclear fuel from the time the fuel is permanently removed from the reactor through to its ultimate disposal at a DOE facility. For SMUD, using a transportable storage system at the Rancho Seco Independent Spent-Fuel Storage Installation supports the goal of abandoning Rancho Seco's spent-fuel pool as decommissioning proceeds

  20. Hierarchical Control for Multiple DC-Microgrids Clusters

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    DC microgrids (MGs) have gained research interest during the recent years because of many potential advantages as compared to the ac system. To ensure reliable operation of a low-voltage dc MG as well as its intelligent operation with the other DC MGs, a hierarchical control is proposed in this p......DC microgrids (MGs) have gained research interest during the recent years because of many potential advantages as compared to the ac system. To ensure reliable operation of a low-voltage dc MG as well as its intelligent operation with the other DC MGs, a hierarchical control is proposed...

  1. Control system design for robotic underground storage tank inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1994-09-01

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission

  2. Final Report: Hydrogen Storage System Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel A. [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-30

    The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allow comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.

  3. Air ejector augmented compressed air energy storage system

    Science.gov (United States)

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  4. Use of compressed-air storage systems; Einsatz von Druckluftspeichersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Cyphely, I.; Rufer, A.; Brueckmann, Ph.; Menhardt, W.; Reller, A.

    2004-07-01

    This final report issued by the Swiss Federal Office of Energy (SFOE) looks at the use of compressed air as a means of storing energy. Historical aspects are listed and compressed-air storage as an alternative to current ideas that use electrolysis and hydrogen storage is discussed. The storage efficiency advantages of compressed-air storage is stressed and the possibilities it offers for compensating the stochastic nature of electricity production from renewable energy sources are discussed. The so-called BOP (Battery with Oil-hydraulics and Pneumatics) principle for the storage of electricity is discussed and its function is described. The advantages offered by such a system are listed and the development focus necessary is discussed.

  5. Hierarchical capillary adhesion of microcantilevers or hairs

    International Nuclear Information System (INIS)

    Liu Jianlin; Feng Xiqiao; Xia Re; Zhao Hongping

    2007-01-01

    As a result of capillary forces, animal hairs, carbon nanotubes or nanowires of a periodically or randomly distributed array often assemble into hierarchical structures. In this paper, the energy method is adopted to analyse the capillary adhesion of microsized hairs, which are modelled as clamped microcantilevers wetted by liquids. The critical conditions for capillary adhesion of two hairs, three hairs or two bundles of hairs are derived in terms of Young's contact angle, elastic modulus and geometric sizes of the beams. Then, the hierarchical capillary adhesion of hairs is addressed. It is found that for multiple hairs or microcantilevers, the system tends to take a hierarchical structure as a result of the minimization of the total potential energy of the system. The level number of structural hierarchy increases with the increase in the number of hairs if they are sufficiently long. Additionally, we performed experiments to verify our theoretical solutions for the adhesion of microbeams

  6. Sphere-shaped hierarchical cathode with enhanced growth of nanocrystal planes for high-rate and cycling-stable li-ion batteries.

    Science.gov (United States)

    Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li(1.2)Ni(0.13)Mn(0.54)Co(0.13)O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li(+) intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achieving around 70% (175 mAh g(-1)) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.

  7. 78 FR 16619 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-03-18

    ...-0308] RIN 3150-AJ22 List of Approved Spent Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear... proposing to amend its spent fuel storage regulations by revising the NAC International, Inc., Modular Advanced Generation Nuclear All-purpose Storage (MAGNASTOR[supreg]) Cask System listing within the ``List...

  8. Modeling and analysing storage systems in agricultural biomass supply chain for cellulosic ethanol production

    International Nuclear Information System (INIS)

    Ebadian, Mahmood; Sowlati, Taraneh; Sokhansanj, Shahab; Townley-Smith, Lawrence; Stumborg, Mark

    2013-01-01

    Highlights: ► Studied the agricultural biomass supply chain for cellulosic ethanol production. ► Evaluated the impact of storage systems on different supply chain actors. ► Developed a combined simulation/optimization model to evaluate storage systems. ► Compared two satellite storage systems with roadside storage in terms of costs and emitted CO 2 . ► SS would lead to a more cost-efficient supply chain compared to roadside storage. -- Abstract: In this paper, a combined simulation/optimization model is developed to better understand and evaluate the impact of the storage systems on the costs incurred by each actor in the agricultural biomass supply chain including farmers, hauling contractors and the cellulosic ethanol plant. The optimization model prescribes the optimum number and location of farms and storages. It also determines the supply radius, the number of farms required to secure the annual supply of biomass and also the assignment of farms to storage locations. Given the specific design of the supply chain determined by the optimization model, the simulation model determines the number of required machines for each operation, their daily working schedule and utilization rates, along with the capacities of storages. To evaluate the impact of the storage systems on the delivered costs, three storage systems are molded and compared: roadside storage (RS) system and two satellite storage (SS) systems including SS with fixed hauling distance (SF) and SS with variable hauling distance (SV). In all storage systems, it is assumed the loading equipment is dedicated to storage locations. The obtained results from a real case study provide detailed cost figures for each storage system since the developed model analyses the supply chain on an hourly basis and considers time-dependence and stochasticity of the supply chain. Comparison of the storage systems shows SV would outperform SF and RS by reducing the total delivered cost by 8% and 6%, respectively

  9. MRS [monitored retrievable storage] systems study Task G report: The role and functions of surface storage of radioactive material in the federal waste management system

    International Nuclear Information System (INIS)

    Wood, T.W.; Short, S.M.; Woodruff, M.G.; Altenhofen, M.K.; MacKay, C.A.

    1989-04-01

    This is one of nine studies undertaken by contractors to the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), to provide a technical basis for re-evaluating the role of a monitored retrievable storage (MRS) facility. The study investigates the functions that could be performed by surface storage of radioactive material within the federal radioactive waste management system, including enabling acceptance of spent fuel from utility owners, scheduling of waste-preparation processes within the system, enhancement of system operating reliability, and conditioning the thermal (decay heat) characteristics of spent fuel emplaced in a repository. The analysis focuses particularly on the effects of storage capacity and DOE acceptance schedule on power reactors. Figures of merit developed include the storage capacity [in metric tons of uranium (MTU)] required to be added beyond currently estimated maximum spent fuel storage capacities and its associated cost, and the number of years that spent fuel pools would remain open after last discharge (in pool-years) and the cost of this period of operation. 27 refs., 36 figs., 18 tabs

  10. Multiple products management system with sensors array in automated storage and retrieval systems

    Science.gov (United States)

    Vongbunyong, Supachai; Roengritronnachai, Perawat; Kongsanit, Savanut; Chanok-owat, Chawisa; Polchankajorn, Pongsakorn

    2018-01-01

    Automated Storage and Retrieval Systems (AS/RS) have now been widely used in a number of industries due to its capability to automatically manage the storage of products in effective ways. One of the key features of AS/RS is that each rack is not assigned for a specific product resulting in the benefit of space utilization and logistics related issues. In this research, sensor arrays are equipped at each rack in order to enhance this feature. As a result, various products can be identified and mixed in each rack, so that the space utilization efficiency can be increased. To prove the concept, a prototype system consisting of a Cartesian robot that manages the storage and retrieval of products with 9 variations based on size and color. The concept of Cyber-Physical System and self-awareness of the system are also implemented in this concept prototype.

  11. Optimization of workflow scheduling in Utility Management System with hierarchical neural network

    Directory of Open Access Journals (Sweden)

    Srdjan Vukmirovic

    2011-08-01

    Full Text Available Grid computing could be the future computing paradigm for enterprise applications, one of its benefits being that it can be used for executing large scale applications. Utility Management Systems execute very large numbers of workflows with very high resource requirements. This paper proposes architecture for a new scheduling mechanism that dynamically executes a scheduling algorithm using feedback about the current status Grid nodes. Two Artificial Neural Networks were created in order to solve the scheduling problem. A case study is created for the Meter Data Management system with measurements from the Smart Metering system for the city of Novi Sad, Serbia. Performance tests show that significant improvement of overall execution time can be achieved by Hierarchical Artificial Neural Networks.

  12. Statement of Work Electrical Energy Storage System Installation at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Sandia is seeking to procure a 1 MWh energy storage system. It will be installed at the existing Energy Storage Test Pad, which is located at Sandia National Laboratories in Albuquerque, New Mexico. This energy storage system will be a daily operational system, but will also be used as a tool in our Research and development work. The system will be part of a showcase of Sandia distributed energy technologies viewed by many distinguished delegates.

  13. Facile synthesis of Zn-doped SnO{sub 2} dendrite-built hierarchical cube-like architectures and their application in lithium storage

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Tiekun, E-mail: tiekunjia@126.com [Department of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Chen, Jian [Department of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Deng, Zhao [State Key Lab of Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Fu, Fang; Zhao, Junwei; Wang, Xiaofeng [Department of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Long, Fei [School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004 (China)

    2014-11-15

    Highlights: • Novel Zn-doped SnO{sub 2} dendrite-built hierarchical cube-like architectures were synthesized via a facile hydrothermal approach without surfactant. • The Zn-doped SnO{sub 2} dendrite-built hierarchical cube-like architectures were assembled by pronounced needle-like nanorod truncks with highly ordered needle-like nanorod branches. • The as-obtained Zn-doped SnO{sub 2} sample exhibited good electrochemical property. - Abstract: Zn-doped SnO{sub 2} dendrite-built hierarchical cube-like architectures were successfully synthesized by a facile hydrothermal approach without the use of any surfactants or templates. The as-prepared samples were characterized by the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The observation of FESEM and HRTEM showed that Zn-doped SnO{sub 2} hierarchical cube-like architectures were composed of numerous oriented dendrites. Each dendrite is assembled by a pronounced trunk with highly ordered branches distributing on the both sides. The as-prepared Zn-doped SnO{sub 2} dendrite-built hierarchical cube-like architectures were used as anode materials for Li-ion battery, and a stable capacity of 488.3 mA h g{sup −1} was achieved after 50 cycles. The results of electrochemical measurements indicated that the as-prepared Zn-doped SnO{sub 2} dendrite-built hierarchical cube-like architectures have potential application in Li-ion battery.

  14. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  15. Beam vacuum system of Brookhaven's muon storage ring

    International Nuclear Information System (INIS)

    Hseuth, H.C.; Snydstrup, L.; Mapes, M.

    1995-01-01

    A storage ring with a circumference of 45 m is being built at Brookhaven to measure the g-2 value of the muons to an accuracy of 0.35 ppm.. The beam vacuum system of the storage ring will operate at 10 -7 Torr and has to be completely non-magnetic. It consists of twelve sector chambers. The chambers are constructed of aluminum and are approximately 3.5 m in length with a rectangular cross-section of 16.5 cm high by 45 cm at the widest point. The design features, fabrication techniques and cleaning methods for these chambers are described. The beam vacuum system will be pumped by forty eight non-magnetic distributed ion pumps with a total pumping speed of over 2000 ell/sec. Monte Carlo simulations of the pressure distribution in the muon storage region are presented

  16. The NOAO Data Lab virtual storage system

    Science.gov (United States)

    Graham, Matthew J.; Fitzpatrick, Michael J.; Norris, Patrick; Mighell, Kenneth J.; Olsen, Knut; Stobie, Elizabeth B.; Ridgway, Stephen T.; Bolton, Adam S.; Saha, Abhijit; Huang, Lijuan W.

    2016-07-01

    Collaborative research/computing environments are essential for working with the next generations of large astronomical data sets. A key component of them is a distributed storage system to enable data hosting, sharing, and publication. VOSpace1 is a lightweight interface providing network access to arbitrary backend storage solutions and endorsed by the International Virtual Observatory Alliance (IVOA). Although similar APIs exist, such as Amazon S3, WebDav, and Dropbox, VOSpace is designed to be protocol agnostic, focusing on data control operations, and supports asynchronous and third-party data transfers, thereby minimizing unnecessary data transfers. It also allows arbitrary computations to be triggered as a result of a transfer operation: for example, a file can be automatically ingested into a database when put into an active directory or a data reduction task, such as Sextractor, can be run on it. In this paper, we shall describe the VOSpace implementations that we have developed for the NOAO Data Lab. These offer both dedicated remote storage, accessible as a local file system via FUSE, and a local VOSpace service to easily enable data synchronization.

  17. Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ela, E.; Kirby, B.; Botterud, A.; Milostan, C.; Krad, I.; Koritarov, V.

    2013-05-01

    The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purpose some solutions to those problems.

  18. Energy Storage System for a Pulsed DEMO

    International Nuclear Information System (INIS)

    Lucas, J.; Cortes, M.; Mendez, P.; Maisonnier, D.; Hayward, J.

    2006-01-01

    Several designs have been proposed for DEMO, some of which will operate in pulsed mode. Since a fusion power plant will be required to deliver continuous output, this challenge must be solved. For the reference DEMO, energy storage is required at a level of 250 MWhe with a capability of delivering a power of 1 GWe. Although DEMO is scheduled to be built in about 30 years, the design of the energy storage system must be based on current technology, focusing on commercially available products and on their expected future trends. From a thorough review of the different technologies available, thermal energy storage, compressed air energy storage, water pumping, fuel cells, batteries, flywheels and ultracapacitors are the most promising solutions to energy storage for a pulsed DEMO. An outline of each of these technologies is described in the paper, showing its basis, features, advantages and disadvantages for this application. Following this review, the most suitable methods capable of storing the required energy are examined. Fuel cells are not suitable due to the power requirement. Compressed air energy storage has a lower efficiency than the required one. Thermal energy storage, based on molten salts, so more energy can be stored with a better efficiency, and water pumping are shown as the main solutions, based on existing technology. However, those are not the only solutions capable of solving our challenge. Hydrogen production, using water electrolysis, hydrogen storage and combustion in a combined cycle can achieve our energy and power requirements with an acceptable efficiency. All these solutions are studied in detail and described, evaluating their current cost and efficiency in order to compare them all. (author)

  19. A systems evaluation model for selecting spent nuclear fuel storage concepts

    International Nuclear Information System (INIS)

    Postula, F.D.; Finch, W.C.; Morissette, R.P.

    1982-01-01

    This paper describes a system evaluation approach used to identify and evaluate monitored, retrievable fuel storage concepts that fulfill ten key criteria for meeting the functional requirements and system objectives of the National Nuclear Waste Management Program. The selection criteria include health and safety, schedules, costs, socio-economic factors and environmental factors. The methodology used to establish the selection criteria, develop a weight of importance for each criterion and assess the relative merit of each storage system is discussed. The impact of cost relative to technical criteria is examined along with experience in obtaining relative merit data and its application in the model. Topics considered include spent fuel storage requirements, functional requirements, preliminary screening, and Monitored Retrievable Storage (MRS) system evaluation. It is concluded that the proposed system evaluation model is universally applicable when many concepts in various stages of design and cost development need to be evaluated

  20. Redundancy Maintenance and Garbage Collection Strategies in Peer-to-Peer Storage Systems

    Science.gov (United States)

    Liu, Xin; Datta, Anwitaman

    Maintaining redundancy in P2P storage systems is essential for reliability guarantees. Numerous P2P storage system maintenance algorithms have been proposed in the last years, each supposedly improving upon the previous approaches. We perform a systematic comparative study of the various strategies taking also into account the influence of different garbage collection mechanisms, an issue not studied so far. Our experiments show that while some strategies generally perform better than some others, there is no universally best strategy, and their relative superiority depends on various other design choices as well as the specific evaluation criterion. Our results can be used by P2P storage systems designers to make prudent design decisions, and our exploration of the various evaluation metrics also provides a more comprehensive framework to compare algorithms for P2P storage systems. While there are numerous network simulators specifically developed even to simulate peer-to-peer networks, there existed no P2P storage simulators - a byproduct of this work is a generic modular P2P storage system simulator which we provide as open-source. Different redundancy, maintenance, placement, garbage-collection policies, churn scenarios can be easily integrated to the simulator to try out new schemes in future, and provides a common framework to compare (future) p2p storage systems designs - something which has not been possible so far.

  1. SORM applied to hierarchical parallel system

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2006-01-01

    of a particular first order reliability method (FORM) was first described in a celebrated paper by Rackwitz and Fiessler more than a quarter of a century ago. The method has become known as the Rackwitz-Fiessler algorithm. The original RF-algorithm as applied to a hierarchical random variable model...... is recapitulated so that a simple but quite effective accuracy improving calculation can be explained. A limit state curvature correction factor on the probability approximation is obtained from the final stop results of the RF-algorithm. This correction factor is based on Breitung’s asymptotic formula for second...

  2. Analyzing security protocols in hierarchical networks

    DEFF Research Database (Denmark)

    Zhang, Ye; Nielson, Hanne Riis

    2006-01-01

    Validating security protocols is a well-known hard problem even in a simple setting of a single global network. But a real network often consists of, besides the public-accessed part, several sub-networks and thereby forms a hierarchical structure. In this paper we first present a process calculus...... capturing the characteristics of hierarchical networks and describe the behavior of protocols on such networks. We then develop a static analysis to automate the validation. Finally we demonstrate how the technique can benefit the protocol development and the design of network systems by presenting a series...

  3. Hierarchical storage of large volume of multidector CT data using distributed servers

    Science.gov (United States)

    Ratib, Osman; Rosset, Antoine; Heuberger, Joris; Bandon, David

    2006-03-01

    Multidector scanners and hybrid multimodality scanners have the ability to generate large number of high-resolution images resulting in very large data sets. In most cases, these datasets are generated for the sole purpose of generating secondary processed images and 3D rendered images as well as oblique and curved multiplanar reformatted images. It is therefore not essential to archive the original images after they have been processed. We have developed an architecture of distributed archive servers for temporary storage of large image datasets for 3D rendering and image processing without the need for long term storage in PACS archive. With the relatively low cost of storage devices it is possible to configure these servers to hold several months or even years of data, long enough for allowing subsequent re-processing if required by specific clinical situations. We tested the latest generation of RAID servers provided by Apple computers with a capacity of 5 TBytes. We implemented a peer-to-peer data access software based on our Open-Source image management software called OsiriX, allowing remote workstations to directly access DICOM image files located on the server through a new technology called "bonjour". This architecture offers a seamless integration of multiple servers and workstations without the need for central database or complex workflow management tools. It allows efficient access to image data from multiple workstation for image analysis and visualization without the need for image data transfer. It provides a convenient alternative to centralized PACS architecture while avoiding complex and time-consuming data transfer and storage.

  4. Optimizing Storage and Renewable Energy Systems with REopt

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Anderson, Katherine H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); DiOrio, Nicholas A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Laws, Nicholas D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Olis, Daniel R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Walker, H. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-27

    Under the right conditions, behind the meter (BTM) storage combined with renewable energy (RE) technologies can provide both cost savings and resiliency. Storage economics depend not only on technology costs and avoided utility rates, but also on how the technology is operated. REopt, a model developed at NREL, can be used to determine the optimal size and dispatch strategy for BTM or off-grid applications. This poster gives an overview of three applications of REopt: Optimizing BTM Storage and RE to Extend Probability of Surviving Outage, Optimizing Off-Grid Energy System Operation, and Optimizing Residential BTM Solar 'Plus'.

  5. Computer system for environmental sample analysis and data storage and analysis

    International Nuclear Information System (INIS)

    Brauer, F.P.; Fager, J.E.

    1976-01-01

    A mini-computer based environmental sample analysis and data storage system has been developed. The system is used for analytical data acquisition, computation, storage of analytical results, and tabulation of selected or derived results for data analysis, interpretation and reporting. This paper discussed the structure, performance and applications of the system

  6. Hierarchical State Machines as Modular Horn Clauses

    Directory of Open Access Journals (Sweden)

    Pierre-Loïc Garoche

    2016-07-01

    Full Text Available In model based development, embedded systems are modeled using a mix of dataflow formalism, that capture the flow of computation, and hierarchical state machines, that capture the modal behavior of the system. For safety analysis, existing approaches rely on a compilation scheme that transform the original model (dataflow and state machines into a pure dataflow formalism. Such compilation often result in loss of important structural information that capture the modal behaviour of the system. In previous work we have developed a compilation technique from a dataflow formalism into modular Horn clauses. In this paper, we present a novel technique that faithfully compile hierarchical state machines into modular Horn clauses. Our compilation technique preserves the structural and modal behavior of the system, making the safety analysis of such models more tractable.

  7. Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA)

    2009-10-01

    This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

  8. Energy Storage in Power System Operation: The Power Nodes Modeling Framework

    DEFF Research Database (Denmark)

    Heussen, Kai; Koch, Stephan; Ulbig, Andreas

    2010-01-01

    for designing operation strategies for power systems based on ubiquitous energy storage, for example to buer non-dispatchable generation, as well as for the evaluation of the operational performance in terms of energy eciency, reliability and cost. After introducing the modeling approach and a categorization......In this paper, a novel concept for the description of energy storage in power systems with dispatchable and non-dispatchable generators and loads is presented. It is based on a system-perspective consideration of energy storage, generation and consumption. This means that grid-relevant aspects...

  9. Modeling of battery energy storage in the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  10. An adaptive map-matching algorithm based on hierarchical fuzzy system from vehicular GPS data.

    Directory of Open Access Journals (Sweden)

    Jinjun Tang

    Full Text Available An improved hierarchical fuzzy inference method based on C-measure map-matching algorithm is proposed in this paper, in which the C-measure represents the certainty or probability of the vehicle traveling on the actual road. A strategy is firstly introduced to use historical positioning information to employ curve-curve matching between vehicle trajectories and shapes of candidate roads. It improves matching performance by overcoming the disadvantage of traditional map-matching algorithm only considering current information. An average historical distance is used to measure similarity between vehicle trajectories and road shape. The input of system includes three variables: distance between position point and candidate roads, angle between driving heading and road direction, and average distance. As the number of fuzzy rules will increase exponentially when adding average distance as a variable, a hierarchical fuzzy inference system is then applied to reduce fuzzy rules and improve the calculation efficiency. Additionally, a learning process is updated to support the algorithm. Finally, a case study contains four different routes in Beijing city is used to validate the effectiveness and superiority of the proposed method.

  11. Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe

    Directory of Open Access Journals (Sweden)

    Henrik Zsiborács

    2018-06-01

    Full Text Available Solar energy has an increasing role in the global energy mix. The need for flexible storage photovoltaic systems and energy storage in electricity networks is becoming increasingly important as more generating capacity uses solar and wind energy. This paper is a study on the economic questions related to flexible storage photovoltaic systems of household size in 2018. The aim is to clarify whether it is possible in the European Union to achieve a payback of the costs of flexible storage photovoltaic system investments for residential customers considering the technology-specific storage aspects prevalent in 2018. We studied seven different flexible storage photovoltaic investments with different battery technologies in Germany, France, Italy, and Spain because, in Europe, these countries have a prominent role with regard to the spread of photovoltaic technology. These investment alternatives are studied with the help of economic indicators for the different cases of the selected countries. At the end of our paper we come to the conclusion that an investment of a flexible storage photovoltaic (PV system with Olivine-type-LiFePO4, Lithium-Ion, Vented lead-acid battery (OPzS, Sealed lead-acid battery (OPzV, and Aqueous Hybrid Ion (AHI batteries can have a positive net present value due to the high electricity prices in Germany and in Spain. The most cost-effective technology was the Olivine-type-LiFePO4 and the Lithium-Ion at the time of the study. We suggest the provision of governmental support and uniform European modifications to the regulatory framework, especially concerning grid fees and tariffs, which would be necessary in the beginning to help to introduce these flexible storage PV systems to the market.

  12. Research and implementation on improving I/O performance of streaming media storage system

    Science.gov (United States)

    Lu, Zheng-wu; Wang, Yu-de; Jiang, Guo-song

    2008-12-01

    In this paper, we study the special requirements of a special storage system: streaming media server, and propose a solution to improve I/O performance of RAID storage system. The solution is suitable for streaming media applications. A streaming media storage subsystem includes the I/O interfaces, RAID arrays, I/O scheduling and device drivers. The solution is implemented on the top of the storage subsystem I/O Interface. Storage subsystem is the performance bottlenecks of a streaming media system, and I/O interface directly affect the performance of the storage subsystem. According to theoretical analysis, 64 KB block-size is most appropriate for streaming media applications. We carry out experiment in detail, and verified that the proper block-size really is 64KB. It is in accordance with our analysis. The experiment results also show that by using DMA controller, efficient memory management technology and mailbox interface design mechanism, streaming media storage system achieves a high-speed data throughput.

  13. Carbon dioxide emissions effects of grid-scale electricity storage in a decarbonizing power system

    Science.gov (United States)

    Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias

    2018-01-01

    While grid-scale electricity storage (hereafter ‘storage’) could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO2 emissions, we quantify the effect of storage on operational CO2 emissions as a power system decarbonizes under a moderate and strong CO2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. We conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO2 emissions with and without storage. We find that storage would increase CO2 emissions in the current ERCOT system, but would decrease CO2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO2 emissions.

  14. Optimal sizing of a lithium battery energy storage system for grid-connected photovoltaic systems

    OpenAIRE

    Dulout , Jérémy; Anvari-Moghaddam , Amjad ,; Luna , Adriana; Jammes , Bruno; Alonso , Corinne; Guerrero , Josep ,

    2017-01-01

    International audience; This paper proposes a system analysis focused on finding the optimal operating conditions (nominal capacity, cycle depth, current rate, state of charge level) of a lithium battery energy storage system. The purpose of this work is to minimize the cost of the storage system in a renewable DC microgrid. Thus, main stress factors influencing both battery lifetime (calendar and cycling) and performances are described and modelled. Power and energy requirements are also dis...

  15. Electrical Energy Storage Systems Feasibility; the Case of Terceira Island

    Directory of Open Access Journals (Sweden)

    Ana Rodrigues

    2017-07-01

    Full Text Available The Azores Regional Government, through the Sustainable Energy Action Plan for the Azorean Islands, assumed that by the year 2018, 60% of electricity would be generated from renewable energy sources. Nevertheless, by increasing renewable energy sources share in the electricity mix, peak energy that exceeds grid capacity cannot be used unless when considering energy storage systems. Therefore, this article aims at determining, among batteries and Pumped Hydro Systems, the most cost-effective energy storage system to deploy in Terceira Island, along with geothermal, wind, thermal and bio waste energy, while considering demand and supply constraints. It is concluded that a pumped hydro system sited in Serra do Morião-Nasce Água is the best option for storage of the excess generated energy when compared with batteries. However, further studies should analyze environmental constraints. It is demonstrated that by increasing the storage power capacity, a pumped hydro system improves its cost efficiency when compared with batteries. It is also demonstrated that, to ensure quality, economic feasibility, reliability and a reduction of external costs, it is preferable to replace fuel-oil by wind to generate electricity up to a conceivable technical limit, while building a pumped hydro system, or dumping the excess peak energy generated.

  16. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  17. TEXT Energy Storage System

    International Nuclear Information System (INIS)

    Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    The Texas Experimental Tokamak (TEXT) Enery Storage System, designed by the Center for Electromechanics (CEM), consists of four 50 MJ, 125 V homopolar generators and their auxiliaries and is designed to power the toroidal and poloidal field coils of TEXT on a two-minute duty cycle. The four 50 MJ generators connected in series were chosen because they represent the minimum cost configuration and also represent a minimal scale up from the successful 5.0 MJ homopolar generator designed, built, and operated by the CEM

  18. Economic Optimization of Component Sizing for Residential Battery Storage Systems

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-06-01

    Full Text Available Battery energy storage systems (BESS coupled with rooftop-mounted residential photovoltaic (PV generation, designated as PV-BESS, draw increasing attention and market penetration as more and more such systems become available. The manifold BESS deployed to date rely on a variety of different battery technologies, show a great variation of battery size, and power electronics dimensioning. However, given today’s high investment costs of BESS, a well-matched design and adequate sizing of the storage systems are prerequisites to allow profitability for the end-user. The economic viability of a PV-BESS depends also on the battery operation, storage technology, and aging of the system. In this paper, a general method for comprehensive PV-BESS techno-economic analysis and optimization is presented and applied to the state-of-art PV-BESS to determine its optimal parameters. Using a linear optimization method, a cost-optimal sizing of the battery and power electronics is derived based on solar energy availability and local demand. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, feed-in remuneration, and battery aging. Using up to date technology-specific aging information and the investment cost of battery and inverter systems, three mature battery chemistries are compared; a lead-acid (PbA system and two lithium-ion systems, one with lithium-iron-phosphate (LFP and another with lithium-nickel-manganese-cobalt (NMC cathode. The results show that different storage technology and component sizing provide the best economic performances, depending on the scenario of load demand and PV generation.

  19. High temperature underground thermal energy storage system for solar energy

    Science.gov (United States)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  20. Monitored Retrievable Storage conceptual system study: metal storage casks

    International Nuclear Information System (INIS)

    Unterzuber, R.; Cross, T.E.; Krasicki, B.R.

    1983-08-01

    A description of the metal cask storage facility concept is presented with the operations required to handle the spent fuel or high-level wastes and transuranic wastes. A generic Receiving and Handling Facility, provided by PNL, has been used for this study. Modifications to the storage delivery side of the handling facility, necessary to couple the Receiving and Handling Facility with the storage facility, are described. The equipment and support facilities needed for the storage facility are also described. Two separate storage facilities are presented herein: one for all spent fuel storage, and one for storage of high-level waste (HLW) and transuranic waste (TRU). Each facility is described for the capacities and rates defined by PNL in the Concept Technical Performance Criteria and Base Assumptions (see Table 1.3-1). Estimates of costs and time-distributions of expenditures have been developed to construct, operate, and decommission the conceptual MRS facilities in mid-1983 dollars, for the base cases given using the cost categories and percentages provided by PNL. Cost estimates and time-distributions of expenditures have also been developed to expand the facility throughput rate from 1800 MTU to 3000 MTU, and to expand the facility storage capacity from 15,000 MTU to 72,00 MTU. The life cycle cost of the facility for the bounding cases of all spent fuel and all HLW and TRU, using the time-distributions of costs developed above and assuming a two percent per year discount rate, are also presented. 3 references, 16 figures, 18 tables

  1. Minimax terminal approach problem in two-level hierarchical nonlinear discrete-time dynamical system

    Energy Technology Data Exchange (ETDEWEB)

    Shorikov, A. F., E-mail: afshorikov@mail.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)

    2015-11-30

    We consider a discrete–time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector nonlinear or linear discrete–time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solving.

  2. Designing Computer Systems with MEMS-Based Storage

    National Research Council Canada - National Science Library

    Schlosser, Steven

    2000-01-01

    .... An exciting new storage technology based on microelectromechanical systems (MEMS) is poised to fill a large portion of this performance gap, significantly reduce power consumption, and enable many new classes of applications...

  3. New insight in magnetic saturation behavior of nickel hierarchical structures

    Science.gov (United States)

    Ma, Ji; Zhang, Jianxing; Liu, Chunting; Chen, Kezheng

    2017-09-01

    It is unanimously accepted that non-ferromagnetic inclusions in a ferromagnetic system will lower down total saturation magnetization in unit of emu/g. In this study, ;lattice strain; was found to be another key factor to have critical impact on magnetic saturation behavior of the system. The lattice strain determined assembling patterns of primary nanoparticles in hierarchical structures and was intimately related with the formation process of these architectures. Therefore, flower-necklace-like and cauliflower-like nickel hierarchical structures were used as prototype systems to evidence the relationship between assembling patterns of primary nanoparticles and magnetic saturation behaviors of these architectures. It was found that the influence of lattice strain on saturation magnetization outperformed that of non-ferromagnetic inclusions in these hierarchical structures. This will enable new insights into fundamental understanding of related magnetic effects.

  4. Tensegrity I. Cell structure and hierarchical systems biology

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.

  5. Super capacitors for embarked systems as a storage energy device solution

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, M.Y.; Rael, S.; Pierfederici, S.; Davat, B. [Institut National Polytechnique, GREEN-INPL-CNRS (UMR 7037), 54 - Vandoeuvre les Nancy (France)

    2004-07-01

    The management of embarked electrical energy needs a storage system with high dynamic performances, in order to shave transient power peaks and to compensate for the intrinsic limitations of the main source. The use of super-capacitors for this storage system is quite suitable, because of appropriate electrical characteristics (huge capacitance, weak serial resistance, high specific energy, high specific power), of direct storage (energy ready for use), and of easy control by power electronic conversion. This paper deals with the conception and the achievement of two hybrid power sources using super-capacitors as auxiliary storage device. We present the structures, the control principles, and some experimental results. (authors)

  6. A progress report on the g-2 storage ring magnet system

    International Nuclear Information System (INIS)

    Bunce, G.; Cullen, J.; Danby, G.

    1995-01-01

    The 3.1 GeV muon storage ring for the g-2 experiment at Brookhaven National Laboratory hat three large solenoid magnets that form a continuous 1.451 tesla storage ring dipole with an average beam bond radius of 7.1 metors. In addition to the three storage ring solenoids, there is an inflector dipole with nested dipole coils that create very little stray magnetic field. A superconducting shield on the infractor gets rid of most of the remaining stray flux. This paper reports on the progress made on the storage ring solenoid magnet system and the inflector as of June 1995. The results of cryogenic system tests are briefly reported

  7. Hierarchical Network Design

    DEFF Research Database (Denmark)

    Thomadsen, Tommy

    2005-01-01

    Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... with changing and increasing demands. Two-layer networks consist of one backbone network, which interconnects cluster networks. The clusters consist of nodes and links, which connect the nodes. One node in each cluster is a hub node, and the backbone interconnects the hub nodes of each cluster and thus...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks...

  8. Beam position monitor system for storage rings

    International Nuclear Information System (INIS)

    Nakamura, M.; Hinkson, J.A.

    1985-05-01

    Beam position monitors (BPM) for synchrotron light storage rings usually consist of beam pickup electrodes, coaxial relays and a narrowband receiver. While accurate, these systems are slow and of limited use in the commissioning of an accelerator. A beam position monitor is described which is intended to be a principal diagnostic during debug and routine running of a storage ring. It is capable of measuring the position of a single bunch on the first or nth orbit to an accuracy of a few percent. Stored beam position is more accurately measured with averaging techniques. Beam position changes can be studied in a bandwidth from DC to a few MHz. The beam monitor electronics consist of a separate amplification, detection, and sampling channel for each beam pickup electrode. Fast switches in each channel permit selection of the nth turn for measurement (single bunch mode). A calibration pulse is injected into each channel after beam measurement to permit gain offsets to be measured and removed from the final data. While initially more costly than the usual beam position monitor system, this sytem will pay for itself in reduced storage ring debug and trouble shooting time. 5 refs., 5 figs

  9. Performance analysis of a novel energy storage system based on liquid carbon dioxide

    International Nuclear Information System (INIS)

    Wang, Mingkun; Zhao, Pan; Wu, Yi; Dai, Yiping

    2015-01-01

    Due to the intermittence and fluctuation of wind resource, the increasing penetration level of wind power will bring huge challenges to maintain the stability of power system. Integrating compressed air energy storage (CAES) system with wind farms can weaken this negative effect. However CAES system needs large caverns or mines to store compressed air, which is restricted in application. In this paper, a novel energy storage system based on liquid carbon dioxide is presented. The mathematical models of compressed liquid-carbon dioxide energy storage system are developed. The parametric analysis is conducted to examine the effect of some key thermodynamic parameters on the system performance. Compared with AA-CAES, the liquid carbon dioxide energy storage system has advantages such as a high energy density, high EVR. Moreover, the round trip efficiency of this system can reach about 56.64%, which is acceptable in consideration of the storage volume. Therefore, this proposed system has a good potential for storing wind power in large scale and offers an attractive solution to the challenges of the increasing penetration level of wind power. - Highlights: • A novel energy storage system based on liquid carbon dioxide is presented. • The effects of some key parameters on the system performance are studied. • The operation optimization is conducted by genetic algorithm. • Comparative analysis of AA-CAES and liquid carbon dioxide system is studied.

  10. Multi-views storage model and access methods of conversation history in converged IP messaging system

    Science.gov (United States)

    Lu, Meilian; Yang, Dong; Zhou, Xing

    2013-03-01

    Based on the analysis of the requirements of conversation history storage in CPM (Converged IP Messaging) system, a Multi-views storage model and access methods of conversation history are proposed. The storage model separates logical views from physical storage and divides the storage into system managed region and user managed region. It simultaneously supports conversation view, system pre-defined view and user-defined view of storage. The rationality and feasibility of multi-view presentation, the physical storage model and access methods are validated through the implemented prototype. It proves that, this proposal has good scalability, which will help to optimize the physical data storage structure and improve storage performance.

  11. Battery storage for supplementing renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  12. Evaluation of the Huawei UDS cloud storage system for CERN specific data

    International Nuclear Information System (INIS)

    Resines, M Zotes; Hughes, J; Wang, L; Heikkila, S S; Duellmann, D; Adde, G; Toebbicke, R

    2014-01-01

    Cloud storage is an emerging architecture aiming to provide increased scalability and access performance, compared to more traditional solutions. CERN is evaluating this promise using Huawei UDS and OpenStack SWIFT storage deployments, focusing on the needs of high-energy physics. Both deployed setups implement S3, one of the protocols that are emerging as a standard in the cloud storage market. A set of client machines is used to generate I/O load patterns to evaluate the storage system performance. The presented read and write test results indicate scalability both in metadata and data perspectives. Futher the Huawei UDS cloud storage is shown to be able to recover from a major failure of losing 16 disks. Both cloud storages are finally demonstrated to function as back-end storage systems to a filesystem, which is used to deliver high energy physics software.

  13. Evaluation of the Huawei UDS cloud storage system for CERN specific data

    Science.gov (United States)

    Zotes Resines, M.; Heikkila, S. S.; Duellmann, D.; Adde, G.; Toebbicke, R.; Hughes, J.; Wang, L.

    2014-06-01

    Cloud storage is an emerging architecture aiming to provide increased scalability and access performance, compared to more traditional solutions. CERN is evaluating this promise using Huawei UDS and OpenStack SWIFT storage deployments, focusing on the needs of high-energy physics. Both deployed setups implement S3, one of the protocols that are emerging as a standard in the cloud storage market. A set of client machines is used to generate I/O load patterns to evaluate the storage system performance. The presented read and write test results indicate scalability both in metadata and data perspectives. Futher the Huawei UDS cloud storage is shown to be able to recover from a major failure of losing 16 disks. Both cloud storages are finally demonstrated to function as back-end storage systems to a filesystem, which is used to deliver high energy physics software.

  14. Content-aware network storage system supporting metadata retrieval

    Science.gov (United States)

    Liu, Ke; Qin, Leihua; Zhou, Jingli; Nie, Xuejun

    2008-12-01

    Nowadays, content-based network storage has become the hot research spot of academy and corporation[1]. In order to solve the problem of hit rate decline causing by migration and achieve the content-based query, we exploit a new content-aware storage system which supports metadata retrieval to improve the query performance. Firstly, we extend the SCSI command descriptor block to enable system understand those self-defined query requests. Secondly, the extracted metadata is encoded by extensible markup language to improve the universality. Thirdly, according to the demand of information lifecycle management (ILM), we store those data in different storage level and use corresponding query strategy to retrieval them. Fourthly, as the file content identifier plays an important role in locating data and calculating block correlation, we use it to fetch files and sort query results through friendly user interface. Finally, the experiments indicate that the retrieval strategy and sort algorithm have enhanced the retrieval efficiency and precision.

  15. Dry storage systems with free convection air cooling

    International Nuclear Information System (INIS)

    Kioes, S.R.

    1980-01-01

    Several design principles to remove heat from the spent fuel by free air convection are illustrated and described. The key safety considerations were felt to be: loss of coolant is impossible as the passive system uses air as a coolant; overheating is precluded because as the temperatures of the containers rises the coolant flow rate increases; mass of the storage building provides a large heat sink and therefore a rapid temperature rise is impossible; and lack of any active external support requirements makes the cooling process less likely to equipment or operator failures. An example of this type of storage already exists. The German HTGR is operated with spherical graphite fuel elements which are stored in canister and in storage cells. The concept is a double cooling system with free convection inside the cells and heat exchange via two side walls of the cell to the ambient air in the cooling ducts. Technical description of the TN 1300 cask is also presented

  16. MRS [monitored retrievable storage] Systems Study Task 1 report: Waste management system reliability analysis

    International Nuclear Information System (INIS)

    Clark, L.L.; Myers, R.S.

    1989-04-01

    This is one of nine studies undertaken by contractors to the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), to provide a technical basis for re-evaluating the role of a monitored retrievable storage (MRS) facility. The study evaluates the relative reliabilities of systems with and without an MRS facility using current facility design bases. The principal finding of this report is that the MRS system has several operational advantages that enhance system reliability. These are: (1) the MRS system is likely to encounter fewer technical issues, (2) the MRS would assure adequate system surface storage capacity to accommodate repository construction and startup delays of up to five years or longer if the Nuclear Waste Policy Amendments Act (NWPAA) were amended, (3) the system with an MRS has two federal acceptance facilities with parallel transportation routing and surface storage capacity, and (4) the MRS system would allow continued waste acceptance for up to a year after a major disruption of emplacement operations at the repository

  17. A Review of Flywheel Energy Storage System Technologies and Their Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2017-03-01

    Full Text Available Energy storage systems (ESS provide a means for improving the efficiency of electrical systems when there are imbalances between supply and demand. Additionally, they are a key element for improving the stability and quality of electrical networks. They add flexibility into the electrical system by mitigating the supply intermittency, recently made worse by an increased penetration of renewable generation. One energy storage technology now arousing great interest is the flywheel energy storage systems (FESS, since this technology can offer many advantages as an energy storage solution over the alternatives. Flywheels have attributes of a high cycle life, long operational life, high round-trip efficiency, high power density, low environmental impact, and can store megajoule (MJ levels of energy with no upper limit when configured in banks. This paper presents a critical review of FESS in regards to its main components and applications, an approach not captured in earlier reviews. Additionally, earlier reviews do not include the most recent literature in this fast-moving field. A description of the flywheel structure and its main components is provided, and different types of electric machines, power electronics converter topologies, and bearing systems for use in flywheel storage systems are discussed. The main applications of FESS are explained and commercially available flywheel prototypes for each application are described. The paper concludes with recommendations for future research.

  18. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy

    International Nuclear Information System (INIS)

    Li, Tingxian; Wang, Ruzhu; Kiplagat, Jeremiah K.; Kang, YongTae

    2013-01-01

    An innovative dual-mode thermochemical sorption energy storage method is proposed for seasonal storage of solar thermal energy with little heat losses. During the charging phase in summer, solar thermal energy is stored in form of chemical bonds resulting from thermochemical decomposition process, which enables the stored energy to be kept several months at ambient temperature. During the discharging phase in winter, the stored thermal energy is released in the form of chemical reaction heat resulting from thermochemical synthesis process. Thermodynamic analysis showed that the advanced dual-mode thermochemical sorption energy storage is an effective method for the long-term seasonal storage of solar energy. A coefficient of performance (COP h ) of 0.6 and energy density higher than 1000 kJ/kg of salt can be attained from the proposed system. During the discharging phase at low ambient temperatures, the stored thermal energy can be upgraded by use of a solid–gas thermochemical sorption heat transformer cycle. The proposed thermochemical sorption energy storage has distinct advantages over the conventional sensible heat and latent heat storage, such as higher energy storage density, little heat losses, integrated energy storage and energy upgrade, and thus it can contribute to improve the seasonal utilization of solar thermal energy. - Highlights: ► A dual-mode solid thermochemical sorption is proposed for seasonal solar thermal energy storage. ► Energy upgrade techniques into the energy storage system are integrated. ► Performance of the proposed seasonal energy storage system is evaluated. ► Energy density and COP h from the proposed system are as high as 1043 kJ/kg of salt and 0.60, respectively

  19. Two-stage energy storage equalization system for lithium-ion battery pack

    Science.gov (United States)

    Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.

    2017-11-01

    How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.

  20. The Design and Application of Data Storage System in Miyun Satellite Ground Station

    Science.gov (United States)

    Xue, Xiping; Su, Yan; Zhang, Hongbo; Liu, Bin; Yao, Meijuan; Zhao, Shu

    2015-04-01

    China has launched Chang'E-3 satellite in 2013, firstly achieved soft landing on moon for China's lunar probe. Miyun satellite ground station firstly used SAN storage network system based-on Stornext sharing software in Chang'E-3 mission. System performance fully meets the application requirements of Miyun ground station data storage.The Stornext file system is a sharing file system with high performance, supports multiple servers to access the file system using different operating system at the same time, and supports access to data on a variety of topologies, such as SAN and LAN. Stornext focused on data protection and big data management. It is announced that Quantum province has sold more than 70,000 licenses of Stornext file system worldwide, and its customer base is growing, which marks its leading position in the big data management.The responsibilities of Miyun satellite ground station are the reception of Chang'E-3 satellite downlink data and management of local data storage. The station mainly completes exploration mission management, receiving and management of observation data, and provides a comprehensive, centralized monitoring and control functions on data receiving equipment. The ground station applied SAN storage network system based on Stornext shared software for receiving and managing data reliable.The computer system in Miyun ground station is composed by business running servers, application workstations and other storage equipments. So storage systems need a shared file system which supports heterogeneous multi-operating system. In practical applications, 10 nodes simultaneously write data to the file system through 16 channels, and the maximum data transfer rate of each channel is up to 15MB/s. Thus the network throughput of file system is not less than 240MB/s. At the same time, the maximum capacity of each data file is up to 810GB. The storage system planned requires that 10 nodes simultaneously write data to the file system through 16

  1. Requirements for implementing real-time control functional modules on a hierarchical parallel pipelined system

    Science.gov (United States)

    Wheatley, Thomas E.; Michaloski, John L.; Lumia, Ronald

    1989-01-01

    Analysis of a robot control system leads to a broad range of processing requirements. One fundamental requirement of a robot control system is the necessity of a microcomputer system in order to provide sufficient processing capability.The use of multiple processors in a parallel architecture is beneficial for a number of reasons, including better cost performance, modular growth, increased reliability through replication, and flexibility for testing alternate control strategies via different partitioning. A survey of the progression from low level control synchronizing primitives to higher level communication tools is presented. The system communication and control mechanisms of existing robot control systems are compared to the hierarchical control model. The impact of this design methodology on the current robot control systems is explored.

  2. A Grid storage accounting system based on DGAS and HLRmon

    International Nuclear Information System (INIS)

    Cristofori, A; Fattibene, E; Veronesi, P; Gaido, L; Guarise, A

    2012-01-01

    Accounting in a production-level Grid infrastructure is of paramount importance in order to measure the utilization of the available resources. While several CPU accounting systems are deployed within the European Grid Infrastructure (EGI), storage accounting systems, stable enough to be adopted in a production environment are not yet available. As a consequence, there is a growing interest in storage accounting and work on this is being carried out in the Open Grid Forum (OGF) where a Usage Record (UR) definition suitable for storage resources has been proposed for standardization. In this paper we present a storage accounting system which is composed of three parts: a sensor layer, a data repository with a transport layer (Distributed Grid Accounting System - DGAS) and a web portal providing graphical and tabular reports (HLRmon). The sensor layer is responsible for the creation of URs according to the schema (described in this paper) that is currently being discussed within OGF. DGAS is one of the CPU accounting systems used within EGI, in particular by the Italian Grid Infrastructure (IGI) and some other National Grid Initiatives (NGIs) and projects. DGAS architecture is evolving in order to collect Usage Records for different types of resources. This improvement allows DGAS to be used as a ‘general’ data repository and transport layer. HLRmon is the web portal acting as an interface to DGAS. It has been improved to retrieve storage accounting data from the DGAS repository and create reports in an easy way. This is very useful not only for the Grid users and administrators but also for the stakeholders.

  3. Fuzzy Control of Cold Storage Refrigeration System with Dynamic Coupling Compensation

    Directory of Open Access Journals (Sweden)

    Xiliang Ma

    2018-01-01

    Full Text Available Cold storage refrigeration systems possess the characteristics of multiple input and output and strong coupling, which brings challenges to the optimize control. To reduce the adverse effects of the coupling and improve the overall control performance of cold storage refrigeration systems, a control strategy with dynamic coupling compensation was studied. First, dynamic model of a cold storage refrigeration system was established based on the requirements of the control system. At the same time, the coupling between the components was studied. Second, to reduce the adverse effects of the coupling, a fuzzy controller with dynamic coupling compensation was designed. As for the fuzzy controller, a self-tuning fuzzy controller was served as the primary controller, and an adaptive neural network was adopted to compensate the dynamic coupling. Finally, the proposed control strategy was employed to the cold storage refrigeration system, and simulations were carried out in the condition of start-up, variable load, and variable degree of superheat, respectively. The simulation results verify the effectiveness of the fuzzy control method with dynamic coupling compensation.

  4. Synthesis of hierarchical worm-like SnO2@C aggregates and their enhanced lithium storage properties

    International Nuclear Information System (INIS)

    Wu, Zhen-Guo; Li, Jun-Tao; Zhong, Yan-Jun; Liu, Jie; Guo, Xiao-Dong; Huang, Ling; Zhong, Ben-He; Sun, Shi-Gang

    2015-01-01

    Highlights: • The hierarchical worm-like SnO 2 @C aggregates were synthesized. • The hierarchical worm-like SnO 2 @C unit is assembled by nanowires. • The cycling performances of SnO 2 @C aggregates are improved. • A capacity of 477.0 mA h g −1 at 400 mA g −1 could be obtained after 60 cycles. - Abstract: The present paper reports a synthetic strategy of hierarchical worm-like SnO 2 @C aggregates with enhanced electrochemical performances. Specifically, a glucose-assisted hydrothermal treatment of the intermediate Co–Sn alloy nanoparticles, which were formed by carbothermal reduction of mixed commercial SnO 2 and Co 3 O 4 nanoparticles. The SnO 2 @C sample exhibits enhanced cycling performance in comparison with raw commercial SnO 2 nanoparticles and intermediate Co–Sn alloy nanoparticles when used as anode of lithium ion battery. A stable capacity of 533.6 mA h g −1 at 100 mA g −1 and 477.0 mA h g −1 at 400 mA g −1 remains after 60 cycles. When the current density increases to 1600 mA g −1 , the SnO 2 @C sample still deliver a high capacity of 384.2 mA h g −1 . The superior electrochemical performances could be attributed to the synergistic effect of unique worm-like aggregates structure and carbon surface-layer, which facilitate the electron transportation and buffer the large volume change

  5. Stickiness in Hamiltonian systems: From sharply divided to hierarchical phase space

    Science.gov (United States)

    Altmann, Eduardo G.; Motter, Adilson E.; Kantz, Holger

    2006-02-01

    We investigate the dynamics of chaotic trajectories in simple yet physically important Hamiltonian systems with nonhierarchical borders between regular and chaotic regions with positive measures. We show that the stickiness to the border of the regular regions in systems with such a sharply divided phase space occurs through one-parameter families of marginally unstable periodic orbits and is characterized by an exponent γ=2 for the asymptotic power-law decay of the distribution of recurrence times. Generic perturbations lead to systems with hierarchical phase space, where the stickiness is apparently enhanced due to the presence of infinitely many regular islands and Cantori. In this case, we show that the distribution of recurrence times can be composed of a sum of exponentials or a sum of power laws, depending on the relative contribution of the primary and secondary structures of the hierarchy. Numerical verification of our main results are provided for area-preserving maps, mushroom billiards, and the newly defined magnetic mushroom billiards.

  6. Solar energy collector/storage system

    Energy Technology Data Exchange (ETDEWEB)

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  7. Energy-efficient hierarchical processing in the network of wireless intelligent sensors (WISE)

    Science.gov (United States)

    Raskovic, Dejan

    Sensor network nodes have benefited from technological advances in the field of wireless communication, processing, and power sources. However, the processing power of microcontrollers is often not sufficient to perform sophisticated processing, while the power requirements of digital signal processing boards or handheld computers are usually too demanding for prolonged system use. We are matching the intrinsic hierarchical nature of many digital signal-processing applications with the natural hierarchy in distributed wireless networks, and building the hierarchical system of wireless intelligent sensors. Our goal is to build a system that will exploit the hierarchical organization to optimize the power consumption and extend battery life for the given time and memory constraints, while providing real-time processing of sensor signals. In addition, we are designing our system to be able to adapt to the current state of the environment, by dynamically changing the algorithm through procedure replacement. This dissertation presents the analysis of hierarchical environment and methods for energy profiling used to evaluate different system design strategies, and to optimize time-effective and energy-efficient processing.

  8. Integrated building energy systems design considering storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Lai, Judy; Aki, Hirohisa (Lawrence Berkeley National Laboratory (United States)). e-mail: MStadler@lbl.gov; Siddiqui, Afzal (Dept. of Statistical Science at Univ. College London (United Kingdom))

    2009-07-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g. PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO{sub 2} emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO{sub 2} emissions. The problem is solved for a given test year at representative customer sites, e.g. nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Dept. of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO{sub 2} minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  9. Integrated Building Energy Systems Design Considering Storage Technologies

    International Nuclear Information System (INIS)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site

  10. Tool for optimal design and operation of hydrogen storage based autonomous energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Oberschachtsiek, B.; Lemken, D. [ZBT - Duisburg (Germany); Stark, M.; Krost, G. [Duisburg-Essen Univ. (Germany)

    2010-07-01

    Decentralized small scale electricity generation based on renewable energy sources usually necessitates decoupling of volatile power generation and consumption by means of energy storage. Hydrogen has proven as an eligible storage medium for mid- and long-term range, which - when indicated - can be reasonably complemented by accumulator short term storage. The selection of appropriate system components - sources, storage devices and the appertaining peripherals - is a demanding task which affords a high degree of freedom but, on the other hand, has to account for various operational dependencies and restrictions of system components, as well as for conduct of load and generation. An innovative tool facilitates the configuration and dimensioning of renewable energy based power supply systems with hydrogen storage paths, and allows for applying appropriate operation strategies. This tool accounts for the characteristics and performances of relevant power sources, loads, and types of energy storage, and also regards safety rules the energy system has to comply with. In particular, the tool is addressing small, detached and autonomous supply systems. (orig.)

  11. Three Ways to Link Merge with Hierarchical Concept-Combination

    Directory of Open Access Journals (Sweden)

    Chris Thornton

    2016-11-01

    Full Text Available In the Minimalist Program, language competence is seen to stem from a fundamental ability to construct hierarchical structure, an operation dubbed ‘Merge’. This raises the problem of how to view hierarchical concept-combination. This is a conceptual operation which also builds hierarchical structure. We can conceive of a garden that consists of a lawn and a flower-bed, for example, or a salad consisting of lettuce, fennel and rocket, or a crew consisting of a pilot and engineer. In such cases, concepts are put together in a way that makes one the accommodating element with respect to the others taken in combination. The accommodating element becomes the root of a hierarchical unit. Since this unit is itself a concept, the operation is inherently recursive. Does this mean the mind has two independent systems of hierarchical construction? Or is some form of integration more likely? Following a detailed examination of the operations involved, this paper shows there are three main ways in which Merge might be linked to hierarchical concept-combination. Also examined are the architectural implications that arise in each case.

  12. Egg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient Catalysis and Energy Storage.

    Science.gov (United States)

    Li, Daohao; Lv, Chunxiao; Liu, Long; Xia, Yanzhi; She, Xilin; Guo, Shaojun; Yang, Dongjiang

    2015-08-26

    Carbon nanomaterials with both doped heteroatom and porous structure represent a new class of carbon nanostructures for boosting electrochemical application, particularly sustainable electrochemical energy conversion and storage applications. We herein demonstrate a unique large-scale sustainable biomass conversion strategy for the synthesis of earth-abundant multifunctional carbon nanomaterials with well-defined doped heteroatom level and multimodal pores through pyrolyzing electrospinning renewable natural alginate. The key part for our chemical synthesis is that we found that the egg-box structure in cobalt alginate nanofiber can offer new opportunity to create large mesopores (∼10-40 nm) on the surface of nitrogen-doped carbon nanofibers. The as-prepared hierarchical carbon nanofibers with three-dimensional pathway for electron and ion transport are conceptually new as high-performance multifunctional electrochemical materials for boosting the performance of oxygen reduction reaction (ORR), lithium ion batteries (LIBs), and supercapacitors (SCs). In particular, they show amazingly the same ORR activity as commercial Pt/C catalyst and much better long-term stability and methanol tolerance for ORR than Pt/C via a four-electron pathway in alkaline electrolyte. They also exhibit a large reversible capacity of 625 mAh g(-1) at 1 A g(-1), good rate capability, and excellent cycling performance for LIBs, making them among the best in all the reported carbon nanomaterials. They also represent highly efficient carbon nanomaterials for SCs with excellent capacitive behavior of 197 F g(-1) at 1 A g(-1) and superior stability. The present work highlights the importance of biomass-derived multifunctional mesoporous carbon nanomaterials in enhancing electrochemical catalysis and energy storage.

  13. Hierarchical modelling of line commutated power systems used in particle accelerators using Saber

    International Nuclear Information System (INIS)

    Reimund, J.A.

    1993-01-01

    This paper discusses the use of hierarchical simulation models using the program Saber trademark for the prediction of magnet ripple currents generated by the power supply/output filter combination. Modeling of an entire power system connected to output filters and particle accelerator ring magnets will be presented. Special emphasis is made on the modeling of power source imbalances caused by transformer impedance imbalances and utility variances. The affect that these imbalances have on the harmonic content of ripple current is also investigated

  14. Storage, transportation and disposal system for used nuclear fuel assemblies

    Science.gov (United States)

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  15. Lessons Learned from the Puerto Rico Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Boyes, John D.; De Anda, Mindi Farber; Torres, Wenceslao

    1999-08-11

    The Puerto Rico Electric Power Authority (PREPA) installed a battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The Puerto Rico facility is presently the largest operating battery storage system in the world and has successfully provided frequency control, voltage regulation, and spinning reseme to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. However, the facility has suffered accelerated cell failures in the past year and PREPA is committed to restoring the plant to full capacity. This represents the first repowering of a large utility battery facility. PREPA and its vendors and contractors learned many valuable lessons during all phases of project development and operation, which are summarized in this paper.

  16. Archiving and retrieval of experimental data using SAN based centralized storage system for SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Bhandarkar, Manisha, E-mail: manisha@ipr.res.in; Masand, Harish; Kumar, Aveg; Patel, Kirit; Dhongde, Jasraj; Gulati, Hitesh; Mahajan, Kirti; Chudasama, Hitesh; Pradhan, Subrata

    2016-11-15

    Highlights: • SAN (Storage Area Network) based centralized data storage system of SST-1 has envisaged to address the need of centrally availability of SST-1 storage system to archive/retrieve experimental data for the authenticated users for 24 × 7. • The SAN based data storage system has been designed/configured with 3-tiered architecture and GFS cluster file system with multipath support. • The adopted SAN based data storage for SST-1 is a modular, robust, and allows future expandability. • Important considerations has been taken like, Handling of varied Data writing speed from different subsystems to central storage, Simultaneous read access of the bulk experimental and as well as essential diagnostic data, The life expectancy of data, How often data will be retrieved and how fast it will be needed, How much historical data should be maintained at storage. - Abstract: SAN (Storage Area Network, a high-speed, block level storage device) based centralized data storage system of SST-1 (Steady State superconducting Tokamak) has envisaged to address the need of availability of SST-1 operation & experimental data centrally for archival as well as retrieval [2]. Considering the initial data volume requirement, ∼10 TB (Terabytes) capacity of SAN based data storage system has configured/installed with optical fiber backbone with compatibility considerations of existing Ethernet network of SST-1. The SAN based data storage system has been designed/configured with 3-tiered architecture and GFS (Global File System) cluster file system with multipath support. Tier-1 is of ∼3 TB (frequent access and low data storage capacity) comprises of Fiber channel (FC) based hard disks for optimum throughput. Tier-2 is of ∼6 TB (less frequent access and high data storage capacity) comprises of SATA based hard disks. Tier-3 will be planned later to store offline historical data. In the SAN configuration two tightly coupled storage servers (with cluster configuration) are

  17. Archiving and retrieval of experimental data using SAN based centralized storage system for SST-1

    International Nuclear Information System (INIS)

    Bhandarkar, Manisha; Masand, Harish; Kumar, Aveg; Patel, Kirit; Dhongde, Jasraj; Gulati, Hitesh; Mahajan, Kirti; Chudasama, Hitesh; Pradhan, Subrata

    2016-01-01

    Highlights: • SAN (Storage Area Network) based centralized data storage system of SST-1 has envisaged to address the need of centrally availability of SST-1 storage system to archive/retrieve experimental data for the authenticated users for 24 × 7. • The SAN based data storage system has been designed/configured with 3-tiered architecture and GFS cluster file system with multipath support. • The adopted SAN based data storage for SST-1 is a modular, robust, and allows future expandability. • Important considerations has been taken like, Handling of varied Data writing speed from different subsystems to central storage, Simultaneous read access of the bulk experimental and as well as essential diagnostic data, The life expectancy of data, How often data will be retrieved and how fast it will be needed, How much historical data should be maintained at storage. - Abstract: SAN (Storage Area Network, a high-speed, block level storage device) based centralized data storage system of SST-1 (Steady State superconducting Tokamak) has envisaged to address the need of availability of SST-1 operation & experimental data centrally for archival as well as retrieval [2]. Considering the initial data volume requirement, ∼10 TB (Terabytes) capacity of SAN based data storage system has configured/installed with optical fiber backbone with compatibility considerations of existing Ethernet network of SST-1. The SAN based data storage system has been designed/configured with 3-tiered architecture and GFS (Global File System) cluster file system with multipath support. Tier-1 is of ∼3 TB (frequent access and low data storage capacity) comprises of Fiber channel (FC) based hard disks for optimum throughput. Tier-2 is of ∼6 TB (less frequent access and high data storage capacity) comprises of SATA based hard disks. Tier-3 will be planned later to store offline historical data. In the SAN configuration two tightly coupled storage servers (with cluster configuration) are

  18. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  19. High Efficiency and Low Cost Thermal Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Compared to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.

  20. Performance of stratified thermal-storage system for Oliver Springs Elementary School. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R.L.; Bedinger, A.F.G.

    1981-01-01

    A progress report is given on the performance of a stratified thermal storage system coupled with a heat recovery refrigeration machine designed to provide space heating, cooling and service water heating. Water storage tanks utilizing a flexible membrane to resist temperature blending will be used as the thermal storage element. The two design goals of the heat recovery and thermal energy storage system are (1) to minimize the need to purchase energy for space heating and cooling and water heating and (2) to minimize electrical demand. An automatic data acquisition system will be used for system performance and data gathering. Data collection is expected to begin in September, 1981.